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Abstract
Vast and diverse microbial communities (the microbiome) are distinct at different human body sites and
strongly influence health and disease. Specifically, the respiratory tract microbiome is thought to influence
outcomes after lung transplantation, the only therapeutic option for end-stage lung diseases. Studies
dissecting the role of the microbiome on pulmonary health should also include the viral microbiome
(virome), which is less-studied due to unique challenges in identifying these small, diverse, self-replicating
genetic elements. Organ transplantation is accompanied by immunosuppression, which can result in
reactivation of latent viruses, transfer of viruses from organ donor to recipient, and increased susceptibility to
viral infections. We therefore used high-throughput metagenomic approaches to study the virome of lung
transplant recipients (LTRs). We first characterized the virome in LTRs and its relationship to clinically
defined adverse events. We discovered that a family of eukaryotic viruses (Anelloviridae) is abundant in the
lung and blood of LTRs and that their levels in the lungs were associated with primary graft dysfunction, a
form of acute lung injury. Next, we investigated the temporal and spatial dynamics of the virome during lung
transplantation and identified herpesviruses, parvoviruses, polyomaviruses, bacteriophage and complex
anellovirus populations. We focused on the abundant anelloviruses by assembling genomes from shotgun
metagenomic sequences and tracking their representation in the lung and blood of LTRs post-transplantation
using a metric that accounts for inter-and intra-subject viral diversity. This analysis revealed that anellovirus
populations move between lung allografts and the peripheral blood of LTRs. However, many uncharacterized
sequences still existed in the metagenomic data generated in these studies. To address this, we developed a
molecular and bioinformatics pipeline to mine public datasets and discovered a novel family of small, circular
DNA viruses (Redondoviridae). Quantification of redondoviruses in human oro-respiratory samples showed
an association with periodontal disease and acute illness. Overall, this work helps define the virome during
lung transplantation and introduces a new family of human viruses, broadly demonstrating the importance of
exploring the human virome.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Cell & Molecular Biology

First Advisor
Frederic D. Bushman

Second Advisor
Ronald G. Collman

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3370

https://repository.upenn.edu/edissertations/3370?utm_source=repository.upenn.edu%2Fedissertations%2F3370&utm_medium=PDF&utm_campaign=PDFCoverPages


Keywords
Mirobiome, Virology

Subject Categories
Bioinformatics | Microbiology | Virology

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3370

https://repository.upenn.edu/edissertations/3370?utm_source=repository.upenn.edu%2Fedissertations%2F3370&utm_medium=PDF&utm_campaign=PDFCoverPages


THE HUMAN LUNG VIRAL MICROBIOME IN HEALTH AND DISEASE 
 

Arwa Abbas 
 

A DISSERTATION 
 

in 
 

Cell and Molecular Biology 
 

Presented to the Faculties of the University of Pennsylvania 
 

in 
 

Partial Fulfillment of the Requirements for the 
 

 Degree of Doctor of Philosophy 
 

2019 
 
Co-Supervisor of Dissertation 
 
 
_______________________________ 
Frederic D. Bushman, Ph.D., Professor of Microbiology 
 
Co-Supervisor of Dissertation 
 
 
_______________________________ 
Ronald G. Collman, M.D., Professor of Medicine 
 
Graduate Group Chairperson 
 
 
_______________________________ 
Daniel S. Kessler, Ph.D., Associate Professor of Cell and Developmental Biology 
 
Dissertation Committee 
 
Matthew D. Weitzman, Ph.D., Professor of Pathology and Laboratory Medicine, Children’s 
Hospital of Philadelphia, Chair 
 
Beatrice H. Hahn, M.D., Professor of Medicine 
 
Michael R. Betts, Ph.D., Associate Professor of Microbiology 
 
Elizabeth A. Grice, Ph.D., Associate Professor of Dermatology



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
THE HUMAN LUNG VIRAL MICROBIOME IN HEALTH AND DISEASE 
COPYRIGHT 
2019 
Arwa Abbas 
This work is licensed under the  
Creative Commons Attribution- 
NonCommercial-ShareAlike 3.0 
License 
 
To view a copy of this license, visit 
https://creativecommons.org/licenses/by-nc-sa/3.0/us/



iii 
 

ACKN OW LED GEMEN T S  
 
When asked if I struggle with having two mentors, I often say that the most difficult 

part is deciding who is more supportive or inspiring. Both Rick and Ron have guided me 
through the process of becoming a capable scientist in ways that synergize and complement 
the other’s mentoring style. They’ve taught me how to balance being mindful of the 
experimental minutiae while also thinking about the broader aspects of the biological 
phenomena being studied. Their unabashed excitement about designing, executing and 
interpreting experiments has left a lasting impression on me. Similarly, I would like to thank 
my entire thesis committee and my rotation mentors, Sunny Shin and Mark Goulian, for 
their valuable feedback and insight, and also for their confidence in my (eventual) success. 

The science produced and presented in this thesis would not have been possible 
without the contributions of many others. First, I truly appreciate Jacque Young’s patience 
as she introduced me to the world of viruses. Before I became a senior graduate student 
myself, I looked up to Alexandra Bryson, Christel Chehoud, Erik Clarke, and Katie Sheehan-
Wetzel to learn how to be a clear presenter, empathic lab citizen, and engaged member of 
the graduate student community. I would especially like to thank Louis Taylor, my 
ingenious partner in virus hunting and overall amazing human being, who has taught me 
numerous microbiological, computational and social skills. I’d also like to thank Meagan 
Rubel, my steadfast advocate and bottomless source of advice and knowledge, for 
encouraging me to think outside of the box. While the membership of the lab is always in a 
state of flux, the overall atmosphere of comradery and innovative thinking is constant. 
Therefore, I’d like to thank all the current and former members of the Bushman and 
Collman labs, the Penn Chop Microbiome Program, the Department of Microbiology, the 
Biomedical Graduate Studies and the Cellular and Molecular Biology (CAMB) Program 
directors and coordinators, and the clinical investigators at the Hospital of the University of 
Pennsylvania for contributing to the productive, collegiate environment where I’ve been 
lucky to train in.  

Numerous friends and colleagues outside of the lab have positively shaped my 
graduate school experience. I had the privilege of working alongside and befriending 
inspiring student leaders like Seleeke Flingai, Ciara Gimblet, Brenda Salantes, Julianne 
Rieders, Kate Palozola and Neha Pancholi. My friends in the Mostly Virology Program and 
the larger CAMB community, especially Annie Chen, Tzvi Pollock, and Priya Chatterji, are 
amazing individuals whose company makes me feel safe and sane. I’ve enjoyed and learned 
much from working with eclectic groups including EMPOWER for College, the Science 
Education Academy, the Ernest E. Just Biomedical Society and the CAMB Student 
Newsletter. 

Successfully surviving the Ph.D. process is undoubtedly difficult and I am deeply 
thankful and cognizant of how blessed I am to have come this far. Therefore, I’d like to 
thank the Saeeds and Zafars, my adoptive older siblings, for looking after me since my 
arrival in Philadelphia and for being my role models in many different spheres of life. I’d 
also like to thank all the friends and family who have given me encouragement and 
continuously held me to a high standard knowing that I could, and would, meet their 
expectations. Finally, I cannot thank my mother, father and sister enough for their 
unwavering, unconditional love. While I don’t often believe in myself, I do believe in the 
others who believe in me.  

 
 



iv 
 

 
 

ABS T RACT  
THE HUMAN LUNG VIRAL MICROBIOME IN HEALTH AND DISEASE 

Arwa Abbas 
Frederic D. Bushman and Ronald G. Collman 

 
Vast and diverse microbial communities (the microbiome) are distinct at different 

human body sites and strongly influence health and disease. Specifically, the respiratory 

tract microbiome is thought to influence outcomes after lung transplantation, the only 

therapeutic option for end-stage lung diseases. Studies dissecting the role of the 

microbiome on pulmonary health should also include the viral microbiome (virome), which 

is less-studied due to unique challenges in identifying these small, diverse, self-replicating 

genetic elements.  Organ transplantation is accompanied by immunosuppression, which can 

result in reactivation of latent viruses, transfer of viruses from organ donor to recipient, and 

increased susceptibility to viral infections. We therefore used high-throughput 

metagenomic approaches to study the virome of lung transplant recipients (LTRs). We first 

characterized the virome in LTRs and its relationship to clinically defined adverse events. 

We discovered that a family of eukaryotic viruses (Anelloviridae) is abundant in the lung 

and blood of LTRs and that their levels in the lungs were associated with primary graft 

dysfunction, a form of acute lung injury. Next, we investigated the temporal and spatial 

dynamics of the virome during lung transplantation and identified herpesviruses, 

parvoviruses, polyomaviruses, bacteriophage and complex anellovirus populations. We 

focused on the abundant anelloviruses by assembling genomes from shotgun metagenomic 

sequences and tracking their representation in the lung and blood of LTRs post-

transplantation using a metric that accounts for inter-and intra-subject viral diversity. This 

analysis revealed that anellovirus populations move between lung allografts and the 

peripheral blood of LTRs. However, many uncharacterized sequences still existed in the 
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metagenomic data generated in these studies. To address this, we developed a molecular 

and bioinformatics pipeline to mine public datasets and discovered a novel family of small, 

circular DNA viruses (Redondoviridae). Quantification of redondoviruses in human oro-

respiratory samples showed an association with periodontal disease and acute illness. 

Overall, this work helps define the virome during lung transplantation and introduces a new 

family of human viruses, broadly demonstrating the importance of exploring the human 

virome. 
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CHAPT E R 1 :  IN T ROD U CT ION  
 

The human microbiome is a large and complex population of commensal and 

pathogenic microorganisms including bacteria, archaea, fungi, bacteriophage and 

eukaryotic viruses that live on and within us. The composition and temporal and spatial 

dynamics of this microbiome can be characterized through high-throughput DNA 

sequencing technologies. Unbiased nucleic-acid sequencing techniques have advantages 

over traditional culture-based methods which are limited in sensitivity and require prior 

knowledge of the microbial species of interest. Application of newer sequencing-based 

molecular techniques has revealed that many human body sites such as the gut, skin, mouth 

and urogenital tract harbor unique microbiomes. In some sites, these communities play an 

integral role in maintaining homeostasis locally and for the organism as a whole. Gut 

microbes benefit their host by promoting proper immune system development and function 

(Belkaid and Harrison, 2017), providing nutrition (Flint et al., 2012), metabolizing 

xenobiotics (Maurice et al., 2013) and competing against pathogens (Hibbing et al., 2010). 

On the other hand, disruptions in the microbiome (dysbiosis) have been linked to diverse 

infectious, metabolic, oncological, psychological and immunological diseases (Knight et al., 

2017).  

Bacteria, fungi and archaea within the microbiome are most efficiently catalogued 

by targeting shared sequence tags, such as the 16S ribosomal RNA (rRNA) or 18S rRNA 

genes.  In contrast, viruses lack sequences that are shared amongst all types and thus 

shotgun metagenomic sequencing is needed to identify multiple viruses. One challenge that 

remains in the rapidly-growing microbiome field is the accurate classification of 

metagenomic sequences lacking similarity to reference database sequences. Fortunately, 

the generation of vast amounts of metagenomic data allows unclassifiable sequences to be 
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associated with certain environments, hosts and disease states using large-scale 

bioinformatics comparisons. Comprehensive characterization of novel sequences will 

broaden our understanding of the human microbiome and could reveal hitherto 

undiscovered links between the human microbiome and health and disease. 

1.1 THE HUMAN LUNG MICROBIOME 

The mammalian respiratory tract is a crucial organ system that spans from the 

nares to the lung alveoli and is responsible for the exchange of carbon and oxygen. The 

organ is divided at the larynx into the upper and lower respiratory tract, each containing 

niches with distinct physiological features that ultimately shape the microbial communities 

found there (Man et al., 2017). The Human Microbiome Project was the first large 

interdisciplinary effort that profiled the microbiomes of 15-18 body sites for 242 healthy 

individuals (Consortium, 2012). The anterior nares and several distinct sites within the oral 

cavity were the only respiratory tract sites targeted for microbial sequencing in this initial 

survey. It was found that Staphylococcus species including S. aureus, the cause of methicillin-

resistant S. aureus (MRSA) infections, and commensals such as S. epidermidis are common 

and universal, respectively, in the nares. The oral cavity is generally dominated by 

Streptococcus spp., but also Haemophilus in the buccal mucosa,  Actinomyces in the 

supragingival plaque, and Prevotella in the subgingival plaque (Consortium, 2012). Other 

studies employing both targeted and unbiased molecular techniques frequently detect 

viruses in the upper respiratory tract of asymptomatic individuals, including rhinovirus, 

bocavirus, polyomaviruses, adenovirus, coronavirus and anelloviruses (Man et al., 2017). 

The healthy upper respiratory tract also has a fungal microbiome that includes Aspergillus 

spp., Penicillium spp., Candida spp. and Alternaria spp.  A key finding of these landmark 

studies was that ostensibly healthy individuals can have remarkable variation in their 
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microbiomes. Much of this diversity remains unexplained, although diet, environment, host 

genetics and early microbial exposure have been shown to play key roles. 

Lungs are a unique organ system as they are constantly exposed to the external 

environment by respiration of exogenous particles and to the microbe-rich upper 

respiratory tract. The lower airways are lined with a similar respiratory epithelium to that 

found in the upper airways, while the alveoli, where gas-exchange takes place, have 

functionally distinct alveolar epithelial cells. Although the lower respiratory tract has 

historically been regarded as strictly sterile due to physiological barriers and clearance by 

immunological processes, recent culture-independent, nucleic-acid sequencing-based 

approaches have revealed bacterial and fungal populations both in health and in disease 

(Huang et al., 2013). In healthy individuals, the lower airway bacterial community 

composition is indistinguishable from that of the upper respiratory tract and total bacterial 

counts are low (Charlson et al., 2011). This suggests that the healthy lower respiratory tract 

does not harbor a thriving microbial community, but a sparse and transient population that 

likely derives from aspiration of the upper respiratory tract microbiome. However, even 

low levels of bacteria induce some immune activation (Segal et al., 2013, Segal et al., 2016, 

Huang and Lynch, 2011) which likely influences pulmonary development and homeostasis. 

Individuals suffering from obstructive lung diseases such as cystic fibrosis (CF) 

(Willner et al., 2012b, Stokell et al., 2015),  asthma (Hilty et al., 2010), and chronic 

obstructive pulmonary disorder (COPD) (Erb-Downward et al., 2011) have distinctly 

altered bacterial microbiomes whose specific features and members have been linked to 

clinical disease severity and progression (Huang et al., 2011, Zhao et al., 2012, Sze et al., 

2012, Erb-Downward et al., 2011).  The exact function of the lung microbiome in 

establishing and maintaining respiratory health and the consequences of disrupting these 

microbial communities are still mostly unknown and under active investigation. 
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Specific trans-kingdom interactions in the respiratory tract are known to cause 

severe disease, such as the deadly secondary bacterial pneumonia that occurred after initial 

influenza A infection during the pandemic in 1918 (Taubenberger et al., 2000), and have 

been extensively studied in animal models. In general, respiratory viruses can modulate 

innate and adaptive immune responses promoting bacterial colonization and infection. 

Similarly, certain bacteria have been shown to both promote and impede infections with 

specific viruses in the respiratory tract (Man et al., 2017). 

Fewer studies have focused broadly on the lung virome in humans. An initial 

investigation of viral communities in expectorated sputum from individuals with and 

without CF (Willner et al., 2009) suggested that there is a core set of bacteriophages found 

in the healthy human respiratory tract. Consistent with the low bacterial biomass observed 

in other studies of healthy lungs, the phage communities in individuals without CF also 

appeared to represent a random, transient community related to bacteria from the external 

environment. A separate set of bacteriophages associated with pathogenic bacterial species 

such as P. aeruginosa were found in CF patients. This was followed by a case study of lung 

tissue sampled from two CF lungs which revealed distinct and diverse bacteriophages and 

eukaryotic viruses, including herpesviruses, adenoviruses, human papillomavirus, and 

anelloviruses (Willner et al., 2012a). Other studies which instead focused on upper 

respiratory tract samples from individuals with acute respiratory tract infections (Yang et 

al., 2011) (Lysholm et al., 2012, Wylie et al., 2012, Zoll et al., 2015), healthy adults (Wylie et 

al., 2014) and idiopathic pulmonary fibrosis (Wootton et al., 2011), also detect the viruses 

described above. These findings all support the existence of an authentic respiratory virome 

whose role can now be investigated in various pulmonary and systemic diseases. 

1.2 LUNG TRANSPLANTATION AND PRIMARY GRAFT DYSFUNCTION 
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Lung transplantation is the only long-term option for patients suffering from end-

stage lung diseases including COPD, CF, idiopathic pulmonary fibrosis (IPF) and 

emphysema. In 2015, more than 5,000 lung transplants were performed worldwide 

(Chambers et al., 2017). In addition to the obvious survival benefits for those individuals 

with fatal lung diseases, transplantation can substantially improve quality-of-life (Kotloff 

and Thabut, 2011). Unfortunately, the median survival for adult lung transplantation 

recipients (LTRs) is only 5.8 years (Lund et al., 2016), which is lower than most other solid-

organ transplants (Watson and Dark, 2012).  

Barriers to the short and long-term success of lung transplantation include graft 

failure and rejection. Primary graft dysfunction (PGD) is a form of acute lung injury which 

occurs within 72 hours of transplantation. PGD is characterized by hypoxemia, pulmonary 

edema and alveolar damage. Approximately 10-30% of all LTRs experience severe PGD, 

which is a leading cause of death immediately post transplantation (Lee and Christie, 2011, 

Suzuki et al., 2013). 

The pathogenesis of PGD is multi-factorial and thought to be related to ischemia-

reperfusion events. An inflammatory environment develops within the lung after donor 

brain death, driven by macrophages that release chemokines and cytokines. This 

inflammatory state is perpetuated after reperfusion by recruitment of T-cells and 

neutrophils. Activated immune cells, in conjunction with reactive oxygen species generated 

during ischemia-reperfusion, are thought to directly injure lung endo- and epithelium 

(Diamond and Wigfield, 2013). LTRs who survive severe PGD are more likely to develop 

donor-specific antibodies (Ius et al., 2014)  and bronchiolitis obliterans syndrome (BOS), a 

clinical manifestation of chronic rejection (Daud et al., 2007). Treatment for PGD is limited 

to supportive therapy and no definitive preventive measures exist (Suzuki et al., 2013). 



6 
 

Reducing the incidence of PGD would dramatically improve outcomes following lung 

transplantation. 

The pathology of PGD is incompletely understood, but has been associated with 

innate immune pathway activation. Pathways identified in a gene set enrichment analysis of 

mRNA from bronchoalveolar lavage (BAL) of LTRs who developed PGD included those 

involved in inflammasome activation and pattern recognition receptors signaling pathways, 

which are stimulated by danger- and pathogen-associated molecular patterns (Cantu et al., 

2013). In addition, complement activation within the allograft has been implicated in PGD in 

isogenic rat models of transplantation (Naka et al., 1997). Plasma levels of C4a and C5a, 

small peptides that promote local inflammation, neutrophil recruitment and macrophage 

activation, are elevated during PGD (Shah et al., 2014). The complement cascade can be 

initiated by antigen-antibody complexes, direct binding of complement to a pathogen, or 

binding to microbial mannose residues. Together, these studies suggest a microbial 

contribution to the immune activity observed in PGD. 

1.3 ALTERED MICROBIOMES FOLLOWING LUNG TRANSPLANTATION 

In addition to the established negative impact of graft injury on the clinical success 

of lung transplantation, LTRs are particularly susceptible to infection because they are 

under lifelong administration of immunosuppressive drugs to minimize graft rejection 

(Bhorade and Stern, 2009). Normal airway clearance in LTRs is also compromised due to 

decreased sputum clearance, loss of the cough reflex due to vagal denervation of the 

transplanted organ and surgical disruption of lymphatic system.  Increased propensity for 

micro-aspiration (Atkins et al., 2007), can also allow seeding of the lungs from the microbe-

rich upper respiratory tract. Accordingly, clinically significant infections are the leading 

cause of death within the first year post-transplantation (Burguete et al., 2013). Bacterial 

pneumonia caused by P. aeruginosa or S. aureus, and opportunistic fungal and viral 
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infections are frequent within the first few months post-transplantation (Burguete et al., 

2013). Furthermore, severe disease can arise from reactivation of common, latent viruses 

such as cytomegalovirus (CMV), which has a 60% seropositivity rate in the general United 

States population (Staras et al., 2006). As a result, patients now routinely receive CMV 

prophylaxis if they are seropositive or receive an organ from a seropositive donor. 

Pathologies due to poorly characterized viruses have also been discovered in 

immunosuppressed organ transplant recipients. Recently, two LTRs who suffered from 

epidermal hyperplasia with pruritic rashes exhibited affected tissue that was abundant in 

human polyomavirus 7 viral particles, DNA and protein (Ho et al., 2015). Studying the 

virome in these immunosuppressed populations can reveal novel disease manifestations 

during viral infection and shed light on host-viral interactions that are normally masked in 

an immunocompetent host. 

In addition to immediate and direct injury to lung tissue, acute infections dispose 

LTRs to later development of BOS, a clinical manifestation of chronic rejection and leading 

cause of long-term graft failure. Indeed, a well-known risk factor for BOS is CMV infection 

(Kroshus et al., 1997). Additionally, recent studies suggest that BOS is more frequent in 

LTRs with prior clinical infection or documented colonization with Aspergillus, P. 

aeruginosa, Chlamydia pneumoniae, and community-acquired respiratory viruses including 

parainfluenza, respiratory syncytial virus, metapneumovirus, coronavirus, rhinovirus, and 

influenza (Martin-Gandul et al., 2015, Dickson et al., 2014a, Peghin et al., 2017, Yates et al., 

2005, Botha et al., 2008).   

Besides de novo infection and reactivation from reservoirs within the recipient, 

microorganisms can also be transmitted from the donor lung. Routine screening of organ 

donors is performed for a limited panel of pathogens (Grossi et al., 2009), although 

unexpected transmission can occur due to inadequate screening. While these events occur 
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in a minority of transplantations, the reported 1% incidence of transmission of infectious 

agents is likely an underestimate (Ison and Nalesnik, 2011), as only infections leading to 

significant morbidity and mortality are reported and because transmission can be 

influenced by inoculum, organ type, and types of immunosuppression and antibiotics given 

(Ison and Nalesnik, 2011). Pathogenic or benign microbes originally in the donor lung may 

persist in immunosuppressed LTRs, but the extent of persistence of viruses has not been 

fully probed. An unbiased analysis of viral transmission during lung transplantation is 

essential to anticipate disease occurrence and would improve general understanding of 

how the virome is affected by host immunology and immuno-suppressive drugs. 

Previous investigations of microbial agents and lung transplant outcomes are often 

limited by their focus on single agents rather than communities. Recent pioneering high-

throughput studies show that the respiratory tract bacterial and fungal microbiomes of 

LTRs are aberrant compared to healthy lungs; specifically there is decreased microbial 

diversity, increased microbial burden and outgrowths of recognized lung pathogens and 

atypical species (Charlson et al., 2012, Dickson et al., 2014b, Borewicz et al., 2013). Initial 

studies of the viral component of the lung microbiome from our group discovered high 

levels of anelloviruses (Young et al., 2015).  Anellovirus levels in both the lung and upper 

respiratory tract were higher in LTRs compared to healthy adults and were associated with 

bacterial dysbiosis (Young et al., 2015). This pilot study analyzed heterogeneous time points 

post-transplantation; thus, the virome of the donor organ and temporal dynamics within 

individual LTRs after transplantation could not be ascertained. 

1.4 ANELLOVIRIDAE: A FAMILY OF UBIQUITOUS HUMAN VIRUSES 

 One intriguing finding in various studies of the virome is that humans are nearly 

always colonized by members of Anelloviridae, a family of diverse, non-enveloped, small 

circular ssDNA eukaryotic viruses including alphatorqueviruses, betatorqueviruses and 
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gammatorqueviruses (Figure 1.1). The first anellovirus, torque teno virus, was originally 

discovered in a hepatitis patient in 1997 (Nishizawa et al., 1997). Its prevalence in the 

human population has since been estimated to be at least 50% and as high as 90% in certain 

populations (Spandole et al., 2015). In fact, anelloviruses are found in many mammalian 

species including non-human primates, cats, rodents, swine and bats.  

Anelloviridae display remarkable genomic variability; genome sizes vary from 2.8 

kilobases (kb) to 3.9 kb between different genera and the number of unique isolates from 

diverse animals deposited in reference databases increases each year (Spandole et al., 

2015). While the untranslated region of the genome is somewhat conserved within the 

family, the amino acid sequences of the Open Reading Frame 1 (ORF1) protein can diverge 

by up to 70% (Spandole et al., 2015).  Anelloviridae quasi-species have been described to 

exist both within and between individuals. There are several hypotheses for the extensive 

genome variation seen in Anelloviridae. One is that there is a high basal mutation rate; it is 

known that RNA viruses and single-stranded DNA (ssDNA) viruses accumulate mutations at 

high rates. Indeed, the Circoviridae family of eukaryotic ssDNA viruses drifts at rates of 

1.2x10-3 substitutions/site/year (Firth et al., 2009).  The three hypervariable regions of the 

putative capsid protein (Nishizawa et al., 1999) may represent sites of immune evasion, 

which is well-known to occur during chronic infection with other viruses such as human 

immunodeficiency virus (HIV) (Rambaut et al., 2004). Another possibility is co-infections 

with multiple isolates allowing for within-host recombination (Worobey, 2000, Fahsbender 

et al., 2017). Considering that anelloviruses are detected in infants within six months of 

birth (Lim et al., 2015, Komatsu et al., 2004), it’s plausible that viral diversity is a 

combination of adaption within the host and frequent de novo infections that continue into 

adulthood. 
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It is known that changes in total anellovirus levels in blood correlate with altered 

immune states.  Plasma levels of anellovirus DNA increase in HIV-positive individuals that 

progress to acquired immunodeficiency syndrome (AIDS) and are inversely correlated with 

CD4+ T-cell counts (Thom and Petrik, 2007, Christensen et al., 2000, Li et al., 2013). In 

contrast, anellovirus levels decrease in some HIV-positive patients whose immune system is 

reconstituted following highly active anti-retroviral therapy (Devalle et al., 2009, Madsen et 

al., 2002).  An increase in anellovirus load is also seen in the elderly, who are thought to be 

immune deficient (Haloschan et al., 2014). Other studies describe expansion of Anelloviridae 

in plasma of solid-organ transplant recipients receiving immunosuppression therapy 

(Görzer et al., 2014, De Vlaminck et al., 2013, Görzer et al., 2015). In addition, De Vlaminck 

et al reported a positive correlation between Anelloviridae expansion and increased dosage 

of immunosuppressive drugs including tacrolimus, a T-cell activation inhibitor, and 

prednisone, a corticosteroid. These findings, which suggest a strong link between host 

immune competence and control of these viruses, have led some to suggest measuring 

anellovirus levels in the blood to monitor functional immune suppression in clinical settings 

(Focosi et al., 2016, De Vlaminck et al., 2013).  

Although anelloviruses are ubiquitous, many tenets of their interaction with the 

host, including their target cells, are incompletely characterized. Several early in vitro 

studies suggested that anelloviruses replicate in activated peripheral blood mononuclear 

cells and other hematopoietic cells (Mariscal et al., 2002, Maggi et al., 2001). Recently, 

plasma anellovirus levels were tracked in kidney and pancreas transplant recipients who 

experienced T-cell depletion with anti-thymocyte globulin (ATG) given as induction 

immune suppression. In this study, viral levels decreased with decreasing lymphocyte 

counts in peripheral blood. Transplant recipients treated with basiliximab, an induction 

agent that only prevents T-cell activation and proliferation, did not experience a similar 
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drop of anelloviruses (Focosi et al., 2015).  Another study tracking blood anellovirus DNA 

levels in allogeneic stem cell transplantation reported a similar decrease in viral DNA after 

myeloablative conditioning; this reduction was partially reversed after successful 

engraftment of donor stem cells (Albert et al., 2017). Similarly, torque teno sus viruses 

(TTSu) have been detected by in situ hybridization in CD3+ cells within the interfollicular 

region and mantle zone of swine lymphoid tissue (Lee et al., 2015) . Thus, it is postulated 

that T-cells are a major replication compartment of Anelloviridae species in vivo, although 

their growth in these cell types has not been successfully maintained in vitro. Additionally, it 

is unclear whether anellovirus replication in lymphocytes requires activation of these cells 

in vivo. Investigating viral dynamics and different facets of the immune response is 

necessary to address the apparent paradox of why anelloviruses, hypothesized to replicate 

in activated T-cells, increase in various compartments in immune suppressed states . 

A limited number of studies have examined how anelloviruses trigger and 

counteract host immune responses. TTV DNA was shown to elicit an inflammatory response 

via Toll-like receptors (TLRs) (Rocchi et al., 2009), while other groups demonstrated that a 

virally encoded micro RNA (miRNA) and the putative non-structural ORF2 protein inhibit 

interferon and NF-kB signaling, respectively (Kincaid et al., 2013, Zheng et al., 2007). 

Antibodies against human anellovirus ORF1 and ORF2 have been detected in human sera 

(Ott et al., 2000, Chen et al., 2013, Kakkola et al., 2008, Mankotia and Irshad, 2014). High 

rates of seropositivity against TTSu (24-100%) have also been seen in global swine herds 

(Kekarainen and Segalés, 2012)  indicating that wide-spread infection with Anelloviridae 

species are common in non-human hosts as well. 

Virtually nothing is known about cellular immune responses controlling 

anelloviruses. Many other chronic infections, such as CMV, are known to be controlled by 

virus-specific T-cells. Considering that persistent CMV infection even in the absence of overt 
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disease promotes oligoclonal expansion of CMV-specific T-cells (Brunner et al., 2011, 

Pawelec and Derhovanessian, 2011), it is possible that chronic and repeated infections with 

diverse anelloviruses may also profoundly shape the human immune system.  

Since their discovery, anelloviruses have been widely interrogated on whether they 

are the etiological agent of any disease. In swine, inoculation of gnotobiotic piglets with 

TTSu1-containing tissue homogenates prior to infection with porcine circovirus 2 (PCV-2) 

induced post-weaning multisystemic wasting syndrome (PMWS), although neither TTSu-1 

nor PCV-2 alone recapitulated the disease (Ellis et al., 2008). Furthermore, TTSu-2 

prevalence and viral load are higher in PMWS-affected animals (Kekarainen and Segalés, 

2012, Meng, 2012) and are also correlated with PCV-2 viral levels in lymph tissue from 

diseased animals (Lee et al., 2015). As a result, it is postulated that co-infection with TTSu 

potentiates diseases by PCV-2. Thus far, human anelloviruses are not definitively associated 

with any disease, although there is some preliminary evidence of a role in respiratory and 

oral diseases.  For example, one study reported increased viral levels in the lungs of 

children with asthma and ciliary dysmotility (Pifferi et al., 2008).  Additionally, increased 

anellovirus levels in the blood have been correlated with COPD (Feyzioğlu et al., 2014) and 

worse outcomes of IPF (Bando et al., 2015, Bando et al., 2008, Bando et al., 2001). The 

presence of anelloviruses in gingival tissue has also been associated with periodontal 

disease (Rotundo et al., 2004, Zhang et al., 2017). It remains unclear whether these viruses 

contribute to disease pathogenesis or are merely bystanders reflecting immune cell 

recruitment. In either case, assaying viral levels in the appropriate compartment could 

serve as a personalized, functional marker of disease progression and/or prognosis. In 

order to explore this possibility, it is necessary to examine and compare viral dynamics in a 

compartment-specific manner that is able to distinguish between anellovirus strains. 
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1.5 METAGENOMIC METHODS TO STUDY THE HUMAN LUNG VIRAL 
MICROBIOME 

While the molecular characterization of the bacterial and fungal members of the 

human microbiome at certain body sites has bloomed in the past two decades, studies of the 

viral component remain incomplete. More recently, advancements in enrichment of low 

inputs of viral nucleic acid and improvements in sequencing technologies and 

bioinformatics pipelines have opened up possibilities to interrogate the human virome. But 

characterizing the lung virome faces challenges not found in high microbial biomass or 

easily accessible sites such as the gut, skin, oral cavity or uro-genital tract. First, sampling 

the lower respiratory tract via bronchoscopy requires passage through the microbe-rich 

upper respiratory tract with potential for carryover. Second, it now well-known that 

contamination from the environment, sequencing instrument or reagents can confound 

analyses of relatively low biomass samples (Kim et al., 2017, Salter et al., 2014, Naccache et 

al., 2013, Clarke et al., 2017a). Third, viral nucleic acids can comprise a vanishingly small 

fraction of the total DNA of a sample. Well-designed cohorts, sampling approaches, negative 

controls, and specialized sample preparation techniques that optimize recovery of viral 

nucleic acids can allow for stringent comparisons in human virome studies. 

To that end, our group and others have developed biochemical and analytical 

methods specifically adapted for studying the virome in low-biomass samples (Thurber et 

al., 2009, Young et al., 2015, Aggarwala et al., 2017). First, enrichment of virus-like particles 

(VLPs) is achieved by filtration or centrifugation of the liquid clinical sample to remove 

eukaryotic and prokaryotic cells. Second, non-encapsidated nucleic acids are digested by 

enzymes to reduce contaminating human and bacterial DNA and RNA. Proteinase treatment 

of viral capsids is followed by nucleic acid extraction. Third, whole-genome amplification is 

performed (described further below) to amplify minute amounts of DNA. To study RNA 
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viruses, cDNA is generated using random priming and reverse transcription (Wang et al., 

2003).  

Unlike bacterial and fungal taxa, which can be identified based on 16S rRNA and 

internal transcribed spacer (ITS) sequences of their genomes respectively, a single 

universal gene sequence cannot be used to identify all viruses. Therefore, a shotgun 

metagenomic approach, which attempts to capture and sequence all DNA in a sample, is 

employed. Advances in library preparation now allow use of small amounts of input and 

multiplexing of hundreds of samples using dual-indexed barcodes. Short-read (150-300 bp) 

sequencing is predominantly performed using the Illumina platform which can generate 

large outputs and has high accuracy (average error rate of 0.24% per base) (Pfeiffer et al., 

2018). After generation of these large datasets, sophisticated computational tools are used 

to filter out sequencing errors and contamination and ultimately identify and characterize 

viral sequences. Different viruses can be present in distinct abundances in the original 

sample; as a result, more abundant genomes will be sequenced to greater depth, while rarer 

genomes will be sparsely covered, or not represented at all. By using mathematical models, 

one can use these differences to further infer other aspects of viral community structure 

and population dynamics.    

1.6 CHALLENGES IN CHARACTERIZING HIGHLY DIVERGENT VIRAL 
SEQUENCES 

There are specific challenges posed by the “viral dark matter”, which refers to the 

vast majority of reads generated by shotgun metagenomic studies that cannot be annotated 

into functional or taxonomic categories (Aggarwala et al., 2017). The enormous size and 

diversity of global viral populations is not usually captured by the few thousand viral 

species available in databases. As a result, any new putative viral genomic sequence (which 

does not resemble any database entry) is usually missed in analysis, leading to an 
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incomplete understanding of the virome. Nevertheless, there are approaches that can be 

used to gain insight on these unclassifiable sequences. For example, sequence reads can be 

assembled into contigs representing viral genomes or partial genomes, which can then be 

used as queries for nucleotide and protein sequence searches. Additionally, when a novel 

sequence is discovered and characterized, it can effectively be used as “bait” to pull out 

other distantly homologous sequences. This iterative approach is one way to systematically 

illuminate the viral dark matter. 

1.7 INCREASED DISCOVERY OF CIRCULAR SINGLE-STRANDED DNA 
VIRUSES IN THE METAGENOMICS ERA  

Shotgun metagenomics is an approach that samples and sequences all nucleic acid 

present in an environment and interrogates the biological entities present there. While 

there are certain steps in the workflow that can enrich or exclude certain types of 

organisms or nucleic acids, in general it is considered an unbiased approach. The 

improvements in sequencing capacity and accuracy, bioinformatics tool development and 

the decrease in cost allow generation of large datasets. Together, these advancements have 

proven especially fruitful in the field of virology. 

 Viruses are numerically the most abundant biological entities on the planet, 

inhabiting every imaginable environmental niche. For example, quantification of VLPs using 

electron and epiflourescent microscopy reveals that sea water contains 104-108 VLPs/mL 

(Proctor, 1997) and human stool contains 108-109 VLPs/gram (Aggarwala et al., 2017, Kim 

et al., 2011). While some of these VLPs may not represent infectious particles or are 

bacteriophage, some may represent novel and diverse eukaryotic viruses. However, 

because some viruses are recalcitrant to in vitro culture and/or may not cause overt cell 

pathology, they have been less studied. Additionally, rare viruses with small genomes are 

often difficult to identify against the background of highly abundant and large host 
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genomes. Thus, the world of small eukaryotic viruses is only beginning to be explored. In 

this work, we focus on circular ssDNA viruses that can infect humans. 

 One such group is the Anelloviridae family, the first member of which (torque teno 

virus or TTV) was discovered in 1997 in a single subject with fulminant hepatitis in the 

absence of viral agents already known to cause hepatitis (Nishizawa et al., 1997).  A 

fragment of the TTV genome was first identified using representational difference analysis 

which detects differences in DNA populations using subtractive hybridization between two 

related samples (Lisitsyn et al., 1993); in this case, serum from the same subject prior to and 

during the disease state. A subsequent study was able to amplify a full-length genome from 

human blood using primers based on the genome fragment discovered earlier (Mushahwar 

et al., 1999). Further description of the Anelloviridae family and its postulated roles in 

human health has been discussed previously. Overall, its discovery demonstrates the 

remarkable ability of an unbiased approach followed by targeted queries to unveil a 

ubiquitous biological phenomenon. 

 Recently, sensitive detection of circular ssDNA molecules that requires no prior 

knowledge of the target sequence has improved markedly with the use of multiple 

displacement amplification (MDA) during DNA preparation for low biomass metagenomic 

studies.  In this process, random primers first anneal to a denatured ssDNA template. Then, 

the highly processive and accurate bacteriophage phi29 DNA polymerase synthesizes DNA 

in an isothermal reaction until it encounters a segment of double-stranded DNA (dsDNA). 

Its ability to displace the second strand of DNA allows it to continue synthesis until it 

reaches the end of the template or falls off stochastically. This ultimately results in linear 

accumulation of a DNA template over time. However, in the case of a circular DNA template, 

a single polymerase can proceed in a circular fashion resulting in many rounds of template 

amplification creating concatenated genomes that are also targets for primer annealing. 
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This process is illustrated in Figure 1.2. As a result of using this technique in metagenomic 

surveys of samples from varied environments and hosts, many different circular ssDNA 

sequences have been identified; the challenge that remains is in understanding what they 

are and what they do. 

 One way to evaluate whether the sequence is likely a replication competent virus is 

by detecting an ORF that encodes a Replication-associated protein (Rep). This is because 

comparing sequences based on nucleotide sequence is usually insufficient to characterize 

highly divergent sequences that have no homolog in databases. On the other hand, the Rep 

protein has distinct conserved motifs and domains (Rosario et al., 2012) that are important 

for rolling-circle replication (RCR), a common mechanism by which circular viruses and 

mobile DNA elements replicate their genomes. Although the core catalytic residues of the 

Rep protein are highly conserved, differences in the motif signature and presence or 

absence of additional domains allows distinction of Reps from different viral families 

including Geminiviridae, Circoviridae, Nanoviridae and circular DNA  such as plasmids or 

satellite DNA. However, the presence of a Rep protein is not a guarantee to identify a 

putative ssDNA virus; for example, there are no consistent conserved RCR motifs in 

members of the Anelloviridae family (Rosario et al., 2012). 

 Nevertheless, analyses of circular Rep-encoding ssDNA (CRESS) sequences found in 

metagenomic studies have recently revealed three new distinct families of eukaryotic 

viruses; Bacilladnaviridae, Smacoviridae and Genomoviridae. Viruses in the 

Bacilladnaviridae family infect marine diatoms (Tomaru et al., 2011). In addition to having a 

covalently-closed ssDNA genome encoding a Rep protein, portions of bacilladnaviral 

genomes are double-stranded (Tomaru et al., 2013), demonstrating the range of genome 

architectures possible within CRESS viruses. Smacoviruses (43 species across 6 genera) 

have been found in fecal matter of vertebrates, primarily mammals and birds, but not in 
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animal tissue (Varsani and Krupovic, 2018). A single genomovirus, sclerotinia 

gemycircularvirus 1, has been shown to infect a fungus, but hundreds of similar genome 

sequences have also been found in environmental, plant and animal-associated samples 

(Krupovic et al., 2016). A limitation in understanding the host range of these viruses is a 

lack of experimental systems to grow viruses discovered by metagenomic methods. 

 While traditional culture-based techniques are needed to understand the biological 

properties of newly discovered viruses, the approaches to identify them in the 

metagenomics era are undoubtedly changing. In recognition of this, a recent workshop of 

experts and members of the International Committee of Viruses has updated the framework 

for classification (Simmonds et al., 2017) of viral sequences that have solely been identified 

by metagenomic means and/or without biological or experimental characterization 

(Simmonds et al., 2017). These amendments will facilitate placing diverse viral genomes 

into higher order taxonomic groups from which insight may be gained regarding their 

evolutionary histories and host relationships.  

1.8 DISSERTATION AIMS 

Since solid organ transplantation and accompanying immunosuppression disrupt 

host–virus interactions, it is a unique and valuable setting to interrogate the human virome 

in general and to determine its influence on outcomes post-transplantation. In addition, the 

features of viral communities associated with post-transplant complications, such as PGD, 

have yet to be delineated. Additionally, viral transmission, reactivation and novel infections 

can all cause complications in LTRs. The extent of donor virus persistence in particular has 

not been well studied, which warrants a longitudinal investigation of the virome in this 

vulnerable population. Finally, deep sequencing of understudied niches within the human 

body may reveal novel eukaryotic viruses with unknown links to human health and disease. 

Therefore, the aims of the work presented in this dissertation are as follows:  
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1) What is the structure of the viral microbiome prior to and following lung 

transplantation? 

Previously, our group analyzed the DNA virome within the upper and lower 

respiratory tract of LTRs and healthy individuals. A striking finding was the large numbers 

of metagenomic sequences derived from diverse anelloviruses. Quantification of anellovirus 

DNA in BAL and oral wash revealed that levels were 50-fold higher in LTRs than in healthy 

adults. Higher anellovirus loads in the lung were also found to correlate with dysbiotic 

bacterial communities (Young et al., 2015). Based on the observations in this cross-sectional 

study of samples taken at heterogeneous time points following organ transplantation, we 

sought to define the virome, with a particular focus on Anelloviridae populations, in donated 

organs and in LTRs in the first year post-transplantation. In CHAPTER 3, we use 

metagenomic and targeted molecular approaches to describe markedly elevated levels of 

anellovirus DNA in the lungs of donors prior to organ recovery.  In CHAPTER 4, we 

corroborate previous findings that LTRs have abundant anelloviruses in peripheral blood 

and expand upon the previous detections of these viruses in the pulmonary compartment. 

Specifically, we demonstrate that anellovirus populations present in the donor lung can 

persist in the allograft and disseminate into the peripheral blood, and that anelloviruses 

circulating in the recipient prior to transplantation can re-enter the allograft. Therefore, 

lung transplantation can result in transfer of whole anellovirus communities from graft to 

host and vice versa. 

2) Is there a relationship between the viral microbiome and primary graft 

dysfunction?   

Given that PGD is associated with innate immune activation, we hypothesized that 

lung viruses, including anelloviruses, might be associated with PGD. In CHAPTER 3, we 

analyze extracellular viruses present in acellular BAL sampled from lung donors 
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immediately prior to organ recovery and from the allograft one hour after transplant and 

reperfusion in a case-control study of 22 pairs of LTRs. We also assayed recipient serum 

samples obtained at the time of reperfusion and investigated whether anellovirus levels 

were correlated with host cell gene expression, which was previously reported to correlate 

with PGD in these patients. While absolute viral levels did not distinguish PGD cases from 

controls, changes in anellovirus levels during the perioperative period were significantly 

associated with PGD.  This difference is consistent with the hypothesis that PGD is linked to 

tissue viability or immune activation that may restrict viral levels in the lung. However, we 

did not find significant associations between peri-transplant viral dynamics or lung levels 

and host gene expression patterns. 

3) Can novel eukaryotic viruses be discovered by mining large metagenomic 

datasets?  

Shotgun metagenomic sequencing is a powerful tool to study the virome. The 

extensive databases generated from virome studies allow newly discovered viruses to be 

associated with specific environments, body sites and disease states using bioinformatics 

comparisons over large numbers of publically available sequences. In CHAPTER 5, we 

introduce a new family of small, circular DNA viruses, Redondoviridae, originally discovered 

in BAL of LTRs. After querying over 6000 samples from publicly available shotgun viral 

metagenomic datasets for homology to redondoviruses, we report that they primarily occur 

in human oral and respiratory samples and are notably absent in contamination controls 

and non-human samples. Redondoviruses encode two proteins similar to capsid and Rep 

proteins from other CRESS viruses, and one highly conserved open-reading frame without 

homology to any known protein family. Comparison of the new genomes to samples from 

human disease states showed an association with periodontal disease and critical illness. 

Redondovirus sequences disappeared with successful therapy, motivating studies of the 
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association of these viruses with periodontal disease.  Thus we propose that Redondoviridae 

comprise a novel, widespread family of human viruses. 
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FIGURE 1.1:  GENOME ORGANIZATION  OF ANELLOVIRIDAE 

Genomic organization of three human-infecting genera of Anelloviridae; Alphatorquevirus, 
Betatorquevirus and Gammatorquevirus, which each currently comprise of 31, 16, and 15 
genomes respectively (NCBI Viral Genomes, 2018). Species demarcation is based on ORF1 
(purple) nucleotide identity with a cutoff value of 35%.  The circular genome is negative 
sense ssDNA with a single intergenic region containing one or more GC-rich regions. The 
putative capsid protein contains a conserved amino-terminus rich in basic amino acids, 
common in other viral coat proteins. The number of non-structural proteins predicted for 
each virus varies. While humans are hosts for all three genera, the definitive host range for 
each has not been determined and may include non-human animals as well. In this work, 
primers targeting the region upstream or within the ORF2 coding sequence were used to 
quantify diverse human anelloviruses. Modified from (Rosario et al., 2012).  

Torque teno virus 1
3852 bp

Torque teno midi virus 1
3245 bp

Torque teno mini virus 1
2856 bp

Capsid Non-structural protein GC-rich region qPCR Primers

[Alphatorquevirus] [Gammatorquevirus] [Betatorquevirus]
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FIGURE 1.2:  MULTIPLE  DISPLACEMENT AMPLIF ICATION STRATEGY  

In A, the random-primed linear amplification of genomic DNA is shown. Secondary priming 
events are initiated from primary products. In B, the rolling circle amplification of circular 
DNA generates concatemers of the original template.  DNA synthesis initiates from random 
oligonucleotide primers, indicated by arrowheads, and is performed by a DNA polymerase 
with strand-displacement ability. Secondary priming events occur on the displaced product 
DNA strands. Adapted from (Dean et al., 2002). 

linear ssDNA

Random priming of

circular DNA

A

B
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2.1 ETHICS STATEMENT 

These studies were carried out in strict accordance of the regulations set forth in the 

Federal Policy for the Protection of Human Subjects or the “Common Rule”.  All participants 

provided written informed consent, and all specimens were obtained under protocols 

approved by institutional review boards (IRB) at their respective institutions. 

2.2 STUDY POPULATION AND PRIMARY SAMPLE COLLECTION 

Stored samples and clinical data were obtained from participants who had 

previously been prospectively enrolled in the multicenter Clinical Trials in Organ 

Transplantation-03 (CTOT-03) study (NCT00531921). Bronchoalveolar lavage (BAL) was 

collected in the operating room from donors immediately before organ procurement (donor 

BAL) and from allografts in recipients one hour after reperfusion (recipient BAL), as 

described previously (Cantu et al., 2013). Serum was also obtained from recipients 1 h after 

reperfusion. Additional BAL and serum were obtained during routine surveillance 

bronchoscopy and when indications for further testing arose (Figure 2.1). Specimens were 

prospectively collected following informed consent under IRB-approved protocols; samples 

analyzed here were retrieved retrospectively from stored specimens.  A set of bronchoscope 

prewashes obtained for a separate study (Clarke et al., 2017a) and processed in an identical 

manner were included in the analysis. 

In CHAPTER 3, we selected 23 grade 3 PGD cases and controls matched for donor 

age and pre-transplant recipient diagnosis as described in a previous report (Cantu et al., 

2013). For one PGD case, no specimens remained from their matched control, and one 

additional PGD case was included for which there was no matching control. Consequently, 

samples were available from 22 case–control pairs and two unmatched PGD cases (Table 

3.1). For 15 pairs, all perioperative BAL specimens were available for virome analysis, 
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whereas for seven pairs, insufficient sample remained from one or more lung samples 

(Tables 3.1 and Supplemental Table 3.1).  

Subjects analyzed in CHAPTER 4 are described in (Table 4.1). All subjects except one 

(12-12) received induction immunosuppression (basiliximab). One subject (12-09) 

experienced grade 3 primary graft dysfunction within 72 hours of transplantation.  Five 

subjects experienced one or more episodes of acute cellular rejection, which was treated 

with augmentation of immunosuppression.  Common bacteria and fungi identified by 

routine clinical culture of donor BAL included Staphylococcus sp., Streptococcus sp., and 

Candida albicans.  Cytomegalovirus (CMV) serology was performed as indicated in 

Supplemental Table 4.3, but cultures were either negative or not performed for viral agents.  

Most subjects received microbial prophylaxis for CMV and Pneumocystis jirovecii as well as 

additional antibacterial or antifungal treatments.  

Acellular BAL samples were obtained from healthy adult volunteers, as reported 

previously (Supplemental Table 3.2) (Charlson et al., 2011). Serum from a separate group of 

11 healthy adult volunteers was also collected.  

In CHAPTER 5, critically ill subjects were enrolled at the Hospital of the University of 

Pennsylvania medical Intensive Care Unit (ICU) within 24 hours of admission to the ICU. 

Informed consent was obtained under IRB protocol 823392. Oral swabs (n = 198), 

endotracheal aspirates (n = 87), and stool (n = 16) from 67 subjects were available to be 

queried by qPCR. Additional metagenomic sequence data (human, animal, and 

environmental) were derived from publicly available data repositories (Supplemental Table 

5.3). 

2.3 SAMPLE PROCESSING  

To minimize cellular material, whole BAL was centrifuged at 960 x g for 10 minutes 

at room temperature and the supernatant was aliquoted and stored at -80°C.  Serum was 
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collected in EDTA tubes, separated by centrifugation, and stored at -80°C. Virus-like 

particles (VLPs) were purified from 0.2 to 2 mL of acellular BAL or serum depending upon 

availability.  BAL samples were thawed at 4°C and MgSO4 and dithiothreitol were added to a 

final concentration of 10mM. To enrich for VLPs, the acellular BAL samples were 

concentrated using an Amicon Ultra-4 100kDA molecular weight cutoff filter (EMD 

Millipore; Billerica, MA) and the filters washed with 1-2 mL SM Buffer (Sambrook and 

Russell, 2001). The concentrated VLP preparations were treated with DNase I (225 Units) 

and RNase (7.5 µg) (Roche; Indianapolis, IN) at 37°C for 15 minutes to digest non-

encapsulated (i.e. non-viral) nucleic acids, and the enzymes were inactivated at 70°C for 5 

minutes.  Whole serum samples were nuclease treated as above and the enzymes were 

inactivated by immediate addition of Buffer AC from the QIAmp Ultrasens Virus kit (Qiagen; 

Hilden, Germany). 

Nucleic acids were extracted using QIAmp Ultrasens Virus kit (Qiagen; Hilden, 

Germany) per manufacturer instructions with the following modifications: 5 µg of linear 

polyacrylamide (Life Technologies; Carlsbad, CA) instead of carrier RNA was used and 

samples were eluted in 60µL of RNAse-free elution buffer containing 10mM Tris-HCL, 1mM 

EDTA at pH 7.5. DNA was stored at         -20°C and RNA was stored at -80°C until processing. 

To detect RNA viruses, 20 µl of the DNA/RNA mixture were treated with 10 units of RNAse-

free, recombinant DNAse (Roche; Indianapolis, MN) for 20 minutes at 37°C. 5 µL of each 

sample was then reverse transcribed. First strand cDNA synthesis was completed using 

SuperScript III First Strand Synthesis kit (ThermoFisher; Waltham, MA) and Primer A (5’-

GTTTCCCAGTCACGATCNNNNNNNNN-3’), to allow for random priming (Wang et al., 2003). 

Two rounds of second strand synthesis, again using Primer A for random priming, were 

performed using Sequenase Version 2.0 DNA polymerase (Affymetrix; Santa Clara, CA). The 

dsDNA product was then amplified by adding Primer B (5’-GTTTCCCAGTCACGATC-3’) 
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(Wang et al., 2003) with AccuPrime Taq High Fidelity DNA polymerase (ThermoFisher; 

Waltham, MA) with the following reaction conditions: 75.5 µL of molecular grade H2O, 10 µl 

of 10x PCR Buffer I, 4 µL of 50 mM MgCl2, 2.5 µL 10mM dNTPs, 1 µL 100µM Primer B, 1 µL 

Taq and 6 µL dsDNA product. Products were amplified at 94°C for 2 min, 94°C 30sec, 40°C 

30sec, 50°C 30 sec, 72°C 1 min for 40 cycles. 

Extracted DNA was subjected to multiple displacement amplification (MDA) using 

random hexamers with Illustra GenomiPhi V2 DNA (GE Healthcare; Little Chalfont, UK). 

Whole genome amplified DNA and PCR amplified complementary DNA (cDNA) were 

quantified using Picogreen dsDNA Quantitation Reagent (ThermoFisher; Waltham, MA). 

Sequencing libraries were prepared using Nextera XT DNA Sample Preparation Kit 

(Illumina; San Diego, CA) using 1 ng of input DNA. Individual bar-coded samples were 

pooled in equimolar amounts into 4 separate libraries after quantification with KAPA 

Illumina Library Quantification (KAPA Biosystems; Wilmington, MA). Samples that did not 

have sufficient DNA for sequencing were excluded from the final pools. Libraries were 

sequenced either using a 2x125 paired-end run on the Illumina HiSeq 2500 platform or 

2x250 paired-end run on the Illumina MiSeq platform. Each library also included 1-3 

environmental controls subjected to the entire viral microbiome procedure.   

DNA from oral swabs was extracted in single-tube DNeasy PowerSoil Kit (Qiagen; 

Hilden, German) and followed manufacturer’s protocol except for two 50 μL elutions with 

buffer C6. Endotracheal aspirate was extracted with a 96-well format of the same kit. 

2.4 TARGETED VIRAL ASSAYS 

Anellovirus qPCR was performed on extracted DNA using primers NG779                              

(5'-ACWKMCGAATGGCTGAGTTT-3') and NG781 (5'-CCCKWGCCCGARTTGCCCT-3') that 

target human Anelloviridae members including torque teno virus (TTV), torque teno midi 

and torque teno mini virus (Ninomiya et al., 2008, Young et al., 2015).  Values were 



29 
 

normalized to reflect equivalent volumes of starting BAL or serum and represent the 

average of three technical replicates.  Verification of amplification of the target sequence 

was performed by gel visualization of PCR products on select samples using MDA DNA and 

by melt-curve analysis performed by 7500 Fast Real Time qPCR system (ThermoFisher; 

Waltham, MA) on all samples.  The lower limit of detection was 38 copies/reaction; samples 

falling at or below this threshold were arbitrarily set to a minimum value. 

In CHAPTER 5, extracted DNA from samples with contigs found to have homology to 

redondovirus genomes were amplified and cloned from 7 samples. Primers (Supplemental 

Table 5.1) were designed to amplify redondovirus genome sequences from DNA extracted 

from BAL that underwent MDA with Illustra GenomiPhi V2 DNA (GE Healthcare; Little 

Chalfont, UK). PCR was performed with AccuPrime™ Taq DNA Polymerase System 

(ThermoFisher; Waltham, MA, USA) using 1 μL of whole-genome-amplified product, 20 μM 

of forward and reverse primers and 0.2 μL Taq polymerase in a total volume of 50 μL. 

Products were visualized on 1-1.5% ethidium bromide agarose gels (Supplemental Figure 

5.1). Amplicons were cloned and validated by using the Sanger sequence method on an ABI 

3730XL (Applied BioSystems; Waltham, MA, USA) instrument. Full redondovirus genomes 

were either de novo synthesized (BioBasic; Markham, ON, CA) or cloned by Gibson assembly 

(NEB; Ipswitch, MA, USA) and also verified by Sanger sequencing. 

To detect redondovirus sequences in BAL samples, a TaqMan-based qPCR assay 

(Supplemental Table 5.1) was designed targeting the genomic region encoding the capsid 

gene. For each sample, triplicate 20 μL reactions containing 4 μL of template DNA 

(depending on sample availability), 0.33 μL forward and reverse primers (18μM), 0.33 μL 

probe (5μM), 10 μL TaqMan Fast Universal PCR Master Mix (Applied Biosystems; Waltham, 

MA, USA) and 5 μL water were analyzed on a QuantStudio 5 Real Time PCR System (Applied 

Biosystems; Waltham, MA, USA) with the following cycling profile: 20 sec at 95°C for 1 cycle, 
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and 40 cycles of 95°C for 3 sec and 60°C for 30 sec (signal collection). A linearized plasmid 

containing the complete Human lung-associated brisavirus RC genome in a pUC57 vector 

was used as a 7-point standard curve ranging from 75 to 30,000,000 copies/reaction. 

Amplification signal was required in 2 out of 3 wells to be scored as positive.  

To survey samples from critically ill and healthy individuals, extracted DNA was first 

subjected to selective whole-genome amplification (SWGA) using primers designed with the 

software described in (Clarke et al., 2017b). Each reaction contained 2 μL Phi29 10x Buffer 

(NEB; Ipswich, MA), 1 μL phi29 polymerase, 0.2 μL bovine serum albumin (10 mg/mL), 100 

μM total of 20 primers (final concentration of each primer was 2μM), 2 μL of 10mM dNTPs, 

and 1 μL of template DNA in a total volume of 20 μL. Reactions underwent a step-down 

amplification process by incubating at 35°C for 5 min, 34°C for 10 min, 33°C for 15 min, 

32°C for 20 min, 31°C for 30 min and then 30°C for 16 hours, followed by a heat inactivation 

step (65°C for 15 min) as previously described (Clarke et al., 2017b). After SWGA, 4 μL of 

product was queried in duplicate using a more sensitive TaqMan-based qPCR assay 

(Supplemental Table 5.1) that was designed targeting a conserved region of the capsid gene 

(Cp). A linearized plasmid containing the complete genome of human lung-associated 

brisavirus RC was used for the 9-point standard curve ranging from 10 to 106 copies per 

reaction. Negative and positive controls were included in each run to evaluate inter-assay 

variability. The positive control was 104 copies of the standard curve plasmid containing the 

viral genome spiked into DNA extracted from a redondovirus-negative endotracheal 

aspirate sample and also subjected to SWGA. 

2.5 BIOINFORMATICS PIPELINES 

Paired-end sequence reads from the HiSeq and MiSeq machines were de-

multiplexed and quality-trimmed. The Burrows-Wheeler Alignment tool (Li and Durbin, 

2010) using hg18/19 (NCBI 36/37) or Genome Reference Consortium Human Build 38 
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(GRCH38) (downloaded 2 June 2016)  as the reference genome identified human sequences 

which were then removed. FASTQ files were quality-trimmed (Q=33) and paired reads 

converted to FASTA format.  Samples were further filtered to remove reads from PhiX 

whose genome is used during sequencing.  

In the analyses presented in CHAPTER 3, high quality, non-human reads were 

aligned using the Basic Local Alignment Search Tool (BLAST) to the NCBI Viral Database 

(downloaded July 2015, containing 6,402 entries). The top hit for each read was recorded 

(Expected value < 10-5). Consensus-based taxonomic assignments using output from the 

NCBI Viral Database BLAST search results were generated using BROCC (Dollive et al., 

2012), using 80% minimum identity for species and genus consensus formation. Viral 

species with fewer than 20 BROCC-filtered BLAST hits per sample to a reference genome 

were excluded. Alignments to reference viral genomes were performed using Bowtie 2 

(Langmead and Salzberg, 2012) and visualized using Integrated Genomics Viewer 

(Robinson et al., 2011).  

For the analysis described in CHAPTER 4, high quality non-human reads were 

classified by Kraken (Wood and Salzberg, 2014) against the RefSeq standard database 

containing complete fungal, bacterial, archaeal, and viral genomes (downloaded 5 June 

2016) and GRCH38. Hits to viruses known to be reagent contaminants or otherwise 

spurious (Clarke et al., 2017a) were removed from further downstream analysis. Multiple 

viruses were detected in extraction controls, although most hits to viral species were based 

on very few reads rendering validation by read alignment ineffective. Based on previous 

work, we believe these hits derive from multiple sources. For example, hits in extraction 

controls overwhelmingly consisted of bacteriophage of skin bacteria likely introduced 

during sample handling. Additionally, sparse reads of eukaryotic viruses likely originated 

from cross-contamination of highly abundant sequences from actual clinical samples 
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(Supplemental Figure 4.2). To filter out assignments likely arising from cross-

contamination, while keeping those that could be validated by manual inspection of 

alignments to reference genomes, an empirical threshold of 10 read pairs assigned to a viral 

family was used to call a positive detection. 

Contigs were assembled from reads within each sample using IDBA-UD (Peng et al., 

2012), followed by CAP3 (Huang and Madan, 1999). Partial viral genomes were identified 

by performing nucleotide BLAST of contigs to the NCBI viral genomes database 

(downloaded 17 March 2016) retaining a single target genome hit with an E-value < 10-10. 

This bioinformatics analyses described was performed using the Sunbeam pipeline 

(https://github.com/eclarke/sunbeam). A very sensitive global alignment of read pairs to 

Anelloviridae contigs was performed using Bowtie2 (Langmead and Salzberg, 2012) with 

the following additional settings (--mp 7 --no-mixed --np 2 --rdg 6,4 --rfg 6,4 --no-

discordant) that increased mismatch, gap and ambiguity penalties. Reads that aligned with 

MAPQ scores  > 23 were retained using SAMtools (version: 1.3.1)(Li et al., 2009) and the 

fraction of the genome covered was generated using BEDtools (Quinlan and Hall, 2010). 

Alignments were visually inspected using Integrative Genomics Viewer (Robinson et al., 

2011). For samples positive for human viruses by the k-mer based approach, a very 

sensitive local alignment of read pairs to reference viral genomes was done using Bowtie2. 

Genome coverage and visualization was carried out as above. 

To query viral metagenomic datasets for the presence of redondoviruses (CHAPTER 

5), reads from viral metagenomic projects available in the Sequence Read Archive (SRA) or 

the Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) or the 

Human Oral Microbiome Database and from datasets from the University of Pennsylvania 

were processed in the following steps: 1) adaptor-trimmed single or paired-end reads were 

downloaded using fastq-dump (Leinonen et al., 2011); 2) a sensitive local alignment of 
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either single reads or read pairs to redondovirus genomes was performed using Bowtie2 

(Langmead and Salzberg, 2012); 3) alignments were processed and genome coverage was 

calculated with SAMtools (Li et al., 2009) and BEDtools (Quinlan and Hall, 2010); and 4) 

alignments were visualized with a custom R (version 3.2.3) script (Ihaka and Gentleman, 

1996) (R packages used: magrittr, ggplot2, reshape2). 

Samples in which 25% of any redondovirus genome was covered were further 

analyzed using the Sunbeam pipeline (Clarke et al., 2018b) to process reads and to build 

and annotate contigs using MEGAHIT (Li et al., 2015a) and BLASTn (Altschul et al., 1990). 

Contigs were further refined by overlap consensus assembly using CAP3 (Huang and 

Madan, 1999) and manually checked for circularity and presence of key genomic features 

with CloneManager 9 (Scientific & Educational Software; Denver, CO). 

2.6 GENE EXPRESSION ARRAY AND GENE SET VARIATION ANALYSIS 

In CHAPTER 3, we tested correlations between anellovirus levels in the lung and 

differential host gene expression, employing gene expression data previously generated 

using Affymetrix Human Gene 1.0 ST Arrays (Affymetrix; Santa Clara, CA) to quantify global 

gene expression levels in the BAL cell pellet (Cantu et al., 2013) (Supplemental Tables 3.4–

3.6). Robust Multi array Average normalized log2-transformed signal intensities from 

Affymetrix GeneChips were analyzed using Array Studio software 

(http://www.omicsoft.com/). Outliers implicated by Principal Components Analysis 

clustering of the first two principal components and median absolute deviation scores were 

excluded. Intensity cutoff for transcript clusters to be included in statistical analysis was 

determined by variance vs. mean intensity plots. In total, 16,009 transcript clusters were 

included in later statistical analyses. Gene Set Variation Analysis (GSVA) (Hänzelmann et al., 

2013) was employed to statistically identify KEGG and Biocarta pathway gene sets 

(http://www.broadinstitute.org/gsea/msigdb/, extracted from the C2 curated gene set 

http://www.broadinstitute.org/gsea/msigdb/
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collection) associated with specified phenotypes. GSVA is a non-parametric, unsupervised 

method used to calculate for each gene set an enrichment score for each individual sample 

in the study. The enrichment scores are a function of the relative expression of genes within 

vs. outside the gene set in a genome-wide analysis, with estimation of variation of gene set 

enrichment over the samples independent of any class label. Standard statistics were 

applied to the enrichment scores to assess differences (e.g., general linear modeling) and 

similarities (e.g., clustering methods) of enrichment of gene sets among groups of samples. 

Calculation of GSVA gene set enrichment scores was conducted in R version 3.1.1 (Ihaka and 

Gentleman, 1996). 

2.7 DNA AND AMINO ACID SEQUENCE ANALYSIS  

In CHAPTER 4, open reading frames (ORFs) were predicted and translated using a 

custom Python script from size-filtered Anelloviridae contigs discovered in Donor BAL and 

recipient serum samples. Proteins were identified by BLASTp (E-value < 10-5 against a 

database of 75 ORF1 sequences from representative human Anelloviridae members 

(Alphatorquevirus, Betatorquevirus, and Gammatorquevirus). A minimum alignment length 

of 250 amino acids was required. Proteins identified within an individual or within a 

cognate-donor recipient pair were aligned with MUSCLE (v3.8.31) (Edgar, 2004) using 

default settings. Alignments were then filtered to mask regions containing gaps longer than 

2 amino acids present in 50% or more of the sequences and visualized. The percent identity 

between all protein sequences was calculated using a BLOSUM62 substitution matrix after 

pairwise alignment using the Biostrings package (Pages et al., 2009)  in R version 3.2.3 

(Ihaka and Gentleman, 1996). 

In CHAPTER 5, the EMBOSS einverted utility (Rice et al., 2000), Mfold (Zuker, 2003) 

or CloneManager Professional 9 (Scientific & Educational Software; Denver, CO) was used to 

predict and visualize energetically favorable DNA structural features potentially important 
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for replication. Forna was used to plot stem loop structures (Kerpedjiev et al., 2015). 

Nucleotide and protein alignments were performed using MUSCLE (version 3.8.31) (Edgar, 

2004). Phylogenetic trees were built using PhyML (Guindon et al., 2010) using sequences 

from 2-3 representative species of established viral families and all full-length protein 

sequences of novel redondoviruses. Branch support was quantified by the approximate 

likelihood-ratio test (Anisimova and Gascuel, 2006) and visualized using FigTree v1.4.3 

(http://tree.bio.ed.ac.uk/software/figtree/). Consensus motif logos were generated using 

WebLogo (Crooks et al., 2004). Conserved domains within Rep proteins were detected using 

NCBI’s CD-search against the Pfam database (v30.0, E-value < 10-2). Protein folding 

predictions were done using PHYRE2 (Kelley et al., 2015) using default parameters. 

To predict prokaryotic ribosomal binding sites (RBS), we implemented the 

algorithm described in (Krishnamurthy and Wang, 2018) in Python (version 3.6). Briefly, 

we extracted 18 nucleotides in the untranslated region immediately upstream of start 

codons and searched for prokaryotic RBS (full: AGGAGG; partial: AGGAG, GGAGG, AGGA, 

GGAG, GAGG). 

To analyze synonymous and non-synonymous substitution rates, we aligned protein 

sequences using MUSCLE (Edgar, 2004), built phylogenetic trees with PhyML (Guindon et 

al., 2010) generated codon alignments with PAL2NAL (Suyama et al., 2006) and used HyPhy 

(Pond et al., 2005) to perform dN/dS analysis with FUBAR (Murrell et al., 2013) to predict 

sites under positive selection. For overlapping genes, only non-overlapping portions were 

considered—overlapping coding regions were identified and excluded using pyviko (Taylor 

and Strebel, 2017). 

2.8 STATISTICAL ANALYSES 

In CHAPTER 3, the Wilcoxon rank sum test, Wilcoxon signed rank test, Kruskal–

Wallis test, paired two-tailed Student t-test and Spearman rank correlation tests were 
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performed in R version 3.2.3. Analysis of differences in TTV levels was performed on log10 

normalized values. A false discovery rate (FDR) using the Benjamini–Hochberg method was 

applied for multiple testing correction.  

In CHAPTER 4, we encountered several challenges in scoring representation of 

Anelloviridae lineages over time: 1) sequence depth differed among the samples after 

human filtering; 2) the degree of difference among genomes was variable, with some 

genomes in different individuals by chance showing similarity; and 3) different lineages 

were present in variable abundances. Therefore, we used several metrics to score the 

presence of Anelloviridae lineages and compare between samples.  

To determine the relatedness of Anelloviridae sequences in longitudinal post-

transplant lung and blood samples to Anelloviridae present in the initial donor lung and 

recipient serum samples, we generated Anelloviridae contigs from donor BAL and peri-

transplant recipient serum, and aligned shotgun sequence reads from post-transplantation 

time points to those contigs. The fold coverage at each base and total mapped reads per 

kilobase per million sequenced reads were calculated using python and R scripts 

(https://github.com/sherrillmix/dnapy, https://github.com/sherrillmix/dnar). We then 

used a modification of the Gini index, a measure of inequality in a distribution of values 

(Gini, 1912), to holistically evaluate the evenness of read mapping to target genomes with 

the premise that authentic detections  would result in deep and even coverage while uneven 

coverage represents alignment to conserved genomic regions or cross-contamination 

across samples. Differences in viral lineage detections, quantities, and homology between 

groups were tested using Wilcoxon Rank Sum Test and ANOVA. The relationship between 

Anelloviridae levels and clinical outcomes was tested using Student’s t-test.  

In CHAPTER 5, 20 datasets in which redondovirus genomes were found or were 

comprehensive studies of the human DNA virome were chosen for a targeted analysis of 
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human viruses. Specifically, reads from these datasets were aligned to 133 vertebrate 

viruses from the Adenoviridae, Anelloviridae, Herpesviridae, Papillomaviridae, Parvoviridae 

and Polyomaviridae families (downloaded from NCBI RefSeq on 20 August 2018). 

Alignments were done using the hisss pipeline (https://github.com/louiejtaylor/hisss) and 

analyzed in R (R packages used: tidyverse, reshape2, Biostrings, taxonomizr, UpSetR). 

Samples were considered positive for small (<10 kb) DNA viruses if greater than 25% of the 

target genome was covered. Samples were considered positive for large DNA viruses (>10 

kb genomes), if greater than 10% of the target genome was covered (see Supplemental 

Figure 5.3). The distribution of the frequency of Redondoviridae and other viral family 

detection was tested using the Fisher’s exact test with Bonferroni correction for multiple 

testing. 

In studies of periodontitis, the difference in number of redondovirus reads in 

disease versus non-disease states were tested using the Wilcoxon signed-rank or rank-sum 

tests, depending on whether samples were paired or not. 

2.9 DATA AVAILABILITY  

Sequence data that have been filtered to remove contaminating human sequence are 

collected in BioProject records PRJNA390659 and PRJNA419524. The accession numbers 

for the viruses sequenced and reported in this paper are GenBank: MK059754-MK059772. 

Full details of each step of the Snakemake pipelines used in this work are available at 

https://github.com/sunbeam-labs/sunbeam and https://github.com/louiejtaylor/hisss. 

The script used for RBS analysis is available at https://github.com/louiejtaylor/find-prok-

rbs.  

 

 

https://github.com/louiejtaylor/hisss
https://github.com/louiejtaylor/hisss
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FIGURE 2-1:  WORKFLOW FOR  SEQUENCING THE VIRAL MICROBIOME OF LUNG 
TRANSPLANT RECIPIENT S 

Bronchoalveolar lavage was collected from the organ donor prior to organ procurement, in 
the operating room after reperfusion in the lung transplant recipient and after 
transplantation in the Clinical Trials of Organ Transplantation 03 study. Contemporaneous 
serum was also collected from the lung transplant recipient. Samples were processed to 
enrich for viral DNA and RNA which were then extracted and prepared for shotgun 
metagenomic sequencing or assessed for anellovirus content using targeted qPCR. After 
sequences were filtered to remove low quality and identifiable human sequences, they are 
classified by comparison to reference viral genomes or assembled into longer sequences 
(contigs) whose gene content can be queried by predicting open-reading frames (ORFs).  
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3.1 ABSTRACT 

Primary graft dysfunction (PGD) is a principal cause of early morbidity and 

mortality after lung transplantation, but its pathogenic mechanisms are not fully clarified. 

To date, studies using standard clinical assays have not linked microbial factors to PGD. We 

previously used comprehensive metagenomic methods to characterize viruses in lung 

allografts >1 months after transplant and found that levels of anellovirus, mainly torque 

teno viruses (TTVs), were significantly higher than in nontransplanted healthy controls. We 

used quantitative polymerase chain reaction (qPCR) to analyze TTV and shotgun 

metagenomics to characterize full viral communities in acellular bronchoalveolar lavage 

from donor organs and postreperfusion allografts in PGD and non-PGD lung transplant 

recipient pairs. Unexpectedly, TTV DNA levels were elevated 100-fold in donor lungs 

compared with healthy adults (p = 0.0026). Although absolute TTV levels did not differ by 

PGD status, PGD cases showed a smaller increase in TTV levels from before to after 

transplant than did control recipients (p = 0.041). Metagenomic sequencing revealed mainly 

TTV and bacteriophages of respiratory tract bacteria, but no viral taxa distinguished PGD 

cases from controls. These findings suggest that conditions associated with brain death 

promote TTV replication and that greater immune activation or tissue injury associated 

with PGD may restrict TTV abundance in the lung 

3.2 INTRODUCTION 

Lung transplantation is the only long-term option for many patients with end-stage 

lung diseases. Median survival for lung transplant recipients (LTRs) is only 5.7 years (Yusen 

et al., 2015), the lowest among solid organ transplants (Watson and Dark, 2012). Factors 

limiting survival include primary graft dysfunction (PGD), infection, cellular and antibody-

mediated rejection, and chronic lung allograft dysfunction (Yusen et al., 2015). 
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PGD is a form of acute lung injury characterized by hypoxemia, pulmonary edema 

and alveolar damage that occurs within 72 h of transplantation (Lee and Christie, 2011). 

Approximately 10–25% of LTRs experience severe PGD, which is a leading cause of death 

early after transplantation (Lee and Christie, 2011), and survivors of severe PGD are more 

likely to develop donor-specific antibodies and chronic rejection (Ius et al., 2014, Daud et 

al., 2007). 

The pathogenesis of PGD is thought to involve both inflammatory and ischemia–

reperfusion-related mechanisms. An inflammatory environment develops within the lung 

after donor brain death and is perpetuated after reperfusion by recruitment of lymphocytes, 

macrophages and neutrophils (Lee and Christie, 2011, Eppinger et al., 1997, Fiser et al., 

2001, Eppinger et al., 1995, Naidu et al., 2003, Yang et al., 2009, Sharma et al., 2011, 

Johnston et al., 2012). Activated immune cells and reactive oxygen species generated during 

ischemia–reperfusion are thought to injure lung endothelium and epithelium (Lee and 

Christie, 2011). Host genetic variation in genes involved in oxidant stress responses and 

innate immunity correlate with risk of PGD (Diamond and Wigfield, 2013, Cantu et al., 

2015). PGD has also been associated with inflammasome activation, pattern recognition 

receptor signaling and complement activation within the allograft (Cantu et al., 2013, Shah 

et al., 2014, Naka et al., 1997). These studies raise the possibility of a microbial contribution 

to pathogenesis. 

Culture-based and molecular clinical assays have associated specific bacteria, fungi 

and community-acquired respiratory viruses with lung transplantation outcomes, such as 

the development of bronchiolitis obliterans syndrome (BOS) (Khalifah et al., 2004, Botha et 

al., 2008, Weigt et al., 2009, Gottlieb et al., 2009, Borewicz et al., 2013, Nakajima et al., 2011, 

Verleden et al., 2015, Charlson et al., 2012). Studies using high-throughput metagenomic 

sequencing have demonstrated that lung bacterial, fungal and viral communities are 
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aberrant in lungs of LTRs compared with healthy controls (Borewicz et al., 2013, Charlson 

et al., 2012, Young et al., 2015). LTRs have decreased bacterial diversity, increased bacterial 

load, outgrowths of pathogens and presence of atypical species (Borewicz et al., 2013, 

Charlson et al., 2012, Sharma et al., 2013, Dickson et al., 2014a). One study linked 

metagenomic bacterial community features and BOS (Willner et al., 2013). 

Our group recently reported high levels of diverse torque teno viruses (TTVs) in 

acellular BAL fluid from LTRs sampled from 1 month to >10 years following transplant 

(Young et al., 2015). TTVs are small, nonenveloped, circular, negative-sense, single-stranded 

DNA (ssDNA), eukaryotic cell viruses belonging to the Anelloviridae family. These viruses 

are ubiquitous in the human population (Spandole et al., 2015), with initial infection 

occurring during childhood (Ninomiya et al., 2008, McElvania TeKippe et al., 2012, Chen et 

al., 2013). Changes in blood TTV levels correlate with altered immune states. Plasma TTV 

DNA levels increase in patients with human immunodeficiency virus who progress to AIDS 

and decrease following immune reconstitution with antiretroviral therapy (Thom and 

Petrik, 2007, Madsen et al., 2002, Devalle et al., 2009). Expansion of TTV is seen in blood of 

solid organ transplant recipients receiving immunosuppressive therapy (De Vlaminck et al., 

2013, Görzer et al., 2014, Görzer et al., 2015). To date, TTV has not been identified as the 

etiological agent of any disease (Spandole et al., 2015, Hino and Miyata, 2007). 

In this study, we investigated the hypothesis that lung viruses, including TTV, might 

be associated with PGD. To do this, we analyzed extracellular viruses present in acellular 

BAL sampled from lung donors immediately prior to organ recovery and from the allograft 

1 h after transplantation and reperfusion. Two complementary approaches were used: 1) a 

TTV qPCR assay and 2) shotgun metagenomic sequence analysis of all viruses. These assays 

were also performed on recipient serum samples obtained at the time of reperfusion. We 
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also investigated whether TTV levels were correlated with host cell gene expression, which 

was previously reported to correlate with PGD in these patients (Cantu et al., 2013). 

3.3 RESULTS 

Study participants 

Viral preparations from lung and blood specimens from 22 pairs of grade 3 PGD 

patients and matched controls plus two additional PGD patients were analyzed (Table 3.1 

and Supplemental Table 3.1). Baseline demographics of study participants were reported 

previously (Cantu et al., 2013), and characteristics relevant to this study are summarized in 

Table 3.1. Most participants received cytomegalovirus (CMV) prophylaxis, and all but two 

(participants 12013 and 12016) received basiliximab for induction immunosuppression. 

Common bacteria and fungi identified by routine clinical culture included Staphylococcus 

sp., Streptococcus sp., and Candida albicans. 

Analysis of TTV genome copy numbers by qPCR 

High levels of TTVs were reported previously in the respiratory tract of LTRs in 

samples collected >1 mo after transplantation (Young et al., 2015) and in posttransplant 

blood (De Vlaminck et al., 2013, Görzer et al., 2014, Görzer et al., 2015). In this study, we 

investigated lung TTV levels at time of transplantation by quantifying TTV genomes in 

donor BAL and in recipient postreperfusion BAL and serum (Figure 3.1). Copies of TTV DNA 

per milliliter (mL) of acellular BAL varied up to 10,000-fold in both donor and recipient 

samples (Figure 3.1). Donor BAL obtained prior to lung procurement had a median of 

670,600 TTV copies/mL, which was 100-fold higher than TTV levels in healthy adult BAL 

samples (median 6,631; p = 0.0026, Wilcoxon rank sum test). 

Copies of TTV in postreperfusion BAL were approximately twofold greater than in 

samples taken before organ procurement, with a median of 1,102 000 copies/mL (p = 0.89 

compared with donor BAL; p < 0.001 for comparison to healthy controls). There was a 
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positive correlation between TTV levels in lung samples obtained before and after 

transplantation (p < 0.001, Spearman’s q = 0.548, Spearman rank correlation test) (Figure 

3.1C). Consequently, donor lungs are markedly abnormal with regard to virome 

populations, even before transplantation. 

Conversely, in serum, quantities of TTV immediately after reperfusion (median 

35,530 copies/mL) were lower than in healthy adults (median 553,996 copies/mL; p < 

0.001, Wilcoxon rank sum test). There was a positive trend correlating TTV levels in BAL 

and serum of LTRs immediately after transplantation (p = 0.061, Spearman’s q = 0.303, 

Spearman rank correlation test) (Supplemental Figure 3.1). 

The high levels of TTV DNA found in donor lungs prior to transplantation were 

surprising given that donors are selected because they lack overt lung disease. Therefore, 

we investigated clinical features of donors that might be associated with TTV levels 

(Supplemental Table 3.7). Lung TTV DNA levels were inversely correlated with donor age (p 

= 0.036; Spearman’s q = 0.328, Spearman rank correlation test). In contrast, there was no 

correlation between lung TTV levels and donor cause of death, history of purulent 

secretions, aspiration or tobacco exposure. There was a positive trend correlating TTV 

levels in recipient BAL with organ ischemic time (p = 0.065; Spearman’s q = 0.298, 

Spearman rank correlation test). However, no correlation was seen between 

postreperfusion TTV levels and use of cardiopulmonary bypass or nitric oxide during 

surgery, administration of blood products or fluids, transplant type, or recipient 

preoperative diagnosis (Supplemental Table 3.7). 

We then investigated whether PGD was associated with TTV levels. When evaluated 

as absolute levels at a single time point, neither donor pretransplant nor postreperfusion 

BAL TTV levels correlated with PGD (p = 0.89 and p = 0.82, respectively, Wilcoxon signed 

rank test). Postreperfusion serum TTV levels also did not correlate with PGD (p = 0.71, 
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Wilcoxon signed rank test). TTV dynamics, however, differed significantly between PGD 

cases and controls (Figure 3.2). Non-PGD controls showed an average 3.5-fold increase in 

lung TTV levels over the perioperative period, whereas the increase was only 1.7-fold in 

PGD cases. When compared as pairs across the 15 complete sample sets, a 4-fold difference 

in TTV increase was observed between PGD cases and controls (p = 0.041; Wilcoxon signed 

rank test). Consequently, PGD is associated with a significantly lower rise in TTV levels 

during the peritransplant period. 

Association of TTV levels and differences in mRNA expression in the lung 

Gene set enrichment analysis in BAL cells from this cohort of patients previously 

identified several inflammasome and innate immune pathways for which perioperative 

change in expression correlated with PGD (Cantu et al., 2013). These pathways included 

NOD-like receptor signaling, Toll-like receptor signaling, the IL-1 receptor pathway and 

nuclear factor κΒ activation by nontypeable Haemophilus influenza. 

We investigated whether TTV dynamics correlated with gene pathways enriched in 

PGD or with the top nine transcripts linked to these pathways. Neither the PGD associated 

pathways nor individual transcripts correlated with TTV dynamics (Supplemental Tables 

3.4 and 3.5). We then tested whether absolute TTV levels in donor or recipient BAL 

correlated with transcript expression but again found no significant relationship 

(Supplemental Table 3.5). Finally, we queried the entire gene expression data set to 

determine whether any individual gene (n = 16,009) or pathway (n = 403) correlated with 

TTV levels in donor BAL, recipient BAL or perioperative dynamics. Several pathways and 

gene transcripts demonstrated a nominal correlation with lung TTV levels or dynamics, but 

none were significant after FDR correction (Supplemental Table 3.6). Consequently, lung 

TTV dynamics did not correlate detectably with host cell gene expression patterns. 

Metagenomic shotgun sequencing of perioperative samples 



46 
 

To further investigate the lung virome around the time of transplant and to 

determine whether other viruses might be linked to PGD, we undertook metagenomic 

characterization of full viral populations in donor and recipient acellular BAL and in 

recipient serum. To validate recovery of RNA viruses, 106 plaque-forming units of 

bacteriophage Pseudomonas phage phi6 were spiked into a non-LTR BAL sample that was 

processed identically to LTR samples. Of the 369,669 nonhuman reads generated from this 

sample’s cDNA library, 135,301 aligned by the Basic Local Alignment Search Tool (BLAST) 

with the tripartite phi6 genome. Coverage of the L, M, and S genomic segments was 71%, 

82%, and 40%, respectively (Supplemental Table 3.3), confirming viral recovery and 

detection with our methods. 

Applying our pipeline to LTR samples generated a median of 924, 291 filtered 

paired reads per sample (range 2,668–5,676,284 reads) in the BAL DNA library, 150, 150 

reads (range 268–3,082,400 reads) in the BAL cDNA samples and 69,342 reads (range 

5,241–815,079 reads) in serum DNA samples. On average, human sequences composed 

54.6% (range 0.20–88.9%) of all high-quality reads in BAL DNA samples, 73% (range 1.18–

98.6%) in BAL cDNA and 80.4% (range 13.2–95.8%) in serum DNA.  

High-quality nonhuman reads were queried by BLAST against the NCBI viral 

database and viral taxonomic assignments generated using BROCC (Dollive et al., 2012). To 

control for contaminating sequences during sample and library preparation (Salter et al., 

2014), buffer blanks were analyzed using the same workflow. On average, <1% of high 

quality nonhuman sequences could be assigned to known viral species. The remaining reads 

likely correspond to bacteria, poorly annotated bacteriophages, human reads that eluded 

the human filtering step, or potentially novel eukaryotic viruses. 

We inspected read alignments to identify those that were spurious, that is, 

attributable to environmental contamination or unfiltered human sequences. Alignments 
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with Shamonda and Simbu viruses, for example, were confined to 90 and 40 base pair 

regions of the genomes, respectively, and had 92–100% identity to human 45S ribosomal 

RNA and thus were removed. The number of reads annotated as human endogenous 

retrovirus K tracked with the extent of human DNA in samples based on the number of 

reads aligning with the human genome and β-tubulin qPCR (data not shown) and were also 

removed. 

Most participants had many reads aligning with human herpesviruses (HHVs) HHV-

7, HHV-6A, and HHV-6B; however, sequence alignments involved regions of short direct 

repeats, and herpesvirus genome coverage never exceeded 1%. BLAST queries of these 

sequences against the human genome revealed high identity to human repetitive regions. 

Because these reads likely did not represent authentic herpesvirus detection, they were also 

removed. Finally, when very few reads align with a particular viral genome, low coverage 

makes it difficult to discriminate between coincidental alignment (e.g. to a short and/or 

non-unique region) and authentic virus detection; therefore, an empirical threshold was set 

at 20 reads in a sample aligning with a reference virus to confidently call virus detection. 

Assignments below this threshold are shown in Supplemental Tables 3.7 and 3.8. 

After these filtering steps, a total of 105 viral species from 15 family-level groups 

were identified in BAL (two eukaryotic viruses, one plant virus and 12 bacteriophage 

families/unclassified species) (Figure 3.3 and Supplemental Figure 3.2). Anelloviruses, 

comprising multiple TTV species, were the most abundant eukaryotic virus in BAL. In 

serum, we identified reads that best aligned with 29 anellovirus species. In both lung and 

serum, populations of TTVs appeared highly diverse, both within and between individuals 

(Figure 3.4). The high levels of genome diversity within an individual sample could reflect 

multiple viral species or a few novel TTV viruses with low levels of identity to database 

reference strains. 
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In addition to TTV, the most abundant viruses seen in lung samples were DNA 

phages, including Siphoviridae, Myoviridae and Podoviridae, which infect a broad range of 

oral and respiratory tract bacteria such as Streptococcus pneumoniae, Staphylococcus 

aureus, Stenotrophomonas maltophilia and Pseudomonas aeruginosa (Figure 3.3 and 

Supplemental Figure 3.2). 

After filtering out HHV reads deemed spurious, as described above, we specifically 

queried the presence of authentic HHV sequences by aligning reads with ten HHV genomes; 

reactivation of HHVs, especially CMV, is a risk following organ transplantation (Kotloff and 

Thabut, 2011). No sample exceeded our threshold of 20 reads, but one donor BAL from a 

PGD case had 12 reads that uniquely aligned with CMV (Supplemental Table 3.8). Of note, 

our analysis of extracellular virions would not detect the presence of latent nonreplicating 

viral genomes within host cells. 

One non-PGD donor BAL revealed sequences that aligned with circoviruses, which 

are recognized pathogens in birds and swine but in humans have been detected primarily in 

stool (Smits et al., 2014, Phan et al., 2014, Phan et al., 2015a). Other small single stranded 

circular DNA viruses in the proposed Cyclovirus genus within the Circoviridae family have 

been reported in cerebrospinal fluid and nasopharyngeal aspirates (Phan et al., 2014, Phan 

et al., 2015b). Our sequence reads covered only 9% of the closest circovirus reference 

genome, raising the possibility of a novel eukaryotic virus in this sample. 

Although not reaching our threshold of 20 reads in any individual sample, we also 

detected a total of 26 reads across four samples that aligned with mimiviruses 

(Supplemental Table 3.8), which infect amoebae and have been reported recently in human 

lung samples but are of uncertain clinical significance (Saadi et al., 2013, Kutikhin et al., 

2014). 
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Detection of RNA viruses was limited. The overwhelming majority of viral reads in 

the cDNA library were annotated as originating from DNA viruses. These reads might 

represent viral mRNA or incomplete removal of genomic DNA in cDNA preparation. In some 

samples, there were small numbers of short reads (reflecting genome coverage of 0.6%) 

aligning with a plant virus (Tymoviridae, Physalis mottle virus). The significance of these 

reads is uncertain. No RNA viruses known to infect humans were detected in the acellular 

BAL metagenomic analysis, including an absence of community-acquired respiratory 

viruses. No viral taxa distinguished PGD cases from controls. 

3.4 DISCUSSION 

In this study, we described markedly elevated levels of TTV in the lungs of donors 

prior to organ recovery. Although absolute levels of TTV did not distinguish PGD cases from 

controls, changes in TTV levels during the perioperative period were significantly 

associated with PGD. 

Finding high levels of TTV in donor lungs was unexpected. Brain death is associated 

with profound hemodynamic, neurohumoral and inflammatory responses that result in 

proinflammatory cytokine elevations and leukocyte infiltration of the lung (Kutsogiannis et 

al., 2006, Faropoulos and Apostolakis, 2009). Although its host cell tropism is poorly 

understood, TTV is reported to reside in mononuclear immune cells (Maggi et al., 2001, 

Mariscal et al., 2002, Zhong et al., 2002, Takahashi et al., 2002, Focosi et al., 2015) and to 

increase in inflammatory states (Maggi et al., 2003, Walton et al., 2014). Consequently, local 

inflammation and leukocyte recruitment to the lung following brain death might result in 

enhanced TTV replication. In addition, corticosteroids are generally given to organ donors 

to modulate inflammation after brain death, and corticosteroid-induced 

immunosuppression could be another reason for the high TTV levels in donors because host 

immune function is thought to control virus replication (Thom and Petrik, 2007) (Görzer et 
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al., 2014, Focosi et al., 2010). Future studies will be needed to determine whether lung TTV 

levels increase in critically ill patients generally or if high levels are specifically associated 

with brain death and/or corticosteroid or other donor treatments. 

TTV levels increased from pre- to posttransplant lung samples, but the magnitude of 

increase was lower in PGD cases than in controls. This difference is consistent with the 

hypothesis that PGD is linked to tissue viability or immune activation that may restrict TTV 

levels in the lung. PGD is associated with activation of multiple innate immune responses 

(Cantu et al., 2013, Naka et al., 1997, Shah et al., 2014) that might control TTV but that also 

mediate injury contributing to PGD. Alternatively, in addition to immune cells, TTV has been 

reported to replicate in respiratory epithelia and lung tissue (Pifferi et al., 2008, Okamoto et 

al., 2001). Because ischemia–reperfusion injury may result in decreased tissue viability 

(Eppinger et al., 1997, Eppinger et al., 1995, Fiser et al., 2001, Naidu et al., 2003, Yang et al., 

2009, Sharma et al., 2011, Johnston et al., 2012), this may also limit TTV replication in PGD 

if permissive cell types are affected. 

A prior analysis found that PGD was associated with enrichment in several gene 

pathways in this cohort; however, we did not find significant associations between 

peritransplant TTV dynamics or lung TTV levels and host gene expression patterns. This 

finding suggests that the association between TTV dynamics and PGD reflects a relationship 

distinct from previously identified mechanisms linked to host gene expression patterns. 

The range of TTV levels in serum of our healthy controls was similar to previous 

reports (Haloschan et al., 2014, Christensen et al., 2000, Moen et al., 2003), but our 

postreperfusion serum levels were significantly lower (Figure 3.1). These levels 

immediately after transplant contrast with studies showing elevated blood TTV levels of 

chronic transplant recipients who were immunosuppressed (De Vlaminck et al., 2013, 

Görzer et al., 2014, Görzer et al., 2015). A recent report, however, described decreased TTV 
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levels at day seven in kidney–pancreas transplant recipients receiving anti-thymocyte 

globulin (ATG) that were ascribed to lymphocytolytic properties of ATG on mononuclear 

cells believed to support TTV replication (Focosi et al., 2015). Only slight decreases were 

reported at day seven in those receiving basiliximab, which is not lymphocytolytic but 

prevents T-cell proliferation. We studied samples immediately following induction with 

basiliximab, thus our results could reflect potential earlier effects of basiliximab on TTV 

replication due to acute suppression of T-cell proliferation. Two participants who did not 

receive induction immunosuppression had markedly lower serum TTV levels compared 

with other LTRs and healthy adults (Supplemental Table 3.7), in contrast to the predictions 

based on this idea; however, induction immunosuppression is withheld in recipients with 

intercurrent processes, which themselves might affect TTV levels and preclude definitive 

conclusions. 

Apart from anelloviruses, eukaryotic DNA viruses detected by metagenomic 

sequencing of acellular BAL were sparse, and none correlated with PGD. We anticipated that 

HHVs might be prevalent, but only one sample was positive, with few reads aligning with 

CMV. One sample had sequences annotated as a circovirus, the significance of which is 

unclear but could reflect a novel virus. Most viral species detected were bacteriophages, and 

detection of phages known to infect respiratory tract bacteria implies the presence of their 

bacterial hosts during transplantation. 

In contrast to DNA viruses, we did not find evidence of abundant human RNA 

viruses in these lung samples. Other studies have succeeded in identifying RNA viruses in 

human specimens using similar methods (Wang et al., 2003, Wylie et al., 2012, Holtz et al., 

2014, Handley et al., 2012), and our internal-control spiked sample confirmed viral RNA 

recovery. We conclude that actively replicating RNA viruses, which would be released as 
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extracellular particles and thus be present in acellular BAL, are not common and abundant 

in lung allografts at the time of lung transplantation. 

Our initial analysis revealed many sequences that aligned with human and other 

eukaryotic viruses, but on close inspection, some alignments appeared spurious. These 

findings underscore the need to carefully inspect viral assignments to distinguish authentic 

sequences from artifacts. In addition, alignments with very low read counts are difficult to 

authenticate, highlighting the challenge in interpreting such low-abundance sequences. 

Consequently, virome analysis based simply on automated read alignments may result in 

overcalling viruses that may not be genuinely present. 

This study has several limitations. First, we used acellular BAL, which is suitable for 

analysis of the extracellular virome but cannot detect viral nucleic acids present within cells 

in nonreplicating or latent forms that are not releasing progeny into the alveolar or airway 

lumen. In addition, use of acellular BAL limits the ability to characterize bacterial and fungal 

populations in the sample. Second, there is likely geographic heterogeneity within the lung 

(Willner et al., 2012a), and any individual sample may represent only part of the viral 

community present. Third, because PGD can occur up to three days after transplant, it is 

possible that differences in viral communities could emerge later than our perioperative 

time points. Last, we did not have pretransplant recipient serum uniformly available to 

query whether TTV dynamics in the blood changed in the peritransplant period and were 

related to PGD incidence. 

Finally, an important finding was that peritransplant samples did not contain 

evidence indicating active replication of RNA viruses or typical community-acquired 

respiratory viruses known to be associated with late transplant complications. Small 

numbers of sequences aligning with unexpected nonhuman viruses, as reported in this 



53 
 

study, might reflect novel human viruses. Further studies are warranted to determine 

whether TTV or novel viruses are linked to long-term outcomes of lung transplantation. 
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FIGURE 3.1:  TORQUE TENO VIRUS  (TTV) LEVELS IN LUN G TRANSPLANT 

DONORS,  RECIPIENTS,  AND HEALTHY ADULTS  
A) TTV quantified by quantitative polymerase chain reaction (qPCR) in bronchoalveolar 
lavage (BAL). Boxes represent the middle two quartiles for each group, with the bold line 
representing the median value. Dots represent individual samples. Donor BAL was taken 
prior to organ procurement. Recipient BAL and recipient serum were taken 1 h after organ 
reperfusion. Quantities of TTV were higher in donor and recipient BAL compared with BAL 
of healthy adults, as determined by Wilcoxon rank sum test (p = 0.0026 and p < 0.001, 
respectively). (B) Quantities of TTV in lung transplant recipient serum were lower 
compared with healthy adults, as determined by the Wilcoxon rank sum test (p < 0.001). (C) 
Log10 TTV levels in paired donor and recipient BAL from individual samples were 
correlated (p < 0.001, Spearman’s q = 0.548). A linear model was fitted to the data and is 
shown by the black line. The limit of quantification for the qPCR assay ranged from 11 to 65 
copies per reaction. **p < 0.01, ***p < 0.001. PGD, primary graft dysfunction. 
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FIGURE 3.2:  TORQUE TENO VIRUS  (TTV) DYNAMICS IN P ERIOPERATIVE PERIOD 

AND ASSOCIATION WITH  PRIMARY GRAFT DYSFUNCTION (PGD) 

(A) TTV levels from organ preprocurement (donor) and postreperfusion (recipient) 
bronchoalveolar lavage samples are shown for each PGD case and control. Samples from the 
same organ are connected by a line. (B) The fold change in viral levels in the lung for PGD 
cases and controls is shown. Empty circles represent individual samples, and the filled 
diamond represents the mean of the group. Both the average and median fold change was 
lower in PGD cases compared with paired controls (p = 0.046 and p = 0.041; paired Student 
t-test and Wilcoxon signed rank test, respectively). The number of paired samples analyzed 
was 15 because samples were missing for some patients. 
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FIGURE 3.3:  THE PERIOPERATIVE  LUNG VIRAL MICROBIO ME 

Displayed is the number of shotgun metagenomic reads of DNA and cDNA libraries from 
each sample matching known viruses. Each column represents a different BAL sample. Each 
row represents a viral taxonomy at the family level or at the species level for hits that could 
not be classified into established families (species-level assignments for all viruses are 
shown in Supplemental Figure 3.2). Sequencing, processing of reads, alignments with viral 
genomes and removal of spurious hits was carried out as described in Methods. Columns 
are grouped by PGD–control pairs and labeled according to participant group, pair number 
and sample type, as shown by the color coding across the top of the figure. Results of 
standard bacterial culture in each sample for the most commonly identified bacteria are 
also annotated (top). Further information on viral type and host is given by the column at 
left. The intensity in each block represents the number of reads of each viral family in each 
sample on a log10 scale. BAL, bronchoalveolar lavage; PGD, primary graft dysfunction. 
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FIGURE 3.4:  DIVERSITY OF ANELLOVIRUS  ASSIGNMENTS IN LUNG  AND SERUM 
DURING THE PERIOPERATIVE PERIOD 

(A) Displayed are filtered metagenomic reads from perioperative BAL samples aligning with 
annotated human anelloviruses. Each column corresponds to an individual sample, and 
each row corresponds to the top-scoring reference anellovirus genome in the NCBI Viral 
Genomes database. The intensity of each block represents the log10 number of reads from 
that sample aligning with that reference species. Columns are grouped by PGD–control pairs 
and labeled according to participant group, pair number and sample type. (B) Displayed are 
filtered metagenomic reads from posttransplant recipient serum that aligned with human 
anellovirus entries in the NCBI Viral Genomes database. In serum, all viral hits remaining 
after stringent filtering steps were to anellovirus family members. Samples that had 
insufficient DNA after library preparation for Illumina sequencing were omitted. BAL, 
bronchoalveolar lavage; PGD, primary graft dysfunction; TTV, torque teno virus. 
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Table 3.1: Clinical Features of Lung Transplant Recipients 

Participants were selected from the CTOT-03 study, and patients with PGD were matched 
with controls, as described previously (Cantu et al., 2013). PGD grade 3 occurring within the 
first 72 h following lung transplantation was used as the primary case definition (Yusen et 
al., 2015). BAL, bronchoalveolar lavage; CF/Bronch, cystic fibrosis or bronchiectasis; COPD, 
chronic obstructive pulmonary disease (including emphysema or a1-antitrypsin deficiency); 
DB, donor bronchoalveolar lavage; F, female; ILD, interstitial lung disease (including 
pulmonary fibrosis); M, male; MRSA, methicillin-resistant Staphylococcus aureus; NA, not 
applicable; ND, not done; PGD, primary graft dysfunction; PPH, primary pulmonary 

Participant 
identifier 

Pair Group Samples 
Age, 
years 

Sex 
Preoperative 
diagnosis 

Donor BAL bacterial and fungal 
culture 

11037 1 Control DB, RB, RS 50 M CF/Bronch Negative 

11012 1 PGD DB, RB, RS 52 F CF/Bronch Negative 

13017 2 Control DB, RB, RS 36 F CF/Bronch Staphylococcus 

12009 2 PGD DB, RB, RS 53 F CF/Bronch MRSA 

12004 3 Control RB, RS 29 M CF/Bronch Negative 

13026 3 PGD DB, RS 29 M CF/Bronch Negative 

12016 4 Control DB, RB, RS 47 F CF/Bronch ND 

13032 4 PGD DB, RS 53 M CF/Bronch Staphylococcus 

11005 5 Control DB, RB, RS 63 M COPD Staphylococcus, Candida albicans 

11004 5 PGD DB, RB, RS 64 F COPD Negative 

11016 6 Control DB, RB, RS 61 F COPD Negative 

11024 6 PGD DB, RB, RS 61 M COPD Negative 

13005 7 PGD DB, RB, RS 64 F COPD Staphylococcus 

12002 8 Control DB, RS 62 F COPD ND 

13024 8 PGD DB, RS 65 M COPD ND 

12001 9 Control RB, RS 63 F COPD ND 

13035 9 PGD DB, RB, RS 63 M COPD Streptococcus 

13021 10 Control DB, RB, RS 39 F ILD Streptococcus, Candida albicans 

11028 10 PGD DB, RB, RS 49 M ILD Negative 

11036 11 Control DB, RB, RS 66 M ILD ND 

11030 11 PGD DB, RB, RS 56 M ILD ND 

11010 12 Control DB, RB, RS 49 F ILD Negative 

11007 12 PGD DB, RB, RS 51 M ILD Negative 

11002 13 Control DB, RB, RS 62 F ILD Negative 

11008 13 PGD DB, RB, RS 61 M ILD Staphylococcus 

11013 14 Control DB, RB, RS 64 M ILD Pseudomonas 

11022 14 PGD DB, RB, RS 64 M ILD Negative 

13003 15 Control RB, RS 57 F ILD Negative 

11035 15 PGD DB, RS 57 M ILD Negative 

11032 16 Control DB, RB, RS 53 M ILD Streptococcus, Staphylococcus 

11042 16 PGD DB, RB, RS 54 M ILD Negative 

11006 17 Control DB, RB, RS 59 M ILD Negative 

11046 17 PGD DB, RB, RS 60 M ILD Negative 

13029 18 Control DB, RB, RS 68 F ILD ND 

12007 18 PGD DB, RB, RS 66 M ILD ND 

11040 19 Control DB, RB, RS 63 M ILD Negative 

12011 19 PGD DB, RB, RS 61 M ILD Klebsiella 

12015 20 Control DB, RB, RS 62 M ILD ND 

12013 20 PGD DB, RB, RS 61 M ILD ND 

11050 21 Control RS 58 M ILD Negative 

13030 21 PGD DB, RB, RS 49 M ILD Negative 

13011 22 Control RB, RS 38 M ILD Negative 

13037 22 PGD DB, RB, RS 41 F ILD Staphylococcus 

13027 23 Control DB, RB, RS 64 F ILD ND 

13039 23 PGD DB, RB, RS 63 M ILD Negative 

11011 NA PGD DB, RS 60 M PPH Negative 
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hypertension; RB, recipient postreperfusion bronchoalveolar lavage; RS, recipient 
posttransplant serum. 
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SUPPLEMENTAL FIGURE 3.1:  RELATIONSHIP BE TWEEN TORQUE  TENO VI RUS 
(TTV) LEVELS IN LUNG  AND PERIPHERAL BLOO D WITHIN PARTICIPANT S 

The relationship between transplant recipients lung and blood TTV burden (given as log10 
copies/mL on each axis) is shown. TTV levels in the lung after organ reperfusion show a 
positive trend but were not significantly correlated with levels in serum at the same time 
point (p = 0.061, Spearman’s q = 0.303, Spearman rank correlation). A linear model was 
fitted to the data and is shown by the black line. 
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SUPPLEMENTAL FIGURE 3.2:  VIRAL SPECIES I N PERIOPERATIVE LUNG S 

(A) Viral species with a minimum of 20 of metagenomic reads per sample aligning from 
perioperative bronchoalveolar lavage (BAL) DNA and cDNA libraries. Each column 
corresponds to an individual BAL sample, and each row corresponds to a reference viral 
genome. The intensity of each block represents the number of reads from that sample that 
match the reference species. Columns are grouped according to participant group, pair 
number and sample type. Data are the same as those shown in Figure 3.4 except individual 
species-level assignments are shown for all viral hits. 
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Pair  
Number 

Control PGD 

Full 
Set  

Donor 
BAL 

Recipient 
BAL 

Control 
BAL pair 

Donor 
BAL 

Recipient 
BAL 

PGD 
BAL pair 

1 Y Y Y Y Y Y Y 
2 Y Y Y Y Y Y Y 
3  Y  Y    
4 Y Y Y Y    
5 Y Y Y Y Y Y Y 
6 Y Y Y Y Y Y Y 
7 (n/a) (n/a)  Y Y   
8 Y   Y    
9  Y Y Y Y Y  
10 Y Y Y Y Y Y Y 
11 Y Y Y Y Y Y Y 
12 Y Y Y Y Y Y Y 
13 Y Y Y Y Y Y Y 
14 Y Y Y Y Y Y Y 
15  Y  Y    
16 Y Y Y Y Y Y Y 
17 Y Y Y Y Y Y Y 
18 Y Y Y Y Y Y Y 
19 Y Y Y Y Y Y Y 
20 Y Y Y Y Y Y Y 
21    Y Y Y  
22  Y  Y Y Y  
23 Y Y Y Y Y Y Y 

11011 (n/a) (n/a)  Y    
Total N = 17 N = 20 N = 17 N = 24 N = 19 N = 18 N = 15 

 
Supplemental Table 3.1: Bronchoalveolar Lavage Samples Utilized 

Some subjects had no material remaining for analysis in this study, and two PGD subjects 
did not have matched controls. As a result, there were 17 complete Control 
Donor/Recipient BAL sets, 18 complete PGD Donor/Recipient BAL sets, and a total of 15 
pairs had a complete set of all four BAL samples. N/A, not applicable (no matched control 
subject samples available).
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Subject ID Age Sex Smoker Protocol 

3B06 39 M Y 2-scope 

3B07 24 F N 2-scope 

3B08 31 M N 2-scope 

3B09 42 M Y 2-scope 

3B10 65 M N 2-scope 

3B11 50 F Y 2-scope 

3D01 48 F Y 1-scope 

3D02 37 F N 1-scope 

 
Supplemental Table 3.2: Features of Healthy Adult Lung Samples 

Acellular BAL was obtained from healthy adult volunteers as previously described using a 2 
scope bronchoscopy procedure (Charlson et al., 2011) or one-scope procedure (Beck et al., 
2015). Serum from an independent group of healthy adults volunteers (n = 11) was also 
collected and analyzed by TTV qPCR. 
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Spiked BAL 

Paired HiSeq Reads 916,110 

Reads Aligning to Human Genome (% of Total) 546,441 (59.6) 

Quality and Human Filtered Paired Reads (% of Total) 369,669 (40.4) 

NCBI Viral Database Hits (% of Total) 225,274 (24.6) 

BROCC Filtered Viral Species Hits 213,946 

  
Reads Aligning (% Coverage) 

 
Pseudomonas phage phi6 segment L 25,189 (70.5) 

Pseudomonas phage phi6 segment M 108,471 (81.8) 

Pseudomonas phage phi6 segment S 1,641 (39.8) 

Total 135,301 

 
Supplemental Table 3.3: Recovery of Viral RNA by Unbiased Metagenomic Sequencing 

of BAL 
Whole BAL was collected from a non-LTR BAL sample and spiked with 106 plaque forming 
units of Pseudomonas phi6. The sample was centrifuged to remove eukaryotic and bacterial 
cells and then processed similarly to LTR acellular BAL. DNA/RNA were co-precipitated as 
detailed in Methods and cDNA synthesis carried out on DNAse-treated aliquot as previously 
described (Wang et al., 2003). The spiked sample was sequenced alongside 80 perioperative 
BAL samples from LTRs and a buffer blank.  
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Pathway ID Source 

Correlation 
Coefficient (vs 
log10 ΔTTV 
Copies/mL BAL) 

NOM P value 

NOD like receptor signaling pathway KEGG 0.0217 0.5963 

TOLL like receptor signaling pathway KEGG 0.0119 0.7805 

IL1R pathway BIOCARTA -0.0127 0.7937 

NTHI pathway BIOCARTA -0.0223 0.6879 

TOLL pathway BIOCARTA -0.0119 0.8033 

 
Supplemental Table 3.4: Association of TTV Dynamics with Gene Sets and Pathways 

Enriched in PGD 
Gene Set Variation Analysis (Hänzelmann et al., 2013) was employed to statistically identify 
enrichment scores of KEGG and Biocarta pathway gene sets in donor and recipient BAL. 
Specific innate immunity gene sets previously found to be enriched (Cantu et al., 2013) 
were examined for correlation with viral dynamics. The association between log10 
transformed ΔTTV and Δ pathway enrichment scores measured in donor and recipient BAL 
(n=26) was tested using a general linear model. Definition of abbreviations: NOM P, nominal 
p-value (estimates the statistical significance of the association with a single gene set or 
transcript, uncorrected for multiple comparisons); NTHI, NFκB activation by nontypeable 
Haemophilus influenza. 
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 Donor BAL (n=33) Recipient BAL (n=38) 
Δ Enrichment Score between 

Donor and Recipient (n=26) 

Gene 

Correlation 
Coefficient (vs 

Log10TTV 

Copies/mL BAL) 

NOM P 
value 

Correlation 
Coefficient (vs 

Log10TTV 

Copies/mL BAL) 

NOM P 
value 

Correlation 
Coefficient (vs 

log10 ΔTTV 

Copies/mL BAL) 

NOM P 
value 

IL1B -0.0067 0.982 -0.0926 0.499 -0.098 0.801 

NLRP3 -0.138 0.698 0.0355 0.838 -0.212 0.646 

IL1A -0.265 0.440 -0.137 0.463 -0.541 0.273 

IL6 -0.272 0.422 -0.109 0.588 -0.404 0.429 

CCL4 0.125 0.668 0.0171 0.909 0.321 0.377 

TLR6 0.0998 0.617 0.0671 0.588 0.0464 0.889 

TLR1 -0.0043 0.982 0.0015 0.992 -0.184 0.570 

TNFAIP
3 

0.105 0.712 -0.0091 0.941 0.113 0.733 

TLR4 0.0486 0.786 0.0648 0.471 -0.183 0.462 

 
Supplemental Table 3.5: Association of TTV with Highest Ranked Transcripts 

Enriched in PGD in Perioperative BAL 
The top 9 ranked individual transcripts, primarily from NRL and TLR signaling pathways, 
previously identified (Cantu et al., 2013) to be enriched in PGD were examined for any 
correlations with TTV during the perioperative period. Associations between log10 
transformed TTV levels and dynamics measured in donor and recipient BAL and individual 
transcript expression levels and changes in enrichment score were tested using a general 
linear model. 
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Donor TTV levels and Donor Transcriptional Profile Donor BAL (n=33) 

Pathway ID Source 

Correlation 
Coefficient (vs 

log10 TTV/mL 
BAL ) 

NOM P value 
FDR P 

value 

TOB1 pathway BIOCARTA -0.122 0.0038 0.995 

NUCLEARRS pathway BIOCARTA -0.150 0.0257 0.995 

     Recipient TTV levels and Recipient Transcriptional Profile Recipient BAL (n=38) 

Pathway ID Source 

Correlation 
Coefficient (vs 
log10 TTV/mL 

BAL ) 

NOM P value 
FDR P 
value 

Feeder pathway BIOCARTA 0.148 0.0111 0.894 

Alpha linolenic acid metabolism KEGG 0.0892 0.0273 0.894 

ACTINY pathway BIOCARTA 0.0833 0.0278 0.894 

PTDINS pathway BIOCARTA 0.0851 0.0328 0.894 

Vibrio cholerae infection KEGG 0.0659 0.0331 0.894 

Glycolysis pathway BIOCARTA 0.122 0.0362 0.894 

Type 1 diabetes mellitus KEGG -0.0769 0.0372 0.894 

P53 pathway BIOCARTA 0.0696 0.0443 0.894 

Valine leucine and isoleucine biosynthesis KEGG 0.120 0.0461 0.894 

MPR pathway BIOCARTA 0.0794 0.0487 0.894 

ARF pathway BIOCARTA 0.0763 0.0488 0.894 

TTV Dynamics and Change in Transcriptional Profile 
Δ Enrichment Score between Donor and 

Recipient (n=26) 

Pathway ID Source 

Correlation 
Coefficient (vs 

ΔTTV 
Copies/mL 

BAL) 

NOM P value 
FDR P 
value 

D4GDI pathway BIOCARTA 0.0983 0.0116 0.959 

Feeder pathway BIOCARTA -0.124 0.0264 0.959 

IL5 pathway BIOCARTA 0.0894 0.0334 0.959 

Alpha linolenic acid metabolism KEGG -0.0775 0.0341 0.959 

CTLA4 pathway BIOCARTA 0.106 0.0367 0.959 

Asthma KEGG 0.0922 0.0414 0.959 

 
Supplemental Table 3.6: Association of TTV with Gene Set Variation Analysis (GSVA) 

of BAL mRNA 
GSVA (Hänzelmann et al., 2013) was employed to statistically identify enrichment scores of 
KEGG and BIOCARTA pathway gene sets (n = 403) in donor and recipient BAL. Association 
analyses using general linear models were performed between GSVA pathway enrichment 
scores and TTV levels and dynamics during perioperative time points. The table shows the 
pathways that had a nominal P value <0.05 for each analysis, along with the P value after 
correction for multiple testing (Benjamini and Hochberg, 1995). FDR, False Discovery Rate 
(Benjamini–Hochberg procedure correction based on estimated probability that an 
association represents a false positive finding). 
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Donor BAL 

(n=41) 
Recipient BAL 

(n=39) 
ΔTTV Copies/mL 

BAL (n=35) 
Recipient Serum 

(n=46) 

Continuou

s Variables 

Media

n 
Range 

Correlation 

Coefficient  

P

  

Correlation 

Coefficient  
P  

Correlation 

Coefficient  
P  

Correlation 

Coefficient  
P  

Donor age 37 14-62 -0.328 

0
.
0
3
6
4 

-0.00405 

0.
9
8
1 

0.196 
0.25

9 
  

Total 
ischemic time 

(min) 
488 18-821   0.298 

0.
0
6
5 

0.050 
0.77

6 
0.153 

0.
3
1
1 

Nitric oxide 
(min) 

360 30-3700   -0.189 

0.
5
5
8 

0.018 
0.97

3 
  

Platelets (mL) 268 90-450   1 

0.
3
3
3 

0.5 1 1 

0.
3
3
3 

Fresh frozen 
plasma (mL) 

500 
225-
1206 

  1 

0.
3
3
3 

0.5 1 0.6 

0.
4
1
6 

Colloid fluids 
(mL) 

1000 50-1750   -0.7 

0.
2
3
3 

-0.9 
0.08

3 
-0.1 

0.
9
5 

Red blood 
cells (mL) 

500 
250-
3150 

  -0.5 1 -0.5 1 0 1 

Cardiopulmo

nary bypass 
time (min) 

268 56-408   0.205 

0.
3

8
5 

0.181 
0.48

5 
0.106 

0.
6

2
1 

Categorica

l Variables 

Value

s 
Total N 

Median 

Log10 TTV 
Copies/mL 

P

  

Median 

Log10 TTV 
Copies/mL 

P  

Median Δ 

Log10 TTV 
Copies/mL 

P  

Median 

Log10 TTV 
Copies/mL 

P  

Donor cause 
of death 

Anoxia 5 6.47 

0
.
2
4
3 

6.17 

0.
5
7
6 

-0.099 0.52 
  

 

Cerebro
-

vascula
r Stroke 

19 5.48 
 

5.93 
 

0.329 
   

 
Head 

trauma 
16 6.01 

 
5.94 

 
0.474 

   

 
Other 6 5.71 

 
5.86 

 
-0.132 

   

Donor history 
of aspiration 

Yes 4 6.12 

0
.
9
4
9 

5.85 

0.
8
4
1 

0.949 1 
  

 
No 42 5.80 

 
6.04 

 
0.345 

   

Donor history 

of purulent 
secretions 

Yes 4 6.13 

0
.

3
4
3 

5.73 

0.
8
2
7 

0.326 
0.18

8   

 
No 39 5.70 

 
6.06 

 
0.350 

   

 

Not 
availabl

e 
3 6.01 

 
5.62 

 
0.486 

   

Donor 
smoking 

status 

Ever 
smoked 

13 5.83 
0
.

7

6.17 
0.
6

3

0.231 
0.87

2   
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8
8 

3 

 
Never 

smoked 
33 5.83 

 
5.80 

 
0.345 

   

Nitric oxide Yes 16   6.08 

0.
4
1
7 

-0.147 
0.33

4   

 
No 30   5.99 

 
0.400 

   

Blood product 
administratio

n 
Yes 6   6.45 

0.
2
8

9 

0.520 
0.82

2 
4.68 

0.
9
7

3 

 
No 40   5.93 

 
0.303 

 
4.54  

Platelets Yes 4   6.28 

0.
4
9
7 

0.474 
0.84

6 
4.68 

0.
9
6
6 

 
No 42 

  
5.99 

 
0.324 

 
4.54  

Fresh frozen 
plasma 

Yes 5 
  

6.61 

0.
3
4
6 

0.474 
0.93

4 
4.07 

0.
8
9
5 

 
No 41 

  
5.99 

 
0.324 

 
4.55  

Colloid fluids Yes 5 
  

5.56 

0.
6
6
9 

0.474 
0.76

6 
4.12 

0.
6
0
7 

 
No 41 

  
6.06 

 
0.324 

 
4.55  

Red blood 
cells 

Yes 5 
  

6.61 

0.
3
4
6 

0.474 
0.93

4 
4.07 

0.
8
9
5 

 
No 41 

  
5.99 

 
0.324 

 
4.55  

Induction 
immunosuppr

ession 
Yes 44 

  
6.04 

0.
8
7
5 

0.355 
0.16

5 
4.56 

0.
0
0
4 

 
No 2 

  
5.85 

 
-0.439 

 
2.18  

Cardiopulmo
nary bypass 

Yes 25 
  

6.08 

0.
6
0

6 

0.113 
0.30

3 
4.55 

0.
1
5

3 

 
No 21 

  
5.99 

 
0.355 

 
4.56  

Transplant 
type 

Bilateral 30 
  

6.22 

0.
1
8
2 

0.47 
0.39

6 
4.56 

0.
9
3
6 

 
Single 16 

  
5.86 

 
0.19 

 
4.36  

Recipient 
preoperative 

diagnosis 
CF 8 

  
5.49 

0.
4
6
9 

  
4.42  

 
COPD 9 

  
5.93  

  
4.62  

 
ILD 28 

  
6.09  

  
4.55  

 
PPH 1 

  
NA  

  
2.79  
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Supplemental Table 3.7:  Correlations between Clinical Variables and Torque Teno 
Virus 

Correlations between TTV levels and continuous variables were tested using Spearman 
Rank Correlation. Associations with categorical variables containing two groups were 
tested with unpaired Wilcoxon Rank Sum test. Associations with categorical variables with 
greater than two groups were tested with Kruskal-Wallis test. Empty cells indicate analyses 
not tested because an association would not be logical for a given sample type or time point 
(eg: recipient preoperative diagnosis and Donor BAL). CF, cystic fibrosis/bronchiectasis; 
COPD, chronic obstructive pulmonary disease; ILD, interstitial lung disease; PPH, primary 
pulmonary hypertension. 



71 
 

 

Top Scoring Hit 
Virus 
Type 

Number of 
Samples 
Identified 
In 

Total 
Reads 

Examples of Known 
or Potential Hosts 

Adenoviridae dsDNA 1 2 Mammal 

Alloherpesviridae dsDNA 6 14 Mammal 

Baculoviridae dsDNA 2 4 Invertebrate 

Bunyaviridae ssRNA (–) 0 0 Mammal 

Caliciviridae ssRNA (+) 2 4 Mammal 

Cystoviridae dsRNA 4 8 Bacteria 

Flaviviridae ssRNA (+) 1 2 
Mammal (Invertebrate 
vector) 

Geminiviridae ssDNA 1 14 Plant 

Herpesviridae dsDNA 18 55 Mammal 

Microviridae ssDNA (+) 1 1 Bacteria 

Mimiviridae dsDNA 4 26 Amoeba 

Nudiviridae dsDNA 1 2 Invertebrate 

Papillomaviridae dsDNA 2 6 Mammal, Amniote 

Parvoviridae ssDNA 7 41 
Vertebrate,  
Invertebrate 

Phycodnaviridae dsDNA 3 10 Algae 

Polyomaviridae dsDNA 2 4 Mammal, Bird 

Poxviridae dsDNA 1 2 
Vertebrate, 
Invertebrate 

Retroviridae ssRNA 12 58 Vertebrate 

Sphaerolipoviridae dsDNA 2 8 Bacteria, Archaea 

Virgaviridae ssRNA (+) 1 4 Plant 

Unclassified Salmonella phage dsDNA 2 2 Bacteria 

Unclassified Staphylococcus 
phage 

dsDNA 4 16 Bacteria 

Unclassified Streptococcus 
pyogenes phage 

dsDNA 4 29 Bacteria 

 
Supplemental Table 3.8: Top Scoring Viral Families with Fewer than 20 Reads 

After removal of shotgun metagenomic reads attributable to environmental contamination 
or unfiltered human sequences, viral species with greater than 20 reads by BROCC scoring 
(Dollive et al., 2012) in an individual sample were called authentic detections, whereas 
those with <20 reads in an individual sample are of uncertain significance. Presented here 
are viral families whose members did not meet this stringent threshold (individual species 
level assignment is shown in Supplemental Table 3.9). 
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Top Scoring Hit 
Number of 
Samples 
Identified In 

Total 
Reads 

Abelson murine leukemia virus 4 21 

Acanthamoeba polyphaga mimivirus 1 18 

Achromobacter phage JWAlpha 2 16 

Acinetobacter phage Bphi-B1251 1 1 

Acinetobacter phage ZZ1 4 14 

Adelie penguin polyomavirus 1 2 

Bacillus phage BCP78 2 6 

Bacillus phage G 2 6 

Bacillus phage Moonbeam 1 18 

Bacillus phage phIS3501 8 47 

Bathycoccus sp. RCC1105 virus BpV 3 10 

Betapapillomavirus 2 1 2 

Betapapillomavirus 3 1 4 

Blattodean ambidensovirus 2 2 14 

Bovine herpesvirus 4 3 8 

Burkholderia phage Bcep176 1 3 

Burkholderia phage Bcep781 1 1 

Burkholderia phage BcepMigl 1 4 

Burkholderia phage BcepMu 1 1 

Burkholderia phage KL3 3 11 

Burkholderia phage KS14 1 1 

Burkholderia phage KS5 3 9 

Burkholderia phage phiE202 1 2 

Campylobacter phage CP21 2 4 

Cassava associated cicular DNA virus 1 2 

Caulobacter phage Cr30 1 6 

Caulobacter phage rogue 1 1 

Caulobacter phage swift 5 11 

Caviid herpesvirus 2 1 2 

Chlamydia phage 1 1 1 

Cronobacter phage vB_CsaM_GAP31 1 5 

Cucurbit leaf crumple virus 1 14 

Cyanophage S-TIM5 1 2 

Cyprinid herpesvirus 1 3 6 

Cyprinid herpesvirus 2 2 4 

Enterobacteria phage cdtI 4 4 

Enterobacteria phage fiAA91-ss 2 5 

Enterobacteria phage HK022 1 7 

Enterobacteria phage HK446 6 8 

Enterobacteria phage HK542 1 2 

Enterobacteria phage HK544 1 1 

Enterobacteria phage HK629 2 8 

Enterobacteria phage HK633 5 8 

Enterobacteria phage HK97 3 4 

Enterobacteria phage If1 2 8 
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Enterobacteria phage IME10 6 9 

Enterobacteria phage lambda 6 9 

Enterobacteria phage M13 7 18 

Enterobacteria phage mEp043 c-1 5 6 

Enterobacteria phage mEp235 1 2 

Enterobacteria phage mEp237 3 5 

Enterobacteria phage mEp460 2 3 

Enterobacteria phage mEpX2 8 10 

Enterobacteria phage Min27 8 9 

Enterobacteria phage P2 1 1 

Enterobacteria phage PsP3 1 16 

Enterobacteria phage Sf101 1 1 

Enterobacteria phage T3 1 2 

Enterobacteria phage T4 sensu lato 1 5 

Enterobacteria phage T7 1 4 

Enterobacteria phage YYZ-2008 1 1 

Equid herpesvirus 2 2 6 

Erwinia phage phiEaH2 9 32 

Erwinia phage vB_EamP-L1 1 2 

Escherichia phage 121Q 1 2 

Escherichia phage HK639 3 8 

Escherichia phage PBECO 4 1 2 

Escherichia phage phiV10 1 3 

Escherichia phage TL-2011b 4 6 

Escherichia phage wV7 1 2 

Falconid herpesvirus 1 8 19 

Fujinami sarcoma virus 1 2 

Gallid herpesvirus 2 1 2 

Gallid herpesvirus 3 3 6 

Geobacillus virus E2 1 2 

Human herpesvirus 5 (CMV) 1 12 

Human immunodeficiency virus 1 1 1 

Human mastadenovirus C 1 2 

Ictalurid herpesvirus 1 2 4 

Lactobacillus phage A2 1 4 

Lactobacillus phage Lc-Nu 1 2 

Lactobacillus phage Lrm1 1 2 

Lactobacillus prophage Lj928 2 4 

Lactococcus phage 1706 1 2 

Mannheimia phage vB_MhM_1152AP 1 1 

Mason-Pfizer monkey virus 2 6 

Megavirus chiliensis 1 2 

Merkel cell polyomavirus 1 2 

Microbacterium phage Min1 1 4 

Mongoose feces-associated 
gemycircularvirus c 

1 2 

Moumouvirus 2 6 

Murine osteosarcoma virus 1 4 
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Mycobacterium phage ArcherS7 1 2 

Mycobacterium phage PegLeg 1 9 

Oryctes rhinoceros nudivirus 1 2 

Ovine lentivirus 1 2 

Pandoravirus inopinatum 2 4 

Pandoravirus salinus 1 2 

Parvovirus NIH-CQV 4 25 

Pestivirus Giraffe-1 1 2 

Phage Gifsy-1 1 1 

Phage Gifsy-2 1 1 

Primate erythroparvovirus 1 1 2 

Propionibacterium phage P100_1 2 8 

Propionibacterium phage PHL030 1 2 

Propionibacterium phage PHL095 1 1 

Propionibacterium phage PHL179 1 1 

Pseudomonas phage DMS3 1 1 

Pseudomonas phage F10 1 1 

Pseudomonas phage JBD24 6 21 

Pseudomonas phage JBD30 6 27 

Pseudomonas phage KPP25 2 4 

Pseudomonas phage LUZ7 1 2 

Pseudomonas phage MP22 8 39 

Pseudomonas phage MP29 1 2 

Pseudomonas phage OBP 1 2 

Pseudomonas phage PAJU2 1 2 

Pseudomonas phage Pf1 1 9 

Pseudomonas phage phi297 3 3 

Pseudomonas phage phi6 4 8 

Pseudomonas phage phiPsa374 1 2 

Pseudomonas phage PPpW-3 3 10 

Pseudomonas phage 
vB_PaeS_PAO1_Ab18 

1 2 

Ralstonia phage 1 NP-2014 1 1 

Ralstonia phage RSA1 2 6 

RD114 retrovirus 1 2 

Rhodococcus phage ReqiPepy6 2 4 

Salmonella phage epsilon34 2 3 

Salmonella phage Fels-1 1 1 

Salmonella phage Fels-2 2 4 

Salmonella phage FSL SP-004 1 1 

Salmonella phage g341c 1 1 

Salmonella phage RE-2010 2 4 

Salmonella phage SPN3UB 1 2 

Salmonella phage SSU5 1 4 

Salmonella phage ST64B 1 1 

Salmonella phage ST64T 1 1 

Salmonella phage STP4-a 1 2 

Salmonella phage vB_SemP_Emek 2 2 

Salmonella phage vB_SosS_Oslo 1 1 
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Salmonella phage Vi06 2 8 

Sapporo virus 2 4 

Sewage-associated circular DNA virus-
28 

1 2 

Sewage-associated gemycircularvirus-1 1 2 

Shewanella sp. phage 1/40 2 4 

Spodoptera litura nucleopolyhedrovirus II 2 4 

Staphylococcus phage 11 1 4 

Staphylococcus phage 187 2 6 

Staphylococcus phage 42E 3 19 

Staphylococcus phage 52A 1 6 

Staphylococcus phage 55 2 6 

Staphylococcus phage 77 2 17 

Staphylococcus phage 88 1 4 

Staphylococcus phage CNPH82 1 2 

Staphylococcus phage Ipla35 1 1 

Staphylococcus phage Ipla7 1 1 

Staphylococcus phage JS01 1 15 

Staphylococcus phage PH15 1 1 

Staphylococcus phage phi2958PVL 2 8 

Staphylococcus phage phi7401PVL 2 8 

Staphylococcus phage phiETA 2 16 

Staphylococcus phage phiETA3 2 20 

Staphylococcus phage phiMR11 3 18 

Staphylococcus phage phiSa119 2 8 

Staphylococcus phage PT1028 1 7 

Staphylococcus phage PVL 2 5 

Staphylococcus phage Pvl108 4 35 

Staphylococcus phage SA11 1 1 

Staphylococcus phage SA12 2 3 

Staphylococcus phage SMSAP5 1 17 

Staphylococcus phage StauST398-3 2 17 

Staphylococcus phage StauST398-4 1 2 

Staphylococcus phage StauST398-5 4 28 

Staphylococcus phage StB20 1 2 

Staphylococcus phage TEM123 3 20 

Staphylococcus phage 
vB_SauM_Remus 

1 1 

Staphylococcus phage X2 3 9 

Staphylococcus prophage phiPV83 3 5 

Streptococcus phage 2972 1 1 

Streptococcus phage 5093 1 3 

Streptococcus phage 7201 1 1 

Streptococcus phage 858 1 2 

Streptococcus phage Alq132 2 4 

Streptococcus phage Dp-1 3 3 

Streptococcus phage PH15 1 16 

Streptococcus phage phi3396 1 1 

Streptococcus phage SMP 1 2 
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Streptococcus phage YMC-2011 5 8 

Streptococcus pyogenes phage 315.2 1 14 

Streptococcus pyogenes phage 315.4 2 7 

Streptococcus pyogenes phage 315.5 1 8 

Synechococcus phage ACG-2014i 1 1 

Synechococcus phage KBS-M-1A 1 6 

Synechococcus phage S-IOM18 1 2 

Synechococcus phage S-SSM7 2 3 

Thermus thermophilus bacteriophage 
P23-77 

1 2 

Thermus thermophilus phage IN93 1 6 

Torque teno felis virus 1 1 

Torque teno mini virus 4 5 18 

Torque teno mini virus 6 2 12 

Torque teno mini virus ALH8 4 23 

Turnip vein-clearing virus 1 4 

uncultured phage crAssphage 1 9 

Vibrio phage JA-1 1 1 

Vibrio phage pVp-1 3 6 

Vibrio phage VH7D 1 2 

Woolly monkey sarcoma virus 2 7 

Y73 sarcoma virus 3 13 

Yersinia phage L-413C 1 2 

Yoka poxvirus 1 2 

 
Supplemental Table 3.9: Top Scoring Viral Species with Fewer than 20 Reads 

After removal of shotgun metagenomic reads attributable to environmental contamination 
or unfiltered human sequences, viral species with greater than 20 reads by BROCC scoring 
(Dollive et al., 2012)  in an individual sample were called as authentic detections, whereas 
those with <20 reads in an individual sample are of uncertain significance. Presented here 
are viral species that did not meet this stringent threshold (the same data collapsed at the 
family level is shown in Supplemental Table 3.8).  
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4.1 ABSTRACT 

Solid organ transplantation disrupts virus‐host relationships, potentially resulting 

in viral transfer from donor to recipient, reactivation of latent viruses, and new viral 

infections. Viral transfer, colonization, and reactivation are typically monitored using assays 

for specific viruses, leaving the behavior of full viral populations (the “virome”) 

understudied. Here we sought to investigate the temporal behavior of viruses from donor 

lungs and transplant recipients comprehensively. We interrogated the bronchoalveolar 

lavage and blood viromes during the peritransplant period and 6‐16 months posttransplant 

in 13 donor‐recipient pairs using shotgun metagenomic sequencing. Anelloviridae, 

ubiquitous human commensal viruses, were the most abundant human viruses identified. 

Herpesviruses, parvoviruses, polyomaviruses, and bacteriophages were also detected. 

Anelloviridae populations were complex, with some donor organs and hosts harboring 

multiple contemporaneous lineages. We identified transfer of Anelloviridae lineages from 

donor organ to recipient serum in 4 of 7 cases that could be queried, and immigration of 

lineages from recipient serum into the allograft in 6 of 10 such cases. Thus, metagenomic 

analyses revealed that viral populations move between graft and host in both directions, 

showing that organ transplantation involves implantation of both the allograft and 

commensal viral communities. 

4.2 INTRODUCTION 

Solid organ transplantation exposes recipients to viruses present in donor tissues, 

and also requires immunosuppression, which facilitates virus reactivation and de novo 

infection. Organ donors are routinely screened for viruses of known clinical concern (Grossi 

et al., 2009), and viral infections are common in lung transplant recipients (LTRs) (Burguete 

et al., 2013). Viruses may also contribute indirectly to acute cellular rejection (ACR) and 

chronic lung allograft dysfunction (Peghin et al., 2017, Vu et al., 2011). 
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Advances in metagenomic DNA sequencing methods now enable queries of whole 

viral populations (the “virome”), including viruses not monitored by current clinical assays. 

The virome of various human body sites, including the respiratory tract (Lewandowska et 

al., 2017, Wylie et al., 2012, Taboada et al., 2014, Willner et al., 2009),  is only beginning to 

be characterized. Recent studies have shown that Anelloviridae are ubiquitous in the human 

eukaryotic virome (Spandole et al., 2015). Anelloviridae is a family of highly diverse, non-

enveloped, small circular single‐stranded DNA (ssDNA) viruses that infect humans and 

other mammals (Spandole et al., 2015). Human Anelloviridae are not associated with any 

diseases, although other small circular ssDNA viruses are important veterinary pathogens 

(Meng, 2012, Ellis, 2014, Todd, 2004). Anelloviridae are likely under chronic immune 

control, given that levels in blood increase in immunosuppressed states (Thom and Petrik, 

2007, De Vlaminck et al., 2013, Görzer et al., 2014). Lower Anelloviridae burden in blood has 

been associated with solid organ rejection, suggesting that Anelloviridae DNA copy numbers 

may be a useful “functional” indicator of immune status (De Vlaminck et al., 2013, Focosi et 

al., 2016, Masouridi-Levrat et al., 2016). Whether lung allograft rejection might be 

associated with low Anelloviridae levels within the lung itself, perhaps as an indicator of 

local immune function, has not been investigated.  

We previously investigated the virome in bronchoalveolar lavage (BAL) from 

healthy subjects and a cross‐sectional sample of LTRs (Abbas et al., 2017) and found that 

lung allografts had markedly elevated Anelloviridae DNA levels compared to healthy adults. 

We also observed unexpectedly high levels of Anelloviridae DNA in the lungs of donors prior 

to organ recovery, and found an association between perioperative Anelloviridae dynamics 

and primary graft dysfunction. In these studies, it was unclear whether Anelloviridae 

genomes in recipients’ allografts were derived from the donated organ or by entry of 

circulating viruses present in the recipient before transplantation. It was also unknown 
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whether Anelloviridae from the donor organ could disseminate and establish infection 

outside the lung. We hypothesized that the abundance of Anelloviridae in the donor lungs 

would result in virus transfer to immunosuppressed LTRs and that viruses already present 

in the recipient might also transfer into the allograft. To test this, we investigated the 

dynamics of whole viral populations from donor lungs before procurement, and in lung 

allograft and blood during the first 6‐16 months posttransplant. 

4.3 RESULTS 

Study subjects 
A total of 114 samples (13 donor BAL, 49 recipient BAL, 52 recipient serum) from 

13 organ donors and their respective LTRs were available for metagenomic sequence 

analysis (Table 4.1). These included perioperative samples (donor BAL, and recipient BAL 

and serum taken immediately following organ implantation and reperfusion) and samples 

taken during routine posttransplant surveillance (approximately 1, 6, 12, 24, and 48 weeks 

posttransplant) and for clinical indications. The sampling schedule and relevant clinical 

events are summarized in Figure 4.1 and Table 4.1. 

Metagenomic shotgun sequencing of donor and recipient samples 
To analyze the virome, virus‐like particles were isolated from acellular BAL and 

serum. Total nucleic acid was extracted, whole‐genome amplified, and then analyzed by 

metagenomic sequencing. Initial analysis for RNA viruses on a subset of 51 samples yielded 

no authentic RNA virus detection as determined by the limited extent of genome coverage 

when sequence reads were mapped onto reference genomes. Therefore, subsequent 

analysis focused on DNA viruses. 

Human sequences and technical artifacts were removed as described previously (Clarke et 

al., 2017a). Further filtering removed artefactual calls due to misannotation of human reads 

(CHAPTER 2), database errors, barcode hopping during Illumina (San Diego, CA) 
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sequencing (Lauder et al., 2016), and contamination from environmental sources (Salter et 

al., 2014, Naccache et al., 2013).  

A median of 272,230 filtered read pairs in the donor BAL sample (range 14,390-

4,667,852), 1,913,041 median read pairs in recipient BAL (range 189-36,920,976) and 

351,211 in serum DNA samples (range 4,023 - 2,246,428) (Supplemental Table 4.1 and 

Supplemental Figure 4.1). Read counts in negative controls were lowest in sterile water 

extractions (maximum of 1310) and highest in SM buffer (range 4311-2,660,621) 

(Supplemental Table 4.1 and Supplemental Figure 4.1). Although efforts were taken to 

enrich for viral nucleic acids, bacterial, fungal and human sequences persisted after sample 

processing and library preparation. On average, human sequences comprised 43% of all 

high quality reads in BAL samples (range 0.2-99%) and 54% (range 0.07-99%) in serum 

samples. Human sequences averaged 12% in extraction controls (range 0.02-45%). To 

account for contaminating sequences introduced during acquisition, processing and library 

preparation of low biomass samples, bronchoscope prewashes, buffer and sterile water 

blanks were analyzed using the same workflow. 

We acquired >5.25×1010 base pairs (bp) of DNA sequence from 114 clinical samples, 

six environmental controls (Supplemental Table 4.1), and 24 bronchoscope prewashes 

(Clarke et al., 2017a). Samples differed considerably in the number of reads remaining after 

filtration of human and artefactual sequences (Supplemental Table 4.1), likely reflecting 

both the abundance of the filtered sequences, and differences in the authentic content of 

viruses. 

We assessed the representation of known viruses by analyzing sequence reads 

using a k‐mer‐based classification scheme (Wood and Salzberg, 2014), revealing a range of 

abundances (0%‐52% in BAL and 0.06%‐33% in serum). We identified viruses from four 

families known to infect humans: Anelloviridae, Herpesviridae, Polyomaviridae, and 
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Parvoviridae (Figure 4.2 and Table 4.2). The most frequently identified human‐cell virus 

was Anelloviridae, consistent with previous reports (De Vlaminck et al., 2013, Young et al., 

2015, Abbas et al., 2017). On average, 8.7% of all classifiable reads in BAL and 12.7% in 

serum were derived from Anelloviridae species. 

To validate assignments from the k‐mer analysis, reads from virus‐positive samples 

were aligned to reference viral genomes and inspected for depth and evenness of coverage 

(Table 4.2, Supplemental Figure 4.1). In donor BAL 13‐28, Epstein‐Barr virus (EBV) was 

detected (1,800 reads covering 45% of the genome). The organ donor had positive serology 

for EBV (Supplemental Table 4.2); however, EBV was not detected in subsequent recipient 

BAL or serum samples. A complete genome of KI polyomavirus was also detected in BAL of 

this subject at 83 days posttransplant (Supplemental Figure 4.1A). Merkel cell polyomavirus 

was detected once each in BAL of subject 12‐09 and serum of subject 13‐17 (Supplemental 

Figure 4.1A). 

Cytomegalovirus (CMV) was also detected in the lung of subject 13‐17 at two 

consecutive time points and in serum, even though they were receiving CMV prophylaxis. A 

near‐complete human bocavirus genome was detected in BAL 91 days posttransplant in 

subject 13‐19. Two subsequent samples from this subject (one BAL and one serum) were 

positive for parvovirus B19 (Supplemental Figure 4.1B). 

We also identified reads that matched to regions of several nonhuman eukaryotic 

viruses (Supplemental Table 4.3). These included two species within the Circoviridae family 

and micromonas pusilla virus, which infects green algae. The significance of sequences 

aligning to these viruses is uncertain. 

In addition to eukaryotic viruses, we identified sequences from four bacteriophage 

families in BAL (Inoviridae, Myoviridae, Podoviridae, Siphoviridae; Figure 4.2A). These 

bacteriophages have diverse bacterial hosts, including members of common oropharyngeal 
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flora and respiratory pathogens (Edlund et al., 2015). In contrast, in serum there were only 

a few hits to bacteriophages, which mainly overlapped with species or families, found in 

environmental controls (Figure 4.2B and Supplemental Figure 4.2). Thus, we lack 

convincing evidence for authentic detection of bacteriophage in blood. 

Most viral hits in background samples matched bacteriophages (Supplemental 

Figure 4.2), predominantly bacteriophages of Propionibacterium, a skin inhabitant and 

common reagent contaminant (Salter et al., 2014, Clarke et al., 2017a). Several 

environmental controls yielded Anelloviridae reads, but at far lower levels than in clinical 

samples, likely reflecting “barcode hopping” during sequence acquisition (Kim et al., 2017). 

Additional hits in controls were to nonhuman eukaryotic‐cell viruses reported previously in 

metagenomic analyses of bronchoscope prewash controls such as Genomoviridae (Clarke et 

al., 2017a), which we did not study further. 

Sequences from each sample were then assembled into contigs that ranged in size 

from 300-49,800 bp, with a median of 344-1639 bp among the samples. In total, 75,935 

contigs larger than 1,000 bp were built across all samples. Most of these (54,878) mapped 

to bacterial genomes, consistent with bacteriophages annotated as bacteria (since 

bacteriophage can integrate into bacterial genomes), or bacterial DNA that was 

incompletely removed during VLP preparations. In total, 1,919 contigs were annotated as 

viral based on alignment to the NCBI viral database (E-value<1x10-10).  

Quantitative analysis of Anelloviridae dynamics in BAL and serum 

Anelloviridae were the most prevalent viruses, and were present in donor lungs 

prior to transplantation. Therefore, we focused on investigating their temporal dynamics 

and relationship to clinical outcomes. 

We first quantified absolute genome copy numbers using qPCR (Figure 4.3). 

Consistent with our previous work (Abbas et al., 2017), Anelloviridae genome copies in BAL 
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from donor lungs prior to transplantation were higher than those in healthy adults (p = 

0.006; Wilcoxon Rank Sum Test, Supplemental Table 4.4). Levels in BAL generally remained 

elevated compared to healthy adults both early and late posttransplant (p < .05 for visits 1, 

3, 4, and 6; Wilcoxon Rank Sum Test, Supplemental Table 4.4), extending prior observations 

from our cross‐sectional study of LTRs (Young et al., 2015). In contrast to BAL levels, 

Anelloviridae genome copy numbers in serum of LTRs immediately after organ reperfusion 

were lower than levels in healthy adults (p = 0.01; Wilcoxon Rank Sum Test, Supplemental 

Table 4.4), consistent with a previous report (Focosi et al., 2015). Serum Anelloviridae levels 

then increased above the levels of healthy subjects (p < 0.05 for all time points >60 days 

posttransplant; Wilcoxon Rank Sum Test), as previously shown with iatrogenic 

immunosuppression (Görzer et al., 2014, Görzer et al., 2015, Moen et al., 2003). 

Blood Anelloviridae levels have been shown to correlate with ACR in pediatric lung 

transplantation (Blatter et al., 2018), but no reports have addressed levels in lung. 

Therefore, we investigated whether there was a relationship between ACR and Anelloviridae 

levels in BAL, as well as serum. Consistent with prior reports (Blatter et al., 2018) , we 

found lower Anelloviridae levels in serum during the month preceding episodes of ACR 

compared to all non‐ACR sera (average 105.5 copies/mL vs average of 106.9 copies/mL; p = 

0.039; Student 2‐tailed t-test). In addition, we also found lower Anelloviridae levels in BAL 

during the 30 days preceding a diagnosis of ACR (average 104.8 copies/mL vs average of 

105.8 copies/mL; p = 0.014; Student 2‐tailed t-test). 

In contrast, neither levels of Anelloviridae in the donor organ prior to procurement 

nor diversity of viral lineages were associated with ACR (data not shown). We previously 

reported that Anelloviridae dynamics during the peritransplant period were also associated 

with primary graft dysfunction (Abbas et al., 2017). 

Assessing transfer of Anelloviridae populations between allograft and recipient 
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Given the presence of Anelloviridae in both donor lungs and recipients at the time of 

transplantation, we investigated transfer of Anelloviridae lineages between the graft and 

transplant recipient. To do this, we assembled sequence reads from the donor lung and 

initial recipient serum samples into contigs and asked whether these contigs were 

represented by reads appearing in later samples. Contigs >2,000 bp were chosen to allow 

sufficient length to query the presence of each Anelloviridae lineage against the background 

of other variants. Such contigs could be assembled in seven donor BAL samples, and in ten 

postreperfusion LTR serum samples (used to represent viral lineages present in recipients 

at the time of transplantation). 

We first analyzed the Anelloviridae Open Reading Frame 1 (ORF1) amino acid 

sequences to understand the baseline similarity of Anelloviridae swarms within and 

between subjects (Supplemental Figure 4.3), and determine whether there would be 

adequate diversity to enable lineage‐specific tracking. Across all 140 perioperative contigs, 

ORF1 sequences exhibited 36% amino acid identity between subjects, and 37% identity 

within subjects. The low within‐ and between‐subject identity emphasizes the extreme 

diversity of Anelloviridae, and allows tracking of initial lung and blood lineages at later time 

points. 

We aligned reads from subsequent BAL and blood to these initially‐present donor 

lung and blood contigs to track their appearance posttransplant. Representation at later 

time points was calculated using the Gini index (Lows, 1984). The Gini index scores 

evenness of contig coverage and is sensitive to regions of genomic divergence while 

accommodating different sequence depths in each sample and for each Anelloviridae 

genome. The Gini index has been used previously for analyses of metagenomic data 

(Bhattacharya et al., 2015, Kobayashi and Andoh, 2018). 
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To validate this approach, we first investigated whether sharing of Anelloviridae 

lineages based on Gini index values was more likely in cognate donor‐recipient pairs than in 

unrelated pairs. Indeed, Anelloviridae lineages present in initial donor lung or recipient 

serum were more likely to be found in later BAL or blood specimens from cognate 

recipients than in samples from unrelated subjects (p < 0.001; Wilcoxon Rank Sum Test on 

Gini values, Figures 4.4 and 4.5). 

We also compared samples using several additional approaches. First, we compared 

lineage representation in each sample by calculating reads per kilobase of alignment target 

per million reads sequenced, using reads remaining after removing human reads and low-

quality reads. This normalizes for variable recovery of reads after filtration (Supplemental 

Table 4.5). Second, we calculated the total fraction of the contig covered by reads in 

subsequent samples (Supplemental Table 4.5). We also observed that full and even 

coverage of a contig by sequences from an unrelated individual was rare (Supplemental 

Tables 4.7 and 4.8). Finally, we assessed temporal dynamics of specific Anelloviridae contigs 

within a donor‐recipient pair by visually inspecting alignments (Supplemental Figure 4.4). 

These approaches yielded conclusions similar to the analysis using the Gini index. 

Detection of donor lung Anelloviridae lineages in recipient allograft and serum 

To assess transfer of Anelloviridae lineages from donor lungs to recipients, we 

focused on the seven LTRs for whom donor BAL samples yielded contigs >2,000 bp (range 

1‐28 contigs per donor). Figure 4.4A illustrates the persistence of Anelloviridae lineages 

from donor lung in longitudinal BAL of recipients, and Figure 4.4B illustrates the 

appearance of donor lung lineages in serum of recipients. As a group, donor lung contigs 

were more similar to sequences in subsequent cognate BAL and serum samples than 

samples from other transplant recipients (p < 0.001; Wilcoxon Rank Sum Test on Gini 

index). Tracking individual donor viruses revealed that they were more evenly covered in 
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BAL specimens from their cognate recipients than in random comparisons in 4 of 7 pairs 

(Figure 4.4A). The same analysis comparing donor lung contigs and longitudinal recipient 

serum reads revealed the appearance of donor lung Anelloviridae lineages in recipient blood 

in 4 of 7 pairs (Figure 4.4B). Thus, posttransplant Anelloviridae persistence within the lung 

and dissemination to serum was detectable in the majority of cases where this could be 

evaluated. 

Detection of recipient Anelloviridae lineages in lung allograft and recipient serum 
over time 

We next asked whether Anelloviridae lineages present in recipients’ blood at the 

time of transplant appeared in the allograft after transplantation, and whether these 

lineages persisted in serum. Postreperfusion serum contigs were used as a representation 

of recipient‐derived lineages. Contigs >2000 bp were available for 10 LTRs (range 1‐20 

contigs per subject). Recipient serum Anelloviridae lineages were more closely related to 

both cognate serum and BAL after transplantation, compared with unrelated subjects (p < 

0.001; Wilcoxon Rank Sum test on Gini index). Recipient Anelloviridae lineages present at 

time of transplantation were then tracked individually, and could be detected in serum at 

later time points in 8 of 10 pairs (Figure 4.5A), indicating persistence in blood. Entry of 

recipient blood Anelloviridae lineages into the allograft was investigated by comparing 

contigs from recipient postreperfusion serum samples to longitudinal recipient BAL 

samples. As expected, in most cases there was no significant coverage of recipient serum 

lineages in donor BAL pretransplant (before exposure to recipient lineages) (Supplemental 

Table 4.7). After transplantation, recipient Anelloviridae lineages were detectable in 

subsequent BAL samples in 6 of 10 subjects (Figure 4.5B). Thus, Anelloviridae lineages 

present systemically in recipients at the time of transplantation commonly entered and 

populated the graft. 
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4.4 DISCUSSION 

In this study, we investigated dynamics of the lung and blood virome in lung 

transplant donors and recipients. Both human viruses and bacteriophages were identified. 

One viral family, Anelloviridae, was ubiquitous and abundant. Anelloviridae have not been 

reported to cause disease in humans, but they appear to be under immune control and 

monitoring their abundance and diversity provides a window on viral interactions with the 

host immune system. 

Anelloviridae blood levels increase in states of immune deficiency (such as AIDS and 

iatrogenic immunosuppression) and decrease with immune reconstitution (Thom and 

Petrik, 2007, Görzer et al., 2014, Görzer et al., 2015, Madsen et al., 2002). Transplant 

recipients with episodes of organ rejection have been shown to have lower Anelloviridae 

levels than those without rejection, consistent with inadequate immune suppression (De 

Vlaminck et al., 2013, Blatter et al., 2018). Thus, while the specific immune mechanisms 

responsible for regulating Anelloviridae in vivo are unknown, it has been proposed that 

monitoring levels in blood might serve as a “functional” measure of immune activity to 

manage organ transplant immunosuppression (De Vlaminck et al., 2013, Focosi et al., 2016). 

Our data are consistent with previous findings in blood. In addition, a novel observation 

here is that Anelloviridae within the lung allograft are also relatively decreased prior to ACR. 

Since controlling immune activity within the allograft is the key goal of organ 

transplantation management, further studies appear warranted to determine whether lung 

Anelloviridae levels might reflect local compartmentalized immune function, and/or could 

offer actionable information useful in immunosuppression management. 

The extensive intrasubject Anelloviridae sequence diversity observed here is 

consistent with previous reports of diverse lineages coexisting within individuals (Young et 

al., 2015, Okamoto et al., 2001, Devalle et al., 2009, Bzhalava et al., 2012, Jelcic et al., 2004, 
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Ninomiya et al., 2008). The origin of multiple independent lineages within individuals is 

unclear and could arise from intrahost evolution, initial infection by multiple lineages, or 

episodes of superinfection (Spandole et al., 2015). Additionally, certain individuals had, by 

chance, some Anelloviridae sequences that were highly similar to those in unrelated 

individuals. Tracking populations of related yet distinct viral genomes within subjects is 

challenging, so we combined breadth and depth of genome coverage using the Gini index 

and compared representation of specific Anelloviridae lineages within and between 

individuals. We show that some Anelloviridae lineages contained within the donor organ 

emigrate from the allograft and circulate systemically in recipients. Conversely, some 

Anelloviridae species from the recipient entered and populated the allograft. Donor‐

recipient transmission of clinically important viruses during organ transplantation is well 

described (Green et al., 2015), but engraftment of an entire viral population along with the 

organ, with bidirectional flow from the allograft to the recipient and vice‐versa, is novel. 

We found that some Anelloviridae lineages present either in the donor organ or the 

recipients’ systemic circulation persisted for months, while others disappeared, possibly 

being replaced by new variants. The consequences of donor‐ or recipient‐derived 

Anelloviridae within the graft are unknown. It is plausible that introduction of novel 

Anelloviridae lineages may have subtle deleterious consequences such as triggering 

localized inflammation within the allograft. Conversely, Anelloviridae have been implicated 

in suppressing NFκB‐mediated cellular activation (Zheng et al., 2007). Unfortunately, we did 

not have sufficient power to ask what outcomes might be linked to donor‐ versus recipient‐

derived lineages within the graft, which should be a topic of future studies. 

Only one donor BAL revealed a known human virus other than Anelloviridae, which 

was EBV. In recipients, herpesviruses (CMV, EBV), parvoviruses (B19, human bocavirus), 

and polyomaviruses (KI, Merkel cell) were identified in lung and blood. Detection of Merkel 
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cell polyomavirus and KI polyomavirus in whole BAL or tissue of lung transplantation 

patients has been described (Bergallo et al., 2010), although DNA in acellular BAL is a novel 

finding that suggests production of extracellular viral particles, consistent with active viral 

replication. Subject 13‐17 yielded CMV in one serum and two BAL specimens despite being 

on CMV suppressive therapy, and another subject’s BAL revealed human bocavirus. 

Although infection with traditional community acquired respiratory viruses is common 

after lung transplantation, none of our subjects had clinically recognized viral infection at 

the time of sample collection. Thus, our limited detection of known pathogenic viruses in 

acellular BAL and serum suggest that asymptomatic or subclinical infection in LTRs is 

uncommon, or that these metagenomic methods have limited sensitivity for their detection. 

Our study has several limitations. The use of acellular BAL is appropriate for 

analysis of the extracellular (replicating) virome, but cannot detect intracellular viral 

nucleic acids of nonreplicating or latent forms. Due to geographic heterogeneity within the 

lung (Willner et al., 2012a), any single sample may report only part of the virome. Because 

replicate samples were not available, the effect of sampling stochasticity could not be 

quantified. Long-term storage of BAL and our methods of sample processing may have 

reduced our sensitivity to detect low abundance enveloped DNA and RNA viruses. Our small 

sample size limited our ability to compare the magnitude of association of Anelloviridae and 

ACR in lung versus blood, and the number of subjects in whom we could track individual 

lineages precluded an analysis of donor versus recipient strain-specific relationship to 

outcomes. Finally, our findings report on viruses present in reference databases. Indeed, 

between 12% and 94% of metagenomic reads in each sample could not be classified into 

any known kingdom, similar to other metagenomic studies (Quince et al., 2017, 

Krishnamurthy and Wang, 2017). Illuminating this viral dark matter may reveal 

uncharacterized viruses that may play a role in lung health and disease. 
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In summary, our study shows that lung transplantation is associated with 

engraftment not just of a donor organ, but of its endogenous population of Anelloviridae as 

well. Future studies will be needed to determine factors that regulate viral transfer between 

graft and host, and further define the relationship between compartmentalized lung 

Anelloviridae and transplantation outcomes. 
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FIGURE 4.1:  SAMPLE COLLECTION AND CLINICAL EVENTS  
The duration of each subject's enrollment in the study is shown. Sample collection 
(bronchoalveolar lavage [BAL] and blood specimens) time points are displayed below the 
timeline and indicated by the color code. The timing and duration of adverse clinical events 
for each subject are displayed above the timeline and similarly annotated. For subject 12‐
09, primary graft dysfunction (PGD) grade 3 occurred within the first 72 hours following 
lung transplantation (Yusen et al., 2015). Five subjects who experienced acute cellular 
rejection (ACR) had a maximum grade of A2 (Stewart et al., 2007). 
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FIGURE 4.2:  THE VIRAL MICROBIOME  BEFORE AND AFTER TR ANSPLANTATION 
Displayed are the distribution and number of read pair assignments (on a log10 scale) from 
shotgun metagenomic sequencing of bronchoalveolar lavage (BAL) (A) and serum (B). 
Shown are results from DNA sequences that match known viruses, filtered to remove 
spurious hits. Each box represents a different donor‐recipient pair and each column a 
different BAL (A) or serum (B) sample. BAL of the donor lung prior to procurement and 
transplantation is the first column and indicated as “‐1” days posttransplant. Posttransplant 
BAL samples were taken during routine surveillance bronchoscopy or for other indications. 
Reads that could not be classified at the species level are not included for display. Only hits 
with a minimum of 10 reads assigned to a viral family per sample are included. Hits 
believed to be spurious or derived from environmental contamination are not displayed. 
Viral families are grouped according to target host. Sequencing, preprocessing of reads, 
classification, and quality control were carried out as described in CHAPTER 2. 
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FIGURE 4.3 ANELLOVIR IDAE DYNAMICS BY BOD Y SITE 
Anelloviridae species were quantified in bronchoalveolar lavage (BAL) and serum by qPCR 
that targets torque teno viruses, torque teno midi viruses, and torque teno mini viruses 
(Anelloviridae family members). The black line represents the local regression curve and 
standard error for all longitudinal samples. The dotted line represents the limit of detection 
for the qPCR assay (38 target copies/reaction). Samples at or below this limit were assigned 
this minimal value. Dots represent individual samples. (A) Longitudinal analysis of 
Anelloviridae genome copies in BAL. Donor BAL was taken prior to organ procurement. 
Recipient BAL was first obtained an hour after organ reperfusion and at various time points 
posttransplant. (B) Longitudinal analysis of Anelloviridae genome copies in serum from lung 
transplant recipients. Perioperative serum from the transplant recipients was obtained an 
hour after organ reperfusion. 



95 
 

 

FIGURE 4.4 LONGITUDINAL MONITOR ING OF DONOR LUNG AN ELLOVIRIDAE IN 
TRANSPLANT RECIPIENT S’  SUBSEQUENT LUNG AND  SERUM SAMPLES 

Contigs >2,000 bp that could be assembled from 7 organ donor bronchoalveolar lavage 
(BAL) were aligned with reads found in posttransplant BAL (A) and serum (B) samples. 
Each row is a contig representing an Anelloviridae partial genome in donor BAL. Rows are 
grouped according to the donor organ in which the contig was found, shown on the left. 
Columns represent individual samples of BAL (A) or serum (B) arranged chronologically, 
grouped by recipient ID and annotated based on the color key. Recipient perioperative 
serum in B was sampled 1 hour after organ reperfusion. The color in each block represents 
the Gini index of each comparison of initial sample contig to subsequent samples’ reads. A 
value of 1 is highly uneven coverage suggesting lack of detection, while 0 is even coverage 
across the genome suggesting highly confident detection. Alignments of samples to contigs 
in cognate donor‐recipient pairs (donor lung and recipient of that specific donor organ) are 
outlined in black for ease of visualization. As a group, Anelloviridae lineages present in 
initial donor lungs were significantly more likely to be found in BAL and blood specimens 
from cognate recipients than in samples from unrelated subjects (p < 0.001; Wilcoxon Rank 
Sum Test). Individual donor‐recipient pairs where there was significant detection of donor 
lineages in either BAL (A) or serum (B) are indicated by the asterisk (p < 0.05; Wilcoxon 
Rank Sum Test). 
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FIGURE 4.5:  LONGITUDINAL MONITOR ING OF INITIAL RECIPIENT  SERUM 
ANELLOVIRIDAE IN TRANSPLANT RECIPIENTS’  SUBSEQUENT SERUM AND  LUNG 

SAMPLES 
Contigs >2,000 bp that could be assembled from 10 perioperative serum samples (obtained 
within an hour after transplantation and taken to represent recipient Anelloviridae at the 
time of transplantation) were aligned with reads found in all posttransplant serum (A) and 
bronchoalveolar lavage (BAL) (B) samples. Each row is a contig representing an 
Anelloviridae partial genome present in perioperative serum, grouped and annotated by 
subject. Columns represent individual serum (A) or BAL (B) samples arranged 
chronologically and grouped by subject (subject 11‐15 only had serum from the 
perioperative time point available). In (B), BAL of the donor organ is the first column. The 
color in each block represents the Gini index of each genome in each sample. A value of 1 is 
highly uneven coverage suggesting lack of detection while 0 is even coverage across the 
genome suggesting highly confident detection. Alignments of samples to contigs in cognate 
donor‐recipient pairs are outlined in black for ease of visualization. As a group, 
Anelloviridae lineages present in initial recipient serum were significantly more likely to be 
found in BAL and blood specimens at later time points from that subject than in samples 
from unrelated subjects (P < .001; Wilcoxon Rank Sum Test). Individual recipients where 
there was significant detection of these perioperative lineages in either BAL (A) or serum 
(B) are indicated by the asterisk (P < .05; Wilcoxon Rank Sum Test). 



97 
 

 
Subject 
ID 

Age 
(Years) 

Sex Preoperative 
Diagnosis 

Donor 
Age 
(Years) 

Transplant 
Type 

Infectious Clinical 
Events (Organisms) 

Non-
Infectious 
Events 

11-03 28 M Cystic 
Fibrosis 

36 BLT Pseudomonas, 
Haemophilus 
influenzae, 
MRSA 

ACR 

11-09 64 M Pulmonary 
Fibrosis 

40 SLT Staphylococcus 
epidermidis 

Death 

11-15 66 F Pulmonary 
Fibrosis 

28 SLT Aspergillus 
terreus 

ACR 

11-21 44 F Cystic 
Fibrosis 

50 BLT None None 

11-27 22 M Cystic 
Fibrosis 

32 BLT None ACR, 
death 

12-02 62 F Emphysema 43 SLT None None 

12-09 53 F Bronchiectas
is 

20 BLT Streptococcus PGD 

12-12 36 M Cystic 
Fibrosis 

52 BLT None None 

13-17 36 F Cystic 
Fibrosis 

25 BLT Pseudomonas, 
Stenotrophomona
s maltophila, 
Haemophilus 
influenzae, 
Candida glabrata, 
Parainfluenza 

None 

13-19 26 F Cystic 
Fibrosis 

42 BLT Pseudomonas, 
MRSA 

None 

13-20 21 M Cystic 
Fibrosis 

13 BLT Escherichia coli, 
Pseudomonas 

ACR, 
death 

13-28 54 M Pulmonary 
Fibrosis 

19 SLT None None 

13-31 45 M Pulmonary 
Fibrosis 

34 SLT None ACR, 
death 

 
Table 4.1: Clinical Features of Lung Transplant Recipients 

Subjects were derived from the multicenter Clinical Trials in Organ Transplantation‐03 
study. All subjects received maintenance immunosuppression post–lung transplantation 
and all but subject 12‐12 received induction immunosuppression (Simulect/basiliximab). 
Infectious events reported were for the lung only and indicate any and all events in the 
duration of subject enrollment. The virome of peritransplant BAL samples from three 
subjects (12‐02, 12‐09, 13‐17) was previously examined in a cross‐sectional study of 
primary graft dysfunction (Abbas et al., 2017). ACR, acute cellular rejection; BLT, bilateral 
lung transplant; SLT, single lung transplant; F, female; M, male; MRSA, methicillin‐resistant 
Staphylococcus aureus; PGD, primary graft dysfunction. 
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Subject Time Point Species Mapped Reads % Coverage 

12-09 Visit 5 BAL Merkel cell 

polyomavirus 
5296 100 

13-17 Visit 4 BAL CMV 24 1 

13-17 Visit 5 BAL CMV 184 7 

13-17 Visit 5 Serum 
Merkel cell 

polyomavirus 
82 72 

13-17 Visit 6 Serum CMV 348 11 

13-19 Visit 4 BAL Human bocavirus 262 87 

13-19 Visit 5 BAL Parvovirus B19 58 48 

13-19 Visit 6 Serum Parvovirus B19 22 27 

13-28 Donor BAL EBV 1848 45 

13-28 Visit 4 BAL KI polyomavirus 702 100 

 
Table 4.2: Detection of Human Viruses in BAL and Serum 

Viral hits discovered through the k‐mer‐based approach (Wood and Salzberg, 2014) were 
validated by aligning read pairs to reference viral genomes. The number of mapped reads 
and coverage of the reference genome were calculated as described in CHAPTER 2. BAL, 
bronchoalveolar lavage; CMV, cytomegalovirus; EBV, Epstein‐Barr virus. 
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SUPPLEMENTAL FIGURE 4.1:  DETECTIONS OF P OLYOMAVIRIDAE AND 
PARVOVIRIDAE 

Reads from all samples that yielded Polyomaviridae or Parvoviridae hits using the k-mer 
based method for viral identification were locally aligned to reference genomes of (A) 
Polyomaviridae species KI polyomavirus Stockholm 60 (NC_009238.1) and Merkel cell 
polyomavirus (NC_010277.2) and (B) Parvoviridae species human parvovirus B19 
(NC_000883.2) and human bocavirus (NC_007455.1).  Each row represents a BAL or serum 
sample, the X-axis represents the genome position (with name and length annotated on 
bottom) and the Y-axis represents the relative depth of coverage with vertical colored bars 
indicating nucleotide mismatches to the reference genome. 

A

B



100 
 

Prewash Serum

Anelloviridae

Myoviridae

Phycodnaviridae

Podoviridae

Siphoviridae

Alloherpesviridae

Baculoviridae

Circoviridae

Genomoviridae

Herpesviridae

Iridoviridae

Microviridae

Mimiviridae

Polydnaviridae

Poxviridae

NA

Ctenophore−associated circular virus 1
Torque teno virus

Torque teno virus 1
Torque teno virus 10
Torque teno virus 12
Torque teno virus 14
Torque teno virus 15
Torque teno virus 16
Torque teno virus 19

Torque teno virus 2
Torque teno virus 27
Torque teno virus 28

Torque teno virus 3
Torque teno virus 6
Torque teno virus 7
Torque teno virus 8

Simian torque teno virus 33
Small anellovirus

Torque teno felis virus
Torque teno midi virus 1
Torque teno midi virus 2
Torque teno mini virus 1
Torque teno mini virus 2
Torque teno mini virus 3
Torque teno mini virus 4
Torque teno mini virus 5
Torque teno mini virus 6
Torque teno mini virus 7
Torque teno mini virus 8
Torque teno mini virus 9

Torque teno sus virus 1a
Torque teno virus 4
TTV−like mini virus

Aeromonas phage phiAS5
Aeromonas phage vB_AsaM−56

Burkholderia phage ST79
Burkholderia virus BcepF1

Enterobacteria phage T4 sensu lato
Iodobacteriophage phiPLPE
Synechococcus phage syn9

Acanthocystis turfacea Chlorella virus 1
Paramecium bursaria Chlorella virus A1

Streptococcus phage 20617
uncultured phage crAssphage

Yellowstone lake phycodnavirus 1
Yellowstone lake phycodnavirus 2

Burkholderia virus Bcepmigl
Cellulophaga phage phi14:2
Cellulophaga phage phi18:3

Enterobacteria phage 13a
Escherichia virus APEC7
Pseudomonas phage AF
Pseudomonas phage O4

Pseudomonas phage PA11
Pseudomonas phage phi15

Pseudomonas phage PPPL−1
Ralstonia phage RSB2

Rhodoferax phage P26218
Salmonella virus 9NA

Burkholderia phage KS9
Cellulophaga phage phi10:1

Enterobacteria phage vB_EcoS_ACG−M12
Enterococcus phage IME−EFm1

Flavobacterium phage 11b
Lactococcus phage r1t

Lactococcus phage Tuc2009
Leuconostoc phage 1−A4

Propionibacterium phage ATCC29399B_C
Propionibacterium phage ATCC29399B_T

Propionibacterium phage Attacne
Propionibacterium phage BruceLethal

Propionibacterium phage Enoki
Propionibacterium phage Kubed

Propionibacterium phage Lauchelly
Propionibacterium phage Moyashi

Propionibacterium phage Ouroboros
Propionibacterium phage P100_1
Propionibacterium phage P100_A
Propionibacterium phage P100D
Propionibacterium phage P101A
Propionibacterium phage P104A

Propionibacterium phage P105
Propionibacterium phage P1.1

Propionibacterium phage P14.4
Propionibacterium phage P9.1

Propionibacterium phage PA1−14
Propionibacterium phage PA6

Propionibacterium phage PAC1
Propionibacterium phage PAD20
Propionibacterium phage PAS50

Propionibacterium phage PHL009
Propionibacterium phage PHL010M04

Propionibacterium phage PHL025
Propionibacterium phage PHL030
Propionibacterium phage PHL041
Propionibacterium phage PHL055

Propionibacterium phage PHL060L00
Propionibacterium phage PHL067M10

Propionibacterium phage PHL070
Propionibacterium phage PHL071N05

Propionibacterium phage PHL085
Propionibacterium phage PHL092
Propionibacterium phage PHL095

Propionibacterium phage PHL111M01
Propionibacterium phage PHL112N00
Propionibacterium phage PHL113M01
Propionibacterium phage PHL114L00

Propionibacterium phage PHL116
Propionibacterium phage PHL132
Propionibacterium phage PHL150
Propionibacterium phage PHL152
Propionibacterium phage PHL171
Propionibacterium phage PHL179
Propionibacterium phage PHL199
Propionibacterium phage PHL301

Propionibacterium phage Pirate
Propionibacterium phage Procrass1
Propionibacterium phage QueenBey

Propionibacterium phage SKKY
Propionibacterium phage Solid

Propionibacterium phage Wizzo
Pseudomonas phage NP1

Pseudomonas phage phiPSA1
Salmonella phage vB_SosS_Oslo

Streptococcus phage 5093
Streptococcus phage 7201

Streptococcus phage 858
Streptococcus phage Abc2
Streptococcus phage DT1

Streptococcus phage PH10
Streptococcus phage Sfi19
Streptococcus phage Sfi21

Streptococcus phage TP−778L
Streptococcus phage TP−J34

Streptococcus virus 9871
Streptococcus virus 9872

Propionibacterium virus ATCC29399BC
Propionibacterium virus ATCC29399BT

Propionibacterium virus P100A
Propionibacterium virus P100D
Propionibacterium virus P101A
Propionibacterium virus P104A

Propionibacterium virus P105
Propionibacterium virus P1.1

Propionibacterium virus P144
Propionibacterium virus P91
Propionibacterium virus PA6

Propionibacterium virus PAD20
Propionibacterium virus PAS50

Propionibacterium virus PHL060L00
Propionibacterium virus PHL071N05
Propionibacterium virus PHL111M01
Propionibacterium virus PHL112N00
Propionibacterium virus PHL113M01
Propionibacterium virus PHL114L00

Cyprinid herpesvirus 1
Cyprinid herpesvirus 2

Pandoravirus dulcis

Porcine stool−associated circular virus 5

Faeces associated gemycircularvirus 14
Faeces associated gemycircularvirus 15
Faeces associated gemycircularvirus 17
Sewage associated gemycircularvirus 3

Sewage derived gemykrogvirus 1

Human herpesvirus 1

Anopheles minimus irodovirus
Invertebrate iridescent virus 6
Rhodobacter phage RcapNL

Invertebrate iridescent virus 9

Bdellovibrio phage phiMH2K
Gokushovirinae Bog1183_53

Gokushovirinae GAIR4
Gokushovirinae GNX3R

Lake Sarah−associated circular virus−41
Plasmid pWW100

Cafeteria roenbergensis virus
Megavirus chiliensis

Glypta fumiferanae ichnovirus

Myxoma virus

Vibrio phage pYD38−A

0

1

2

3

4

5
Log10 Reads

Extraction Blank
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SUPPLEMENTAL FIGURE 4.2:  SEQUENCING BACK GROUND OF EXTRACTION  
CONTROLS  

The identity of reads classified as viral in two sets of negative control samples are displayed. 
One set (Extraction Blanks) included buffer and sterile water controls that were processed 
and sequenced alongside clinical samples used in this study. A second set of negative 
controls consisted of bronchoscope prewashes (Prewash) from bronchoscopies of subjects 
enrolled in a separate study of lung disease that took place at the University of Pennsylvania 
(Clarke et al., 2017a). This set was processed in the same laboratory and using a similar 
workflow. Hits to sequencing artifacts and known reagent contaminants as described in 
CHAPTER 2 were removed, but no minimal read count threshold was imposed for display. 
Each row represents a viral species and the color in each block represents the number of 
read hits. To contextualize the findings in negative controls, clinical samples of recipient 
serum from the third posttransplantation follow-up visit are also displayed. 
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SUPPLEMENTAL FIGURE 4.3:  DIVERSITY OF ANELLOV IRIDAE LINEAGES WITH IN 
AND BETWEEN AN ORGAN  DONOR AND RECIPIENT 

Multiple sequence alignment of 200 residues of the N terminus of nine Anelloviridae ORF1 
protein sequences (excluding the arginine-rich basic region and masking positions with 
50% or more gaps) from donor BAL and perioperative serum of subject 12-02. Residues 
that are 50% conserved are highlighted in green, and 100% conserved are in blue. 
Sequences are arranged on the Y-axis based on amino acid similarity. 
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SUPPLEMENTAL FIGURE 4.4:  DETECTION OF DONOR ANELLOVIRIDAE IN 
LONGITUDINAL POST -TRANSPLANTATION SAMPLE S 

Shotgun reads from all samples available from subject 13-28 were aligned to a 
representative Anelloviridae contig (1 of 23) found in BAL of the donor organ. Each row 
represents a BAL or serum sample, the X-axis represents the genome position (length 
annotated on bottom) and the Y-axis represents the relative depth of coverage. Vertical 
colored bars indicate nucleotide mismatches in the read alignments. 

3,701 bp

Donor BAL

98% coverage

4,622 reads

Recipient BAL (perioperative)

94% coverage

214 reads

Recipient Serum (perioperative)

7% coverage

4 reads

Recipient Serum (Visit 2)

73% coverage

318 reads
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Sample Name Sample Type Raw Human Non-Human 

11-03-V1-DB Donor BAL 1956424 816239 165582 

11-09-V1-DB Donor BAL 3160112 1943233 130830 

11-15-V1-DB Donor BAL 3264543 11310 2346882 

11-21-V1-DB Donor BAL 860103 536864 113861 

11-27-V1-DB Donor BAL 1872248 371717 1035522 

12-02-V1-DB Donor BAL 2289969 1454800 777544 

12-09-V1-DB Donor BAL 12686623 6787759 5651326 

12-12-V1-DB Donor BAL 1874283 1603131 41609 

13-17-V1-DB Donor BAL 1047349 310244 719731 

13-19-V1-DB Donor BAL 1457706 1265293 32626 

13-20-V1-DB Donor BAL 1861666 1249573 97345 

13-28-V1-DB Donor BAL 1587655 484308 906492 

13-31-V1-DB Donor BAL 1679478 415616 1042980 

11-03-R-B Recipient BAL 439275 770 328811 

11-03-V1-B Recipient BAL 1257761 516313 301310 

11-03-V4-B Recipient BAL 1597279 109320 1112054 

11-09-R-B Recipient BAL 2346319 592297 1159872 

11-09-V1-B Recipient BAL 3181946 2545912 325010 

11-09-V4-B Recipient BAL 2419697 1705701 181870 

11-15-R-B Recipient BAL 1575492 6201 1237528 

11-15-V1-B Recipient BAL 2078888 311514 1106728 

11-15-V3-B Recipient BAL 2542535 1262714 422425 

11-15-V4-B Recipient BAL 619 153 158 

11-15-V5-B Recipient BAL 2244404 44855 1382057 

11-21-V1-B Recipient BAL 600009 229370 128567 

11-21-V3-B Recipient BAL 3786466 1139998 1811183 

11-21-V5-B Recipient BAL 3553060 83879 2619361 

11-21-V6-B Recipient BAL 3572215 158824 2388694 

11-27-V1-B Recipient BAL 1661821 1164846 34145 

11-27-V3-B Recipient BAL 2370271 1059538 624717 

11-27-V4-B Recipient BAL 2334735 526790 1194534 

11-27-V6-B Recipient BAL 1501218 122433 1020961 

12-02-R-B Recipient BAL 114865 52303 61372 

12-02-V4-B Recipient BAL 13191916 798995 12249474 

12-02-V5-B Recipient BAL 5984585 766493 5145501 

12-09-V1-B Recipient BAL 4867349 1920911 2859500 

12-09-V4-B Recipient BAL 98496 26590 70613 

12-09-V5-B Recipient BAL 37472310 277772 36921061 

12-09-V6-B Recipient BAL 2952888 361745 2563874 

12-12-V1-B Recipient BAL 1979248 1464794 39472 

12-12-V3-B Recipient BAL 1895686 611686 1011135 

12-12-V4-B Recipient BAL 1633177 175098 1228640 

12-12-V5-B Recipient BAL 2069927 13106 1781569 

12-12-V6-B Recipient BAL 1210768 70207 1001866 

13-17-V1-B Recipient BAL 1231200 1006652 211496 

13-17-V4-B Recipient BAL 22395421 600844 21552339 
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13-17-V5-B Recipient BAL 12450857 1122519 11171179 

13-17-V6-B Recipient BAL 13635219 13443883 108286 

13-19-R-B Recipient BAL 1305542 188576 964193 

13-19-V1-B Recipient BAL 984399 855431 42835 

13-19-V3-B Recipient BAL 1078451 499158 500639 

13-19-V4-B Recipient BAL 1289450 901772 278211 

13-19-V5-B Recipient BAL 1168656 651485 421303 

13-19-V6-B Recipient BAL 6011680 66034 4945747 

13-20-V1-B Recipient BAL 727 260 169 

13-20-V3-B Recipient BAL 1029236 445410 528666 

13-20-V4-B Recipient BAL 789504 143840 591342 

13-28-V1-B Recipient BAL 2014647 1608986 106997 

13-28-V4-B Recipient BAL 2355760 190512 1882743 

13-28-V5-B Recipient BAL 2641574 320513 2148774 

13-31-V1-B Recipient BAL 5167797 3427281 1174587 

13-31-V4-B Recipient BAL 2981873 2075337 200046 

11-03-V1-S Recipient Serum 1813270 1640412 158761 

11-03-V2-S Recipient Serum 425917 405555 16783 

11-03-V3-S Recipient Serum 1781094 1296168 464950 

11-09-V1-S Recipient Serum 2056805 1933155 109357 

11-09-V2-S Recipient Serum 2489671 2236378 236039 

11-09-V3-S Recipient Serum 2034829 1312370 707137 

11-09-V4-S Recipient Serum 1443676 122172 1307199 

11-15-V1-S Recipient Serum 1672140 1357089 302346 

11-21-V2-S Recipient Serum 2015563 1758079 240512 

11-21-V5-S Recipient Serum 1868480 27234 1818959 

11-21-V6-S Recipient Serum 2279056 11157 2246428 

11-27-V1-S Recipient Serum 2654848 2460302 176975 

11-27-V2-S Recipient Serum 1647913 1613074 22980 

11-27-V4-S Recipient Serum 1606629 3970 1583848 

11-27-V6-S Recipient Serum 1280010 217956 1049626 

12-02-R-S Recipient Serum 897347 51614 834704 

12-02-V1-S Recipient Serum 474984 426271 44295 

12-02-V2-S Recipient Serum 705979 681949 19249 

12-02-V4-S Recipient Serum 904866 643 892271 

12-02-V5-S Recipient Serum 1083500 3606 1064928 

12-09-V1-S Recipient Serum 201763 195688 4121 

12-09-V2-S Recipient Serum 543074 526041 8657 

12-09-V5-S Recipient Serum 1474761 33149 1423914 

12-09-V6-S Recipient Serum 1009859 7403 990695 

12-12-V1-S Recipient Serum 1259010 1196317 54460 

12-12-V2-S Recipient Serum 2286524 2223321 44055 

12-12-V3-S Recipient Serum 1999146 24701 1955242 

12-12-V4-S Recipient Serum 1364719 22028 1322745 

13-17-V1-S Recipient Serum 876558 849118 19333 

13-17-V2-S Recipient Serum 1362875 1345168 5560 

13-17-V3-S Recipient Serum 1139257 6678 1115890 

13-17-V4-S Recipient Serum 1021584 1780 1004316 
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13-17-V5-S Recipient Serum 1036023 708744 317118 

13-19-V1-S Recipient Serum 1978949 1911840 49523 

13-19-V2-S Recipient Serum 2621610 2061085 535953 

13-19-V3-S Recipient Serum 1343451 1300973 31399 

13-19-V4-S Recipient Serum 1440690 16797 1402755 

13-19-V5-S Recipient Serum 1088715 73275 1003314 

13-19-V6-S Recipient Serum 1207139 4985 1189693 

13-20-V1-S Recipient Serum 551122 306020 239443 

13-20-V2-S Recipient Serum 1249709 1196692 42962 

13-20-V3-S Recipient Serum 1751744 503455 1230607 

13-20-V4-S Recipient Serum 1875473 99959 1752866 

13-20-V5-S Recipient Serum 2370143 2201543 151746 

13-20-V6-S Recipient Serum 2175066 1933715 227776 

13-28-V1-S Recipient Serum 7208036 6953925 187731 

13-28-V2-S Recipient Serum 24507228 24106426 211626 

13-28-V4-S Recipient Serum 1694135 153232 1522217 

13-28-V6-S Recipient Serum 1807297 4610 1784467 

13-31-V1-S Recipient Serum 2777189 1584123 1167929 

13-31-V2-S Recipient Serum 1856278 1838968 4109 

13-31-V4-S Recipient Serum 1741316 1340777 385397 

BufAve-12-2015 Buffer 4721 146 4311 

SM-12-2015 Buffer 53850 8455 44927 

SM-1 Buffer 319451 16680 299080 

SM-D-1 Buffer 1633660 295 1360248 

GenomiphiNTC PCR Water 1443 106 1310 

H20NegCtrl1 PCR Water 72 27 33 

 
Supplemental Table 4.1: Sequencing Pre-processing Summary 

Shotgun sequencing libraries were prepared from DNA extracted from acellular 
BAL, serum and environmental controls, pooled in equimolar amounts and sequenced on 
single lanes in three independent 2x125 base pair Illumina HiSeq 2500 runs. Samples were 
de-multiplexed, and quality-filtered as described in Supplemental Methods. Reads that 
aligned to the human genome were removed prior to microbiome analysis. Displayed are 
the number of read pairs for each sample at various stages of bioinformatics processing. 
The bottom six rows represent various types of environmental control specimens. BAL, 
Bronchoalveolar lavage; B, Recipient BAL; DB, Donor BAL; NTC, No template control; R, For 
Cause; S, Recipient Serum; V1, Post-reperfusion; V2, Visit 2; V3, Visit 4; V5, Visit 5; V6, Visit 
6. 
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Subject Virus 
Clinical 
Detection 
(recipient) 

Metagenomic 
Detection 

Donor 
IgG 

Recipient 
IgG 

Maintenance 
CMV 
prophylaxis 

13-17 CMV None 
Visit 4 BAL 
Visit 5 BAL 
Visit 6 BAL 

NA NA Yes 

13-28 EBV None Donor BAL Positive Negative Yes 

13-31 CMV None Visit 4 Serum Positive Positive Yes 

 
Supplemental Table 4.2: Metagenomic Detection of Human Herpesviruses 

Metagenomic detection was called by aligning reads of all samples from subjects with any 
putatively positive hits to reference Herpesvirus genomes and inspecting coverage depth 
and breadth. CMV prophylaxis consisted of either Ganciclovir or Valganciclovir. In some 
cases, data regarding seropositivity was not available (NA). BAL, Bronchoalveolar lavage; 
CMV, cytomegalovirus; EBV, Epstein-Bar virus. 



108 
 

 

Subject ID Time Point Family Species 
Read 

Pairs 

11-09 
For Cause 

BAL 

Unclassified 

dsDNA virus 
Micromonas pusilla virus 12T 13 

11-09 

Post-

reperfusion 

serum 

Circoviridae Circoviridae SFBeef 62 

13-28 Donor BAL Circoviridae Porcine stool-associated circular virus 5 67 

 
Supplemental Table 4.3: Detection of Non-Human Eukaryotic Viruses in BAL and 

Serum 
Human-filtered read pairs from each sample were assigned to a  viral taxonomic class using 
a k-mer based (Wood and Salzberg, 2014) search against a database containing complete 
RefSeq viral genomes. A threshold of tem read pairs per genome per sample was used to call 
a positive detection. BAL, Bronchoalveolar lavage; dsDNA, double-stranded DNA. 
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Sample Total N 
Median 
Log10 Anelloviridae  
Copies/mL 

P-value  
(Compared to 
Healthy) 

Healthy BAL 8 3.90 NA 

Donor BAL 13 5.58 0.006 

Post-reperfusion (Visit 1) BAL 12 5.36 0.0124 

Visit 3 BAL 6 5.07 0.0127 

Visit 4 BAL 12 5.07 0.0157 

Visit 5 BAL 8 4.47 0.279 

Visit 6 BAL 6 5.56 0.0293 

Healthy Serum 21 5.44 NA 

Post-reperfusion (Visit 1) Serum 12 4.42 0.01 

Visit 2 Serum 12 5.77 0.104 

Visit 3 Serum 6 5.94 0.0973 

Visit 4 Serum 9 6.18 0.0004 

Visit 5 Serum 7 6.00 0.0199 

Visit 6 Serum 7 5.84 0.0364 

 
Supplemental Table 4.4: Comparison of Anelloviridae Levels in Lung Transplant 

Recipients and Healthy Adults 
Comparison between Anelloviridae DNA copies at each time point and healthy samples were 
tested with a two-sided Wilcoxon Rank Sum test. BAL, Bronchoalveolar lavage. 
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Peri-Transplant 
Anelloviridae contig 
source 

Recipient 
Longitudinal Sample 
Type 

Cognate versus Unrelated Pair (p-
value) 

  Gini Index RPKM Fraction 
Coverage 

Donor Lung Recipient BAL <0.001 <0.001 <0.001 

Donor Lung Recipient Serum <0.001 <0.001 <0.001 

Donor Lung All Recipient Samples <0.001 <0.001 <0.001 

Recipient Initial Blood Recipient BAL <0.001 <0.001 <0.001 

Recipient Initial Blood Recipient Serum <0.001 <0.001 <0.001 

Recipient Initial Blood All Recipient Samples <0.001 <0.001 <0.001 

 
Supplemental Table 4.5: Transfer of Donor Lung and Recipient Serum Anelloviridae 

between Compartments and Persistence within Lung and Serum 
The relatedness of Anelloviridae reads in longitudinal BAL and serum samples to the 
Anelloviridae contigs present in the initial lung allograft (“Donor Lung”) or recipient serum 
at the time of transplant (“Recipient Initial Blood”) was determined by calculation of Gini 
Index, RPKM and overall coverage. These coverage metrics in longitudinal samples were 
compared for cognate versus unrelated pairs using the Wilcoxon Rank Sum Test. Reads 
from the donor BAL or post-reperfusion serum samples in which contigs were originally 
discovered were excluded from analysis. Donor Lung versus Recipient Serum reflects 
transfer from lung allograft to recipient serum, whereas Donor Lung versus Recipient BAL 
reflects persistence of initial lung Anelloviridae within that recipient’s lung compartment. 
Recipient Initial Blood versus Recipient BAL reflects migration of recipient serum 
Anelloviridae into the lung. Recipient Initial Blood versus Recipient Serum reflects 
persistence of Anelloviridae in longitudinal serum samples. BAL, bronchoalveolar lavage; 
RPKM, reads per kilobase per million sequenced. 
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Subject 
Donor Contig 

ID  
Gini index % Coverage 

11-03 398 NA 0 

11-21 130 NA NA 

11-21 143 NA NA 

11-21 144 NA NA 

12-02 1 0.922 11 

12-02 2 NA 0 

12-02 3 NA 0 

12-02 4 NA 0 

12-02 5 0.703 91 

12-09 1083 NA 0 

12-09 1084 NA 0 

12-09 1136 NA 0 

12-09 1341 0.489 73 

12-09 1415 0.957 5 

12-09 1779 0.327 86 

12-09 2352 NA 0 

12-09 998 NA 0 

13-17 103 NA 0 

13-17 132 NA 0 

13-17 146 NA 0 

13-17 30 NA 0 

13-17 31 NA 0 

13-17 32 NA 0 

13-17 33 NA 0 

13-17 34 NA 0 

13-17 35 NA 0 

13-17 41 NA 0 

13-17 42 NA 0 

13-17 52 NA 0 

13-17 54 NA 0 

13-17 57 NA 0 

13-17 60 NA 0 

13-17 61 NA 0 

13-17 62 NA 0 

13-17 63 NA 0 

13-17 64 NA 0 

13-17 65 NA 0 

13-17 68 NA 0 

13-17 70 NA 0 

13-17 71 NA 0 

13-17 73 NA 0 

13-17 74 NA 0 

13-17 86 NA 0 

13-17 93 NA 0 

13-17 97 0.913 9 

13-28 1007 NA 0 
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13-28 1048 0.912 9 

13-28 1118 NA 0 

13-28 1145 NA 0 

13-28 1149 NA 0 

13-28 1200 NA 0 

13-28 1224 NA 0 

13-28 1253 NA 0 

13-28 1263 NA 0 

13-28 1276 NA 0 

13-28 1329 NA 0 

13-28 144 0.953 32 

13-28 1468 NA 0 

13-28 357 0.974 4 

13-28 657 NA 0 

13-28 735 0.932 7 

13-28 758 0.973 4 

13-28 765 NA 0 

13-28 775 0.906 13 

13-28 938 NA 0 

13-28 949 NA 0 

13-28 965 NA 0 

13-28 971 0.611 78 

13-31 252 0.321 100 

13-31 303 NA 0 

13-31 391 0.215 100 

 
Supplemental Table 4.6: Coverage of Donor Lung Anelloviridae Contigs by Initial 

Recipient Serum Sequences 
Contigs were identified as Anelloviridae by nucleotide alignment to the NCBI viral database 
(E-value <10-5). Reads from recipient post-reperfusion serum samples were uniquely 
mapped to all 71 donor lung Anelloviridae contigs. The percentage of each genome covered 
by aligned reads and the evenness of coverage (Gini index) was determined. A Gini index of 
1 is highly uneven coverage, while 0 is more even coverage, suggesting greater similarity to 
the target genome. This allows identification of those contigs whose definitive detection 
post-transplantation might be confounded by baseline similarity between donor and 
recipient viruses. In some cases (NA), metrics were not able to be calculated due to lack of 
samples or contig sequences. 
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Subject 
Recipient Contig 

ID 
Gini index % Coverage 

11-03 11 NA 0 

11-03 12 NA 0 

11-03 15 NA 0 

11-03 16 NA 0 

11-03 20 NA 0 

11-03 21 0.939 7 

11-03 8 NA 0 

11-03 9 NA 0 

11-09 19 0.527 75 

11-15 19 NA 0 

11-15 22 0.581 67 

11-15 23 NA 0 

11-15 24 NA 0 

11-15 29 NA 0 

11-15 35 0.761 34 

11-15 41 NA 0 

11-15 42 NA 0 

11-15 43 0.830 24 

11-15 45 NA 0 

11-15 47 NA 0 

11-15 48 NA 0 

11-15 52 NA 0 

11-15 56 NA 0 

11-15 64 0.951 5 

11-15 65 NA 0 

11-15 71 NA 0 

11-15 91 NA 0 

11-15 92 NA 0 

11-15 93 NA 0 

11-27 5 NA 0 

11-27 7 0.775 26 

11-27 8 NA 0 

12-02 1 0.786 58 

12-02 3 NA 0 

12-02 4 NA 0 

12-02 5 NA 0 

12-12 3 NA 0 

12-12 4 0.981 2 

12-12 6 NA 0 

12-12 7 NA 0 

12-12 8 NA 0 

13-19 1 NA 0 

13-19 3 NA 0 

13-19 4 0.962 4 

13-19 5 NA 0 
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13-19 7 NA 0 

13-20 17 NA 0 

13-28 12 NA 0 

13-28 13 NA 0 

13-28 14 0.737 33 

13-28 16 NA 0 

13-28 7 0.567 89 

13-28 8 0.919 20 

13-28 9 0.906 19 

13-31 10 NA 0 

13-31 11 NA 0 

13-31 12 NA 0 

13-31 13 0.314 97 

13-31 14 NA 0 

13-31 15 NA 0 

13-31 16 NA 0 

13-31 17 NA 0 

13-31 19 NA 0 

13-31 20 NA 0 

13-31 5 NA 0 

13-31 6 0.338 95 

13-31 7 NA 0 

13-31 8 NA 0 

13-31 9 NA 0 

 
Supplemental Table 4.7: Coverage of Recipient Serum Anelloviridae Contigs by Donor 

Lung Sequences 
Contigs were identified as Anelloviridae by alignment to the NCBI viral database. Reads from 
donor BAL were uniquely mapped to all 69 recipient Anelloviridae contigs. The fraction of 
each genome covered by aligned reads and the evenness of coverage (Gini index) was 
determined. This allows identification of those contigs whose definitive detection post-
transplantation might be confounded by baseline similarity between donor and recipient 
viruses. BAL, bronchoalveolar lavage. 
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5.1 ABSTRACT 

This chapter introduces a new family of small, circular DNA viruses—named 

Redondoviridae—identified using metagenomic sequence-based methods. We first 

identified two redondovirus genomes by shotgun sequencing of viral particle preparations 

from bronchoalveolar (lung) lavage from human organ donors. We then queried 6,377 

metagenomic samples for Redondoviridae, recovering 17 additional complete genomes and 

detecting redondovirus sequences in 67 human samples, mostly from respiratory tract and 

oro-pharyngeal sites. Redondoviridae was the second most prevalent eukaryotic DNA virus 

family in oro-respiratory sites, after Anelloviridae. We quantified redondovirus genomes in 

samples from critically ill patients and found that they were abundant in some patients. 

Analysis of redondovirus sequences in metagenomic data sets revealed an association with 

periodontal disease. Thus we propose that redondoviruses are widespread human viruses 

colonizing oro-respiratory sites and blooming in several clinical conditions. 

5.2 INTRODUCTION 

Viruses are the most abundant biological entities on Earth, but global viral 

populations (the “virome”) are still mostly uncharacterized. Identifying novel viruses can be 

difficult if they have limited sequence homology to viral genomes in reference databases. 

Recent advances in sample preparation and sequencing techniques have uncovered a world 

of new viruses (Paez-Espino et al., 2016, Simmonds et al., 2017, Rosario and Breitbart, 2011, 

Minot et al., 2013, Minot et al., 2011). However the majority of reads in most studies remain 

unclassified (Aggarwala et al., 2017, Krishnamurthy and Wang, 2017), leaving our 

understanding of the virome incomplete. Here we describe the identification of a new 

human-specific viral family, its localization in oro-respiratory sites, and its association with 

disease states.  
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Metagenomic sample preparation often involves multiple displacement 

amplification (MDA) of virome DNA fractions with a highly processive, strand-displacing 

DNA polymerase. This process enriches for small, circular, single-stranded DNA (ssDNA) 

molecules and has facilitated the discovery of viruses with such genomes (Rosario et al., 

2012, Labonté and Suttle, 2013, Krupovic et al., 2016). Many of these ssDNA viruses encode 

a replication initiation protein (Rep)—thus this group is collectively known as circular Rep-

encoding single-stranded DNA (CRESS) viruses (Rosario et al., 2012). The genome 

architecture and functional domains of major viral proteins of CRESS viruses are conserved, 

though pairwise nucleotide identities between viral families are often low. A well-studied 

group of animal CRESS viruses is the Circovirus genus within the Circoviridae family, which 

includes pathogenic viruses of swine and birds (Ellis, 2014, Todd, 2000). The Circoviridae 

family also contains the genus Cyclovirus, which consists of viruses identified by 

metagenomic sequencing in samples from several mammalian species (Breitbart et al., 

2017, Li et al., 2010), including some sporadically identified in human disease states (Phan 

et al., 2014, Smits et al., 2014). The recently identified Smacoviridae family has been 

detected in mammalian feces, though the definitive hosts are unknown (Varsani and 

Krupovic, 2018). Other CRESS families include plant pathogens Geminiviridae and 

Nanoviridae (Harrison et al., 1977, Fauquet et al., 2005), Genomoviridae which infect fungi 

(Krupovic et al., 2016, Varsani and Krupovic, 2017), and many additional apparent viral 

genomes with unknown hosts and limited resemblance to established taxa (Simmonds et al., 

2017).  

We and others have previously investigated the human respiratory tract virome in 

health and disease. Typically anelloviruses, herpesviruses and bacteriophages dominate 

human respiratory tract samples (Willner et al., 2009, Abeles et al., 2015, Wylie et al., 2012, 

Pérez-Brocal and Moya, 2018, Young et al., 2015, Abbas et al., 2017, Abbas et al., 2018, 
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Clarke et al., 2017a). Recently, we identified short sequence reads with limited homology to 

a swine-associated CRESS virus (Cheung et al., 2014) in bronchoalveolar lavage (BAL) of 

organ donors  (Abbas et al., 2018, Abbas et al., 2017), raising the possibility that we had 

detected a new human CRESS virus. However, the nature, origin, distribution, and clinical 

significance of these sequences were unclear from these initial studies.  

Following up on this lead, we ultimately identified a widespread group of highly 

divergent CRESS viruses in human respiratory and oral samples. After our initial detection 

of weak resemblance to the porcine CRESS virus in two BAL samples, we assembled reads 

into two complete genomes, which were verified by PCR amplification and Sanger 

sequencing. Using these genomes as alignment targets, we found homologous sequences in 

67 human samples. From these we recovered 17 additional complete genomes, mainly from 

lung and oropharynx. These CRESS genomes are sufficiently different from previously 

described taxa that we propose that they are members of a new family, which we name 

Redondoviridae (redondo—Spanish for “round”) containing the new genera Vientovirus and 

Brisavirus (from the Spanish words for “wind” and “breeze”, alluding to their discovery in 

the respiratory tract). A recently described genome identified in upper respiratory 

secretions of a febrile individual (Cui et al., 2017) is homologous to these new sequences 

and is likely also a redondovirus. We validated that redondovirus sequences were 

authentically present in the original clinical samples and not found in contamination 

controls. Analysis of the distribution of redondoviruses showed that they were the second 

most prevalent virus in respiratory samples, after anelloviruses. Finally, using metagenomic 

alignments and targeted quantitative PCR (qPCR) assays to query human samples, we 

identified an association of Redondoviridae with periodontal disease and acute critical 

illness. 
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5.3 RESULTS 

Initial Discovery of Redondoviruses in Human Bronchoalveolar Lavage Fluid 
In two previous studies of lung transplant recipients (Abbas et al., 2017, Abbas et al., 

2018), samples of BAL were enriched for viral particles, then RNA and DNA was purified 

and subjected to metagenomic sequencing and analysis. DNA fractions were amplified using 

MDA. Alignment of reads from two organ donor BAL samples to the NCBI viral genome 

database showed modest (14%) coverage of Porcine stool-associated circular virus 5 

(PoSCV-5) isolate CP3 (GenBank: NC_023878) (Figure 5.1). PoSCV-5 is currently an 

unclassified and unstudied member of the Circoviridae family.  

After assembling reads from these samples into contigs, we found that sequences 

matching PoSCV-5 were incorporated into circular contigs of approximately 3000 base 

pairs (bp). Thus, whole viral genomes were present in the initial BAL samples, but only a 

small region of these genomes resembled PoSCV-5. Several sets of nested primers 

(Supplemental Table 5.1 and Supplemental Figure 5.1) were used to amplify overlapping 

fragments from the original BAL samples. These fragments were sequenced using the 

Sanger method and assembled to construct two circular genomes of 3,026 bp (Human lung-

associated brisavirus RC; accession MK059757) and 3,056 bp (Human lung-associated 

vientovirus FB; accession MK059763) (Figure S1). 

Contigs assembled from shotgun metagenomic reads of other BAL samples 

processed by our group were then queried for DNA sequence similarity to the two novel 

genomes. In total, seven complete Redondoviridae genomes were discovered and cloned 

from independent BAL samples from organ donors and patients with sarcoidosis 

(Supplemental Figure 5.1). The full set of new genomes was then used as alignment targets 

to interrogate publicly available datasets. A total of 12 more samples had sufficient coverage 

of redondovirus sequences to allow assembly, yielding 19 complete genomes (Figure 5.1A, 

Supplemental Table 5.2). 
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  A danger is that small circular viruses may be derived from environmental 

contamination in clinical or laboratory reagents (Naccache et al., 2013, Salter et al., 2014). 

We queried 144 contamination controls from seven studies analyzed by shotgun 

metagenomics, and found no evidence for redondovirus genomes. This included 24 

bronchoscope prewash controls, which consist of sterile saline solution passed through 

bronchoscopes before insertion into a patient; prewashes were also subjected to MDA prior 

to shotgun metagenomic sequencing (Clarke et al., 2017a).  

We next used a qPCR assay targeting redondovirus genomes to further test the 24 

bronchoscope prewashes and two additional DNA extraction controls subjected to MDA. All 

were negative by qPCR analysis. As positive controls, we detected robust qPCR signals in 

MDA-amplified DNA extracted from the original acellular BAL samples from which these 

genomes were cloned (Supplemental Figure 5.1C). 

As a further check on our interpretation of the putative human origin of 

Redondoviridae, we investigated whether they could be bacteriophages. The presence of 

prokaryotic ribosomal binding sites (RBS) upstream of viral open reading frames (ORFs) 

can provide evidence for a prokaryotic host. We implemented the algorithm described in 

Krishnamurthy and Wang, 2018 and identified no prokaryotic RBS proximal to any 

redondovirus protein coding sequence. These data support the ideas that redondovirus 

sequences were not derived from environmental contamination and are not bacteriophages. 

Redondovirus Genomes Contain Conserved Features of CRESS Viruses and a Novel 
ORF 

The redondovirus genome is larger than Circovirus genomes (3.0 kb versus 1.7-2.0 

kb; Table 5.1) and contains two ambisense ORFs encoding a 334-363 amino acid Rep and a 

449-531 amino acid capsid (Figure 5.1B). These proteins are only 10-15% identical to those 

of porcine circoviruses 1 and 2, and 40-55% for PoSCV-5. All redondovirus genomes also 

contain a third ORF overlapping the capsid gene (Cp). ORF3 is not found in porcine 
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circoviruses or in PoSCV-5 and has no homology to any described protein sequence or 

family. PoSCV-5 is the most closely related known virus, but it is sufficiently divergent in 

genome architecture and protein identity that we do not consider it a member of the 

Redondoviridae family. 

Redondoviruses display considerable sequence divergence when comparing their 

capsid and Rep proteins. The range of pairwise amino acid identities of capsid is 67.5-99.6% 

(median 82.3%) while the range of Rep amino acid identity is 36.6-99.7% (median 54%) 

(Figure 5.1B). Surprisingly, Cp is more highly conserved than Rep. One might have expected 

that the capsid protein, which is presumably recognized by host antibodies, would be under 

stronger diversifying (positive) selection. Part of Cp overlaps ORF3, and so could be 

constrained in sequence drift for that reason, but even in the non-overlapping carboxy-

terminal coding region (Figure 5.1B), the variability is still lower than in Rep. 

To clarify the phylogenetic relationships between viral proteins within the 

Redondoviridae family and compare to those from other CRESS virus families, we built 

maximum-likelihood phylogenetic trees of Rep and Cp protein sequences. Redondoviruses 

are more similar to each other than to other CRESS families by protein identity and genome 

organization (Figure 5.2, Table 5.1). The capsid and Rep protein phylogenies show different 

relationships between the isolates, suggesting that recombination is common in 

redondoviruses, as in other circular ssDNA viruses (Ma et al., 2007, Lefeuvre et al., 2009, 

Fahsbender et al., 2017, Leppik et al., 2007). Based on the definitions in Varsani and 

Krupovic, 2018 and analysis of the diversity of viral Rep proteins, redondovirus genomes 

can be grouped in two genera, demarcated by 50% Rep protein identity, which we propose 

be called Vientovirus and Brisavirus (Supplemental Table 5.2). 

The redondovirus Rep protein (Figure 5.3B) contains two domains found in many 

small DNA and RNA viruses: one involved in rolling-circle replication (Pfam: PF00799) and 
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a second helicase domain within the P-loop NTPase superfamily (Pfam: PF00910). Multiple 

sequence alignments revealed conserved motifs (Ilyina and Koonin, 1992, Gorbalenya et al., 

1990) characteristic of these domains.  

Redondovirus capsids, like those of other ssDNA viruses, contain a basic amino-

terminus. Protein modeling by PHYRE2 (Kelley et al., 2015) weakly predicted (58% 

confidence over 7% of sequence) that it contains folds similar to coat proteins of ssRNA 

viruses that infect plants (Figure 5.3C).  

By analyzing the synonymous to non-synonymous mutation ratio (dN/dS), we 

identified four clusters of sites potentially under positive selection in the carboxy-terminal 

portion of capsid that does not overlap with ORF3 (Figure 5.3C). We also identified two sites 

of possible diversifying selection in Rep (Figure 5.3B), suggesting a possible response to 

innate immune pressure. It should be noted that dN/dS as a marker of selective pressure is 

untested in CRESS viruses and may be confounded by overlap of unidentified coding 

sequence and/or functionally important DNA secondary structure elements (Zanini and 

Neher, 2013, Muhire et al., 2014).  

Circovirus genomes typically contain a conserved motif (“NANTATTAC”) within a 

stem-loop structure followed by short direct repeats, located in the intergenic region at the 

5’ end of Cp and Rep. Such sequences are candidates for the origin of replication (Mankertz 

et al., 1997) where the viral-encoded Rep binds and cleaves, mediating replication by host 

polymerases. Such stem-loops are found in other CRESS virus families. In the one previous 

report of a single redondovirus genome (Cui et al., 2017), the authors suggested a hairpin in 

the large intergenic region as the origin of replication. However, analysis of all 20 genomes 

showed that a conserved, stable stem loop structure is predicted to form in the smaller 

intergenic region, partially overlapping Rep. Although the length of the stem, size of the 

loops, and presence of downstream direct repeats vary, most redondovirus genomes 
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contain a nonanucleotide motif (“TATTATTAT”) (Figure 5.1B) similar but not identical to 

that of other CRESS viruses. This structure is highly conserved among redondoviruses 

(Figure 5.3A), while the sequence of the alternative intergenic hairpin is not, suggesting that 

this is a more likely candidate for the replication origin. 

Redondovirus Genomes Identified in Shotgun Metagenomic Data 

To investigate these divergent sequences further and determine their distribution in 

the biosphere, we surveyed our own and publicly available metagenomic datasets for 

homology to redondoviruses (Supplemental Table 5.3 presents the datasets queried). 

Studies were favored for analysis if they 1) biochemically enriched for viral nucleic acids, 2) 

used MDA, which enriches for small circular viral genomes (Kim and Bae, 2011, Kim et al., 

2008), 3) reported detection of Circovirus-like sequences, and/or 4) included a diverse 

range of sample types. In total, we queried 6,377 samples from 97 datasets covering 30 

organisms or environments. Within human metagenomes, 18 body sites or fluids were 

examined. A positive hit was defined as 25% coverage of any redondovirus genome. 

Redondoviruses were detected in metagenomic sequences from human oral cavity (3.8% of 

datasets), lung (3.3%), nasopharyngeal (0.95%), and gut (0.59%). The most frequent sites 

of detection were the mouth and respiratory tract (Figure 5.4A). Redondovirus sequences 

were rare in other human body sites, and not found in other animals, freshwater, marine, or 

soil samples, nor in laboratory reagents. We thus conclude that redondoviruses are CRESS 

viruses that are authentically present in the human oro-respiratory tract; whether 

infrequent detection in gut samples reflects an authentic site of replication or transient 

passage after swallowing is uncertain. 

Redondovirus Co-occurrence with Human DNA Viruses 

Adeno-associated virus, a ssDNA virus of the Parvoviridae family that encodes 

capsid and Rep proteins, is known to require coinfection with a helper virus such as 
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adenovirus to replicate, leading us to ask whether redondoviruses co-occurred with any 

other eukaryotic viral family. We analyzed a subset (20) of the 97 datasets we previously 

screened for redondoviruses for the presence of common human DNA virus families 

(Adenoviridae, Anelloviridae, Herpesviridae, Papillomaviridae, Parvoviridae and 

Polyomaviridae) from eight human body sites. Redondoviridae was the second-most 

frequent human DNA virus family detected, exceeded only by Anelloviridae, which are 

known to be ubiquitous in humans (Spandole et al., 2015). Figure 5.4C shows the 

representation of additional human DNA viruses that co-occurred with redondoviruses in 

metagenomic datasets. Only anelloviruses were found to co-occur significantly with 

redondoviruses (Figure 5.4C, p=5.7x10-7, Fisher’s Exact Test with Bonferroni correction). 

Anelloviruses are small ssDNA viruses that seem unlikely to contribute helper functions to 

redondovirus replication. We speculate that the inflammatory milieu known to favor 

anellovirus replication (Maggi et al., 2001, Mariscal et al., 2002) may be similarly favorable 

for redondoviruses. Alternatively, given the ubiquitous nature of anelloviruses in humans, 

this association may reflect the fact that MDA enriches for both anelloviruses and 

redondoviruses, resulting in their co-detection. Rarely, other human viruses were found in 

redondovirus positive samples; these included Human mastadenovirus C and Epstein-Barr 

virus. 

Redondoviruses in the Respiratory Tract are Elevated in Abundance in Critical Illness 

Several sample sets were further queried using metagenomic analysis and qPCR to 

assess redondovirus abundance in the respiratory tract. We investigated 916 selected oro-

respiratory samples using metagenomic analysis of datasets described above, reflecting a 

mixture of health and disease states, and found that redondoviruses were still the second-

most frequent DNA virus detected, after anelloviruses (Supplemental Figure 5.3). 
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To investigate the presence of redondovirus in healthy subjects further, we tested 

DNA isolated from oropharyngeal swabs from 60 adults using qPCR (Charlson et al., 2010). 

DNA was subjected to selective whole genome amplification (SWGA) (Clarke et al., 2017b) 

to enrich for redondovirus sequences over the human genome background, followed by 

redondovirus qPCR. Nine of 60 healthy subjects were positive (15%), although quantities 

even following SWGA amplification showed generally modest levels (Figure 5.5A).  

We then tested samples from 67 critically ill individuals using SWGA and qPCR 

(Figure 5.5A and B). Six (9%) had oropharyngeal samples positive for redondovirus. Post-

SWGA quantities were, on average, 104-fold greater than in healthy subjects, although the 

use of SWGA prohibits comparison of absolute quantities between groups. Four critically ill 

subjects also had lung secretions (endotracheal aspirates) available for testing; three were 

positive for redondovirus. In subjects with serial samples, redondovirus was generally 

detectable over a period of 2-3 weeks, suggesting persistent colonization or infection. We 

conclude that redondoviruses are found in both healthy and critically ill individuals, but 

levels are elevated in illness. Furthermore, the upper and lower respiratory tracts appear to 

represent common niches with stable redondovirus detection over time. 

Redondovirus Sequence Reads are Associated with Periodontitis 

The set of 97 metagenomic studies assessed for redondovirus sequences 

(Supplemental Table 5.3) contained samples from several disease states, allowing us to 

assess possible associations of redondoviruses with human disorders. In addition to our 

initial detections in BAL from organ donors and lung transplant recipients (Abbas et al., 

2017, Abbas et al., 2018), redondoviruses were found in 1) BAL from subjects with 

sarcoidosis, 2) healthy controls (Clarke et al., 2017a), 3) gingival samples from subjects with 

periodontitis (Wang et al., 2013, Shi et al., 2015, Califf et al., 2017), 4) oropharyngeal and 

nasopharyngeal samples from febrile subjects (Mokili et al., 2013, Wang et al., 2016), 5) oral 
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samples from subjects with rheumatoid arthritis (Zhang et al., 2015), 6) stool samples from 

healthy individuals, 7) stool samples from subjects with inflammatory bowel disease 

(Norman et al., 2015) and 8) stool samples from subjects with HIV-associated 

immunodeficiency (Monaco et al., 2016) (Figure 5.4B). 

A considerable proportion of redondovirus-positive samples were from studies of 

periodontal disease (Figure 5.4B), so we analyzed redondoviruses in periodontitis further. 

Three studies queried gingival or oral samples from subjects suffering or recovered from 

periodontitis. One study queried samples before and after corrective treatment by scaling 

and root planing together with improved oral hygiene (Shi et al., 2015). Redondovirus 

representation was high prior to treatment, and then fell substantially after treatment, as 

measured by the number of reads aligning to the most broadly covered redondovirus 

genome in each sample (Figure 5.5C). We averaged redondovirus reads across all individual 

tooth sites sampled for each subject and found lower redondovirus prevalence after 

recovery (Figure 5.5C, p=0.014, Wilcoxon signed-rank test). The second study compared 

disease severity in two groups of subjects with chronic periodontitis; one group received 

treatment with 0.25% sodium hypochlorite rinse, while the other received a water rinse 

(Califf et al., 2017). We compared redondovirus representation in sub and supra-gingival 

sites from subjects whose periodontitis did or did not improve, and found that subjects that 

did not show improvement had greater number of reads mapping to redondovirus genomes 

(Figure 5.5D, p=0.028, Wilcoxon rank-sum test). A third study analyzed two patients with 

severe periodontal disease, before and after treatment; both subjects were positive for 

redondovirus prior to treatment but no detections were found in samples taken after 

successful treatment (Kumar et al., 2018). Thus we conclude that redondoviruses are 

associated with periodontitis in multiple studies, and that levels are reduced with effective 

treatment. 
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5.4 DISCUSSION 

In this study, we introduce Redondoviridae, a family of small, circular DNA viruses 

that appears to be restricted to humans and selectively found in lung and oro-pharyngeal 

sites. Our first detection of redondovirus genomes resulted from aligning metagenomic 

sequences from lungs of two organ donors to a viral genome database, resulting in weak 

hits to PoSCV-5. Assembly of shotgun metagenomic reads yielded complete circular 

genomes, which were then used to interrogate our collection of lung virome samples, 

allowing us to identify seven genomes. We used these genomes to interrogate 6,377 

metagenomic samples encompassing multiple environmental sites, hosts, body sites, and 

disease states, detecting redondoviruses in 67 human samples and building 12 additional 

genomes. Independently, another group reported a single genome (Cui et al., 2017) most 

closely related to Human oral-associated brisavirus YH (accession MK059758), in the throat 

of a febrile patient. Of the DNA viruses we surveyed in 20 human virome datasets, 

redondoviruses were the second most abundant, exceeded only by anelloviruses, 

recognizing that the methods used in virome sequencing are designed to sample viral 

particles, indicating replicating rather than latent viruses. The prevalence of 

redondoviruses was similar in cohorts of healthy subjects and critically ill subjects, although 

higher post-SWGA genome quantities imply higher absolute levels in the ill subjects. 

Analysis of metagenomic samples revealed an association of redondoviruses with 

periodontal disease.  

Previous studies have tentatively implicated viruses in periodontitis based on 

alterations of subgingival bacteriophage communities  (Ly et al., 2014) and increased 

representation of some eukaryotic viruses including HIV, HCMV and HSV-1(Cappuyns et al., 

2005, Li et al., 2017). It is possible that redondovirus infection and replication may help 

maintain the inflammatory state associated with periodontitis and contribute to disease 
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progression. A role in disease initiation seems less likely given the established roles of 

bacteria and oral hygiene (Edlund et al., 2015, Costalonga and Herzberg, 2014). The role of 

redondoviruses in periodontitis warrants further study. Similarly, what role 

redondoviruses play in diseases of the respiratory tract are unknown but can now be 

investigated.  

Do redondoviruses require helper viruses to replicate? The Dependoparvoviruses, 

such as adeno-associated virus, are small, linear ssDNA viruses that require co-infection 

with larger DNA viruses to condition cells for efficient replication. Samples containing 

redondoviruses were scanned for other DNA viruses, but no large double stranded DNA 

viruses were consistently identified. Anelloviruses, small ssDNA viruses, did co-occur. While 

we do not rule out that anelloviruses support redondovirus replication, it seems more likely 

that the inflammatory states known to promote anellovirus replication may do the same for 

redondoviruses, or alternatively, that the methods for virome sampling preferentially 

recover both redondoviruses and anelloviruses.  

The high level of sequence variation in redondovirus Rep proteins is intriguing. 

Viruses encoding Reps are ubiquitous in both prokaryotes and eukaryotes. There are even 

transposon families that mobilize via ssDNA intermediates using Rep-like enzymes 

(Grabundzija et al., 2016). Cells have likely been opposing parasitism by Rep-encoding 

elements since the origins of cellular life. We conjecture that Rep amino acid variation 

reflects an ongoing Red Queen’s Race between host intrinsic immunity and Rep enzymes. If 

so, there should be active host cell mechanisms targeting and inhibiting Rep proteins. The 

redondovirus Rep enzymes reported here provide an entry point to investigating this 

possibility. 
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FIGURE 5.1:  DISCOVER Y OF REDONDOVIRUS GENOMES IN METAGENOMIC  
SAMPLES  
A-Several hundred shotgun metagenomic reads from two organ donor BAL virome samples 
were identified as having limited homology to Porcine stool-associated circular virus 5 
(PoSCV-5). Reads from these samples were assembled into two contigs, which were then 
cloned from multiple displacement amplified sample DNA using target specific primers and 
Sanger sequenced. The complete circular genomes were used to query additional internal 
and public microbial metagenomic datasets. Target-specific amplification, sequencing and 
genome assembly was repeated for additional samples with sequences homologous to these 
novel genomes if the original DNA was available. In cases where original samples were not 
available, metagenomic contigs were checked for circularity and completeness. A total of 19 
complete genomes were recovered from 67 human samples (bottom). See also 
Supplemental Figure 5.1. 
B-The genomic architecture of redondoviruses shows ambisense open-reading frames 
(ORFs) encoding a conserved capsid, Replication associated protein (Rep) and unknown 
protein (ORF3). The average nucleotide identity of 20 Redondoviridae members (19 
genomes discovered here and one genome previously reported (Cui et al., 2017) is shown 
on the inside of the genome map as a heatmap. A putative origin of replication stem-loop 
structure with a conserved nonanucleotide motif is predicted to form in the 5’ end of the 
Rep coding region. The height of the letter in the motif represents its frequency. 

3,062
0

25

50

75

100

C
o
v
e

ra
g

e
 D

e
p

th

Cp Rep

>contig_1
GAGGCTATAGCCTAT
>contig_2
AGCTTATTACCTAAC

Porcine stool-associated circular virus 5 genome

Metagenomic sequencing of

lung transplant virome

Initial detection in

bronchoalveolar lavage

from 2 lung donors

De-novo

assembly of 2

redondovirus

genomes

Seach 6,377

samples from 97

metagenomic datasets

Detect sequences

in 67 human samples

and assemble 19

genomes

Rep Cp

ORF3

A

Open rea ding

frames

Redondoviridae
3026-3056 bp

Nucleotide identity

across 20 genomes

Rep

Cp

ORF3

1.0

0.4

0.7

B



131 
 

 

 
 
FIGURE5.2 REDONDOVIR IDAE IS  A DISTINCT VIRUS FAMILY BASED ON CAPSID 

AND REP IDENTITIES 
Phylogenetic trees of redondovirus Rep (A) and capsid (B) proteins from CRESS DNA 
viruses. Collapsed viral genera or families are indicated by grey triangles. Branch likelihood, 
determined by approximate likelihood ratio test, is shown by colored circles at each node 
and the scale shows amino acid substitutions per site. The sample type of origin for each 
redondovirus is shown as colored boxes next to each virus' name, which is colored to reflect 
genus designation. See also Supplemental Table 5.2. 
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FIGURE 5.3:  REDONDOVIRUS GENOMES  CONTAIN CONSERVED M OTIFS 
IMPLICATED IN ROLLIN G-CIRCLE REPLICATION  

A-The sequence and predicted structure of the putative replication origin of Human lung-
associated brisavirus AA is shown in the top left. The inverted repeat forming the stem is 
shown in orange, the nonanucleotide motif within the loop is shown in green, and an 
imperfect six bp direct repeat sequence is shown in purple. Individual predicted stem loop 
sequences (threshold for stability: ΔG°<-5 kcal/mol) are shown to the right of the folded 
sequence. The calculated ΔG° of melting for the predicted stem-loops ranges from -5.0 to -
9.45 kcal/mol.  
B-Conserved rolling circle replication and superfamily 3 (SF3) helicase motifs were found in 
redondoviruses. The positions for the motifs are given using the Human lung-associated 
brisavirus AA genome sequence (Accession MK059754). The height of each letter 
represents its frequency. Single amino acid positions predicted to be under positive 
selection pressure are marked by a red star.  
C-The putative redondovirus capsid protein contains a basic amino-terminus and a 
predicted virus coat protein-like fold. The positions for the motifs correspond to Human 
lung-associated brisavirus AA, as above. Amino acid positions predicted to be under 
positive selection pressure are marked by a red star. 
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FIGURE 5.4:  FREQUENCY O F REDONDOVIRUS  DETECTION AND CO-OCCURRENCE 
WITH HUMAN DNA VIRUS ES 

A-Reads from 97 metagenomic datasets encompassing different human and non-human 
sample types were aligned to redondovirus genomes. A positive hit was determined based 
on 25% coverage of any redondovirus genome by short-read alignment. The percentage of 
samples that were positive is plotted on the y-axis and human body sites and other sample 
types are shown on the x-axis. The total number of samples analyzed in each category is 
annotated above and the total number of positive samples is indicated within the bar.  
B-The clinical status breakdown, if available, of redondovirus-positive samples is shown. 
C-Reads from a subset of 20 datasets across nine body sites were analyzed for homology to 
20 redondovirus genomes and 133 animal-cell DNA viruses from six viral families. The 
height of each column represents the total number of samples that had detections of single 
or multiple viral families (rows). The viral families included in the co-detections are 
depicted as filled dots connected with lines below. The size of the bars on the left represents 
the total number of samples in which that viral family was detected. Cases where 
redondoviruses were detected are indicated in blue. See also Supplemental Figure 5.2 and 
5.3. IBD, inflammatory bowel disease 
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FIGURE 5.5:  REDONDOVIRUSES  IN THE ORO-RESPIRATORY TRACT IN HUMANS 

WITH CRITICAL ILLNES S AND PERIODONTITIS  
A-Quantification of redondovirus genome sequences in post-SWGA DNA from 
oropharyngeal swabs (oropharynx) from 60 healthy volunteers, and oropharyngeal swabs 
and endotracheal aspirates (lung secretions) from 67 critically ill subjects. The average 
cycle of threshold (Ct) value of replicates is plotted on the y-axis. Samples with 
undetermined (i.e: no amplification) value in all 3 replicates are assigned an arbitrary value 
above the Ct value of the limit of resolution of the assay (37) which corresponds to 11 target 
copies per reaction. Samples below this value are counted as authentic detections. Negative 
controls included extraction blanks, reagent blanks and no template controls. Positive 
controls represent replicates of 104 copies of Human lung-associated brisavirus RC spiked 
into DNA extracted from a redondovirus-negative lung sample, subjected to SWGA, and 
assayed by qPCR. 
B-qPCR was used for redondovirus detection in respiratory and/or stool samples from 67 
subjects in the medical intensive care unit (ICU). Six total subjects were positive for 
redondoviruses. The time point and type of sample surveyed for these six subjects is shown 
on the x- and y-axis, respectively. Positive samples are indicated by a filled-circle and 
negative samples by an open circle. 
C-Number of reads mapping to a redondovirus in periodontitis samples from (Shi et al., 
2015). Each point represents the average of all samples from a particular individual either 
before treatment (red) or after disease resolution (blue). Points from the same subject are 
connected by grey lines. The horizontal black line indicates the median. The Wilcoxon 
signed-rank test was used to test for paired differences between groups. 
D-Each point represents the number of reads mapping to a redondovirus in samples from 
(Califf et al., 2017) from subjects with periodontitis whose disease either did (blue) or did 
not (red) improve during the study. The horizontal black line indicates the median. The 
Wilcoxon rank-sum test was used to test for differences between groups. 
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Feature Redondoviridae Circoviridae Nanoviridae Geminiviridae Genomoviridae Smacoviridae 

Size (kb) 3.0-3.1 1.7-2.0 
1.0 * 6 

segments 
2.5-3.0 2.1-2.2 2.6-2.9 

ORFs Cp, Rep, ORF3 
Cp, Rep, 
ORF3/4 

Cp, Rep, 
others 

Cp, Rep, 
others 

Cp, Rep Cp, Rep 

ORF 
orientatio
n 

Ambisense Ambisense Segmented 
Ambisense (or 
segmented) 

Ambisense Ambisense 

Origin 
sequence 

TATTATTAT 
TAGTATTA
C 

TATTATTAC TAATATTAC TAATATTAT NAGTATTAC 

Origin 
location 

Noncoding 

(upstream) / in 
Rep 

Noncoding 

(upstream) / 
in Rep 

Noncoding 
(upstream) 

Noncoding 
(upstream) 

Noncoding 
(upstream) 

Noncoding 
(downstream) 

 

Table 5.1: Comparison of Genomic Features between Redondoviridae and Other 
CRESS-DNA Viruses 
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SUPPLEMENTAL FIGURE 5.1:  PCR AMPLIFICATI ON AND DETECTION OF 

REDONDOVIRUS GENOMES ,  RELATED TO FIGURE 5.1  
A-PCR amplicons of the expected size were observed from whole-genome amplified DNA 
from the BAL sample where Human lung-associated brisavirus RC was discovered. The 
outward facing primer set (blue) yielded a 600 bp product which was sequenced by the 
Sanger method and used to complete genome assembly. 
B-Examples of approximately 3,000 bp products of two different outward facing sets of 
primers are shown. These represent, from left to right, the complete genomes of Human 
lung-associated vientovirus FB and Human lung-associated brisavirus MD, AA and II. DNA 
species visualized with ethidium bromide on a 1% agarose gel are shown. 
C-qPCR, performed in triplicate, was used to detect redondovirus sequences in acellular 
human bronchoalveolar lavage (BAL) samples after multiple displacement amplification. 
The average Ct value of replicates with any detection of redondoviruses is plotted on the y-
axis. Samples with undetermined (i.e: no amplification signal) values in all three replicates 
are plotted at an arbitrarily high value of 35. The cycle of threshold value of the limit of 
quantification of the assay was 31, corresponding to 75 target copies per reaction. Samples 
falling below this value were counted as authentic detections. Sample types surveyed 
included BAL from organ donors, lung transplant recipients, and individuals with various 
lung diseases. BAL prewash samples represent the saline solution passed through the 
bronchoscope before insertion into patient. The BAL prewash point near the limit of 
detection represents a single replicate, with the other two replicates yielding values below 
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the limit of detection. Extraction controls represent sterile water processed through DNA 
extraction kits. NTC; no template control 
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SUPPLEMENTAL FIGURE 5.2:  SUMMARY OF READ  ALIGNMENTS TO NOVEL  AND 
KNOWN HUMAN DNA VIRUSES,  RELATED TO FIGURE 5.4 

Reads from 2,675 human samples were aligned to 20 Redondovirus genomes and 133 
human DNA viral genomes from six families from the NCBI RefSeq database. The log10 
number of mapped reads (x-axis) and the fraction of target genome covered (y-axis) for 
each sample are plotted. Sample types are colored based on human body site or control. 
Each panel represents detection of a separate viral family. The dotted line represents the 
empirically determined threshold, based on examining depth and breadth of aligning reads 
across viral genomes, for calling a positive detection of a given viral family. 
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SUPPLEMENTAL FIGURE 5.3:  PREVALENCE OF HUMAN DNA VIRUS FAMILIES IN 
LUNG SAMPLES,  RELATE D TO FIGURE 5.4  

Reads from 13 metagenomic datasets encompassing 916 oro-respiratory sample types 
(lung, oral, or nasopharyngeal) were aligned to 20 redondovirus genomes and 133 animal-
cell DNA viruses from six viral families. A positive hit was determined as described 
previously. The height of each column represents the total number of samples that had 
detections of single or multiple viral families (rows). The viral families included in the co-
detections are depicted as filled dots connected with lines below. The size of the bars on the 
left represents the total number of samples in which that viral family was detected. Cases 
where redondoviruses were detected are indicated in blue. 
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Identifier Sequence (5'-3') Description 

LJT-011 CCTTTGGTCTCGAAATCTTCCTATACTGG 
Redondovirus whole genome amplification F, set 
A (3bp overlap with LJT-035) 

LJT-035 AGGCCTCTCTCCCTTCCATTTGG 
Redondovirus whole genome amplification R, set 
A (3bp overlap with LJT-011) 

LJT-036 GGTTATCGTTCATTTGATCATGCATTAGTACC 
Redondovirus whole genome amplification F, set 
B (3bp overlap with LJT-037) 

LJT-037 ACCAAGATGTTTAAGCCCTTTAGTTAATGTTTC 
Redondovirus whole genome amplification R, set 

B (3bp overlap with LJT-036) 

LJT-001 TTCACTTAAATGGTTTGATGGCTACTGCG Redondovirus Sanger sequencing primer 

LJT-002 CCAACTGGAGTAACTTTACTACAAACCATAGAAG Redondovirus Sanger sequencing primer 

LJT-003 GACTTGCTTCTATGGTTTGTAGTAAAGTTACTCC Redondovirus Sanger sequencing primer 

LJT-004 GTGACGCATAAATTTGCATTTTTTGACCGC Redondovirus Sanger sequencing primer 

LJT-005 GGCTATAATCCCATACTTACGCCGG Redondovirus Sanger sequencing primer 

LJT-006 CGTAGATCATCAAGTACTGCTATTTCTTGGC Redondovirus Sanger sequencing primer 

LJT-007 GATGAAACTGCTCTATTCCTTGGATGCC Redondovirus Sanger sequencing primer 

LJT-008 GACTTGCTTCTATGGTTTGTAGTAAAGTTACTCC Redondovirus Sanger sequencing primer 

LJT-009 
GGAAATTTTTAACATCATTCTCAGGAAGATGGTAA

CC 
Redondovirus Sanger sequencing primer 

LJT-010 
ATTTATGCGTCACTTTATTCCAAATTTAAATATGTT

GG 
Redondovirus Sanger sequencing primer 

LJT-012 CTACTCCAGAGCAAGCTTTCAAGTGG Redondovirus Sanger sequencing primer 

LJT-013 TTAAGAATTCCTCTTCTGGTAGCCCTAGG Redondovirus Sanger sequencing primer 

LJT-014 AGGCGAAGGGAAGACAAAAACAGC Redondovirus Sanger sequencing primer 

LJT-015 CGAGCTCATCCAGTAGCTGTTATCG Redondovirus Sanger sequencing primer 

LJT-016 GTTGATAAACCAGTAACACCTGTTTCTGAAGG Redondovirus Sanger sequencing primer 

LJT-017 AAGCGTCTCGTTAATTGTACTTGCTTATCC Redondovirus Sanger sequencing primer 

LJT-018 ATAATCCGTGCAGAGAAATTGAGAAACATATTCC Redondovirus Sanger sequencing primer 

LJT-019 GATCAATTTCTTTTGGTATTTGTCAGCGGG Redondovirus Sanger sequencing primer 

LJT-020 CTTTCCAATGGGTGAACAAGGAAGG Redondovirus Sanger sequencing primer 

LJT-021 CGAAGAGCTAGAGGATCCCCGGGTACC 
SapI/NruI addition for virus cloning into pUC18 F 
(*comp Tm: 57.7, overall Tm 64.7) 

LJT-022 CGAAGAGCGAGTCGACCTGCAGGCATG 
SapI/NruI addition for virus cloning into pUC18 R 
(*comp Tm: 58.5, overall Tm 66.2) 

LJT-046 
GTCGACTCAAAAGCTCTTCGCCTTTGGTCTCGAA
ATCTTCCTATACTGG 

Gibson assembly primers for amplifying vector, 
Set A-R (complements LJT-011) 

LJT-047 
GGGGATCCTCTAGCTCTTCGAGGCCTCTCTCCCT

TCCATTTGG 

Gibson assembly primers for amplifying vector, 

Set A-F (complements LJT-035) 

LJT-048 
GTCGACTCAAAAGCTCTTCGGGTTATCGTTCATTT
GATCATGCATTAGTACC 

Gibson assembly primers for amplifying vector, 
Set B-R (complements LJT-036) 

LJT-049 
GGGGATCCTCTAGCTCTTCGACCAAGATGTTTAA
GCCCTTTAGTTAATGTTTC 

Gibson assembly primers for amplifying vector, 
Set B-F (complements on LJT-037) 

CircoqPCR-
Fwd 

GGATGCCATGAAACTTTGATAC Redondovirus qPCR forward primer  



141 
 

CircoqPCR-

Rev 
TCTTCCTCCTTATTTGTATGGC Redondovirus qPCR reverse primer 

CircoqPCR-
Probe 

CCCATACTTACGCCGGTTACCTGC Redondovirus qPCR TaqMan probe 

Pan-HCRV-
AA-Fwd 

GCAGAGTTGTCAGCACATTT Redondovirus qPCR forward primer 

Pan-HCRV-
AA-Rev 

ATACCAGTATAGGAAGATTTCGAG Redondovirus qPCR reverse primer 

Pan-HCRV-

AA-Probe 

AGGGCTGCTAGGAATTATTCAAAAGTCAAGAAGA

TTAGAAGG 
Redondovirus qPCR TaqMan probe 

D13017_4-
IntF-229 

GATGCTCCACTAGTAATCTG Redondovirus Sanger sequencing primer 

D13017_4-
IntR-1036 

GCCTTTGGTCTCGAAATC Redondovirus Sanger sequencing primer 

D13017_4-
IntF-1708 

CGGTAAATCCCATGTCTTTG Redondovirus Sanger sequencing primer 

D13017_4-

IntR-2419 
GGCTGCTAGGAATTATTCG Redondovirus Sanger sequencing primer 

D13017_4-
IntF-849 

CGTCCGTATAGAGTAAGACTG Redondovirus Sanger sequencing primer 

D13017_4-
Ext-359 

TAGCCGTCAAACCATTTCAG Redondovirus Sanger sequencing primer 

D13017_4-
Ext-2341 

AACACCTTTGCCAGACATTG Redondovirus Sanger sequencing primer 

13-28-contig-

100_967-
IntF-200 

CGTACATCTTGCTCAGGAATAG Redondovirus Sanger sequencing primer 

13-28-contig-
100_967-
IntR-1036 

ACTTCTGCGAAACTTCCATC Redondovirus Sanger sequencing primer 

13-28-contig-

100_967-
IntF-797 

AGAACTGGCAGAACGATTAG Redondovirus Sanger sequencing primer 

13-28-contig-
100_967-

IntR-1345 

TAGCCGTCGAACCATTTAAG Redondovirus Sanger sequencing primer 

13-28-contig-
100_967-
IntF-1891 

CGTCGTCCGAATTAAAGTAAGG Redondovirus Sanger sequencing primer 

13-28-contig-
100_967-

IntR-3032 

TCATGGCATCCAAGGAATAGAG Redondovirus Sanger sequencing primer 

13-28-contig-
100_967-
IntF-1155 

ATCCGTGCAGAGAAATTGAG Redondovirus Sanger sequencing primer 

13-28-contig-

100_967-
IntR-2036 

ACAGGTGTCACTGGTTTATC Redondovirus Sanger sequencing primer 

13-28-contig-
100_967-Ext-

319 

GGCTAAGCTCACAATATCAG Redondovirus Sanger sequencing primer 

13-28-contig-

100_967-Ext-
2919 

ATCTGAAGTTGGGTCTGTTG Redondovirus Sanger sequencing primer 

HCRVswga1 TACGAATATTA Redondovirus SWGA primer 

HCRVswga2 TATCGTAATAT Redondovirus SWGA primer 

HCRVswga3 GTAATAATCTAT Redondovirus SWGA primer 
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HCRVswga4 ATTATAATACG Redondovirus SWGA primer 

HCRVswga5 TATTACGATAA Redondovirus SWGA primer 

HCRVswga6 TAATAATACTAG Redondovirus SWGA primer 

HCRVswga7 TAGTATAACTC Redondovirus SWGA primer 

HCRVswga8 TTATCGTAATA Redondovirus SWGA primer 

HCRVswga9 ATATTACGATA Redondovirus SWGA primer 

HCRVswga1
0 

GAGTTATACTA Redondovirus SWGA primer 

HCRVswga1
1 

CAATATTACG Redondovirus SWGA primer 

HCRVswga1
2 

CGTAATATTG Redondovirus SWGA primer 

HCRVswga1

3 
ATTAGTATTATG Redondovirus SWGA primer 

HCRVswga1
4 

ATATTATTGTAG Redondovirus SWGA primer 

HCRVswga1
5 

CTACAATAATAT Redondovirus SWGA primer 

HCRVswga1
6 

CTAGTATTATTA Redondovirus SWGA primer 

HCRVswga1

7 
GTATTATTAGAA Redondovirus SWGA primer 

HCRVswga1
8 

CATAATACTAAT Redondovirus SWGA primer 

HCRVswga1
9 

TAATATTCGTA Redondovirus SWGA primer 

HCRVswga2
0 

GTTATTATATTG Redondovirus SWGA primer 

Supplemental Table 5.1: List of Primers Used, Related to Figure 5.1, Supplemental 
Figure 5.1 and Figure 5.5 
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Genus Isolate Accession # Host Body 
Site 

Host 
species 

Country 

Brisavirus Human lung-associated brisavirus AA MK059754 Lung 
Homo 
sapiens 

USA 

Brisavirus Human lung-associated brisavirus II MK059755 Lung 
Homo 
sapiens 

USA 

Brisavirus Human lung-associated brisavirus MD MK059756 Lung 
Homo 

sapiens 
USA 

Brisavirus Human lung-associated brisavirus RC MK059757 Lung 
Homo 
sapiens 

USA 

Brisavirus Human oral-associated brisavirus YH MK059758 Oral 
Homo 
sapiens 

USA 

Brisavirus 
Human respiratory-associated 
PoSCV5-like virus 

NC_023878 Oral 
Homo 
sapiens 

China 

Brisavirus Human gut-associated brisavirus VW MK059759 Gut 
Homo 

sapiens 
USA 

Vientovirus Human lung-associated vientovirus AL MK059760 Lung 
Homo 
sapiens 

USA 

Vientovirus Human lung-associated vientovirus DC MK059761 Lung 
Homo 
sapiens 

USA 

Vientovirus Human lung-associated vientovirus ES MK059762 Lung 
Homo 
sapiens 

USA 

Vientovirus Human lung-associated vientovirus FB MK059763 Lung 
Homo 

sapiens 
USA 

Vientovirus Human lung-associated vientovirus JB MK059764 Lung 
Homo 
sapiens 

USA 

Vientovirus Human lung-associated vientovirus JY MK059765 Lung 
Homo 
sapiens 

USA 

Vientovirus Human lung-associated vientovirus LT MK059766 Lung 
Homo 

sapiens 
USA 

Vientovirus Human oral-associated vientovirus AV MK059767 Oral 
Homo 

sapiens 
Spain 

Vientovirus Human oral-associated vientovirus EC MK059768 Oral 
Homo 
sapiens 

USA 

Vientovirus Human oral-associated vientovirus LZ MK059769 Oral 
Homo 
sapiens 

USA 

Vientovirus Human oral-associated vientovirus MC MK059770 Oral 
Homo 

sapiens 
USA 

Vientovirus Human oral-associated vientovirus XM MK059771 Oral 
Homo 

sapiens 
China 

Vientovirus Human gut-associated vientovirus MW MK059772 Gut 
Homo 
sapiens 

UK 

 

Supplemental Table 5.2: Summary of Taxa within Redondoviridae, Related to Figure 
5.2 

Based on definitions in (Varsani and Krupovic, 2018) and the analysis of the diversity of 
viral Rep proteins, Redondoviridae genomes can be grouped into two genera, demarcated by 
50% Rep protein identity, which we propose be called Vientovirus and Brisavirus, from the 
Spanish words for “wind” and “breeze”, alluding to their discovery in the respiratory tract. 
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Title Samples 
Database 
Source 

Accession 
Number 

Direct metagenomic detection of viral pathogens in nasal and fecal 
specimens using an unbiased high-throughput sequencing approach. 

8 SRA SRP000287 

Viruses in the faecal microbiota of monozygotic twins and their mothers. 8 SRA SRP002523 

Diversity and abundance of single-stranded DNA viruses in human feces. 6 SRA SRP005097 

Hypervariable loci in the human gut virome. 12 SRA SRP094782 

Metagenomic exploration of viruses throughout the Indian Ocean. 26 SRA SRP003580 

Symptomatic atherosclerosis is associated with an altered gut 

metagenome. 
27 SRA SRP016067 

Identification of a novel human papillomavirus by metagenomic analysis 
of samples from patients with febrile respiratory illness. 

8 SRA SRP012061 

Identification of hepatotropic viruses from plasma using deep 
sequencing: a next generation diagnostic tool. 

14 SRA SRA054231 

Metagenomic sequencing reveals microbiota and its functional potential 
associated with periodontal disease. 

28 SRA SRP033553 

Study of the viral and microbial communities associated with Crohn's 

disease: a metagenomic approach. 
19 SRA ERP001706 

Rapid evolution of the human gut virome. 27 SRA SRP021107 

Metagenomic analysis of tuberculosis in a mummy. 1 SRA SRP018736 

Temporal response of the human virome to immunosuppression and 
antiviral therapy. 

153 SRA SRP032345 

Human oral viruses are personal, persistent and gender-consistent. 121 SRA SRP033575 

Changes in abundance of oral microbiota associated with oral cancer. 12 SRA ERP004294 

The Integrative Human Microbiome Project: dynamic analysis of 
microbiome-host omics profiles during periods of human health and 
disease. 

320 SRA SRP067755 

Viral metagenomics reveal blooms of anelloviruses in the respiratory 
tract of lung transplant recipients. 

22 SRA SRP098739 

Metagenomic analysis of viromes of dromedary camel fecal samples 
reveals large number and high diversity of circoviruses and 
picobirnaviruses. 

1 SRA SRP047227 

Disease-specific alterations in the enteric virome in inflammatory bowel 
disease. 

171 SRA ERP008725 

Gut virome sequencing in children with early islet autoimmunity. 96 SRA SRP059576 

Dynamic changes in the subgingival microbiome and their potential for 
diagnosis and prognosis of periodontitis. 

48 SRA SRP052958 

The oral and gut microbiomes are perturbed in rheumatoid arthritis and 

partly normalized after treatment. 
530 SRA ERP006678 

Early life dynamics of the human gut virome and bacterial microbiome in 
infants. 

143 SRA SRP058399 

Direct sequencing of human gut virome fractions obtained by flow 
cytometry. 

2 SRA ERP007252 

Virome analysis of antiretroviral-treated HIV patients shows no 
correlation between T-cell activation and anelloviruses levels. 

2 SRA SRP059897 

The human skin double-stranded DNA virome: topographical and 

temporal diversity, genetic enrichment, and dynamic associations with 
the host microbiome. 

675 SRA SRP049645 

Metagenomic analysis of viral genetic diversity in respiratory samples 

from children with severe acute respiratory infection in China. 
4 SRA SRP058055 

RNA-sequencing study of peripheral blood monocytes in chronic 
periodontitis. 

10 SRA SRP047232 

Metagenomic Sequencing of the Chronic Obstructive Pulmonary Disease 
Upper Bronchial Tract Microbiome Reveals Functional Changes 
Associated with Disease Severity. 

18 SRA ERP010088 

Metagenomic analysis of viruses associated with field-grown and retail 
lettuce identifies human and animal viruses. 

60 SRA SRP066046 

Viral Outbreak in Corals Associated with an In Situ Bleaching Event: 
Atypical Herpes-Like Viruses and a New Megavirus Infecting 
Symbiodinium. 

1 SRA ERP013548 

Preliminary analysis of salivary microbiome and their potential roles in 
oral lichen planus. 

53 SRA SRP067603 

Altered Virome and Bacterial Microbiome in Human Immunodeficiency 

Virus-Associated Acquired Immunodeficiency Syndrome. 
66 SRA ERP010635 
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Transfer of Viral Communities between Human Individuals during Fecal 
Microbiota Transplantation. 

18 SRA SRP073516 

Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil 
Extracellular Traps as a Predominant Innate Immune Response in 
Chronic Otitis Media. 

176 SRA SRP069302 

Metataxonomic and Metagenomic Approaches vs. Culture-Based 
Techniques for Clinical Pathology. 

14 SRA SRP045601 

Variation in Microbiome LPS Immunogenicity Contributes to 
Autoimmunity in Humans. 

785 SRA SRP090628 

Next-generation sequencing in neuropathologic diagnosis of infections of 

the nervous system. 
11 SRA SRP071354 

Microbial diversity in individuals and their household contacts following 
typical antibiotic courses. 

192 SRA SRP077685 

Illuminating uveitis: metagenomic deep sequencing identifies common 
and rare pathogens. 

8 SRA SRP078679 

Enrichment of the lung microbiome with oral taxa is associated with lung 
inflammation of a Th17 phenotype. 

2 SRA SRP065327 

Healthy human gut phageome. 4 SRA SRP090453 

Identification of Viruses in Cases of Pediatric Acute Encephalitis and 
Encephalopathy Using Next-Generation Sequencing. 

3 SRA DRP003259 

The Perioperative Lung Transplant Virome: Torque Teno Viruses Are 

Elevated in Donor Lungs and Show Divergent Dynamics in Primary Graft 
Dysfunction. 

185 SRA SRP109620 

Viral Metagenomic Analysis Displays the Co-Infection Situation in 

Healthy and PMWS Affected Pigs. 
8 SRA SRP076383 

Transmission of viruses via our microbiomes. 192 SRA SRP077685 

The balance of metagenomic elements shapes the skin microbiome in 

acne and health. 
78 SRA SRP101642 

MetaSort untangles metagenome assembly by reducing microbial 
community complexity. 

3 SRA SRP095074 

Maturation of the infant microbiome community structure and function 
across multiple body sites and in relation to mode of delivery. 

189 SRA SRP078001 

Studying Vertical Microbiome Transmission from Mothers to Infants by 
Strain-Level Metagenomic Profiling. 

28 SRA SRP082656 

Virome Assembly and Annotation: A Surprise in the Namib Desert. 1 SRA ERP015045 

Circadian oscillations of microbial and functional composition in the 
human salivary microbiome. 

36 SRA DRP003804 

A metagenomics study for the identification of respiratory viruses in 

mixed clinical specimens: an application of the iterative mapping 
approach. 

2 SRA SRP100814 

A pilot study using metagenomic sequencing of the sputum microbiome 

suggests potential bacterial biomarkers for lung cancer. 
10 SRA ERP010087 

Intestinal virome changes precede autoimmunity in type I diabetes-
susceptible children. 

169 SRA SRP107965 

A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis 
Patients with Severe Lung Disease. 

12 SRA SRP072212 

Virome comparisons in wild-diseased and healthy captive giant pandas. 1 SRA SRP108570 

Microbial Lineages in Sarcoidosis. A Metagenomic Analysis Tailored for 
Low-Microbial Content Samples. 

109 SRA SRP110811 

Virome analysis for identification of novel mammalian viruses in bats 
from Southeast China. 

12 SRA SRP102052 

Host Genetic Control of the Oral Microbiome in Health and Disease. 88 SRA SRP104798 

Genome diversity of marine phages recovered from Mediterranean 

metagenomes: Size matters. 
8 SRA SRP092902 

Metagenomic and metatranscriptomic analysis of saliva reveals disease-

associated microbiota in patients with periodontitis and dental caries. 
60 SRA SRP114751 

Identification of sapovirus GV.2, astrovirus VA3 and novel anelloviruses 
in serum from patients with acute hepatitis of unknown aetiology. 

9 SRA SRP102763 

Temporal dynamics of uncultured viruses: a new dimension in viral 
diversity. 

11 SRA SRP091978 

Sera of Peruvians with fever of unknown origins include viral nucleic 

acids from non-vertebrate hosts. 
2 SRA PRJNA382858 

Discovering viral genomes in human metagenomic data by predicting 

unknown protein families. 
17 SRA ERP019738 

Plasma virome of cattle from forest region revealed diverse small circular 
ssDNA viral genomes. 

1 SRA SRX3235902 
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The analysis of the oral DNA virome reveals which viruses are 
widespread and rare among healthy young adults in Valencia (Spain). 

72 SRA ERP104599 

Comprehensive virome analysis reveals the complexity and diversity of 
the viral spectrum in pediatric patients diagnosed with severe and mild 
hand-foot-and-mouth disease. 

1 SRA SRP090926 

Selective maternal seeding and environment shape the human gut 
microbiome. 

216 SRA SRP100409 

Short term dynamics of the sputum microbiome among COPD patients. 26 SRA SRP124904 

Metagenomic data of DNA viruses of poultry affected with respiratory 
tract infection. 

16 SRA SRP075600 

Antibiotic Treatment Leads to Fecal Escherichia coli and Coliphage 

Expansion in Severely Malnourished Diarrhea Patients. 
27 SRA SRP100895 

The vaginal eukaryotic DNA virome and preterm birth. 128 SRA SRP068239 

Amniotic fluid from healthy term pregnancies does not harbor a 
detectable microbial community. 

36 SRA SRP128680 

Viromes of one year old infants reveal the impact of birth mode on 

microbiome diversity. 
40 SRA SRP106048 

Evaluation of bias induced by viral enrichment and random amplification 
protocols in metagenomic surveys of saliva DNA viruses. 

13 SRA SRP119893 

Temporal dynamics of the lung and plasma viromes in lung transplant 
recipients. 

10 SRA ERP107081 

Bidirectional transfer of Anelloviridae lineages between graft and host 
during lung transplantation. 

120 SRA SRP125483 

metagenomic sequencing of human nasal swab from acute respiratory 

infection 
1 SRA SRP062772 

WGS of viruses: adult saliva 16 SRA SRP074878 

Perioperative nasal microbiome 54 SRA SRP089889 

Culture of human cervical microbiota 19 SRA SRP097289 

metagenome: family 190LO infant 1 month 96 SRA SRP109960 

DNA sequencing of circular virome of Seabass tissue 73 SRA SRP112556 

Environmental sampling of the METATRANSCRIPTOMIC for Subject 40 SRA SRP116887 

Vaginal virome of patient with Bacterial Vaginosis_day 0 after 

Clindamycin uptake 
4 SRA SRP126271 

MiSeq of human metagenome:Blood from W07 125 SRA SRP128102 

Cafe and FSM: Virome of human gut 9 SRA SRX020505 

Bronchoalveolar lavage samples from idiopathic pneumonia syndrome 

patients and controls 
36 SRA SRP162048 

Altered oral viral ecology in association with periodontal disease. 91 MG-RAST mgp7236 

Multi-omics Analysis of Periodontal Pocket Microbial Communities Pre- 

and Posttreatment. 
23 MG-RAST mgp21311 

Functional signatures of oral dysbiosis during periodontitis progression 
revealed by microbial metatranscriptome analysis. 

43 HOMD 20141024 

Metagenomic analysis uncovers strong relationship between periodontal 
pathogens and vascular dysfunction in American Indian population 

22 MG-RAST mgp15104 

Healthy adult serum 28 
Unpublished 
(Internal) 

NA 

Infant fecal virome 156 
Unpublished 

(Internal) 
NA 

Medical intensive care unit 621 
Unpublished 
(Internal) 

NA 

 
Supplemental Table 5.3: List of Studies Queried, Related to Figure 5.1 and Figure 5.4 
The number of samples in each study represents the total samples uploaded to the central 
database. However, only samples that were determined not to be 16S, ITS or other targeted 
amplicons were analyzed by the pipeline described here. SRA; Sequence Read Archive, MG-
RAST; Metagenomic Rapid Annotations using Subsystems Technology, HOMD, Human Oral 
Microbiome Database 
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CHAPT E R 6 :  C ON CLU S ION S  AN D  
FU T U RE DI RECT ION S  

 

Overall, this work has increased our understanding of the human lung viral 

microbiome, particularly in the states where the immune system is perturbed. While 

metagenomics has revolutionized studies of viral communities and their relationship to 

disease states in gastrointestinal, dermatological and oral body sites, its application in hard-

to-access body sites has been more limited. Balancing the ability of metagenomic 

approaches to retrieve rare viral sequences with their increased sensitivity to 

contamination in low biomass samples is necessary to draw meaningful conclusions about 

viral entities actually present versus false positives. Careful quantitative approaches can 

reveal the complex behavior of viral communities within a human host over time. Viruses 

within body sites are embedded in a different community and environment than those 

circulating in the blood. Thus, site-specific studies of viral communities can reveal insights 

on viral behavior and impact on the host (Virgin, 2014, Cadwell, 2015).  

6.1 ANELLOVIRUS DYNAMICS IN PERIOPERATIVE PERIOD ARE 
ASSOCIATED WITH PRIMARY GRAFT DYSFUNCTION 

In CHAPTER 3, we first used an unbiased metagenomic sequencing approach to 

survey the viral microbiomes in a cross sectional study of lung donors and recipients. 

Previous studies had only analyzed post-transplantation time points and most had only 

surveyed for viruses in blood. Here, we took advantage of having paired samples of the 

donor organ and allograft recipient to interrogate viral dynamics before and immediately 

after organ transplantation. We found that in LTRs, the lung virome consists of several 

families of bacteriophage and is dominated by a single family of “benign” eukaryotic DNA 
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viruses (Anelloviridae). Upon this discovery, we followed up with a targeted molecular assay 

to quantify anellovirus levels in the lungs and blood, as extrapolating absolute abundance 

from viral shotgun metagenomic data has major caveats such as enriching for small circular 

DNA with MDA. We demonstrate that anellovirus levels are increased in the lung both 

before and after transplantation but were not associated with donor cause of death or 

various clinical variables regarding organ management. Anellovirus expansion in the donor 

organ followed donor brainstem death and organ reperfusion, which both trigger 

inflammatory cascades (Faropoulos and Apostolakis, 2009). Therefore, potential organ 

donors are administered corticosteroids to promote organ preservation (Kutsogiannis et al., 

2006) and lung transplant recipients are given induction immune suppression. Thus, we 

hypothesize that the dramatic increase in anelloviruses in the lung during this relatively 

short period is a combination of complex immune activation promoting viral replication in 

target cells and immune suppression failing to control replication and spread.  

We also showed that viral dynamics in the lung at the time of transplantation are 

associated with PGD. Specifically PGD was found to be associated with a significantly lower 

rise in anellovirus levels in the lung after transplantation. Our findings suggest that 

anelloviruses may reflect or impact local innate immune function in the lung that is 

responsible for PGD pathology (Diamond and Wigfield, 2013). Quantifying anellovirus 

burden, especially in a non-invasive manner, to predict organ transplantation outcomes is 

appealing since patients vary in their sensitivity to immune suppression (Wieland et al., 

2010) and this unpredictability impedes efforts to balance the risk of organ rejection and 

infection. 

Several groups have investigated the utility of using anelloviruses as biomarkers. 

For example, in a study of solid organ transplant recipients (heart or lung), Quake et al., 

2015, compare time-normalized blood anellovirus levels in organ-rejecting and non-
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rejecting individuals and show that lower anellovirus burden is associated with organ 

rejection. They then tested the performance of anellovirus levels in classifying rejecting and 

non-rejecting subjects with positive, albeit modest, results. Another study of pediatric lung 

transplantation specifically asked whether levels of two genera within the Anelloviridae 

family (Alphtorquevirus and Betatorquevirus) were associated with either acute rejection 

(Blatter et al., 2018). Again, low anellovirus levels (specifically of alphatorqueviruses) early 

in transplantation, possibly indicative of ineffective immune suppression, were associated 

with acute rejection. Finally, both Blatter et al., 2017 and Gorzer et al., 2017 show that long-

term graft dysfunction or failure occur significantly more frequently in LTRs with lower 

anellovirus loads. Taken together with our findings in CHAPTER 3, it’s possible that 

surveillance of site-specific of all or specific genera of anelloviruses could inform 

management of immunosuppressive therapy for organ transplant recipients and other 

scenarios where exogenous immune modulation is needed. 

6.2 FUTURE DIRECTION: QUERYING MULTIDIMENSIONAL LUNG 
MICROBIAL COMMUNITIES IN LUNG TRANSPLANTATION OUTCOMES 

Here, we investigated whether a viral feature of the lung microbiota was associated 

with PGD. Others have investigated bacterial features. For example, a recent retrospective 

study using culture-based techniques showed that LTRs who received a donor organ 

positive for potentially pathogenic bacteria required longer duration of mechanical 

ventilation after transplantation (Ahmad et al., 2018). While no association with donor 

bacterial culture and PGD was observed in this small cohort (n=32), given the decreased 

sensitivity of culture compared to molecular techniques and a lack of interrogation of 

viruses and fungi, a role for the microbiome in PGD cannot yet be ruled out. Indeed, in our 

metagenomic approach, we discovered that donor lungs commonly have sequences of 

bacteriophages that infect Staphylococcus, Streptococcus, and Haemophilus influenza species. 
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Bacteriophages indirectly mark the presence of their bacterial hosts. We thus speculate that 

the lung microbiome of LTRs who develop PGD may be defined by a general increase in 

microbial burden, which could stimulate innate pathways detecting conserved microbial 

elements such as cell wall components and bacterial DNA. Alternatively, there may be 

increased abundance of certain species with virulence factors that impact tissue viability. 

This microbial burden would likely be bacterial and/or fungal in origin as our work did not 

discover enrichment of pathogenic eukaryotic viruses in PGD compared to non-PGD 

controls. Targeted qPCR for candidate taxa discovered by sequencing, as was done for 

anelloviruses, can more accurately enumerate microbial burden in the lung. The 

inflammatory response in the lower respiratory tract characteristic of PGD could be 

triggered by either live or dead microorganisms that were transferred by aspiration from 

the upper respiratory tract. In such a scenario, we might expect increased abundance of 

upper respiratory tract flora in the lungs of PGD cases compared to non-PGD controls. The 

rate and extent of immune activity of both epithelial and immune cells within the lung may 

then impact anellovirus replication, explaining the phenomenon we describe in CHAPTER 3.  

To build a complete picture of the role of the lung microbiome in other clinical 

outcomes after transplantation, larger, prospective longitudinal studies are needed. To date, 

there have been no studies of LTRs integrating analyses of viruses, bacteria and fungi. Such 

an approach is important because disease pathogenesis may be multifactorial and not easily 

prescribed to a single etiological agent. Since it is now well understood that the microbiome 

is altered in LTRs (Cribbs and Beck, 2017, Becker et al., 2014), specific features of 

community composition (microbial burden, structure, presence of specific taxa) should be 

assessed through systematic and stringent culture-independent methods in settings of 

important clinical outcomes. 
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6.3 BIDIRECTIONAL TRANSFER OF ANELLOVIRUSES BETWEEN GRAFT 
AND HOST DURING LUNG TRANSPLANTATION 

To study extent and persistence of viral transmission in solid organ transplantation, 

including viruses not yet linked to any disease, we used metagenomic approaches to define 

the lung and blood viromes in a longitudinal study of 13 donor-organ recipient pairs 

(described in CHAPTER 4). Based on findings from previous studies from our group (Young 

et al., 2015, Abbas et al., 2017) and others (De Vlaminck et al., 2013, Görzer et al., 2014, 

Görzer et al., 2015), we focused on the behavior of anelloviruses, which are known to be 

abundant in both lung and blood of individuals receiving organ transplants. After 

assembling full and partial viral genomes from metagenomic reads, we tracked individual 

lineages of anelloviruses by scoring their abundance within an individual over time. This 

approach allowed us to account for the high intra-individual diversity of viruses and 

population mixing that took place after organ transplantation. 

 We specifically highlight the potential of the virome derived from the organ donor 

lung to persist within the immunosuppressed host. This insight into the transmissibility of 

the lung virome establishes a foundation for studying the donor virome’s association with 

clinical outcomes in LTRs and in other lung disease settings. In addition, complex 

populations of anelloviruses already present in an individual prior to lung transplantation 

were observed to repopulate the allograft. Our findings corroborate and expand upon those 

recently reported in a smaller, independent cohort of LTRs (Segura-Wang et al., 2018). In 

this study, anellovirus populations in the lung and blood were followed starting at 30-90 

days post-transplantation in seven individuals. To overcome the same challenge we 

encountered in discriminating between closely related anellovirus strains, this group 

calculated normalized abundance after mapping reads to reference anellovirus genomes. 

Despite the slight differences in statistical approach, similar conclusions were reached; 

namely that anelloviruses are the most common eukaryotic virus detected in the lung and 
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blood, that individuals harbor diverse groups of these viruses, a wide variety of viral 

dynamics are observed post-transplantation and many strains detected in the lung are also 

detectable in the blood. A primary future direction is to use these findings as the foundation 

for understanding the genomic variability of anellovirus populations at different body sites. 

6.4 FUTURE DIRECTION: DEFINING THE HOST CELLULAR IMMUNE 
RESPONSE TO ANELLOVIRUSES 

Given the ubiquity of anelloviruses in the healthy adult population and their 

consistent expansion in immunosuppressed organ transplant populations, it is surprising 

that so little is known about the molecular immunology of these small DNA viruses. This is 

likely due to the difficulty in studying chronic infection with diverse viral quasi-species 

(Nishizawa et al., 1999, Madsen et al., 2002, Segura-Wang et al., 2018, Li et al., 2015b, Lim et 

al., 2015, Clarke et al., 2018a). Notably, studies examining longitudinal anellovirus dynamics 

(including diversity and absolute levels) have done so in adults with co-morbidities or in 

developing infants, leaving a paucity of information about infection in asymptomatic, 

immune-competent adults. Fewer studies have characterized the concurrent host immune 

state. Thus far, there is no evidence of a correlation between anellovirus levels and T-cell 

activation in HIV-infected individuals (Li et al., 2015b) or in hemodialized patients (Fodor et 

al., 2002), although serum levels of certain cytokines (IFN-γ, TNF-α, FGF-basic and MCP-3) 

were found to be associated with anellovirus levels in children receiving bone marrow 

transplants (Zanotta et al., 2015). Additionally, the adaptive cellular immune response to 

anelloviruses is understudied, despite it likely playing a role in keeping chronic and 

recurrent infections in check. 

Therefore, we propose that future work should determine whether targets against 

these small DNA viruses occupy a substantial portion of the human T-cell repertoire. We 

hypothesize that ORF1, which encodes the putative capsid, is the most likely target for 
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cellular immune responses, although the degree of homology across the 600-800 amino 

acid ORF is exceedingly low. This precludes construction of peptide libraries of a consensus 

sequence for immune stimulation as these epitopes likely would not represent a substantial 

proportion of viral variants within an individual. Developing a novel, personalized approach 

to assess T-cell immune responses to hypervariable viruses might thus entail first defining 

an individual’s viral repertoire by sequencing clones obtained by limiting dilution 

amplification. This can be followed with transfection of autologous ORF1 mRNA or peptides 

into lymphocytes which can then carry out antigen presentation. This allows enumeration 

and characterization of ORF1-antigen-specific responder cells using established 

immunological assays such as ELISPOT and intracellular cytokine staining. Addressing the 

major gap in knowledge on the type and extent of the host immune response to 

anelloviruses in healthy humans would establish a baseline to compare how these 

responses are altered or absent in LTRs. 

6.5 DISCOVERY OF A NEW FAMILY OF CIRCULAR HUMAN DNA VIRUSES 
THROUGH METAGENOMIC DATA MINING 

Studying viruses, the most abundant biological entities on the planet, by DNA 

sequencing is difficult due to the great sequence diversity present in global viral 

communities and because no common gene or sequence can be used to identify all of them. 

In CHAPTER 5, we characterize a family of highly divergent sequences originally found in 

samples of the lower respiratory tract of organ donors and lung transplant recipients. These 

samples were processed using multiple displacement amplification (MDA), a method to 

amplify small amounts of nucleic acids in low-biomass samples. MDA, in conjunction with 

metagenomic sequencing, has facilitated the discovery of many new, circular ssDNA viral 

sequences. After observing an initial alignment of many reads from two BAL samples to a 

limited portion of an experimentally uncharacterized circovirus, we asked whether these 
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sequences might actually originate from a different genome, as circoviruses are not known 

to infect humans. De novo assembly of reads yielded two circular genomes which were used 

to further identify homologous sequences in other human lung samples processed by our 

group that may have been missed by classification as they lacked similarity to reference 

genomes. Ultimately, we identified and cloned genomes from seven independent BAL 

samples. Comparison of the genomic architecture and protein sequences of these genomes 

revealed that they are most closely related to each other than to other known viral families 

(Figure 5.2). Thus, we propose that these divergent viral genomes form their own family 

termed Redondoviridae. 

To determine the prevalence of redondoviruses in human and non-human samples, 

a bioinformatics pipeline was developed to query over 6000 samples from publicly 

available metagenomic datasets. We detected redondoviruses exclusively in human 

samples, primarily from the respiratory tract, and recovered 12 additional complete 

genomes. Additionally, during our analysis, a complete genome homologous to 

redondoviurses was reported in the oro-respiratory tract of a febrile individual by an 

independent group (Cui et al., 2017). This strengthens the idea that the redondoviral niche 

is the human respiratory tract. Intriguingly, redondoviruses were the most common human 

DNA virus detected in human oral samples, although many of these were processed by MDA 

prior to shotgun sequencing, which preferentially amplifies circular DNA. Importantly, these 

sequences were absent in contamination controls and non-human samples.  

Taking advantage of the sizable amount of clinical metadata annotated in publicly 

available datasets, we investigated whether redondoviruses were correlated with any 

human disease. Analysis of redondovirus sequences in two independent studies revealed a 

positive association with periodontal disease. Next, we quantified redondoviruses using a 

targeted molecular assay in oral samples of healthy and critically ill individuals and found 
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that although prevalence was similar between the two groups (9-15%), relative levels 

during illness were higher and redondoviruses were detected longitudinally in several 

individuals. Thus we propose that redondoviruses are a novel group of viruses colonizing 

human oro-respiratory sites. 

6.6 FUTURE DIRECTION: DETERMINING ROLE OF REDONDOVIRUSES IN 
RESPIRATORY TRACT HEALTH AND DISEASE 

This work demonstrated the utility for shotgun metagenomics followed by 

experimental validation in discovering novel human viruses. An immediate future direction 

will be to explore and validate the association of redondovirus in periodontal disease. Given 

the established role of oral hygiene and bacterial infection in periodontitis, it is unlikely 

redondoviruses directly contribute to disease pathogenesis and may be a reflection of an 

inflammatory environment in the mouth. This hypothesis is consistent with the observation 

that redondoviruses are present in the upper and lower respiratory tract and stool of a 

heterogeneous population of critically ill subjects. Nonetheless, since these viruses are 

described here for the first time, it is imperative to ask whether redondoviral infection and 

host immune responses to them contribute to tissue injury in various oral and pulmonary 

diseases. Demonstrating adaptive (humoral and cellular) immune responses to these 

viruses would lend further evidence that they authentically infect humans and shed light on 

infection history of the general public and in specific disease cohorts.  

6.7 FUTURE DIRECTION: DEVELOPING REDONDOVIRUS CULTURE 
SYSTEM; PREDICTIONS FOR REPLICATION STRATEGY AND HOST CELL 
TROPISM 

Redondoviruses encode two known proteins; a capsid and Rep and also contain a 

highly conserved open-reading frame of unknown function. Based on this simple genome 

arrangement, which is similar to that of circoviruses, we predict that redondoviruses 
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replicate by rolling circle replication (RCR), initiated by the Rep and completed by host cell 

DNA polymerases. The distinct catalytic activities of Rep that are known to facilitate 

replication, stem-loop nicking and rejoining of genome ends, can be tested in vitro using 

purified protein and model DNA substrates. Understanding the requirements and 

mechanisms of redondovirus Rep activity can shed light on their replication strategy in vivo 

and be useful in developing drug targets if these viruses prove pathogenic in humans.  

Thus far, we have not been able to recover redondovirus particles by transfecting 

cloned, circularized dsDNA genomes (a strategy that works for circoviruses) into a modest 

panel of adherent mammalian cell lines. Indeed, there has been historic difficulty in 

establishing in vitro systems to propagate small circular DNA viruses such as 

papillomaviruses and polyomaviruses. Redondoviruses may be restricted by cell-intrinsic 

immunity in which case permissive cell types should be tried. Other possibilities include 

using primary cells from the upper and lower respiratory tract or inoculating cells with 

viral particles isolated from human clinical samples. However, it does appear possible to 

isolate and propagate identified viruses originally identified only by metagenomic 

sequencing (Shkoporov et al., 2018). Concerted effort is thus needed to establish a robust 

replication system to answer many basic biological questions about these newly discovered 

viruses. 

6.8 CONCLUDING REMARKS  

The work described in this dissertation lays a foundation for using metagenomic 

approaches to ask diverse questions about the human viral microbiome. In the future, 

metagenomic sequence analysis may become a core diagnostic and clinical tool, as it can be 

highly sensitive and informative about the unique viral species present. In order for this to 

be a reality, concurrent investigations about the host and other microbial kingdoms are 
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needed to understand how the behavior of endogenous viral population reflects the holistic 

health of its host. Furthermore, large, well-curated viral metagenomic datasets can and 

should be exploited in ways beyond what they were originally conceived for. Doing so will 

slowly, but steadily, illuminate the vast world of omnipresent viruses and enhance our 

ability to interrogate their role in human health and disease. 
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