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ABSTRACT

ESSAYS IN CAUSAL INFERENCE: ADDRESSING BIAS IN OBSERVATIONAL AND

RANDOMIZED STUDIES THROUGH ANALYSIS AND DESIGN

Raiden B. Hasegawa

Dylan S. Small

In observational studies, identifying assumptions may fail, often quietly and without notice,

leading to biased causal estimates. Although less of a concern in randomized trials where

treatment is assigned at random, bias may still enter the equation through other means.

This dissertation has three parts, each developing new methods to address a particular

pattern or source of bias in the setting being studied. In the first part, we extend the

conventional sensitivity analysis methods for observational studies to better address patterns

of heterogeneous confounding in matched-pair designs. We illustrate our method with two

sibling studies on the impact of schooling on earnings, where the presence of unmeasured,

heterogeneous ability bias is of material concern. The second part develops a modified

difference-in-difference design for comparative interrupted time series studies. The method

permits partial identification of causal effects when the parallel trends assumption is violated

by an interaction between group and history. The method is applied to a study of the repeal

of Missouri’s permit-to-purchase handgun law and its effect on firearm homicide rates. In

the final part, we present a study design to identify vaccine efficacy in randomized control

trials when there is no gold standard case definition. Our approach augments a two-arm

randomized trial with natural variation of a genetic trait to produce a factorial experiment.

The method is motivated by the inexact case definition of clinical malaria.
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CHAPTER 1

Introduction

The objective of many social science, epidemiology, and medical research studies is to iden-

tify and estimate causal relationships between treatments or exposures and outcomes of

interest. In observational studies, the absence of physical randomization and the lack of the

tightly controlled environment of a well planned experiment may lead critical observers to

call causal conclusions into question. Although less of a concern in randomized trials where

treatment is assigned at random, bias may still enter the equation through other means. For

example, outcomes attributable to a disease of interest may be aliased with outcomes caused

by other diseases when the symptoms associated with the disease are unspecific. Resulting

case definitions are usually inexact and can lead to substantial bias even in otherwise well

designed trials. Consequently, in both observational and randomized settings, anticipating

and addressing plausible patterns of unmeasured confounding should be an objective of any

research. In Chapters 2 through 5 we given four examples of how we address this objective

through developments in both statistical design and analysis.

Chapters 2 and 3 approach the issue of bias in matched-pair studies through analysis,

improving existing sensitivity analysis methods to more effectively address certain plausible

patterns of bias.

In Chapter 2, we introduce a sensitivity analysis framework that allows for the investigator

to interpret the sensitivity parameter as a bound on the average bias present in a matched-

pair study with binary outcomes (Hasegawa and Small, 2017). The new interpretation

resolves difficulties of the standard sensitivity analysis that bounds the maximal bias to

which pairs are subject, when the pattern of bias is presumed to be heterogeneous (Rosen-

baum, 1987). Specifically, when some pairs may suffer from arbitrarily large biases, but on

the average the study is more moderately biased, the average case sensitivity analysis will

be preferable to the standard approach. We motivate the method with a study of the effects
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of talking on a mobile phone on the incidence of car accidents (Tibshirani and Redelmeier,

1997).

In Chapter 3, we extend this framework using modern convex optimization tools to allow

for continuous outcomes and a simultaneous bound on both the maximal and average (or

typical) bias in a matched pair study. We call this the extended sensitivity analysis frame-

work (Fogarty and Hasegawa, 2019). In addition to bounding sample-level bias, extended

sensitivity analysis lets the investigator place bounds on the typical bias present in a su-

perpopulation from which the paired sample was drawn. This allows for calibration of a

sensitivity analysis in one study to information on confounding from another study whose

sample was generated from the same superpopulation as the first. We apply these new

methods to two sibling studies on the effects of education on future earnings. We calibrate

the extended sensitivity of one study where IQ data was not collected to an estimate of

bias introduced by differences in ability between siblings from the second study where IQ

data was collected. Empirically, the example suggests that ability bias is heterogeneous

across sibling pairs; the bias is typically modest but there is a small proportion of sibling

pairs where the differences in ability are quite large. We demonstrate that the extended

sensitivity analysis is better suited than the standard sensitivity analysis in such settings.

Through design, Chapter 3 addresses bias in comparative interrupted times series when the

parallel trends assumption of the standard difference-in-difference design fails because of an

interaction between history and the groups under comparison (Hasegawa et al., 2019). We

develop a difference-in-difference based design that allows for partial identification of causal

effects when the parallel trends assumption fails. We re-analyze a study of the repeal of

Missouri’s permit-to-purchase law and its effect on firearm homicide rates (Webster et al.,

2014) using our prosed method. The repeal occurred concurrently with the Great Recession

and there is concern that the firearm homicide trends in Missouri and the control states

may have been differentially affected by the onset of recession. Our method provides partial

identification of the repeal effect under mild assumptions about how the recession interacted

2



with the different groups.

Finally, in Chapter 5, we give another example of how improved design can mitigate con-

cerns of bias, this time in a randomized control trial to assess the efficacy of a malaria

vaccine. Symptoms of clinical malaria have significant overlap with the symptoms of other

common childhood illnesses. Furthermore, children in endemic areas are able to tolerate

varying levels of parasitemia without symptoms. Together, these facts make distinguishing

between malaria-attributable symptoms and non-malaria symptoms very challenging. In-

exact case definitions currently in use can substantially bias estimates of vaccine efficacy.

In this chapter, we leverage genetic traits that are protective against malaria but not other

childhood illnesses to identify vaccine efficacy in a randomized control trial. The sickle cell

trait is one such genetic variant that confers protection specifically against clinical malaria.

The method, which we call mendelian factorial design, is inspired by mendelian random-

ization studies that use genetic variants as instrumental variables to estimate causal effects

of non-randomized exposures. Under realistic assumption, this new study design allows for

identification of vaccine efficacy.

3



CHAPTER 2

Sensitivity Analysis for Matched Pair Analysis of Binary Data: From Worst Case to

Average Case Analysis

Abstract

In matched observational studies where treatment assignment is not randomized,

sensitivity analysis helps investigators determine how sensitive their estimated treat-

ment effect is to some unmeasured confounder. The standard approach calibrates the

sensitivity analysis according to the worst case bias in a pair. This approach will result

in a conservative sensitivity analysis if the worst case bias does not hold in every pair.

In this paper, we show that for binary data, the standard approach can be calibrated

in terms of the average bias in a pair rather than worst case bias. When the worst case

bias and average bias differ, the average bias interpretation results in a less conservative

sensitivity analysis and more power. In many studies, the average case calibration may

also carry a more natural interpretation than the worst case calibration and may also

allow researchers to incorporate additional data to establish an empirical basis with

which to calibrate a sensitivity analysis. We illustrate this with a study of the effects of

cellphone use on the incidence of automobile accidents. Finally, we extend the average

case calibration to the sensitivity analysis of confidence intervals for attributable effects.

2.1. Introduction

2.1.1. Sensitivity analysis as causal evidence

In matched-pair observational studies, causal conclusions based on usual inferential methods

(e.g., McNemar’s test for binary data) rest on the assumption that matching on observed

covariates has the same effect as randomization (i.e., that there are no unmeasured con-

founders). In other words, it is assumed that there are no unobserved covariates relevant to

both treatment assignment and outcome. A sensitivity analysis assesses the sensitivity of

results to violations of this assumption. Cornfield et al. (1959) introduced a model for sensi-

tivity analysis that was a major conceptual advance in the field of observational studies. A

4



modern approach to sensitivity analysis is introduced in Rosenbaum (1987); Rosenbaum’s

approach builds on Cornfield’s model (Cornfield et al. (1959)) but incorporates uncertainty

due to sampling variance. There are other contemporary sensitivity analysis models, see

for example McCandless et al. (2007) for a Bayesian approach, but we restrict our focus to

Rosenbaum’s approach. Rosenbaum’s sensitivity analysis yields an upper limit on the mag-

nitude of bias to which the result of the researcher’s test of no treatment effect is insensitive

for a given significance level α. More specifically, Rosenbaum (1987) derives bounds on the

p-value of this test given an upper bound, Γ, on the odds ratio of treatment assignment

for a pair of subjects matched on observed covariates. Γ can be thought of as a measure

of “worst case” bias in the sense that treatment assignment probabilities in matched pairs

are allowed to vary arbitrarily as long as the odds ratio of treatment assignment for a pair

of subjects is no greater than Γ. The largest Γ for which the p-value is less than 0.05 is

denoted by Γsens. We will use Γtruth to distinguish the true unknown worst case bias. Γsens

is interpreted in Rosenbaum’s sensitivity analysis as the largest value of the worst case bias

across matched pairs that does not invalidate the finding of evidence for a treatment effect.

We refer to this as a worst case calibrated sensitivity analysis. A classic example of this type

of analysis is given in Chapter 4 of Rosenbaum (2002c). Applying the worst case sensitivity

analysis to a study of the effects of heavy smoking on lung cancer mortality (Hammond

(1964)), Rosenbaum finds that Γsens ≈ 6 and interprets this result cogently:

To attribute the higher rate of death from lung cancer to an unobserved covariate

rather than to an effect of smoking, that unobserved covariate would need to

produce a sixfold increase in the odds of smoking, and it would need to be a

near perfect predictor of lung cancer.

A brief, more formal review of Rosenbaum’s sensitivity analysis framework is in Section

2.2.2.

The worst case calibrated sensitivity analysis raises several potential questions. If we are

convinced that there is no pair in Hammond’s smoking study such that one unit is more than

5



six times as likely to smoke as the other (i.e., Γtruth ≤ Γsens), then we would conclude that

our study provides convincing evidence that heavy smoking increases the rate of lung cancer

mortality. However, what if, on average, unmeasured confounders do not alter the odds of

smoking greatly but there are some subjects for whom the unmeasured confounders make

them almost certain to smoke, e.g., a subject who experiences huge peer pressure to smoke.

If such a subject ends up in our sample of matched pairs, and we condition on matched pairs

in which only one unit receives treatment, a standard practice when conducting matched

pair randomization tests, then the odds ratio of treatment assignment in the matched pair

containing that subject, and consequently Γtruth, will be infinite. In such a case, since

Γsens is generally finite, we’d expect it to be smaller than Γtruth. Now, suppose that there

are such pairs in the Hammond study but that for most pairs the odds ratio of smoking

between the units is much smaller than six. Using the worst case calibrated sensitivity

analysis, we would conclude that the study is sensitive to bias. Is there potentially some

natural quantification of average bias over the sample of matched pairs, say, Γ′truth, that

isn’t infinite and perhaps is smaller than six? And if we calibrate our sensitivity analysis to

this measure of bias rather than the worst case measure, will the sensitivity analysis be valid

in the sense that the inference is conservative at level α for any Γ ≥ Γ′truth? If it is valid,

are there other advantages to using the average case calibrated sensitivity analysis over the

worst case calibrated sensitivity analysis? In what follows, we attempt to answer these

motivating questions in the context of a matched pair analysis of the association between

cellphone use and car accidents.

2.1.2. Outline

In this paper we demonstrate that interpreting sensitivity analysis results in terms of average

case rather than worst case hidden bias is both valid and conceptually more natural in many

common scenarios. To illustrate our claim that the average case analysis is more natural

we will perform a causal analysis of a study by Tibshirani and Redelmeier (1997) that asks

if there is an association between cellphone use and motor-vehicle collisions. The study is
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described in the following section. In section 2.2 we review the model for sensitivity analysis

of tests of no treatment effect and sensitivity intervals for attributable effects for binary data.

In section 2.3 we discuss the theory behind the validity of average case sensitivity analysis.

Finally, the Tibshirani and Redelmeier (1997) study is examined in this new light in section

2.4. In particular, we see how the average case sensitivity analysis makes it possible to use

additional information from the problem to empirically calibrate our sensitivity analysis in

Section 2.4.1 and we extend the average case sensitivity analysis to the study of sensitivity

intervals for attributable effects in Section 2.4.3.

2.1.3. Motivating Example: Effects of cellphone use on the incidence of motor-vehicle col-

lisions

Tibshirani and Redelmeier (1997) conducted a case-crossover study of the effects of cellphone

use on the incidence of car collisions. In a case-crossover study each subject acts as her own

control which has the benefit of controlling for potential confounders that are time-invariant,

even if they are unobserved. Data collection took place at a collision reporting center in

Toronto between July 1, 1994 and August 31, 1995 during weekday peak hours (10 AM to 6

PM). Consenting drivers who reported having been in a collision with substantial property

damage and who owned a cellphone were included in the study. Drivers involved in collisions

that involved injury, criminal activity, or transport of dangerous goods were excluded. The

resulting study population included 699 individuals who gave permission to review their

cellphone records and filled out a brief questionnaire about their personal characteristics

and the features of the collision. The matched pair analysis compared cellphone usage in

the 10-minute hazard window prior to the crash with a 10-minute control window on a

chosen day prior to the crash. We will denote the time of the crash as t and the hazard

window as t− 10 to t− 1 minutes. The authors examined several different control windows:

1. Previous day : time t− 10 to t− 1 minutes on the previous day.

2. Previous weekday/weekend : time t− 10 to t− 1 minutes on the previous weekday if the
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crash took place on a weekday and similarly if the crash took place on a weekend.

3. One week prior : time t− 10 to t− 1 minutes one week prior to the collision.

4. Busiest cellphone day of previous three days: time t − 10 to t − 1 minutes on the one

day among the prior three to the collision with the most cellphone calls.

For each choice of control window, Tibshirani and Redelmeier (1997) found that there was

a significant positive association between cellphone usage and traffic collision incidence.

The 2 x 2 contingency tables shown in Table 1 summarize the data using the four different

control windows.

Control
On phone Not on phone

Previous Weekday/end

Hazard
On phone 12 158

Not on phone 23 506

One Week Prior

Hazard
On phone 6 164

Not on phone 21 508

Previous Driving Day

Hazard
On phone 18 119

Not on phone 20 171

Most Active Cellphone Day

Hazard
On phone 17 135

Not on phone 43 504

Table 1: One Week Prior: results for one week prior control window versus hazard
window;Previous Weekday/end: results for previous weekday/weekend control window
versus hazard window; Previous Driving Day: results for previous driving day control
window versus hazard window;Most Active Cellphone Day: results for most active
cellphone day in previous 3 days control window versus hazard window.

2.1.4. Sensitivity of results to hidden bias

As this was an observational study, the associations cannot be assumed to be causal. We

would like to quantify how large a hidden bias would have to be to explain the observed

association between cellphone use and car accidents without it being causal. A sensitivity
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analysis seems appropriate and is a straightforward exercise (see Chapter 4, Rosenbaum

(2002c) for example). Table 2 shows the results of a standard worst case sensitivity analysis

for each control window. Here, Γsens is the largest value of Γ such that the result are still

significant at the α = 0.05 level. In our analysis of the case-crossover study from Tibshirani

and Redelmeier (1997) we condition on subjects who were on a cellphone in exactly one of

the control and hazard windows (i.e., discordant case-crossover pairs). Thus, the odds ratio

of treatment assignment for the two windows observed for any case-crossover subject can

be viewed as the conditional odds that treatment occurs in a particular window. Hence,

we can interpret Γ as the maximum (and 1/Γ as the minimum) over all study subjects of

the odds that a driver is using a cellphone during the hazard window and not during the

control window.

Control Window Γsens
previous weekday/weekend 4.92
one week prior 5.53
previous driving day 4.15
most active cellphone day 2.40

Table 2: Sensitivity analysis for (marginal) α = 0.05.

The sensitivity analysis suggests that the most active cellphone day control window was the

most conservative analysis. This is unsurprising since we would expect that the treatment

assignment (cellphone use) would be biased toward the control window on a day when you

used a cellphone relatively often. We can interpret these results as follows: the observed

ostensible effect is insensitive to hidden bias that increases the odds that a driver was on

a cellphone in the hazard window and not the control window on the most active cellphone

day by at most a factor of 2.4. In many observational studies this type of statement is

very useful. However, it may be plausible that some study participants are exposed to

infinite (or at least very large) hidden bias. For example, this happens if a subject was not

driving during the control window and (almost) always uses her landline rather than her

cellphone when she is not driving. When we condition on case-crossover pairs where the
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treatment is received in exactly one of the windows – a standard practice when conducting a

matched pair randomization test – such a driver is always on a cellphone during the hazard

window. When this happens, the observed ostensible effect is (almost) always sensitive to

hidden bias, no matter how strong the observed association. Implicitly, in the worst case

sensitivity analysis, the investigator is supremely skeptical; she assumes that it could be that

all study participants suffer from the worst case hidden bias which, when it is possible that

some study participant suffers from unbounded hidden bias, renders sensitivity analysis

under the standard worst case interpretation uninformative. Yet in many studies where

unbounded hidden bias in some matched pairs is plausible, as in our motivating example,

we still want to examine the sensitivity of our results to potential hidden bias. If we

could perform a valid, average case calibrated sensitivity analysis then we could (1) make

sensitivity analysis informative even in the presence of pairs subject to unbounded hidden

bias and (2) make the interpretation of sensitivity analysis results far less conservative. It

turns out that there is a measure of the sample average bias that is generally finite in the

presence of pairs subject to unbounded bias for data with binary treatment and outcome.

Moreover, the sensitivity analysis calibrated to this measure of average bias is valid when

using McNemar’s statistic to test the null hypothesis of no treatment effect against the

alternative of a positive treatment effect (i.e., that talking on a cellphone while driving

increases the rate of automobile accidents).

2.2. Notation and Review

2.2.1. Notation

Our study sample consists of S matched pairs where each pair s = 1, 2, . . . , S is matched on a

set of observed relevant covariates xs1 = xs2 = xs. Units in each pair are indexed by i = 1, 2.

We let Zsi and Rsi denote the treatment assignment and outcome, respectively, of the i-th

unit of the s-th pair. The potential outcomes under treatment and control are denoted

as rTsi and rCsi, respectively. Hence, we can write Rsi = ZsirTsi + (1 − Zsi)rCsi. Under

Fisher’s sharp null hypothesis of no treatment effect, i.e., rTsi = rCsi for all i, we have that
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Rsi = rCsi. Hereafter, we will work under the null hypothesis and under the assumption that

each pair was matched on some set of observed covariates xs. Additionally, we assume that

there is some unobserved covariate Usi that is associated with both treatment assignment

and outcome and let usi be the realization of Usi for the i-th unit of the s-th pair. Within pair

differences in treatment and outcome will be denoted as Vs = Zs1−Zs2 and ys = rCs1−rCs2.

It will be convenient to define the following vector quantities: Z = (Z11, Z12, . . . , ZS2)T ,

r = (rC11, rC12, . . . , rCS2)T ,U = (U11, U12, . . . , US2)T , and A = (|y1|, |y2|, . . . , |yS |)T .

To be very clear about the information on which we are conditioning we will define some

important information sets. Let F = {(xs, usi, rCsi, rTsi) : s = 1, 2 . . . , S, i = 1, 2} be the

set of fixed observed and unobserved covariates for all units. Let Z = {Z : |Vs| = 1, s =

1, . . . , S} be the set of matched pairs such that only one unit receives treatment. We assume

that R is binary and we define A1 = {A : |ys| = 1, s = 1, . . . , S}. So Z ∩ A1 is the set of

discordant matched pairs. In the analysis that follows, we will condition on F , Z ∩A1.

2.2.2. Review: sensitivity analysis for binary data

Under the assumption that all variables that confound treatment assignment are observed,

Zsi⊥⊥(rCsi, rTsi) |Xs (Ignorability)

our matched observational study should closely resemble a randomized study and thus

P(Z = z| F , Z ∩A1) = 1/2S for z ∈ Z. In practice, this assumption is rarely valid and the

probability of treatment assignment depends materially on the unobserved covariates U.

A second assumption made in the causal framework introduced in Rosenbaum and Rubin

(1983) is the Positivity assumption – 0 < P(Zsi = 1|Xs) < 1 for all s = 1, 2, . . . , S and

i = 1, 2 – which says that all units have a chance of receiving treatment. In our case-

crossover study, however, this may not be an appropriate assumption. We introduce an

example of how our case-crossover study might violate the positivity assumption in Section

2.4.1 and how our average case sensitivity analysis framework is able to handle violations
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of positivity.

When both Z and r are binary it is common to use McNemar’s statistic to test for treatment

effect:

Definition 1. For a matched pair study with binary treatment and outcome we define

McNemar’s statistic to be

T (Z, r) =

S∑
s=1

1{VsYs = 1} . (2.1)

Under the null distribution of no treatment effect T (Z, r) follows a Poisson-Binomial dis-

tribution with probabilities {p1, p2, . . . , pS} where ps = P((Zs1 − Zs2)(rs1 − rs2) = 1) is the

probability that the unit with positive outcome, i.e., r = 1, receives treatment in pair s. If

we consider only discordant pairs and we assume, without loss of generality, that the first

unit in each pair is the unit with positive outcome we may write

ps = P(Zs1 = 1|F , Z ∩A1) . (2.2)

Recall that the Poisson-Binomial distribution is the sum of independent, not necessarily

identical Bernoulli trials. If Xs contains the complete set of relevant covariates then ps

equals 1/2 for all pairs and we can conduct inference using B(1/2, S) as our null distri-

bution, effectively treating our data as being the outcome of a randomized study. As we

mentioned earlier in this section, if there is some unobserved characteristic U that is relevant

to treatment assignment and outcome then {p1, . . . , pS} are unknown and consequently the

exact null distribution is no longer available to the investigator. When this is the case,

a sensitivity analysis like the one conducted informally in Section 2.1.4 can be used to

determine how sensitive the investigator’s conclusions are to departures from the ideal ran-

domized design. Following Chapter 4 of Rosenbaum (2002c) we can formalize the notion of

a sensitivity analysis introduced in Sections 2.1.1 and 2.1.4 with a simple sensitivity model
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where

1

1 + Γ
≤ P(Zs1 = 1|F , Z ∩A1) ≤ Γ

1 + Γ
(2.3)

for all s = 1, . . . , S and where Γ ≥ 1 is the sensitivity parameter that bounds the extent

of departure from a randomized study. Proposition 12 in Chapter 4 of Rosenbaum (2002c)

states that (2.3) is equivalent to the existence of the following model

log

(
ps

1− ps

)
= γ (us1 − us2) , s = 1, . . . , S (2.4)

where exp(γ) = Γ, γ ≥ 0, and usi ∈ [0, 1] for s = 1, . . . , S and i = 1, 2. The restriction of

the unobserved confounder to the unit interval in this equivalent representation preserves

the non-technical interpretation of Γ used in section 2.1.4 as a bound on the odds that the

driver was talking on a cellphone in the hazard window. Henceforth, we assume that Usi

and its realization usi belongs to the unit interval for s = 1, . . . , S and i = 1, 2. However,

the distribution of Usi on the unit interval may be arbitrary.

Under this sensitivity model, if we let T+ be binomial with success probability Γ/(1+Γ) and

T− be binomial with success probability 1/(1+Γ) it follows from Theorem 2 of Rosenbaum

(1987) that

P
(
T− ≥ k

)
≤ P(T ≥ k|F , Z ∩A1) ≤ P

(
T+ ≥ k

)
(2.5)

for all k = 1, . . . , S. This inequality is tight in the sense that it holds for any realization u of

U. For conducting a hypothesis test, the stochastic ordering in (2.5) gives us bounds on the

p-value of our test for a given magnitude of bias Γ. If Γ ≥ Γtruth, then T+ yields a valid,

albeit conservative, reference distribution for testing the null hypothesis of no treatment

effect against the alternative of a positive treatment effect.

2.2.3. Attributable effects for binary outcomes: hypothesis tests and confidence intervals

Attributable effects are a way to measure the magnitude of a treatment effect on a binary

outcome. The number of attributable effects is the number of positive outcomes among
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treated subjects that would not have occurred if the subject was not exposed to treatment.

In this section, we review Rosenbaum (2002a)’s procedure to construct one-sided confidence

statements about attributable effects in the context of the cellphone case-crossover study.

Let S̃ be the number of all pairs in the study, discordant or not, and let the first S be the

discordant pairs. If we assume that rTsi ≥ rCsi, that talking on a cellphone cannot prevent

an accident, then we can write the attributed effect as

A =
S̃∑
s=1

2∑
i=1

Zsi(rTsi − rCsi) =
S̃∑
s=1

Zs1(rTs1 − rCs1) (2.6)

where the first unit of s-th pair is the observation from the hazard window. Why does the

second equality hold? If the subject was talking on a cellphone in the control window, that

is Zs2 = 1, then we observe rTs2 = 0 which by our assumption that talking on a cellphone

cannot prevent an accident implies that rCs2 = 0. So attributable effects can only occur

among discordant pairs where the subject was talking on a cellphone in the hazard window

or concordant pairs where the subject was talking on a cellphone in both windows. The

following table characterizes the four types of possible pairs in our case-crossover study,

Zs1 Zs2 Rs1 Rs2 rTs1 rCs1
D(+,−) 1 0 1 0 1 -
D(−,+) 0 1 1 0 1 1
C(−,−) 0 0 1 0 1 1
C(+,+) 1 1 1 0 1 -

Table 3: The four possible types of pairs in our case-crossover study. D and C indicate
discordant and concordant pairs, respectively, and the + and − indicate if a unit in the pair
was treated or not, respectively.

D and C indicate discordant and concordant pairs, respectively. D(+,−) is the set of

discordant pairs where the subject was on a cellphone in the hazard window, D(−,+) is

the set of discordant pairs where the subject was on a cellphone in the control window,

C(+,+) is the set of concordant pairs where the subject was on a cellphone in both hazard

and control windows, and C(−,−) is the set of concordant pairs where the subject was not
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on a cellphone in either window. If there are no attributable effects then we know that

rCs1 = 1 in D(+,−) and C(+,+) and we have that Rs1 = rCs1 for all pairs s, concordant

or discordant. We can write the probability that the subject was talking on a cellphone at

the time of accident for each type of pair as (1) P(Zs1Rs1 = 1|D(+,−) ∪D(−,+)) = ps,

where ps here is equivalent to the ps defined in Section 2.2.2 when there are no attributable

effects; (2) P(Zs1Rs1 = 1|C(−,−)) = 0; and (3) P(Zs1Rs1 = 1|C(+,+)) = 1. Now let

c+ = |C(+,+)| denote the cardinality of the set of concordant pairs where the subject was

on a cellphone in both windows and let s = S + 1, . . . , S + c+ be the pairs belonging to

C(+,+). Then if A = 0 we can define the standardized deviate for McNemar’s statistic T

as

T̃ =

∑S
s=1 Zs1rCs1 −

∑S
s=1 ps{∑S

s=1 ps(1− ps)
}1/2

=

∑S+c+

s=1 Zs1Rs1 −
(∑S

s=1 ps + c+
)

{∑S
s=1 ps(1− ps)

}1/2
. (2.7)

T̃ defines a normal reference distribution for
∑S

s=1 Zs1rCs1 that we can use to conduct

approximate inference. If A = a > 0, then Zs̃1Rs̃1 = Zs̃1rT s̃1 = Zs̃1(rCs̃1 + 1) for pair s̃

belonging to the set of a pairs with attributable accidents and the second equality above

does not hold. When this equality fails to hold, the standard normal deviate T̃ cannot

be computed from the observed data conditional on F . How then can we adjust T̃ for

attributable accidents so that it can be computed from the observed data? Because we’ve

assumed talking on a cellphone cannot prevent an accident, we only need to consider two

cases. If pair s̃ belongs to D(+,−) then we subtract Zs̃1(rT s̃1−rCs̃1) = 1 from
∑S̃

s=1 Zs1Rs1,

ps̃ from the expectation, and ps̃(1− ps̃) from the variance term. If s̃ belongs to C(+,+) we

again subtract 1 from
∑S̃

s=1 Zs1Rs1 and subtract 1 from the |C(+,+)| in the expectation

while leaving the variance term unchanged.

Let δ = (δ11, δ12, . . . , δS̃1
, δ
S̃2

)T be defined as δsj = rTsj − rCsj . We say that δ is compatible
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if δsj = 0 whenever Zsj = 1 and Rsj = 0 or Zsj = 0 and Rsj = 1. Under this definition, we

can express the number of attributable effects as A = ZTδ. For a compatible δ such that

ZTδ = a we denote T̃−δ to be T̃ adjusted for the a attributable effects. T̃−δ defines a new

reference distribution for
∑S

s=1 Zs1rCs1 under the null hypothesis that potential accidents

indicated by δ are attributable to talking on a cellphone while driving. We can write T̃−δ

as

T̃−δ =

∑S+c+

s=1 Zs1Rs1(1− δs1)−
(∑S

s=1(1− δs1)ps +
∑S+c+

s=S+1(1− δs1)
)

{∑S
s=1(1− δs1)ps(1− ps)

}1/2
. (2.8)

Using the notion of asymptotic separability (Gastwirth et al. (2000)), Rosenbaum (2002a)

show that choosing a compatible δ∗ ≡ δ∗(a) with ZTδ∗(a) = a that maximizes the expecta-

tion, and when there are ties to maximize the variance term, yields a reference distribution

that, asymptotically, has the largest upper tail area among compatible δ(a). Thus, we can

use T−δ∗ to test the plausibility that there are at most a attributable effects. Since A is a

random variable we refrain from calling this a hypothesis test, a term usually reserved for

unknown parameters. From equation (2.8) we see that δ∗(a) includes the a pairs in D(+,−)

with the smallest values of ps.

It is possible to invert the one-sided “plausibility tests” introduced above using T−δ∗ that

we just introduced in order to construct a confidence interval for attributable effects of the

form {A : A > a}. It turns out that if it is plausible that there are a attributable effects

then it is also plausible that there are a+ 1 attributable effects (Rosenbaum (2002c)). This

monotonicity property leads to a very simple procedure to construct a one-sided confidence

interval in the absence of hidden bias. First, if ps = 1/2 for all s = 1, 2, . . . , S̃ then for any

a ≥ 0 we can compute T̃−δ∗ = {T − a− (S − a)/2}/{(S − a)1/2/2}.

Next, starting with a = 0 we check if T̃−δ∗ < Φ−1(1 − α), incrementing a by one if it

isn’t and stopping if it is. Finally, let a∗ be equal to one less the value of a at which we

terminate the procedure. Using the monotonicity result above we have that {A : A > a∗}

is a one-sided 100× (1− α)% confidence interval.
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If we bound the worst case calibrated bias above by Γ then we can construct a one-sided

100× (1−α)% confidence interval following the same procedure but instead using T̃−δ∗,Γ =

{T−a−(S−a)pγ}/{(S−a)pγ(1−pγ)}1/2 as our standard deviate where pγ = Γ/(1+Γ). The

resulting one-sided 100× (1−α)% confidence interval is referred to as a sensitivity interval

(See Chapter 4, Rosenbaum (2002c)). For a detailed illustration of these procedures we

refer the reader to Sections 3-6 of Rosenbaum (2002a).

2.3. From Worst Case to Average Case Sensitivity Analysis

2.3.1. Valid average case analysis: binary outcome

An investigator conducting a sensitivity analysis tries to determine a test statistic whose

null distribution is known conditional on the presence of hypothetical bias Γ. Since the

distribution of Usi is unknown, traditionally, the investigator assumes the worst. That is,

the null distribution is constructed assuming that in each pair us1 = 1 and us2 = 0. As

noted in Section 2.2.2, T+ yields a valid reference distribution for testing the null of no-

treatment effect when Γ ≥ Γtruth. However, such a test is inherently conservative because it

is designed to be valid for any realization of U since U and thus since p = (p1, . . . , pS)T are

generally unknown. This is why we resort to a sensitivity analysis where we allow ps to vary

arbitrarily as long as ps/(1 − ps) ≤ Γ. In Section 2.1.1 we asked whether there was some

natural quantification of average bias to which we could calibrate our sensitivity analysis

which would lead to a less conservative analysis than the worst case calibration. One such

quantification is Γ′truth = p/(1−p) where p is the sample average of ps. In what follows, we

show that if we calibrate our sensitivity analysis to Γ′truth it will be valid and less conservative

than the worst case calibration. To prove this, we show that T ′ ∼ B(Γ′truth/(1 + Γ′truth), S)

yields a valid reference distribution for testing the null of no treatment effect against the

alternative of a positive treatment effect. In Theorem (2) below, we prove that the upper

tail probability for McNemar’s statistic T is bounded above by the upper tail probability

for T ′.

Theorem 2. Set p =
(∑S

s=1 ps

)
/S and Γ′truth = p/(1−p) and let Vs

iid∼ Bern(Γ′truth/(1 +

17



Γ′truth)) for all s = 1, 2, . . . , S. Define T ′ = V1 + · · ·+ VS. Then

Pr(T ≥ a|F , Z ∩A1) ≤ Pr
(
T ′ ≥ a

)
for all a ≥ Sp .

Proof. Observe that p majorizes p · 1 and note that if a function f(p) is Schur-convex in

p then f(p) ≥ f(p1). What remains to be shown is that the distribution function for a

Poisson-Binomial is Schur-convex in p. See Gleser (1975) for this approach and Hoeffding

(1956) for the original proof. The theorem as stated is an immediate corollary of Theorem

4 in Hoeffding (1956). Gleser (1975) presents a more general version of this result which

holds when the success probabilities of T majorize those of T ′.

Remark 1. Theorem (2) is a finite sample result whose proofs we refer to are both rather

technical. An analogous asymptotic result follows from much simpler arguments. The vari-

ance of a Bernoulli random variable with success p can be written as f(p) = p(1− p). f is

clearly concave and thus by Jensen’s Inequality, Var(T ) ≤ Var(T ′). Since the expectation

of T and T ′ are equal, using a normal approximation to the exact permutation test will

asymptotically yield the same stochastic ordering as in Theorem (2).

Remark 2. It is important to note that Γ′truth ≤ Γtruth since ps/(1 − ps) ≤ Γtruth for

s = 1, . . . , S. Consequently, we have that Pr(T ′ ≥ a) ≤ Pr(T+ ≥ a) which implies that

sensitivity analysis with respect to Γ′, the average case calibrated sensitivity analysis, is less

conservative than the worst case calibrated sensitivity analysis with respect to Γ.

The implication of this theorem is that it is safe to interpret a sensitivity analysis in terms

of Γ′, an upper bound on the sample average hidden bias (p/(1− p)). For example, when

using the most active cellphone day control window we have Γsens = 2.4. Previously, we

would say that if no case-crossover pair was subject to hidden bias larger than 2.4, then the

data would still provide evidence that talking on a cellphone increases the risk of getting in

a car accident. Now, some case-crossover pairs may be subject to hidden bias (much) larger

than 2.4, as long as the sample average hidden bias is no larger than 2.4. It is important to

note that this interpretation is only valid for binary outcomes. The proof relies on Schur-
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convexity of the distribution function of our test statistic with respect to p which requires

that it be symmetric in p. For more general tests, such as the sign-rank test, this is not the

case.

Some additional applications of Theorem 2 can be found in the Appendices. Appendix A

considers the case when Us1 and Us1 measure some time-varying propensity of subject s to

use his cellphone. Using Theorem 2 we develop a little theory and a numerical example.

Appendix B provides details on how Theorem 2 can be applied when U is not restricted to

the unit interval.

2.4. The Effect of Cellphone Use on Motor-vehicle Collisions

In this section we return to our motivating example to see how our average case theory can

provide interpretive assistance to our standard sensitivity analysis we carried out in Section

2.1.4 and allow us to incorporate additional information to empirically calibrate our average

case sensitivity analysis.

2.4.1. Driving intermittency

The study conducted in Tibshirani and Redelmeier (1997) did not have access to direct

information on whether an individual was driving during the control window. The authors

examine the effect of driving intermittency during the control window on their relative-risk

estimate by bootstrapping the estimate using an intermittency rate of ρ̂ = 0.65. In other

words, they correct for bias due to the possibility that a subject was not driving during the

control window. The intermittency rate was estimated using a survey asking 100 people

who reported car crashes whether they were driving at the same time the previous day.

Alternatively, one may ask a related question in the context of a sensitivity analysis - does

the bias due to driving intermittency explain the observed association between cellphone

usage and traffic incidents? Given that the study took place in the early 1990s when, for

some cellphones and carphones were synonymous, it would not be surprising if many study

participants (almost) always used their landlines rather than their cellphones when not
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driving, violating the positivity assumption. Therefore, the only plausible Γtruth is infinite

(or at least very large) when conditioning on case-crossover pairs where the subject is on her

cellphone in only one of the two windows. This renders the worst case sensitivity analysis

uninformative. No magnitude of association between cellphone use and car accidents would

convince us that the relationship was causal if we stuck to the worst case calibration of the

sensitivity analysis. The average case calibration, on the other hand, still has a chance. We

can use our estimate ρ̂ to approximate a plausible value of p, p = (1− ρ̂) ·1+ ρ̂ ·0.5 = 0.675,

and a corresponding plausible value of Γ′truth, Γ′truth = p/(1 − p) = 2.1 . Theorem (2)

circumvents the conceptual hurdle of unbounded Γtruth and allows us to confidently use a

sensitivity analysis to quantitatively assess the causal evidence. Moreover, it allows us to

incorporate information about ρ into our analysis. If the association between cellphone use

and motor vehicle collisions is causal in nature, our empirical calibration suggests that our

test for treatment effect should be insensitive to unobserved biases with magnitude Γ′ ≈ 2.1.

2.4.2. An alternative approach to handling pairs with unbounded bias

There are other approaches to dealing with the example of infinite bias we just presented.

For instance, the investigator may be more confident in specifying an upper bound on the

worst case bias to be finite, Γ <∞, for a proportion 1−β of the matched pair sample than

he is in working in terms of the average case bias. If he has a good sense of what proportion

β of the pairs is exposed to unbounded bias he may drop β × S pairs where the treated

unit had positive outcome and perform the standard worst case sensitivity analysis on the

remaining (1 − β) × S pairs. Rosenbaum (1987) proved that this method yields a valid

sensitivity analysis. This strategy would be particularly suited for the example of driver

intermittency discussed above. However, this approach assumes this particular pattern of

unmeasured confounding is present and driver intermittency is just one of many sources of

potential bias. On the other hand, the average case analysis accomodates arbitrary patterns

of bias that may lead to large differences in average and worst case biases.

20



2.4.3. Average case sensitivity analysis for attributable effects

How many of the recorded accidents in our study can be attributed to the driver talking on

a cellphone? Recall from Section 2.2.3 that the set indicated by δ∗ includes the a pairs in

D(+,−) with the smallest values of ps. Although we cannot compute T̃−δ∗ and thus cannot

use it directly to conduct inference, we can compute a lower bound that we will show can

be used to perform an average case sensitivity analysis:

T̃−δ∗ =

∑S
s=1 Zs1rCs1 −

∑S
s=1(1− δ∗s1)ps{∑S

s=1(1− δ∗s1)ps(1− ps)
}1/2

=

∑S
s=1 Zs1Rs1(1− δ∗s1)−

∑S
s=1(1− δ∗s1)ps{∑S

s=1(1− δ∗s1)ps(1− ps)
}1/2

=
T − a− (S − a)p(a){∑S
s=1(1− δ∗s1)ps(1− ps)

}1/2

≥ T − a− (S − a)p(a)

{(S − a)p(a)(1− p(a))}1/2
= T̃ (p(a)) (2.9)

where p(a) =
∑S

s=1(1− δ∗s1)ps/(S−a). The last inequality follows from Jensen’s inequality

applied to the variance term in the denominator. Notice that instead of applying Theorem

(2) in order to derive a sensitivity analysis in terms of the average bias we use the simpler

argument in Remark (1). Now note that if ps ≥ p∗ for all s = 1, . . . , S then we can relate

the trimmed average probability, p(a), to p as follows

p ≥ (S − a)p(a) + a·∗
S

= q(a) . (2.10)

We can use this relationship to construct a simple procedure – mirroring that of Section

2.2.3 – to perform an average case calibrated sensitivity analysis for one-sided confidence

intervals of the form {A : A > a} that yields average case calibrated sensitivity intervals.

The procedure can be summarized as follows,
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1. Choose a desired average calibrated sensitivity parameter Γ′.

2. For a = 0 solve q(a) = Γ′/(1 + Γ′) for p(a) and denote the solution p(a, γ′). Compute

T̃ (p(a, γ′)).

3. If T̃ (p(a, γ′)) < Φ−1(1− α) then conclude it is plausible that none of the accidents can

be attributed to talking on a cellphone.

4. Else, repeat steps (2) and (3) for a = 1, . . . , S stopping when T̃ (p(a, γ′)) < Φ−1(1−α).

Let a∗ = a− 1.

5. Return the 100 × (1 − α)% sensitivity interval {A : A > a∗} and conclude that it is

plausible that more than a∗ of the accidents are attributable to talking on a cellphone

when exposed to an average bias of at most Γ′.

Just as in the simple test for no treatment effect, we see that we have a nearly identical

procedure to the worst case sensitivity analysis with an average interpretation of the bias

parameter. In fact, the procedure also yields a corresponding worst case calibration for

the computed sensitivity interval. Under the worst case calibration, the sensitivity interval

from step (5) would correspond to a worst case bias Γ = p(a∗, γ′)/(1− p(a∗, γ′)).

How might we apply this procedure to our example? For a given control window we would

like to make confidence statements such as, at the 95% level it is plausible that there are a∗

or more accidents attributable to talking on a cellphone. Recall the empirically calibrated

average case bias from Section 2.4.1, Γ′ ≈ 2.1. We may also be interested making sensitivity

statements such as, if the average probability of talking on a cellphone during the hazard

window is at most 2.1 times that of talking on a cellphone in the control window for drivers

in our study, Γ′ = 2.1, it is plausible at the 95% level that there are a∗ or more accidents

attributable to talking on a cellphone. Table 4 summarizes the plausible range of attributable

accidents for each of the four different control windows. For all four control windows we

set Γ′ = 2.1. The first column is the number of discordant pairs in which the driver was on

22



a cellphone during the control window. The second column reports the lower bound a∗ of

the one-sided sensitivity intervals for α = 0.05 We also report the corresponding worst case

calibrated bias in the last column of Table 4. In the cellphone study we have no convincing

reason to believe that p∗ > 0 but in other examples, it may make sense that ps is bounded

from below, which has the effect of making the procedure less conservative.

Control Window |D(+,−)| a∗ Γ′ Γ

previous weekday/weekend 158 28 2.1 4.04
one week prior 164 31 2.1 4.37
previous driving day 119 18 2.1 3.51
most active cellphone day 134 5 2.1 2.3

Table 4: Sensitivity analysis for 95% one-sided confidence intervals for attributable effects
of the form {A : A > a∗}. Γ′ indicates the average calibration bias that we specify for the
procedure and Γ is the implied worst case calibration that corresponds to the computed
interval. We assume that p∗ = 0 .

We find that even if the average probability of talking on a cellphone during the hazard

window was at most 2.1 times that of talking on a cellphone on the same day one week prior,

it is plausible that there are 31 or more accidents attributable to talking on a cellphone. The

implied worst case bias associated with this statement is Γ = 4.37. What this means is that

we would arrive at the same conclusion about the number of plausible attributable accidents

if we put an upper bound on the worst case bias of Γ = 4.37 and followed the standard

confidence interval procedure for attributable effects outlined in Section 2.2.3 and Gastwirth

et al. (2000). Unlike the sensitivity analysis for the simple test for no treatment effect, the

average case calibrated sensitivity analysis for attributable effects is not guaranteed to be less

conservative than the worst case calibration. For a 95% sensitivity interval for attributable

effects generated by our procedure where a∗ > 0, the corresponding upper bound on the

average case bias Γ′ is less than the corresponding upper bound on the worst case bias Γ.

This occurs since we do not know which pairs contain attributable effects nor do we know

each pair’s particular exposure to hidden bias. Without any further assumptions, the best

lower bound for Γ′ assumes that all the a pairs with attributable effects have arbitrarily
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small probability of being on a cellphone in the hazard window and not the control window.

This is expressed mathematically in equation (2.10) by setting p∗ = 0. If Γ′truth < Γtruth

– which is a reasonable assumption in most circumstances – then using the average case

calibration may still result in a less conservative analysis. However, if all case-crossover pairs

are exposed to the same magnitude of bias such that Γ′truth = Γtruth then we are guaranteed

to be less conservative by using the worst case calibration. A reasonable solution would be

to simply supply both the Γ′ and Γ when reporting a sensitivity interval, as we do in Table

4. The investigator may then present an argument based on subject matter expertise as to

which calibration is likely to be less conservative.

2.5. Discussion

The theorem presented in 2.3.1 can be thought of as an interpretive aid: For the same

standard sensitivity analysis we now have an additional, often more natural, way to interpret

the results. This new average case interpretation may also allow researchers to make use of

additional information about the problem to empirically calibrate their sensitivity analysis.

As we saw in Section 2.4.1, we used the estimate of driver intermittency rate to determine

an approximate lower bound on Γ′truth, providing us with some empirical guidance when

conducting our sensitivity analysis. In the worst case setting, such an empirical calibration

would not be possible. The investigator performs a sensitivity analysis in anticipation

of critics who might claim the association is due to some unobserved confounder. The

average case analysis makes the protection that the sensitivity analysis provides against such

criticism more robust. As the title of the article makes clear, the results we present are for

binary data. As we illustrated in Section 2.4.3, the notion of attributable effects allows us to

construct interpretable confidence intervals for binary outcomes. We show that our average

case calibration can be extended to the sensitivity analysis of such confidence intervals and

in most cases will yield a less conservative conclusions. It may then be interesting to apply

the results here to the sensitivity analysis of displacement effects, the continuous analog of

attributable effects for non-binary outcomes. Rosenbaum (2002a) show that displacement
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effects can be analyzed in the attributable effect framework for binary response, providing

a potential avenue to extend average case calibrated sensitivity analysis to a study with

non-binary outcomes.

2.6. Appendix

2.6.1. Appendix A

Time-varying propensity for cellphone use

After conditioning on the time-invariant driver characteristics X, it may be natural to

model Usi as a time-varying propensity quantile for using a cellphone in the hazard window

(i = 1) and in the control window (i = 2). Usi could summarize an arbitrary number of

confounding variables that vary between control and hazard windows for driver s. As a

quantile, we can think of Usi as coming from a uniform distribution on [0, 1]. Us1 and Us2

can conceivably be considered independent since by design a case-crossover study controls

for all individual, time-invariant confounders. Now, suppose that we conduct a sensitivity

analysis that returns Γsens. If we interpret this as an average case hidden bias we may

want to ask how large we would expect the corresponding worst case hidden bias to be.

If we assume the the Usi are propensity quantiles that are iid uniformly distributed we

can compute a lower bound for the expected worst case hidden bias corresponding to the

average case calibrated Γsens. Let Σ be the set of all permutations of {11, 12, . . . , S1, S2}

and let σ ∈ Σ be an element in the set. Now define γ∗(U) to be the solution to

Γsens/(1 + Γsens) = sup
σ∈Σ

{
1

S

S∑
s=1

exp(γ(Uσ(s1) − Uσ(s2)))

1 + exp(γ(Uσ(s1) − Uσ(s2)))

}
. (2.11)

The right hand side of this equation inside the supremum operator is an expression for p̄

under the sensitivity model defined in Section 2.2. The following proposition and corollary

show that Γ∗ = exp(γ∗(U)) is a lower bound for the worst case calibrated hidden bias

corresponding to the average case calibrated Γsens given U.
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Proposition 1. With probability one γ∗(U) is the unique solution of (2.11) and the smallest

γ that satisfies

Γsens/(1 + Γsens) =
1

S

S∑
s=1

exp(γ(Uσ(s1) − Uσ(s2)))

1 + exp(γ(Uσ(s1) − Uσ(s2)))

for some σ ∈ Σ.

Proof. It suffices to show that the right hand side of (2.11) is strictly increasing in γ with

probability one. Consider 0 ≤ γ1 < γ2 and let σ1 be the permutation that maximizes

f(σ, γ1,U) =
1

S

S∑
s=1

exp(γ1(Uσ(s1) − Uσ(s2)))

1 + exp(γ1(Uσ(s1) − Uσ(s2)))
.

Assuming that the Usi are iid uniform, U is nonconstant with probability one. If U is

nonconstant then f(σ1, γ1,U) < f(σ1, γ2,U) since Uσ(s1) − Uσ(s2) > 0 for at least one

s = 1, . . . , S. If we let σ2 be the permutation that maximizes f(σ, γ2,U) then we have that

f(σ1, γ1,U) < f(σ2, γ2,U), completing the proof.

Corollary 3. Under the sensitivity model defined in Section 2.2, Γ∗ = exp(γ∗(U)) is a

lower bound for the worst case calibrated hidden bias corresponding to the average case

calibrated Γsens given U.

Using Corollary 3 we can determine the expected lower bound on the worst case hidden

bias corresponding to the average case calibrated Γsens by computing E[Γ∗] via Monte

Carlo estimation. The expectation here is taken over U ∼ U [0, 1]2S . Under this propensity

quantile model for the unobserved confounders, this procedure can give us a sense of how

much less conservative the average case calibration is than the worst case calibration. In

the table below we give Monte Carlo estimates and standard errors for E[Γ∗] corresponding

to the average case calibrated Γsens for each of the four control windows.

For each control window we find that the average case interpretation is significantly less

conservative than the worst case interpretation. For example, using the worst case calibrated
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Control Window Γsens E[Γ∗]

previous weekday/weekend 4.92 24.76 (0.08)
one week prior 5.53 31.42 (0.11)
previous driving day 4.15 17.66 (0.06)
most active telephone day 2.40 5.81 (0.01)

Table 5: Sensitivity analysis for (marginal) α = 0.05 and the expected lower bound on
corresponding worst case calibrated bias E[Γ∗]. Standard errors for Monte Carlo estimates
are in parentheses.

sensitivity analysis we can conclude that if no case-crossover pair was subject to hidden bias

larger than 4.15, there is still significant evidence at level α = 0.05 that talking on the phone

increases the risk of getting in a car accident. In contrast, using the average case calibration

we can say there is significant evidence of a treatment effect even if we expect that the worst

case bias in any case-crossover pair to be greater than 17.66. Notice that for larger values

of Γsens the benefit from using the average case calibration increases. This exercise is not

necessarily meant to be a general purpose procedure but rather a numerical illustration of

the gain in power that comes from using the average case calibration even under relatively

innocuous assumptions about U.

2.6.2. Appendix B

Simultaneous sensitivity analysis

The one-parameter sensitivity model introduced in Section 2.2 is often referred to as the

primary sensitivity analysis. In this model, the association between Usi and Zsi is con-

trolled by Γ and the stochastic ordering in Equation (5) of the main paper were derived by

Rosenbaum (1987) assuming that Usi and rCsi have a near perfect relationship but this is

not always a plausible assumption – for example, if Usi is continuous propensity score for

treatment and the outcome is binary. A more general two-parameter sensitivity model was

first introduced by Gastwirth et al. (1998) where ∆ controls the association between Usi

and rCsi and Λ controls the association between Usi and Zsi. For example, if Us1 = 1 and
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Us2 = 0 then the first unit of the pair is Λ times more likely to receive treatment and ∆

times more likely to have the positive outcome. This model is known as the simultaneous

sensitivity analysis and is particularly useful when it is not plausible that Usi and rCsi are

perfectly correlated. When the outcome is binary – and more generally if ys, the difference

in outcomes in pair s, come from a distribution belonging to Wolfe’s semiparametric family

(see Wolfe (1974)) – Rosenbaum and Silber (2009) show that Γ can be amplified to the

two-parameter model (Λ,∆) by the identity Γ = (Λ∆ + 1)/(Λ + ∆) which we refer to as the

amplification curve. The simultaneous sensitivity model acts as an interpretive aid to the

standard one-parameter procedure; We may consider how usi affects the odds of treatment

and the odds of positive outcome separately and then use the amplification curve to deter-

mine the corresponding Γ with which we can perform a standard one-parameter sensitivity

analysis. Like the one-parameter sensitivity model, the simultaneous sensitivity model does

not require that the investigator specifies the distribution of Usi, only that Usi ∈ [0, 1] for

s = 1, 2, . . . , S and i = 1, 2.

When U is not bounded

Theorem 1 in the main paper is free from any modeling decision of the underlying causal

mechanism. In that sense, it is very general and allows us to relax the restriction that U lie

in the unit interval. This provides flexibility in modeling the unobserved confounders but

for Γ, or ∆ and Λ in the amplified setting, to retain meaning we will have to standardize

the distribution of U in some fashion. For example, we may scale U such that the post

matching variance of Us1 − Us2 is equal to 1. Now suppose that Us1 − Us2 = ±1. Then the

odds that the treated unit has positive outcome in pair s is

Γ =
1 + Λ∆

(1 + Λ)(1 + ∆)
, (2.12)

which is equivalent to the worst case bias when U was taken to lie on the unit interval.

We will refer to this as the one standard deviation (1SD) worst case bias. Related work
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by Wang and Krieger (2006) considers arbitrary distributions of Ws = Us1 − Us2 with

mean 0 and variance 1 after matching. They show that for any such distribution of W =

(W1,W2, . . . ,WS)T , the population mean of ps, E[ps], is maximized whenWs takes values±1

with equal probability. The implication of this result is that when U is scaled appropriately

the 1SD worst case bias is asymptotically more conservative than Γ′ even when U is not

restricted to the unit interval.
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CHAPTER 3

Extended Sensitivity Analysis for Heterogeneous Unmeasured Confounding with an

Application to Sibling Studies of Returns to Education

Abstract

The conventional model for assessing insensitivity to hidden bias in paired obser-

vational studies constructs a worst-case distribution for treatment assignments subject

to bounds on the maximal bias to which any given pair is subjected. In studies where

rare cases of extreme hidden bias are suspected, the maximal bias may be substantially

larger than the typical bias across pairs, such that a correctly specified bound on the

maximal bias would yield an unduly pessimistic perception of the study’s robustness

to hidden bias. We present an extended sensitivity analysis which allows researchers to

simultaneously bound the maximal and typical bias perturbing the pairs under investi-

gation while maintaining the desired Type I error rate. We motivate and illustrate our

method with two sibling studies on the impact of schooling on earnings, one containing

information of cognitive ability of siblings and the other not. Cognitive ability, clearly

influential of both earnings and degree of schooling, is likely similar between members

of most sibling pairs yet could, conceivably, vary drastically for some siblings. The

method is straightforward to implement, simply requiring the solution to a quadratic

program.

3.1. Introduction

3.1.1. A motivating example: Returns to schooling

Is educational attainment a determining factor for success in the labor market? Initial

interest among economists in addressing this question is attributed to the observation in

the late 1950s that increases in education levels could account for much of the produc-

tivity growth in post-war US (Becker, 2009; Griliches, 1970; Card, 1999). With strong

evidence of a positive association between education and earnings in a variety of political

and geographic environments but little to no experimental data, a recurring theme in the
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subsequent pursuit of a causal relationship between education and income is that of the

presence of “ability bias” (Card, 1999). After controlling for family background, or consid-

ering within-family estimates of the causal effect using sibling or twin studies, can latent

differences in ability influence both differences in schooling choice and earnings? A notable

twin study by Ashenfelter and Rouse (1998), which we re-examine in this paper, argued

cogently, albeit with limited statistical evidence, that identical twins can be regarded as

truly identical in all dimensions relevant to schooling choices and future income, including

latent ability. In a survey of contemporary economic investigations of returns to education,

Card (1999, p.1852) addresses this hypothesis:

Despite this evidence, and the strong intuitive appeal of the “equal abilities”

assumption for identical twins, however, I suspect that observers with a strong

a priori belief in the importance of ability bias will remain unconvinced.

Perhaps latent ability is truly identical for many twin pairs but markedly different in a

few pairs; what would happen then? That exogeneity is not testable leaves even the most

compelling observational evidence susceptible to the warranted, though often non-specific,

criticism, “what if bias remains?” Should the totality of evidence assume the absence of

hidden bias, the critic need merely suggest the existence of bias to cast doubt upon the

posited causal mechanism. It is thus incumbent upon researchers not only to anticipate

such criticism, but also to arm themselves with a suitable rejoinder. Rather than arguing

for or against the presence of ability bias or any other unobserved confounding factor, in this

paper we assess the sensitivity of causal conclusions to departures from truly randomized

assignment while allowing for patterns of ability bias that may be highly heterogeneous

across sibling pairs.

3.1.2. Assessing returns to schooling with sibling comparison designs

Sibling comparison studies are a special case of stratified designs where natural blocks are

formed by family membership. These studies automatically control for genetic, socioeco-
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nomic, cultural, and child-rearing characteristics to the extent that they are shared between

siblings; however, instability of familial characteristics over time for sibling pairs of differ-

ent ages and non-shared genetic makeup are among threats to this premise (Donovan and

Susser, 2011). Due to their natural and automatic control of stable familial factors, both

observed and unobserved, sibling comparison designs have long been a popular tool for

studying causal effects in both epidemiological and economic settings; see Griliches (1979)

and Donovan and Susser (2011) for surveys of past and current sibling comparison studies

in economics and epidemiology, respectively.

Sibling comparison designs have been particularly fruitful in the study of returns to school-

ing, where genetic and family background are deemed essential to both schooling choices and

future income; see for example Hauser et al. (1999), Stanek et al. (2011), and Ashenfelter

and Rouse (1998). Hauser et al. (1999) study sibling pairs from the Wisconsin Longitudi-

nal Study (WLS), a random sample (n = 10, 317) of men and women born between 1938

and 1940 who graduated from Wisconsin high schools in 1957. The size of the sample was

set to be approximately a third of all Wisconsin high school graduates in 1957. Random

siblings of those in the study (n = 7, 928), born between 1930 and 1948, were also se-

lected and interviewed. The WLS contains a rich set of baseline covariates and endpoints,

including physical, cognitive, social, and occupational outcomes collected over nearly 60

years following graduation. Uniquely, the WLS dataset contains intelligence quotient (IQ)

scores recorded while a given individual was in high school – a covariate rarely measured in

longitudinal cohort studies.

In other sibling studies of the returns to schooling, such as that of Ashenfelter and Rouse

(1998), baseline intelligence measures such as IQ are not available, making it plausible that

the siblings being compared differ in cognitive ability in unobserved ways. Furthermore,

the IQ data from the WLS study suggests that, when considering same-sex sibling pairs

where one sibling attended college and the other did not (n = 171), intellectual ability is not

balanced sufficiently by shared genetics alone. The boxplots of differences in IQ between
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Figure 1: Boxplots of differences in IQ scores between same-sex siblings where one attended
college and the other did not. (top panel): Male same-sex sibling pairs (n = 128). (bottom
panel): Female same-sex sibling pairs (n = 43).

the college-attending siblings and their counterparts in Figure 1 exhibit a prominent shift

in the IQ distribution between the two groups for both male and female same-sex sibling

pairs. The mean (sd) is 107.1 (14.7) in the college-attending group and 97.4 (14.4) in the

high school-only group for male same-sex sibling pairs. In female same-sex sibling pairs,

these values are 108.1 (14.0) and 101.4 (14.2) for the college-attending and high school-only

attending groups respectively. Details on the construction of the 171 same-sex sibling pairs

can be found in Appendix 3.8.2. An important inclusion criterion was that both siblings

were employed when income data was collected.

3.1.3. Potential for rare but extreme unmeasured biases

Despite their analytical strengths and convenient, automatic stratification, sibling com-

parison designs for estimating causal effects are subject to biases arising from differences

in subject-level confounders. For example, latent ability, as measured by IQ, may differ

substantially within twin pairs in Ashenfelter and Rouse’s twin study. This concern is mag-

nified in sibling studies where discordant within-pair treatment assignment may actually

exacerbate differences in covariates that are related to both the intervention and outcome

of interest (Frisell et al., 2012). When pairs do not arise naturally, as in paired sibling

studies, matching algorithms designed to minimize disparities in observed covariates may
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be used to construct pairs of “comparable” subjects; see, for example, Hansen and Klopfer

(2006) and Stuart (2010) for discussion on various approaches to matching. Matched pairs

constructed in this fashion may be comparable along observed covariates, but they are still

vulnerable to unmeasured bias arising from differences in covariates not available to the

matching algorithm.

While agnostic covariate adjustment within sibling sets as suggested in Rosenbaum (2002b)

can help mitigate the impact of discrepancies in observed individual-specific covariates, bias

arising from differences in unobserved confounders may remain and imperil the conclusions

of the study. An additional inferential step known as a sensitivity analysis assesses the

robustness of the conclusions of a study to these unmeasured biases. Sensitivity analysis was

first introduced by Cornfield et al. (1959) and refined to accommodate continuous outcomes

in Rosenbaum (1987). The resulting sensitivity analysis for paired studies considers the

worst-case bias to which any pair may be subject and asks whether the study conclusions

might change if we assumed that all pairs were exposed to the maximal bias in a manner

adverse to the desired inference. We refer to this as the conventional sensitivity analysis.

See Cornfield et al. (1959), Marcus (1997), Imbens (2003), Yu and Gastwirth (2005), Wang

and Krieger (2006), Egleston et al. (2009), Hosman et al. (2010), Zubizarreta et al. (2013),

Liu et al. (2013), and VanderWeele and Ding (2017) for additional perspectives on and

worked examples of sensitivity analysis.

In many paired studies, sibling or otherwise, hidden biases may strongly influence the re-

sults observed for some pairs and more modestly affect others. If the impact of unmeasured

confounding were truly heterogeneous in this manner, the conventional sensitivity analysis

would be conspicuously conservative. Consider, for example, discrepancies in IQ scores

within sibling pairs measured in the WLS where one sibling attended college for at least

two years and the other received at most a high school diploma. While existing longitudinal

cohort studies rarely contain measures of intelligence (Herd et al., 2014), existing evidence

suggests that discrepancies in IQ between sibling pairs are strongly predictive of both dif-

34



Male Siblings

∆IQ

F
re

qu
en

cy

−40 −20 0 20 40 60

0
5

10
15

Female Siblings

∆IQ

F
re

qu
en

cy

−20 0 20 40

0
1

2
3

4
5

6

Odds Ratio [1, 2) [2, 3) [3, 6) [6, 7) [7, 9) [9, 10)

Count 165 4 0 1 0 1

Figure 2: (left panel): Histogram of between-sibling IQ disparities of same-sex male sibling
pairs in the WLS study where one sibling attended college and the other did not (n = 128).
(right panel): Histogram of between-sibling IQ disparities of same-sex female sibling pairs in
the WLS study where one sibling attended college and the other did not (n = 43). (bottom
panel): Table of the estimated increase in pairwise bias due to IQ disparities between siblings
measured as an odds ratio.

ferences in educational attainment and differences in future income (Stanek et al., 2011).

In the WLS data, the between-sibling disparity in IQ scores is quite variable across sibling

pairs where one sibling attended college and the other did not. The histogram of these

college-minus-high school differences is shown in the left panel of Figure 2 for male sibling

pairs and the right panel for female sibling pairs. Most IQ differences are modest, but a

few sibling pairs have large imbalances (e.g. > 40).

In a sibling study on the returns of schooling where IQ was not recorded, such as Ashenfelter

and Rouse’s twin study, the maximal bias to which any pair is subject could be materially

larger than the typical bias for any sibling pair. Evidence of this pattern’s plausibility

can be seen in the bottom table of Figure 2. The table shows the distribution of the

estimated increase in pairwise bias due to IQ disparities between siblings measured as an

odds ratio. The numerator of the odds ratio is the predicted maximum odds that the sibling

who reported higher income attended college given the reported disparities in IQ while the

denominator corresponds to the maximum odds had both siblings had the same IQ. (the

method for estimating these odds ratios is described in Appendices 3.8.3-3.8.4). While the
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odds ratio in most pairs is close to one, there are a handful of pairs with odds ratios near 2

and two rare cases of odds ratios greater than 6. As far as the ‘typical’ or ‘expected’ pairwise

bias is as interpretable a quantity as the worst-case pairwise bias, an extended sensitivity

analysis of both maximal and expected bias may alleviate concerns that the conventional

approach is overly pessimistic while providing a more flexible handling of unobserved bias.

3.1.4. Accommodating varying degrees of unmeasured confounding

We present an extended sensitivity analysis bounding both the maximal and expected bias

for paired studies. The concept of expected bias is made precise in §3.3.1. The theoretical

foundations and implementation of the extended sensitivity analysis are developed in §§3.2-

3.4, while supporting Type I error control and power simulations are presented in §3.5. The

procedure involves two interpretable parameters, Γ and Γ̄ ≤ Γ, bounding the maximal and

expected bias, respectively. At one extreme, setting Γ̄ = Γ recovers the conventional sensi-

tivity analysis for paired studies proposed in Rosenbaum (1987, §2). At the other, setting

Γ =∞ for a fixed value of Γ̄ allows one to bound the average bias while leaving the maximal

bias in any given pair unbounded, subsuming the extension presented in Rosenbaum (1987,

§4) where the investigator specifies a fraction β of the pairs that satisfy a constraint on the

maximal bias and allows the remaining pairs to be exposed to potentially unbounded bias.

The procedure builds on recent work by Hasegawa and Small (2017) that established an

exact sensitivity analysis for the sample average bias for paired studies with binary out-

comes in two important ways. First, our procedure accommodates continuous outcomes

while providing an asymptotically valid testing procedure for sharp null hypotheses for a

large class of test statistics. While generalizing to continuous outcomes corrupts properties

unique to McNemar’s test statistic utilized in Hasegawa and Small (2017), these difficulties

are overcome through a new formulation of the optimization problem necessitated by the

sensitivity analysis as a quadratic program. Second, our procedure allows the researcher to

bound the expected bias at the level of a superpopulation, rather than the average of the

bias at the level of the observed study population, if a superpopulation model is deemed ap-
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propriate. This facilitates consonance between superpopulation and finite-sample modes of

inference to which the researcher is automatically entitled when only bounding the maximal

bias. Actualizing this harmony requires the combination of concentration inequalities with

the technique presented in Berger and Boos (1994) for yielding valid p-values by maximizing

over a confidence set for nuisance parameters.

To demonstrate the practical consequences of our procedure we return in §3.6 to the moti-

vating example of returns to schooling. Using the availability of IQ measures in the WLS

sibling data, we follow Hsu and Small (2013) to estimate the maximal and expected bias

under the assumption that inherent cognitive ability is the overwhelming unobserved con-

founding factor in sibling studies of returns to schooling when IQ measures are not available.

We compare standard and extended sensitivity analyses calibrated to these estimates of the

sensitivity parameters for Ashenfelter and Rouse’s twin study where IQ was not observed.

3.2. Sensitivity analysis for paired studies

3.2.1. An idealized construction of a paired observational study

There are I pairs of individuals. In the ith matched pair one individual receives the treat-

ment, Zij = 1, and the other receives the control, Zij′ = 0, such that Zi1 + Zi2 = 1 for

each i. In practice, the I pairs come into being by minimizing a metric reflective of the

within-pair discrepancies between the observed covariates xij for the treated and control

individuals in a candidate pairing, such that xi1 ≈ xi2 in the resulting pairs. As an ideal-

ization of this practice, we follow Rosenbaum (1987) and imagine a generative model where

the pairs are constructed, for i = 1, ..., I, by initially drawing, without replacement from an

infinite population of treated individuals (that is, conditional upon Z = 1), an individual

who has an observed covariate Xi = xi. For each i, we then sample a control individual

from the population of controls with the same value for the observed covariate, i.e. given

Z = 0, X = xi. Finally, randomly assign indices (i, 1) and (i, 2) to the two individuals in

pair i, and let Xi be a random variable denoting the shared value Xi1 = Xi2. Despite having
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a shared value Xi, it may be the case that Ui1 6= Ui2 in any pair i for some unobserved

covariate U . In §3.3.3, we describe the extent to which the following methodology applies

to finite-sample inference in the absence of a superpopulation.

Under the stable unit-treatment value assumption (Rubin, 1980), individual j in matched

set i has a potential outcome under treatment, RT ij , and under control, RCij which does not

depend on the treatment received by other individuals in the population. The fundamental

problem of causal inference is that vector (RT ij , RCij) is not jointly observable. Instead, we

observe the response Rij = RT ijZij +RCij(1−Zij), and the observed treated-minus-control

paired differences Yi = (Zi1 − Zi2)(Ri1 − Ri2). Lowercase letters denote realizations of

random variables. Let FI = {(xij , uij , rT ij , rCij), 1 ≤ i ≤ I, j = 1, 2} be the values of the

potential outcomes, measured covariates, and unmeasured covariates for the 2I individuals

in the observational study at hand. At times it will be convenient to use boldface for

vector-valued constants and random variables after the assignment of indices. For example,

Z represents a vector of length 2I with elements Z = (Z11, Z12, ..., ZI2), while Ri is a vector

of length two with elements Ri = (Ri1, Ri2).

3.2.2. Randomization inference under strong ignorability

The expectation of each paired difference Yi in the infinite population model of the preceding

section is E(Yi | Xij = x) = E(RT ij | Zij = 1, Xij = x) − E(RCij | Zij = 0, Xij = x) which

need not equal τ(x) := E(RT ij − RCij | Xij = x) without further assumptions on the

relationship between the potential outcomes, the observed covariates, and the treatment

indicators. A sufficient condition for equality of these expectations, strong ignorability,

entails that for any point x,

(RT , RC) ⊥⊥ Z | X, 0 < P(Z = 1 | X = x) < 1. (3.1)

Strong ignorability facilitates far more than equality between E(Yi | Xij = x) and τ(x);

indeed, it entitles the researcher to use randomization tests akin to those justified in ran-
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domized experiments. We consider general hypotheses of the form

H0 : FT (RT ij) = FC(RCij) ∀i, j

for pre-specified functions FT (·) and FC(·). While this form accommodates flexible models

for treatment effects, perhaps the most classical specification is the additive treatment

effect model where the treatment effect is constant at τ for all individuals. Under this

model RT ij = RCij + τ , which can be expressed by setting FT (RT ij) = RT ij − τ and

FC(RCij) = RCij . From our data alone we observe Fij = FT (RT ij)Zij +FC(RCij)(1−Zij);

let F = [F11, ..., FI2]. Under H0, the vectors FC = [FC(RC11), ..., FC(RCI2)] and FT =

[FT (RT11), ..., FT (RTI2)] are known to be equal, and hence are entirely specified by the

vector of observed responses R.

Let t(Z,F) be an arbitrary test statistic that is a function of the treatment indicators Zij

and the observed values Fij , and let ΩI = {z : zi1 + zi2 = 1, 1 ≤ i ≤ I} be the set of 2I

possible assignments of individuals to treatment and control in a paired design. Further let

fC be the realized value of the random variable FC . When H0 holds, fC is fully observed.

Under the idealized model in §3.2.1 and under (3.1), Theorem 1 of Rosenbaum (1984)

demonstrates that under the null hypothesis H0,

P{t(Z,F) ≥ a | FI , H0} =
1

2I

∑
z∈ΩI

χ{t(z, fC) ≥ a}, (3.2)

where χ{A} is an indicator that the event A occurred. Importantly, under H0, the random-

ization distribution (3.2) is free of unknown parameters through conditioning on FI , and

hence can be used directly to facilitate inference on H0.

3.2.3. Sensitivity analysis bounding the supremum

In paired randomized experiments, the physical act of randomization breaks the association

between potential outcomes and the intervention and thus justifies both the assumption
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of strong ignorability and randomization inference through the conditional distribution in

(3.2). Paired observational studies aim to mimic an idealized randomized experiment by

creating pairs where individuals are similar on the basis of their observed covariates, X,

which would similarly facilitate randomization inference through (3.2) if strong ignorability

held. In observational studies, strong ignorability, and in turn belief in (3.2), turns a

statement of fact into a leap of faith due to the potential presence of unobserved factor

U . That treatment assignment is rarely known to be strongly ignorable given observed

covariates X alone necessitates a sensitvity analysis which assesses the robustness of a

study’s conclusions to factors not included in X. A sensitivity analysis operates under the

premise that strong ignorability would have been satisfied if an additional pretreatment

covariate U had been used in constructing the pairs, that is if for any x and u

(RT , RC) ⊥⊥ Z | (X,U), 0 < P(Z = 1 | X = x, U = u) < 1. (3.3)

A simple model parameterizing the impact of hidden bias presented in Rosenbaum (1987,

§2) relates U to the assignment mechanism through a parameter Γ = exp(γ) ≥ 1, which

constrains the degree to which U can affect the odds of receiving the intervention through

a logit model,

logit(P(Z = 1 | X = x, U = u)) = κ(x) + γu, 0 ≤ u ≤ 1. (3.4)

The bounds on u in (3.4) may be viewed as a restriction on the scale of the unobserved

covariate that is required for the numerical value of γ to have meaning (Rosenbaum, 2002c,

Chapter 4). Letting πi = P(Zi1 = 1 | FI), (3.3) and (3.4) then imply πi = expit(γ(ui1−ui2))

and 1 − πi = expit(γ(ui2 − ui1)). As a result, the model requires that the bound π∗i =

max{πi, 1 − πi} = expit(γ|ui1 − ui2|) ≤ Γ/(1 + Γ) holds uniformly for all i, but imposes

no additional constraints on π, and imposes no constraint on the relationship between

the unobserved covariate and the potential outcomes. Theorem 1 of Rosenbaum (1987)

illustrates that (3.3), (3.4) and the generative model described in §3.2.1 imply that under
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a sharp null H0, the distribution t(Z,F) given FI takes on the modified form

P{t(Z,F) ≥ a | FI , H0} =
∑
z∈ΩI

[
χ{t(z, fC) ≥ a}

×
I∏
i=1

expit(γ(ui1 − ui2))zi1expit(γ(ui2 − ui1))zi2

]
. (3.5)

At Γ = 1⇔ γ = 0, (3.5) recovers (3.2), hence representing strong ignorability on the basis

of X alone. For Γ > 1, (3.5) depends on the unknown values of u. A sensitivity analysis

proceeds by, for a given value of Γ, finding bounds on (3.5) by optimizing over the nuisance

parameters u ∈ [0, 1]2I (or equivalently, optimizing over πi subject to π∗i ≤ Γ/(1 + Γ)).

We consider test statistics of the form t(Z,F) = ZTq for some function q = q(F), commonly

referred to as sum statistics. Examples of sum statistics in paired observational studies in-

clude Wilcoxon’s signed rank test and McNemar’s test among many others; see Rosenbaum

(2002c, Chapter 2) for more on sum statistics. For example, were we to test the null that the

treatment effect was constant at zero for all individuals (commonly referred to as Fisher’s

sharp null hypothesis), then a choice of qij = (Rij−Rij′)/I = (rCij−rCij′)/I would amount

to a choice of the average of the treated-minus-control paired differences in outcomes as the

test statistic. In paired studies, arguments parallel to those in Rosenbaum (2002c, Chapter

4) yield that a tight lower bound on (3.5) is found by setting ui1−ui2 = −sign(qi1− qi2) for

each pair i, where sign(a) is the sign of the scalar a. Similarly, a tight upper bound on (3.5)

is found by setting ui1−ui2 = sign(qi1− qi2) for each i. As a further illustration, if one uses

the difference in means as the test statistic, the lower (upper) bound is attained through

a perfect negative (positive) correlation between the differences in unmeasured covariates

and the signs of the treated-minus-control paired differences.
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3.3. An extended sensitivity analysis

3.3.1. Average-case unmeasured confounding in paired studies

In §§1.1-1.2, it was argued that large discrepancies in IQ within pairs of siblings, while likely

uncommon, would have a large impact on both likelihood of attaining more than a high

school degree and on an individual’s expected earnings. Were this the only unmeasured

confounder, we would then expect most of the values for π∗, the maximal probabilities of

assignment to treatment within a pair, to not deviate substantially from 0.5, while a few

pairs would likely have values for π∗i substantially larger than 0.5. The conventional model

for a sensitivity analysis presented in §3.2.3 bounds π∗i by Γ/(1 + Γ) for all pairs. Despite

typical discrepancies in IQ likely being small, the smallest value of Γ for which (3.4) and

(3.5) hold would be large due to the small number of extremely biased pairs. When utilized

in its original form, the sensitivity analysis in §2.3 may then paint an overly pessimistic

picture of the robustness of the study’s findings to unmeasured confounding under this

belief, as it cannot account for the ‘typical’ level of unmeasured confounding being different

from the worst-case level.

We consider an extension of the conventional sensitivity analysis summarized in §2.3 in-

volving two sensitivity parameters, Γ and Γ̄. The first, Γ, plays a role identical to that

of Γ in the conventional sensitivity analysis by bounding the supremum of the biased as-

signment probabilities within a pair. Explicitly, we bound the probabilities of receiving the

intervention through a logit form,

logit(P(Z = 1 | X,U)) = κ(X) + γU, 0 ≤ U ≤ 1. (3.6)

That 0 ≤ U ≤ 1 trivially implies that for any pair i

1/2 ≤ expit(γ|Ui1 − Ui2|) ≤
Γ

1 + Γ
. (3.7)
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Under (3.3) and the setup of §3.2.1, (3.6) yields that Π∗i = max{Πi, 1−Πi} = expit(γ|Ui1−

Ui2|) ≤ Γ/(1 + Γ), where Πi = P(Zi1 = 1 | Xi,Ui,RT i,RCi) = P(Zi1 = 1 | Xi,Ui). We

capitalize Uij and Π∗i to emphasize that they themselves are random variables with respect

to the superpopulation model in §2.1, which would become deterministic by conditioning

in FI .

The second sensitivity parameter, Γ̄, serves to bound the expectation of the biased proba-

bilities. We define µπ∗ = E[Π∗i ] = E[expit(γ|Ui1 − Ui2|)], and impose that for some value Γ̄

such that 1 ≤ Γ̄ ≤ Γ,

1/2 ≤ µπ∗ ≤
Γ̄

1 + Γ̄
. (3.8)

Again, this expectation is taken over repeated samples in the idealized setting in §3.2.1,

within which the fixed but unknown values π∗i in our observational study can be modeled as

iid realizations of the random variables Π∗i . As with the conventional sensitivity analysis,

our model makes no assumption about the relationship between the unobserved covariates

and the potential outcomes.

Like the conventional sensitivity analysis, our extended procedure solves an optimization

problem over a set of nuisance parameters π that satisfy the typical and maximal bias

bounds specified in (3.7) and (3.8). Although the population-level bound Π∗i ≤ Γ/(1 + Γ)

implies the corresponding sample level bound π∗i ≤ Γ/(1+Γ), the same cannot be said about

the corresponding bound on µ∗π. If µ∗π ≤ Γ̄/(1 + Γ̄), a sample realization π̄∗ arbitrarily close

to Γ/(1 + Γ) is still possible, however unlikely. To address this, we translate the bound on

µ∗π to a stochastic bound on Π̄∗.

In order to construct this stochastic bound, we consider properties of the random variable

Π∗i across draws from the idealized setting in §3.2.1. From (3.7) and (3.8), we have that

for all i Π∗i is bounded above by Γ/(1 + Γ), bounded below by 1/2, and has expectation

µπ∗ which is itself bounded above by Γ̄/(1 + Γ̄). The Bhatia-Davis inequality (Bhatia and
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Davis, 2000) provides the variance upper bound

var(Π∗i ) ≤ (Γ/(1 + Γ)− µπ∗) (µπ∗ − 1/2) = ν2(Γ, µπ∗).

As the Π∗i can further be modeled as iid random variables under the setting being considered,

defining Π̄∗ = I−1
∑I

i=1 Π∗i , it follows that

E[Π̄∗] = µπ∗ , var(Π̄∗) ≤ ν2(Γ, µπ∗)/I.

If var(Π∗i ) > 0 the Central Limit Theorem applies to Π̄∗, indicating that for any 0 < β ≤ 0.5

lim
I→∞

P(Π̄∗ ∈ Cβ(Γ, µπ∗)) ≥ 1− β, (3.9)

where, because Π̄∗ ≥ 1/2 by definition of Π∗i

Cβ(Γ, µπ∗) =
[
1/2, µπ∗ + I−1/2Φ−1(1− β)ν(Γ, µπ∗)

]
, (3.10)

and Φ−1(p) is the p-quantile of the standard normal distribution. Further, (3.9) is trivially

true if var(Π∗i ) = 0, as the upper bound of Cβ(Γ, µπ∗) is no smaller than µπ∗ when β ≤ 0.5.

That is, knowledge of µπ∗ alone enables the construction of asymptotically valid uncertainty

sets for Π̄∗.

3.3.2. Sensitivity analysis bounding the supremum and expectation

Conditional upon FI , attention returns to the unmeasured confounders for the individuals

in our study population, u, and the corresponding assignment probabilities π. For any

value of u and value for Γ, we have that

P{t(Z,F) ≥ a | FI , H0} =
∑
z∈ΩI

χ{t(z, fC) ≥ a}
I∏
i=1

πzi1i (1− πi)zi2 , (3.11)
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where πi = expit(γ(ui1−ui2)). As the shared notation seeks to emphasize, (3.11) is precisely

the null distribution utilized in (3.5). Here as well as in (3.5), the unmeasured confounders

u, and hence the conditional assignment probabilities π, are unknown constants, hindering

the desired inference through their presence as nuisance parameters. The approach taken

in §3.2.3 was to maximize or minimize (3.11) over u ∈ [0, 1]2I for a given value Γ, or

equivalently over π∗i ≤ Γ/(1 + Γ). In what follows, we replace this optimization with one

over a subset informed by both Γ and Γ̄ while providing an asymptotically valid level-α

test.

Suppose without loss of generality that we are considering a one-sided, greater than alter-

native. Let Pβ(Γ, µπ∗) = {π : π̄∗ ∈ Cβ(Γ, µπ∗), π∗i ≤ Γ/(1 + Γ), 1 ≤ i ≤ I}, and consider

the following optimization problem:

maximize
π,µπ∗

p(π, µπ∗) =
∑
z∈ΩI

χ{t(z, fC) ≥ t(Z,F)}
I∏
i=1

πzi1i (1− πi)zi2 (3.12)

subject to π ∈ Pβ(Γ, µπ∗)

µπ∗ ≤ Γ̄/(1 + Γ̄).

Let Uβ(Γ, Γ̄) be the set of feasible solutions to (3.12). Let πsup,β and µsup,β be the arg max

of (3.12), such that p(πsup,β, µsup,β) is the tail probability at the solution to (3.12). If Γ̄ < Γ,

let pβ = p(πsup,β, µsup,β) + β; otherwise, let pβ = p(πsup,β, µsup,β).

Proposition 2. Suppose we sample I pairs from an infinite population through the procedure

in §2.1, that treatment assignment is strongly ignorable given (X,U), and that (3.7) and

(3.8) hold at Γ and Γ̄ ≤ Γ respectively. Then, if H0 is true, for 0 < β ≤ 0.5,

lim
I→∞

P(pβ ≤ α | H0) ≤ α

That is, pβ is an asymptotically valid p-value for an extended sensitivity analysis testing H0

with parameters (Γ, Γ̄).
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Proof. We first prove the result for Γ̄ < Γ. The proof is similar to that of Lemma 1 in

Berger and Boos (1994), differing primarily in that the nuisance parameters given FI , π,

are themselves realizations of random variables in the setting of §3.2.1. Suppose the null

hypothesis is true, and let µ0 be the true value for µπ∗ . Further, for any set FI let π0 be

the true value of π. and let p(π0, µ0) be the value of (3.11) evaluated at π0 and µ0.

P(pβ ≤ α) = E[P(pβ ≤ α, π̄∗0 ∈ Cβ(Γ, µ0) | FI)] + E[P(pβ ≤ α, π̄∗0 /∈ Cβ(Γ, µ0) | FI)]

≤ E[P(p(π0, µ0) + β ≤ α | FI)] + E[P(π̄∗0 /∈ Cβ(Γ, µ0) | FI)]

= E[P(p(π0, µ0) ≤ α− β | FI)] + P(Π̄∗ /∈ Cβ(Γ, µ0))

The second line follows from p(π0, µ0) ≤ supπ∈Pβ(Γ,µ0) p(π, µ0) ≤ pβ − β if π̄∗0 ∈ Cβ(Γ, µ0).

By validity of (3.11) at π0 given FI , the first term in the third line is less than or equal to

α − β, while (3.9) illustrates that limI→∞P(Π̄∗ /∈ Cβ(Γ, µ0)) ≤ β for 0 < β ≤ 0.5, proving

the result for Γ̄ < Γ.

If Γ̄ = Γ, a solution π ∈ U(Γ,Γ) is πi = Γ/(1+Γ) if (qi1 > qi2) and πi = 1/(1+Γ) otherwise,

which recovers the sensitivity analysis of §2.3. Call this solution πΓ. By arguments in

Rosenbaum (2002c, Chapter 4), this solution yields a tight upper bound for the probability

in (3.11) under the constraint that π∗i ≤ Γ/(1 + Γ). Hence, p(πsup,β, µsup,β) = p(πΓ,Γ/(1 +

Γ)) for any β. At Γ̄ = Γ, we simply employ the conventional sensitivity analysis which

produces valid p-values without an additive increase by β.

Prior to conducting an extended sensitivity analysis, the practitioner needs to choose a value

for β. A compromise must be made, as β acts as a lower bound on the p-value reported

by the extended sensitivity analysis but larger values of β correspond to tighter constraints

on π̄∗. Accordingly, we recommend that β be chosen to be smaller than the precision with

which p-values are typically reported, but not by much. This recommendation is similar to

the guidance given in Berger and Boos (1994).
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pβ yields an asymptotically valid p-value for an extended sensitivity analysis with parame-

ters (Γ, Γ̄) because the uncertainty set Cβ(Γ, µπ∗) defined in (3.10) utilizes the Central Limit

Theorem. As our random variables Π∗i are bounded, we are entitled to certain distribution-

free uncertainty sets based on concentration inequalities which have the desired coverage for

all sample sizes I; see Appendix 3.8.1 for two approaches using Hoeffding’s inequality and

Bennett’s inequality. These sets, used in place of Cβ(Γ, µπ∗) when constructing Pβ(Γ, µπ∗),

would provide valid p-values for the extended sensitivity analysis through the solution of

(3.12) for all values of I. Unfortunately, exact computation of pβ through (3.12) is itself

generally intractable, with the additional constraints imposed on the value of π̄ destroying

the properties of the optimization problem solved by the conventional sensitivity analysis

which facilitate an exact solution. In §3.4, we provide an implementation of our sensitivity

analysis valid in large samples by approximating (3.11) with an appropriate normal dis-

tribution, justified under mild conditions. As we employ a normal approximation through

our implementation, already implying a large-sample regime, we proceed illustrating the

method using the asymptotically valid uncertainty set Cβ(Γ, µπ∗).

3.3.3. On extended sensitivity analyses for observed study populations

Under the superpopulation model described in §3.2.1, Π∗i is itself a random variable with

expectation E[Π̄∗]. In randomized experiments and observational studies, the assumption

that the individuals in the study arose as a sample from some larger target population is

often specious. Such an assumption is not required for inferential statements, as the act

of random assignment to intervention itself can form the basis for probabilistic statements

and hypothesis tests, endowing randomized experiments with what Fisher referred to as a

“reasoned basis for inference” (Fisher, 1935). Rosenbaum (1999) further argues that the

most compelling observational studies are not those which are representative of a larger

population, but rather those arrived upon through an active choice of the conditions of

observation, seeking the “rare circumstances in which tangible evidence may be obtained to

distinguish treatment effects from the most plausible biases” (Rosenbaum, 1999, p. 259).
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As (3.5) indicates through conditioning on the study population, FI , the classical sensitiv-

ity analysis in §3.2.3 yields a null distribution for finite-sample inference whose nuisance

parameters are the unknown assignment probabilities π for the individuals in the study at

hand. The parameter Γ, which originally served to bound the supremum of the random

variables Π∗i , also bounds the supremum of the observed values π∗i . This yields harmony

between inference conducted for the finite study population and inference assuming an in-

finite population into existence when interest is in the hypothesis H0. Inference given FI is

valid on its own, but if a superpopulation model is deemed appropriate, inference given FI

yields valid unconditional inference within that framework.

The motivation for formulating the extended sensitivity analysis with explicit reference to

a superpopulation is that while bounds on the supremum of a random variable bound the

random variable’s realizations, bounds on the expectation of a random variable do not afford

bounds in the sample average. The idealized model is used to formulate probabilistic bounds

for the sample average Π̄∗, which then entitle us to a further bound on the average of the

realized vector π∗. Proposition 2 indicates that the price to be paid for implementing this

bound is the addition of an extra β term to the p-value, necessitated by the view of π∗ as a

realization of a random variable. Should a superpopulation model be deemed unreasonable,

our model could instead be interpreted as placing a bound on the sample average of the

parameters π∗, π̄∗, in the particular observational study being analyzed. This interpretation

eliminates the need for both the uncertainty set Cβ(Γ, µπ∗) and the increase in the p-value by

β, and an option to consider study population inference is available within our R function.

In our particular case study we proceed using superpopulation bounds, as in calibrating

the sensitivity parameters in one observational study by means of another one must assume

comparability of biases in the two studies.

3.3.4. A special case: Binary outcomes

Although exact computation of pβ is generally intractable, in one special but common

setting it is not. When the outcomes being studied are binary and t(Z,F) is chosen to be
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McNemar’s test statistic, computing pβ exactly under Fisher’s sharp null H0 : RT ij = RCij

becomes a straightforward exercise. Recall that McNemar’s test statistic counts the number

of pairs where the subject under treatment has a positive outcome and the control subject

does not; that is, t(Z,F) =
∑I

i=1(Zi1−Zi2)(RCi1−RCi2)/2 + 1/2 when Fisher’s sharp null

is true. Since pairs that are not discordant in treatment and outcome do not contribute to

McNemar’s statistic it is natural to distinguish pairs that are discordant in outcome and

those that are not. Let the first Id pairs be the discordant pairs and the last Ic be the

concordant pairs so that I = Id + Ic. Furthermore, let the first unit of each discordant pair

be the unit with positive outcome, that is Ri1 = 1 for i = 1, . . . , Id.

For the special case of McNemar’s test, let µm be the value of µπ∗ ≤ Γ̄/(1+Γ̄) that maximizes

the upper bound of Cβ(Γ, µπ∗) and let π̄m be the maximized upper bound. Define π̄c = 1/2,

π̄d = min {(Iπ̄m − Icπ̄c)/Id,Γ/(1 + Γ)} ,

and πm = ([π̄d · 1d, π̄c · 1c]), where 1k is a vector of Ik ones. (πm, µm) is then a feasible

solution to (3.12) that is designed to put as much bias on the discordant pairs as is allowed

by the constraints of the optimization problem. Furthermore, since the concordant pairs do

not contribute to the test statistic we have that p(πm, µm) = P(B(Id, π̄d) ≥ t(Z,F)), where

B(Id, π̄d) is a Binomial random variable with success probability π̄d and Id trials. Now, let

pβ = p(πm, µm) + β when Γ̄ < Γ and let pβ = p(πΓ,Γ/(1 + Γ)) otherwise. In the following

proposition we show that, in this special setting, an exact solution to (3.12) simply requires

computing this Binomial tail probability.

Proposition 3. Consider a test of H0 : RT ij = RCij with binary outcomes, and let t(Z,F)

be McNemar’s test statistic. Further, let Cβ(Γ, µπ∗) be an exact, distribution-free 1 − β

uncertainty set. Then under the same conditions as Proposition 2,

P(pβ ≤ α | H0) ≤ α
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for any I if t(Z,F) ≥ Idπ̄d. In other words, for any value of I, computing a valid p-value

for an extended sensitivity analysis testing H0 with parameters (Γ, Γ̄) reduces to computing

the Binomial tail probability P(B(Id, π̄d) ≥ t(Z,F)).

Proof. When Γ̄ = Γ, the proof follows immediately from the proof of this case in Proposition

2. Hence, we restrict our attention to the case when Γ̄ < Γ. As noted in §3.3.2, if we replace

Cβ(Γ, µπ∗) with a distribution-free uncertainty set the optimal solution to (3.12) yields a

valid p-value for an extended sensitivity analysis for all values of I. All that remains to be

shown is that (πm, µm) is the argmax of (3.12).

Without loss of generality, suppose once again that the first subject of each discordant pair

is the unit with a positive outcome, Ri1 = 1 for all i = 1, . . . , Id. Let (π′, µ′) be a feasible

solution of (3.12) and define π̄′d and π̄′c to be the sample average of the maximal assignment

probabilities for the discordant and concordant pairs, respectively. ([π̄′d · 1d, π̄′c · 1c], µ′) is

clearly also a feasible solution. Then, Theorem 1 in Hasegawa and Small (2017) implies

that p([π̄′d · 1d, π̄′c · 1c], µ′) ≥ p(π′, µ′) when t(Z,F) ≥ Id · π̄′d. Hence, we need only consider

feasible solutions of the form ([π̄′d · 1d, π̄′c · 1c], µ′). An elementary fact about Binomial

random variables is that B(Id, p1) stochastically dominates B(Id, p2) when p1 ≥ p2. By

construction, (πm, µm) yields a feasible solution such that π̄d ≥ π̄′d for all feasible solutions

of the form ([π̄′d ·1d, π̄′c ·1c], µ′). Consequently, p(πm, µm) ≥ p([π̄′d ·1d, π̄′c ·1c], µ′) ≥ p(π′, µ′)

for all feasible solutions (π′, µ′) which proves the result for Γ̄ < Γ.

For McNemar’s test, the extended sensitivity analysis exhibits an interesting behavior when

π̄d = Γ/(1 + Γ): the procedure returns a p-value equal to the p-value returned by the

conventional sensitivity analysis at Γ plus the extra β term. We still pay the cost of

specifying a bound on E[Π∗i ] but do not receive the benefit of a tighter constraint on the

realization of π∗ for discordant pairs. What, exactly, explains this phenomenon? A plausible

scenario that may give rise to this behavior is when Ic >> Id, i.e. there are many concordant
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pairs in the sample of I pairs. In throwing out concordant pairs when using McNemar’s

statistic, the uncertainty set for Π̄∗, the average of Π∗i over all pairs, tells us relatively little

about the realized average π̄∗d over discordant pairs, reflecting the cost of bounding the

marginal expectation E[Π∗i ] instead of the conditional expectation E[Π∗i | RT i,RCi].

Although this behavior indicates that the extended sensitivity analysis is, in some sense,

suboptimal compared to the conventional sensitivity analysis when Ic >> Id, the practical

implications are mostly negligible as β is chosen to be smaller than the precision with which

p-values are generally reported. Furthermore, given a choice of Γ and conditional on (Id, Ic),

we can a priori determine the value of Γ̄ above which the conventional analysis is superior

to the extended analysis. Because (Id, Ic) are known conditional on FI , we are not at

risk of using the data twice – once to choose the best test and once to perform that test.

Consequently, the resulting sensitivity analyses will still have the appropriate level.

3.4. Implementation through quadratic programming

The test statistics described in §3.2.3 can be represented as the sum of I independent

random variables, ZTq =
∑I

i=1 Ti, where Ti = (qi1 + qi2)/2 + (Zi1 − Zi2)(qi1 − qi2)/2. This

suggests that, under mild regularity conditions, a central limit theorem would be applicable

to the distribution of ZTq for any value of π in (3.11) for almost every sample path FI .

One sufficient condition proposed in the special central limit theorem of Hájek et al. (1999,

§6.1.2) is that, almost surely,

∑I
i=1(qi1 − qi2)2

max
1≤i≤I

(qi1 − qi2)2
→∞,

which requires that no one term (qi1 − qi2)2 dominates the sum as the number of pairs

increases. (An aside: the central limit theorem in Hájek et al. (1999, §6.1.2) as originally

stated applies to sums of the form
∑I

i=1 aiXi where Xi are iid random variables; however,

the proof can readily be extended to settings where Iσ2 ≤
∑I

i=1 var(Xi) ≤ Icσ2 for c > 1

while dropping the requirement of identical distribution, which encompasses the setting of
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our extended sensitivity analysis). Under a normal approximation, the problem of finding

the worst-case p-value is equivalent to finding the worst-case deviate.

Recall that a sensitivity analysis is typically conducted only if the null hypothesis is rejected

under the assumption of no unmeasured confounding (Γ = Γ̄ = 1), and then proceeds by it-

eratively increasing the sensitivity parameters until the test fails to reject. Having proceeded

to sensitivity analysis only after rejecting the null under no unmeasured confounding, even

with one-sided alternatives we can safely consider rejection or failure to reject for sequen-

tially larger values of Γ and Γ̄ based on the minimal squared deviate, an objective function

which is preferred for computational reasons alluded to below. Recalling that under (3.11)

we condition on FI and hence treat the vector q as fixed, minimizing the squared deviate

can be expressed as an optimization problem over the unknown probabilities π as

min
π∈Uβ(Γ,Γ̄)

(t− Eπ[ZTq | FI ])2

varπ(ZTq | FI)
, (3.13)

where t is the observed value of the statistic t(Z,F), and the expectation and variance are

for the test statistic t(Z,F) under the randomization distribution (3.11) for a given vector

π. Under a normal approximation for t(Z,F), the squared deviate follows a χ2
1 distribution.

By the argument of the previous section, we then reject the null at level α if (3.13) is greater

than or equal to G−1(1−2(α−β)) for one-sided alternatives or G−1(1−(α−β)) for two-sided

alternatives, where G−1(p) is the p quantile of a χ2
1 distribution.

The expectation and variance of the contribution of Ti can be expressed as a function of

the unknown vector π as

Eπ[Ti | FI ] = qTi πi (3.14)

varπ(Ti | FI) = πi(1− πi)(qi1 − qi2)2 (3.15)

= (q2
i )
Tπi − (qTi πi)

2

where πi and qi are vectors of length two with elements πi = (πi1, πi2) and qi = (qi1, qi2),
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respectively. Suppose without loss of generality that we are considering a one-sided, greater

than alternative and that we rejected the null at (Γ, Γ̄) = (1, 1), which implies that t ≥

(2I)−1
∑I

i=1

∑2
j=1 qij (i.e. that the observed value of t exceeded its null expectation). Sort

each vector qi in descending order such that qi1 ≥ qi2. Then, varπ(Ti | FI) = varπ∗(Ti | FI)

from (3.15), while from (3.14) Eπ[Ti | FI ] ≤ Eπ∗ [Ti | FI ] = qTi π
∗
i and (qi1 + qi2)/2 ≤

Eπ∗ [Ti | FI ]. Hence, any feasible solution π′ to (3.13) has an objective value that is no

smaller than that of (π∗)′, as the variance will be the same while, recalling the iterative

nature of a sensitivity analysis, the distance (t − E(π∗)′ [Z
Tq′ | FI ])2 will be smaller than

(t − Eπ′ [Z
Tq′ | FI ])2. Maintaining this ordering of the vectors qi, we can express our

optimization problem as a function of the maximal probabilities π∗i .

For any candidate π∗, we reject under a normal approximation with a one-sided, greater

than alternative at level α−β if the corresponding squared deviate exceeds its critical value,

G−1(1−2(α−β)) i.e. if ζ(π∗, α−β) = (t−Eπ∗ [Z
Tq | FI ])2−G−1(1−2(α−β))varπ∗(Z

Tq |

FI) ≥ 0. We write ζ(π∗, α− β) explicitly as a function of π∗ as

ζ(π∗, α− β) = (t− qTπ∗)2 −G−1(1− 2(α− β))
I∑
i=1

(
(q2
i )
Tπ∗i − (qTi π

∗
i )

2
)

If we find that ζ(π∗, α − β) ≥ 0 for all feasible π∗ ∈ Uβ(Γ, Γ̄), we can reject the null while

asymptotically controlling the size of the extended sensitivity analysis with parameters

(Γ, Γ̄) at α. The function ζ(π∗, α − β) is convex and quadratic in π∗. Meanwhile, we

explicitly write the constraints determining membership in Uβ(Γ, Γ̄) as

1/2 ≤ π∗i ≤ Γ/(1 + Γ), 1 ≤ i ≤ I (3.16)

I−1
I∑
i=1

π∗i ≤ µπ∗ + I−1/2Φ−1(1− β) {(Γ/(1 + Γ)− µπ∗) (µπ∗ − 1/2)}1/2 (3.17)

µπ∗ ≤ Γ̄/(1 + Γ̄). (3.18)

For a fixed value of µπ∗ ≤ Γ̄/(1 + Γ̄) the constraints are linear in the unknown maximal
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probabilites π∗i . Hence, for fixed µπ∗ , the problem minπ∗ ζ(π∗, α− β) subject to (3.16) and

(3.17) can be written as a quadratic program. With a one-sided alternative, an asymptot-

ically level-α extended sensitivity analysis with parameters (Γ̄,Γ) simply requires checking

whether the solution to that quadratic program is greater than or equal to zero, rejecting

the null if so and failing to reject otherwise. For a two-sided alternative, simply replace

ζ(π∗, α − β) with ζ(π∗, (α − β)/2) to control the level of the procedure at α. See Rosen-

baum (1992) and Fogarty and Small (2016) for similar formulations of sensitivity analyses

as convex programs.

A minor complication is that for small values of I or for small values for β, the right-hand

side of (3.17) need not be monotone increasing in µπ∗ if 2Γ̄/(1 + Γ̄) ≥ Γ/(1 + Γ) + 1/2, as

decreasing µπ∗ may lead to an increase in the component dependent on the variance bound

which exceeds the corresponding decrease in the additive term µπ∗ . To remedy this, one

can simply find the value for µπ∗ over the range [(Γ/(1 + Γ) + 1/2)/2, Γ̄/(1 + Γ̄)] which

maximizes the right-hand side of (3.17) through a bisection algorithm, and then proceed

with the quadratic program using this single value. If 2Γ̄/(1+Γ̄) < Γ/(1+Γ)+1/2, the right-

hand side of (3.17) is, subject to (3.18), maximized at µπ∗ = Γ̄/(1 + Γ̄), so one can proceed

by replacing µπ∗ with Γ̄/(1 + Γ̄) and solving the required quadratic program. Importantly,

the method only requires solving a single quadratic program. Quadratic programs can be

solved by many free and commercially available solvers; we provide code implementing our

method using the R package for the solver Gurobi, which is free for academic use, at the

author’s website http://www.raidenhasegawa.com. We also provide options to replace

the constraint (3.17), justified by the Central Limit Theorem, with bounds described in

Appendix 3.8.1 which are valid for any I through distribution-free concentration inequalities.
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3.5. Simulations

3.5.1. Type I error control

In the following simulations, we demonstrate that the extended sensitivity analysis intro-

duced in §3.3 has the correct level. We consider two important cases: (1) when no unmea-

sured bias is present and (2) when the there is unmeasured bias but the sensitivity analysis

is conducted at the true values of Γ and Γ̄. In both settings we test Fisher’s sharp null

that τ = 0 using the difference in means test with desired Type I error control at α = 0.05.

We set β = α/10 = 0.005 for conducting the extended sensitivity analysis. The following

treatment model, outcome model, and simulation settings were used to conduct the Type I

error control simulations:

1. Treatment model: Π∗i = 1/2 with probability p = 2(Γ − Γ̄)/{(Γ − 1)(Γ̄ + 1)} and

Π∗i = Γ/(1 + Γ) with probability 1− p.

2. Outcome model:

- unbiased: Yi = τ · (Zi1 − Zi2) + εi where εi
iid∼ N (0, 1),

- biased: Yi = τ · (Zi1 − Zi2) + {2 · χ(πi > 1− πi)− 1} · |εi| where εi
iid∼ N (0, 1).

3. Sensitivity parameters:

- Γ ∈ {1, 1.1, 1.25, 1.5, 2},

- Γ̄ ∈ {1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35,

1.4, 1.45, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0},

- Γ̄ ≤ Γ.

4. Study and simulation size: I = 100 pairs, Nsim = 5000 simulations.

In the biased setting, the unit with higher potential outcome under control has higher
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probability of receiving treatment. When Γ = Γ̄ = 1 we use the convention that p = 0/0 = 0.

The value of p = P(Π∗i = 1/2) was chosen so that the population treatment model satisfies

E[Π̄∗] = Γ̄/(1 + Γ̄). The results of the simulation study for the biased and unbiased settings

are shown in Table 6 and the Table 9 in §3.8.5 of the Appendix, respectively. The extended

sensitivity procedure correctly controls the Type I error rate for all pairs of sensitivity

parameters (Γ, Γ̄) tested. The first row of each table, where Γ̄ = 1, corresponds to tests

under the absence of unmeasured confounding. The pairs where Γ = Γ̄ correspond to

the conventional worst-case sensitivity analysis. Under the unbiased treatment model, the

extended sensitivity analysis is typically more conservative as we increase Γ or Γ̄. In the

biased setting, we observe the same pattern as we vary Γ, but as Γ̄ approaches Γ, the level

of the extended sensitivity analysis does not decrease monotonically. In fact, at a certain

value of Γ̄, the extended sensitivity analysis becomes less conservative as we approach Γ.

In short, the solution πsup,β to the optimization problem in (3.12) tends to more closely

approximate the true allocation π0 when Γ̄ is close to either 1 or Γ in the biased setting.

When Γ̄ is close to 1, the feasible set of π’s is closely bounded around π0 ≈ 1 · 1/2. When

Γ̄ is close to Γ the true allocation is π0 ≈ πΓ and the extended sensitivity analysis behaves

like the conventional sensitivity analysis, where πsup,β = πΓ yields a tight upper bound on

the probability in (3.11). In between these edge cases, when the feasible set of π is relatively

large and the trade-off between maximizing expectation and variance is more nuanced, (3.12)

may produce solutions πsup,β that yield appreciably more conservative inference than if had

we known the true π0.

3.5.2. The power of an extended sensitivity analysis

The power of a sensitivity analysis quantifies the ability of an observational study design

to distinguish treatment effects from unmeasured bias. Formally, it reports for a given

study design the probability of rejecting a false null hypothesis for a chosen level α and

sensitivity parameter Γ under ‘favorable’ conditions, defined in Rosenbaum (2010, Chapter

14), as the presence of a treatment effect that causes meaningful effects and absence of
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Γ
Γ̄ 1 1.1 1.25 1.5 2
1 0.047 0.047 0.045 0.046 0.044

1.05 0.022 0.011 0.007 0.005
1.1 0.032 0.010 0.004 0.003

1.15 0.012 0.002 0.002
1.2 0.017 0.004 0.001

1.25 0.025 0.004 0.001
1.3 0.006 0.000

1.35 0.009 0.001
1.4 0.011 0.001

1.45 0.014 0.001
1.5 0.025 0.001
1.6 0.003
1.7 0.004
1.8 0.006
1.9 0.011

2 0.021

Table 6: Rejection probability of the true null hypothesis, H0 : τ = 0, under the biased
setting with target Type I error control at α = 0.05. The Monte Carlo standard error
of these probability estimates is bounded above by

√
0.05× 0.95/5000 ≈ 0.003 if the true

Type I error rate is 0.05.

unmeasured biases. The investigator cannot determine from observable data alone whether

or not such favorable conditions hold. An attractive study design would be highly insensitive

to unmeasured confounding if she was lucky enough to find herself in this favorable setting.

The power of an extended sensitivity analysis extends this formalism to the triplet (α,Γ, Γ̄).

Power simulations for α = 0.05 and several pairs of (Γ, Γ̄) are reported in Table 7 and Table

10 in §3.8.5 of the Appendix for τ = 0.5 and τ = 0.25, respectively. Other than the presence

of a ‘meaningful’ treatment effect τ , the simulation settings are identical to the unbiased

setting in §3.5.1.

Unsurprisingly, the power of the extended sensitivity analysis decreases as Γ̄ approaches Γ.

If the investigator has reason to believe that unmeasured confounding is heterogeneous and

that extreme pairwise unmeasured confounding is possible but relatively rare, the conven-

tional sensitivity analysis is likely unduly conservative. Further, the extended sensitivity

analysis allows the investigator to compare the power of competing study designs under
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different assumptions about the maximal and expected degree of unmeasured confounding.

Γ
Γ̄ 1 1.1 1.25 1.5 2
1 0.998 0.999 0.998 0.999 0.999

1.05 0.994 0.990 0.984 0.978
1.1 0.996 0.984 0.965 0.941

1.15 0.977 0.947 0.896
1.2 0.978 0.928 0.833

1.25 0.979 0.907 0.759
1.3 0.890 0.719

1.35 0.884 0.664
1.4 0.879 0.626

1.45 0.874 0.578
1.5 0.882 0.541
1.6 0.505
1.7 0.478
1.8 0.463
1.9 0.472

2 0.486

Table 7: Rejection probability of the false null hypothesis, H0 : τ = 0, under the unbiased
setting with true alternative hypothesis H1 : τ = 0.5. The Monte Carlo standard error of
these probability estimates is bounded above by

√
0.5× 0.5/5000 ≈ 0.007.

3.6. Extended sensitivity analysis for returns to schooling

3.6.1. A model for returns to schooling

How does going to college affect job earnings? The question and the implications of the

many putative answers are important to education policy experts and parents alike. It has

been empirically demonstrated that log earnings are nearly a linear function of schooling

(see, for instance, Card and Krueger, 1992). In the idealized paired observational setting

introduced in §§3.2.1-3.2.2 where the treatment condition is attending college for at least two

years and the control condition is receiving at most a high school diploma, a hypothesized

treatment effect τ × 100 would describe the percentage increase in earnings associated

with attending at least two years of college, the minimum number of years to receive an

associates degree. Formally, we consider the multiplicative treatment effect hypothesis

Hτ : RT ij = τRCij where (RT ij , RCij) are potential earnings after attending college or not.
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Choosing t(Z,F) = ZTq to be the adjusted difference-in-means test comparing log earnings,

qij would take the form qij = (logRT ij − logRCij′)− log(τ) and qij′ = −qij under Hτ .

Let X = [Xf , Xs] where Xf and Xs are familial and subject level covariates. In an idealized

sibling comparison design, the strong ignorability condition in (3.1) would hold with respect

to Xf ; that is, if for all xf ,

(RT , RC) ⊥⊥ Z | Xf , 0 < P(Z = 1 | Xf = xf ) < 1. (3.19)

If Xs does not affect treatment assignment but does predict potential outcomes, this sibling

version of strong ignorability will still hold. For example, in the sibling pairs from the WLS

data that we consider in the following section, the age at which income is measured (AGE)

is different between siblings. If Xs = AGE, then it is conceivable that Xs does not affect

whether a sibling went to college or not. This would not be the case for people who went

to college later in life or whose family characteristics may have changed over time, in which

case AGE would be a proxy for those changes. Regardless, model-agnostic adjustment

for Xs and Xf can improve the power of the resulting sensitivity analysis (Rosenbaum,

2002b). For example, we can use simple linear regression to adjust for X by replacing q

with (I −HXs)q where HXs is the orthogonal projection onto Xs without an intercept.

3.6.2. Ashenfelter: Conventional versus extended sensitivity analysis

To illustrate the differences between the conventional and extended sensitivity analyses, we

return to the twin study of Ashenfelter and Rouse (1998) (AR). AR collected survey data on

680 monozygotic twins (340 pairs) attending the Twinsburg Twins Festival in Twinsburg,

Ohio during the summers of 1991, 1992, and 1993. We consider the 40 pairs of twins where

one twin attend at least two years of college and the other had no more than a high school

education, and where both twins were employed at the time of data collection. Assuming

no unmeasured confounding, testing Fisher’s sharp null H0 yields a p-value of ≈ 0.0001.

We obtain a 95% confidence interval for log(τ) of [0.16,0.43] by inverting Hτ for τ ∈ R+ at
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α = 0.05 with a two-sided alternative. Exponentiating the endpoints, attending at least two

years of college versus receiving at most a high school diploma increased wages by between

17% and 53% with 95% confidence.

Being a retrospective study neither baseline IQ nor any other intelligence scores were col-

lected, and a critical reader may point to the possible presence of ability bias as a basis to

call the conclusions of the study into question. Conducting a sensitivity analysis produces

a quantitative rejoinder to this type of criticism in the form of a sensitivity value Γ∗ for

the conventional analysis and a sensitivity curve (Γ∗, Γ̄∗) for the extended analysis. The

sensitivity value is the largest bound on the maximal bias such that the qualitative conclu-

sions of the study do not change (i.e., such that we reject H0). The sensitivity curve is the

two-dimensional analog of the sensitivity value and can be seen as the threshold between

the gray region (reject H0) and the white region (retain H0) in Figure 3. At the limits of

the sensitivity curve, we recover two separate single-parameter sensitivity analyses. The

sensitivity value returned by the conventional analysis corresponds to the point where the

sensitivity curve intersects the y = x line (Γ∗ ≈ 2.36). The limit of the sensitivity curve as

Γ → ∞ is the sensitivity value of a single-parameter sensitivity analysis that bounds the

typical bias (Γ̄ ≈ 1.22).

3.6.3. Ability Bias: Cross-study sensitivity analysis calibration

Without context, the sensitivity curve and values from the Ashenfelter analysis may be

difficult to interpret. In response to the critic of the “equal abilities” hypothesis for twins,

we would ideally like to report whether or not the Ashenfelter study is sensitive to plausible

patterns of ability bias. One strategy for addressing this is to estimate the bias due to

ability from a calibration study that has a comparable design and information on baseline

ability such as IQ. We can then calibrate the sensitivity analysis to these estimates of Γ and

Γ̄. To implement this cross-study calibration, we modify the procedure established in Hsu

and Small (2013) to calibrate sensitivity parameters to observed covariates. In brief, one fits

ostensible treatment and outcome models – for instance, via linear and logistic regression
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Figure 3: Extended sensitivity curve from the AR study calibrated to the estimates of ability
bias from the WLS study (cross). The gray region indicates the sensitivty parameter pairs
(Γ, Γ̄) for which H0 can still be rejected. The point where the sensitivity curve intersects the
y = x line corresponds to the sensitivity value returned by conventional sensitivity analysis
(Γ∗ ≈ 2.36). The limit of the curve as Γ→∞ corresponds to the sensitivity value returned
by the single-parameter sensitivity analysis that bounds the typical bias (Γ̄∗ ≈ 1.22).

– and uses the resulting model fits to estimate π∗, Γ̄, and Γ. The details of this step can

be found in Appendix 3.8.3. Calibrating the sensitivity analysis to estimates of ability bias

provides the context relevant to the critic’s concerns.

To assess the robustness of the AR study to ability bias, we use the sibling data from the

WLS study introduced in §3.1.2 to design a calibration study. We constructed a set of 171

same-sex, full-sibling pairs that received discordant treatment. We let Zij = 0 if sibling j

in pair i received 12 or fewer years of education and Zij = 1 if he or she received 14 or more

years of education (at least two years of college). Log income for the previous year was

collected for WLS participants and their siblings in 1975 and 1977, respectively. To more

closely approximate the superpopulation from which the AR twins came, we only consider

siblings where both had non-zero income at the time of collection (i.e. were employed). As
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outlined in the previous section, we let Xs = AGE and use regression to adjust q for the age

at which income was collected. This calibration analysis is stylized to some extent to avoid

obscuring the primary contribution of our method. Many other subject-level covariates are

available for adjustment via regression. A detailed analysis including treatment modification

with respect to gender and more thorough covariate adjustment would not preclude the use

nor usefulness of our method.

Using the 171 WLS sibling pairs, we estimate that Γ ≈ 9.3 and Γ̄ ≈ 1.1, summarizing the in-

formation we have about maximal and typical biases due to IQ disparities. Heterogeneneity

of ability bias can explain the considerable difference between these two measures of con-

founding. The histogram of the estimated π∗ in Figure 4 indicates that most sibling pairs

have modest differences in intelligence in high school but in a few rare cases the disparity

in sibling IQ exposes pairs to high levels of bias. Calibrating the conventional sensitivity

analysis of AR to the WLS study would suggest that our conclusions are likely not robust

to plausible patterns of ability bias since Γ∗ < 9.3. However, calibration of the extended

sensitivity analysis suggests otherwise. In Figure 3, the WLS IQ calibration point (9.3, 1.1)

is indicated by the blue cross and falls below the sensitivity curve. The single-parameter

sensitivity analysis that bounds the typical bias agrees with the extended analysis that the

conclusions are robust to plausible patterns of ability bias (Γ̄∗ ≥ 1.1 ). Incorporating infor-

mation about the heterogeneity of ability bias by bounding both the maximal and typical

biases promotes a less pessimistic assessment of an observational study’s robustness to un-

measured confounding. When information on the heterogeneity of potential confounders is

available, as in the above cross-study calibration analysis, the extended sensitivity analysis

provides a richer picture of the study’s robustness to hidden bias.

3.6.4. Sensitivity intervals: Interval estimates with hidden bias

For a fixed bound on the worst-case bias, incorporating heterogeneous bias through the

extended sensitivity can also produce narrower sensitivity intervals than those attained

through the conventional analysis. Representing a natural extension of confidence intervals
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Figure 4: Histogram of π∗ estimated for 171 same-sex, full-sibling pairs from the WLS
study.

to inference in the presence of unmeasured confounding, a 100(1−α)% sensitivity interval is

constructed by inverting a level-α extended sensitivity analysis with a two-sided alternative

at a given pair of values (Γ, Γ̄). Explicitly, let pβ(Γ, Γ̄, τ) be the two-sided p-value bound

returned by the extended sensitivity analysis in (3.12) for particular values of Γ and Γ̄.

Then, a 100(1− α)% sensitivity interval can be written as I({τ : pβ(Γ, Γ̄, τ) ≤ α}), where

I(A) is the smallest interval containing the set A. At Γ = Γ̄ = 1, the sensitivity interval is

simply the corresponding confidence interval found by inverting Hτ using the randomization

p-value given in (3.2) as would be justified in a paired experiment. Setting Γ = Γ̄ > 1

returns sensitivity intervals produced through the conventional sensitivity analysis, while

setting Γ > Γ̄ > 1 employs the extended sensitivity analysis in constructing the sensitivity

intervals.

Table 8 illustrates the potential for reduced interval lengths through accommodating het-

erogeneity in unmeasured confounding. It reports 95% sensitivity intervals for log(τ) in the

AR study with three pairs of values for Γ and Γ̄. The first, denoted by Irand, is the 95%

sensitivity interval assuming no unmeasured confounding previously reported in §6.2. The
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second, Isup, is the 95% sensitivity interval derived by setting Γ = Γ̄ = 9.3, the calibrated

value of the maximal bias parameter from the WLS study. This is precisely the sensitivity

interval that the conventional sensitivity analysis bounding only the worst-case confounding

would return. The final interval, Iext, is the 95% sensitivity interval setting Γ = 9.3, Γ̄ = 1.1

in accord with the calibrated values of the maximal and typical bias from the WLS study.

We see that Iext is more than 80% shorter than Isup. Further, both Irand and Iext exclude

zero while Isup does not. The positive finding in the unconfounded setting can be explained

away by bias calibrated to the WLS study using the conventional sensitivity model, but not

when using the extended sensitivity model. Once again, we see that when it is plausible

that the typical bias to which pairs are subject is materially smaller than the worst-case

bias, the conventional analysis may be overly pessimistic about how informative the data

is.

Interval Type 95% Sensitivity Interval

Irand [0.16,0.43]
Isup [-0.88,1.63]
Iext [0.06,0.53]

100× (1− |Iext|/|Isup|) 81%

Table 8: 95% sensitivity intervals for log(τ) in the AR study constructed by inverting
Hτ for different values of Γ and Γ̄. Irand is the 95% confidence interval for log(τ) in the
unconfounded setting, Γ = Γ̄ = 1. Isup and Iext are 95% sensitivity intervals derived
from the conventional sensitivity analysis and the extended sensitivity analysis respectively.
These intervals are formed using the sensitivity parameters calibrated from the WLS data,
(Γ, Γ̄) = (9.3, 1.1). The percentage reduction in interval length from accommodating het-
erogeneous unmeasured confounding, 100× (1− |Iext|/|Isup|), is reported in the last row.

3.7. Concluding remarks

While convenient for ease of calculation, the low-dimensional sensitivity analysis bounding

the supremum may fail to address specific concerns with unmeasured confounding in cer-

tain contexts. Rosenbaum and Silber (2009) present an amplification of the conventional

sensitivity analysis, where the one-dimensional analysis based on Γ is mapped to a curve

of two-dimensional analyses which simultaneously bound the extent to which differences
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in unobserved covariates can influence the odds of being treated and the odds of having a

higher potential outcome under control by the pair (Λ,∆). This amplificiation provides an

aid to interpretation, allowing the researcher to posit bounds on the extent to which unmea-

sured confounding can affect treatment decisions and the outcome variable. Rather than

amplifying the conventional sensitivity analysis, the extended sensitivity analysis provides

the researcher a way to further control the distribution of the unmeasured confounders

beyond bounding the supremum. In fact, amplification and extension can be viewed as

complementary tools available to the researcher. It is straightforward to employ both: the

conventional supremum bound Γ that appears in the extended sensitivity analysis may be

amplified yielding yet an even richer analysis, with Γ̄ bounding the typical probability that

the treated individual in a pair has the larger (smaller) potential outcome under control for

greater-than (less-than) alternatives.

Framing sensitivity analysis in terms of the typical bias is not a new idea, but has been

largely unaddressed in the literature; the idea of expected bias appears briefly in Wang

and Krieger (2006) in the context of population-level inference for binary outcomes but

is not the focus of the paper. In a particular sense, Cornfield et al. (1959) anticipated

the duality of both amplified and extended sensitivity analyses in their seminal work on

sensitivity analysis. In their smoking and lung cancer example, the authors considered a

hypothetical hormone X which increases the probability of developing lung cancer among

those exposed from r2 to r1 and due to a positive correlation between exposure to X and

smoking, appears in a higher proportion among smokers than non-smokers (i.e p1 > p2). At

once, Cornfield et al. (1959) captures the spirit of an amplified analysis in specifying how

X is related to both treatment assignment and outcome and that of an extended analysis

by imagining that hormone X is not completely absent among non-smokers and completely

present among smokers, leading to exposure to bias that is heterogeneous across subjects

within both groups.

The concept of heterogeneous unmeasured confounding appeared naturally, if not intention-
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ally, in Cornfield’s original example. The extended sensitivity analysis introduced in this

paper brings this idea into a modern light and provides the researcher with a way to con-

duct a sensitivity analysis while bounding both maximal and typical biases in matched pair

studies. Using two sibling studies on the returns of schooling to income, we demonstrated

that a sensitivity analysis bounding the maximal and typical bias is both natural and less

susceptible to an overly pessimistic view of the study’s robustness to hidden bias. When a

researcher believes that most, if not all, pairs are exposed to the worst-case bias, our pro-

cedure can recover the conventional analysis by setting Γ̄ = Γ. If however, the researcher is

worried that some, though few, pairs may be exposed to arbitrarily large biases all is not

lost; by letting Γ tend to ∞ the extended sensitivity analysis recovers a single-parameter

sensitivity analysis that bounds the typical bias.

3.8. Appendix

3.8.1. Construction of Valid Finite-Sample Uncertainty Sets

We now describe the construction of two 100(1− α)% uncertainty sets for Π∗ valid for any

number of pairs I. The first is based on Hoeffding’s inequality, which implies that the set

Hβ(Γ, µπ∗) = (−∞, µπ∗ + I−1/2
{

1/2 log(1/β)(Γ/(1 + Γ)− 1/2)2
}1/2

]

satisfies P(Π̄ ∈ Hβ(Γ, µπ∗)) > 1 − β for all values of I. The second combines Bennett’s

inequality and the Bhatia-Davis inequality to create the set

Bβ(Γ, µπ∗) = (−∞, µ̄π∗ + bβ(Γ, µπ∗ , I)]

bβ(Γ, µπ∗ , I) = SOLVE{a : I−1 log(1/β)(Γ/(1 + Γ)− 1/2)2/ν2(Γ, µπ∗) =

h
(
a(Γ/(1 + Γ)− 1/2)/ν2(Γ, µπ∗)

)
},

where h(x) = (1 + x) log(1 + x)− x. Bβ(Γ, µπ∗). This set also satisfies P(Π̄ ∈ Bβ(Γ, µπ∗)) >

1− β for any I if E[Π̄∗] = µπ∗ .
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In practice, the upper bound of the set based on Bennett’s inequality is smaller than that

based on Hoeffding’s inequality when µπ∗ is far from (Γ/(1+Γ)+1/2)/2, while the ordering

reverses when µπ∗ is close to the midpoint. The price paid for this exactness for any I is that

the upper bounds for both intervals are larger than those of Cβ(Γ, µπ∗), the asymptotically

valid uncertainty set based on the Central Limit Theorem.

As noted in the manuscript, the general reliance of our implementation on asymptotic

normality reduces the attractiveness of these finite sample uncertainty sets; however, in the

case of McNemar’s test with binary data, employing either Hβ or Bβ yields an extended

sensitivity analysis for Fisher’s sharp null valid for any sample size. R functions to compute

these uncertainty set can be found in the file multipliers.R at the author’s website http:

//www.raidenhasegawa.com.

3.8.2. Constructing the WLS same-sex sibling sample

Of the 10,317 individuals in the WLS sample, 7,928 had a randomly chosen sibling who was

surveyed. Of those 7,928 subjects with sibling data, 2,106 had information about sibling

status (i.e. full, half or step siblings) of which 2,004 were full siblings. 1,486 of these sibling

pairs were same-sex siblings of which 49.3% were men. Of the same-sex sibling pairs, there

were 749 (40.6% men) where both had no more than a high school education, 265 (64.9%

men) where both had at least two years of college education, and 323 (58.8% men) where one

had at most a high school degree and the other had at least two years of college education.

Of the same-sex pairs discordant in educational attainment, 171 (74.9% men) had complete

IQ data and non-zero reported income. There were 149 (45.0% men) same-sex sibling pairs

of the 1,486 for which the treatment and control conditions were not well defined – at least

one sibling had only one year of college education.

3.8.3. Calibrating Sensitivity Parameters to Disparities in IQ in the WLS Study

We follow a modified version of the calibration strategy introduced in Hsu and Small (2013)

which involves estimating putative treatment and outcome models as a function of (X,U)
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under H0 via maximum likelihood where the likelihood is marginalized over the unknown

confounder U . Our modification is as follows: instead of marginalizing over the unobserved

covariate we suppose that the only unobserved confounder in the Ashenfelter study is intelli-

gence, which is measured via baseline IQ scores in the WLS study. Consequently, estimating

the bias due to IQ disparities using the WLS data permits a cross-study calibration of the

Ashenfelter and Rouse sensitivity analysis.

By definition, Xf is controlled automatically between siblings. We make the stylized as-

sumption that Xs = AGE. Further, we assume that AGE does not affect treatment

assignment. Finally, we assume that intelligence is the only unmeasured confounder in the

Ashenfelter and Rouse study (i.e. U = IQ). Under these assumptions, a possible model for

treatment assignment is

P(Zij = 1 | Xf,i, Xs,ij , Uij) =
exp(αZ,i + βZ,IQ · IQij)

1 + exp(αZ,i + βZ,IQ · IQij)
. (3.20)

The pair specific intercept αZ,i captures the Xf,i effects. We estimate the treatment model

using conditional likelihood maximization using the R function clogit in order to avoid

bias arising from the fact that the number of αi to be estimated grows with the sample size.

We consider a Gaussian linear model for the outcome

Yij = αY,i + βY,AGE ·AGEij + βY,IQ · IQij + εij such that εij
iid∼ N (0, σ2) . (3.21)

We estimate the treatment assignment and outcome models using the 171 discordant sibling

pairs that we analyze from the WLS study in the paper.

In the Ashenfelter and Rouse twins study, AGE is controlled within twin pairs so we

are interested in calibrating the sensitivity parameters to the estimated bias due to IQ

disparities alone. Following Hsu and Small (2013) we estimate that, controlling for age and

assuming that IQ is the only confounding factor, the probability that the sibling that went

68



to college reported a higher income in pair i to be

πi(IQ) =
exp{β̂Z,IQ(IQi1 − IQi2)} exp{(β̂Y,IQ/σ̂2)(Yi(2) − Yi(1))(IQi1 − IQi2)}+ 1

[1 + exp{β̂Z,IQ(IQi1 − IQi2)}][1 + exp{(β̂Y,IQ/σ̂2)(Yi(2) − Yi(1))(IQi1 − IQi2)}]

where Yi(1) = min{Yi1, Yi2} and Yi(2) = max{Yi1, Yi2}. Define π(IQ) to be the 171×1 vector

of πi(IQ). Letting π∗(IQ) = π(IQ) when β̂Z,IQβ̂Y,IQ ≥ 0 and 1−π(IQ) otherwise, one rea-

sonable set of estimates for (Γ, Γ̄) is (πmax/(1+πmax), π̄/(1+π̄)) where πmax = supi π
∗
i (IQ)

and π̄ = (1/171)
∑171

i=1 π
∗
i (IQ). It may concern some that πmax/(1+πmax) is a downwardly-

biased estimator of Γ, but due to sampling variability and possible misspecification of the

treatment and outcome models, the calibration is inherently approximate and meant only

to act as a guide for the researcher conducting a sensitivity analysis of the Ashenfelter

and Rouse study. It should also be noted that since higher IQ does not perfectly predict

higher earnings, we find ourselves in a simultaneous sensitivity framework where we simul-

taneously bound the dependence between IQ and education and between IQ and earnings

(see Gastwirth et al. (1998) for further details). This explains the slightly different defini-

tion of π∗i used here than the one found in the paper. Simultaneous sensitivity analysis is

closely related to amplified sensitivity analysis, which we discuss briefly in §3.7 of the paper

(see Rosenbaum and Silber (2009) for more details). For our purposes, the simultaneous

framework suffices to calibrate Γ and Γ̄ in the Ashenfelter and Rouse study to the WLS

study.

3.8.4. Details of Histogram in Right Panel of Figure 2

The figure in the right panel of Figure 2 in the paper is described as the [h]istogram of the

estimated increase in pairwise bias due to IQ disparities between siblings measured as an

odds ratio. To be specific, and using the notation introduced in Appendix 3.8.3, this is a

histogram of

π∗i (IQ)

1− π∗i (IQ)

/
π∗i (0)

1− π∗i (0)
(3.22)
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for i = 1, . . . , 171 where π∗i (0) = (1/2) is π∗i computed for the sibling pair i had they had

same IQ scores.

3.8.5. Additional Simulation Results

Table 9 shows the rejection probability of the true null hypothesis, H0 : τ = 0, under the

unbiased setting with target Type I error control at α = 0.05. Table 10 shows the power to

reject the false null hypothesis, H0 : τ = 0, under the unbiased setting with true alternative

hypothesis H1 : τ = 0.25 and target Type I error control at α = 0.05.

Γ
Γ̄ 1 1.1 1.25 1.5 2
1 0.049 0.044 0.042 0.050 0.045

1.05 0.018 0.010 0.008 0.004
1.1 0.016 0.007 0.002 0.001

1.15 0.005 0.000 0.000
1.2 0.003 0.000 0.000

1.25 0.004 0.001 0.000
1.3 0.000 0.000

1.35 0.000 0.000
1.4 0.001 0.000

1.45 0.000 0.000
1.5 0.000 0.000
1.6 0.000
1.7 0.000
1.8 0.000
1.9 0.000

2 0.000

Table 9: Rejection probability of the true null hypothesis, H0 : τ = 0, under the unbiased
setting with target Type I error control at α = 0.05. The Monte Carlo standard error
of these probability estimates is bounded above by

√
0.05× 0.95/5000 ≈ 0.003 if the true

Type I error rate is 0.05.
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Γ
Γ̄ 1 1.1 1.25 1.5 2
1 0.694 0.677 0.677 0.694 0.683

1.05 0.544 0.462 0.391 0.338
1.1 0.528 0.363 0.282 0.188

1.15 0.340 0.202 0.123
1.2 0.322 0.160 0.072

1.25 0.333 0.132 0.046
1.3 0.121 0.031

1.35 0.111 0.024
1.4 0.110 0.019

1.45 0.107 0.017
1.5 0.119 0.015
1.6 0.012
1.7 0.006
1.8 0.009
1.9 0.008

2 0.010

Table 10: Rejection probability of the false null hypothesis, H0 : τ = 0, under the unbiased
setting with true alternative hypothesis H1 : τ = 0.25 and target Type I error control at
α = 0.05. The Monte Carlo standard error of these probability estimates is bounded above
by
√

0.5× 0.5/5000 ≈ 0.007.
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CHAPTER 4

Evaluating Missouri’s Handgun Purchaser Law: A Bracketing Method for

Addressing Concerns about History Interacting with Group

Abstract

In the comparative interrupted time series design (also called the method of difference-

in-differences), the change in outcome in a group exposed to treatment in the periods

before and after the exposure is compared to the change in outcome in a control group

not exposed to treatment in either period. The standard difference-in-difference esti-

mator for a comparative interrupted time series design will be biased for estimating

the causal effect of the treatment if there is an interaction between history in the after

period and the groups; for example, there is a historical event besides the start of the

treatment in the after period that benefits the treated group more than the control

group. We present a bracketing method for bounding the effect of an interaction be-

tween history and the groups that arises from a time-invariant unmeasured confounder

having a different effect in the after period than the before period. The method is

applied to a study of the effect of the repeal of Missouri’s permit-to-purchase handgun

law on its firearm homicide rate. We estimate that the effect of the permit-to-purchase

repeal on Missouri’s firearm homicide rate is bracketed between 0.9 and 1.3 homicides

per 100,000 people, corresponding to a percentage increase of 17% to 27% (95% con-

fidence interval: [0.6,1.7] or [11%,35%]). A placebo study provides additional support

for the hypothesis that the repeal has a causal effect of increasing the rate of state-wide

firearm homicides.

4.1. Comparative Interrupted Time Series Design and Potential Biases

The interrupted time series design is an observational study design for estimating the causal

effect of a treatment on a group when data is available before the group was treated. In

the simplest interrupted time series design, the before and after treatment outcomes are

compared. This before-after design does not account for confounding factors that co-occur

with treatment such as historical events or maturation (Cook et al., 2002). To strengthen
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the before-after design, it is common to add time series data from a control group that

never received the treatment over the same period – the comparative interrupted time

series design (Cook et al., 2002; Meyer, 1995; Bernal et al., 2017; Wing et al., 2018), also

called the nonequivalent control group design or method of difference-in-differences. The

latter name derives from the concept that the simplest comparative interrupted time series

analysis is to take the difference between the difference of the after and before outcomes

for the treated group and the difference of the after and before outcomes for the control

group. This difference-in-differences estimate is an unbiased estimator of the causal effect

of treatment if the treatment and control groups would have exhibited parallel trends in

the counterfactual absence of treatment (Meyer, 1995); see Figure 5. The parallel trends

Figure 5: Stylized plot of data from a comparative interrupted time series design. The
dotted line shows the assumption that the difference-in-difference (DiD) estimate makes
about the treatment group’s counterfactual mean in the absence of treatment.

Before After

Control Group
Treated Group
Counterfactual Treated Group w/o Treatment

DiD Estimate

assumption can be partially assessed if there is more than one time point in the before

period by assessing whether the groups exhibit parallel trends in the before period (Meyer,

1995). However, even if the trends are parallel in the before period, there could be historical

events in the after period that affect the two groups differently, i.e., history interacts with

group (other reasons that parallel trends could be violated include differences in maturation,

instrumentation or statistical regression between the groups) (Cook and Campbell, 1979;

Reynolds and West, 1987). For example, the outcome measures poor health, country A
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(treated group) enacts a policy reform, country B (control group) does not enact the reform,

and a worldwide economic recession occurs after the reform that has a greater impact on

people starting out in poorer health. If country B started out with poorer health, then

parallel trends would be violated because country B’s poor health would have increased

more than country A in the after period in the counterfactual absence of the reform because

of the worldwide economic recession. This violation of parallel trends would not happen if

A and B started with the same level of poor health in the before period. However, it is

often difficult to find a control group that has outcomes close to the treated group in the

before period.

When there is no control group completely comparable to the treated group, Campbell

(1969) proposed bracketing to distinguish treatment effects from plausible biases (Rosen-

baum, 1987). Consider the study design of comparing treatment and control at one time

point and suppose that there is concern about an unmeasured confounder U . Bracketing

uses two control groups such that, in the first group U tends to be higher than in the

treated group and in the second group, U tends to be lower. The effect of U on the treated

group is bracketed by its effect on the two control groups. When there is bracketing, if the

treated group has a notably higher outcome than both control groups, then this association

between treatment and outcome cannot plausibly be explained away as being bias from U .

In this paper, we show how bracketing can be applied to the comparative interrupted time

series to distinguish treatment effects from plausible biases due to history interacting with

group. The basic idea is to consider one control group that has a lower expected outcome

than the treated group in the before period and another control group that has a higher

expected outcome than the treated group in the before period; we show under certain

assumptions that the expectations of the two difference-in-difference estimators using the

lower control group and higher control group respectively bracket the causal effect of the

treatment. Bracketing for the comparative interrupted time series has been mentioned

informally (Meyer, 1995) but the idea of choosing the bracketing control groups based on
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expected before period outcomes was not mentioned. We present assumptions and results

for our bracketing method in §4.2 and then apply the method to study the effect of the

repeal of Missouri’s permit-to-purchase handgun law on its firearm homicide rate in §4.3.

4.2. Methods: Bracketing

4.2.1. Notation and Model

Let Y denote outcome and D dose of exposure, D = 1 for treatment and D = 0 for

control. Let Y
(d)
ip denote the counterfactual outcome that would have been observed for

unit i in period p, p = 0 for before period and p = 1 for after period, had the unit received

exposure dose d, i.e., Y
(1)
ip is the counterfactual outcome under treatment and Y

(0)
ip is the

counterfactual outcome under control. Let Ui be a vector of time invariant unmeasured

confounders for unit i. Let G denote group where the groups are t = treated group, lc =

lower control group (control group with expected outcomes lower than treated group in

before period) and uc = upper control group (control group with expected outcomes higher

than treated group in before period). Finally, let S be an indicator of whether or not a unit

belonging to a particular group is in the study population in a given period. Specifically,

Sip = 1 or 0 when unit i is in the population or not in period p: Si0 = Si1 = 1 for a

unit in the population both before and after treatment, Si0 = 1, Si1 = 0 for a unit in the

population only before treatment (unit might have moved away or died in after period) and

Si0 = 0, Si1 = 1 for a unit in the population only after treatment (unit might have moved

into study area or been born in after period).

We consider the following model which generalizes the standard difference-in-difference

model and changes-in-changes model. (Athey and Imbens, 2006) Let Ui be time-invariant

unmeasured confounders and εip be an error term that captures additional sources of vari-

ation for unit i in period p. Then our model can be expressed as

Y
(d)
ip = h(Ui, p) + βd+ εip (4.1)
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where the function h(Ui, p) is the unobserved expected outcome under control of subject i

in period p. We drop the subscript i to refer to a randomly drawn unit from the population

of all units in either period, where Y
(d)
p , d = 0, 1, and εp are undefined if Sp = 0. We make

the following assumptions:

Increasingness of h in U: h(U, p) bounded and increasing in U for p = 0, 1. (4.2)

((h(U, p) ≥ h(U
′
, p) whenever all coordinates of U ≥ all coordinates of U

′
)

Time Invariance of U Within Groups: U conditionally independent of (4.3)

{S0, S1} given group G.

Independence of ε with Time and Group: Distributions of εp|Sp = 1, G = g for (4.4)

p = 0, 1, g = lc, uc, tc all have mean zero and are the same.

Assumptions (4.2) and (4.3) match assumptions in the changes-in-changes model. Assump-

tion (4.2) requires that higher levels of unmeasured confounders correspond to higher levels

of outcomes. Such increasingness is natural when the unmeasured confounder is an individ-

ual characteristic such as health or ability (Athey and Imbens, 2006) and Y is a measure of

some positive outcome, for example, income. Negative confounders – where higher levels of

the confounder correspond to lower levels of the outcome – are not precluded by Assump-

tion (4.2) as the corresponding coordinates of U may simply be replaced by their negation.

Assumption (4.3) says that the distribution of confounders in the population of units for a

given group remains the same over time. Assumption (4.4) says that time-varying factors

have the same distribution in each group and over time. It would be sufficient for subsequent

developments to just assume the distributions of εp|Sp = 1, G = g for p = 0, 1, g = lc, uc, tc

all have mean zero rather than the stronger assumption of identical distributions. We can

further relax this assumption by assuming zero mean only for components of εp that are

true confounders, that is, factors whose distributions depend on the interaction of time and
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group. Assumption (4.4) is weaker than the changes-in-changes model assumption that εip

is always zero which rules out classical measurement error in the outcome when h is non-

linear (Athey and Imbens, 2006). Our model contains the standard difference-in-difference

model, which can be represented in our model by h(U, p) = k(U) + τp for some bounded

and increasing function k, where k(U) can be viewed as a group fixed effect.

We make two further assumptions about the distribution of U in groups and how its effect

over time changes among the groups. First, we assume the distribution of U within groups

can be stochastically ordered so that U is lowest in the lower control group, intermediate

in the treated group and highest in the upper control group:

U|G = lc � U|G = t � U|G = uc (4.5)

where two random vectors A,B are stochastically ordered, A � B, if E[f(A)] ≤ E[f(B)]

for all bounded increasing functions f (Shaked and Shanthikumar, 1994). For example, if

U is normally distributed with common variance and group means µlc, µt, and µuc, then

µlc ≤ µt ≤ µuc would imply (4.5). Second, we assume that higher values of U either have a

bigger effect over time over the whole range of U or a smaller effect over the whole range:

Either (i) h(U, 1)− h(U, 0) ≥ h(U
′
, 1)− h(U

′
, 0) for all U ≥ U

′
, U,U

′ ∈ U or

(ii) h(U, 1)− h(U, 0) ≤ h(U
′
, 1)− h(U

′
, 0) for all U ≥ U

′
, U,U

′ ∈ U (4.6)

An example of this pattern of U confounding could occur in a study of the effect of a regional

policy on average income where the policy change occurred contemporaneously with an

easing of trade restrictions. A potential unmeasured confounder for such a study would be

U = share of skilled workers in a region, as a higher share of skilled workers is associated

with higher average income. There is considerable evidence that trade liberalization leads

to an increase in the skill premium – the relative wage of skilled to unskilled workers – at

both the regional and country level (Dix-Carneiro and Kovak, 2017; Burstein and Vogel,
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2017). Thus, we might expect (i) in (4.6) to hold if there was an easing of trade restrictions

in the after period.

We assume units are randomly sampled from each group in each time period. The data

could be obtained from repeated cross sections or a longitudinal study. Inferences under

different sampling assumptions are discussed in Appendix 4.5.1.

4.2.2. Bracketing Result

The standard moment difference-in-difference estimator using control condition c can be

written as β̂dd.c = (Y 1|G=t−Y 0|G=t)−(Y 1|G=c−Y 0|G=c) where Y p|G=g indicates the sample

average of units observed in group g and time period p, Yp|G = g, Sp = 1. This estimate is

equivalent to the coefficient on the treatment indicator in a fixed effects regression with full

time and group indicator variables. When using data already aggregated at some level, for

example by state-year, a fixed effects regression using weights proportional to population

will return this estimate. In the following, we show that the expectation of the two standard

difference-in-difference estimators computed with the upper and lower controls can be used

to bound the treatment effect.

The expected value of the standard difference-in-difference estimator comparing the treated

group to the lower control group, β̂dd.lc, is

E[β̂dd.lc] = {E[Y1|G = t, S1 = 1]− E[Y0|G = t, S0 = 1]}

−{E[Y1|G = lc, S1 = 1]− E[Y0|G = lc, S0 = 1]}

= {β + E[h(U, 1)|G = t, S1 = 1]− E[h(U, 0)|G = t, S0 = 1]}

−{E[h(U, 1)|G = lc, S1 = 1]− E[h(U, 0)|G = lc, S0 = 1]},

where Y1, Y0 denote observed outcomes in after period (p = 1) and before period (p = 0)

respectively. Under the time invariance of U within groups assumption (4.3), we have

E[β̂dd.lc] = β + {E[h(U, 1)− h(U, 0)|G = t]} − {E[h(U, 1)− h(U, 0)|G = lc]}; (4.7)
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similarly, the expected value of the difference-in-difference estimator comparing the treated

group to the upper control group, β̂dd.uc, is

E[β̂dd.uc] = β + {E[h(U, 1)− h(U, 0)|G = t]} − {E[h(U, 1)− h(U, 0)|G = uc]}. (4.8)

The difference-in-difference estimators β̂dd.lc and β̂dd.uc are unbiased if h(U, 1) − h(U, 0)

is constant for all U, i.e., the time effect between periods is the same for all levels of

U, or equivalently, the effect of the unmeasured confounders is the same in both time

periods. If the effect of the unmeasured confounders changes between periods, then because

of assumptions (4.5) and (4.6), we conclude from (4.7) and (4.8) that

min{E[β̂dd.lc], E[β̂dd.uc]} ≤ β ≤ max{E[β̂dd.lc], E[β̂dd.uc]}, (4.9)

i.e., the expected values of the difference-in-difference estimators using the upper control

group and lower control group bracket the causal effect (proof in Appendix 4.5.2). The

tightness of the bracketing bounds in (4.9) and, to some extent, the width of the corre-

sponding confidence interval developed in following section depend on the magnitude of

the group-by-time interaction. For example, if urban poverty concentration varied notably

between groups and its effect on firearm homicides were modulated by the Great Recession,

one would expect looser bracketing bounds.

4.2.3. Inference

We would like to make inferences for the causal effect β under the assumption (4.6) that

h(U, 1) − h(U, 0) is either an increasing or decreasing function of U (we do not want to

specify which a priori). Let θlc.t = E[β̂dd.lc] and θuc.t = E[β̂dd.uc], i.e., the expected values

of the difference-in-difference estimators using the lower control group and upper control

group, respectively. From the bracketing results (4.9), we have

min(θlc.t, θuc.t) ≤ β ≤ max(θlc.t, θuc.t).
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and the following interval, where CI means two-sided confidence interval,

[min(lower bound of 1− α CI for θlc.t, lower bound of 1− α CI for θuc.t),

max(upper bound of 1− α CI for θlc.t, upper bound of 1− α CI for θuc.t)], (4.10)

has probability ≥ 1− α of containing both min(θlc.t, θuc.t) and max(θlc.t, θuc.t), and thus β,

where it assumed that the two-sided CIs are constructed by taking the intersection of two

one-sided 1− (α/2) confidence intervals (proof in Appendix 4.5.3).

4.2.4. Constructing the Lower and Upper Control Groups

The results in §4.2.2-4.2.3 assume the lower and upper control groups have been constructed

before looking at the data. If the lower control group was constructed by looking at the

before period data by choosing units with lower outcomes than the treated in the before

period, then the sample average of Y0|G = lc, S0 = 1 may tend to be lower than E(Y0|G =

lc, S0 = 1). Consequently, the difference-in-difference estimate using the lower control group

may be downward biased even if the parallel trends assumption holds because of regression

to the mean (Cook et al., 2002); similarly, the difference-in-difference estimated using the

upper control group may be upward biased. This may invalidate the bracketing result (4.9).

To avoid bias arising from regression to the mean, we propose first selecting a “pre-study”

time period prior to the before period. Then, the lower control group can be constructed

from units with lower outcomes than the treated in this pre-study period and the upper

control group from units with higher outcomes. It should then be tested whether the

constructed lower control group has smaller expected outcomes than the constructed upper

control group in the before period; see §4.3 for example.

4.2.5. Role of Examining the Groups’ Relative Trends in the Before Period

In the standard difference-in-difference analysis that assumes parallel trends, when the be-

fore period contains multiple time points, it is good practice to test for parallel trends in the

before period (Meyer, 1995; Volpp et al., 2007). In our bracketing approach, we do not need
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the parallel trend assumption to hold, but examining the relative trends of the groups in

the before period is still useful for assessing model plausibility and assumptions. Our model

(4.1)-(4.4) along with assumptions (4.5)-(4.6) implies that if we had counterfactual data on

the treatment group in the after period in the absence of treatment, then, without sampling

variance, we would see either: (i) the differences between the upper control and counterfac-

tual treated groups and the difference between the counterfactual treated and lower control

groups in the after period would be at least as large as their respective differences in the

before period or (ii) the difference between the upper control and counterfactual treated

groups and the difference between the counterfactual treated and lower control groups in

the after period would be no larger and possibly smaller than their respective differences

in the before period. The following two patterns would violate the model/assumptions:

(iii) the difference between the upper control and counterfactual treated groups is larger

after than before and the difference between the counterfactual treated and lower control

groups is smaller after than before or (iv) the difference between the upper control and

counterfactual treated groups is smaller after than before and the difference between the

counterfactual treated and lower control groups is larger after than before. Although we

do not have the counterfactual treatment group’s data in the absence of treatment in the

after period, we have the treatment group’s data in the absence of treatment in the before

period. We can split the before period into two (or more) periods and test whether the

pattern in the before period is consistent with the model. Visual inspection of the relative

trends of the counterfactual treated group and the upper and lower control groups during

the before period can provide additional evidence for or against the model assumptions.

4.2.6. Time-Varying Confounders

Our bracketing method addresses an interaction between history and groups that arises

because the time-invariant unmeasured confounders that differ between the groups in the

before period (U) become more (or less) important in the after period (assumption (4.6)).

When there are time-varying confounders, the bracketing method still works under certain
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assumptions. Time-varying confounders can be represented in model (4.1) by letting U

contain all variables that differ in distribution between the groups in the before period, εi0

be the effect of factors that do not differ in distribution between the groups in the before

period and εi1 be the effect of the same factors in εi0 in the after period as well as factors

not contained in U that differ in distribution between the groups in the after period (details

on time-varying model in Appendix 4.5.4. If this last set of factors is present, then (4.4)

may not hold. However, the bracketing result (4.9) still holds as long as (i) in (4.6) holds,

E[εi1|G = uc] ≥ E[εi1|G = t] ≥ E[εi1|G = lc], (4.11)

or when (ii) in (4.6) holds,

E[εi1|G = uc] ≤ E[εi1|G = t] ≤ E[εi1|G = lc]; (4.12)

Appendix 4.5.4 contains a proof and sufficient conditions for (4.11) or (4.12) to hold. One

of these sufficient conditions (condition (c) in Appendix 4.5.4 is analogous to (i) in (4.6) in

that effects on the outcome, be they time effects or those due to contemporaneous shocks

to confounders, are amplified at larger values of U.

One type of time-varying confounder is a variable that largely stays the same between

time periods but may change modestly. For example, in our study of Missouri’s repeal of

their permit-to-purchase law in §4.3, urban concentration of poverty might be a confounder

and U contain urban concentration of poverty in the before period. Urban concentration

of poverty may stay mostly the same over time but change modestly, where the changes

are reflected in ε1. If the effect of urban concentration of poverty on firearm homicides

increased in the after period, then the bracketing result would still hold (with respect to

the confounding from urban concentration of poverty) as long as the impact of changes in

urban concentration of poverty on firearm homicides were at least as great in the upper

control group as Missouri and at least as great in Missouri as the lower control group.
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4.3. Application: Effect of the Repeal of Missouri’s Handgun Purchaser Licensing

Law on Firearm Homicides

American federal gun law requires background checks and record keeping for gun sales by

federally licensed firearm dealers but exempts these regulations for private sales. However,

some states have laws requiring all purchasers of handguns from licensed dealers and pri-

vate sellers to acquire a permit-to-purchase license that verifies the purchaser has passed

a background check. Missouri passed a permit-to-purchase law in 1921, requiring handgun

purchasers to obtain a license from the local sheriff’s office that facilitated the background

check, but repealed the law on August 28, 2007. Webster et al. (2014) examined the effect

of Missouri’s repeal on firearm homicide rates (the rate of homicides committed using a

firearm). One of their analyses used a comparative interrupted time series design, compar-

ing Missouri to the eight states bordering Missouri using a before-period of 1999-2007 and

after-period of 2008-2010 (the only available post-repeal data at the time of their analy-

sis), finding evidence that the repeal of Missouri’s permit-to-purchase law increased firearm

homicide rates (see their Table 1). None of the border states introduced new or made

changes to existing permit-to-purchase laws during the study period. Using a fixed effect

regression and adjusting for several background crime and economic covariates, they esti-

mated that the Missouri permit-to-purchase repeal was associated with an increase in the

firearm homicide rate by 1.1 per 100,000 persons (95% confidence interval [CI]: 0.8,1.4) ,

a 22% (95% CI: 16 %, 29%) increase. Non-gun related homicides remained virtually un-

changed. In what follows, we re-examine the effect of Missouri’s repeal using bracketing

and the now available after-period data from 2008-2016 to address possible biases arising

from unobserved state-by-time interactions.

Figure 6 shows the age-adjusted firearm homicide rates in Missouri and the border states

over the study period using data from the Centers for Disease Control and Prevention (CDC)

Wide-ranging Online Data for Epidemiologic Research (WONDER) system (http://wonder.cdc.gov,

2018). The standard difference-in-difference estimate using all neighboring control states,
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shown in the top row of Table 12, is that Missouri’s permit-to-purchase repeal increased

firearm homicides by 1.2 per 100,000 persons (95% CI: 1.0,1.4), corresponding to a 24%

increase (95% CI: 18%,31%). In the before-period, Missouri had generally higher firearm

Figure 6: Age-adjusted firearm homicide rates in Missouri and states bordering Missouri
(population-weighted averages), 1999-2016.

homicide rates than the control border states, suggesting a lack of comparability between

the groups. One concern is that the start of the after period coincided with the beginning

of the Great Recession. The economic downturn was followed by a decline in homicide

rates. Possible reasons for the effect of the downturn on homicide rates and violence gener-

ally include changing alcohol affordability, disposable income, unemployment, and income

inequality (Matthews et al., 2006; Wolf et al., 2014; Shepherd and Page, 2015). The effects

of the economic downturn on firearm homicides might interact with the starting level of

firearm homicides in a state. To address this concern, we constructed upper and lower

control groups that bracket Missouri’s firearm homicide rate in the before period. To avoid

regression to the mean in §4.2.4, we use data from 1994-1998, the five years prior to our be-

fore period, to choose the upper and lower control groups; see Table 11 for data. The lower

control group is Iowa, Kansas, Kentucky, Nebraska, and Oklahoma and the upper control

group is Arkansas, Illinois, and Tennessee. The population-weighted firearm homicide rate

in the before period of 1999-2007 is 5.2 in the upper control states, 4.7 in Missouri, and
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2.7 in the lower control states (95% CI for difference between upper control and Missouri:

0.2,0.8; 95% CI for difference between Missouri and lower controls: 1.8,2.2).

Table 11: Age-adjusted firearm homicide rates per 100,000 persons from periods 1994-1998
(pre-study period used to construct lower and upper control groups), 1999-2007 (before re-
peal period where repeal refers to repeal of Missouri’s permit-to-purchase handgun licensing
law) and 2008-2016 (after repeal period).

1994-1998 1999-2007 2008-2016

Missouri 6.1 4.7 6.1

Arkansas 7.3 5.1 5.5
Illinois 7.1 5.1 5.2
Iowa 1.2 0.9 1.2
Kansas 4.2 3.0 3.0
Kentucky 4.1 3.3 3.7
Nebraska 2.2 1.8 2.4
Oklahoma 4.8 3.8 4.8
Tennessee 6.9 5.5 5.4

Population-weighted 5.6 4.2 4.4
All Controls

Population-weighted 7.1 5.2 5.3
Upper Controls

Population-weighted 3.5 2.7 3.2
Lower Controls

Figure 7 shows firearm homicides rates (age-adjusted and population-weighted) in the brack-

eted control groups compared to Missouri. The bottom two rows of Table 12 show the

difference-in-difference estimates using the lower and upper control groups and 95% CIs.

Both the lower and upper control groups provide evidence that Missouri’s repeal of its

permit-to-purchase handgun law increased firearm homicides, bracketing the effect of the

repeal between 0.9 and 1.3 homicides per 100,000 people, corresponding to a percentage

increase of 17% to 27%. The interval (4.10) that has a ≥ 95% chance of containing the

effect of the repeal on the firearm homicide rate is [0.6, 1.7], corresponding to an 11% to

35% increase in firearm homicides, providing evidence that the repeal increased firearm

homicides.

4.3.1. Assessing Model Assumptions: Time-Varying Confounders and Relative Trends

A type of time-varying confounder that is relevant to the Missouri permit-to-purchase study
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Figure 7: Age-adjusted gun homicide rates per 100,000 persons in Missouri, lower control
states bordering Missouri (population-weighted averages) and upper control states bordering
Missouri, 1999-2016.

Table 12: Difference-in-difference estimates of effect of repeal of Missouri’s permit-to-
purchase handgun licensing requirement on firearm homicide rates per 100,000 persons.
CI indicates confidence interval.

Control Group Estimate 95% CI % Change Estimate 95% CI

All Controls 1.2 [0.9, 1.5] 24% [18% ,31%]

Upper Controls 1.3 [0.9, 1.7] 27% [19% ,35%]
Lower Controls 0.9 [0.6, 1.2] 17% [11% ,23%]

is a factor that only arises in the after period. The Ferguson unrest in 2014 might have led to

less effective policing (spikes in violence typically follow social unrest) in Missouri compared

to other states. Such a time-varying confounder would be unlikely to satisfy (4.11) or (4.12)

because it arises only in the treated group (Missouri) in the after period. However, this

confounder alone does not change our finding that the repeal increased firearm homicides.

If we limit the study to 2008-2013, Missouri still has larger increases in firearm homicide

rates than both the upper and lower control groups; see Appendix 4.5.6.

To assess the plausibility of our model (4.1)-(4.4) and assumptions (4.5)-(4.6), we apply

the relative trends test described in §4.2.5. Applying the test to our study of the repeal

of Missouri’s permit-to-purchase law, we do not find evidence that our model assumptions
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are violated. Visual inspection of the relative trends of counterfactual Missouri and the

upper and lower controls in the before period further supports the plausibility of our model

assumptions; see Figure 9 in Appendix 4.5.5.

4.3.2. Standard Error Estimates: A Poisson Model for Death Counts

The standard errors used for inference in the previous section come directly from the CDC

WONDER system. Vital statistics that derive from complete counts of deaths (by cause)

are not subject to sampling error. Nonetheless, a stochastic model of vital statistics may

be justified by the presence of biological, environmental, sociological, and other natural

sources of variability (Brillinger, 1986). For inferential purposes, a census may be viewed

as a realization from such a stochastic process under similar conditions to those observed

(Keyfitz, 1966). In particular, the observed firearm homicide death rate in any state-year

may be viewed as one of a large series of possible Poisson distributed outcomes under

similar conditions (US Department of Health and Human Services, 2004). The standard

errors reported by the CDC are computed under this Poisson model.

4.3.3. A Placebo Study: Assessing Alternative Sources of Uncertainty

There may be other sources of uncertainty unaccounted for by the natural variability of a

Poisson model for yearly state-level firearm homicides. Several recent papers suggest that

such sources of uncertainty, if ignored, may yield substantially different inferential conclu-

sions. Serially correlated data (Bertrand et al., 2004), yearly state-level shocks (Donald

and Lang, 2007), and small numbers of policy changes (Conley and Taber, 2011) can cause

the standard errors returned by a fixed effects regression to be downwardly biased. We

conduct a placebo study (Abadie et al., 2010; Bertrand et al., 2004) to address inferential

challenges that arise from the presence of possibly dependent, yearly state-level shocks to

the conditions that generate these Poisson realizations.

Akin to permutation inference, a placebo study in the context of the Missouri permit-to-

purchase repeal analysis applies the bracketing method to every state to create a placebo
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intervention effect distribution. Specifically, for each state where there was no permit-to-

purchase repeal we construct lower and upper control groups of neighboring states, when

available, in exactly the same way we did so for Missouri. We then compute the difference-

in-difference estimates using both control groups for a placebo “repeal” on August 28,

2007. This results in two exact distributions for the placebo intervention effect estimate,

one estimated using lower controls and the other using upper controls. If the permit-to-

purchase repeal effect in Missouri is not spurious, we would expect to see few placebo

effects greater than the ones reported in our study using either control condition. The

Figure 8: Histograms of placebo “repeal” effects using different control states. (Left Panel):
Histogram of placebo difference-in-difference estimates using lower control states (n = 38
states with lower control neighbors – includes Missouri). Two states (Oklahoma and
Delaware) had a larger estimate than Missouri (dashed line).(Right Panel): Histogram
of placebo difference-in-difference estimates using upper control states (n = 37 states with
upper control neighbors – includes Missouri). One state (Delaware) had a larger estimate
than Missouri (dashed line).
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histograms of the placebo effects in Figure 8 suggest that the Missouri bracketing study is

relatively robust to these alternative sources of variability. Of the 38 states that had lower

control neighbors, only two (Oklahoma and Delaware) had placebo effect estimates using

lower controls that were larger than Missouri (dashed line, left panel). Of the 37 states

that had upper control neighbors, only one (Delaware) had a placebo effect estimate using

upper controls that was larger than Missouri (dashed line, right panel). Alaska, Hawaii, the

District of Columbia and three states with missing data in either the pre-study, before or

88



after period were excluded from the analysis.

4.4. Conclusion and Discussion

We developed a bracketing method for comparative interrupted time series to account for

concerns that history may interact with groups. In a study of the repeal of Missouri’s permit-

to-purchase handgun law, the method addressed a concern that on average, control states

started out with lower firearm homicide rates than Missouri before the repeal. Comparing

both to states that started with higher firearm homicide rates than Missouri and states that

started with lower rates, the repeal was associated with a significant increase in firearm

homicides, thus strengthening the evidence that the repeal had a causal effect of increasing

firearm homicides.

A limitation of our estimated impact of the repeal of Missouri’s permit-to-purchase law is

that a Stand Your Ground law was simultaneously adopted in Missouri. However, in the

original study by Webster et al. (2014), the inclusion of a Stand Your Ground indicator

in the regression did not dramatically change the estimated effect. Additionally, a recent

comparative interrupted time series study examining firearm homicide rates in large urban

counties found that permit-to-purchase laws were associated with significant reductions in

firearm homicides after controlling for the effects of Stand Your Ground lawsCrifasi et al.

(2018). Further evidence that the contemporaneous Stand Your Ground law does not change

the qualitative conclusion of our study can be found in the placebo study. There were 16

additional states that adopted Stand Your Ground laws within a few years of Missouri’s

permit-to-purchase repealCrifasi et al. (2018). Only one state (Oklahoma) of the 16 had

a difference-in-difference placebo effect estimate using lower controls that was larger than

Missouri and none of the states had placebo effect estimates using upper controls that were

larger than Missouri.

Although only one of many potential patterns of bias, the history-by-group interaction bias

addressed in this paper has been mentioned in the literature since at least the middle of the
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20th century. A version of it is referred to selection-maturation interaction in a taxonomy

of possible threats to the validity of experimental and quasi-experimental designs presented

in Campbell and Stanley (Campbell and Stanley, 1963). Fundamentally, bracketing relies

on constructing control groups across which this potential source of confounding is sys-

tematically varied (Hasegawa and Small, 2017). Other methods for constructing adequate

control groups in the presence of history-by-group interactions, such as the synthetic control

method (Abadie et al., 2010), have also found success in comparative case studies of the

effect of permit-to-purchase laws on firearm homicide rates (Rudolph et al., 2015). While

we do not argue that bracketing is uniformly superior to the synthetic control method, the

practitioner may find that each has strengths that lend themselves to different settings.

When the researcher believes that unmeasured history-by-group confounding, h(U, p), can

be expressed as a linear factor model with time-varying slopes and group-specific loadings,

the synthetic control method provides an asymptotically unbiased point estimate of the

causal effect of treatment while bracketing can only provide bounds on the treatment effect.

However, when the practitioner suspects that only the weaker assumptions of the model

outlined in §4.2.1 hold, the bracketing bounds will remain unbiased, in that they contain

the true effect in expectation, while the point estimate using synthetic controls need not be

unbiased; see Appendix 4.5.7 for further discussion. A detailed example of such a case can

be found in the Appendix 4.5.8.

4.5. Appendix

4.5.1. Inferences Under Different Sampling Assumptions

The standard difference-in-difference estimator using a control group c, β̂dd.c, is

β̂dd.c = {Ê[Y1|G = t, S1 = 1]− Ê[Y0|G = t, S0 = 1]}

−{Ê[Y1|G = c, S1 = 1]− Ê[Y0|G = c, S0 = 1]}.
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When the samples of (i) Y1|G = t, S1 = 1, (ii) Y0|G = t, S0 = 1, (iii) Y1|G = c, S1 = 1 and

(iv) Y0|G = c, S0 = 1 are independent, then the standard error of β̂dd.c is

SE(β̂dd.c) =

{SE(Ê[Y1|G = t, S1 = 1])2 + SE(Ê[Y0|G = t, S0 = 1])2

+SE(Ê[Y1|G = c, S1 = 1])2 + SE(Ê[Y0|G = c, S0 = 1])2}1/2. (4.13)

We use (4.13) to make inferences for our study of the effect of the repeal of Missouri’s

permit-to-purchase law, where the Ê and corresponding SEs are obtained from the CDC’s

WONDER system.

Let κtt be the % change in the treated group’s mean outcome in the after period compared

to its mean counterfactual outcomes in the after period in the absence of treatment,

κtt = 100× E[Y
(1)

1 |G = t, S1 = 1]− E[Y
(0)

1 |G = t, S1 = 1]

E[Y
(0)

1 |G = t, S1 = 1]
.

An estimate of κtt using control group c and assuming the parallel trends of standard-in-

differences is

κ̂tt.c = 100× β̂dd.c

Ê(Y0|G = t, S0 = 1) + {Ê(Y1|G = c, S1 = 1)− Ê(Y0|G = c, S0 = 1)}
.

We approximate the standard error of κ̂tt.c using the Delta method.

The model (4.1) can be extended to allow for observed covariates, clustering and multiple

time points using a regression framework (Imbens and Wooldridge, 2009). The difference-

in-difference estimator may be computed by regressing the observed outcome Y on a time

period dummy, a group dummy and a treatment variable. Observed covariates Xip that

could vary by time can be incorporated into the model and then the difference-in-difference

regression estimator can be computed by regressing Y on the observed covariates, a time

period dummy, a group dummy and a treatment variable. The model assumptions then
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need to hold only conditionally on the observed covariates. The comparative interrupted

time series can be applied to settings with more than two time periods. A full set of time

period dummies can be added to model (4.1). The effect of the treatment over time can be

allowed to vary by interacting the treatment dummy with time.

Within each group, there may be clusters of units, e.g., different countries that had the

same policy reform. For such settings, we can extend model (4.1) to the following (Donald

and Lang, 2007) where the index cip denotes the ith unit in cluster c at time period p:

Y
(d)
cip = h(Ucip, p) + βd+ ηcp + εcip, (4.14)

where ηcp represents an effect shared by members of cluster c in period p, e.g., an economic

shock that is specific to a country c in period p. Under an assumption that the ηcp are

independent and identically distributed (i.i.d.) normal random variables, Donald and Lang

(2007) showed that if we compute the mean in each cluster at each time period, and regress

these cluster/period means on fixed effects for each cluster, a time period dummy and a

treatment variable, then the t statistic for the treatment variable ( β̂−β
SE(β̂)

) has a t distribution

with the number of clusters minus two degrees of freedom. Using this approach, we do not

need to have individual data but only summary data for each cluster. Other approaches to

inference that allow for the ηcp to be non-i.i.d. such as autocorrelated within group, have

been developed. (Bertrand et al., 2004; Hansen, 2007).

Note that the presence of at least two clusters in at least one group enables us to make

inferences that allow for shared effects ηcp. When there is only one cluster in each group,

e.g., we are comparing just two countries, one in which a policy reform was implemented

and one in which it was not, then there are zero degrees of freedom to estimate the variance

of the ηcp so inferences cannot be drawn that allow for ηcp to be nonzero using data from

entirely within the sample. For such settings, it may be possible to get information from

outside the sample to get a plausible estimate of the variance of the ηcp (Blitstein et al.,

2005; Donald and Lang, 2007).
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4.5.2. Proof of (4.9) in §4.2.2

Suppose h(U, 1) − h(U, 0) is a bounded increasing function of U. Then from (4.5) and

the property that bounded increasing functions of stochastically ordered random variables

preserve order, it follows that

E[β̂dd.uc] ≤ β ≤ E[β̂dd.lc]. (4.15)

Similarly, if h(U, 1)− h(U, 0) is a bounded decreasing function of U,

E[β̂dd.lc] ≤ β ≤ E[β̂dd.uc]. (4.16)

(4.9) follows from (4.15) and (4.16).

4.5.3. Proof for Result in §4.2.3

Here we prove that (4.10) has probability ≥ 1 − α of containing both min(θlc.t, θuc.t) and

max(θlc.t, θuc.t) under the assumption that the two sided CIs are constructed in the usual

way by taking the union of two one-sided 1 − (α/2) confidence intervals. The result is

basically derived by inverting multiparameter hypothesis tests about the minimum or max-

imum of two parameters (Lehmann, 1952; Berger, 1982). Let q = min(θlc.t, θuc.t) and

r = max(θlc.t, θuc.t). The probability that (4.10) does not contain both min(θlc.t, θuc.t) and

max(θlc.t, θuc.t) is bounded by the probability that q is less than the lower endpoint of the

interval plus the probability that r is greater than the upper endpoint of the interval. The

probability that q is less than the lower endpoint of the interval is the probability that both

one-sided tests H l
0 : θlc.t ≤ q vs. H l

1 : θlc.t > q and Hu
0 : θuc.t ≤ q vs. H l

1 : θuc.t > q give

p-values ≤ α/2, which has probability at most α/2 since each individual event has proba-

bility at most α/2. Similarly, the probability that r is greater than the upper endpoint of

the interval is the probability that both one-sided tests H l′
0 : θlc.t ≥ r vs. H l′

1 : θlc.t < r and

Hu′
0 : θuc.t ≥ r vs. H l′

1 : θuc.t < r give p-values ≤ α/2, which has probability at most α/2
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since each individual event has probability at most α/2. Thus, the probability that (4.10)

does not contain both min(θlc.t, θuc.t) and max(θlc.t, θuc.t) is bounded by α.

4.5.4. Modeling Time-varying Confounders

We model a setting with time-varying confounders as follows. We maintain the assumptions

in §4.2.1 except for (4.4). We let U contain all variables that affect the outcome that differ

in distribution between the groups (treated, upper control, lower control) in the before

period and let ε0 summarize the effect of factors in the before period that do not differ in

distribution between the groups. We can model the average effect of the factors in ε0 as

an intercept in the h(U, 0) function so that E(ε0|S0 = 1, G = g) = 0 holds for all groups

g = lc, uc, tc. The effect of factors that do not differ in distribution between the groups

in the after period as well as the effect of time-varying confounders in the after period are

summarized in ε1. Some of these time-varying confounders may be variables in U that have

changed their level over time. Let U0 ≡ U be the value of the variables in U in the before

period and U1 be their value in the after period, where U0 = U1 for a unit only in the

population in the after period (with U defined this way, the validity of (4.3) needs to be

considered carefully). Then, assuming that the average effect of the factors in ε1 that do

not differ between the groups in the after period is modeled as an intercept in h(U, 1), we

have

E(ε1|G = g, S1 = 1) = E[h(U1, 1)− h(U0, 1)|G = g, S1 = 1].

Then for (4.11) to hold, we need to have

E[h(U1, 1)− h(U0, 1)|G = uc, S1 = 1] ≥ E[h(U1, 1)− h(U0, 1)|G = t, S1 = 1]

≥ E[h(U1, 1)− h(U0, 1)|G = lc, S1 = 1] (4.17)

A set of sufficient conditions for (4.17) to hold when U is univariate and the assumptions

in §4.2.1 hold is the following: (a) S0 = S1 = 1 for all units so that all units are in the

study population in both periods; (b) U1−U0 is independent of U0 given G; (c) the function
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h(U, 1) is convex in U so that h has increasing differences in the sense that for u, u
′
, u
′′
, u
′′′

such that u− u′ = u
′′ − u′′′ and u > u

′′
, the following inequality holds: h(u, 1)− h(u

′
, 1) ≥

h(u
′′
, 1)− h(u

′′′
, 1), and (d) U1 − U0|G = lc � U1 − U0|G = t � U1 − U0|G = uc. The proof

that this set of sufficient conditions implies that (4.17) holds is as follows. Let Dlc be a

random variable with the distribution of U1 − U0|G = lc where Dlc is independent of U0

given G. Then from (c) and (4.5), it follows that

E[h(U0 +Dlc, 1)− h(U0, 1)|G = t] ≥ E[h(U0 +Dlc, 1)− h(U0, 1)|G = lc]. (4.18)

Now let Dt be a random variable with the conditional distribution of U1 − U0|G = t and

Duc be a random variable with the conditional distribution of U1 − U0|G = uc where Dt

and Duc are independent of U0 given G. Then from (d) and h being an increasing function,

it follows that E[h(U0 + Dt)|G = t] ≥ E[h(U0 + Dlc)|G = t]. Combining this with (4.18),

we have

E[h(U0 +Dt, 1)− h(U0, 1)|G = t] ≥ E[h(U0 +Dlc, 1)− h(U0, 1)|G = lc]

which is equivalent to

E[h(U1, 1)− h(U0, 1)|G = t] ≥ E[h(U1, 1)− h(U0, 1)|G = lc]. (4.19)

Similarly from (d) and h being an increasing function, it follows that E[h(U0 + Duc)|G =

uc] ≥ E[h(U0 +Dt)|G = uc], and from (c) and (4.5), it follows that

E[h(U0 +Dt, 1)− h(U0, 1)|G = uc] ≥ E[h(U0 +Dt, 1)− h(U0, 1)|G = t],

and combining these, we have that

E[h(U0 +Duc, 1)− h(U0, 1)|G = uc] ≥ E[h(U0 +Dt, 1)− h(U0, 1)|G = t]
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which is equivalent to

E[h(U1, 1)− h(U0, 1)|G = uc] ≥ E[h(U1, 1)− h(U0, 1)|G = t]. (4.20)

Combining (4.19) and (4.20) gives us the desired conclusion.

Proof that (4.9) still holds as long as when (i) in (4.6) holds, (4.11) holds or when (ii) in

(4.6) holds, (4.12) holds. When there are time varying confounders, we have that E[β̂dd.lc] is

the expression on the right hand side of (4.7) plus E(ε1|G = t, S1 = 1)−E(ε1|G = lc, S0 = 1)

and E[β̂dd.lc] is the expression on the right hand side of (4.8) plus E(ε1|G = t, S1 = 1) −

E(ε1|G = uc, S0 = 1). When (i) in (4.6) holds, the expression on the right hand side of (4.7)

is ≥ β and the expression on the right hand side of (4.8) is ≤ β. Combining the facts in the

last two sentences, we have that if (i) in (4.6) and (4.11) holds, E[β̂dd.uc] ≤ β ≤ E[β̂dd.lc]

and if (ii) in (4.6) and (4.12) holds, E[β̂dd.lc] ≤ β ≤ E[β̂dd.uc].

4.5.5. Test of Model/Assumptions by Examining the Groups’ Relative Trends in the Before

Period

We can test whether the violating pattern (iii) is present in the before period using an

intersection-union test (Lehmann, 1952; Berger, 1982), which find evidence (say p-value

< 0.05) for (iii) if there is evidence (p-value < .05) for both (a) the difference between

the upper control group and the counterfactual treated group is larger in the second part

of the before period than the first part and (b) the difference between the counterfactual

treated group and the lower control group is smaller in the second part than the first part;

for the firearm homicide data, splitting the before period into the two parts, 1999-2002

and 2003-2007, (a) gives a p-value of 0.96 and (b) gives a p-value of 0.5, so there is not

evidence for (iii) being violated. Pattern (iv) can be tested in a similar way and for the

firearm homicide data, there is not evidence for pattern (iv) holding (p-values of 0.04 and

0.5). Ideally, this testing procedure should have sufficient power to reduce the chance of

proceeding with the analysis when the assumptions of the model don’t, in fact, hold to
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an acceptable level. When sample sizes are beyond the control of the investigator or, for

example, when dealing with complete counts of firearm homicides where variability depends

on the rate itself rather than sampling error, increasing the level of the test can achieve

some improvement in power. The p-value is ≥ 0.5 for the test of each alternative, that (iii)

holds and that (iv) holds. Hence, α would have to be increased beyond 0.5 to affect the

conclusions about the plausibility of our model assumptions.

Alternatively, the presence of violating patterns (iii) and (iv) can be assessed visually with-

out requiring a formal testing procedure. In the left panel of 9 we plot the relative trends

of the population-weighted firearm homicide rates for the upper (dashed blue) and lower

(dashed red) groups and the counterfactual treated group (dashed black) over the before

period. The vertical bars indicate 95% CIs. Visually, there is no strong evidence that

pattern (iii) or (iv) is present. The difference between upper controls and counterfactual

Missouri and between counterfactual Missouri and the lower controls both get smaller in

the latter part of the before period. We can also partially assess whether this pattern might

hold over the entire study period, our primary concern, by addressing how the upper and

lower control trends compare between the before period and the entire study period. In the

right panel of 9 we plot the relative trends of the two control groups and treated group over

the entire study period. The dashed black lines are not comparable between panels because

the left panel is a counterfactual trend whereas the trend in the right panel is subject to

treatment (i.e. permit-to-purchase repeal). However, we can assess the comparability of the

pattern of the control group trends between the two panels. They appear similar, with a

slight narrowing of the difference in population-weighted firearm homicide rates over time.

When paired with the test described above, visual inspection can answer questions about

our model assumptions that our intersection-union tests do not address directly: If we

find evidence that pattern (iii) or (iv) is present, are the violations substantial enough to

arrest the planned analysis or should we still proceed but with increased caution? If the

test doesn’t find evidence of a violation is that because our assumptions hold, at least
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Figure 9: (Left Panel): Relative trends of the population-weighted firearm homicide rates
for the upper (dashed blue) and lower (dashed red) groups and the counterfactual treated
group (dashed black) over the before period. The vertical bars indicate 95% CIs. (Right
Panel): Relative trends of the population-weighted firearm homicide rates for the upper
(dashed blue) and lower (dashed red) groups and the treated group (dashed black) over the
entire period. The vertical bars indicate 95% CIs.
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approximately, or is it due to large standard errors and/or low power? We recommend that

testing and visual inspection should be used in conjunction when assessing the plausibility

of the model assumptions.

If one does find evidence for pattern (iii) or (iv) holding in the before period, and if one

thinks there has been a structural shift such that the model (4.1)-(4.4) and assumptions

(4.5)-(4.6) only start to hold in the latter part of the before period but continue to hold

in the after period, one could just use the latter part of the before period. This is similar

to the scenario in a difference-in-difference model when there is evidence of a diverging

trend during an earlier portion of the pre-intervention period, researchers can restrict the

analysis to include only the latter part of the before period with the hope that parallel trend

assumption is more likely to be valid (Volpp et al., 2007). However, the finding of pattern

(iii) or (iv) in the before period suggests caution.
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4.5.6. Analysis Using After Period of 2008-2013

For the period of 2008-2013, Missouri’s age-adjusted firearm homicide rate was 5.5, the

upper control group’s age-adjusted firearm homicide rate was 5.0 and the lower control’s

age adjusted firearm homicide rate was 2.9. Using an after period of 2008-2013, difference-

in-difference estimates for the upper and lower control groups are shown in Table 13. Using

an after period of 2008-2013, the interval (4.10) that has a ≥ 95% chance of containing

the effect of the repeal on the firearm homicide rate is [0.2, 1.4], corresponding to a 5%

to 31% increase in firearm homicides, providing evidence that the repeal increased firearm

homicides.

Table 13: Difference-in-difference estimates of effect of repeal of Missouri’s permit-to-
purchase handgun licensing requirement on firearm homicide rates per 100,000 persons
using after period of 2008-2013

Control Group Estimate 95% CI % Change Estimate 95% CI

Upper Controls 1.0 [0.6, 1.4] 22% [14% ,31%]
Lower Controls 0.6 [0.2, 1.0] 17% [5% ,19%]

4.5.7. Comparison with the Synthetic Control Method

Abadie et al. (2010) proposed constructing a synthetic control group which is a linear combi-

nation of multiple control groups that matches the before period outcomes of the treatment

group. The synthetic control method provides asymptotically unbiased estimates of the

causal effect of treatment assuming that the unmeasured confounders can be represented

by a factor model with the factors’ effects in each time period being linear with a time-

specific slope, whereas our bracketing method only provides bounds under this assumption.

However, this assumption is strong and is not generally satisfied in our model (4.1)-(4.4).

In the following section we provide a simple example that satisfies the assumptions of our

model but for which the estimate returned by the synthetic control method will be biased.

If the types of interaction between history and group in the after period that are of concern

have occurred in the before period (e.g., a similar recession occurred in the after period as the

before period), then the synthetic control method’s matching of the before period outcomes
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might enable it to match the treated group’s counterfactual trajectory in the after period

in the absence of treatment. However, if the types of interaction are different (e.g., there

is a more severe recession in the after period or the interactions between poor health and

the macroeconomy have been altered by other policy changes), then the synthetic control’s

matching in the before period does not provide much reassurance unless one has a basis

for strong functional form assumptions such as the factors representing the unmeasured

confounders’ having a linear effect in each time period. In contrast, the bracketing method

relies on assumptions such as (4.6) that the unmeasured confounders’ effect is increasing (or

decreasing) in importance over time over the whole range of the unmeasured confounders

that can be assessed using subject matter knowledge without making strong functional form

assumptions.

4.5.8. Example of How Synthetic Control Model Assumptions Are Violated in Our Model

For example, suppose U has an exponential distribution in each group with scale 0.2, 0.5

and τ in the lower control, upper control and treated groups respectively where 0.2 < τ <

0.5 and h(U, 0) = U , h(U, 1) = exp(U). Then the synthetic control linear combination

is τ−0.2
0.3 × lower control group + 0.5−τ

0.3 × upper control group. For the after period, the

linear combination of the mean outcomes for the synthetic control linear combination is

τ−0.2
0.3 ×1.25+ 0.5−τ

0.3 ×2 while the treated group’s counterfactual mean outcome in the absence

of treatment is −1/τ
−1/τ+1 , and τ−0.2

0.3 × 1.25 + 0.5−τ
0.3 × 2 < −1/τ

−1/τ+1 for all 0.2 < τ < 0.5. Thus

the synthetic control group’s after period mean is always less than than the counterfactual

after period mean for the treatment group in the absence of treatment.
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CHAPTER 5

Estimating Malaria Vaccine Efficacy in the Absence of a Gold Standard Case

Definition: Mendelian Factorial Design

Abstract

In this paper we develop methods to identify and estimate malaria vaccine efficacy

that do not require a gold-standard case definition of clinical malaria. Instead, we lever-

age genetic traits that are protective against malaria but not against other childhood

illnesses to identify vaccine efficacy in a randomized control trial. The sickle cell trait

is one such genetic variant that confers protection specifically against clinical malaria.

The method, which we call Mendelian factorial design, is inspired by Mendelian ran-

domization studies that use genetic variants as instrumental variables to estimate causal

effects of non-randomized exposures. Mendelian factorial design augments a random-

ized trial with genetic variation to produce a natural factorial experiment, which under

realistic assumptions allows for identification of vaccine efficacy. We motivate our meth-

ods with a hypothetical study of the pre-erythrocytic vaccine RTS,S where subject-level

information on sickle cell status is collected. A robust, covariance adjusted estimation

procedure is developed for estimating vaccine efficacy on the risk ratio and incidence ra-

tio scales. Simulations across a number of settings suggest that our estimator has good

performance whereas naive methods are systematically biased. We demonstrate that

a combined estimator using both our proposed estimator and the standard approach

yields significant improvements when the Mendelian factor is only weakly protective.

Finally, we extend the Mendelian factorial design framework to time-to-event studies.

5.1. Introduction

In 2017, there were an estimated 219 million cases of malaria of which 92% occurred in

Africa and an estimated 435,000 malaria related deaths of which 93% occurred in Africa;

nearly every case of malaria in Africa was cause by the parasite Plasmodium falciparum

(World Health Organization, 2018). Pregnant women and children under the age of 5 are

the most vulnerable groups affected by malaria. To date, of more than 30 vaccines under
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development, the only vaccine to undergo a pivotal phase III trial is the pre-erythrocytic

vaccine RTS,S which has shown to have limited efficacy (30 − 50% reduction in incidence

rates; Mahmoudi and Keshavarz (2017)). Consequently, the continued development of

an efficacious P. falciparum malaria vaccine has the potential for substantial public health

impacts. With so many potential vaccines in the development pipeline, a critically important

statistical challenge is to develop methods for estimating vaccine efficacy. To date, accurate

estimation of vaccine efficacy against clinical outcomes attributable to P. falciparum malaria

requires defining reliable case definitions, a task that is made difficult by the unspecific

presentation of malaria in endemic areas.

In the absence of a gold standard case definition, efficacy is usually assessed by choosing an

inexact case definition which may falsely exclude cases attributable malaria and falsely in-

clude non-malaria cases. The established definition of clinical malaria in malaria prevention

trials is the presence of a fever with a temperature ≥ 37.5oC and a P. falciparum parasite

density above a certain threshold, e.g., 2500 or 5000 parasites per µl of blood (Ter Kuile

et al., 2003; The RTS,S Clinical Trials Partnership, 2011; Olotu et al., 2013; Bejon et al.,

2013). Case definitions of this form inevitably exclude some true cases and include some

false cases due to heterogeneity in immunity and endemicity, fever killing effects, and par-

asite density measurement error. With specificity < 1, estimates of vaccine efficacy will

be biased downward. It has been shown in simulations that such case classification errors

have the potential to introduce substantial bias in many settings (Small et al., 2010). Real

trial data suggests that these challenges with the standard case definition often go unad-

dressed. In a multi-site pooled analysis of phase II RTS,S trial data using a fixed 2500

parasite per µl cutoff across all study sites, Bejon et al. (2013) reports estimates of vaccine

efficacy against malaria that were as high as 60% in sites with low parasite prevalence and

as low as 4% in high parasite prevalence sites. The authors suggest a biological reason for

this pattern: RTS,S prevents fevers in only a portion of mosquito bites and in areas where

parasite prevalence is high, children are likely bitten more often by infected mosquitos. How-

ever this pattern is also consistent with bias due to the fixed case definition having lower
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specificity in higher prevalence areas where, due to improved immunity, children can carry

higher parasite loads without fever. The standard case definition leaves much unanswered:

is the heterogeneity in vaccine efficacy epidemiologically important or just an artifact of

bias arising from an inexact case definition?

To overcome the challenges that accompany inexact case definitions, this paper introduces

a new method for identifying malaria vaccine efficacy using natural genetic variation, which

we call Mendelian factorial design. Importantly, the method does not depend on an inexact

case definition based on the parasite density, instead using all fevers (or deaths) with any

level of parasitemia to estimate efficacy. To identify vaccine efficacy, the new method re-

quires finding and recording genetic variants that provide specific protection against clinical

malaria and operate through a different biological pathway than the vaccine being evalu-

ated. A running example in this paper is the sickle cell trait, a hemoglobinopathy that has

been shown to protect against malaria at the blood-stage (erythrocytic) of the infection

and the RTS,S vaccine, which confers protection against malaria at the pre-erythrocytic,

liver-stage of the infection. There are many other vaccine types, e.g., transmission blocking

and erythrocytic vaccines, and genetic variants that might satisfy these identifying condi-

tions (Ndila et al., 2018). We will discuss these occasionally throughout the paper and more

thoroughly in the discussion.

In the following section, we introduce Mendelian factorial design informally in the context of

the more familiar use of genetic variants as instrumental variables in Mendelian randomiza-

tion studies, to which it has many parallels. In §5.3, we present a precise definition of vaccine

efficacy and malaria-attributable fevers in a potential outcome framework and propose an

identification strategy that holds under a few realistic assumptions. We then provide a sim-

ple
√
n-consistent and asymptotically normal covariate-adjusted estimator that is robust

to model misspecification and assess its performance in a simulation study over a range of

settings. We develop an improved “bounded” estimator that combines the strengths of our

estimator with that of the (biased) standard estimator. We demonstrate that it provides
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nearly uniform improvement over both estimators. Finally, in §5.4 we extend the Mendelian

factorial design to identify and estimate vaccine efficacy in time-to-first event studies.

5.2. Mendelian Factorial Design: Parallels with Mendelian Randomization

When an observed association between a non-randomized exposure and an outcome may

be confounded by an unobserved common cause, attributing the association to a causal

effect may be misleading (Rosenbaum, 2002c). An instrumental variable (IV) is a covariate

that is associated with the exposure but whose only association to the outcome is through a

direct pathway to the exposure (Martens et al., 2006). The IV takes the place of the physical

randomization in a randomized trial, influencing only the assignment of subjects to exposure

or control, setting up a natural experiment and providing an avenue for estimating the causal

effect of the non-randomized exposure on the outcome (Rassen et al., 2009). When genetic

variants are used as instrumental variables, the corresponding collections of methods are

often labeled as the Mendelian randomization (MR) approach (Smith and Ebrahim, 2008).

For example, Kang et al. (2013) proposed using the hemoglobin S variant (HbS) as an

instrument to identify the causal effect of malaria on stunted growth. It is known that

heterozygote carriers (HbAS, sickle cell trait) receive protection against clinical malaria

whilst those without the variant (HbAA) do not. The first column of Table 14 summarizes

the assumptions required of HbAS status such that it can be used in a MR study to identify

the causal effect of malaria on stunting. Assumption (1) requires that HbAS status in fact

influences exposure; assumption (2) ensures that HbAS status can be treated “as-if” it were

randomized; and assumption (3) says that HbAS only effects stunted growth through its

influence on exposure. Assumption (4) is required for point identification of the causal

effect, although there are other alternative assumptions that can be used to point identify

a causal effect such as monotonicity of the effect (Burgess et al., 2017).

Like MR, Mendelian factorial design (MFD) leverages genetic variation to identify a causal

effect of interest – in this instance, the efficacy of a vaccine, or roughly, the proportion

reduction of disease-attributable outcomes in a population when the vaccine is applied
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Table 14: Parallel assumptions for Mendelian randomization and Mendelian factorial design.

Assumption Mendelian Randomization Mendelian Factorial Design

(1) •HbAS associated with
malaria

• HbAS has protective efficacy
against malaria-attributable fever

(2) • No unmeasured con-
founders associated with
HbAS and stunted growth

• HbAS “as-if” randomized

(3) • Only direct pathway from
HbAS to stunted growth is
through malaria

• Protection provided by HbAS
is specific to malaria-attributable
fever

(4) • HbAS does not modify the
effect of malaria on stunting

• No interaction effect between
HbAS and vaccine (i.e., independent
protective pathways)

(Lachenbruch, 1998). However, instead of addressing the bias that often accompanies a

non-randomized exposure, MFD attends to the bias in estimating treatment efficacy arising

from an inexact case definition. The natural experiment arising from MR is used for causal

inference in the absence of an actual randomized experiment, enabling the investigator

to distinguish causal effects from unobserved confounding. The same natural experiment

is employed in MFD to augment a two-arm randomized trial and create a simple 2 × 2

factorial experiment. The factorial design allows the investigator to distinguish efficacy

against disease-attributable outcomes even when the case definition incorrectly classifies a

material number of non-disease outcomes as cases.

Although MR and MFD address different sources of bias in different settings, their designs

share many parallel features. This is illustrated in Table 14, where each assumption of MR

in the malaria stunting study corresponds to a closely related assumption that underlies a

MFD study of vaccine efficacy against malaria-attributable fever. In more general terms,

Assumption (1) says that the Mendelian gene or Mendelian factor, e.g., HbAS, is relevant.

In the MR study this means that it is associated with the non-randomized exposure and

in the MFD study this implies that the Mendelian gene is protective against the disease-
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Figure 10: Causal diagrams for MR (left) and MFD (right). Blue arrows indicate the causal
quantities of interest and red arrows indicate confounding addressed by each design. Gray
variables Y m and Y nm are unobservable but Y , which doesn’t distinguish between them is.
Assumptions (1), (2) and (3) correspond to the similarly numbered assumptions in Table
14.

.

attributable outcome. Assumption (2) requires that the Mendelian gene be unconfounded

with the outcome of interest or be “as-if” randomized, which implies the former. For the MR

study, assumption (3) says that the Mendelian gene has no pleiotropic effects (Smith and

Ebrahim, 2008), that is, HbAS only effects stunted growth through its influence on malaria

and not through its influence on another modifiable exposure or stunting itself. The parallel

assumption for a MFD study is that the Mendelian factor protects against outcomes of any-

cause only through reducing disease-attributable outcomes. Finally, assumption (4) says

that the causal effect in the MR study does not vary over different levels of the Mendelian

gene, or in other words, they do not interact. Similarly, the corresponding assumption in a

MFD study is that the vaccine and Mendelian factor do not interact. In other words, the

vaccine prevents the same proportion of disease-attributable outcomes at different levels of

the Mendelian gene. For example, this assumption is plausible when a malaria vaccine and

HbAS provide protection against malaria-attributable fevers through independent biological

pathways.
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Assumptions (1)-(3) in Table 14 may be better understood encoded in a causal diagram. The

causal diagram for MR and MFD are in the left and right panels of Figure 10, respectively.

G is a Mendelian gene (or factor), U are unobserved confounders, Z is a randomized vaccine,

and E is a non-randomized exposure. Y is the outcome of interest – in the MR study it

is stunted growth and in the MFD study it is clinical malaria. Y m and Y nm are malaria-

attributable and non-malaria fevers, respectively. We define these more precisely in §5.3.

Finally, the blue arrows indicate the causal quantities of interest and the red arrows indicate

the confounding addressed by each design. The causal diagram for MFD is a little bit

unusual. Y m and Y nm are grayed out, emphasizing that we don’t observed them, but

instead only observe the outcome that is not distinguished by cause, Y . This is represented

by the black bounding box. The MFD diagram hints at how the factorial structure and the

absence of an arrow between G and Y nm may be used to identify the arrow between Z and

Y m, the vaccine efficacy.

5.3. A Robust Framework for Estimating Vaccine Efficacy: Risk Ratios and Incidence

Rate Ratios

5.3.1. Notation: Observed Data

Let j = 1, . . . , J indicate sites in a multi-site randomized control trial (RCT) and i =

1, . . . , Ij indicate subjects at each center; then, ij uniquely identifies each subject in the

study. We let the total number of subjects in the trial be n =
∑

j Ij . For subject ij, let

Yij ∈ {0, 1} be an observed fever or death with any parasitemia; let Zij ∈ {0, 1} indicate

treatment/vaccine status and Gij ∈ {0, 1} indicate sickle cell variant status (Gij = 1 if

HbAS, Gij = 0 if HbAA); and let Xij ∈ Rd be a d-dimensional vector of baseline char-

acteristics. Because G is assigned at conception, careful consideration of what variables

constitute “baseline” variables should be made. Let Dij and Uij indicate the malaria para-

site density in the blood and the level of non-malaria infectious agents, respectively. Define

the observed data vector Oij = (Xij , Zij , Gij , Yij). While Uij is generally not observed

in malaria trials, Dij is. However, because the methods developed in this paper do not
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require or explicitly model parasite density we omit it from Oij . We drop the subscripts

and write O = (X,Z,G, Y ) to denote a random draw from a specified population. We will

use boldface to indicate corresponding vector and matrix quantities that collect the data of

subjects over each site or the entire trial. For example, Yj is the Ij × 1 vector that collects

all the outcome data for subjects at site j and Y = (YT
1 , . . . ,Y

T
J )T is the n× 1 vector that

collects the outcome data for all subjects in the multi-site trial. For an example of a matrix

quantity, Xj is an Ij × d matrix and X is a n× d matrix.

Multi-site RCTs, i.e., block randomized, are a common design for vaccine efficacy trials, such

as the Phase III RTS,S trial (The RTS,S Clinical Trials Partnership, 2011). Another design

that has commonly been employed in studying the protective efficacy of interventions such

as insecticide treated bed nets is the clustered RCT (Ter Kuile et al., 2003). The notation

is easily adapted for this design, letting j indicate a cluster and Zij = Zj for all i, j.

5.3.2. Potential Outcomes and Malaria-Attributable Fever (or Death)

Pitfalls of Standard Case Definitions

The standard case definition of clinical malaria is the presence of a fever (Y = 1) and a

parasite density above some threshold d (D > d). The WHO recommends setting d high

enough to achieve specificity > 80% at all sites to avoid severe underestimation of vaccine

efficacy (Moorthy et al., 2007). Sensitivity is also considered when determining d to avoid

under-powered studies. The prevailing method used to determine these thresholds is to

model risk of fever as a continuous function of observed parasite density among community

controls and clinically suspected cases (Smith et al., 1994). However, computing sensitivity

and specificity of a case definition requires an estimate of the malaria attributable fraction

of fevers (MAFF). Lee and Small (2018) show that obtaining unbiased estimates of MAFF

in the presence of measurement error of D and fever killing effects on parasite density is

a difficult task, especially when malaria and non-malaria infections can work in conjunc-

tion to trigger a fever. Still, when unbiased estimates of MAFF can be obtained, this case
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definition will, by design, result in false positive and false negative cases, which may bias

corresponding estimates of vaccine efficacy. Heterogeneous immunity and pyrogenic thresh-

olds further complicate estimating treatment efficacy using case definitions that depend on

a fixed threshold for D. In practice, standard thresholds without, it seems, careful estima-

tion of specificity and sensitivity such as 2500 parasites per µl (Olotu et al., 2013) and 5000

parasites per µl are commonly used (The RTS,S Clinical Trials Partnership, 2011). As far

as we are aware, there are no sufficiently specific case-definitions for death attributable to

malaria, the most severe effect of a malaria infection (Moorthy et al., 2007).

Defining Cases Using Potential Outcomes

Potential outcomes are a useful framework to precisely define causal effects of interest

(Rubin, 2005). The potential outcomes that we define now are closely related to those

defined in Lee and Small (2018). In what follows, we consider Y to indicate the presence of

fever but note that the framework we describe is also suitable when Y indicates death. The

aforementioned authors motivate their framework with a biological model of malaria and the

notion of a pyrogenic threshold (Gravenor and Kwiatkowski, 1998). A pyrogenic threshold

can roughly be defined as a level of malaria parasite density above which a fever will be

produced. Below the threshold, the infection will not be strong enough to trigger a fever.

This threshold may vary from individual to individual based on heterogeneous immunity

to symptomatic malaria. In general, we can think of D and U as having thresholds above

which a malaria or non-malaria infection, respectively, is strong enough to trigger a fever

in the absence of any other infection. We can also consider a curve of threshold pairs for D

and U above which a combined infection can trigger a fever.

Because Y indicates the presence of a fever resulting from any infection, we can treat Y as a

function of both D and U . Y can be thought of also as a function of Z and G through their

effect on D and U . Thus, we can write the potential outcome of Y for treatment z and sickle

cell status g as Y (D(z, g), U(z, g)) and the observed outcome as Y = Y (D(Z,G), U(Z,G)).
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Y (D(z, g), U(z, g)) factors additively into two natural terms,

Y (D(z, g), U(z, g))︸ ︷︷ ︸
Y (z,g)

= {Y (D(z, g), U(z, g))− Y (0, U(z, g))}︸ ︷︷ ︸
Ym(z,g)

+Y (0, U(z, g))︸ ︷︷ ︸
Y nm(z,g)

. (5.1)

Y can be expressed as a potential outcome in terms of d and u or z and g. When it is

unambiguous, we may use the abbreviated notation below the “curly” braces in (5.1) to

emphasize its dependence on z and g.

The statistical implication of a pyrogenic threshold is that Y (d, u) is monotonic in d for all u.

That is, Y (d, u) ≤ Y (d′, u) for 0 ≤ d ≤ d′. This ensures that the first term on the right hand

side of (5.1) is non-negative. This term, Y m(z, g), can be interpreted as malaria-attributable

fever, or a fever that would not have occurred had a malaria infection been absent. These

include cases where D was high enough to trigger a fever in the absence of any other

infection and also cases where D was high enough to trigger a fever in conjunction with a

non-malaria infection. The second term on the right hand side, Y nm(z, g), is a fever that

cannot be attributed to malaria. These are fevers that would have still occurred if malaria

parasites were not present. However, when D > 0, Y m(Z,G) is generally not observable

because it involves the counterfactual term Y (0, U(Z,G)). In the following section we will

demonstrate that under a few realistic assumptions we can identify vaccine efficacy without

directly observing the fevers (or deaths) attributable to malaria.

A Final Couple Pieces of Notation

With our potential outcome framework in place, we denote the complete data vector by

C = (X,Z,G,D,U, {Y k(z, g) : k = m,nm; z = 0, 1; g = 0, 1}) .

In reality, we only get to observe one potential outcome Y (Z,G) even though all four exist

and, as we have argued, Y nm and Y m cannot be distinguished with certainty so we only

observe O ⊂ C. Finally, we may sometimes treat Y , D and U as p × 1 vectors that
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correspond to fever status, parasite density, and non-malaria infectious load at p follow-up

visits during a RCT.

5.3.3. Vaccine Efficacy: Definitions, Assumptions and Identification

Defining Vaccine Efficacy

We begin this section by defining a general population-level estimand for vaccine efficacy

and then outline the assumptions required for identification when we cannot distinguish

Y m from Y nm. We suppose that for each j, Cij (and Oij) are i.i.d. draws from an from

an unknown, site-specific target population distribution Pj ∈ Pj for all i. We suppose

that the overall target population is an equally weighted mixture of the Pj and denote it

P ∈ P. We let µzg(P ), P → R be a functional of P that depends on treatment and sickle

cell status and takes the form µzg(P ) = EP [f{Y (z, g)}] for P -measurable functions f that

are (1) increasing and (2) linear. We use a superscript m to indicate that the functional

is specific to malaria-attributable outcomes and nm to indicate that it is specific to non-

malaria outcomes, for instance, µmzg(P ) = EP [Y m(z, g)] when f(y) = y. Below we give a

general definition of efficacy.

Definition 4 (Vaccine/Protective Efficacy). For a specified function f ,

(i) Vaccine Efficacy is defined as τ(g) = 1− µm1g(P )/µm0g(P ) for g = 0, 1 and

(ii) Protective Efficacy of G is defined as ν(z) = 1− µmz1(P )/µmz0(P ) for z = 0, 1.

We are primarily interested in two simple functions f : f(y) = y and when Y is a p × 1

vector of fevers, f(y) = 1T y. For f(y) = y , efficacy as defined in Definition 4 is the

proportion reduction in risk of malaria-attributable fever or death were an individual to

receive vaccination versus placebo. For f(y) = 1T y, efficacy is defined as the proportion

reduction in incidence of malaria-attributable fever were an individual to receive vaccination

versus placebo. Since you can only die once, f(y) = 1T y is not applicable when Y indicates

malaria-attributable death. By this same logic, f(y) = y can be used for assessing the risk
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of malaria-attributable deaths over arbitrarily long follow-up. However, if we are interested

in the risk of developing a malaria-attributable fever over a longer follow-up, during which

a subject can have multiple fevers, the function we’d be interested in is f(y) = max y

where max y is the maximum over the elements of a p × 1 vector y. This function is not

a linear function and thus vaccine efficacy against the risk of having at least one malaria-

attributable fever over a long follow cannot be handled in this framework. The importance

of the linearity of f will become evident shortly.

Identifying Vaccine Efficacy

In §5.2 we informally discussed the assumptions required to identify vaccine efficacy using

MFD. Assumptions 1 - 5 formalize the assumptions that are summarized in the second

column of Table 14 and provide the basis for the identification of τ proved in Proposition

4.

Assumption 1 (Additivity of µ). For all z = 0, 1 and g = 0, 1, µzg(P ) can be decomposed

linearly as

µzg(P ) = µmzg(P ) + µnmgz (P ) .

Assumption 1 is guaranteed by (5.1) and the linearity of f . We mentioned above that

evaluating the vaccine efficacy on the risk scale for malaria-attributable fevers over a long

follow-up is problematic when using MFD to estimate τ . The risks of developing a malaria-

attributable fever and a non-malaria fever do not satisfy Assumption 1 over long follow-ups

because of the non-linearity of f(y) = max y.

Assumption 2 (No Interaction / Independent Protective Pathways). τ(g) is constant over

g = 0, 1 and ν(z) is constant over z = 0, 1. That is, τ := τ(0) = τ(1) and ν := ν(0) = ν(1).

The biological reasoning behind Assumption 2 is as follows. If a vaccine and genetic trait

protect against malaria through independent pathways at different times in the parasite’s

life cycle, it is plausible that the vaccine will prevent the same fraction of fevers among
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those who have the genetic trait (G = 1) and those who do not (G = 0). Similarly

plausible is that possession of the genetic trait will prevent the same fraction of fevers among

those to whom the vaccine was administered (Z = 1) and to those it was not (Z = 0).

The goal of pre-erythrocytic vaccines like RTS,S is to provoke an immune response that

prevents the parasites from entering the liver, stopping the parasites from ever re-entering

the bloodstream and causing clinical symptoms (Regules et al., 2011). In contrast, the

sickle cell trait appears to protect against clinical symptoms by inhibiting the growth of

parasites once they have re-entered the bloodstream from the liver and by making the host

more tolerant to parasite infection (Ferreira et al., 2011; Taylor et al., 2012; Williams, 2011).

This suggests that Assumption 2 is satisfied for pre-erythrocytic vaccines and the sickle cell

trait.

Assumption 3 (No Interference). A subject’s potential outcomes are functions of its vac-

cine and sickle cell status alone. That is Yij(z,g) = Yij(zij , gij).

Assumption 3 implies that the treatment and sickle cell status of an individual in the

trial effects only their own outcome. This assumption can be rephrased in the context

of infectious disease as stating that protection conferred by genetics or vaccine do not

materially disrupt disease transmission. This assumption is plausible when considering

individuals at two different sites j 6= j′ in a multi-site trial but is more complicated for

individuals at the same site who may live in close proximity. Stochastic simulation models

of malaria vaccination using pre-erythrocytic and blood stage-vaccines have, however, found

that transmission effects of such vaccines delivered as they would be in pediatric malaria

vaccination programs were minimal (Penny et al., 2008, 2015). Less is known about the

suitability of Assumption 3 with respect to the sickle cell variant.

Assumption 4 (Randomization / “as-if” Randomized). At each site j = 1, . . . , J , vaccines

are administered randomly and sickle cell status is distributed “as-if” random; that is,

(Z,G) ⊥⊥ (Y (z, g), Y m(z, g), Y nm(z, g), X)
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for all z, g ∈ {0, 1}2. Additionally, we assume that Z ⊥⊥ G.

The randomization of Z is ensured by the RCT. We assume that within each center, the

sickle cell trait is distributed “as-if” random. Population stratification and linkage disequi-

librium are common biological violations of the “as-if” random assumption of Mendelian

genes (Kang et al., 2013). Briefly, population stratification is when a subgroups that differ

on prognostic factors for developing malaria and other childhood illnesses also systemati-

cally differ in the prevalence of HbAS. If either the probability of inheriting HbAS or the

distribution of prognostic factors is relatively homogenous within a study site, then popu-

lation stratification would likely not be a material threat to the “as-if” random assumption

about G. Linkage disequilibrium is the dependence of gene frequencies at two or more loci

(Morton, 2001). If HbAS is in linkage disequilibrium with a gene that affects the risk of

childhood illness this may threaten the validity of Assumption 4. Linkage disequilibrium

with a gene that affects the risk of malaria is less problematic as this would not violate

the exclusion restriction formalized in the next assumption. However, this would require a

more delicate treatment of potential outcomes, e.g., we would need to consider the genes in

linkage disequilibrium as having potential outcomes depending on G (see VanderWeele and

Hernan (2013) for a discussion a related topic of “versions” of treatment).

Assumption 5 (Valid Mendelian Factor). G is a “valid Mendelian factor” in that it sat-

isfies the following conditions:

(i) ν 6= 0; and

(ii) 1− µnmz1 (P )/µnmz0 (P ) = 0 for z = 0, 1.

Part (i) of Assumption 5 says that the Mendelian factor is relevant to malaria-attributable

outcomes. A large body of literature on the protective properties of the sickle cell trait

against malaria supports this assumption for HbAS.. Several cohort studies have found

evidence that HbAS has 30-50% efficacy against uncomplicated clinical malaria and multiple

other case-control and cohort studies of Africa have estimated even greater efficacies against
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sever malaria cases of 70-90% (see Gong et al. (2013) for a list of several studies reporting

the protective efficacy of HbAS). Assumption 5(ii) can be expressed in terms of potential

outcomes by the restriction that U depends only on treatment status, U(z, g) = U(z). The

plausibility of Assumption 5(ii) is supported by evidence that the protection conferred by

HbAS is “remarkably specific” to malaria, providing little protection to other childhood

diseases (Williams et al., 2005).

The following proposition provides a simple, non-parametric identification strategy for treat-

ment efficacy as defined in Definition 4 under Assumptions 1 - 5. We also make the standard

assumptions of consistency, that Y = Y (z, g) when Z = z and G = g, and positivity, that

the probability of treatment Z and the prevalence of G in each site are both bounded away

from 0 and 1.

Proposition 4 (Nonparametric Identification). Suppose that Assumptions 1 - 5 are satis-

fied. Then the vaccine efficacy τ is identified from the observed data O as

τ = 1− EX [EP [f(Y )|X,Z = 1, G = 1]]− EX [EP [f(Y )|X,Z = 1, G = 0]]

EX [EP [f(Y )|X,Z = 0, G = 1]]− EX [EP [f(Y )|X,Z = 0, G = 0]]
, (5.2)

where EX is the expectation over the marginal distribution of X implied by P .

Proof. The proof of Proposition 4 can be found in Appendix 5.6.1.

Remarks

Proposition 4 still holds under a weaker version of Assumption 4 requiring only that Z and G

are independent of potential outcomes (and of each other) conditional on baseline covariates

X. Depending on how rich the set of baseline covariates X is, this weaker assumption may

be more tenable in the presence of population stratification and linkage disequilibrium.

Equation (5.2) suggests a ratio estimator for τ that is remarkably similar to the Wald

estimator used in Mendelian randomization studies (Wald, 1940; Burgess et al., 2017).

Without covariates, the Wald estimator of the effect of a non-randomized exposure E on
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g = 1 g = 0

z = 1 µnm(1− η) + µm(1− τ)(1− ν) µnm(1− η) + µm(1− τ)

z = 0 µnm + µm(1− ν) µnm + µm

Figure 11: 2 × 2 table for Mendelian factorial design. Each cell represents µzg(P ) for all
combinations of (z, g) ∈ {0, 1}2, which is identified by the observed data O (Proposition
4). Differencing over the columns then taking the ratio over the rows yields 1 − τ . For
notational clarity, we drop the subscript from µ00. η is the “spillover efficacy” the vaccine
may provide against non-malaria outcomes.

outcome Y using Mendelian gene G can be written as

ȲG=1 − ȲG=0

ĒG=1 − ĒG=0
, (5.3)

where V̄G=g is the sample average of V for individuals with G = g. Both (5.2) and (5.3)

involve ratios of averages differenced over G. The analogy between (5.2) and the Wald

estimator in (5.3) is not by coincidence, but instead arises from a symmetry between the

structures of Mendelian randomization with additive effects and Mendelian factorial design

with multiplicative effects. More precisely, in Mendelian randomization, the potentially

confounded association between the Mendelian gene and the outcome can be decomposed

multiplicatively into the additive effect of the instrument on the exposure and the additive

effect of the exposure on the outcome. In a Mendelian factorial design, the outcomes can be

additively decomposed into disease-attributable outcomes and non-disease outcomes upon

which the treatment and Mendelian factor have multiplicative effects. This simple structure

of Mendelian factorial design can be seen clearly in the 2× 2 table in Figure 11 of expected

outcomes µzg for different combinations of z and g. Differencing over the columns and

taking the ratio over the rows immediately yields 1− τ . The η term in the top row can be

thought of as the spillover efficacy of the vaccine against non-malaria outcomes. The term

drops out when differencing over the columns.
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5.3.4. Robust Covariance Adjusted Estimation and Inference

We now propose a simple substitution estimator that allows for covariance adjustment and

is robust to arbitrary misspecification of a model for EP [f(Y ) |X,Z,G]. The estimation

procedure closely resembles that which is developed in Rosenblum and van der Laan (2010)

with a couple minor modifications to deal with the factorial structure of our identification

procedure and the possibility that HbAS prevalence varies across sites in a multi-site RCT.

The simple procedure is detailed below in Algorithm 1 and requires estimating a simple

generalized linear model (GLM) with the R function glm in the stats package at most two

times. In what follows, we suppose f(y) = 1T y for expository purposes. That is, we will

focus on vaccine efficacy defined as the proportion reduction in the expected number of

malaria-attributable fevers.

Algorithm 1 (Estimation of τ). The following substitution estimator is based on Rosenblum

and van der Laan (2010). For clarity, we let f(y) = 1T y.

1. Estimate EP [f(Y ) |X, Z, G] with glm using a canonical link function (depends on f).

• Let the linear part include an intercept, main terms for Z and G, and interaction

Z ×G, for example,

mu hat 0 <- glm(f(Y) ∼ X*G*Z, family = poisson())

• denote the resulting estimator as µ̂0(Z,G,X).

2. If there is more than one site and the prevalence of G and sample sizes variy across

sites, let log mu hat = log µ̂0(Zij , Gij , Xij), p g = (1/Ij)
∑Ij

i=1Gij, w = n/Ij, and S
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be a categorical variable for site; update µ̂0 as follows

mu hat 1 <- glm(f(Y) ∼ offset(log mu hat) + S +

I(w*Z*G/p g) + I(w*Z*(1-G)/(1-p g)) + I(w*(1-Z)G/p g) +

I(w*(1-Z)*(1-G)/(1-p g)), family = poisson())

and denote the resulting estimator as µ̂1(Z,G,X).

3. Let µzg(Pn) = 1
J

∑J
j=1

1
Ij

∑Ij
i=1 µ̂1(z, g,Xij).

4. Construct the plug-in MFD estimator

τ̂ = 1− µ11(Pn)− µ10(Pn)

µ01(Pn)− µ00(Pn)
.

The estimator τ̂ returned by Algorithm 1 is a special case of a target maximum likelihood

estimator (TMLE) (Van der Laan and Rose, 2011). A straightforward modification of The-

orem 1 in Rosenblum and van der Laan (2010) yields that τ̂ is consistent and asymptotically

normal under mild regularity conditions even when the working model for the conditional

expectation is misspecified. Other initial working models µ̂0 may be used as long as they

satisfy certain restrictions on how data-adaptive they are (Van der Laan and Rose, 2011).

The weight terms w are important because we assume that the target population P is an

equally weighted mixture of the site-specific populations Pj but allow for study designs with

different different sample sizes across sites. The weights ensure that µ̂1 solves the efficient

influence function estimating equation (see Appendix 5.6.4). Before we state the result, we

introduce some some important notation and definitions.

Working Models and their Limits:
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Let the maximum likelihood parameter estimates from steps 1 and 2 of Algorithm 1 be β
(0)
n

and β
(1)
n , respectively, and define βn = [β

(0)
n ,β

(1)
n ]. Now, recall that P is the true, unknown

data generating distribution. We can decompose its corresponding density p as follows as

follows

p = p(X)p(Z)pj(G)p(Y |X, Z, G) (5.4)

where pj(G) is the probability a child has the sickle cell trait in site j. p(Z) is assumed

to be known, e.g., p(Z) = 1/2 in a balanced trial. Pn is our estimate of P where pn, the

density of Pn, can be decomposed similarly as

pn = pn(X)p(Z)pj,n(G)pβn(Y |X, Z, G) (5.5)

where pn(X) is the empirical distribution of X, pj,n(G) is the observed prevalence of the

sickle cell trait among children in enrolled in the study at site j, and pβn(Y |X, Z, G) is the

estimated parametric working model for the conditional distribution of Y from steps 1 and 2

in Algorithm 1. We assume that the number of centers are fixed, that they are representative

of the population of interest, and that the sites carry equal weight in the population they

represent but that the sample sizes Ij might be different. Hence, the observations that make

up the empirical distribution are weighted by n/Ij . We assume that the site-level sample

sizes Ij grow at the same rate as n → ∞ and so it follows that pn(X)
a.s.→ p(X) as n → ∞

by the Gilvenko-Cantelli Theorem and an application of the strong law of large numbers

gives us that pj,n(G)
a.s.→ pj(G) for all j = 1, . . . , J as n→∞. Let P∞ = limn Pn and write

its density p∞ as

p∞ = p(X)p(Z)pj(G)pβ(Y |X, Z, G) (5.6)

where β = [β(0),β(1)] are the maximizers of the expected log-likelihoods of the GLMs in

steps 1 and 2 where the expectation is taken over P , if such maximizers exist (see Rosenblum

and van der Laan (2010) for further discussion of the existence of β). When β exists, the

conditions given in Proposition 5, are sufficient for βn to converge to β in probability

(Rosenblum and van der Laan, 2009). Note that unless the working parametric model for
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the conditional mean is correctly specified, P∞ will not equal P in general.

For notational convenience, we let P and Pn be the expectation operators over P and Pn,

respectively. For example, we can write µzg(Pn) from step 3 of Algorithm 1 as Pnµ̂1(z, g,X).

Efficient Influence Functions:

For an arbitrary distribution Q ∈ P, the efficient influence function (EIF) for µzg(Q) can

be written as

ϕzg(Q)(O) =
1(Z = z)1(G = g)(f(Y )− EQ[f(Y )|X, Z = z, G = g])

qj(G = g)q(Z = z)

+ EQ[f(Y )|X, Z = z, G = g]− µzg(Q) , (5.7)

for z, g ∈ {0, 1}2. We will define µz(Q) := µz1(Q)− µz0(Q) and ϕz(Q) := ϕz1(Q)− ϕz0(Q)

for z = 0, 1. Standard calculations verify that ϕz(Q) is the efficient influence function for

µz(Q) by demonstrating that ϕz(Q) can be expressed as a pathwise derivative of µz(Qε)

where Qε is a parametric submodel of Q such that Q = Qε=0 (Kennedy, 2016). ϕz(Q) is

said to be a pathwise derivative of µz(Qε) if EQ[ϕz(Q)Sε] = ∂µz(Qε)/∂ε|ε=0 where Sε is the

score function of the parametric submodel. Finally, let ϕ∗zg(Q) = ϕzg(Q) − EP [ϕzg(Q) |G]

and define ϕ∗z(Q) := ϕ∗z1(Q) − ϕ∗z0(Q). We can now state the consistency and asymptotic

normality result for τ̂ .

Proposition 5 (Consistency and Asymptotic Normality). In addition to Assumptions 1 -

5, suppose that the number of sites J is fixed, the Ij grow at the same rate as n, and the

maximizers β = [β(0),β(1)] exist. Also, suppose that ||β||∞ < M for pre-specified M < ∞.

Finally, let (X,Y ) be bounded and the terms in the linear parts of the GLMs in steps 1 and 2

of Algoritm 1 be bounded functions on compact subsets of {0, 1}2×Rd. Then, τ̂ is consistent

and
√
n(τ̂ − τ) convergence in distribution to a Gaussian with mean 0 and variance

σ2 = EP
[
µ1(P )

µ0(P )2
(ϕ∗0(P∞)(O)− Pϕ∗0(P∞)(O)} − 1

µ0(P )
{ϕ∗1(P∞)(O)− Pϕ∗1(P∞)(O)}

]2

.
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When the prevalence of G does not vary between sites and the study is balanced, i.e., Ij =

n/J for all j, then step 2 of Algorithm 1 can be skipped. Step 2 may also be skipped if it

is a single-site trial. Furthermore, if the working model for EP [f(Y ) |X,Z,G] is correctly

specified then σ2 achieves the semiparametric efficiency bound.

Proof. A sketch of the proof of Proposition 5 can be found in Appendix 5.6.4.

Remark 3. We remarked in §5.3.3 that Proposition 4 still holds under a weaker version of

Assumption 4 where the independence is conditional on baseline covariates X. Proposition

5 also holds under these weaker assumptions as long as either the working model for the

conditional expectation or the conditional assignment models for G and Z are correctly

specified.

Variance Estimator:

Notice that ϕ∗z is defined as a projection of ϕz into a lower dimensional subspace and

will thus have smaller variance. With that in mind, we can use ϕz(Pn) to construct a

conservative plug-in estimator of σ2. In Appendix 5.6.4 we show that Pn solves the EIF

estimating equations, that is, Pnϕz(Pn)(O) = 0 for z = 0, 1. It follows then that the plug-in

estimator of the scale variance σ2 can be written simply as

n · v̂ar(τ̂) =
1

n

J∑
j=1

Ij∑
i=1

{
ϕ0(Pn)(Oij)

µ1(Pn)

µ1(Pn)2
− ϕ1(Pn)(Oij)

1

µ0(Pn)

}2

(5.8)

With this variance estimator we can now use Proposition 5 to conduct inference on and

construct confidence intervals for τ̂ .

Naive Estimator:

For simplicity, let’s assume that we have balanced sites, i.e., Ij = n/J for all j. Then, had

we assumed that all fevers with any parasitemia were malaria-attributable fevers, we might
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considered the following naive estimator

τ̂0 = 1− Pnµ̂0(1, G,X)

Pnµ̂0(0, G,X)
. (5.9)

The naive estimator corresponds with standard estimates of VE with respect to a commonly

used secondary case definition of the presence of a fever (Y = 1) and any positive parasite

density (D > 0) (Olotu et al., 2013). We will see in the following section that the estimator

is systematically biased but can be combined with our MFD estimator τ̂ to construct an

estimator that outperforms both estimators on their own.

5.3.5. Simulation Study: Comparison to Naive Identification Strategy

In this section we investigate the performance of our proposed MFD estimator τ̂ and com-

pare it to that of the naive estimator τ̂0 that assume all fevers with any parasitemia are

malaria fevers. As in the previous section, we consider f(y) = 1T y and thus τ is the propor-

tion reduction in expected number of malaria-attributable fevers. We consider a single-site

RCT J = 1 with equal sized vaccine and placebo arms and the prevalence of HbAS set to

20% based on existing estimates of the prevalence in sub-Saharan Africa (Ter Kuile et al.,

2003; Elguero et al., 2015).

We simulate the number of malaria-attributable fevers and non-malaria fevers from negative

binomial distributions in a single year of follow up for each individual. Evidence suggests

that the negative binomial distribution fits the empirical distribution of the number of clin-

ical malaria events an individual experiences well (Olotu et al., 2013). We can also see from

(5.1) that Y m and Y nm are negatively dependent – a fever cannot be both attributable

to malaria and have been present in the absence of malaria. To model this dependence

structure, we use a Gaussian copula with negative dependence parameter ρ = −0.1 (Genest

and Neslehová, 2007). The negative dependence is modest when fevers are rare but will be

more pronounced in areas where fever risk is higher, e.g., villages with poor sanitation. We

suppose there is a single observed covariate X that enters the conditional mean function
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for both 1TY m and 1TY nm and that there is unobserved heterogeneity in the conditional

means between individuals. The generating distributions were calibrated so that the av-

erage number of any-cause fevers is 1.5 per child-year. We also calibrated the generating

distributions to achieve different levels of case specificity, which we define formally below.

Two different sample sizes were chosen to assess how performance improved asymptotically:

1000 subjects per trial arm, i.e., n = 2000, and 2500 subjects per trial arm, i.e., n =

5000. For n = 2000, we consider 5 × 2 × 2 different combinations of vaccine efficacy

τ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, protective efficacy of the Mendelian factor ν ∈ {0.3, 0.5}, and

specificities s ∈ {0.5, 0.8}. Formally, we define specificity s here as the expected number of

malaria-attributable fevers divided by the expected number of fevers with any parasitemia

and of any cause under placebo,

s =
EP
[
1TY m(0, G)

]
EP [1TY (0, G)]

=
p(G = 1)µm01 + p(G = 0)µm00

p(G = 1)µ01 + p(G = 0)µ00
. (5.10)

The specificity choices are motivated by Mabunda et al. (2009), which estimated the speci-

ficity of standard case definitions using > 0 and > 2500 parasites per µl cutoffs for children

under five years of age to be roughly 50% and 80%, respectively. The strength of the

Mendelian factor was calibrated to the aforementioned estimates of the protective efficacy

of HbAS. We consider the same combinations for n = 5000 except only for the weaker pro-

tective efficacy setting. The spillover efficacy η was assumed to be zero. Finally, we allow for

non-constant vaccine and Mendelian protective efficacy – both τi and νi are log-normally

distributed with mean τ and ν, respectively, and standard deviation approximately 0.05

giving coefficients of variation of about 8-17%. Rather than conferring complete protection

to a fraction of the vaccinated subjects, all vaccinated subjects receive partial protection.

This is consistent with evidence that RTS,S is a “leaky” vaccine, providing at least partial

protection to all recipients of the vaccine (Moorthy and Ballou, 2009). Each setting was

simulated Nsim = 5000 times. More details of the simulation settings can be found in
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Appendix 5.6.5.

We use Poisson regression for the initial working model estimate in Algorithm 1 and be-

cause J = 1, we skip step 2. The results of the simulation study are summarized in the

following two tables. In Table 15 we compare the absolute proportional bias and root mean

squared error (RMSE) of the τ̂ (MFD) and τ̂0 (Naive). For n = 2000, the MFD estimator

has very good bias properties, with proportional bias less than 5% for most settings. The

RMSE increases for Mendelian genes that are less protective and as the specificity decreases.

The only area of poor bias performance is when the Mendelian gene is weakly protective

(ν = 0.3) and the specificity is low (0.5). However, although the estimator in this setting

has high variance the bias and power at τ = 0.7 are reasonably adequate. Like the presence

of small sample bias and high variance for weak instruments in instrumental variable anal-

ysis (Imbens and Rosenbaum, 2005), the poor performance appears to be a small sample

property as the performance for the weak Mendelian gene, low specificity setting improves

notably for n = 5000.

The bias in the naive estimator only varies over the different specificity settings and does

not improve as the sample size grows. In fact, because there is no spillover efficacy, the

proportional absolute bias is equal to 1 − s. You can see from the table that the RMSE

is driven almost entirely by the bias component for the naive estimator and it actually

increases in absolute terms as the vaccine efficacy increases. These properties lead to very

poor coverage of confidence intervals derived from the naive estimator. That one should

expect efficacy estimates to be biased by as much as 20% when specificity is at the level

recommended by the WHO should be cause for concern.

Table 16 compares the coverage of two-sided 95% confidence intervals and the power against

the two-sided alternative at 5% significance for the MFD and naive procedures. The MFD

confidence interval has correct or conservative coverage and decent power in even some of

the more unfavorable settings. Even in the small sample, weakly protective Mendelian gene,

and low specificity setting the power is not negligible at higher vaccine efficacies. Because
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Table 15: Proportional absolute bias and root mean squared error (RMSE) of MFD and
naive estimators using Nsim = 5000 simulations.

Specificity = 0.8 Specificity = 0.5

Prop. |Bias| RMSE Prop. |Bias| RMSE

ν τ MFD Naive MFD Naive MFD Naive MFD Naive

n = 2000

0.50 0.30 0.03 0.20 0.15 0.07 0.12 0.50 0.29 0.15

0.40 0.02 0.20 0.14 0.08 0.07 0.50 0.27 0.20

0.50 0.02 0.20 0.12 0.10 0.05 0.50 0.25 0.25

0.60 0.02 0.20 0.11 0.12 0.04 0.50 0.24 0.30

0.70 0.01 0.20 0.10 0.14 0.02 0.50 0.22 0.35

0.30 0.30 0.12 0.20 0.36 0.07 0.59 0.50 5.47 0.15

0.40 0.11 0.20 0.30 0.09 0.32 0.50 4.54 0.20

0.50 0.08 0.20 0.29 0.10 0.21 0.50 5.80 0.25

0.60 0.06 0.20 0.24 0.12 0.18 0.50 4.61 0.30

0.70 0.03 0.20 0.21 0.14 0.11 0.50 1.69 0.35

n = 5000

0.30 0.30 0.06 0.20 0.18 0.06 0.18 0.50 0.37 0.15

0.40 0.04 0.20 0.17 0.08 0.13 0.50 0.34 0.20

0.50 0.02 0.20 0.14 0.10 0.08 0.50 0.30 0.25

0.60 0.02 0.20 0.13 0.12 0.06 0.50 0.29 0.30

0.70 0.01 0.20 0.12 0.14 0.04 0.50 0.27 0.35
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Table 16: Coverage of two-sided 95% confidence interval and power against two-sided alter-
native at 5% significance level of MFD and naive estimators using Nsim = 5000 simulations.

Specificity = 0.8 Specificity = 0.5

Coverage Power Coverage Power

ν τ MFD Naive MFD Naive MFD Naive MFD Naive

n = 2000

0.50 0.30 0.95 0.50 0.56 1.00 0.96 0.00 0.29 0.99

0.40 0.95 0.17 0.79 1.00 0.96 0.00 0.44 1.00

0.50 0.96 0.01 0.94 1.00 0.96 0.00 0.59 1.00

0.60 0.96 0.00 0.99 1.00 0.96 0.00 0.73 1.00

0.70 0.96 0.00 1.00 1.00 0.97 0.00 0.84 1.00

0.30 0.30 0.95 0.50 0.30 1.00 0.95 0.00 0.19 0.99

0.40 0.95 0.16 0.44 1.00 0.96 0.00 0.25 1.00

0.50 0.96 0.01 0.57 1.00 0.96 0.00 0.33 1.00

0.60 0.96 0.00 0.74 1.00 0.97 0.00 0.42 1.00

0.70 0.96 0.00 0.86 1.00 0.98 0.00 0.51 1.00

n = 5000

0.30 0.30 0.95 0.11 0.45 1.00 0.95 0.00 0.26 1.00

0.40 0.96 0.00 0.68 1.00 0.96 0.00 0.38 1.00

0.50 0.95 0.00 0.87 1.00 0.96 0.00 0.52 1.00

0.60 0.96 0.00 0.96 1.00 0.97 0.00 0.66 1.00

0.70 0.96 0.00 0.99 1.00 0.97 0.00 0.77 1.00

the naive estimator is systematically biased, the coverage properties are extremely poor in

all settings. The variance of the naive estimator tends to be far smaller than the MFD

estimator. This fact coupled with the systematic bias leads to high power and low coverage

across all settings.

Even in settings where the mean proportional bias is high, the MFD estimator appears

to have the desirable property of being median unbiased. Figure 12 demonstrates this for

τ = 0.3, 0.5, and 0.7 in all six settings detailed in Tables 15 and 16. The dashed lines

indicates the true value of τ , the boxes represents the IQRs, and the whiskers indicate the
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Figure 12: Distributions of simulated MFD estimator τ̂ and naive estimator τ̂0 over several
settings and τ = 0.3, 0.5, 0.7. Setting 1: strong factor (ν = 0.5), high specificity (s = 0.8);
setting 2: strong factor, low specificity (s = 0.5); settings 3 and 5: weak factor (ν = 0.3),
high specificity; settings 4 and 6: weak factor, low specificity. Dashed lines indicate true
efficacy, boxes indicate IQRs, whiskers are 5% and 95% quantiles, diamonds are mean
estimate, and vertical solid lines are median estimates.

5% and 95% quantiles of the simulated estimates. The diamonds indicate the means and the

vertical solid lines the medians. The worsening performance of the MFD as the Mendelian

gene weakens is clear (settings 2 vs. 1, 4 vs. 3, and 6 vs. 5) as is the improvement in the

weak Mendelian gene settings as the sample size grows (settings 5 vs. 3 and 6 vs. 4). The

naive estimates have much lower variance but are systematically mean and median biased

downward. The MFD estimates are also mean biased downward. Although the estimator is

asymptotically normal, the ratio of means that are jointly asymptotically normal may have

a peculiar non-normal form in finite samples which may explain this particular pattern of

bias (Marsaglia et al., 2006).
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5.3.6. Improved Estimators: Leveraging the Identifying Assumptions

A Simple Correction to the Naive Estimator

The observation that the proportional absolute bias of τ̂0 is equal to 1 − s in Table 15 for

all settings comes from the fact that, when the sample sizes are balanced across sites, an

immediate application of Theorem 1 of Rosenblum and van der Laan (2010) yields that τ̂0

is a consistent estimator of sτ + (1− s)η. When samples are small or the Mendelian gene is

only weakly protective, we observed that the MFD estimator will be less powerful and may

suffer from small sample bias. In such settings, the asymptotic limit of τ̂0 suggests a simple

correction to the naive estimator: dividing by s. Call this the s-corrected estimator, which

is consistent for τ when η = 0 and s is known or consistently estimated itself. If instead we

only have a 1−β confidence interval for s, Cβ, then we can still construct a valid confidence

interval for τ using the s-corrected estimator. Let CIs,α+β be a 1 − α − β confidence

interval for τ constructed using the s-corrected estimator and define the s-corrected 1− α

confidence interval CIcorr,α =
⋃
s∈Cβ CIs,α+β. Berger and Boos (1994) show that one can

construct valid p-values by maximizing a non-pivotal p-value over the confidence set of a

nuisance parameter. This result is easily inverted, providing a procedure to construct valid

confidence intervals from which it follows that CIcorr,α will have the correct (conservative)

coverage for τ . However, as we mentioned earlier in §5.3.2, estimating and conducting

inference about s is challenging. However, we can still make use of the naive estimator even

when we do not know s.

The Best of Both Worlds? Combining MFD and Naive Estimators

The naive estimator and the MFD estimator have complementary strengths and different

weaknesses – τ̂0 tends to be more efficient but is asymptotically biased and τ̂ is consistent but

has higher variance and requires larger sample sizes. The naive estimator also has the nice

feature of being a consistent lower bound of τ as long as η ≤ τ – it is very plausible that a

well designed vaccine will have a higher vaccine efficacy than spillover efficacy. Additionally,
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we have the logical constraint that τ ≤ 1 since a treatment efficacy greater than one would

imply that it would be possible to have a negative number of malaria-attributable fevers,

a scenario eliminated by the assumption that Y (d, u) is monotonically increasing in d for

all levels u. The following proposition constructs an estimator that uses these upper and

lower bounds to improve the performance of τ̂ in difficult settings, e.g., small samples, weak

Mendelian factor, and low specificity.

Proposition 6 (Bounded Estimator). Suppose that η ≤ τ . Let τ̂0 be the naive estimator

and let

Lα = τ̂ − Φ(1− α)v̂ar(τ̂)1/2

L0,α = τ̂0 − Φ(1− α)v̂ar(τ̂0)1/2 .

Define the upper confidence bounds Uα and U0,α similarly. Then (i)

τ̂bnd = min [1,max {τ̂ , L0,α̃}] (5.11)

is consistent for τ when α̃ is bounded away from 1; and (ii), for 0 ≤ α0 ≤ α/2

CIbnd,α =
[
max{Lα/2−α0

, L0,α0},min
{

1, Uα/2
}]

(5.12)

is an asymptotically valid 1− α confidence interval for τ .

Proof. The proof of Proposition 6 can be found in Appendix 5.6.3.

Because the naive estimator has much smaller variance than the MFD estimator, one will

likely choose α0 and α̃ to be much smaller than α. In general, it makes sense to choose

α̃ = α0 to ensure that τ̂bnd ∈ CIbnd,α.

The lower bound used to construct τ̂bnd acts like a high probability, stochastic lower bound

129



0

5

10

−3 −2 −1 0 1
τ

de
ns

ity

Figure 13: Densities and means of naive estimator (blue, dash) MFD estimator (gray, dot),
and bounded estimator (green, dot-dash); True vaccine efficacy (black, solid). For the
setting with n = 1000(×2), τ = 0.5, ν = 0.3, spec. = 0.5, and α̃ = 0.001

to τ while 1 is an exact upper bound. When the Mendelian gene is weak, the denominator

in τ̂ can sometimes be very close to zero, leading to unreliable estimates of vaccine efficacy.

The bounded estimator is designed to mitigate the effect of these cases while keeping the

median unbiasedness of τ̂ intact. Figure 13, illustrates how this plays out in a the setting

where the τ̂ performs poorly with n = 2000, a weak Mendelian factor, low specificity, and

τ = 0.5. The figure shows the estimated densities and means of the naive estimator (blue,

dash), MFD estimator (gray, dot), and bounded estimator (green, dot-dash) over 5000

simulations. The true vaccine efficacy is indicated by the black solid line. As expected, τ̂

is much more variable and less biased than τ̂0, but still materially biased in this setting.

The bounded estimator τ̂bnd is nearly mean unbiased. You can see how it achieves this by

“clumping” unreliable MFD estimates near the stochastic lower bound and the exact upper

bound.

We also assess how well τ̂bnd performs in the same setting as in Figure 13 but with an

even smaller sample size (n = 1000). Using α = 0.05, α0 = 0.001, and α̃ = 0.001, we

find that τ̂bnd has substantially improved bias and RMSE while CIbnd,α has very favorable
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Figure 14: Absolute proportional bias (left panel) and RMSE (right panel) for MFD,
naive, and bounded estimators with sample size n = 1000 and Nsim = 5000 simulations.
For bias and RMSE values above 1, only a maximum of 1 is shown. The actual abso-
lute proportional bias values for the MFD estimator are 2.21 and 1.56 for τ = 0.3 and
0.4, respectively. The actual RMSE values for the MFD estimator from left to right are
18.58, 67.90, 32.29, 8.42, and 6.75.

power while maintaining the correct (conservative) coverage. In Figure 14, we compare

the absolute proportional bias (left panel) and RMSE (right panel) of the three estimators.

Absolute proportional bias and RMSE values larger than 1 are not shown. The bounded

estimator uniformly outperforms both the MFD and naive estimators in terms of bias and

has performance comparable to that of the MFD estimator estimated on a sample five times

as large (n = 5000) for τ = 0.5, 0.6, and 0.7. The RMSE of τ̂bnd shows large improvements

over the τ̂ and is comparable to the RMSE of τ̂ estimated in the same setting on a sample

size of n = 5000 for all values of τ considered.

The power and coverage properties of CIbnd,α give the clearest picture of how the comple-

mentary strengths of the MFD and naive procedures are retained by the bounded procedure.

In the left panel of Figure 15, we see that CIbnd,0.05 has only marginally more conservative

coverage than the MFD confidence interval [L0.025, U0.025] (right panel) while retaining the

favorable power properties of the naive confidence interval [L0,0.025, U0,0.025] (left panel).

The dashed line in the right panel indicates 95% coverage.
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Figure 15: Power against two-sided alternative at 5% significance (left panel) and coverage
of 95% confidence interval (right panel) for MFD, naive, and bounded estimators with
sample size n = 1000 and Nsim = 5000 simulations. The dashed black line in the right
panel indicates 95% coverage.

Importantly, the superior performance of the bounded estimator in this particular setting

does not appear to come at the expense of performance in the settings where τ̂ generally

does well, improving on the τ̂ in almost all settings investigated in the simulation study.

5.4. Time-to-First Malaria Fever: Mendelian Factorial Design Under The Propor-

tional Hazards Assumption

The World Health Organization (WHO) recommends that the primary endpoint in pivotal

Phase III trials assessing the efficacy of malaria vaccines be the time-to-first malaria fever

and that the efficacy be measured as one minus the hazard ratio returned by a Cox pro-

portional hazard regression (Moorthy et al., 2007). In this section we use our potential

outcome framework to precisely define vaccine efficacy in time-to-first malaria fever studies

and show how it can be identified using MFD and estimated using data on time-to-first

fever of any cause.
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5.4.1. Parameter Identification and Estimation under Modeling Assumptions

In this section we can think about our clinical outcomes as stochastic processes indexed

by t, Y := {Yt}t≥0. This allows us to consider quantities like the time to first fever,

T = min{t : Yt = 1}.

If we follow the WHO recommendation above in the context of the potential outcome frame-

work developed in §5.3.2, a natural quantity to study in a time-to-event analysis of vaccine

efficacy is the hazard rate of malaria-attributable fevers, i.e., the instantaneous risk of devel-

oping a malaria-attributable fever at time t conditional on being free of malaria-attributable

fevers up to time t. The risk set used in this hazard function includes individuals who have

experienced non-malaria fevers prior to time t. This is analogous to a subdistribution hazard

in the competing risks literature where non-malaria fevers can be viewed as a competing

risk (Fine and Gray, 1999). Unfortunately, when Y m is not observable, vaccine efficacy

based on a hazard ratio using the definition of malaria-attributable fever in (5.1) is not

identifiable using MFD. This is due to the fact that on the hazard ratio scale, Assumption 1

(additivity) does not hold when Y m and Y nm are dependent – recall, if Y nm
t equals 1 then

Y m
t must equal 0 but is otherwise free to take values in {0, 1}. Only under independence (or

independence conditional on X) can we additively decompose the hazard of developing a

fever of any cause into the hazard of developing a malaria-attributable fever and the hazard

of developing a non-malaria fever. That said, under a few additional assumptions we can

still identify vaccine efficacy in terms of the hazard rate for malaria-attributable fevers in

the absence of non-malaria infections. This hazard is analogous to a cause-specific haz-

ard in the competing risks literature when competing risks can be considered conditionally

independent (Hsu et al., 2017).

Malaria-attributable Fevers in the Absence of Competing Infections

If we assume that there is no combined effect of malaria and non-malaria infections on

fevers (Assumption 2(iii) of Lee and Small (2018)), then we can provide an alternative
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decomposition of Y to the decomposition presented in (5.1):

Y (D(z, g), U(z)) = Y (D(z, g), 0) ∨ Y (0, U(z)) , (5.13)

where Y (D(z, g), 0) are malaria-attributable fevers in the absence of non-malaria infec-

tions, Y (0, U(z)) are non-malaria fevers in the absence of malaria infections, and ∨ is a

pairwise maximum. For stochastic processes, A ∨ B = {max(At, Bt)}t≥0. We will refer to

Y (D(z, g), 0) and Y (0, U(z)) as isolated malaria fevers and isolated non-malaria fevers. If

X sufficiently captures shared risk factors for malaria and non-malaria infections, then it is

plausible that D(z, g) ⊥⊥ U(z) | X and thus Y (D(z, g), 0) ⊥⊥ Y (0, U(z)) | X for all z, g.

One might wonder if isolated malaria fevers are the endpoint of greatest interest. Perhaps

malaria-attributable fevers as defined in (5.1) are more representative of the real-world

burden of malaria infections. Regardless, one could argue that the standard case definition

of clinical malaria, e.g., Y = 1 and D > 2500 parasites per µl, is an approximation of

an isolated malaria fever. This argument has two parts: (1) the fixed threshold suggests

that the standard case definition does not consider the possibility of combined effects of

malaria and non-malaria fevers; and (2) the standard case definition does not consider

whether a non-malaria fever would have occurred had there been no malaria infection.

The approximation is rough, however, because while the definition of isolated malaria fever

allows for individual-specific pyrogenic thresholds, the standard case definition does not.

Identifying Vaccine Efficacy

We can now define the potential time to first isolated malaria fever as Tm(z, g) = min{t :

Yt(D(z, g), 0) = 1} and the potential time to first isolated non-malaria fever as Tnm(z, g) =

min{t : Yt(0, U(z)) = 1}. We can write the conditional hazard functions for Tm(z, g) and

Tnm(z, g) as
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λkzg(t |X) = lim
∆→0+

P
(
T k(z, g) ∈ [t, t+ ∆ )|T k(z, g) ≥ t, X

)
/∆ (5.14)

for k = m,nm and all z, g. We drop the superscript k to indicate the conditional hazard

function for the a fever of any cause and define

T (z, g) = min{t : Yt(z, g) = 1} = min{Tm, Tnm} .

Assumption 6 (Proportional Hazards). λkzg(t |X), k = m,nm follow a Cox proportional

hazard model with baseline hazard functions λk(t), k = m,nm. That is,

(i) λmzg(t |X) = λm(t) exp{log κ+ log(1− τ)z + log(1− ν)g + βTmX} , and

(ii) λnmzg (t |X) = λnm(t) exp{log φ+ log(1− η)z + βTnmX}

where ν > 0.

In equation (i) above, vaccine efficacy τ is equal to one minus the hazard ratio of isolated

malaria fever under vaccination versus placebo. In (ii), η can again be thought of as a

“spillover efficacy” term. Note that Assumptions 2 and 5 are satisfied under these modeling

assumptions.

Assumption 7 (Conditionally Independent First Fever Processes). The time to first iso-

lated malaria fever and time to first isolated non-malaria fever are conditionally indepen-

dent. That is,

Tm(z, g) ⊥⊥ Tnm(z) | X for (z, g) ∈ {0, 1}2

Because Tm(z, g) depends only on Y (D(z, g), 0) and Tnm(z, g) depends only on Y (0, U(z)),

Assumption 7 is satisfied when Y (D(z, g), 0) ⊥⊥ Y (0, U(z)) | X for all z, g. We previously

argued that this condition is plausible when X sufficiently describes shared risk factors for

malaria and non-malaria infections.

Assumption 8 (Shared Conditional Baseline Hazard Function). Time-to-first isolated
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malaria fever and time to first isolated non-malaria fever have a shared baseline hazard func-

tion conditional on X. That is, λ(t) := λm(t) = λnm(t) for all t ≥ 0 and β := βm = βnm.

Under these additional assumptions, we can use an MFD strategy to identify τ in time-to-

first fever studies.

Proposition 7 (Identification of τ). Suppose that Assumptions 6 - 8 hold. Then the hazard

function for T (z, g) can be written as

λzg(t |X) = λ(t) exp{α+ ωz + γg + λz × g + βTX} . (5.15)

Furthermore, under Assumptions 3 and 4, τ is identified from the observed data O as

τ = 1− exp{ω + γ + λ} − exp{ω}
exp{γ} − 1

. (5.16)

Proof. The proof of Proposition 7 can be found in Appendix 5.6.2

Remark 4. The conditions of Proposition 7 lead to an additivity property of the conditional

hazard functions that is analogous to Assumption 1. This additivity can be seen in the first

equality of (5.26).

Remark 5. A weaker version of the randomization / “as-if” randomized condition imposed

by Assumption 4 would suffice to identify τ . Namely, that Z,G are independent of all

potential outcomes conditional on X.

Estimation and Inference via the Delta Method

The parameters in (5.15) can be estimated consistently via maximum partial likelihood

estimation (Cox, 1975) with the R function coxph implemented in the survival package.
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These estimates (ω̂, γ̂, λ̂) are asymptotically normal with the limiting distribution

√
n



ω̂

γ̂

λ̂

−

ω

γ

λ


 D−→ N




0

0

0

 , I([ω, γ, λT ])−1

 , (5.17)

where I([ω, γ, λT ])−1 is the inverse of the partial likelihood-based information matrix. Ap-

plying the continuous mapping theorem to (5.16) yields the following consistent MFD esti-

mator of τ ,

τ̂ = 1− exp{ω̂ + γ̂ + λ̂} − exp{ω̂}
exp{γ̂} − 1

. (5.18)

Applying the delta method to (5.17) and (5.18) and noting that Î([ω̂, γ̂, λ̂T ])−1/n, the aver-

age sample information, is consistent for I([ω, γ, λT ])−1 gives us an approximate distribution

for τ̂ for large enough samples,

τ̂ ∼̇ N
(
τ,∂τ̂T Î([ω̂, γ̂, λ̂T ])−1 ∂τ̂

)
, (5.19)

where ∂τ̂ = [∂τ̂/∂ω̂, ∂τ̂/∂γ̂, ∂τ̂/∂λ̂]T . We can use this approximate distribution to conduct

inference on τ .

An analogous bounded estimator and confidence interval to those described in Proposition

6 can be constructed using the naive estimator 1 − exp{ω̂}. It can easily be shown that

this estimator is consistent for a convex combination of τ and η and is thus is a consistent

estimator for a lower bound of τ as long as η ≤ τ .

5.4.2. Causal Identification: Selection Bias and Frailty

Even if these strong modeling assumption assumptions hold, τ defined in §5.4.1 does not

have a straightforward causal interpretation. Several authors have discussed in depth the

subtleties and common misconceptions of interpreting hazard ratios as a causal quantity

(Hernán, 2010; Aalen et al., 2015; Martinussen et al., 2018). We observe one of these
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subtleties when examining the definition of τ given in Assumption 6(i),

τ = 1−
lim∆→0+ P(Tm(1, g) ∈ [t, t+ ∆ )|Tm(1, g) ≥ t, X)

lim∆→0+ P(Tm(0, g) ∈ [t, t+ ∆ )|Tm(0, g) ≥ t, X)
. (5.20)

These authors point out that the hazard functions in the numerator and the denominator

of (5.20) condition on different sets of subjects for t > t(1) = minij,g,z T
m
ij (g, z). The causal

contrast is thus some combination of treatment efficacy and a selection effect. Initially,

randomized assignment of Z and “as-if” randomization of G ensure that the units in each

combination of trial arm and HbAS status are comparable on average. However, condition-

ing on the study subjects at risk of their first isolated malaria fever at time t > t(1), i.e.,

Tm(z, g) ≥ t, has the potential to introduce selection bias. For instance, suppose that base-

line susceptibility to malaria is heterogeneous even after conditioning on X. If Z provides

protection against developing an isolated malaria fever, we might find that the children

with high susceptibility to malaria in the control arm are more likely to develop fevers than

similar children in the treatment arm. Consequently, as time passes, the children at risk in

the control arm will be less susceptible on average to fever than those in the treatment arm,

absent treatment. The comparability of the subjects in each combination of z, g ∈ {0, 1}2

ensured by Assumption 4 at the beginning of the study is not guaranteed as the follow-up

progresses.

When malaria-attributable fever is rare or when the follow-up time is short, the selection

effect may be less consequential (Aalen et al., 2015). If X does not sufficiently capture het-

erogenous susceptibility to isolated malaria fever, modeling subject-level frailty can further

alleviate the selection bias of estimates of τ (Wienke, 2010). frailty can be introduced as a

multiplicative random effect,

λmzg(t |X) = λ(t)W exp{logα+ log(1− τ)z + log(1− ν)g + βTX} ,

λnmzg (t |X) = λ(t)W exp{log φ+ log(1− η)z + βTX} (5.21)
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where W is a random, subject-level frailty shared by both malaria and non-malaria fever

hazard functions. Proposition 7 extends immediately to the frailty model implied by (5.21)

where, in addition to X, the hazard ratio is conditional on W . Estimation can be carried out

via the Expectation-Maximization algorithm (Klein, 1992) or penalized partial maximum

likelihood methods (Therneau et al., 2003).

Alternatively, frailty models can be used to conduct a sensitivity analysis of Cox regression-

based estimates of τ to selection bias (Stensrud et al., 2017). In general, however, modeling

frailty usually requires parametric assumptions about W , for example, that it comes from

the family of power variance function distributions (Wienke, 2010).

Although τ itself has a subtle and potentially awkward causal interpretation, simple func-

tions of τ have been shown to have more natural causal interpretations. For example,

1/(2− τ) is the probabilistic index, which is defined as the probability that Tm(1, g) for one

individual is longer than Tm(0, g) for another individual with comparable baseline covariates

(and frailty) (De Neve and Gerds, 2019).

Importantly, all the causal interpretations discussed in this section require the correct iden-

tification of the parameter τ established in Proposition 7.

5.5. Discussion

The strategy that we’ve developed for identification and estimation of malaria vaccine effi-

cacy does not rely on the explicit definition of an inexact, but observable case definition. In

short, we propose separating the approach to identifying VE into two distinct steps: first,

define a gold-standard case that may be unobservable and then, identify VE using a strategy

that doesn’t require overt observation of these gold-standard cases. Our gold-standard case

definition is one that is 100% specific and sensitive. It is precisely defined using a potential

outcome framework. As we’ve noted, these cases are not distinguishable from observed

data alone. Regardless, we demonstrate that with Mendelian factorial design we are able

to leverage genetic variation in an analogous fashion to Mendelian randomization studies
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to identify VE with respect to this exact, but unobservable, case definition.

In observational studies, evidence factors are defined as several approximately independent

tests of the same hypothesis, each of which depend on different assumptions about bias from

non-random treatment assignment (Rosenbaum, 2011). In the presence of bias, these tests

can be thought of as independent pieces of evidence in that the violation of assumptions

underlying one test does not imply the other tests are similarly biased. Like an evidence

factor, the MFD estimate can provide an additional piece of evidence in vaccine efficacy

studies that relies on a different set of assumptions than the methods currently in use.

For instance, the naive estimator assumes all fevers with any parasitemia are malaria-

attributable, corresponding to a commonly used secondary case definition. Although not

independent like true evidence factors, we demonstrated that the naive estimator and the

MFD estimator can be combined to construct a bounded estimator that outperforms both

estimators when used on their own. In particular, the bounded estimator provides significant

improvements when the Mendelian gene is only weakly protective, a challenging setting

similar to the weak instrument setting in IV studies.

There is evidence that HbAS is moderately protective against uncomplicated malaria and

highly protective against severe malaria illness suggesting that MFD may be particularly

useful for estimating VE against severe malaria, whose symptoms are not specific and

overlap significantly with the symptoms of other severe childhood comorbidities (Bejon

et al., 2007).

The performance of the combined estimator across a range of simulation settings with

sample sizes that are similar to those found in phase II and III clinical trials is promising.

The results suggests that, if feasible, it would be prudent to begin collecting subject data

on inherited hemoglobinopathies and other genetic traits that provide protection against

clinical malaria, such as the sickle cell trait. Estimating the efficacy of prevention strategies

that target transmission directly, such as a malaria transmission-blocking vaccine (Wu et al.,

2015) and insecticide-treated bed nets (Ter Kuile et al., 2003), are feasible under the MFD
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framework developed in this paper. The assumption of no interference will likely fail but

weakening Assumption 3 to allow for partial interference (Hudgens and Halloran, 2008), e.g.,

interference within but not between villages or sites, is plausible. Cluster randomized trial

designs would allow for identification of natural definitions of treatment efficacy that are

functions of the fraction of subjects who receive treatment (Athey et al., 2018). The study

of erythrocytic vaccines in the MFD framework may be more challenging, as the assumption

that protective hemoglobinopathies and these blood-stage vaccines don’t interact is tenuous

at best. With more than thirty vaccines currently under development, both pre-erythrocytic

and those targeting different stages of the disease cycle, the methods described in this paper

have the potential to improve the reliability of vaccine efficacy estimates for a number of

forthcoming trials (Mahmoudi and Keshavarz, 2017).

Many interesting research directions related to Mendelian factorial design remain. We

mention a few in closing. Developing MFD methods using only aggregate site-level data

on HbAS prevalence is one such direction. This might allow for MFD-based meta-analyses

of past trial results in which hemoglobinopathy data were not collected if, (1) accurate

prevalence data could be collected ex post and (2) the prevalence varied sufficiently between

studies. There is evidence that there are a number of other genetic traits that confer

protection against malaria (Ndila et al., 2018). When there are several potential valid

Mendelian factors, we may again find inspiration from MR and other IV methods. It would

be beneficial to develop falsification tests of the validity of potential Mendelian factors

akin to tests for over-identifying restrictions like the Sargan-Hansen test in IV regression

(Hansen, 1982). As it has been demonstrated in MR, using many ostensible Mendelian

factors where some are invalid may have the potential to improve the robustness of MFD

analysis (Kang et al., 2016).
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5.6. Appendix

5.6.1. Proof of Proposition 4

In this Appendix we give a proof of the general identification result in Proposition 4.

Proof of Proposition 4. By consistency and Assumption 3 we have that

EP [f(Y )|X,Z = z,G = g] = EP [f(Y (z, g))|X,Z = z,G = g] (5.22)

for all z, g. Assumption 4 ensures that PX|Z,G = PX and PY (z,g)|Z,G = PY (z,g). Hence,

EX [EP [f{Y (z, g)}|X,Z = z,G = g]] = EX|Z=z,G=g[EP [f{Y (z, g)}|X,Z = z,G = g]]

= EP [f{Y (z, g)}|Z = z,G = g]

= EP [f{Y (z, g)}]

= µzg(P ) . (5.23)

Applying Assumption 1, the right hand side of (5.2) becomes

1− (µm11(P )− µm10(P )) + (µnm11 (P )− µnm10 (P ))

(µm01(P )− µm00(P )) + (µnm01 (P )− µnm00 (P ))
. (5.24)

Because G is a valid Mendelian factor (Assumption 5(ii)) we have that µnmz1 (P )−µnmz0 (P ) = 0

for z = 0, 1, further simplifying (5.24) to

1− (µm11(P )− µm10(P ))

(µm01(P )− µm00(P ))
.
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Finally, we have that

1− (µm11(P )− µm10(P ))

(µm01(P )− µm00(P ))
= 1− −νµ

m
10(P )

−νµm00(P )
by Assumption 2 and Definition 4(ii)

= 1− µm10(P )

µm00(P )

= τ by Definition 4(i) .

Assumption 5(i) ensures that the right hand side of the first equality is well-defined.

5.6.2. Proof of Proposition 6

We give a short proof of the asymptotic unbiasedness of τ̂bnd and the asymptotical validity

of CIbnd,α as a 1− α confidence interval for τ .

Proof of Proposition 6. We give a proof for when the sample sizes are balanced across sites.

When this is the case, we skip step 2 of Algorithm 1 and use µ̂0 to construct τ̂0. Treating G

as an element of X, the consistency of τ̂0 for sτ+(1−s)η and its asymptotic linearity follows

almost immediately from Theorem 1 of Rosenblum and van der Laan (2010). When η < τ ,

the theorem implies that τ̂0 is consistent for some τ ′ < τ . Because τ ≤ 1 by definition,

the continuous mapping theorem implies that τ̂bnd is consistent for min[1,max{τ ′, τ}] = τ .

The lower bound of CIbnd,α is constructed by taking the intersection of a lower one-sided

confidence interval for τ with coverage 1 − α/2 + α0 and a lower one-sided confidence

interval for τ ′ with coverage 1− α0. Because τ ′ < τ , this second confidence interval is also

asymptotically valid for τ . If α0 is chosen a priori, then the intersection is an asymptotically

valid 1−α/2 lower one-sided interval for τ (Neuwald and Green, 1994). The upper confidence

bound is constructed by taking the intersection of a 1 − α/2 upper one-sided confidence

interval for τ and (−∞, 1]. Since τ ≤ 1 the resulting interval is an asymptotically valid

1− α/2 upper confidence-interval for τ . The intersection of the resultant upper and lower

1 − α/2 one-sided confidence intervals yields an asymptotically valid two-sided confidence

interval with coverage 1− α.
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5.6.3. Proof of Proposition 7

In this Appendix we provide a proof of the parameter identification result for the hazard

ratio under the proportional hazards assumption.

Proof of Proposition 7. Let Λzg(t |X) =
∫ t
−∞ λzg(t |X) dt be the cumulative hazard func-

tion for Y . Define Λkzg(t |X), k = m,nm similarly. The survival function Szg(t |X =

P(T (z, g) > t |X) can be expressed as Szg(t |X) = exp{−Λzg(t |X)} and the probability

density of Y as fzg(t |X) = λzg(t |X)Szg(t |X). We can express fzg(t |X) as

fzg(t |X) =
∂

∂ t
Fzg(t |X)

=
∂

∂ t

{
1− Snmzg (t |X)Smzg(t |X)

}
by Assumption 7

= fmzg(t |X)Snmzg (t |X) + fnmzg (t |X)Smzg(t |X)

= {λmzg(t |X) + λnmzg (t |X)}Snmzg (t |X)Smzg(t |X)

= {λmzg(t |X) + λnmzg (t |X)} × exp

{
−
∫ t

−∞
λmzg(t |X) + λnmzg (t |X) dt

}
. (5.25)

From (5.25) and Assumptions 6 and 8, we have that the hazard function for Y is

λzg(t |X) = λmzg(t |X) + λnmzg (t |X)

= λ(t) exp{βTX} (κ(1− τ)z(1− ν)g + (1− η)z)

= λ(t) exp{α+ ωz + γg + λz × g + βTX} , (5.26)

Proving the first part of the proposition. To prove the second part of the proposition we

first observe that the last equality above in (5.26) is simply a reparameterization – when z

and g are binary, κ(1 − τ)z(1 − ν)g + φ(1 − η)z and exp{α + ωz + γg + λz × g} can each
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take four distinct values. The reparameterization yields a system of four equations,

exp{α} = κ+ φ (5.27)

exp{α+ ω} = κ(1− τ) + φ(1− η) (5.28)

exp{α+ γ} = κ(1− ν) (5.29)

exp{α+ ω + γ + λ} = κ(1− τ)(1− ν) + φ(1− η) . (5.30)

Subtracting (5.28) from (5.30) and (5.27) from (5.29), then dividing the former by the latter

yields

1− τ =
exp{ω + γ + λ} − exp{ω}

exp{γ} − 1
. (5.31)

Under Assumptions 3 and 4 we have that λzg(t |X) can be identified by the observed data

O:

λzg(t |X) = lim
∆→0+

P(T (z, g) ∈ [t, t+ ∆)|T (z, g) ≥ t, X) /∆

= lim
∆→0+

P(T ∈ [t, t+ ∆)|T ≥ t, X, Z = z, G = g) /∆ . (5.32)

Applying (5.26), we have that α, ω, γ, λ are identifiable and thus τ can be identified by the

observed data using (5.31).

5.6.4. Proof (Sketch) of Proposition 5

In this section we sketch a proof of Proposition 5 by showing that µzg(Pn) is consistent for

µzg(P ) and asymptotically linear, that is,

µzg(Pn)− µzg(P ) = (Pn − P)ϕ∗zg(P∞) + oP

(
1/
√
N
)
. (5.33)

for all z, g. Theorem 1 of Rosenblum and van der Laan (2010) checks a number of technical

conditions to verify that Theorem 1 of van der Laan and Rubin (2006) can be applied. A

particularly important condition is that the µzg(P ) are linear. This does not hold in the
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setting when the prevalence of G in each site is not known a priori. Hence, a straightforward

application of the theorem is not appropriate. However, if certain weaker conditions hold,

then the important parts of Theorem 1 of van der Laan and Rubin (2006) still apply. We

first show that we can write

µzg(Pn)− µzg(P ) = (Pn − P)ϕ∗zg(Pn) . (5.34)

If ϕ∗zg(Pn) is Donsker then by the second part of Theorem 1 of van der Laan and Rubin

(2006), we have that µzg(Pn) is
√
n-consistent for µzg(P ). Then, if P{ϕ∗zgPn−ϕ∗zg(P∞)}2 →

0 in probability as n→∞ the third part of Theorem 1 of van der Laan and Rubin (2006)

implies that µzg(Pn) is asymptotically linear with form (5.33). Consistency of µzg(Pn) and

Assumptions 1 - 5 imply that the plugin estimator τ̂ is consistent for τ . Finally, we apply

the delta method to derive the asymptotic variance σ2 of
√
n(τ̂−τ). It follows from the last

part of Theorem 1 of van der Laan and Rubin (2006) that σ2 achieves the semiparametric

efficiency bound if the working model for the conditional expectation of f(Y ) is correctly

specified. In what follows, when taking expectations of functionals of Pn we treat these

functionals as fixed.

Verifying (5.34):

Given the choice of the terms included in the linear part of the GLM estimate µ̂1 in Algo-

rithm 1, the score equations that µ̂1 solve imply that

Pn
{

1(Z = z)1(G = g)

p(Z = z)pj,n(G = g)
(f(Y )− µ̂1(z, g,X))

}
= 0 for all z, g ∈ {0, 1}2 . (5.35)

The choice of the weighting w = n/Ij when estimating µ̂1 is required since Pn does not

equally weight observations unless the size of each site is the same. Also note, that by

definition, Pnµ̂1(z, g,X) = µzg(Pn). Taken together, we have that Pnϕzg(Pn) = 0 for all
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z, g ∈ {0, 1}2. By iterated expectations, we have that

Pϕ∗zg(Pn) = Pϕzg(Pn)− P {EP [ϕzg(Pn) |G]} = Pϕzg(Pn)− Pϕzg(Pn) = 0 . (5.36)

All that remains to be shown is that −Pn {EP [ϕzg(Pn) |G]} = µzg(Pn)− µzg(P ). We start

by evaluating EP [ϕzg(Pn) |G]:

EP [ϕzg(Pn) |G] = EP
[
1(Z = z)1(G = g) {f(Y )− µ̂1(z, g,X)}

pj,n(G = g)p(Z = z)

∣∣∣G]
+ EP [µ̂1(z, g,X)− µzg(Pn) |G]

=
1(G = g)

pj,n(G = g)
(µzg(P )− EP [µ̂1(z, g,X) |G])

+ EP [µ̂1(z, g,X) |G]− µzg(Pn) . (5.37)

The second equality follows from an application of iterated expectations, Assumption 4,

and the fact that µzg(Pn) and µ̂1 are treated as fixed when taking expectations. Taking the

empirical expectation Pn we get

Pn {EP [ϕzg(Pn) |G]} = Pn
{

1(G = g)

pj,n(G = g)
(µzg(P )− EP [µ̂1(z, g,X) |G])

}
+ Pn {EP [µ̂1(z, g,X) |G]− µzg(Pn)}

= µzg(P )− EP [µ̂1(z, g,X) |G = g]

+ Pn {EP [µ̂1(z, g,X) |G]} − µzg(Pn)

= µzg(P )− EP [µ̂1(z, g,X)] + EP [µ̂1(z, g,X)]− µzg(Pn)

= −(µzg(Pn)− µzg(P )) . (5.38)

The second to last equality comes from the fact that X ⊥⊥ G by Assumption 4. This is our

desired result and (5.34) now follows.
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Checking that ϕ∗zg(Pn) is Donsker:

This is analogous to condition (iv) in the proof of Theorem 1 in Rosenblum and van der

Laan (2010). We make the same assumptions of boundedness on β and on the terms in

the linear part of the generalized linear models in steps 1 and 2 of Algorithm 1. Under the

additional assumption that 0 < δ ≤ pj(G = g) for all g = 0, 1 and j = 1, . . . , J , a nearly

identical verification that ϕ∗zg(Pn) is Donsker follows. Hence, µzg(Pn) are
√
n-consistent for

all z, g ∈ {0, 1}12.

Verifying that P{ϕ∗zg(Pn)− ϕ∗zg(P∞)}2 P→ 0:

The steps to verify that P{ϕ∗zg(Pn)− ϕ∗zg(P∞)}2 → 0 in probability are very similar to the

verification of condition (v) in Rosenblum and van der Laan (2010). There are a few extra

steps required to deal with the fact that we are estimating pj(G = g) with pj,n(G = g). We

first note that we can write

P{ϕ∗zgPn − ϕ∗zg(P∞)}2 = P[{ϕzg(Pn)− ϕzg(P∞)} − EP [ϕzg(P∞)− ϕzg(Pn) |G]]2

≤ 2P{ϕzg(Pn)− ϕzg(P∞)}2 + 2P{EP [ϕzg(P∞)− ϕzg(Pn) |G]}2

≤ 4P{ϕzg(Pn)− ϕzg(P∞)}2 . (5.39)

The last line comes from applying Jenson’s inequality to the inner expectation of the second

term followed by an application of iterated expectations. We need to show that P{ϕzg(Pn)−

ϕzg(P∞)}2 converges to 0 in probability. In what follows we distinguish the working model

using the fitted parameters βn and the model using the unique maximizer of the expected

log-likelihood β as µ̂1,n and µ̂1,∞, respectively. For brevity, we also let 1zg = 1(Z =
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z)1(G = g), p(z) = p(Z = z), pj(g) = pj(G = g), and pj,n(g) = pj,n(G = g). We can write

P{ϕzg(Pn)− ϕzg(P∞)}2

= P
{

1zg

p(z)pj,n(g)
{f(Y )− µ̂1,n(z, g,X)}+ µ̂1,n(z, g,X)− µzg(Pn)

− 1zg

p(z)pj(g)
{f(Y )− µ̂1,∞(z, g,X)} − µ̂1,∞(z, g,X) + µzg(P )

}2

≤ 4

p(z)2
P
{
f(Y )2

}( 1

pj,n(g)
− 1

pj(g)

)2

+
4

p(z)2
P
{
µ̂1,∞(z, g,X)

pj(g)
− µ̂1,n(z, g,X)

pj,n(g)

}2

+ 4P {µ̂1,n(z, g,X)− µ̂1,∞(z, g,X)}2 + 4P {µzg(P )− µzg(Pn)}2

≤ C1

(
1

pj,n(g)
− 1

pj(g)

)2

+
4

p(z)2
P
{
µ̂1,∞(z, g,X)

pj(g)
− µ̂1,n(z, g,X)

pj,n(g)

}2

+ C2||β0 − β||2 + 4{µzg(P )− µzg(Pn)}2 . (5.40)

The first equality follows immediately from definitions. The first inequality follows from

rearranging terms and noting that (x1 + · · ·+xk)
2 ≤ k(x2

1 + · · ·+x2
k) by Jensen’s inequality.

The first term after the second inequality comes from the boundedness of Y . Since pj,n(g)
P→

pj(g) and we have assumed that pj(g) are bounded away from zero, the continuous mapping

theorem implies that this term converges to 0 in probability. The third term comes from

the fact that our working model has uniformly bounded first derivatives. This is due to

the boundedness assumptions on X and the terms of the linear part of our working model.

The conditions given in Proposition 5, are sufficient for βn to converge to β in probability

(Rosenblum and van der Laan (2009), Appendix D). Consequently, the third term also

converges to 0 in probability. The fourth term disappears in probability since we proved

earlier that µzg(Pn) is consistent for µzg(P ). All that is left to handle is the second term.
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A little bit of rearranging gives us

4

p(z)2
P
{
µ̂1,∞(z, g,X)

pj(g)
− µ̂1,n(z, g,X)

pj,n(g)

}2

=
4

p(z)2
P
{
µ̂1,∞(z, g,X)− µ̂1,n(z, g,X)

pj(g)
+ µ̂1,n(z, g,X)

(
1

pj,n(g)
− 1

pj(g)

)}2

≤ 8

{p(z)pj(g)}2
P {µ̂1,∞(z, g,X)− µ̂1,n(z, g,X)}2

+
8

p(z)2
P
{
µ̂1,n(z, g,X)2

}( 1

pj,n(g)
− 1

pj(g)

)2

= C3||β0 − β||2 + C4

(
1

pj,n(g)
− 1

pj(g)

)2

. (5.41)

The first inequality follows again from Jenson’s inequality. The first term in the last line fol-

lows from the same arguments made earlier and the second term follows from the fact that

P
{
µ̂1,n(z, g,X)2

}
is bounded. As we’ve already demonstrated, these two terms vanish in

probability. Combining (5.39), (5.40), and (5.41) gives us that P{ϕ∗zg(Pn)−ϕ∗zg(P∞)}2 P→ 0.

(5.35) follows immediately and an application of Proposition 4 implies that τ̂ is also asymp-

totically linear. All that remains is to compute its asymptotic variance.

Asymptotic Variance:

To compute the asymptotic variance of τ̂ we begin with a taylor expansion around τ :

τ̂ = 1− µ1(Pn)

µ0(Pn)

= 1− µ1(P )

µ0(P )
− 1

µ0(P )
{µ1(Pn)− µ1(P )}

+
µ1(P )

µ0(P )2
{µ0(Pn)− µ0(P )}+ op

(
1/
√
n
)

= τ − 1

µ0(P )
(Pn − P)ϕ∗1(P∞)(O) +

µ1(P )

µ0(P )2
(Pn − P)ϕ∗0(P∞)(O) + op(1/

√
n) . (5.42)

The op(1/
√
n) comes from the second order remainder term of the expansion. Using the

expansion in (5.42) along with the fact that ϕ∗z(P∞)(O)− Pϕ∗z(P∞)(O) are mean zero i.i.d.
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random variables we can write the scaled asymptotic variance of τ̂ , n · var(τ̂), as

EP
[
µ1(P )

µ0(P )2
(ϕ∗0{P∞)(O)− Pϕ∗0(P∞)(O)} − 1

µ0(P )
{ϕ∗1(P∞)(O)− Pϕ∗1(P∞)(O)}

]2

. (5.43)

5.6.5. Additional Simulation Study Details for TMLE-based Estimators

Below are the simulation settings for the individual-specific vaccine and protective effica-

cies (τi and νi), the baseline covariates and how they are transformed when they enter the

condition mean of the distribution of fever counts (Xi, X̃
m
i , and X̃nm

i ), and unobserved

heterogeneity in the distribution of fever counts between individuals (εmi and εnmi ).

Generative Distributions:

(1− νi) ∼ (1− ν) exp{−0.052/2} · Lognormal(0, 0.052)

(1− τi) ∼ (1− τ) exp{−0.052/2} · Lognormal(0, 0.052) ,

X̃m
i ∼ exp{0.05Xi − 0.052/2} ,

X̃nm
i ∼ exp{0.075Xi − 0.0752/2} ,

Xi ∼ Normal(0, 1) ,

εmi ∼ exp{−0.052/2} · Lognormal(0, 0.052) ,

εnmi ∼ exp{−0.052/2} · Lognormal(0, 0.052) .

We assume that the spillover efficacy η is equal to zero. Based on empirical evidence and

the negative dependence between malaria-attributable fevers and non-malaria fevers as de-

fined in (5.1), we simulate the number of malaria-attributable and non-malaria fevers from

negatively dependent negative binomial distributions (Olotu et al., 2013). We use a overdis-

persion parameter of r = 10
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Count of malaria-attributable Fevers per child-year:

On the margin, the count of malaria-attributable fevers per child-year follows a negative

binomial distribution with mean µm,i and variance σ2
m,i,

1TY m
i (z, g) ∼ NB(µm,i, σ

2
m,i) (5.44)

where µm,i = κ · (1− νi)g · (1− τi)z · X̃m
i · εmi and σ2

m,i = µ2
m,i/r + µm,i.

Count of non-malaria fevers per child-year:

On the margin, the count of non-malaria fevers per child-year follows a negative binomial

distribution with mean µnm,i and variance σ2
nm,i,

1TY nm
i (z, g) ∼ NB(µnm,i, σ

2
nm,i) (5.45)

where µnm,i = φ · X̃nm
i · εnmi and σ2

nm,i = µ2
nm,i/r + µnm,i.

Count of fevers of any-cause per child-year:

The joint distribution of the counts of non-malaria and malaria-attributable fevers per child-

year are simulated using a Gaussian copula with a negative dependence parameter ρ = −0.1

(Genest and Neslehová, 2007).

Specificity and Mendelian Gene Prevalence Settings:

We calibrated κ and φ to achieve different levels of case specificity (s = 0.5 and 0.8).

For example, for a case specificity of 0.8 we set κ and φ so that the expected number of

malaria-attributable fevers is 80% of the expected number of total fevers of any-cause. The

prevalence of the Mendelian gene was set to 20% based on existing estimates of HbAS
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prevalence in sub-Saharan Africa (Ter Kuile et al., 2003; Elguero et al., 2015).

Initial and Updated Working Model Estimates:

For both the MFD and naive estimators, we used the R function glm.fit from the package

stats to fit the initial estimator µ̂0 in step 1 of Algorithm 1 using Poisson regression. The

regression included main terms for Z, G, and X as well as all interactions.
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