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Bayesian Approaches For Modeling Variation

Abstract
A core focus of statistics is determining how much of the variation in data may be attributed to the signal of
interest, and how much to noise. When the sources of variation are many and complex, a Bayesian approach to
data analysis offers a number of advantages. In this thesis, we propose and implement new Bayesian methods
for modeling variation in two general settings. The first setting is high-dimensional linear regression where the
unknown error variance is also of interest. Here, we show that a commonly used class of conjugate shrinkage
priors can lead to underestimation of the error variance. We then extend the Spike-and-Slab Lasso (SSL,
Rockova and George, 2018) to the unknown variance case, using an alternative, independent prior
framework. This extended procedure outperforms both the fixed variance approach and alternative penalized
likelihood methods on both simulated and real data.

For the second setting, we move from univariate response data where the predictors are known, to
multivariate response data in which potential predictors are unobserved. In this setting, we first consider the
problem of biclustering, where a motivating example is to find subsets of genes which have similar expression
in a subset of patients. For this task, we propose a new biclustering method called Spike-and-Slab Lasso
Biclustering (SSLB). SSLB utilizes the SSL prior to find a doubly-sparse factorization of the data matrix via a
fast EM algorithm. Applied to both a microarray dataset and a single-cell RNA-sequencing dataset, SSLB
recovers biologically meaningful signal in the data.

The second problem we consider in this setting is nonlinear factor analysis. The goal here is to find low-
dimensional, unobserved ``factors'' which drive the variation in the high-dimensional observed data in a
potentially nonlinear fashion. For this purpose, we develop factor analysis BART (faBART), an MCMC
algorithm which alternates sampling from the posterior of (a) the factors and (b) a functional approximation
to the mapping from the factors to the data. The latter step utilizes Bayesian Additive Regression Trees (BART,
Chipman et al., 2010). On a variety of simulation settings, we demonstrate that with only the observed data as
the input, faBART is able to recover both the unobserved factors and the nonlinear mapping.
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Veronika - your tremendous work ethic and intellect have been an inspiration and I have

learnt so much from working with you over the course of my PhD. Shane - thank you

for being a fantastic teacher, for your wealth of knowledge of all things Bayesian and for

all your encouragement. Nancy - thank you for fostering my interest in both genomics

and dimensionality reduction - many of my current research interests were inspired from

attending your reading group.

Next, an enormous thank you to the Wharton Statistics Department. On my prospective

PhD visit from Australia five years ago, I was struck by the warmth and collegiality of the

department, a feature which has remained constant over my five years here. To the faculty

that I have been fortunate enough to have as teachers, thank you for your dedication and

helping me grow as a researcher and statistician. To the staff - thank you for all you do

to keep the department running smoothly, and for all your generous help, from reserving

classrooms for TA sessions, to navigating PhD forms and for always being there with kind

words and/or a donut.

To our PhD cohort - Raiden Hasegawa, Bikram Karmakar, Justin Khim and Linjun Zhang

- it has been a privilege to call you my classmates. I will always have fond memories of the

first year office where we would alternate doing our probability homework with playing putt

putt golf. To the Bayesian gang - Cecilia Balocchi and Sameer Deshpande - our reading

group and discussions were always both intellectually stimulating and a lot of fun - I look

iv



forward to future collaborations in the years to come! To the Statistics PhD students,

both present and graduated - thank you for all the laughs and great conversations, both

statistical and otherwise, over our daily lunches in the department, board game nights,

drinks at Cav’s and barbecues.

I feel so lucky to have so many amazing friends from all over the world. To my Philadelphia

friends - you have made my five years here enriching personally as well as intellectually.

Thank you especially to Lesley Meng, Cecilia Balocchi, Elica Dhundia McCarthy, Sameer

Deshpande, Kathy Li and Daniela Schmitt for always being there for me, from the stressful

times to the celebratory times, and everything in between. Finding balance during the PhD

was so important - thanks to the erstwhile running club: Justin Khim, Kathy Li, Lesley

Meng, Min Xu; the bowling crew: Justin Chiu, Colman Humphrey, Matt Olson; the bridge

club: Eric Baxter, Ashley Baker, Ling Lin; and the vegan food gang: Edward Chang and

Lesley Meng. To my Australian friends: true friendship is when it feels like just yesterday

since you’ve last seen each other, even if it has been a year - thank you.

To Eric Baxter - thank you for always being able to make me laugh, supporting me, being

there for me in tough times, and for all of our adventures, even when I forget to read contour

maps and plan a hike up an (almost) vertical mountain slope.

Finally, thank you to my family. As the quote goes - you have given me roots and wings.

Roots, to ground me and give me a sense of belonging and identity, and wings, to give me

the courage to go out in the wider world. Thank you especially to my parents: Gabrielle

and Paul, and Greg and Trish: even though I am on the other side of the world, it gives

me such strength knowing you are always there for me, just a call away. Nick - thank you

for being the best big brother. Margaret - thank you for being my “Philly Mum” - it has

been so wonderful to have had the opportunity to connect here and I am so grateful for all

your care, encouragement, and showing me this great city. Your equanimity, generosity and

kindness of spirit are truly remarkable and something I aspire towards.

v



In the week before submitting this thesis, my uncle Simon tragically passed away. Si -

thank you for being such a great uncle, from introducing me to my favorite sci-fi and

fantasy novels as a kid, to always having a witty response or joke for every situation, and

always encouraging my studies. You, Grandma and Bernard are much loved and missed.

vi



ABSTRACT

BAYESIAN APPROACHES FOR MODELING VARIATION

Gemma E. Moran

Edward I. George

A core focus of statistics is determining how much of the variation in data may be attributed

to the signal of interest, and how much to noise. When the sources of variation are many

and complex, a Bayesian approach to data analysis offers a number of advantages. In this

thesis, we propose and implement new Bayesian methods for modeling variation in two

general settings. The first setting is high-dimensional linear regression where the unknown

error variance is also of interest. Here, we show that a commonly used class of conjugate

shrinkage priors can lead to underestimation of the error variance. We then extend the

Spike-and-Slab Lasso (SSL, Ročková and George, 2018) to the unknown variance case,

using an alternative, independent prior framework. This extended procedure outperforms

both the fixed variance approach and alternative penalized likelihood methods on both

simulated and real data.

For the second setting, we move from univariate response data where the predictors are

known, to multivariate response data in which potential predictors are unobserved. In this

setting, we first consider the problem of biclustering, where a motivating example is to find

subsets of genes which have similar expression in a subset of patients. For this task, we

propose a new biclustering method called Spike-and-Slab Lasso Biclustering (SSLB). SSLB

utilizes the SSL prior to find a doubly-sparse factorization of the data matrix via a fast EM

algorithm. Applied to both a microarray dataset and a single-cell RNA-sequencing dataset,

SSLB recovers biologically meaningful signal in the data.

The second problem we consider in this setting is nonlinear factor analysis. The goal here

is to find low-dimensional, unobserved “factors” which drive the variation in the high-
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dimensional observed data in a potentially nonlinear fashion. For this purpose, we develop

factor analysis BART (faBART), an MCMC algorithm which alternates sampling from the

posterior of (a) the factors and (b) a functional approximation to the mapping from the

factors to the data. The latter step utilizes Bayesian Additive Regression Trees (BART,

Chipman et al., 2010). On a variety of simulation settings, we demonstrate that with only

the observed data as the input, faBART is able to recover both the unobserved factors and

the nonlinear mapping.
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CHAPTER 1 : Introduction

Statistics has been said to be the science of variation. A core problem of any statistical

analysis is determining how much of the observed variation in the data can be attributed to

the signal of interest, and how much to noise. Understanding and modeling these sources of

variation is crucial for both inferring the size and significance of the signal, and predicting

future realizations of the data.

In this thesis, we first consider the problem of high-dimensional linear regression where the

unknown noise variance is also of interest. We then move from this univariate response

setting where the predictors are known, to the multivariate response setting in which po-

tential predictors are unobserved. Although this lack of predictors presents an even greater

challenge, this multivariate setting also presents a tremendous opportunity to learn about

the covariation of the responses. In this setting, the covariation itself is often a signal of

interest; in gene expression data, for example, finding sets of responses which exhibit similar

behavior (that is, covary) can be an indication that these responses are driven by the same

underlying biological process.

To tackle the challenge of modeling variation in these settings, we adopt a Bayesian perspec-

tive. A Bayesian approach to modeling begins with specifying a data generating process, or

model. Within this model, the Bayesian paradigm allows for the coherent inclusion of mul-

tiple sources of variation which give rise to the observed data. In treating the parameters

of this model as themselves random, a Bayesian approach confers a number of advantages.

Firstly, it provides uncertainty quantification for the parameters via their posterior distri-

bution. Secondly, by treating the parameters as random instead of fixed, the parameters

are able to adapt to the data at hand. Finally, Bayesian analyses allow for the “borrowing

of strength” across multiple observations to ultimately yield parameter estimates which are

less susceptible to noise.

In this thesis, we propose and deploy new Bayesian methods to solve specific problems in
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both the univariate linear regression setting, and the multiple response setting where no

predictors are observed.

In Chapter 2, we consider the problem of simultaneously estimating the regression co-

efficients and error variance in the high-dimensional Gaussian linear model. A common

Bayesian approach to modeling the error variance is to use a conjugate shrinkage prior

framework. Here, however, we show that these commonly used conjugate shrinkage pri-

ors can actually have detrimental consequences for error variance estimation. Such priors

are often motivated by the invariance argument of Jeffreys (1961). Revisiting this work,

however, we highlight a caveat that Jeffreys himself noticed; namely that biased estimators

can result from inducing dependence between parameters a priori. In a similar way, we

show that conjugate priors for linear regression, which induce prior dependence, can lead

to such underestimation in the Bayesian high-dimensional regression setting. Following Jef-

freys, we recommend as a remedy to treat regression coefficients and the error variance as

independent a priori.

In the latter half of Chapter 2, we then extend the Spike-and-Slab Lasso of Ročková and

George (2018) to the unknown variance case, using an independent prior framework. This

extended procedure outperforms both the fixed variance approach and alternative penal-

ized likelihood methods on simulated data. On the protein activity dataset of Clyde and

Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves lower cross-

validation error than alternative penalized likelihood methods, demonstrating the gains in

predictive accuracy afforded by simultaneous error variance estimation.

In the next part of this thesis, we move to the multivariate setting, where for each individual,

we observe many responses, or features. Unlike Chapter 2, however, we now do not observe

any potential predictors for these responses.

In Chapter 3, we consider the problem of finding small sets of individuals which covary

over only a small set of their features; these sets of both individuals and features are then

2



referred to as biclusters. In this way, biclustering methods differ from traditional clustering

methods, which find groups of individuals that are similar over their entire set of features.

Motivating applications for biclustering include genomics data, where the goal is to cluster

patients or samples by their gene expression profiles; and recommender systems, which seek

to group customers based on their product preferences. More precisely, biclusters of interest

are often assumed to manifest as rank-1 submatrices of the data matrix. This submatrix

detection problem can be viewed as a factor analysis problem in which both the factors and

loadings are sparse.

We propose a new biclustering method called Spike-and-Slab Lasso Biclustering (SSLB).

SSLB utilizes the Spike-and-Slab Lasso of Ročková and George (2018) to find a doubly-

sparse factorization of the data matrix. SSLB also incorporates an Indian Buffet Process

prior to automatically choose the number of biclusters. Many biclustering methods make

assumptions about the size of the latent biclusters, either assuming that the biclusters are

all of the same size, or that the biclusters are either very large or very small. In contrast,

SSLB can adapt to find biclusters which have a continuum of sizes. SSLB is implemented

via a fast Expectation-Maximization (EM) algorithm with a variational step. In a variety of

simulation settings, SSLB outperforms other biclustering methods. We apply SSLB to both

a microarray dataset and a single-cell RNA-sequencing dataset and highlight that SSLB

can recover biologically meaningful signal in the data.

In Chapter 4, we again consider the unsupervised multivariate response setting with the

goal of finding low-dimensional “factors” which drive the variation in the observed data.

Unlike in Chapter 3, however, we now relax the assumption that the observed data is

linearly related to the unobserved factors. This adds an additional layer of complexity to

the problem: we need to both estimate the unobserved factors, and the mapping between

the factors and observed data. To accomplish this task, we develop a Markov Chain Monte

Carlo (MCMC) algorithm which alternates between sampling from the posterior of the

factors and a functional approximation to the mapping. The latter step utilizes Bayesian

3



Additive Regression Trees (BART), introduced by Chipman et al. (2010). We refer to

our method as Factor Analysis BART (faBART). On a variety of simulation settings, we

demonstrate that with only the observed data as the input, faBART is able to recover both

the unobserved factors and the nonlinear mapping. We then develop tempered faBART, a

modification of faBART which includes a tempering step to allow the algorithm to more

easily detect structure for data visualization. On two canonical datasets for visualization,

we highlight that tempered faBART can find meaningful low-dimensional embeddings.

4



CHAPTER 2 : Variance Priors

2.1. Introduction

Consider the classical linear regression model

Y = Xβ + ε, ε ∼ Nn(0, σ2In) (2.1)

where Y ∈ Rn is a vector of responses, X = [X1, . . . ,Xp] ∈ Rn×p is a fixed regression

matrix of p potential predictors, β = (β1, . . . , βp)
T ∈ Rp is a vector of unknown regression

coefficients and ε ∈ Rn is the noise vector of independent normal random variables with σ2

as their unknown common variance.

When β is sparse so that most of its elements are zero or negligible, finding the non-negligible

elements of β, the so-called variable selection problem, is of particular importance. Whilst

this problem has been studied extensively from both frequentist and Bayesian perspectives,

much less attention has been given to the simultaneous estimation of the error variance σ2.

Accurate estimates of σ2 are important to discourage fitting the noise beyond the signal,

thereby helping to mitigate overfitting of the data. Variance estimation is also essential in

uncertainty quantification for inference and prediction.

In the frequentist literature, the question of estimating the error variance in our setting

has begun to be addressed with papers including the scaled Lasso (Sun and Zhang, 2012)

and the square-root Lasso (Belloni et al., 2014). Contrastingly, in the Bayesian literature,

the error variance has been fairly straightforwardly estimated by including σ2 in prior

specifications. Despite this conceptual simplicity, the majority of theoretical guarantees for

Bayesian procedures restrict attention to the case of known σ2, as there is not a generally

agreed upon prior specification when σ2 is unknown. More specifically, priors on β and σ2

Adapted from a research article:
Moran, G. E., Ročková, V. and George, E. I. (2019) “Variance Prior Forms for High-Dimensional Bayesian
Variable Selection” Bayesian Analysis (Accepted)
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are typically introduced in one of two ways: either via a conjugate prior framework or via

an independence prior framework.

Conjugate priors have played a major role in regression analyses. The conjugate prior

framework for (2.1) begins with specifying a prior on β that depends on σ2 as follows:

β|σ2 ∼ N(0, σ2V), (2.2)

where V may be fixed or random. This prior (2.2) results in a Gaussian posterior for β

and as such is conjugate. To complete the framework, σ2 is assigned an inverse-gamma

(or equivalently scaled-inverse-χ2) prior. A common choice in this regard is the right-Haar

prior for the location-scale group (Berger et al., 1998):

π(σ) ∝ 1/σ. (2.3)

Whilst the right-Haar prior is improper, it can be viewed as the limit of an inverse-gamma

density. When combined with (2.2), the prior (2.3) results in an inverse-gamma posterior

for σ2 and as such it behaves as a conjugate prior. Prominent examples that utilize the

above conjugate prior framework include:

• Bayesian ridge regression priors, with V = τ2I;

• Zellner’s g-prior, with V = g(XTX)−1; and

• Gaussian global-local shrinkage priors, with V = τ2Λ, for Λ = diag{λj}pj=1.

We note that the conjugate prior framework refers only to the prior characterization of β

and σ2, and allows for any prior specification on subsequent hyper-parameters such as g

and τ2 which do not appear in the likelihood.

A main reason for the popularity of the conjugate prior framework is that it often allows for

marginalization over β and σ2, resulting in closed form expressions for Bayes factors and

6



updates of posterior model probabilities. This allowed for analyses of the model selection

consistency (Bayarri et al., 2012) as well as more computationally efficient MCMC algo-

rithms (George and McCulloch, 1997). Despite these advantages, however, the conjugate

prior framework is not innocuous for variance estimation, as we will show in this work.

Alternatively to the conjugate prior framework, one might treat β and σ2 as independent

a priori. The formulation corresponding to (2.2) for this independence prior framework is:

β ∼ N(0,V), (2.4)

π(σ) ∝ 1/σ.

Note that the prior characterization (2.4) does not yield a normal inverse-gamma posterior

distribution on (β, σ2) and as such is not conjugate.

In addition to the above prior frameworks, Bayesian methods for variable selection can

be further categorized by the way they treat negligible predictors. Discrete component

Bayesian methods for variable selection exclude negligible predictors from consideration,

adaptively reducing the dimension of β. Examples of such discrete component methods

include spike-and-slab priors where the “spike” distribution is a point-mass at zero (Mitchell

and Beauchamp, 1988). In contrast, continuous Bayesian methods for variable selection

shrink, rather than exclude, negligible predictors and as such β remains p-dimensional

(George and McCulloch, 1993; Polson and Scott, 2010; Ročková and George, 2014).

In this chapter, we show that for continuous Bayesian variable selection methods, the con-

jugate prior framework can result in underestimation of the error variance when: (i) the

regression coefficients β are sparse; and (ii) p is of the same order as, or larger than n. Intu-

itively, conjugate priors implicitly add p “pseudo-observations” to the posterior which can

distort inference for the error variance when the true number of non-zero β is much smaller

than p. This is not the case for discrete component methods which adaptively reduce the

size of β. To avoid the underestimation problem in the continuous case, we recommend
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the use of independent priors on β and σ2. Further, we extend the Spike-and-Slab Lasso of

Ročková and George (2018) to the unknown variance case with an independent prior formu-

lation, and highlight the performance gains over the known variance case via a simulation

study. On the protein activity dataset of Clyde and Parmigiani (1998), we demonstrate the

benefit of simultaneous variance estimation for both variable selection and prediction.

It is important to note the difference in the scope of this work with previous work on

variance priors, including Gelman (2004); Bayarri et al. (2012); Liang et al. (2008). Here,

we are focused on the estimation of the error variance, σ2. In contrast, the aforementioned

works are concerned with the choice of priors for hyper-parameters which do not appear in

the likelihood, i.e. the g in the g-prior, and τ2 and λ2
j for global-local priors. We recognize

the importance of the choice of these priors for Bayesian variable selection; however, the

focus of this chapter is the prior choice for the error variance in conjunction with variable

selection.

We also note that our discussion considers only Gaussian related prior forms for the regres-

sion coefficients. Despite this seemingly limited scope, we note that the majority of priors

used in Bayesian variable selection can be cast as a scale-mixture of Gaussians (Polson and

Scott, 2010), and that popular frequentist procedures such as the Lasso and variants thereof

also fall under this framework.

The chapter is structured as follows. In Section 2, we discuss invariance arguments for

conjugate priors and draw connections with Jeffreys priors. We then highlight situations

where we ought to depart from Jeffreys priors; namely, in multivariate situations. In Sec-

tion 3, we take Bayesian ridge regression as an example to highlight why conjugate priors

can be a poor choice. In Section 4, we draw connections between Bayesian regression and

concurrent developments with variance estimation in the penalized likelihood literature. In

Section 5, we examine the mechanisms of the Gaussian global-local shrinkage framework

and illustrate why they can be incompatible with the conjugate prior structure. In Sec-

tion 6, we consider the Spike-and-Slab Lasso of Ročková and George (2018) and highlight
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how the conjugate prior yields poor estimates of the error variance. We then extend the

procedure to include the unknown variance case using an independent prior structure and

demonstrate via simulation studies how this leads to performance gains over not only the

known variance case, but a variety of other variable selection procedures. In Section 7, we

apply the Spike-and-Slab Lasso with unknown variance to the protein activity dataset of

Clyde and Parmigiani (1998), highlighting the improved predictive performance afforded by

simultaneous variance estimation. We conclude with a discussion in Section 8.

2.2. Invariance Criteria

A common argument used in favor of the conjugate prior for Bayesian linear regression is

that it is invariant to scale transformations of the response (Bayarri et al., 2012). That is,

the regression coefficients depend a priori on σ2 in a “scale-free way” through

π(β|σ2) =
1

σp
h(β/σ), (2.5)

for some proper density function h(x). This means that the units of measurement used for

the response do not affect the resultant estimates; for example, if Y is scaled by a factor of

c, one would expect that the estimates for the regression coefficients, β, and error variance,

σ2, should also be scaled by c.

A more general principle of invariance was proposed by Jeffreys (1961) in his seminal work,

The Theory of Probability, a reference which is also sometimes given for the conjugate prior.

In this section, we examine the original invariance argument of Jeffreys (1961) and highlight

a caveat with this principle that the author himself noted; namely that it should be avoided

in multivariate situations. We then draw connections between this suboptimal multivariate

behavior and the conjugate prior framework, ultimately arguing similarly to Jeffreys that

we should treat the mean and variance parameters as independently a priori.
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2.2.1. Jeffreys Priors

For a parameter α, the Jeffreys prior is

π(α) ∝ |I(α)|1/2, (2.6)

where I(α) is the Fisher information matrix. The main motivation given by Jeffreys (1961)

for these priors was that they are invariant for all nonsingular transformations of the param-

eters. This property appeals to intuition regarding objectivity; ideally, the prior information

we decide to include should not depend upon the choice of the parameterization, which itself

is arbitrary.

Despite this intuitively appealing property, the following problem with this principle was

spotted in the original work of Jeffreys (1961) and later re-emphasized by Robert et al.

(2009) in their revisit of the work. Consider the normal means model

Yi ∼ N(µi, σ
2), i = 1, . . . , n

where the n-dimensional mean is denoted by µ = (µ1, . . . , µn). If we treat the parameters

µ and σ independently, the Jeffreys prior is π(µ, σ) ∝ 1/σ. However, if the parameters

are considered jointly, the Jeffreys prior is π(µ, σ) ∝ 1/σn+1. In effect, by considering

the parameters jointly as opposed to independently, we are implicitly including additional

“pseudo-observations” of σ2 and consequently distorting our estimates of the error variance.

This “pseudo-observation” interpretation can be seen explicitly in the conjugate form of

the Jeffreys prior for a Gaussian likelihood. The joint Jeffreys prior π(µ, σ) ∝ 1/σn+1 is an

improper inverse-gamma prior with shape parameter, n/2, and scale parameter zero. As

the prior is conjugate, the posterior distribution for the variance is also inverse-gamma:

π(σ2|Y,µ) ∼ IG
(
n

2
+
n

2
, 0 +

∑n
i=1(Yi − µi)2

2

)
(2.7)
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where the first term of both the shape and scale parameters in (2.7) are the prior hyper-

parameters. Thus, the dependent Jeffreys prior can be thought of as encoding knowledge

of σ2 from a previous experiment where there were n observations which yielded a sample

variance of zero. This results in the prior concentrating around zero for large n and will

severely distort posterior estimates of σ2. As we shall see later, this dependent Jeffreys prior

for the parameters is in some cases akin to the conjugate prior framework in (2.2).

This prior dependence between the parameters is explicitly repudiated by Jeffreys (1961)

who states (with notation changed to match ours): “in the usual situation in an estimation

problem, µ and σ2 are each capable of any value over a considerable range, and neither gives

any appreciable information about the other. We should then take: π(µ, σ) = π(µ)π(σ).”

That is, Jeffreys’ remedy is to treat the parameters independently a priori, a recommenda-

tion which we also adopt. In addition, Jeffreys points out that a key problem with the joint

Jeffreys prior is that it does not have the same reduction of degrees of freedom required

by the introduction of additional nuisance parameters. We shall examine this phenomenon

in more detail in Section 2.3 where we will discuss the consequences of using dependent

Jefferys priors and other conjugate formulations in Bayesian linear regression.

We note a possible exception to this independence argument which is found later in The

Theory of Probability where Jeffreys argues that for simple normal testing, the prior on

µ under the alternative hypothesis should depend on σ2. However, it is important to

note that this recommendation is for the situation where µ is one-dimensional and so the

underestimation phenomenon observed in (2.7) is not a problem. Given Jeffreys’ earlier

concerns regarding multivariate situations, it is unlikely he intended this dependence to

generalize for higher dimensional µ.

11



2.3. Bayesian Regression

2.3.1. Prior Considerations

Consider again the classical linear regression model in (2.1). For a non-informative prior,

it is common to use π(β, σ2) ∝ 1/σ2 (see, for example, Gelman et al., 2014). Similarly to

our earlier discussion, this prior choice corresponds to multiplying the independent, Jeffreys

priors for β and σ2. In contrast, the joint Jeffreys prior would be π(β, σ2) ∝ 1/σp+2. Let

us now examine the estimates resulting from the former, independent Jeffreys prior. In this

case, we have the following marginal posterior mean estimate for the error variance:

E[σ2|Y] =
‖Y −Xβ̂‖2

n− p− 2
(2.8)

where β̂ = (XTX)−1XTY is the usual least squares estimator. We observe that the degrees

of freedom adjustment, n − p − 2, naturally appears in the denominator.1 This degrees of

freedom adjustment does not occur with the joint Jeffreys prior where the marginal posterior

mean is given by:

E[σ2|Y] =
‖Y −Xβ̂‖2

n− 2
. (2.9)

For large p, this estimator will severely underestimate the error variance. Avoiding this, it

is commonly accepted that the independent Jeffreys prior π(β, σ2) ∝ 1/σ2 should be the

default non-informative prior in this setting.

There is no such clarity, however, in the use of conjugate priors for Bayesian linear regression.

To add to this discourse, we show that these conjugate priors can suffer the same problem

as the dependent Jeffreys priors and recommend, similarly to Jeffreys, that independent

priors should be used instead. We make this point with the following example. A common

1Note that had we treated β1 as an intercept and integrated it out with respect to a uniform prior, this
term would be the usual n− p− 1.
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conjugate prior choice for Bayesian linear regression is

β|σ2, τ2 ∼ Np(0, σ
2τ2I). (2.10)

For simplicity of exposition, in this section we consider the parameter τ2 to be fixed, which

corresponds to Bayesian ridge regression. In later sections we will consider the global-local

shrinkage framework where τ2 is assigned a prior.

With an additional non-informative prior π(σ2) ∝ 1/σ2, we then have the joint prior

π(β|σ2)π(σ2) = π(β, σ2) ∝ 1

σp+2
exp

{
− 1

2σ2τ2
‖β‖2

}
. (2.11)

Note again the σp+2 in the denominator, similarly to the joint Jeffreys prior.

Instead of considering how β depends on σ2 a priori as in (2.10), it is illuminating to

consider the reverse: how this prior induces dependence of σ2 on β. From (2.11), the

implicit conditional prior on σ2 is given by

σ2|β ∼ IG
(
p

2
,
‖β‖2

2τ2

)
. (2.12)

The mean of this inverse-gamma prior is approximately 1
p‖β‖

2/τ2. Heuristically, this term

is of order O(q/p), where q is the number of non-zero β. When β is sparse and bounded

with q � p, (2.12) will then transmit downward biasing information from β to σ2. This

intuition is formalized in Proposition 1, which shows that the implicit conditional prior on

σ2 concentrates around zero in regions where β is sparse.

Proposition 1. Suppose ‖β‖0 = q and maxj β
2
j = K for some constant K ∈ R. Denote

the true variance as σ2
0. Then

P
(
σ2/σ2

0 ≥ ε | β
)
≤ q

p− 2

K

τ2

1

εσ2
0

. (2.13)

Proof. Proposition 1 follows from Markov’s inequality and the bound ‖β‖2 ≤ qK.
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Proposition 1 implies that we can choose 0 < ε < 1 such that as q/p→ 0, the prior places

decreasing mass on values of σ2 greater than εσ2
0. Thus, in regions of bounded sparse

regression coefficients, the conjugate Gaussian prior can result in poor estimation of the

true variance.

Further, from a more philosophical perspective, it is troubling that the error variance de-

pends on the regression coefficients a priori, given that the noise is generally assumed to be

independent of the signal and in particular the regression coefficients.

In the next section, we conduct a simulation study for the simple case of Bayesian ridge

regression and show empirically how this implicit prior on σ2 can distort estimates of the

error variance.

2.3.2. The Failure of a Conjugate Prior

As an illustrative example, we take n = 100 and p = 90 and compare the least squares esti-

mates of β and σ2 to Bayesian ridge regression estimates with (i) the conjugate formulation

with (2.10) and (ii) the independent prior formulation with

π(β) ∼ Np(0, τ
2I). (2.14)

For both Bayesian ridge regression procedures we use the non-informative error variance

prior: π(σ2) ∝ 1/σ2. The predictors Xi, i = 1, . . . , p are generated as independent standard

normal random variables. The true β0 is set to be sparse with only six non-zero elements;

the non-zero coefficients are set to {−2.5,−2,−1.5, 1.5, 2, 2.5}. The response Y is gener-

ated according to (2.1) with the true variance being σ2 = 3. We take τ = 10 as known

and highlight that this weakly informative choice leads to poor variance estimates in the

conjugate prior framework. Whilst an empirical or fully Bayes approach for estimating τ2

may be preferable for high-dimensional regression, it is troubling that the conjugate prior

yields poor results for a simple example where n > p and in which least squares and the

independent prior formulation perform well.
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The conjugate prior formulation allows for the exact expressions for the marginal posterior

means of β and σ2:

E[β|Y] = [XTX + τ−2I]−1XTY (2.15)

E[σ2|Y] =
YT [I−Hτ ]Y

n− 2
(2.16)

where Hτ = X[XTX + τ−2I]−1XT . Similarly to (2.9), the above marginal posterior mean

for σ2 does not incorporate a degrees of freedom adjustment and so we expect this estimator

to underestimate the true error variance.

It is illuminating to observe the underestimation problem when considering the conditional

posterior mean of σ2, instead of the marginal:

E[σ2|Y,β] =
‖Y −Xβ‖2 + ‖β‖2/τ2

n+ p− 2
. (2.17)

The additional p in the denominator here leads to severe underestimation of σ2 when β

is sparse and bounded as in Proposition 1 and p is of the same order as, or larger than,

n, as discussed in the previous section. We note in passing that a value of τ2 close to

‖β‖2/pσ2, which may be obtainable with an empirical or fully Bayes approach, would avoid

this variance underestimation problem, as can be seen from (2.17).

This is in contrast to the conditional posterior mean for σ2 using the independent prior

formulation (2.4), which we also consider. This estimator is given by:

E[σ2|Y,β] =
‖Y −Xβ‖2

n− 2
. (2.18)

Here we do not observe a degrees of freedom adjustment because (2.18) is the conditional

posterior mean, not the marginal. Earlier in (2.8) we considered the marginal posterior

mean for the independent Jeffreys’ prior which led to the n− p− 2 in the denominator. For

the marginal posterior means of β and σ2, the independent prior formulation does not yield
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closed form expressions. To compute these, we use a Gibbs sampler, the details of which

may be found in Section 2.9.1 of the Appendix.

When τ2 is large, the estimate of β for both the conjugate and independent formulations

are almost exactly the least-squares estimate, β̂ = [XTX]−1XTY. However, the estimates

of the variance σ2 differ substantially.

In Figure 1, we display a boxplot of the estimates of σ2 for (i) Least Squares, (ii) Conjugate

Bayesian ridge regression, (iii) Zellner’s prior:

β|σ2 ∼ N(0, σ2τ2[XTX]−1), (2.19)

and (iv) Independent Bayesian ridge regression over 100 replications. Here, the estimates

from least squares and the independent ridge are reasonably distributed around the truth.

In sharp contrast, the estimates from the conjugate ridge and Zellner’s prior consistently

underestimate the error variance with medians of σ̂2 = 0.27 and 0.55, respectively. This

poor performance is a result of the bias induced by adding p “pseudo-observations” of σ2

as discussed in Section 2.3.1, which also occurs for the Zellner prior.

In the above simulation study, we considered the posterior mean of σ2 over many repli-

cations of the data. This allowed us to assess the variability of these point estimates in

a frequentist sense. For a Bayesian perspective, we can also consider the entire marginal

posterior distribution for σ2. For the conjugate prior formulation, this posterior is given by:

σ2|Y ∼ IG
(
n

2
,
YT [I−Hτ ]Y

2

)
. (2.20)

The above distribution (2.20) is tightly concentrated about the posterior mode, given by

YT [I − Hτ ]Y/(n + 2), which suffers from the same underestimation phenomenon as the

posterior mean (2.16). Thus, consideration of the posterior distribution of σ2 will yield

similar conclusions to our consideration of the posterior mean.
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Figure 1: Estimated σ̂2 for each procedure over 100 repetitions. The true σ2 = 3 is the red
horizontal line.

This phenomenon of underestimating σ2 can also be seen in EMVS (Ročková and George,

2014), which can be viewed as iterative Bayesian ridge regression with an adaptive penalty

term for each regression coefficient βj instead of the same τ2 above. EMVS also uses a

conjugate prior formulation in which β depends on σ2 a priori similarly to (2.10). As in

the above ridge regression example, with this prior EMVS yields good estimates for β, but

severely underestimates σ2. This occurs in the Section 4 example of Ročková and George

(2014) with n = 100 and p = 1000. There, conditionally on the modal estimate of β, the

associated modal estimate of σ2 is 0.0014, a severe underestimate of the true variance σ2 = 3.

Fortunately, EMVS can be easily modified to use the independent prior specification, as

now has been done in the publicly available EMVS R package (Ročková and Moran, 2018).

It is interesting to note that the SSVS procedure of George and McCulloch (1993) used the

nonconjugate independence prior formulation in lieu of the conjugate prior formulation for

the continuous spike-and-slab setup.

A natural question to ask is: how does the poor estimate of the variance in the conjugate

case affect the estimated regression coefficients? Insight is obtained by comparing (2.15) to

the conditional posterior mean of β in the independent case, given by:

E[β|σ2,Y] =

[
XTX +

σ2

τ2
I

]−1

XTY. (2.21)
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In (2.15), the Gaussian prior structure allows for σ2 to be factorized out so that the estimate

of β does not depend on the variance. This lack of dependence on the variance is troubling,

however, as we want to select fewer variables when the error variance is large making the

signal-to-noise ratio low. This is in contrast to (2.21) where when σ2 is large relative to

τ2, the signal-to-noise ratio is low and so the posterior estimate for β will be close to zero,

correctly reflecting the relative lack of information. This does not occur for the posterior

mean of β in the conjugate case.

Although the posterior mean of β in the conjugate prior formulation does not depend on

σ2, the posterior variance of β does depend on the error variance. Specifically, the posterior

variance of β is given by:

E[β|Y, σ2] = σ2[XTX + τ−2I]−1. (2.22)

Consequently, underestimation of σ2 will result in too narrow credible intervals for β. Fur-

ther, underestimation of the error variance σ2 will also result in too narrow prediction

intervals for future responses.

2.3.3. What About a Prior Degrees of Freedom Adjustment?

At this point, one may wonder: if the problem seems to be the extra σp in the denominator,

why not use the prior π(σ2) ∝ σp−4 instead of the right-Haar prior π(σ2) ∝ σ−2 that is

commonly used? This “p-sigma” prior then results in the joint prior:

π(β|σ2)π(σ2) ∝ 1

(σ2)2
exp

{
− 1

2σ2τ2
‖β‖2

}
, (2.23)

which yields the implicit conditional prior on σ2:

σ2|β ∼ IG
(

1,
‖β‖2

2τ2

)
. (2.24)
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For the simulation setup in Section 2.3.2, this alternative conjugate prior would in fact

remedy the variance estimates of the conjugate formulation (2.10). However, the p-sigma

prior can actually lead to overestimation of the error variance, as opposed to the under-

estimation observed in Section 2.3.1. Heuristically, the mean of the prior (2.24) is now of

order O(q), where q is the number of non-zero β. As many posterior concentration results

require q → ∞, albeit at a much slower rate than p (see, for example, van der Pas et al.,

2016), this is particularly troublesome.

This overestimation can be further seen from the concentration of the prior captured in

Proposition 2 below. As we will discuss in Section 2.4, a similar phenomenon also occurs

for a penalized likelihood procedure that implicitly uses a p-sigma prior.

Proposition 2. Suppose ‖β‖0 = q and minj,βj 6=0 β
2
j = K for some constant K ∈ R. Denote

the true variance as σ2
0. Then

P (σ2 ≥ δσ2
0 | β) ≥ 1− exp

(
− qK

2δσ2
0τ

2

)
. (2.25)

Proof. We have:

P (σ2 ≥ δσ2
0 | β) =

∫ ∞
δσ2

0

‖β‖2

2τ2

1

u2
exp

(
−‖β‖

2

2τ2

1

u

)
du

≥ 1− exp

(
− qK

2δσ2
0τ

2

)
.

Proposition 2 implies that we can choose arbitrary δ > 1 such that as q →∞, the p-sigma

prior places increasing mass on values of σ2 greater than δσ2
0. Another concern regarding

the p-sigma prior is more philosophical. As p gets larger, the p-sigma prior puts increasing

mass on larger and larger values of σ2, which does not seem justifiable.

For these reasons, we prefer the independent prior forms for the regression coefficients and

error variance. We are also of the opinion that the simplicity of the independent prior is in

its favor.
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2.4. Connections with Penalized Likelihood Methods

Here we pause briefly to examine connections between Bayesian methods and developments

in estimating the error variance in the penalized regression literature. Such connections can

be drawn as penalized likelihood methods are implicitly Bayesian; the penalty functions

can be interpreted as priors on the regression coefficients so these procedures also in effect

yield MAP estimates.

One of the first papers to consider the unknown error variance case for the Lasso was Städler

et al. (2010), who suggested the following penalized loss function for introducing unknown

variance into the frequentist Lasso framework:

Lpen(β, σ2) =
‖Y −Xβ‖2

2σ2
+
λ

σ
‖β‖1 + n log σ. (2.26)

Optimizing this objective function is in fact equivalent to MAP estimation for the following

Bayesian model with the p-sigma prior discussed in Section 2.3.2:

Y ∼ N(Xβ, σ2I) (2.27)

π(β|σ2) ∝ 1

σp

p∏
j=1

e−λ|βj |/σ

π(σ2) ∝ σp.

Interestingly, Sun and Zhang (2010) proved that the resulting estimator for the error vari-

ance overestimates the noise level unless λ‖β∗‖1/σ∗ = o(1), where β∗ and σ∗ are the true

values of the regression coefficients and error variance, respectively. However, this condition

requires q, the true number of non-zero β, to be of the following order (details in Section

2.9.2 of the Appendix).

q = o
(√

n/log p
)
. (2.28)

That is, the true dimension q cannot at the same time increase at the required rate for
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posterior contraction and result in consistent estimates for the error variance. Note also

the connection to Proposition 2: there, the prior mass on σ2 will concentrate on values

greater than the true variance unless ‖β‖2/τ2 = o(1).

To resolve this issue of overestimating the error variance, Sun and Zhang (2012) proposed

as an alternative the “scaled Lasso”, an algorithm which minimizes the following penalized

joint loss function via coordinate descent:

Lλ(β, σ) =
‖Y −Xβ‖2

2σ
+
nσ

2
+ λ

p∑
j=1

|βj |. (2.29)

This loss function is a penalized version of Huber’s concomitant loss function, and so may

be viewed as performing robust high-dimensional regression. It is also equivalent to the

“square-root Lasso” of Belloni et al. (2014). Minimization of the loss function (2.29) can

be viewed as MAP estimation for the Bayesian model (with a slight modification):

Y ∼ N(Xβ, σI) (2.30)

π(β) ∝
p∏
j=1

λ

2
e−λ|βj |

σ ∼ Gamma(n+ 1, n/2).

Note that to interpret the scaled Lasso as a Bayesian procedure, σ, rather than σ2, plays

the role of the variance in (2.30). Sun and Zhang (2012) essentially then re-interpret σ

as the standard deviation again after optimization of (2.29). This re-interpretation can be

thought of as an “unbiasing” step for the error variance. It is a little worrisome, however,

that the implicit prior on the error variance is very informative: as n → ∞, this Gamma

prior concentrates around σ = 2.

Sun and Zhang (2012) proved that the scaled Lasso estimate σ̂(X,Y) is consistent for the

“oracle” estimator

σ∗ =
‖Y −Xβ∗‖√

n
, (2.31)
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where β∗ are the true regression coefficients, for the value of λ0 ∝
√

(2/n) log p. This

estimator (2.31) is called the oracle because it treats the true regression coefficients as if

they were known. The term ‖Y−Xβ∗‖2 is then simply the sum of normal random variables,

of which we calculate the variance as
∑n

i=1 ε
2
i /n.

2.5. Global-Local Shrinkage

In this section, we examine how the use of a conjugate prior affects the machinery of the

Gaussian global-local shrinkage paradigm. The general structure for this class of priors is

given by:

βj ∼ N(0, τ2λ2
j ), λ2

j ∼ π(λ2
j ), j = 1, . . . , p (2.32)

τ2 ∼ π(τ2)

where τ2 is the “global” variance and λ2
j is the “local” variance. Note that taking τ2 to be

the same as the error variance σ2 would result in a conjugate prior in this setting. This

is exactly what was done in the original formulation of the Bayesian lasso by Park and

Casella (2008), which can be recast in the Gaussian global-local shrinkage framework as

follows (notation changed slightly for consistency):

Y|β, σ2 ∼ Nn(Xβ, σ2In) (2.33)

βj |σ2, λ2
j ∼ N(0, σ2λ2

j ), π(λ2
j ) =

u2

2
e−u

2λ2j/2, j = 1, . . . , p

π(σ2) ∝ σ−2.

In the conjugate formulation (2.33), σ2 plays the dual role of representing the error variance

as well as acting as the global shrinkage parameter. This is problematic in light of the

mechanics of global-local shrinkage priors. Specifically, Polson and Scott (2010) recommend

the following requirements for the global and local variances in (2.32): π(τ2) should have

substantial mass near zero to shrink all the regression coefficients so that the vast majority
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are negligible; and π(λ2
j ) should have heavy tails so that it can be quite large, allowing for

a few large coefficients to “escape” the heavy shrinkage of the global variance.

This heuristic is formalized in much of the shrinkage estimation theory. For the normal

means problem where X = In and β ∈ Rn, van der Pas et al. (2016) prove that the

following conditions result in the posterior recovering nonzero means with the optimal rate:

(i) π(λ2
j ) should be a uniformly regular varying function which does not depend on n; and

(ii) τ2 = q
n log(n/q), where q is number of non-zero βj .

The uniformly regular varying property in (i) intuitively preserves the “flatness” of the prior

even under transformations of the parameters, unlike traditional “non-informative” priors

(Bhadra et al., 2016). In preserving these heavy tails, such priors for λ2
j allow for a few

large coefficients to be estimated. The condition (ii) encourages τ2 to tend to zero which

would be a concerning property if it were also the error variance. These results suggest

we cannot identify the error variance with the global variance parameter on the regression

coefficients as in (2.33): it cannot simultaneously both shrink all the regression coefficients

and be a good estimate of the residual variance. Finally, we note that Hans (2009) also

considered the independent case for the Bayesian lasso in which the error variance is not

identified with the global variance.

An alternative conjugate formulation for Gaussian global-local shrinkage priors is to instead

include three variance terms in the prior for βj : the error variance, σ2, the global variance,

τ2, and the local variance, λ2
j . For example, Carvalho et al. (2010) give the conjugate form

of the horseshoe prior:

βj |σ2, τ2, λ2
j ∼ N(0, σ2τ2λ2

j ), λ2
j ∼ π(λ2

j ), j = 1, . . . , p (2.34)

τ2 ∼ π(τ2),

π(σ2) ∝ σ−2.

This prior formulation (2.34) remedies the aforementioned issue in the Bayesian lasso as it
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separates the roles of the error variance and global variance. However, this prior structure

can still be problematic for error variance estimation.

Consider the conditional posterior mean of σ2 for the model (2.34):

E[σ2|Y,β, τ2, λ2
j ] =

‖Y −Xβ‖2 +
∑p

j=1 β
2
j /λ

2
jτ

2

n+ p− 2
. (2.35)

Proposition 3 highlights that, given the true regression coefficients, the conditional posterior

mean of σ2 underestimates the oracle variance (2.31) when β is sparse.

Proposition 3. Consider the global-local prior formulation given in (2.34). Denote the

true vector of regression coefficients by β∗ where ‖β∗‖0 = q. Suppose maxj β
∗2
j = M1 for

some constant M1 ∈ R. Denote the oracle estimator for σ given in (2.31) by σ∗ and suppose

σ∗ = O(1). Suppose also that for j ∈ {1, . . . , p} with βj 6= 0, we have τ2λ2
j > M2 for some

M2 ∈ R. Then

E[σ2|Y,β∗, τ2, λ2
j ] ≤

nσ∗2

n+ p− 2
+

q

n+ p− 2

M1

M2
. (2.36)

In particular, as p/n→∞ and q/p→ 0, we have

E[σ2|Y,β∗, τ2, λ2
j ] = o(1). (2.37)

Given the mechanics of global-local shrinkage priors, the assumption in Proposition 3 that

the term τ2λ2
j is bounded from below for non-zero βj is not unreasonable. This is because for

large βj , the local variance λ2
j must be large enough to counter the extreme shrinkage effect

of τ2. Indeed, the prior for λ2
j must have “heavy enough” tails to enable this phenomenon.

We should note that Proposition 3 illustrates the poor performance of the posterior mean

(2.35) given the true regression coefficients β∗, whereas the horseshoe procedure does not

actually threshold the negligible βj to zero in the posterior mean of β. For these small βj , the

term τ2λ2
j may be very small and potentially counteract the underestimation phenomenon.
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However, it is still troubling to use an estimator for the error variance that does not behave

as the oracle estimator when the true regression coefficients are known. This is in contrast

to the independent prior formulation where the conditional posterior mean of σ2 is simply:

E[σ2|Y,β] =
‖Y −Xβ‖2

n− 2
. (2.38)

Note also that the problem of underestimation of σ2 is exacerbated for modal estimation

under the prior (2.34). This is because modal estimators often threshold small coefficients

to zero and so the term
∑p

j=1 β
2
j /λ

2
jτ

2 becomes negligible as in Proposition 3. As MAP

estimation using global-local shrinkage priors is becoming more common (see, for example,

Bhadra et al., 2017), we caution against the use of these conjugate prior forms.

A different argument for using conjugate priors with the horseshoe is given by Piironen and

Vehtari (2017). They advocate for the model (2.34), arguing that it leads to a prior on the

effective number of non-zero coefficients which does not depend on σ2 and n. However, this

quantity is derived from the posterior of β and so does not take into account the uncertainty

inherent in the variable selection process. As a thought experiment: suppose that we know

the error variance, σ2, and number of observations, n. If the error variance is too large

and the number of observations are too few, we would not expect to be able to say much

about β at all, and this intuition should be reflected in the effective number of non-zero

coefficients. This point is similar to our discussion at the end of Section 2.3.2 regarding

estimation of β.

As before, we recommend independent priors on both the error variance and regression

coefficients to both prevent distortion of the global-local shrinkage mechanism and to obtain

better estimates of the error variance.
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2.6. Spike-and-Slab Lasso with Unknown Variance

2.6.1. Spike-and-Slab Lasso

We now turn to the Spike-and-Slab Lasso (SSL, Ročková and George, 2018) and consider

how to incorporate the unknown variance case. The SSL places a mixture prior on the

regression coefficients β, where each βj is assumed a priori to be drawn from either a

Laplacian “spike” concentrated around zero (and hence be considered negligible), or a diffuse

Laplacian “slab” (and hence may be large). Thus the hierarchical prior over β and the latent

indicator variables γ = (γ1, . . . , γp) is given by

π(β|γ) ∼
p∏
j=1

[γjψ1(βj) + (1− γj)ψ0(βj)] , (2.39)

π(γ|θ) =

p∏
j=1

θγj (1− θ)1−γj and θ ∼ Beta(a, b),

where ψ1(β) = λ1
2 e
−|β|λ1 is the slab distribution and ψ0(β) = λ0

2 e
−|β|λ0 is the spike (λ1 �

λ0), and we have used the common exchangeable beta-binomial prior for the latent indica-

tors.

Ročková and George (2018) recast this hierarchical model into a penalized likelihood frame-

work, allowing for the use of existing efficient algorithms for modal estimation while retain-

ing the adaptivity inherent in the Bayesian formulation. The regression coefficients β are

then estimated by

β̂ = arg max
β∈Rp

{
−1

2
‖Y −Xβ‖2 + pen(β)

}
(2.40)

where

pen(β) = log

[
π(β)

π(0p)

]
, π(β) =

∫ 1

0

p∏
j=1

[θψ1(βj) + (1− θ)ψ0(βj)]dπ(θ). (2.41)
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Ročková and George (2018) note a number of advantages in using a mixture of Laplace

densities in (2.39), instead of the usual mixture of Gaussians as has been standard in the

Bayesian variable selection literature. First, the Laplacian spike serves to automatically

threshold modal estimates of βj to zero when βj is small, much like the Lasso. However,

unlike the Lasso, the slab distribution in the prior serves to stabilize the larger coefficients

so they are not downward biased. Additionally, the heavier Laplacian tails of the slab

distribution yields optimal posterior concentration rates (Ročková, 2018).

Although the use of the spike-and-slab prior is typically associated with “two-group” Bayesian

variable selection methods, the Spike-and-Slab Lasso can also be interpreted as a “one-

group” global-local shrinkage method as the spike density is continuous. As such, the use

of a conjugate prior for the error variance here will result in underestimation, similarly to

the results for global-local shrinkage priors in Section 2.5. This is especially the case as

the SSL procedure finds the modes of the posterior, automatically thresholding negligible

regression coefficients to zero. In the next section, we provide further details on why this

underestimation phenomenon occurs for the SSL with a conjugate prior formulation. Af-

terwards, we introduce the SSL with unknown variance which avoids this underestimation

problem by instead utilizing an independent prior framework.

2.6.2. The Failure of a Conjugate Prior

This conjugate prior formulation for the Spike-and-Slab Lasso is given by:

π(β|γ, σ2) ∼
p∏
j=1

(
γj
λ1

2σ
e−|βj |λ1/σ + (1− γj)

λ0

2σ
e−|βj |λ0/σ

)
(2.42)

γ|θ ∼
p∏
j=1

θγj (1− θ)1−γj , θ ∼ Beta(a, b) (2.43)

p(σ2) ∝ σ−2. (2.44)

We find the posterior modes of our parameters using the EM algorithm, the details of which
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can be found in Section 2.9.3 of the Appendix. At the (k + 1)th iteration, the EM update

for the error variance is:

σ(k+1) =
Q+

√
Q2 + 4(‖Y −Xβ(k)‖2)(n+ p+ 2)

2(n+ p+ 2)
(2.45)

with

Q =

p∑
i=1

|β(k)
j |λ

∗(β
(k)
j /σ(k); θ(k)), (2.46)

λ∗(β; θ) = λ1p
∗(β; θ) + λ0(1− p∗(β; θ)), (2.47)

p∗(β; θ) =

[
1 +

λ0

λ1

(
1− θ
θ

)
exp{−|β|(λ0 − λ1)}

]−1

, (2.48)

where β(k), σ(k), θ(k) are the parameter values after the kth iteration.

Let us take a closer look at the update (2.45). Following the line of reasoning in Sun and

Zhang (2010), an expert with oracle knowledge of the true regression coefficients β∗ would

estimate the noise level by the oracle estimator:

σ∗2 =
‖Y −Xβ∗‖

n
. (2.49)

However, the maximum a posteriori estimate of σ at the true values of β∗,γ∗ is given by

σ̂MAP = τ +

√
τ2 +

(σ∗)2

1 + p/n+ 2/n
(2.50)

where τ = λ1‖β∗‖1/[2(n + p + 2)]. Here we see that if n → ∞ with p fixed, we have

σ̂MAP → σ∗. If, however, we have p/n → ∞ and q/p → 0, where the underlying sparsity

is q = ‖β∗‖0, we have σ̂MAP → 0. Thus, similarly to our previous examples in Sections

2.3 and 2.5, we will severely underestimate the error variance. As in these examples, the

remedy is to use the independent prior on σ2 and β.
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2.6.3. Spike-and-Slab Lasso with Unknown Variance

We now introduce the Spike-and-Slab Lasso with unknown variance, which considers the

regression coefficients and error variance to be a priori independent. The hierarchical model

is

π(β|γ) ∼
p∏
j=1

[γjψ1(βj) + (1− γj)ψ0(βj)] (2.51)

γ|θ ∼
p∏
j=1

θγj (1− θ)1−γj , θ ∼ Beta(a, b) (2.52)

π(σ2) ∝ σ−2. (2.53)

The log posterior, up to an additive constant, is given by

L(β, σ2) = − 1

2σ2
‖Y −Xβ‖2 − (n+ 2) log σ +

p∑
j=1

pen(βj |θj) (2.54)

where, for j = 1, . . . , p,

pen(βj |θj) = −λ1|βj |+ log[p∗(0; θj)/p
∗(βj ; θj)], (2.55)

with p∗(β; θ) =
θψ1(β)

θψ1(β) + (1− θ)ψ0(β)
and θj = E[θ|β\j ]. (2.56)

For large p, Ročková and George (2018) note that the conditional expectation E[θ|β\j ] is

very similar to E[θ|β] and so for practical purposes we treat them as equal and denote

θβ = E[θ|β].

To find the modes of (2.54), we pursue a similar coordinate ascent strategy to Ročková

and George (2018), cycling through updates for each βj and σ2 while updating the condi-

tional expectation θβ. This conditional expectation does not have an analytical expression;
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however, Ročková and George (2018) note that it can be approximated by

θβ ≈
a+ ‖β‖0
a+ b+ p

. (2.57)

We now outline the estimation strategy for β. As noted in Lemma 3.1 of Ročková and

George (2018), there is a simple expression for the derivative of the SSL penalty:

∂pen(βj |θβ)

∂|βj |
≡ −λ∗(βj ; θβ) (2.58)

where

λ∗(βj ; θβ) = λ1p
∗(βj ; θβ) + λ0[1− p∗(βj ; θβ)]. (2.59)

Using the above expression, the Karush-Kuhn-Tucker (KKT) conditions yield the following

necessary condition for the global mode β̂:

β̂j =
1

n

[
|zj | − σ2λ∗(β̂j ; θβ)

]
+
sign(zj), j = 1, . . . , p (2.60)

where zj = XT
j (Y−

∑p
k 6=j β̂k ·Xk) and we assume that the design matrix X has been centered

and standardized to have norm
√
n. The condition (2.60) is very close to the familiar

soft-thresholding operator for the Lasso, except that the penalty term λ∗(βj ; θ) differs for

each coordinate. Similarly to other non-convex methods, this enables selective shrinkage

of the coefficients, mitigating the bias issues associated with the Lasso. As a non-convex

method, however, (2.60) is not a sufficient condition for the global mode. This is particularly

problematic when the posterior landscape is highly multimodal, a consequence of p � n

and large λ0. To eliminate many of these suboptimal local modes from consideration,

Ročková and George (2018) develop a more refined characterization of the global mode.

This characterization follows the arguments of Zhang and Zhang (2012) and can easily be

modified for the unknown variance case of the SSL, detailed in Proposition 4.
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Proposition 4. The global mode β̂ satisfies

β̂j =


0 when |zj | ≤ ∆

1
n [|zj | − σ2λ∗(β̂j ; θβ)]+sign(zj) when |zj | > ∆

(2.61)

where

∆ ≡ inf
t>0

[nt/2− σ2pen(t|θβ)/t]. (2.62)

Unfortunately, computing (2.62) can be difficult. Instead, we seek an approximation to the

threshold ∆. A useful upper bound is ∆ ≤ σ2λ∗(0; θβ) (Zhang and Zhang, 2012). However,

when λ0 gets large, this bound is too loose and can be improved. The improved bounds

are given in Proposition 5, the analogue of Proposition 3.2 of Ročková and George (2018)

for the unknown variance case. Before stating the result, the following function is useful to

simplify exposition:

g(x; θ) = [λ∗(x; θ)− λ1]2 +
2n

σ2
log[p∗(x; θ)]. (2.63)

Proposition 5. When σ(λ0 − λ1) > 2
√
n and g(0; θβ) > 0 the threshold ∆ is bounded by

∆L < ∆ < ∆U ,

where

∆L =
√

2nσ2 log[1/p∗(0; θβ)]− σ4dj + σ2λ1, (2.64)

∆U =
√

2nσ2 log[1/p∗(0; θβ)] + σ2λ1 (2.65)

and

0 < dj <
2n

σ2
−

(
n

σ2(λ0 − λ1)
−
√

2n

σ

)2

.

Thus, when λ0 is large and consequently dj → 0, the lower bound on the threshold ap-
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proaches the upper bound, yielding the approximation ∆ ≈ ∆U . We additionally note

the central role that the error variance plays in the thresholds in Proposition 5. As σ2

increases, the thresholds also increase, making it more difficult for regression coefficients to

be selected. This is exactly what we want when the signal to noise ratio is small.

Bringing this all together, we incorporate this refined characterization of the global mode

into the update for the coefficients via the generalized thresholding operator of Mazumder

et al. (2011):

S̃(z, λ,∆) =
1

n
(|z| − λ)+sign(z)I(|z| > ∆). (2.66)

The coordinate-wise update is then

β̂j ← S̃(zj , σ̂
2λ∗(β̂j ; θ̂β),∆) (2.67)

where

∆ =


√

2nσ̂2 log[1/p∗(0; θ̂β)] + σ̂2λ1 if g(0; θ̂β) > 0,

σ̂2λ∗(0; θ̂β) otherwise.

(2.68)

The conditional expectation θβ is updated according to (2.57).

Finally, given the most recent update of the coefficient vector β̂, the update for the error

variance σ2 is simply:

σ̂2 ← ‖Y −Xβ̂‖2

n+ 2
. (2.69)

Note that this update for σ2 is a conditional mode, not a marginal mode, and so it does not

underestimate the error variance in the same way as (2.16). Indeed, conditional on the true

regression coefficients, (2.69) is essentially the oracle estimator (2.31). However, although

we retain the update (2.69) during optimization in order to iterate between the modes of
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β and σ2, after the algorithm has converged, our final estimator of σ2 is obtained as

σ̂2
adj =

‖Y −Xβ̂‖2

n− q̂
, (2.70)

where q̂ = ‖β̂‖0. Note that (2.70) incorporates an appropriate degrees of freedom adjust-

ment to account for the fact that β̂ is an estimate of the unknown true β.

In principle, both σ2 and the conditional expectation θβ should be updated after each βj ,

j = 1, . . . , p. In practice, however, there will be little change after one coordinate update

and so both σ2 and θβ can be updated after M coordinates are updated, where M is the

update frequency. The default implementation updates σ2 and θβ after every M = 10

coordinate updates.

2.6.4. Implementation

In the SSL with fixed variance, Ročková and George (2018) propose a “dynamic posterior

exploration” strategy whereby the slab parameter λ1 is held fixed and the spike parameter

λ0 is gradually increased to approximate the ideal point mass prior. Holding the slab

parameter fixed serves to stabilize the non-zero coefficients, unlike the Lasso which applies

an equal level of shrinkage to all regression coefficients. Meanwhile, gradually increasing

λ0 over a “ladder” of values serves to progressively threshold negligible coefficients. More

practically, the dynamic strategy aids in mode detection: when (λ1−λ0)2 ≤ 4, the objective

is convex (Ročková and George, 2018). In fact, when λ0 = λ1, it is equivalent to the Lasso.

As λ0 is increased, the posterior landscape becomes multimodal, but using the solution from

the previous value of λ0 as a “warm start” allows the procedure to more easily find modes.

Thus, progressively increasing λ0 acts as an annealing strategy.

When σ2 is treated as unknown, the successive warm start strategy of Ročková and George

(2018) will require additional intervention. This is because the objective (2.54) is always

non-convex when σ2 is unknown, unlike the fixed case where it is convex when (λ1−λ0)2 ≤ 4.

In particular, for small λ0 ≈ λ1 there may be many negligible but non-zero βj included in
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the model. When p > n, this severe overfitting can result in all the variation in Y being

explained by the model, forcing the estimate of the error variance, σ̂2 to a mode at zero.

If this suboptimal solution is propagated for larger values of λ0, the optimization routine

will remain “stuck” in that part of the posterior landscape. As an implementation strategy

to avoid this absorbing state, we keep the estimate of σ2 fixed at an initial value until

λ0 reaches a value at which the algorithm converges in less than 100 iterations. We then

reinitialize β and σ2 and begin to simultaneously update σ2 for the next largest λ0 value

in the ladder. The intuition behind this strategy is that we first find a solution to a convex

problem (with σ2 fixed) and then use this solution as a warm start for the non-convex

problem (with σ2 unknown). A related two-step strategy for non-convex optimization has

also been proven successful for robust M-estimation (Loh, 2017).

For initialization, we follow Ročková and George (2018) and initialize the regression coeffi-

cients, β, at zero and θ0 = 0.5. For the error variance, we devised an initialization strategy

that is motivated by the prior for σ2 used in Chipman et al. (2010). Those authors used

a scaled-inverse-χ2 prior for the error variance with degrees of freedom ν = 3 and scale

parameter chosen such that the sample variance of Y corresponds to the 90th quantile of

the prior. This is a natural choice as the variance of Y is the maximum possible value for

the error variance. We set the initial value of σ2 to be the mode of this scaled-inverse-χ2

distribution, a strategy which we have found to be effective in practice.

The entire implementation strategy is summarized in Algorithm 1.

2.6.5. Scaled Spike-and-Slab Lasso

An alternative approach for extending the SSL for unknown variance is to follow the scaled

Lasso framework of Sun and Zhang (2012). In their original scaled Lasso paper, Sun and

Zhang (2012) note that their loss function can be used with many penalized likelihood

procedures, including the MCP and the SCAD penalties. Here, we develop the scaled

Spike-and-Slab Lasso. The loss function for the scaled SSL is the same as that of the scaled
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Lasso but with a different penalty:

L(β, σ2) = − 1

2σ
‖Y −Xβ‖2 − nσ

2
+

p∑
j=1

pen(βj |θβ) (2.71)

where pen(βj |θβ) is as defined in (2.55) and again we use the approximation (2.57) for the

conditional expectation θβ. In using this loss function, we are of course departing from the

Bayesian paradigm and simply considering this procedure as a penalized likelihood method

with a spike-and-slab inspired penalty.

The algorithm to find the modes of (2.71) is very similar to Algorithm 1, the only difference

being we replace all σ2 terms in the updates (2.67) and (2.68) with σ. This is because the

refined thresholds for the coefficients are derived using the KKT conditions where the only

difference between the two procedures is σ vs. σ2.

The update for σ2 is only very slightly different from the SSL with unknown variance:

σ̂2 ← ‖Y −Xβ̂‖2

n
. (2.72)

How do we expect the scaled Spike-and-Slab Lasso to compare to the Spike-and-Slab Lasso

with unknown variance? The threshold levels ∆ for the scaled SSL will be smaller after

replacing σ2 with σ. This may potentially result in more false positives being included in

the scaled SSL model. In terms of variance estimation, the updates for σ2 are effectively

the same; the only differences we should expect are those arising from a more saturated

estimate for β. These hypotheses are examined in the simulation study in the next session.

2.6.6. Simulation Study

We now compare the Spike-and-Slab Lasso with unknown variance with several penal-

ized likelihood methods, including the original Spike-and-Slab Lasso with fixed variance

of Ročková and George (2018) as well as the scaled Spike-and-Slab Lasso outlined in the

previous section. We investigate both the efficacy of the SSL with unknown variance and
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the benefits of simultaneously estimating the regression coefficients β and error variance

σ2 in variable selection. We do not consider the SSL with the p-sigma prior from Section

3.3 as the objective is similar to Städler et al. (2010) (albeit with an adaptive penalty) and

so we would expect similar overestimation of σ2 as proved by Sun and Zhang (2012). We

consider three different simulation settings.

For the first simulation setting, we consider the same simulation setting of Ročková and

George (2018) with n = 100 and p = 1000 but use an error variance of σ2 = 3 instead of

σ2 = 1. The data matrix X is generated from a multivariate Gaussian distribution with

mean 0p and a block-diagonal covariance matrix Σ = bdiag(Σ̃, . . . , Σ̃) where Σ̃ = {σ̃}50
i,j=1

with σ̃ij = 0.9 if i 6= j and σ̃ii = 1. The true vector β0 is constructed by assigning regression

coefficients {−2.5,−2,−1.5, 1.5, 2, 2.5} to q = 6 entries located at {1, 51, 101, 151, 201, 251}

and setting to zero the remaining coefficients. Hence, there are 20 independent blocks of 50

highly correlated predictors where the first 6 blocks each contain only one active predictor.

The response was generated as in (2.1) with error variance σ2 = 3.

We compared the Spike-and-Slab Lasso with unknown variance to the fixed variance Spike-

and-Slab Lasso with two settings: (i) σ2 = 1, and (ii) σ2 = 3, the true variance. The prior

settings for θ were a = 1, b = p. The slab parameter was set to λ1 = 1. For the spike

parameter, we used a ladder λ0 ∈ I = {1, 2, . . . , 100}.

Additional methods compared were the scaled SSL from Section 2.6.5, the Lasso (Friedman

et al., 2010), the scaled Lasso (Sun and Zhang, 2012), the Adaptive Lasso (Zou, 2006),

SCAD (Fan and Li, 2001), and MCP (Zhang, 2010).

The analysis was repeated 100 times with new covariates and responses generated each time.

For each, the metrics recorded were: the Hamming distance (HAM) between the support

of the estimated β and the true β0; the prediction error (PE), defined as

PE = ‖Xβ0 −Xβ̂‖2; (2.73)
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the number of false negatives (FN); the number of false positives (FP); the number of true

positives (TP); Matthew’s Correlation Coefficient (MCC), defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
; (2.74)

the percentage of times the method found the correct model (COR); and the time in seconds

(TIME). The average of these metrics for each method over the 100 repetitions are displayed

in Table 1.

We can see that the Spike-and-Slab Lasso with the variance fixed and equal to the truth

(σ2 = 3) performs the best in terms of the Hamming distance, prediction error, and MCC.

Encouragingly, the Spike-and-Slab Lasso with unknown variance performs almost as well as

the “oracle” version where the true variance is known. The SSL with unknown variance in

turn performs better than a naive implementation of the SSL with fixed variance (σ2 = 1).

We note that the prediction error for the latter implementation is higher than the Adaptive

Lasso and SCAD; however, these frequentist methods use cross-validation to choose their

regularization parameter and so are optimizing for prediction to the possible detriment of

other metrics; the SSL (σ2 = 1) still has fewer false positives and a higher MCC. However,

both the SSL (σ2 = 3) and unknown σ2 have smaller prediction error than the rest of the

methods, including those which use cross-validation, which highlights the predictive gains

afforded by variance estimation.

Following from the discussion in Section 2.6.5, we can see that the scaled SSL indeed

finds more false positives than the SSL with unknown variance. This is a result of the

smaller thresholds in estimating the regression coefficients. We can see that the scaled

Lasso significantly reduces the number of false positives found as compared to the Lasso;

however, the issues with the Lasso penalty remain.

Figure 2 shows the variance estimates over the 100 repetitions for the SSL with unknown

variance, the scaled SSL and the scaled Lasso. For the SSL with unknown σ2, these are the
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Figure 2: Estimated σ̂2
adj over 100 repetitions. The true variance σ2 = 3 is the red horizontal

line.

estimates (2.70). For the scaled SSL and the scaled Lasso variance estimates, we also applied

a degrees of freedom correction similarly to (2.70) using the number of non-zero coefficients

found by each method. The variance estimates from the SSL (unknown σ2) have a median

of 2.87 and standard error 0.04. Meanwhile, the scaled SSL slightly underestimates the

variance with a median of 2.76 and standard error 0.04, as expected from the larger number

of false positives observed in Table 1. Finally, the scaled Lasso highly inflates the variance

with a median of 5.88 and standard error 0.14.

2.7. Protein Activity Data

We now apply the Spike-and-Slab Lasso with unknown variance to the protein activity data

set from Clyde and Parmigiani (1998). Following those authors, we code the categorical

variables by indicator variables and consider all main effects, two-way interactions and

quadratic terms for the continuous variables. This results in a linear model with p = 88

potential predictors. The sample size is n = 96. We assess the performance of the Spike-

and-Slab Lasso with unknown variance in both variable selection and prediction.

2.7.1. Variable Selection

As an approximation to the “truth”, we use the Bayesian adaptive sampling algorithm

(BAS, Clyde et al., 2011), which has previously been applied successfully to this dataset.
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BAS gives posterior inclusion probabilities (PIP) for each of the p potential predictors

from which we determined the median probability model (MPM: predictors with PIP >

0.5). The median probability model found by BAS consisted of q = 7 predictors: (i)

con:detT: the interaction of protein concentration and detergent T, (ii) detT: detergent

T, (iii) bufTRS:detN: the interaction of buffer TRS and detergent N, (iv) con: protein

concentration, (v) bufPO4:temp: the interaction of buffer P04 and temperature, (vi) detN:

detergent N, and (vii) detN:temp: the interaction of detergent N and temperature.

For the SSL with unknown variance, we used the same settings as the simulation study with

λ1 = 1 and λ0 ∈ {1, 2, . . . , n}. The procedure found a model with q̂ = 6 predictors, including

four of the MPM: con, detN, bufTRS:detN, con:detT. Additionally, instead of detT, the

SSL with unknown variance found the interaction of pH with detergent T (pH:detT). The

correlation between detT and pH:detT is 0.988, rendering the two predictors essentially

exchangeable. Thus, 5 out of the 6 predictors found by the SSL with unknown variance

matched with the benchmark MPM.

For the SSL with known variance, we fixed σ2 = 0.24. This is the mean of the scaled-

inverse-χ2 distribution induced by the variance of the response, as detailed in Section 2.6.4.

For the protein data, the variance of the response is 0.41 and so fixing σ2 = 1 overestimates

the variance, resulting in no signal being found. The SSL with this fixed variance found

q̂ = 2 predictors: one of the MPM (detT) and one not in the MPM but having a correlation

of 0.735 with detN.

Here, we can see the benefit of simultaneously estimating the error variance; the estimate

from SSL with unknown variance was σ̂2 = 0.167, resulting in a less sparse solution.

2.7.2. Predictive Performance

We now compare the predictive performance of the SSL with unknown variance with the

penalized regression methods from the simulation study in Section 2.6.6. We additionally

considered both the SSL with fixed variance (set to σ2 = 0.24 as in the previous section)
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Figure 3: Boxplots of 8-fold cross-validation error over 100 replications for each of the
methods (from left to right): 1. SSL (unknown σ2). 2. SCAD. 3. MCP (ncvreg). 4. cv-
SSL (fixed σ2 with cross-validation). 5. LASSO. 6. Adaptive LASSO. 7. MCP (γ = 1.0001).
8. SSL (fixed σ2).

and a cross-validated version of fixed variance SSL (cv-SSL): this procedure chooses the

values of λ1 and λ0 that result in the smallest cross-validation error.

To assess out-of-sample predictive performance, we calculated the 8-fold cross-validation

(CV) error of each of the methods as follows. We split the data into K = 8 sets, denoting

each set by Sk, k = 1, . . . ,K. Then, the 8-fold cross-validation error is:

CV =
1

K

K∑
k=1

∑
i∈Sk

[
yi − xiβ̂\k

]2
(2.75)

where β̂\k is the estimated regression coefficient using the data in SCk . We repeated this

procedure for 100 different splits of the data; the resulting cross-validation errors are dis-

played in Figure 3. We do not display the results from the scaled Lasso in Figure 3 as there

were a number of outliers: the cross-validation error for the scaled Lasso was greater than

25 in 20% of the replications.

The SSL with unknown variance has the smallest cross-validation error, highlighting the

gains in predictive performance that can be achieved by simultaneously estimating the

error variance and regression coefficients. This result is also very encouraging given that

all the other methods (except for the fixed variance SSL) use cross-validation to choose
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their regularization parameters. Using cross-validation in this way in some sense accounts

for and implicitly estimates the error variance. However, in pre-specifying the values the

regularization parameter can take, such methods essentially limit the possible values of the

error variance. In contrast, the SSL with unknown variance allows for the error variance to

be unknown and so can obtain improved estimates of the noise and, consequently, improved

out-of-sample predictive performance.

2.8. Conclusion

In this chapter, we have shown that conjugate continuous priors for Bayesian variable se-

lection can lead to underestimation of the error variance when (i) β is sparse; and (ii) when

p is of the same order as, or larger than, n. This is because such priors implicitly add p

“pseudo-observations” of σ2 which shift prior mass on σ2 towards zero. Conjugate priors for

linear regression are often motivated by the invariance principle of Jeffreys (1961). Revisit-

ing this work however, we highlighted that Jeffreys’ himself cautioned against applying his

invariance principle in multivariate problems. Following Jeffreys, we recommended priors

which treat the regression coefficients and error variance as independent.

We then proceeded to extend the Spike-and-Slab Lasso of Ročková and George (2018) to

the unknown variance case, using an independent prior for the variance. We showed that

this procedure for the Spike-and-Slab Lasso with unknown variance performs almost as well

empirically as the SSL where the true variance is known. We additionally compared the

Spike-and-Slab Lasso with unknown variance to a popular frequentist method to estimate

the variance in high dimensional regression: the scaled Lasso. In simulation studies, the

SSL with unknown variance performed much better than the scaled Lasso and additionally

outperformed the “scaled Spike-and-Slab Lasso”, a variant of the latter procedure but with

the Spike-and-Slab Lasso penalty. On a protein activity dataset, the SSL with unknown

variance performed well for both variable selection and prediction. In particular, the SSL

with unknown variance exhibited smaller cross-validation error than other penalized like-

lihood procedures which choose their regularization parameters based on cross-validation.
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This highlights the predictive benefit of simultaneous variance estimation. The unknown

variance implementation of the SSL is provided in the publicly available R package SSLASSO

(Ročková and Moran, 2017). Code to reproduce the results in this chapter is also available

at https://github.com/gemma-e-moran/variance-priors.

2.9. Appendix

2.9.1. Gibbs Sampler for Bayesian Ridge Regression

Here, we present the details of the Gibbs sampler used to obtain posterior estimates for the

independent Bayesian ridge regression model in Section 2.3.2. The model is:

Y ∼ Nn(Xβ, σ2I) (2.76)

β ∼ Np(0, τ
2I) (2.77)

π(σ) ∝ 1/σ. (2.78)

The full conditional distributions of the parameters β and σ2 are:

β|Y, σ2 ∼ Np(σ
−2VXTY,V) (2.79)

σ2|Y,β ∼ IG(n/2, ‖Y −Xβ‖2/2) (2.80)

where V =
[
σ−2XTX + τ−2Ip

]−1
. The Gibbs sampling algorithm alternates sampling from

(2.79) and (2.80). After burn-in, the posterior mean estimates are the means of the samples.

2.9.2. Connections with Penalized Likelihood Methods

To show (4.3) in Section 2.4, consider the objective function (4.1) proposed by Städler et al.

(2010) to simultaneously estimate the regression coefficients and error variance in the Lasso.

Denote the estimator of the error variance from this objective function by σ̂2. Let β∗ and

σ∗ denote the true regression coefficients and error variance, respectively. Sun and Zhang
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(2010) proved that σ̂2 will overestimate the true variance unless

λ‖β∗‖1/σ∗ = o(1). (2.81)

Suppose now the true dimension of β∗ is q and that maxj |β∗j | = K1 for some constant

K1 ∈ R. Suppose also that the true variance is bounded: K2 < σ∗ < K3 for constants

K2,K3 ∈ R. Let λ = A
√

(2/n) log p for some constant A > 1 (the universal threshold).

Then,

λ‖β∗‖1/σ∗ ≤ A
√

(2/n) log p
K1

K2
q

Hence, from (2.81), the estimator σ̂2 will overestimate the true variance unless

q = o

(√
n

log p

)
. (2.82)

2.9.3. EM Algorithm for SSL with Conjugate Prior Formulation

Here, we provide the details of the EM algorithm for the Spike-and-Slab Lasso with a

conjugate prior formulation in Section 2.6.2. The model is given by:

π(β|γ, σ2) ∼
p∏
j=1

(
γj
λ1

2σ
e−|βj |λ1/σ + (1− γj)

λ0

2σ
e−|βj |λ0/σ

)
(2.83)

γ|θ ∼
p∏
j=1

θγj (1− θ)1−γj , θ ∼ Beta(a, b) (2.84)

p(σ2) ∝ σ−2. (2.85)
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Then, the “complete” data log posterior is given by

log π(β,γ, σ, θ|Y) = − 1

2σ2
‖Y −Xβ‖2 − (n+ 2) log σ

+

p∑
j=1

log

(
γj
λ1

2σ
e−|βj |λ1/σ + (1− γj)

λ0

2σ
e−|βj |λ0/σ

)

+

p∑
j=1

log

(
θ

1− θ

)
γj + (a− 1) log(θ)

+ (p+ b− 1) log(1− θ) + C (2.86)

The EM algorithm then proceeds as follows: treat γ as unknown and iteratively maximize

E[log π(β,γ, σ, θ|Y)|β(k), σ(k), θ(k)] (2.87)

where β(k), σ(k), θ(k) are the parameter values after the kth iteration.

At the (k + 1)th iteration, these EM updates are then given by:

β(k+1) = arg min
β

 1

2σ(k)
‖Y −Xβ‖2 +

p∑
j=1

|βj |λ∗(β(k)
j /σ(k); θ(k))

 (2.88)

θ(k+1) =

∑p
j=1 p

∗(β
(k)
j /σ(k); θ(k)) + a− 1

a+ b+ p− 2
(2.89)

σ(k+1) =
Q+

√
Q2 + 4(‖Y −Xβ(k)‖2)(n+ p+ 2)

2(n+ p+ 2)
(2.90)
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Algorithm 1 Spike-and-Slab Lasso with unknown variance

Input: grid of increasing λ0 values I = {λ10, . . . , λL0 }, update frequency M

Initialize: β∗ = 0p, σ∗2, θ∗ = 0.5

For l = 1, . . . , L:

1. Set kl = 0

2. Initialize: β
(kl)
l = β∗, θ

(kl)
l = θ∗, σ

(kl)2
l = σ∗2

3. While diff > ε

(i) Increment kl

(ii) For s = 1, . . . , bp/Mc:

i. Update

∆←


√

2nσ
(kl)2
l log

[
1/p∗(0; θ

(kl)
l )

]
+ σ

(kl)2
l λ1 if g

(
0; θ

(kl)
l

)
> 0

σ
(kl)2
l λ∗(0; θ

(kl)
l ) otherwise

ii. For j = 1, . . . ,M : update

β
(kl)
l(s−1)M+j ← S̃

(
zj , σ

(kl−1)2
l λ∗(β

(kl−1)
l(s−1)M+j ; θ

(kl−1)
l ),∆

)

iii. Update

θ
(kl)
l ←

a+ ‖β(kl)
l ‖0

a+ b+ p

iv. If kl−1 < 100:

A. Update

σ
(kl)2
l ←

‖Y −Xβ
(kl)
l ‖2

n+ 2

v. diff = ‖β(kl)
l − β(kl−1)

l ‖2

4. Assign β∗ = β
(kl)
l , σ∗2 = σ

(kl)2
l , θ∗ = θ

(kl)
l



CHAPTER 3 : Spike-and-Slab Lasso Biclustering

3.1. Introduction

Biclustering has emerged as a popular tool for simultaneously grouping samples and their

associated features. Standard clustering methods typically group the samples based on

their entire set of features; however, this may be problematic in large datasets where many

of the features are not expected to play a role in distinguishing the groups. For example,

in gene expression data it is expected that only a small fraction of genes are differentially

expressed across groups of interest. If samples are required to be similar over all genes to

belong to the same cluster, such groups may be missed. Biclustering methods mitigate this

problem by finding subsets of samples that are similar on only a subset of the features. In

this way, biclustering methods perform variable selection for clustering. Along with gene

expression data (Cheng and Church, 2000), biclustering methods have also been applied to

recommender systems, which seek to group consumers based on their ratings of different

products (De Castro et al., 2007; Zhu et al., 2016); neuroscience (Fan et al., 2010); and

agriculture (Mucherino et al., 2009). Biclustering also yields more interpretable results

than clustering; by finding features that are associated with group membership, biclustering

methods have identified novel biological modules (Xiong et al., 2013).

The observed data is the matrix of samples by features, denoted by

Y = [y1, . . . ,yN ]T ∈ RN×G,

where Yij is the measurement of feature j in sample i for i = 1, . . . , N , and j = 1, . . . , G. The

goal is to find submatrices of the data matrix (up to permutation of rows and columns) for

which the elements Yij are “similar”. The row and column indices of such a submatrix are

then referred to as a “bicluster”. In the literature, different notions of similarity have been

used to define such submatrices of interest. Generally speaking, these notions of similarity

can be grouped into four categories, as outlined by Madeira and Oliveira (2004).
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The first category assumes that biclusters manifest as submatrices of constant values; specif-

ically, Y is assumed to have the following structure:

Yij =
K∑
k=1

βkI(i, j ∈ bicluster k) + εij , i = 1, . . . , N, j = 1, . . . , G, (3.1)

where βk is the constant value of bicluster k and εij is additive noise. Methods which fall

into this category include that of Hartigan (1972), the first paper to consider simultaneous

clustering of rows and columns. Later, the method Large Average Submatrices (LAM,

Shabalin et al., 2009) extended this notion to allow for such constant submatrices to overlap.

The second category extends the constant submatrix assumption to accommodate additive

row and column bicluster-specific effects. That is, methods in this category assume the data

matrix may be decomposed as:

Yij = µ+

K∑
k=1

[xik + βjk] + εij , i = 1, . . . , N, j = 1, . . . , G, (3.2)

where µ is the main effect, xik is the sample effect for bicluster k, βjk is the feature effect for

bicluster k and εij is the noise. Here xik and βjk are non-zero only if sample i and feature

j are in the bicluster k. This ANOVA-style decomposition was first utilized by Cheng and

Church (2000). Lazzeroni and Owen (2002) also used this definition of a bicluster, naming

it the plaid model for the patterns in the data matrix that result from this assumption.

The third category assumes multiplicative row and columns effects, instead of additive.

That is, the data matrix is assumed to have the following structure

Yij =

K∑
k=1

xikβjk + εij , i = 1, . . . , N, j = 1, . . . , G, (3.3)

where the definitions are the same as in (3.2). This assumption allows for biclusters to

be found in which samples and features exhibit similar behavior, not just similar values.

Specifically, within a bicluster, samples are assumed to be correlated across the features.
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Figure 1: Factorization of the mean of the data matrix into two biclusters: E[Y] = x1�1T +x2�2T .

We develop a fast, deterministic EM algorithm with a variational step to find the modal
estimates of X and B. Biclustering is in general NP-hard (Peeters, 2003). The Spike-
and-Slab Lasso prior ameliorates such computational di�culties as it uses a continuous
relaxation of bicluster membership. This continuous relaxation corresponds to assigning
a probability, instead of a binary indicator, to whether each sample or feature is in a
particular bicluster.

We note that the factorization (1.4) is similar to the singular value decomposition (SVD)
of Y. However, the SVD assumption forces the columns of X and B to be orthogonal, a
requirement which is relaxed here, as is done in factor analysis more generally. A benefit
of not requiring orthogonality is that it allows for biclusters to overlap, enabling samples
and features to belong to more than one bicluster. Further, samples and features do not
have to belong to any biclusters.

A potential issue with not requiring orthogonality is that the model (1.4) is not identifiable
up to rotation: that is, XBT = (PX)(PB)T for any rotation matrix P. However, by
seeking a sparse factorization of Y, the space of rotation matrices is restricted, placing a
“soft constraint” on identifiability.

1.2 Related Work

There have been a number of biclustering methods which utilize the same factor analysis
model as (1.4) and adopt sparsity-inducing priors for the factor and loading matrices. The
first method to do so was Factor Analysis for Bicluster Acquisition (FABIA, Hochreiter
et al., 2010) who placed single Laplace priors on both xk and �k. However, the posterior
resulting from Laplacian priors does not place enough mass on sparse solutions in variable
selection problems (Castillo et al., 2015). This is because such a single Laplace prior has
one variance parameter and so cannot both shrink negligible values to zero and maintain
the larger signal. As a result, the estimates of X and B from FABIA are not sparse; the au-
thors recommend a heuristic thresholding rule to then determine bicluster membership. In

5

Figure 4: Mean of a data matrix with two biclusters: E[Y] = x1β1T + x2β2T .

The model (3.3) corresponds to identifying rank-1 submatrices in the data matrix, up to

permutation of rows and columns (see Figure 4). One approach for finding rank-1 structures

in the observed data matrix is to use doubly-sparse factor analysis (Hochreiter et al., 2010;

Gao et al., 2016). Other methods use Pearson’s correlation coefficient as a similarity score

and then find rows and columns that have scores above a specified threshold (Bozdağ et al.,

2009; Bhattacharya and De, 2009; Bhattacharya and Cui, 2017). Rangan et al. (2018) use

a novel “loop-counting” method to find rank-1 submatrices in the data matrix.

Methods in the fourth category do not assume a model for the data matrix but instead

search for patterns in the data matrix. Such patterns may be viewed as generalizations of

the additive or multiplicative assumptions. For example, the Iterative Signature Algorithm

(ISA, Bergmann et al., 2003) finds submatrices in which all rows and all columns are above

a certain threshold. Ben-Dor et al. (2003) generalize the multiplicative assumption (3.3) to

find subsets of features which have the same order on a subset of samples, which can be

thought of as a slightly more flexible correlation structure.

In addition to how they define biclusters, methods can also be classified according to other

criteria, including: the types of algorithms they utilize to find such biclusters; the assump-

tions they make regarding the noise distribution; and whether features and samples are

allowed to belong to more than one bicluster, to name a few. For more detailed reviews of

biclustering methods, see Madeira and Oliveira (2004); Prelić et al. (2006); Bozdağ et al.

(2010); Eren et al. (2012); Padilha and Campello (2017).
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3.1.1. Our Approach: Spike-and-Slab Lasso Biclustering

In this chapter, we introduce a new approach for Bayesian biclustering called Spike-and-

Slab Lasso Biclustering (SSLB). Our method assumes that biclusters manifest as rank-1

submatrices of the data matrix, Y. This assumption corresponds to a factor analysis model

where both the factors and the loadings are sparse. That is, we assume that Y has the

following structure:

Y =

K∑
k=1

xkβkT + E, (3.4)

where X = [x1, . . .xK ] ∈ RN×K is the factor matrix, B = [β1, . . . ,βK ] ∈ RG×K is the

loadings matrix and E = [ε1, . . . , εN ]T ∈ RN×G is a matrix of Gaussian noise with εi
ind∼

NG(0,Σ) where Σ = diag{σ2
j }Gj=1 for i = 1, . . . , N . We allow for the number of biclusters,

K to be unknown. We use the convention that the superscript xk refers to the kth column

of X, and the subscript xi to refers to the ith row of X.

In assuming a multiplicative model for the biclusters, our method falls into the third cate-

gory outlined in the previous section. We prefer this definition of a bicluster for a number

of reasons. Firstly, it is interpretable. Using gene expression data as an example: the genes

(i.e. features) in a bicluster may be expressed at different levels to drive a biological process.

This expression pattern in turn may be weaker or stronger in different samples, as deter-

mined by the sample-specific multiplicative effect. Secondly, there are many applications in

which features and samples have been shown to be well approximated by such multiplicative

effect models (Hochreiter et al., 2010). Thirdly, the definition allows for the specification

of the model (3.4), allowing for systematic analysis of the noise variance and, in possible

future work, coherent inclusion of prior information regarding the features or the samples.

In (3.4), xik is non-zero if sample i belongs to bicluster k and βjk is non-zero if feature j

belongs to bicluster k. As such, the problem of finding the biclusters in this framework can

be viewed as a variable selection problem: identifying biclusters corresponds to finding the
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support of xk and βk. To address this problem of variable selection, we adopt a Bayesian

framework and place sparsity-inducing Spike-and-Slab Lasso priors (Ročková and George,

2018) on each of the columns of the factor matrix, X, and and the loadings matrix, B. The

Spike-and-Slab Lasso was introduced by Ročková and George (2018) for variable selection

in linear regression and has subsequently been used in multivariate regression (Deshpande

et al., 2017) and sparse factor analysis (Ročková and George, 2016). A difference here from

Ročková and George (2016) is that we induce sparsity in both the factor matrix and the

loadings matrix, instead of only the loadings matrix. A benefit of the Spike-and-Slab Lasso

is that it can adapt to the underlying levels of sparsity (or lack thereof) in the data. As we

will show, this allows the method to find biclusters of a range of different sizes.

To determine the number of biclusters, K, we use a Bayesian nonparametric strategy.

Specifically, we use an Indian Buffet Process prior (IBP, Griffiths and Ghahramani, 2005)

on the “size” of each bicluster, which ensures that each new bicluster is smaller than the

previous one. We also allow for the IBP prior to be extended to a Pitman-Yor IBP (Teh

et al., 2007), which drives the size of consecutive biclusters to decrease as a power law.

This extension may be appropriate in applications where one expects a larger number of

biclusters of a smaller size.

We develop a fast, deterministic EM algorithm with a variational step to find the modal

estimates of X and B. Biclustering is in general NP-hard (Peeters, 2003). The Spike-

and-Slab Lasso prior ameliorates such computational difficulties as it uses a continuous

relaxation of bicluster membership. This continuous relaxation corresponds to assigning a

probability, instead of a binary indicator, to whether each sample or feature is in a particular

bicluster.

We note that the factorization (3.4) is similar to the singular value decomposition (SVD)

of Y. However, the SVD assumption forces the columns of X and B to be orthogonal, a

requirement which is relaxed here, as is done in factor analysis more generally. A benefit of

not requiring orthogonality is that it allows for biclusters to overlap, enabling samples and
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features to belong to more than one bicluster. Further, samples and features do not have

to belong to any biclusters.

A potential issue with not requiring orthogonality is that the model (3.4) is not identifiable

up to rotation: that is, XBT = (PX)(PB)T for any rotation matrix P. However, by

seeking a sparse factorization of Y, the space of rotation matrices is restricted, placing a

“soft constraint” on identifiability.

3.1.2. Related Work

There have been a number of biclustering methods which utilize the same factor analysis

model as (3.4) and adopt sparsity-inducing priors for the factor and loading matrices. The

first method to do so was Factor Analysis for Bicluster Acquisition (FABIA, Hochreiter

et al., 2010) who placed single Laplace priors on both xk and βk. However, the posterior

resulting from Laplacian priors does not place enough mass on sparse solutions in variable

selection problems (Castillo et al., 2015). This is because such a single Laplace prior has

one variance parameter and so cannot both shrink negligible values to zero and maintain

the larger signal. As a result, the estimates of X and B from FABIA are not sparse; the au-

thors recommend a heuristic thresholding rule to then determine bicluster membership. In

contrast, the Spike-and-Slab Lasso performs selective shrinkage on the latent variables; in-

deed the Spike-and-Slab Lasso concentrates at the optimal rate for sparse models (Ročková,

2018). Further, our method gives an indicator of bicluster membership, precluding the need

for an arbitrary thresholding strategy. Finally, FABIA does not automatically select the

number of biclusters.

Gao et al. (2016) also begin with the model (3.4) for their method BicMix. They allow

for the components xk and βk to be either sparse, or dense to account for potential con-

founders. To achieve strong regularization on the sparse components, the authors utilize

a three parameter beta distribution (Armagan et al., 2011), a generalization of the horse-

shoe prior (Carvalho et al., 2010). Whilst this dichotomous framework may be appropriate
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for applications such as genomics, in other applications it may be more appropriate to al-

low for a continuum of sparsity levels. Such a continuum is achieved in our model as the

Spike-and-Slab Lasso prior is indexed by a continuous parameter which controls the propor-

tion of non-zero values in each bicluster. Further, the Spike-and-Slab Lasso automatically

thresholds negligible values to zero; such thresholding does not occur automatically for the

horseshoe prior and generalizations thereof. Gao et al. (2016) also allow for the number

of biclusters, K, to be unknown by starting with an overestimate of K, imposing strong

regularization on X and B, and then removing zero columns. This strategy is similar to to

our Bayesian nonparametric strategy; the difference is that the IBP prior which we utilize

increases the strength of the regularization of X and B as a function of the column number

k, as opposed to BicMix which applies the same regularization to each column.

Recently, Denitto et al. (2017) proposed the similarly named method “Spike and Slab Bi-

clustering”. Despite this likeness, there are a number of differences between our methods.

Firstly, Denitto et al. (2017) utilize Gaussians distributions for their spike and slab priors,

whereas we use Laplacian priors. In Bayesian variable selection, the slab distribution re-

quires tails at least as heavy as the Laplace for optimal posterior concentration (Castillo

and van der Vaart, 2012). In addition, Denitto et al. (2017) do not allow for the number of

biclusters to be unknown.

Xu et al. (2013) proposed a Bayesian biclustering method for count data. To choose the

number of biclusters, they implemented a Bayesian non-parametric strategy with Polya-urn

priors on the clusters. However, unlike SSLB, their method does not allow for biclusters

to overlap. Additionally, they utilize an Markov Chain Monte Carlo (MCMC) strategy

to obtain posterior estimates whilst SSLB is implemented by a deterministic optimization

algorithm.
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3.2. Model

We now introduce Spike-and-Slab Lasso Biclustering (SSLB). We adopt the factor analysis

model in (3.4). We first place an inverse gamma prior on the elements of the covariance

matrix, Σ:

σ2
j ∼ IG

(
η
2 ,

ηξ
2

)
. (3.5)

To allow for uncertainty in the number of biclusters, K, we initialize the factor and loading

matrices with an overestimate, K∗. The IBP prior discourages biclusters with negligible

signal from entering consideration, and so the estimated factor and loading matrices will

contain columns of all zeroes, provided K∗ is a true overestimate. After removing these

zero columns, the number of remaining columns is the estimated number of biclusters.

We also restrict X and B to be matrices with at least two non-zero entries per column

(Fruehwirth-Schnatter and Lopes, 2018; Ročková and George, 2016). This is because a

singleton column in either X or B will be unidentifiable with regard to the noise matrix Σ

in the marginal covariance of Y (after marginalizing over either B or X, respectively).

3.2.1. Hierarchical structure for loadings B

For each column βk, we have a Spike-and-Slab Lasso prior. That is, each βjk is drawn a

priori from either a Laplacian “spike” parameterized by λ0 and is consequently negligible,

or a Laplacian “slab” parameterized by λ1 and thus can be large:

π(βjk|γjk, λ0, λ1) = (1− γjk)ψ(βjk|λ0) + γjkψ(βjk|λ1), 1 ≤ j ≤ G, 1 ≤ k ≤ K∗, (3.6)

where the Laplace density is denoted by ψ(β|λ) = λ
2 e
−λ|β| and γjk is a binary indicator

variable. Here, γjk = 1 if feature j is active in bicluster k, and γjk = 0 if feature j has a

negligible contribution to bicluster k. We allow for uncertainty in bicluster membership by
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using the common Beta-Bernoulli prior for the latent indicators:

γjk|θk ∼ Bernoulli(θk),

θk ∼ Beta(a, b). (3.7)

It is important to emphasize here the “sparsity-indexing” parameter θk. Due to the Beta-

Bernoulli prior, it has a natural interpretation as the percentage of non-zero elements in the

column βk. By allowing θk to vary continuously, the method can adapt to differing levels

of sparsity in each of the different columns of B = [β1, . . . ,βK ].

Here, we can use a finite approximation to the IBP by setting the hyperparameters of the

Beta prior in (3.7) to: a ∝ 1/K∗, b = 1. This ensures that in the limit as K∗ → ∞, this

prior is the IBP. While this is the default choice for these hyperparameters, we note that

they can be easily tailored to the problem at hand. For instance, a choice of a = 1/G,

b = 1/G will result in the prior mass concentrating around θ = 0 and θ = 1, which may be

preferred when both very dense and very sparse biclusters are expected.

3.2.2. Hierarchical structure for factors X

To find biclusters, we also want sparsity in the columns of X. To this end, we place a

Spike-and-Slab Lasso prior on each xik. However, we require an alternate formulation of

the Spike-and-Slab Lasso prior to Section 3.2.1 for the xik in order to yield a tractable

EM algorithm. This is accomplished by introducing auxiliary variables {τik}N,K
∗

i,k=1 for the

variance of each xik:

xik|τik ∼ N (0, τik) 1 ≤ i ≤ N, 1 ≤ k ≤ K∗. (3.8)

Then, the τik are each assigned a mixture of exponentials prior, where τik is drawn a priori

from either an exponential “spike” parameterized by λ̃2
0 and consequently is small, or from
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an exponential “slab” parameterized by λ̃2
1 and hence can be large:

π(τik|γ̃ik) = γ̃ik
λ̃2

1

2
e−λ̃

2
1τik/2 + (1− γ̃ik)

λ̃2
0

2
e−λ̃

2
0τik/2 (3.9)

where γ̃ik is a binary indicator variable. This augmentation strategy uses the fact that the

Laplace distribution can be represented as a scale mixture of a normal with an exponential

mixing density; marginalizing over the τik yields the usual Spike-and-Slab Lasso prior in

(3.6).

We place independent Bernoulli priors on each of the γ̃ik binary indicators. Similarly as

before, γ̃ik = 1 if sample i is active in bicluster k, and γ̃ik = 0 if sample i has a negligible

contribution to bicluster k. The Bernoulli priors are parameterized by the “sparsity index-

ing” parameters θ̃k. Instead of placing a Beta prior on the θ̃k as for the hierarchical model

for the loadings B, we use an Indian Buffet Process prior with an optional Pitman-Yor

extension. This is achieved using the stick-breaking construction of Teh et al. (2007):

γ̃ik ∼ Bernoulli(θ̃(k)),

θ̃(k) =
k∏
l=1

ν(l),

ν(k) ∼ Beta(α̃+ kd, 1− d), where d ∈ [0, 1), α̃ > −d. (3.10)

When d = 0, the above formulation is the usual IBP prior. When 0 < d < 1, the ordered

sparsity weights, θ̃(k), decrease in expectation as a O(k−1/d) power-law (Teh et al., 2007).

This may be useful in applications where there are expected to be more, but smaller,

biclusters.

We note that we only utilize this stick-breaking formulation of the IBP prior for the sparsity

weights for the factors, X, and not the loadings, B. This is because this formulation requires

ordering the columns of X from most dense to least dense. There is no reason to assume

that the bicluster with the largest number of samples (i.e. non-zero xik) would also have the
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largest number of features (i.e. non-zero βjk). That is, the most dense column of X should

not be forced to line up with the most dense column of B, which would be the case if we

used a similar stick-breaking construction for the priors of B.

In the simulation studies in Section 3.3, we will also consider the finite approximation to

the IBP for comparison. Similarly as for the loadings B, this formulation has a Beta prior

on the sparsity weights, θ̃k ∼ Beta(ã, b̃) with ã ∝ 1/K∗ and b̃ = 1.

Finally, we use the notation T = {τik}N,K
∗

i,k=1 ∈ RN×K∗
, Γ̃ = {γ̃ik}N,K

∗

i,k=1 and

Di = diag{τ−1
i1 , . . . , τ−1

iK∗}.

3.2.3. Implementation

We develop an EM algorithm with a variational step to quickly target modes of the pos-

terior. In the E-Step, we compute the expectation of the factors X and factor indicators

Γ̃, conditional on the data and current values of the rest of the parameters. This step is

rendered tractable by the augmentation strategy outlined in Section 3.2.2. In the M-Step,

we marginalize over the loading indicators, Γ, and use a coordinate ascent strategy to find

the modes of B (Ročková and George, 2018). For this algorithm, we also use the variance

updates detailed by Moran et al. (2018). To maximize the parameters of the IBP prior,

we implement a variational step with closed form updates inspired by Doshi et al. (2009).

Further details of the algorithm are given in Section 3.7.1 of the Appendix.

We adopt a dynamic posterior exploration strategy for finding the modes of B (Ročková

and George, 2018). Specifically, we hold the slab parameters λ1 fixed and then gradually

increase the spike parameter λ0 along a “ladder” of values, propagating the solutions forward

as “warm starts” for the next largest spike values in the ladder. As outlined by Ročková

and George (2018), holding the slab parameter fixed serves to stabilize the large coefficients;

this is in contrast to the Lasso, which shrinks the larger coefficients along with the small.

Meanwhile, gradually increasing λ0 over a ladder of values progressively thresholds negligible

coefficients to zero.
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For the factor matrix, X, we modify this strategy slightly. As we are calculating the

conditional mean of X, values of xik that were previously zero may re-enter the bicluster

for very large λ̃0. This phenomenon is illustrated in the following simple example: suppose

the true value is xik = 0.005. Then, the contribution of sample i is essentially negligible and

so xik should reasonably “belong” to the spike. However, if spike parameter is λ̃0 = 200,

it is actually unlikely that xik was drawn from the spike distribution; this is because this

λ̃0 corresponds to an extremely small spike variance of 5 × 10−5. This phenomenon is

an example of Lindley’s paradox. Whilst this phenomenon occurs for both B and X, we

estimate the mode of B which does have this problem, unlike the mean. For estimation

of the mean of X, we implement a stopping rule for λ̃0. We have found that an effective

data-driven strategy is to “freeze” λ̃0 at the value at which X is the most sparse, whilst

continuing to increase λ0 (the spike parameter for B). To conclude the discussion on the

dynamic posterior exploration strategy, we note that we increase λ0 and λ̃0 concurrently

(up until the point where λ̃0 is fixed).

We also implement a re-scaling step for the columns of X and B. Whilst sparsity-inducing

priors mitigate to some extent the identifiability problems of the likelihood in regard to

rotation, the scale of the columns of the factor and loadings matrices remains unidentifi-

able. That is, xkβkT is equivalent to (c−1
k xk)(ckβ

k)T for any constant ck ∈ R. The focus of

biclustering, however, is to find the non-zero elements of these matrices; it is the covarying

subsets that are of interest, and not their magnitude. As the scale is not of particular inter-

est, we re-scale X and B at each step of the EM algorithm to ensure that the corresponding

columns have the same norm. That is, for each k = 1, . . . ,K, we set

ck ←

√
‖xk‖1
‖βk‖1

, xk ← 1

ck
xk, βk ← ckβ

k. (3.11)

The re-scaling step is also important to ensure that the default choices of regularization

parameters λ0, λ̃0 are appropriate; if X and B have vastly different scales, then one matrix

may be over-thresholded whilst the other is under-thresholded.
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A benefit of SSLB is that the binary variables γjk and γ̃ik indicate whether feature j and

sample i, respectively, are active in bicluster k. To find the modes of B, we marginalize over

the {γjk}G,K
∗

j,k=1 and so bicluster membership is determined simply from the support of B.

As the Spike-and-Slab Lasso prior automatically thresholds small values to zero, no further

thresholding is required for B. For the factors X, we instead use the posterior mean of γ̃ik

(calculated in the E-Step) to determine bicluster membership. Specifically, we implement

the following thresholding rule after convergence of the SSLB algorithm:

x̂ik =


x̂ik if E[γ̃ik|Y,T∗, θ̃

∗
] > 0.5, 1 ≤ i ≤ N, 1 ≤ k ≤ K∗

0 if E[γ̃ik|Y,T∗, θ̃
∗
] ≤ 0.5,

(3.12)

where T∗ and θ̃
∗

are the solutions obtained after convergence of the EM algorithm. That

is, if the posterior probability of xik belonging to the “spike” is greater than 0.5, it is

thresholded to zero.

The complexity of the SSLB algorithm is O(NK∗3+GK∗), assuming that the initial number

of biclusters, K∗, is less than both the number of samples, N , and the number of features,

G. The first term comes from the E-Step for X, where the K∗ × K∗ matrix Vi needs

to be inverted for i = 1, . . . , N . The second term comes from the M-Step for B, where

the coordinate ascent algorithm has complexity K∗ and is applied to each of the G rows.

However, the E-Step and M-Step are trivially parallelizable across the samples and features,

respectively. Such a parallelization would yield an improved complexity of O(K∗3).

3.2.4. Connection to PX-EM

We pause for a moment to discuss the connections between our model for X (3.8) and

parameter-expansion (PX-EM) methods for factor analysis (Liu et al., 1998; Ročková and

George, 2016). The usual factor analysis framework generally takes a standard normal prior

for the factors xi ∼ N(0, I). The PX-EM strategy is to add an auxiliary variance parameter

to this prior to aid in navigating the posterior. For example, Ročková and George (2016)
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take xi ∼ N(0,A) with π(A) ∝ 1 to yield an algorithm which rotates to regions of the

posterior where B is sparse. In (3.8), we also place a more structured prior on the factors

to help guide the search for doubly-sparse factorizations of Y. A major difference between

our approaches, however, is that PX-EM strategies implement the E-Step with respect to

the standard normal prior (Ročková and George, 2016). Our E-Step is with respect to the

augmented prior (3.8) as we want to retain the prior sparsity constraint for X.

3.2.5. Default Settings

The default hyper-parameters settings are as follows. For both the loadings and the factors,

B and X, the slab parameters are set to λ1, λ̃1 = 1 and the increasing ladder of spike pa-

rameters are set to λ0, λ̃0 ∈ {1, 5, 10, 50, 100, 500, 1000, 10000, 100000, 1000000, 10000000}.

Note, however, that λ̃0 is halted at a data-driven value as described earlier in this section.

To determine the hyper-parameters of the variances, {σj}Gj=1, we use an informal empirical

Bayes strategy, motivated by Chipman et al. (2010). We denote the sample variances of the

columns of the data matrix, Y, by {s2
j}Gj=1. Then, the intuition for our strategy is as follows:

if we assume that most biclusters are sparse, then small values of the s2
j are essentially “pure

noise” and contain no signal. Hence, the prior for the error variances should be centered

around a small value of s2
j . In addition, we recommend using a small value of the degrees

of freedom parameter, η, to allow for larger prior uncertainty. As a default, we take η = 3.

More specifically, we calculate the 5% quantile of the s2
j and find the value of ξ such that

this 5% quantile is the median of the prior distribution.

We initialize the parameters of SSLB as follows. Each entry of B is generated independently

from a standard normal distribution. The entries of T, the matrix of auxiliary variance

parameters, are set to 100, representing an initial relatively non-informative prior on X.

The sparsity weights, θk, are initialized at 0.5. The IBP parameters, ν, are generated

independently from a Beta(1, 1) distribution and then ordered from largest to smallest.

For the initialization of K, we recommend K∗ = 50. If SSLB does not remove any biclusters,
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we recommend running SSLB again with a larger initial K until SSLB finds fewer biclusters

than the initial number.

3.3. Simulation Studies

In this section, we compare the performance of SSLB to the methods of BicMix and FABIA

(outlined in Section 4.3) in two simulation settings. Similarly to Gao et al. (2016), the

simulation studies we present illustrate the performance of our method on settings with

different levels of sparsity in the biclusters. Specifically, the first simulation study considers

matrices with only sparse biclusters while the second simulation study considers both sparse

and dense biclusters.

3.3.1. Simulation 1

We first consider a simulated example with N = 300, G = 1000 and K = 15 biclusters. The

data was simulated using settings very similar to the FABIA paper (Hochreiter et al., 2010).

Specifically, the data matrix Y was generated as XBT + E, where each entry of the noise

matrix E is sampled from an independent standard normal distribution. For each column

xk, we draw the number of samples in bicluster k uniformly from {5, . . . , 20}. The indices

of these elements were randomly selected and then assigned a value from N(±2, 1), with

the sign of the mean chosen randomly. The elements of xk not in the bicluster had values

drawn from N(0, 0.22). The columns βk were generated similarly, except the number of

elements each bicluster was drawn from {10, . . . , 50}. We allow biclusters to share at most

five samples and at least fifteen features. For both SSLB and BicMix, we set the initial

overestimate of the number of biclusters to be K∗ = 30. For FABIA, we set the number of

biclusters to the truth, K = 15.

For each of the methods, we recorded the following metrics: (i) relevance and recovery

(Prelić et al., 2006); and (ii) consensus (Hochreiter et al., 2010) (see Section 3.7.2 of the

Appendix for precise definitions). Relevance measures how similar on average the biclusters

found by a method are to the true biclusters (where similarity is defined by the Jaccard
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index). Recovery instead measures how similar the true biclusters are to the found biclusters

on average. However, if many duplicated biclusters are found by a method, this will not

be reflected in either the relevance or recovery scores. To provide a meaningful metric in

such circumstances, Hochreiter et al. (2010) developed the consensus score. The consensus

score is similar to the recovery score, but penalizes overestimation of the true number of

biclusters.

In this simulation study, we compared three implementations of Spike-and-Slab Lasso Bi-

clustering: (i) SSLB with the Pitman-Yor extension where α̃ = 1 and d = 0.5 (SSLB-PY);

(ii) SSLB with the stick-breaking IBP prior for the factors where α̃ = 1 (SSLB-IBP), and

(iii) SSLB with the finite approximation to the IBP prior (i.e. Beta-Binomial) for the fac-

tors where ã = 1/K∗ and b̃ = 1 (SSLB-BB). For each implementation, we used the default

settings as outlined in Section 3.2.5. For the loadings matrix, B, we set the Beta-Binomial

hyperparameters to be a = 1/K∗, b = 1.

BicMix1 was implemented using the default parameters. Following Gao et al. (2016), we

thresholded values less than 10−10. We also considered the “best-thresholded” solution of

BicMix (referred to as BicMix*); this is the thresholded solution of BicMix that attains

the highest consensus score over a grid of 100 threshold values, equally spaced in [0.1, 5].

FABIA was implemented using the fabia R package (Hochreiter et al., 2010) with the

default parameters and recommended post-processing thresholding step. We additionally

consider the “best thresholded” solution for FABIA (referred to as FABIA*); this is obtained

similarly to BicMix*.

For 50 realizations of the simulated data, we ran each method and calculated their consensus

score (Figure 5a), and relevance and recovery scores (Figure 5b). All implementations of

SSLB have higher consensus, relevance and recovery scores than the other methods. We

display only FABIA*, as even the best-thresholded solution of FABIA is not competitive

with SSLB in this simulation study, even when FABIA is initialized with the true number of

1Code obtained from beehive.cs.princetone.edu/software
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Figure 5: (a) Boxplots of the consensus scores for Simulation 1. (b) Relevance versus
recovery scores for Simulation 1. (c) Boxplots of the consensus scores for Simulation 2.
(d) Relevance versus recovery scores for Simulation 2. BicMix* and FABIA* refer to the
best-thresholded solutions of BicMix and FABIA, respectively.
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(d)

biclusters. The lower scores of BicMix are due to small values not being thresholded exactly

to zero by the three-parameter beta prior. This can be seen as the best-thresholded version,

BicMix*, achieves consensus scores with a slightly lower median than the nonparametric

implementations of SSLB, albeit with a higher variance in scores. We emphasize, however,

that BicMix* requires oracular knowledge of the true bicluster structure, which is of course

not known in practice. In contrast, SSLB achieves high scores on all metrics without the

need for a post-processing thresholding step.

Table 2 displays the estimated number of biclusters, K̂, from SSLB and BicMix. Both

the IBP and Pitman-Yor implementations of SSLB are centered at the truth. We can

see empirically the benefit of using the stick-breaking construction for the IBP prior here;

the SSLB-BB formulation with the finite IBP approximation slightly overestimates the
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true number of biclusters. Meanwhile, BicMix slightly underestimates the true number of

biclusters.

K̂

Method Simulation 1 Simulation 2

Truth 15 9

SSLB (IBP) 15.0 (0.09) 9.9 (0.14)

SSL (PY) 15.0 (0.09) 10.1 (0.15)

SSLB (BB) 16.4 (0.24) 10.3 (0.14)

BicMix 14.5 (0.18) 8.7 (0.10)

BicMix* 14.5 (0.18) 8.7 (0.10)

Table 2: Mean estimated number of biclusters, K, over 50 replications. Standard errors are
shown in parentheses. BicMix* refers to the “best-thresholded” solution of BicMix.

3.3.2. Simulation 2

We now assess how well SSLB can find both sparse and dense biclusters with a simulation

study inspired by that of Gao et al. (2016). We again take N = 300, G = 1000 and K = 15.

For both the factor and loading matrices, five columns are dense and ten columns are sparse.

The sparse columns (corresponding to sparse biclusters) are generated as Simulation 1. The

dense columns (corresponding to dense biclusters) are generated as independent N(0, 22).

We allow for one dense column in X to correspond to a sparse column in B and vice versa;

this results in K = 9 biclusters which are sparse in both X and B.

The goal for this simulation study is to recover the sparse biclusters while removing the effect

of the dense biclusters, which are acting as confounders. As such, we calculate the recovery,

relevance and consensus scores for the sparse biclusters found by each of the methods only.

For SSLB, we determine a “sparse” bicluster to be one where both columns xk and βk have

less than 50% of values being non-zero. BicMix provides a binary indicator for whether

xk and βk are sparse or dense; we kept BicMix biclusters for which both xk and βk were

sparse. Before running the FABIA algorithm, we removed the first six principal components

of Y. Without this adjustment, FABIA performs extremely poorly as it is unable to adapt
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to differing levels of sparsity in the biclusters. In a similar simulation study, Gao et al.

(2016) also considered this adjusted version of FABIA for a more fair comparison. As we

already removed the dense biclusters, we then considered all biclusters found by FABIA as

“sparse” for the purposes of computing the recovery, relevance and consensus scores.

For 50 replications of the data, we calculated the consensus scores for each method (Figure

5c) and the relevance and recovery scores (Figure 5d). Here, the best-thresholded version

of BicMix (BicMix*) has slightly higher consensus scores than the SSLB implementations.

Again, we emphasize that BicMix* is a thresholded solution which uses knowledge of the

true bicluster membership. The slightly lower consensus scores of SSLB are a result of

SSLB overestimating the number of biclusters by one (Table 2). However, this additional

bicluster that SSLB finds is not spurious; it is the bicluster where the true xk is sparse and

βk is dense. In SSLB, the estimated βk is not completely dense and so is included in the

count.

3.4. Breast Cancer Microarray Dataset

We now assess the performance of SSLB on a benchmark gene expression microarray dataset.

The dataset2 consists of the expression levels G = 24, 158 genes from the breast cancer

tumors of N = 337 patients with stage I or II breast cancer (Van De Vijver et al., 2002;

Van’t Veer et al., 2002). Gao et al. (2016) also used this dataset to illustrate the performance

of their biclustering method, BicMix. We followed a similar data processing pipeline to Gao

et al. (2016) (details in Section 3.7.3). However, unlike Gao et al. (2016), we did not project

the quantiles of the expression levels to a standard normal. We chose not to do so to assess

the ability of SSLB to capture biological signal in the presence of possible confounders.

Removing of unwanted variation via matrix factorization (specifically, via singular value

decomposition) has been shown to be an effective technique by previous authors (Leek and

Storey, 2007), albeit not in the context of biclustering.

2Data sourced from R package breastCancerNKI (Schroeder et al., 2011)
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Figure 6: Left: Clinical Estrogen Receptor (ER) status (Blue = ER-, Red = ER+). Middle:
SSLB factor matrix where each row corresponds to a patient and each column corresponds
to a bicluster. A patient belongs to a bicluster if they have a non-zero value in that column.
Rows are ordered by clinical ER status; within ER status, rows are ordered by factor values
in biclusters 1 and 2. Only the first 10 biclusters (ordered by size) are shown for improved
visualization; full factor matrix is displayed in Section 3.7.4. Right: normalized submatrix
of gene expression values where rows correspond to all samples (ordered by ER status)
and columns correspond to genes in Bicluster 1 (re-ordered according to their loadings in
Bicluster 1). Expression values with magnitude greater than 0.25 have had magnitude set
to 0.25 for improved visualization.

We ran SSLB-IBP with the initial number of biclusters set to K∗ = 50. We set the Beta-

Binomial hyperparameters to a = 1/(GK∗) and b = 1, and the IBP hyperparameter to

α̃ = 1/N . For the remaining parameters, we use the default settings outlined in Section

3.2.5. SSLB-IBP found K̂ = 30 biclusters (Figure 6).

3.4.1. SSLB identifies subtypes of breast cancer

Breast cancers can be broadly grouped into subtypes based on the expression levels of two

genes: ESR1, which encodes an estrogen receptor (ER), and ERBB2, which encodes the hu-

man epidermal growth factor receptor 2 (HER2) (Horta and Campello, 2014). A patient is

deemed ER-positive (-negative) if they have relatively high (low) expression levels of ESR1.

HER2 status is similarly defined by the expression of ERBB2. The expression levels of these

genes determine four subtypes of breast cancer: (i) ER+/HER2+, (ii) ER+/HER2-, (iii)

ER-/HER2+ and (iv) ER-/HER2-. These subtypes have been shown to be valuable prog-
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nostic indicators and are used to determine the treatment protocol for patients (Horta and

Campello, 2014). The clinical ER status of patients (determined by immunohistochemical

staining, not gene expression levels) was provided with the dataset and so can provide a

measure of validation for the biclusters that SSLB found. The HER2 status of patients was

not recorded, however.

SSLB found four biclusters with significantly different means in the factors between the clin-

ically ER-negative and ER-positive patients3. The patients with negative factors in SSLB

bicluster 1 are almost all patients whose clinical status was recorded as ER-negative (Figure

6). We then investigated the genes in this bicluster and found ESR1, the gene encoding an

estrogen receptor, was down-regulated for these patients. There are five patients with clini-

cal ER-positive status who were in the ER-negative bicluster found by SSLB. However, the

down-regulation of the ESR1 gene in this patients suggests that the original clinical charac-

terization was a misclassification. In the original paper analyzing this data, Van De Vijver

et al. (2002) also found five patients had a discrepancy between their clinical ER-status and

gene expression determined ER status, concluding that the latter classification was correct.

The gene ERBB2 is present in SSLB biclusters 1 and 2. In both biclusters, ERBB2 is up-

regulated for patients with positive factors and down-regulated for patients with negative

factors. For patients with negative bicluster 1 and zero bicluster 2 factors, ESR1 and

ERBB2 are both down-regulated, indicating ER-/HER2- status. Meanwhile, patients with

negative bicluster 1 and positive bicluster 2 factors are likely ER-/HER2+. Turning to the

ER-positive patients (with zero bicluster 1 values), those with positive bicluster 2 values are

potentially ER+/HER2+. Finally, ER-positive patients with negative bicluster 2 factors

are likely ER+/HER2-. We note that a number of patients are in neither bicluster 1 or 2;

we hypothesize that these patients are also ER+/HER2- as this is the most common breast

cancer subtype (Onitilo et al., 2009). The proportions of patients in each subtype found by

SSLB matches fairly well with reported subtype proportions in the literature (Table 3).

3Biclusters 1, 2, 5 and 22 had p-values, 6.1 × 10−50, 2.2 × 10−9, 1.0 × 10−5 and 7.2 × 10−6, respectively,
from a Wilcoxon rank-sum test with Bonferroni significance level 0.01/K̂
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ER+/HER2+ ER+/HER2- ER-/HER2+ ER-/HER2-

Onitilo et al. (2009) 10.2% 68.9% 7.5% 13.4%

SSLB 7.7% 70.3% 8.9% 13.1%

Table 3: Proportion of breast cancer patients in each of the subtypes determined by ER
and HER2 status from (i) the study of Onitilo et al. (2009); and (ii) SSLB.

After determining these groups, we then investigated whether genes known to play a role

in these subtypes were present in the biclusters. In particular, genes considered to be

indicators (or markers) of ER+ status are KRT8, GATA-3, XBP-1, FOXA1 and ADH1B

(Zhang et al., 2014). Four of these five marker genes were down-regulated in bicluster 1, and

consequently were relatively over-expressed for the ER+ patients (p-value 0.002, Fisher’s

exact test). The gene GRB7 is located adjacent to the ERBB2 (HER2) gene and as such is

often co-expressed with ERBB2; we indeed found that GRB7 was up-regulated in bicluster

2 (as well as down-regulated for the HER2- patients in bicluster 1).

3.4.2. Gene Ontology Enrichment Analysis

We next conducted gene ontology enrichment analysis on the genes found by SSLB using

the R package clusterProfiler (Yu et al., 2012). This software conducts an overrep-

resentation test to determine whether genes which coordinate the same biological process

are significantly co-occuring. If a subset of genes is found to be overrepresented in a set,

the set is said to be “enriched” for the biological process in which those genes are active.

With a false discovery rate (FDR) threshold of 0.05, we found that the genes which were

up-regulated in SSLB bicluster 1 (corresponding to the ER-negative patients) were enriched

for 124 biological processes. Many of these were related to cell proliferation, including the

G1/S transition of mitotic cell cycle. As cancer is fundamentally the un-regulated growth of

cells, such proliferation signatures are commonly found in tumor samples (Whitfield et al.,

2006). Another biological process for which the ER-negative bicluster is enriched is: re-

sponse to leukemia inhibitory factor. Leukemia inhibitory factor has actually been shown

to stimulate cell proliferation in breast cancer (Kellokumpu-Lehtinen et al., 1996). An en-
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richment map summarizing the most statistically significant processes is displayed in Figure

12a (Section 3.7.4 of the Appendix).

The genes up-regulated in the HER2+ patients in SSLB bicluster 2 were enriched for 495

biological processes (again with FDR threshold of 0.05). The enrichment map summarizing

these processes is displayed in Figure 12b (Section 3.7.4 of the Appendix). In particular,

these genes were enriched for the Wnt signaling pathway, the over-expression of which

has been implicated in the development of cancer (Zhan et al., 2017). Further, stem cell

proliferation was enriched in this bicluster; stem cells have been implicated as possible

originators of tumors, and may in some cases potentially drive tumorigenesis (Reya et al.,

2001).

Overall, 86.6% of the biclusters found by SSLB were enriched for biological processes. Fur-

ther investigation of the remaining biclusters and their potential clinical utility may be

interesting future work.

3.4.3. Comparison with BicMix and FABIA

We ran BicMix on this data using the default settings; however, BicMix found zero biclus-

ters. This is in contrast to the results of (Gao et al., 2016) on this dataset: the difference

here is because we did not use quantile normalization, unlike Gao et al. (2016) who projected

the quantiles of the gene expression levels to the standard normal distribution.

We ran FABIA on this dataset using the default settings for two different bicluster initial-

izations: (i) K = 10 and (ii) K = 50, as FABIA does not automatically select the number

of biclusters (Figure 7). In the K = 10 setting, FABIA found five biclusters that had a sig-

nificantly different mean between ER+ and ER- patients (p-values 3.9× 10−24, 2.5× 10−12,

9.2 × 10−10, 4.8 × 10−8, 1.7 × 10−7 from Wilcoxon rank-sum test with Bonferroni signifi-

cance level 0.01/10). Unlike SSLB, however, FABIA does not find a bicluster with almost

exclusively ER-negative patients.
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ER FABIA Factor Matrix (K = 10) FABIA Factor Matrix (K = 50)

Figure 7: Left: Clinical Estrogen Receptor (ER) status (Blue = ER-, Red = ER+). Middle:
FABIA factor matrix (initial K∗ = 10) with rows ordered by clinical ER status. Right:
FABIA factor matrix (initial K∗ = 50) with rows ordered by clinical ER status.

In the K = 50 setting, FABIA found three biclusters that had a significantly different mean

between ER+ and ER- patients (p-values 2.3× 10−5, 5.7× 10−5, 2.0× 10−4 from Wilcoxon

rank-sum test with Bonferroni significance level 0.01/50). We can see that with a larger

number of initial biclusters, the ER signal is diluted across multiple biclusters. As a result,

the conclusions of FABIA seem to be highly dependent on the initial number of biclusters.

Further, for this larger value of K, FABIA also does not find a bicluster consisting of almost

exclusively ER-negative patients. In contrast, SSLB was initialized with 50 biclusters and

then determined K̂ = 30 biclusters were sufficient, and found a bicluster consisting of almost

all ER-negative patients (apart from the five patients whose clinical measurement was most

likely misclassified).

3.5. Mouse Cortex and Hippocampus scRNA-seq Dataset

For our second application, we assess the performance of SSLB on the data of Zeisel et al.

(2015) (hereafter referred to as Z15). Z15 used single-cell RNA-sequencing (scRNA-seq) to

obtain counts of RNA molecules in 3005 cells from the mouse somatosensory cortex and

hippocampal CA1 region. The goal of the study was to characterize the different cell types in
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mouse brains by using the cell-specific RNA expression levels, or transcription profiles. For

this purpose, Z15 developed a biclustering algorithm called BackSPIN which identified nine

major types of cells in the mouse brain based on their transcription profiles: (i) interneurons;

(ii) S1 pyramidal neurons; (iii) CA1 pyramidal neurons; (iv) oligodendrocytes; (v) microglia

cells; (vi) endothelial cells; (vii) astrocytes; (viii) ependymal cells; and (ix) mural cells. By

repeatedly applying BackSPIN on these biclusters, Z15 found a further 47 subclasses of

cells. Here, we apply SSLB to the same dataset. A benefit of SSLB is that it can find

classes and subclasses simultaneously without having to iteratively re-apply the method.

The scRNA-seq dataset made available by Z15 consists of RNA molecule counts for 19,972

genes in 3005 individual cells4. Following these authors, we (i) removed genes with less than

25 molecules in total over all cells; (ii) removed genes that were not correlated with more

than 5 other genes; and (iii) retained the top 5000 most biologically variable genes. Further

details of these processing steps are given in Section 3.7.5 of the Appendix. Although

more sophisticated methods for removing technical variability in scRNA-seq data have been

developed in recent years (for example, Huang et al., 2018), we follow the steps of Z15 to

enable a direct comparison of our biclustering results.

After processing the data, the subset we used for biclustering is a matrix containing the

RNA counts of G = 5000 genes in N = 3005 individual cells. We note that as a matrix of

counts, this data is perhaps best modeled by a Poisson distribution, instead of assuming

normally distributed residuals as in SSLB. However, Poisson-distributed data with a large

rate parameter is approximately normal. As we are considering the most variable genes

(with high RNA molecule counts), such a normal approximation is not too unreasonable.

Despite this, there are still a high proportion of zero entries in the matrix and so this

application may be seen as a test of the robustness of SSLB to model misspecification. We

ran SSLB-IBP with the initial number of biclusters set to K∗ = 100. We set the Beta-

Binomial hyperparameters to a = 1/(GK∗) and b = 1, and the IBP hyperparameter to

4http://linnarssonlab.org/cortex
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α̃ = 1/N . For the remaining parameters, we use the default settings outlined in Section

3.2.5. SSLB returned K̂ = 95 biclusters.

Figure 8: Zeisel dataset: SSLB results
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(a) Left: Cell types found by Z15. Middle: Cell subtypes found by Z15. The rows colored
black were not assigned a subtype by Z15. Right: SSLB factor matrix with rows ordered
to correspond to the Z15 cell types. Each row corresponds to a cell and each column
corresponds to a bicluster. A cell belongs to a bicluster if they have a non-zero value in
the bicluster (column). Factor values have been capped for improved visualization.
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(b) “Zoom in” on S1 Pyramidal cells with subtypes annotated by Z15. Top: subtypes of S1
Pyramidal cells. Bottom: Column 10 of the SSLB factor matrix, corresponding to the cells
in bicluster 10. SSLB groups a subset of the uncategorized “(none)” cells as of the S1PyrL23
subtype. (Colors have been modified from Figure 8a for improved visualization.)
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3.5.1. SSLB recovers major cells types

SSLB recovered the nine major cell classes identified by Z15, finding a specific bicluster

for each class except for the microglia class, which SSLB split into two biclusters (Figure

8a). For each class, Z15 also identified one or two potential marker genes; that is, a gene

that is almost exclusively expressed in that cell class. Encouragingly, the SSLB biclusters

corresponding to the major cell classes all contained the associated marker gene for that

cell class. More specifically:

• The interneuron gene marker Pnoc was found in three SSLB biclusters, one corre-

sponding to the major interneuron cell class and the others to subclasses of interneu-

rons.

• The S1 pyramidal neuron marker genes Gm11549 and Tbr1 were present in two bi-

clusters, one corresponding to the major S1 pyramidal neuron cell class and the other

to a subclass of S1 pyramidal neurons. Tbr1 was also found in a bicluster containing

cells from four different cell types, a potential false positive.

• The CA1 pyramidal neuron marker Spink8 was found in three biclusters. Two of these

biclusters corresponded to the major CA1 pyramidal neuron cell class and a subclass of

CA1 pyramidal neurons, respectively. The third bicluster contained CA1 pyramidal,

S1 pyramidal and interneuron cells, suggesting that Spink8 may not necessarily be

an exclusive marker for CA1 pyramidal neurons.

• The oligodendrocyte marker Hapln2 was active in three SSLB biclusters, all corre-

sponding to either the major oligodendrocyte cell class or a subclass of oligodendro-

cytes. Interestingly, one of these biclusters contained 17 cells, all oligodendrocytes, but

did not correspond to one of the Z15 identified subclasses; as such, this bicluster may

correspond to a yet-to-be classified subtype of oligodendrocytes. Figure 15 shows the

biological processes that are enriched in this bicluster, which can be broadly grouped

into two categories: (i) processes related to oligodendrocyte-specific functions, includ-

73



ing myelination, and (ii) cell metabolic processes.

• The endothelial cell marker Ly6c1 was found in four SSLB biclusters, two correspond-

ing to the major endothelial group or a subclass. The other two biclusters were mostly

all endothelial cells, but contained some astrocytes and microglia cells also.

• The mural cell marker Acta2 was active in three SSLB biclusters. One bicluster

corresponded to the main mural bicluster and another to a bicluster with almost

all mural cells. The third bicluster contained mostly endothelial cells, with a few

oligodendrocyte, microglia, astrocyte and mural cells, indicating that either Acta2 is

not exclusively expressed in mural cells, or a potential false positive of SSLB.

In addition to the nine main cell types, SSLB found two biclusters (biclusters 1 and 2)

which contained many interneurons, S1 pyramidal neurons and CA1 pyramidal neurons.

This is unsurprising as these cell types are all subsets of neurons, and so we would expect

them to have more similar expression profiles than the other (non-neuronal) brain cells. We

conducted gene ontology enrichment analysis on the genes SSLB found in these biclusters.

With an FDR threshold of 0.05, bicluster 1 was enriched for 154 biological processes, the

majority of which were related to cell metabolic processes and synaptic activity, as may be

expected for neurons (Figure 14a). Bicluster 2 was similarly enriched for processes relating

to synaptic activity, including axonal transport and synaptic signaling (Figure 14b).

The results of SSLB yield a number of observations that may warrant further scientific

investigation. Firstly, while SSLB recovered the major cell types, it grouped together a

number of the 47 sub-categories found by Z15. This was particularly the case for the

interneuron cells, where SSLB found 5 subtypes (Z15 found 16), and the S1 pyramidal

cells, where SSLB found 3 subtypes (Z15 found 12). It may be the case that SSLB has

trouble finding more granular clusters, or potentially there really are fewer cell subtypes

than identified by Z15.

Although SSLB collapsed many of the interneuron and S1 pyramidal subtypes, it found
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many more subtypes of microglia and ependymal cells than Z15. This suggests that there

could be a great deal of heterogeneity in expression levels in these classes of cells, a phe-

nomenon which may prove to be of scientific interest.

There are a number of cells which Z15 did not assign to a subtype (colored in black in Figure

8a). Interestingly, SSLB grouped a number of the previously unclassified S1 pyramidal cells

into the “S1PyrL23” subtype (Figure 8b).

Finally, we conducted gene ontology enrichment analysis5 for all of the biclusters found by

SSLB. In this analysis, 83% of the biclusters identified by SSLB were enriched for at least

one biological process.

3.5.2. Comparison with BicMix and FABIA

We also applied both BicMix and FABIA to the Zeisel dataset. We used the default settings

for both methods with initial number of clusters K∗ = 100. For BicMix, we thresholded

values less than 10−10 as recommended by Gao et al. (2016). For FABIA, we implemented

the recommended post-processing thresholding step (Hochreiter et al., 2010). BicMix found

K̂ = 94 biclusters (Figure 9) while FABIA found K̂ = 99 biclusters (Figure 13 in Section

3.7.6 of the Appendix). BicMix finds many of the smaller subtypes defined by Z15 but

assigns the major cell type signals to dense biclusters. This is a result of the dichotomous

nature of BicMix; it finds either completely dense or very sparse biclusters. In contrast,

SSLB can adapt to the underlying sparsity, allowing it to also estimate such “medium”-

sized biclusters. Meanwhile, FABIA finds many larger biclusters but does not do well

at recovering the more granular cell subtypes. This is due to FABIA having the same

thresholding parameter for each bicluster; it is unable to adapt to the differing levels of

sparsity.

5Using clusterProfiler with FDR threshold of 0.05. We took the 5000 genes obtained after processing
as the “background” genes for the overrepresentation test instead of the original number of 19,972 to avoid
selection bias.
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Figure 9: Factor matrix found by BicMix. On the side of the factor matrix are the cell
types and subtypes found by Z15, respectively. The rows of the factor matrices have been
ordered to correspond to the Zeisel cell types. Factor values have been capped for improved
visualization.

3.6. Conclusion

In this chapter, we introduced a new method for biclustering called Spike-and-Slab Lasso

Biclustering (SSLB). SSLB finds subsets of samples which co-vary on subset of features.

These paired subsets manifest as rank-1 submatrices in the data, referred to as “biclusters”

in this setting. To find these biclusters, SSLB conducts doubly-sparse factor analysis in

which both the loadings and the factors are sparse. To induce this sparsity in the loadings

and factors, SSLB uses the Spike-and-Slab Lasso prior of Ročková and George (2018). This

prior is combined with an Indian Buffet Process prior to automatically choose the number

of biclusters. SSLB utilizes a fast EM algorithm with a variational step to find the modes
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of the posterior. This EM algorithm is rendered tractable by a novel augmentation of the

Spike-and-Slab Lasso prior.

SSLB features a number of benefits over similar biclustering methods. Firstly, the adap-

tivity inherent in the Spike-and-Slab Lasso prior allows for SSLB to find a continuum of

biclusters of different sizes. This is in contrast to other biclustering methods which have

more restrictive assumptions on the sizes of the biclusters. Secondly, the Spike-and-Slab

Lasso prior automatically thresholds negligible bicluster values to zero and so SSLB does

not require a post-processing thresholding step, unlike other biclustering methods.

SSLB out-performs a number of alternative biclustering methods on a variety of simulated

data. On the breast cancer microarray dataset of Van De Vijver et al. (2002); Van’t Veer

et al. (2002), SSLB finds biclusters corresponding to different subtypes of breast cancer.

These biclusters also contained genes which were enriched for a variety of biological processes

related to breast cancer. Finally, we applied SSLB to the mouse cortex and hippocampus

single-cell RNA-sequencing dataset of Zeisel et al. (2015). SSLB recovered all the major cell

classes found by Zeisel et al. (2015) as well as many of the cell subclasses. This performance

was achieved despite the non-Gaussianity of the residual noise in the data, highlighting the

potential robustness of SSLB to model misspecification. However, it would be interesting

to explicitly extend SSLB to non-Gaussian residual noise models in future work.

3.7. Appendix

3.7.1. SSLB Algorithm

In this section, we provide details for the EM algorithm we use to find the modes of the

posterior. Before outlining the EM algorithm, we first marginalize over the binary indicator

variables Γ (associated with the loadings B) to yield the non-separable Spike-and-Slab

Lasso prior (Ročková and George, 2018). For each column βk, the log of this prior (up to
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an additive constant) is:

log π(βk) =
G∑
j=1

−λ1|βjk|+ log[p∗(0; θjk)/p
∗(βjk; θjk)], (3.13)

where p∗(β; θ) = θψ(β|λ1)/[θψ(β|λ1) + (1− θ)ψ(β|λ0)] (3.14)

and θjk = E[θk|βk\j ] where βk\j denotes the vector βk with the jth element removed.

When G is large, βk\j is very similar to βk, so this expectation may be approximated by

E[θk|βk].

We are now in a position to describe the EM algorithm. We find the expectation of X

and factor indicators Γ̃ with respect to the complete log posterior and then maximize the

resultant objective function:

Q(∆) = E
X,Γ̃|∆(t),Y

[
log π(∆,X, Γ̃|Y)

]
, (3.15)

where we have used the notation ∆ = {B,Σ,T,ν} to denote the parameters over which

we will maximize. For convenience, we will use the notation E
X,Γ̃|∆(t),Y

(Z) = 〈Z〉.

Now, due to the separability of the parameters in the posterior, we may write

Q(∆) = Q1(B,Σ) +Q2(T,ν) +Q3(ν) + C, (3.16)

where Q1(B,Σ) = 〈π(B,Σ,Γ,X|Y)〉, Q2(τ ,ν) = 〈π(X,T, Γ̃,ν|Y)〉, Q3(ν) = 〈π(ν, Γ̃|Y)〉

and C ∈ R is a constant.

The first term of the above objective function is:

Q1(B,Σ) = C − 1

2

N∑
i=1

{
(yi −B〈xi〉)TΣ−1(yi −B〈xi〉) + tr[B′Σ−1B(〈xix′i〉 − 〈xi〉〈xi〉′)]

}
−

K∗∑
k=1

log π(βk)−
N + η + 2

2

G∑
j=1

log σ2
j −

G∑
j=1

ηξ

2σ2
j

,
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where π(βk) is defined in (3.13). Next,

Q2(T) = −1

2

N∑
i=1

{
〈xi〉TDi〈xi〉+ tr[Di(〈xix′i〉 − 〈xi〉〈xi〉′)

}
− 1

2

N∑
i=1

K∗∑
k=1

log τik

− 1

2

N∑
i=1

K∗∑
k=1

[
〈γ̃ik〉λ̃2

1 + (1− 〈γ̃ik〉)λ̃2
0

]
τik. (3.17)

and finally,

Q3(ν) =
K∗∑
k=1

[
〈γ̃k〉 log

k∏
l=1

νl + (N − 〈γ̃k〉) log

(
1−

K∏
l=1

νl

)]

+

K∗∑
k=1

[(α̃+ kd− 1) log νk − d log(1− νk)] . (3.18)

where 〈γ̃k〉 =
∑N

i=1〈γ̃ik〉.

E-Step

The conditional posterior distribution of xi is given by:

π(xi|B(t),Σ(t),T(t),yi) ∼ N(ViB′
(t)

[Σ(t)]−1yi,V
i), (3.19)

where Vi = [B′(t)[Σ(t)]−1B(t) + D
(t)
i ]−1. Further, let V =

∑N
i=1 Vi.

We now determine the update for the indicators of the factors, Γ̃. Note that conditional on

τik, γ̃ik is independent of xik. We have:

〈γ̃ik〉 = P
(
γ̃ik = 1|T, θ̃

)
=

π(τik|γ̃ik = 1)π(γ̃ik = 1|θ̃k)
π(τik|γ̃ik = 1)π(γ̃ik = 1|θ̃k) + π(τik|γ̃ik = 0)π(γ̃ik = 0|θ̃k)

=
θ̃kλ̃

2
1e
−λ̃21τik/2

θ̃kλ̃
2
1e
−λ̃21τik/2 + (1− θ̃k)λ̃2

0e
−λ̃20τik/2

. (3.20)
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M-Step

Let y1, . . . ,yG be the columns of Y. Denote 〈X〉 = [〈x1〉, . . . , 〈xN 〉] and let β1, . . . ,βG be

the rows of B. Then

Q1(B,Σ) =
G∑
j=1

Qj(βj , σj) (3.21)

where

Qj(βj , σj) = − 1

2σ2
j

‖yj −Xβj‖2 −
1

2σ2
j

βTj Vβj −
K∗∑
k=1

log π(βk)−
N + η + 2

2
log σ2

j −
ηξ

2σ2
j

(3.22)

To find a maximum of (3.22) with regard to βj , we use the refined thresholding scheme of

Ročková and George (2018) with the extension to the unknown variance case given in Moran

et al. (2018). Evaluation of log π(βk) requires the expectation of θk given the previous values

of the loadings, β
(t−1)
k ; this yields the following update for θk (Ročková and George, 2018):

θ
(t)
k =

a+ ‖β(t−1)
k ‖0

a+ b+G
. (3.23)

The update for σ2
j is:

σ
2(t)
j =

‖yj −Xβ
(t)
j ‖2 + β

(t)T
j Vβ

(t)
j + ηξ

N + η + 2
. (3.24)

The update for τik is given by:

τ
(t)
ik =

−1 +
√

1 + 4λ̃ik(〈xik〉2 + V i
kk)

2λ̃ik
(3.25)

where λ̃ik = 〈γ̃ik〉λ̃2
1 + (1− 〈γ̃ik〉)λ̃2

0.
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We now consider the update for the IBP stick-breaking parameters ν. This involves finding

the ν that maximize the objective in equation Q3(ν). The difficulty in maximizing this

objective is the non-linear term log
(

1−
∏k
l=1 νl

)
. We find a lower bound for this term

using a variational approximation inspired by Doshi et al. (2009).

This approximation begins with writing the non-linear term as a telescoping sum. Then,

we introduce a parameter qk = (qk1, . . . , qkk) where
∑k

m=1 qkm = 1, which allows the use of

Jensen’s inequality:

log

(
1−

k∏
l=1

νl

)
= log

(
k∑

m=1

(1− νm)

m−1∏
l=1

νl

)

= log

(
k∑

m=1

qkm
(1− νm)

∏m−1
l=1 νl

qkm

)

≥
k∑

m=1

qkm

[
log(1− νm) +

m−1∑
l=1

log νl

]
−

k∑
m=1

qkm log qkm. (3.26)

To make the bound (3.26) as tight as possible, we maximize over the parameter qk to obtain

updates q̂k:

q̂
(t)
km =

(
1− ν(t−1)

m

)∏m−1
l=1 ν

(t−1)
l

1−
∏k
l=1 ν

(t−1)
l

. (3.27)

The lower bound for the objective function for ν at iteration t is now:

Q3(ν) ≥
K∗∑
k=1

[
〈γ̃k〉

k∑
l=1

log νl + (N − 〈γ̃k〉)

[
k∑

m=1

q
(t)
km

(
log(1− νm) +

m−1∑
l=1

log νl

)]]

+
K∗∑
k=1

[(α̃+ kd− 1) log νk − d log(1− νk)]. (3.28)

Maximizing the lower bound (3.28) over ν then yields closed form updates:

ν
(t)
k =

r
(t)
k

r
(t)
k + s

(t)
k

(3.29)
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where

r
(t)
k =

K∗∑
m=k

〈γ̃k〉+
K∗∑

m=k+1

(N − 〈γ̃k〉)

(
m∑

i=k+1

q
(t)
mi

)
+ α̃+ kd− 1 (3.30)

s
(t)
k =

K∗∑
m=k

(N − 〈γ̃k〉)q
(t)
mk − d. (3.31)

3.7.2. Bicluster Quality Metrics

Here we provide the formulas for the (i) relevance; (ii) recovery; and (iii) consensus scores

used to evaluate biclusters in the simulation studies. Each of these scores use the Jaccard

index, a measure of similarity between two sets A and B, defined as:

J(A,B) =
|A ∩B|
|A ∪B|

. (3.32)

The Jaccard index naturally penalizes methods which find spurious bicluster elements. The

relevance and recovery scores were proposed by Prelić et al. (2006) and are defined below.

Denote bicluster Ck as the set non-zero entries of the vectorized matrix xkβkT . Let Mt be

the set of true biclusters and let Mf be the set of biclusters found by a particular method.

Then the relevance and recovery scores are given by:

Relevance =
1

|Mf |
∑

C1∈Mf

max
C2∈Mt

J(C1, C2),

Recovery =
1

|Mt|
∑

C2∈Mt

max
C1∈Mf

J(C1, C2).

The consensus score of Hochreiter et al. (2010) is computed as follows.

1. Compute the Jaccard similarity matrix, where the (i, j)th entry is the Jaccard simi-

larity score (3.32) between the ith bicluster in Mt and the jth bicluster in Mf ;

2. Find the optimal assignment (based on the highest Jaccard scores) of the true set

of biclusters to the found set of biclusters using the Hungarian algorithm (Munkres,
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1957);

3. Sum the similarity scores of the assigned biclusters and divide by max{|Mt|, |Mf |}.

3.7.3. Processing Breast Cancer Data

Here, we provide more details on the processing of the breast cancer dataset in Section 3.4.

We first removed genes with more than 10% of values missing and imputed the remaining

missing values using the R package impute (Hastie et al., 2018). We chose not to project

the quantiles of the gene expression levels to the standard normal distribution, as done by

Gao et al. (2016). This is because the unnormalized gene expression values were mostly

clustered around zero with heavy tails (Figure 10a). Although SSLB assumes that the

errors are normally distributed, the gene loadings {βjk}G,Kj,k=1 are assumed to be drawn a

priori from either a Laplacian spike concentrated around zero or a Laplacian slab. We

assume that such a mixture model is flexible enough to model the gene expression levels

exemplified in Figure 10a.
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Figure 10: Histogram of (a) unnormalized expression values for gene SUHW2, (b) quan-
tile normalized expression values for gene SUHW2 with standard normal distribution as
reference. For both histograms, a standard normal density is overlaid.

3.7.4. Supplementary Figures for Breast Cancer Dataset

Here, we provide supplementary figures for the analysis of the breast cancer microarray

dataset in Section 3.4. Enrichment maps (Figure 12) were created using the R package

enrichplot (Yu, 2018) and display the top 30 biological processes (with lowest FDR q-

values satisfying threshold of 0.05) found in the gene ontology enrichment analysis as de-
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scribed in Section 3.4.2.

SSLB Factor Matrix

Figure 11: SSLB factor matrix where each row corresponds to a patient and each column
corresponds to a bicluster. A patient belongs to a bicluster if they have a non-zero value in
that column. Rows are ordered by clinical ER status; within ER status, rows are ordered
by factor values in biclusters 1 and 2. All 30 biclusters found by SSLB are shown.
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Figure 12: Breast cancer data: enrichment maps for SSLB genes (a) up-regulated in ER-
negative patients, and (b) up-regulated in HER2+ patients. Nodes represent biological
processes; size of node reflects number of genes in process which were found by the method.
Edges connect genes that are active in different biological processes.



3.7.5. Processing Zeisel Dataset

Here, we describe how we processed the data in Section 3.5. We followed the same pipeline

as Z15 but provide the details here for completeness.

Many RNA-seq studies normalize the raw count data to the unit RPKM (Reads Per Kilobase

of transcript per Million mapped reads), which accounts for longer genes having more

transcripts mapped to them simply due to their length (and not meaningful biological

variability). This was unnecessary for this dataset as only the 5’ end of each RNA was

sequenced and thus the read number was not proportional to gene length (Islam et al.,

2014). Additionally, many single-cell RNA-seq studies account for differing cell sizes as

larger cells have more RNA. However, this normalization was not done for this dataset as

such information is informative in clustering different cell types.

The scRNA-seq data is provided by Z15 at http://linnarssonlab.org/cortex and con-

sists of molecule counts for 19,972 genes in 3005 individual cells.

Following Z15, we:

1. Removed all genes that have less than 25 molecules in total over all cells

2. Calculated correlation matrix over the genes and define a threshold as 90th percentile

of this matrix (ρ = 0.2091). Removed all genes which have less than 5 other genes

which correlate more than this threshold.

The next step of data processing was to identify the noisiest genes. Assuming that most of

the variability of the genes across the cells can be attributed to the underlying biological

processes, these genes are the ones which are most informative for clustering of cells. The

strategy of Z15 was to search for genes whose noise - measured by coefficient of variation

(CV, standard deviation divided by mean) - was high compared to a Poisson distribution

with inflated CV. The rationale for this was outlined in Islam et al. (2014) which used the

same single-cell RNA-seq protocol as Z15 but for mouse embryonic stem cells. First, Islam
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et al. (2014) noted that the technical noise distribution of ERCC (External RNA Controls

Consortium) spike-in molecules (which have no biological variability) followed that of a

Poisson, but its CV was inflated by constant factor. The CVs of endogenous genes were

inflated above those of the ERCCs, suggesting that this variation is driven by biological

factors rather than the variation induced by loss of transcripts in cDNA synthesis.

Z15 implemented the same procedure to identify genes with the greatest biological vari-

ability. We followed this procedure: for the genes remaining after the aforementioned data

cleaning steps, the mean and CV was calculated. The noise model

log2(CV ) = log2(meanα + k)

was fit using the software ceftools6. The best fit was found to be α = −0.55 and k = 0.64.

Next all genes were ranked by their distance from the fit line and the top 5000 genes with

the largest distance were selected as informative for further clustering.

Finally, we normalized the gene counts using quantile normalization (using the R package

preprocessCore (Bolstad, 2018)). Note we used the commonly used “average distribution”

as the reference distribution to which to project the quantiles of the raw gene expression

levels. The average distribution is obtained by taking the average of each quantile across

the samples (Bolstad et al., 2003).

3.7.6. Supplementary Figures for Zeisel Dataset

Here, we provide supplementary figures for the analysis of the mouse single-cell RNA se-

quencing dataset in Section 3.5. Enrichment maps (Figures 14 and 15) were created using

the R package enrichplot (Yu, 2018) and display the top 30 biological processes (with

lowest FDR q-values satisfying threshold of 0.05) found in the gene ontology enrichment

analysis as described in Section 3.5.1.

6https://github.com/linnarsson-lab/ceftools
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Figure 13: Zeisel dataset: Factor matrix found by SSLB (top) and FABIA (bottom). On
the side of the factor matrix are the cell types and subtypes found by Z15, respectively.
The rows of the factor matrices have been ordered to correspond to the Zeisel cell types.
Factor values have been capped for improved visualization.
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Figure 14: Zeisel dataset: enrichment maps for SSLB genes in (a) bicluster 1 and (b)
bicluster 2. Each bicluster contains a mixture of interneurons, S1 pyramidal neurons and
CA1 pyramidal neurons. Nodes represent biological processes; size of node reflects number
of genes in process which were found by the method. Edges connect genes that are active
in different biological processes.
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CHAPTER 4 : Nonlinear Factor Analysis via BART

4.1. Introduction

Suppose we have observed a matrix of data Y ∈ RN×G where each row corresponds to

a sample and each column corresponds to a feature. That is, for sample i, we observe a

vector of features yi ∈ RG, for i = 1, . . . , N . In many applications, the number of features,

G, is very large, but these features are assumed to be driven by a much lower-dimensional

latent factor. Classical factor analysis finds such a low-dimensional representation of each

yi ∈ RG, denoted by xi ∈ RK , with K � G. Typically, factor analysis methods assume that

observation yi and factors xi are linearly related via a common loadings matrix B ∈ RG×K .

That is,

yi = Bxi + εi, i = 1, . . . , N, (4.1)

where ε ∼ NG(0,Σ) with Σ = diag{σ2
1, . . . , σ

2
G}. Unlike the usual regression setup, in

factor analysis both the loadings B and the factors xi are unknown.

The assumption that yi is linearly related to xi may sometimes be too restrictive. Instead,

it may be that the mean of yi lies on a much lower dimensional manifold, but not necessarily

a linear one. In this case, we simply assume yi and xi are related via a potentially non-linear

mapping f : RK → RG as

yi = f(xi) + εi, i = 1, . . . , N (4.2)

where εi ∼ NG(0,Σ) with Σ = diag{σ2
j }Gj=1.

The problem we consider in this chapter is two-fold: (i) to find the low-dimensional factors

xi, and (ii) to find the mapping f from the factors xi to the features yi. To accomplish this

task, we develop an MCMC algorithm which alternates between sampling from the poste-

riors of xi and a functional approximation to f . This latter step utilizes Bayesian Additive
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Regression Trees (BART), introduced by Chipman et al. (2010) (hereafter CGM10). We

refer to our method as factor analysis BART (faBART).

BART is a method for nonparametric regression which uses a sum-of-trees model to esti-

mate a broad class of functions. BART has shown tremendous performance in a variety

of prediction tasks and has become particularly popular for estimating heterogeneous av-

erage treatment effects in causal inference (Hill, 2011). More recently, theoretical support

for BART has also emerged (Ročková and van der Pas, 2017; Ročková and Saha, 2018).

There have been a number of extensions to the original model including Heteroscedastic

BART, in which samples can have different variances, and Monotonic BART, for estimation

of monotonically increasing or decreasing functions, to name a few. Up until now, however,

all methods for BART have assumed a known set of covariates xi. Here, we estimate both

the mapping f and the unobserved factors xi.

Nonlinear factor analysis may be viewed as a nonlinear dimensionality reduction method

that has a specific likelihood, given in (4.2). Our framework confers a number of benefits

over traditional methods for nonlinear dimensionality reduction. Firstly, as we develop an

MCMC algorithm to obtain samples from the posterior, we naturally obtain uncertainty

quantification for our parameters of interest. Secondly, faBART specifies a generative model

and so can predict out-of-sample responses, unlike many other dimensionality reduction

methods which are not model based. Thirdly, BART has been extended to also conduct

variable selection on the covariates (Linero, 2018). While this extension is for observed

covariates, a similar strategy may potentially be used here to determine the dimensionality of

the latent space, K. For many dimensionality reduction methods, the choosing of K remains

an open area of research. Finally, the default parameter settings of BART yield excellent

performance on a wide range of data, negating the need for extensive hyperparameter tuning

as often required for neural networks.

The chapter is structured as follows. In Section 4.2, we provide a review of the original

BART model and algorithm. In Section 4.3, we review a number of methods for nonlin-
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ear dimensionality reduction. In Section 4.4, we describe the faBART model and MCMC

algorithm. In Section 4.6, we consider three simulated examples where the true model is

known and highlight the ability of faBART to recover this structure. In Section 4.7, we

consider two canonical datasets from the dimensionality reduction literature, demonstrating

the performance of faBART in effectively visualizing complex, high-dimensional data.

4.2. Review of BART

In this section, we describe the original BART model and algorithm of CGM10. BART

assumes the univariate response Y is modeled by:

Y = f(x) + ε ε∼N(0, σ2), (4.3)

where f is an unknown function and x = (x1, . . . , xp)
T ∈ RN are observed covariates. To

approximate the function f , CGM10 use a sum of regression trees:

f(x) ≈ h(x) =

L∑
l=1

gl(x;Tl,Ml), (4.4)

where g : Rp → R and Tl is a binary regression tree which consists of interior nodes, each

with a decision rule, and terminal nodes. Each of the B terminal nodes of Tl are assigned a

parameter µlb; these parameters are collected in the set Ml = {µl1, . . . , µlB}. The decision

rules which make up the interior of Tj are generally based on a single covariate and are of the

form {xj ≤ c} vs {xj > c} for some cut-point c ∈ R (Figure 16a). Although each decision

rule is based on a single covariate, the tree itself can include decision rules for multiple

covariates and so can accommodate interactions. For an observation Yi with covariates xi,

the function gl(xi, Tl,Ml) finds the terminal node b associated with xi (after passing through

the decision nodes) and outputs the parameter µlb of that terminal node. The sum-of-trees

function h(xi) is then the sum of these outputs over the different trees, Tl, and parameter
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sets, Ml:

h(xi) =
L∑
l=1

µlb(i,l) (4.5)

where b(i, l) is the terminal node associated with xi for tree Tl. This sum-of-trees model

gives BART the flexibility to model complex response surfaces without knowledge of the

form of the surface. Figure 16b displays the model y = 10 sin(2πx) (black line) and the

BART fit using only one tree (red line) and then 200 trees (blue dashed line).
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(b) BART example when both Y and x are ob-
served. Black line is the true model is y =
10 sin(2πx). Red line is BART fit with one tree.
Blue dashed line is BART fit from 200 trees.

Figure 16: Illustrations for BART

4.2.1. Prior Specification

CGM10 specified the following generative model for the trees and node parameters. First,

a tree, Tl is drawn from the prior p(Tl), for l = 1, . . . , L. Conditioned on this tree, the

terminal node parameters {µlb}Bl
b=1 are then drawn independently from the prior p(µlb|Tl).

The flexibility of BART is a result of regularization at two levels of this prior hierarchy.

Firstly, the prior on the trees, p(Tl), encourages the trees to have few terminal nodes.

Secondly, the prior on the terminal node parameters, p(µlb|Tl) encourages each of the µlb

to be on the order of 1/
√
L, where L is the total number of trees. Hence, when L is large,

the contribution of each µlb to the fit of Y is very small.
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We now outline these priors in more detail. The prior on the trees, p(Tl), is specified

implicitly by a stochastic process rather than an explicit closed form expression (Chipman

et al., 1998). This process generates a tree Tl as follows:

1. Tl is set to be a tree with a single terminal node, denoted by η.

2. The terminal node η is split to create two nodes with probability:

pSPLIT (η, Tl) = α(1 + dη)
−β, (4.6)

where dη is the depth of node η. Else, η remains a terminal node. CGM10 suggest

α = 0.95 and β = 2 as default values; this places high probability on deep nodes not

splitting (i.e. remaining terminal), thus providing the aforementioned regularization

on tree size.

3. If the node η is split, it is assigned a decision rule ρ according to the distribution

pRULE(ρ|η, Tl), and the left and right children nodes of η are then created. A decision

rule ρ consists of a predictor, xj , and a cutpoint c. CGM10 take pRULE(ρ|η, Tl)

to be the distribution obtained from choosing xj uniformly over the set of available

predictors, and then choosing the cutpoint c uniformly from the observed values of

xj .

4. The process is repeated for the new children nodes of η until no further nodes are

split.

For the terminal node parameters, the prior is given by:

µlb ∼ N(0, σ2
µ) where σµ = 0.5/2

√
L, (4.7)

when the responses have been scaled to be in the range [−0.5, 0.5]. As discussed earlier,

this prior results in strong regularization on the magnitude of µlb when the number of trees

L is large.
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To complete the prior specification, the residual variance is taken to be independent of the

trees and node parameters a priori and is assigned an inverse-χ2 prior, which is calibrated

to the observed variation in the responses.

4.2.2. BART MCMC Algorithm

CGM10 develop a backfitting MCMC algorithm to obtain posterior estimates of the trees

Tl, terminal node parameters, Ml, and residual variance, σ2. The backbone of the algorithm

is a Gibbs sampler which alternates sampling from the following conditional distributions:

(Tl,Ml)|T(l),M(l), σ, y, l = 1, . . . , L (4.8)

σ|T1, . . . , Tl,M1, . . . ,Ml, y, (4.9)

where T(l) denotes the set of all trees, excluding the lth tree, and M(l) is similarly defined.

Within this Gibbs sampler, CGM10 use a Metropolis-Hastings step to draw from the full

conditional distribution of (Tl,Ml). The “backfitting” designation of the algorithm comes

from the observation that the conditional distribution p(T(l),M(l)|T(l),M(l), σ, y) depends

only upon (T(l),M(l), y) through the vector of partial residuals, Rl, defined by:

Rl ≡ y −
∑
k 6=l

g(x;Tk,Mk). (4.10)

Then, CGM10 draw from (4.8) in two steps:

Tl|Rl, σ, (4.11)

Ml|Tl, Rl, σ. (4.12)

CGM10 obtain a draw of Tl in (4.11) using a Metropolis-Hastings sampling scheme. This

scheme proceeds by first drawing a tree proposal, T ∗l , by performing one of four possible

operations on the previous tree, Tl. These operations are: (i) growing two new children

nodes, (ii) collapsing two nodes, (iii) changing a splitting rule for a node; or (iv) swapping
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a parent and a child’s splitting rule. The proposal T ∗l is then either accepted or rejected

based on the usual Metropolis-Hastings acceptance ratio. Next, a draw from (4.12) is a

set of independent draws from a normal distribution, due to the conjugacy of the prior.

With the draw (4.8) completed, a draw of σ in (4.9) is simply a draw from an inverse-χ2

distribution.

4.3. Related Work

We now provide a review of a number of related nonlinear dimensionality reduction methods.

4.3.1. Kernel PCA

Principal components analysis (PCA) is a standard method for linear dimensionality re-

duction with widespread use across many disciplines of science and engineering. For a

data matrix Y ∈ RN×G centered to have column means zero, PCA computes the following

decomposition:

yi = Wxi, i = 1, . . . , N, (4.13)

where W ∈ RG×K is the matrix consisting of the first K eigenvectors of YTY (in decreasing

order by the magnitude of associated eigenvalues) and xi ∈ RK is called the vector of

scores. In this way, PCA is very similar to the traditional factor analysis model (4.1);

indeed, Tipping and Bishop (1999) showed that the maximum likelihood estimator for B

in (4.1) converges to the PCA loadings matrix W in the limit when the column variances

σ2
j → 0 for j = 1, . . . , G. PCA also features the following appealing interpretation: it finds

the coordinate axis system to which the data points are most closely aligned (in Euclidean

distance).

A limitation of PCA, however, is that it only finds a low-dimensional representation of

the data, xi, that is linearly related to the observed data yi. As such, PCA cannot find

non-linear low-dimensional structures that are embedded in the high-dimensional observed
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data. To overcome this limitation, Schölkopf et al. (1997) developed Kernel PCA. Kernel

PCA begins with the specification of a kernel matrix, K ∈ RN×N , where

Kij = Φ(yi)
TΦ(yj), 1 ≤ i, j ≤ N, (4.14)

for a user-specified function Φ : RG → RM . Then, instead of finding the eigenvectors of

XTX, kernel PCA finds the eigenvectors of this kernel matrix.

4.3.2. Gaussian process latent variable models

Lawrence (2005) introduced the Gaussian process latent variable model (GP-LVM). GP-

LVMs allow for a non-linear mapping between the observed features and latent factors

though the model

yi ∼ N(f(xi), σ
2), i = 1, . . . , N, (4.15)

where f is drawn from a Gaussian process with zero mean and covariance function k(·, ·).

That is, for a set of X = {xT1 , . . . ,xTN}, a realization from f is a realization of a multivariate

Gaussian with mean zero and covariance matrix K ∈ RN×N with (i, j)th entry equal to

k(xi,xj). Similarly to Kernel PCA, GP-LVMs require the specification of a kernel function

k(·, ·). A difference, however, is that GP-LVMs specify a kernel over the latent factors,

{xi}Ni=1, unlike Kernel PCA where the kernel defined for the observed data, {yi}Ni=1. The

latent factors are then estimated via a scaled conjugate gradient algorithm.

4.3.3. Variational Autoencoders

Variational autoencoders (VAE, Kingma and Welling, 2013) assume yi is related to the

latent factors xi in the following model:

yi = fµ(xi;θ) + fσ2(xi;θ)εi, εi ∼ N(0, I) (4.16)
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where fµ : RK → RG and fσ2 : RK → RG are multi-layer perceptrons, parameterized by θ.

A multi-layer perceptron (MLP) is a fully connected neural network with one hidden layer;

in particular Kingma and Welling (2013) define:

fµ(xi;θ) = W2h + b2 (4.17)

log fσ(xi; θ) = W3h + b3 (4.18)

h = tanh(W1xi + b1), (4.19)

where h is the hidden layer and θ = {W1,W2,W3,b1,b2,b3} are the parameters to be

optimized. Note that the mean and variance functions fµ and fσ2 , respectively, share the

final layer of the network, given in (4.19). While each datapoint yi has an individual latent

vector xi, the weight parameters, θ, of the neural network are shared across data points.

The goal is to find the posterior distribution of X; unfortunately, this is intractable. Kingma

and Welling (2013) resolve this problem by approximating p(xi|yi) by the variational den-

sity:

q(xi; yi, φ) ∼ N(gµ(yi;φ), gσ2(yi;φ)I), (4.20)

where gµ : RG → RK , gσ2 : RG → RK are again MLPs, defined similarly to 4.19 and param-

eterized by φ. Kingma and Welling (2013) then minimize the Kullback-Leibler divergence

between q(xi; yi, φ) and p(xi|yi) using stochastic gradient descent. To improve the gradient

estimates for this algorithm, they also use a novel re-parameterization technique for the

latent factors.

4.3.4. t-SNE

The idea behind t-distributed Stochastic Neighbor Embedding (t-SNE, Maaten and Hinton,

2008) is that “similar” responses yi and yj should have latent factors xi and xj , respectively,

which are also “similar”. For the responses, Maaten and Hinton (2008) define a similarity

99



matrix, {Pij}Ni,j=1 ∈ RN×N , using Gaussian kernels that are re-weighted to correspond to

probabilities:

Pij =
pi|j + pj|i

2
, (4.21)

where pi|j =
exp{−‖yj − yi‖2/2σ2

j }∑
l 6=j exp{−‖yj − yl‖2/2σ2

j }
. (4.22)

For the unobserved factors, a similarity matrix, denoted by Q, is also required. A key

contribution of Maaten and Hinton (2008) is that instead of again using Gaussians for Q as

they do for P, they use a t-distribution with one degree of freedom. Using the t-distribution

here allows the factors to “spread out” in the latent space. This spreading out ameliorates

the crowding problem which informally states that it is impossible to preserve relative

distances between high-dimensional points in a much lower dimensional space. In the latent

factor space, t-SNE therefore sacrifices representing the global structure of the original data

in favor of preserving the local structure. In terms of calculating such a representation: t-

SNE finds the factors which minimize the Kullback-Leibler divergence between the response

similarity matrix P and the factor similarity matrix Q.

4.4. Nonlinear Factor Analysis via BART

We now describe our method for nonlinear factor analysis via BART (faBART). The ob-

served data is the matrix, Y ∈ RN×G, where each row corresponds to a sample and each

column to a feature. For each yi ∈ RG, we seek a low-dimensional representation xi ∈ RK .

We model each feature separately; that is, conditional on the unobserved matrix of factors,

X = [x1, . . . ,xN ]T ∈ RN×K , the columns of Y are independent. In other words, we assume

that each feature is driven by the same underlying set of factors but that each feature has a

different mapping from the latent space to the observed space. Further, we assume that all

sources of dependence between the features are due to the latent factors. These assumptions

are very similar to the usual linear factor analysis model; the difference here is that we are

allow for a flexible, possibly non-linear mapping between xi and yi.
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We denote the jth column of Y by y·j . Then, y·j is modeled as

y·j = hj(xi) + εj , for j = 1, . . . , G, (4.23)

where hj(xi) is a BART sum-of-trees model (4.4) for the regression of y·j on X = [x1, . . . ,xN ]T ,

and εj ∼ N(0, σ2
j IN ). We use the notation hij = hj(xi); the matrix H = {hij}N,Gi,j=1 then

defines the mean of the observed matrix Y under the model (4.23).

The likelihood is given by

L(Y|X,H,Σ) =
1

(2π)NG/2|Σ|N/2
exp

−
G∑
j=1

N∑
i=1

(yij − hij)2

2σ2
j

 . (4.24)

Despite the nonlinear mapping between X and Y, the likelihood itself is Gaussian and

so, given the current BART fit, H, it is easily computable. This tractability allows us to

develop a Metropolis algorithm to obtain samples from the posterior of X. We describe this

algorithm in more detail in the next section.

For the prior on X, we use an independent normal with variance τ2:

xi
ind∼ N(0, τ2IK). (4.25)

Although linear factor analysis methods generally take τ2 = 1 for the prior factor variance,

we recommend a larger value of τ2 for a relatively non-informative prior on the factors. As

we will see in Section 4.6, a large τ2 allows for the factors to be more mobile in the MCMC

exploration of the latent space. Placing a diffuse inverse-gamma prior on τ2 resulted in

poor mixing of the MCMC algorithm and so we recommend a fixed value.

For the prior on the noise variances, σ2
j , we take a scaled inverse-χ2:

σ2
j ∼ inv-χ2(ν, λ), j = 1, . . . , G. (4.26)
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We calibrate the degrees of freedom, ν, and scale, λ, using an informal empirical Bayes

strategy inspired by CGM10. We first take ν = 3, a value which results in a relatively

diffuse prior, but not so small as to favor extremely small values of σ2
j . We denote the

sample variance of each of the columns by {s2
j}Gj=1. Our strategy assumes that each column

of Y is driven by at least one non-zero factor; that is, every column contains some signal

and is not “pure noise”. We then calibrate λ based on the smallest s2
j , which would contain

the smallest amount of signal and thus provide a better estimate of the noise. Specifically,

we find the 5% quantile of the s2
j and then find the value of λ such that this quantile is the

90% quantile of the prior distribution (4.26). Although this strategy essentially assumes

that the noise variance for each of the columns is the same, the degrees of freedom, ν, is

small enough to place prior mass on larger values of σ2
j so as not to unduly constrain the

variance.

4.4.1. MCMC Algorithm

The posterior distribution of the factors, X, is given by:

p(X|Y) =

N∏
i=1

p(xi|yi) (4.27)

=

N∏
i=1

1

|Σ|1/2
exp

−
G∑
j=1

(yij − hij)2

2σ2
j

− 1

2τ2

K∑
k=1

x2
ik

 . (4.28)

Given the observed data, Y, we obtain samples from the posterior of the factors using

a Metropolis algorithm. For each of the factor rows xi, we draw a proposal, x̃i from a

spherical Gaussian centered at the previous draw:

x̃i ∼ N(x
(t)
i , c

2IN ), (4.29)

where c2 is a tuning parameter. We take c = 2.38/
√
K as recommended by Gelman et al.

(1996). We have found this random walk proposal to be effective; in Section 4.9.2 of the

Appendix, we also consider an alternate proposal distribution which encourages factors xi
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and xj to be close if yi and yj are similar. However, this proposal yielded similar results

to our random walk proposal (4.29).

To accept or reject the proposed factors, we need to evaluate the likelihood (4.24). This

requires the posterior mean of the fitted values, H, and variance, Σ, from the BART sum-

of-trees model, conditioned on the proposed factors {x̃i}Ni=1. We estimate each column h·j

separately as in (4.23). The fitted values h·j are a function of L decision trees, each with

a set of terminal node parameters, together denoted by {(Tl,Ml)}Ll=1 (precise definitions in

Section 4.2). As such, drawing posterior samples of the fitted values amounts to drawing

samples from the posterior of the trees and terminal node parameters. For this purpose,

we use the original BART algorithm outlined in Section 4.2. However, instead of drawing

one sample of {(Tl,Ml)}Ll=1, we draw 100 samples. After removing the first 50 draws as

burn-in, we calculate the approximate posterior mean of the fitted values resulting from

the remaining 50 draws, denoted by h̃·j . We obtain draws of the fitted values using the R

package dbarts (Dorie et al., 2018) with L = 50 trees.

Finally, we calculate the acceptance ratio, αi, for each of the proposed factors, x̃i. At

iteration t+ 1, this is given by:

αi = min

{
1,

L(yi|x̃i, h̃i, Σ̃)π(x̃i)

L(yi|x(t)
i ,h

(t)
i ,Σ

(t))π(x
(t)
i )

}
(4.30)

where x
(t)
i , h

(t)
i and Σ(t) are the draws from the previous iteration. For each i = 1, . . . , N ,

we then accept x̃i with probability αi. We either accept or reject each row of the factor

matrix X separately instead of the entire matrix. Updating the factors row-wise is also

common in linear factor analysis methods.

The Metropolis algorithm is displayed in Algorithm 2. In Section 4.9.1 of the Appendix, we

also considered an elliptical slice sampler to obtain draws of X. However, the Metropolis

algorithm was ultimately more effective. The lack of differentiability in the sum-of-trees

function also precludes a Hamiltonian Monte Carlo sampling algorithm; however, the un-
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observed factors lie in a much lower dimensional space than the observed data where the

Metropolis sampler appears to mix well.

The final output of our MCMC algorithm consists of the discovered factors, X̂, and the

non-parametric estimate of the mapping, H. This is in contrast to ordinary factor analysis

where we also obtain estimates of the loadings matrix, B, which characterizes the linear

form. In our setting, one may obtain a parametric model for the mapping by data analysis

of the relationship between the discovered factors, X̂, and either the observed data, Y, or

the non-parametric estimate of the mapping, H. This strategy is illustrated in the examples

of Section 4.6.

Algorithm 2 Metropolis algorithm for faBART
Input: Number of factors, K

Initialize: x
(0)
i ∼ N(0, IK), fitted values H(0) based on factors {x(0)

i }Ni=1

For t = 1, . . . , T :

1. For i = 1, . . . , N , draw x̃i ∼ N(x
(t−1)
i , c2I)

2. For j = 1, . . . , G:

• Calculate the fitted values from BART, h̃·j , based on the factors {x̃i}Ni=1

3. For each i = 1, . . . , N :

• Calculate acceptance ratio:

αi = min

{
1,

L(yi|x̃i, h̃i, Σ̃)π(x̃i)

L(yi|x(t−1)
i ,h

(t−1)
i ,Σ(t−1))π(x

(t−1)
i )

}

• Draw u ∼ U [0, 1]. Set

x
(t)
i =


x̃i if u < αi

x
(t−1)
i otherwise.

and h
(t)
i =


h̃i if u < αi

h
(t−1)
i otherwise.
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4.5. Identifiability

In this section, we pause the development of faBART to discuss the issue of identifiability

in the nonlinear factor analysis model (4.2). It is well known that for linear factor anal-

ysis, the estimated factors and loadings are unidentifiable up to a rotation of the factor

and loading matrices. That is, the model (4.1) cannot distinguish between the following

parameterizations:

Y = XBT + E = (XP)(BP)T + E (4.31)

where P ∈ RK×K is a rotation matrix, i.e. PPT = I. To overcome this issue, researchers

have proposed a number of different solutions: for example, restricting the loadings matrix B

to be upper-triangular (Aguilar and West, 2000), or orthogonal, or placing sparsity inducing

priors on these matrices to restrict the space of matrices under consideration.

As may be expected from its flexibility, nonlinear factor analysis faces a greater identifiability

issue. As a simple illustration, suppose the features of the ith sample, denoted by yi =

(yi1, . . . , yiG)T ∈ RG, are being driven by a single latent factor, xi ∈ R, as follows:

yij = fj(xi) + εij , j = 1, . . . , G, (4.32)

where f(x) = (f1(x), . . . , fG(x))T is the true mapping from the latent to observed data, and

εij is the noise. Then, the model (4.32) is indistinguishable from the parameterization:

yi1 = x̃i + εi1, (4.33)

yij = f̃j(x̃i) + εij , j = 2, . . . , G, (4.34)

where x̃i = f1(xi) and f̃j = fj ◦ f−1
1 .

To render the model (4.2) identifiable, Yalcin and Amemiya (2001) suggest the following
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parameterization:

yij = xij + εij , j = 1, . . . ,K, (4.35)

yij = fj(xi) + εij , j = K + 1, . . . , G. (4.36)

That is, the means of the first K columns of the observed data Y are constrained to be equal

to the (unobserved) factors while the remaining G−K columns may be nonlinear functions

of these factors. This strategy serves to “anchor” the factors, allowing the relationship

between the factors and the observed data to be identified, relative to the first K columns

of Y. More generally, the parameterization (4.36) can be seen as an analogue to the linear

factor analysis strategy of restricting the loadings matrix to be upper triangular.

A problem with the model (4.36), however, is that it depends strongly on which columns of

Y are set equal to a factor. For instance, the model (4.36) sets the first and second columns

of Y to be equal to two different factors, when it is possible that these columns are actually

driven by the same underlying factor. In the linear factor analysis model, Carvalho et al.

(2008) also restrict the loadings matrix to be upper-triangular but allow for uncertainty as

to which columns are set equal to a factor in their evolutionary stochastic search strategy.

A similar modeling assumption to (4.36) may prove to be a fruitful strategy for faBART,

provided it also allows for uncertainty regarding which columns are set equal to a factor.

We leave the development of such a strategy to future work. In this chapter, our focus is

to highlight the potential of faBART for nonlinear factor analysis. In the next section, we

consider simulated examples in which there is a linear component (in addition to nonlinear)

to help “anchor” the faBART algorithm.
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4.6. Parametric Examples

4.6.1. Example 1

In this section, we consider a simple example with N = 100 samples, G = 5 features and

latent factor dimension K = 1. That is, the signal for all responses in the observed data is

being driven by a single factor.

The data is generated as follows. Each element of the factor vector x = {xi}Ni=1 is drawn

independently from a Uniform[−3, 3] distribution. The first three columns of Y are linearly

related to x, the fourth column is a function of x2 and the fifth column is a function of

sin(x2). That is, each row of the observed matrix is generated as

yi = (xi, 2xi, 3xi, 4x2
i , 5 sin(π/2 · xi))T + εi, i = 1, . . . , N, (4.37)

where εi denotes the ith row of the noise matrix E ∈ RN×G and is generated as εi
ind∼

N(0, σ2IG) with σ2 = 0.5.

With Y and the factor dimension K = 1 as the only inputs, we ran faBART for 2000

iterations with a burn-in period of 1000 iterations. The prior variance for the factors was

set to τ2 = 10. The estimated factor vector x̂ was calculated as the mean of the factor

samples after burn-in.

Figure 17 displays scatterplots of each of the columns of the observed Y versus the factor,

x̂, found by faBART. Using the true parametric forms which generated the data (4.37),

we proceeded to fit these models to the plots. Of course, the forms would need to be

decided upon in real non-simulated applications. However, from simple observation of the

scatterplots (Figure 17), a quadratic and a sine curve would be the natural choices to model

columns four and five of Y, respectively, even if the true model were not known.

More specifically, we found the fitted models as follows. First, we ran a linear regression
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with the first column, y·1 as the response and x̂ as the single predictor:

y·1 = βx̂. (4.38)

We then calculated a re-scaled factor, ˜̂x← βx̂, such that the slope between y·1 and this new

factor, ˜̂x was equal to one. The reason for this re-scaling step is that the faBART mapping

(4.23) is unidentifiable up to a scale change of x. As such, we are only interested in whether

faBART can recover the relative relationships between the factor and the columns of Y.

Re-scaling the factor so that the first plot has a slope of one allows us to better highlight

these relationships. We then proceeded to fit a linear regression of each of the columns,

y·2,y·3, separately against the re-scaled factor ˜̂x. For the columns with a true non-linear

relationship, y·4 and y·5, we ran a regression against ˜̂x2
and sin(π/2 · ˜̂x), respectively.

Remarkably, the estimated factor from faBART recovered the relative relationship between

the true (unobserved) factors and the observed data matrix, Y. Unlike faBART, linear

factor analysis would require more than one latent factor dimension (likely three) to capture

this structure of variation in Y.
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Figure 17: Example 1: Each subplot is a plot of a column y·j of the observed data vs

the factors ˜̂x found by faBART for j = 1, . . . , G. The true models are: (i) yi1 = xi; (ii)
yi2 = 2xi; (iii) yi3 = 3xi; (iv) yi4 = 4x2

i ; and (v) yi5 = 5 sin(π/2 · xi). The fitted model (up
to scale change of x) are displayed in the subplot titles.

4.6.2. Example 2

In this example, we increase the number of latent factors to K = 2. We additionally set

the number of samples to N = 100 and features to G = 6. The two factors are generated
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independently from a Uniform[−3, 3] distribution. The feature vectors, yi, are generated as

yi = (xi1, 2xi1, 3x2
i1, 4xi2, 5xi2, 6 sin(π/2 · xi2))T + εi, i = 1, . . . , N, (4.39)

where εi denotes the ith row of the noise matrix E ∈ RN×G and is generated as εi
ind∼

N(0, σ2IG) with σ = 0.5. That is, there are two factors driving the variation in Y, each of

which have a nonlinear component.

We ran faBART for 2000 iterations with a burn-in period of 1500 iterations. The prior

variance for the factors was set to τ2 = 10. As a comparison, we also considered the perfor-

mance of a variational autoencoder (Kingma and Welling, 2013) on this data. Specifically,

we implemented a Gaussian variational autoencoder with one hidden layer (consisting of 5

latent variables) and a rectified linear unit (ReLU) for the activation function. For this vari-

ational autoencoder, we additionally set the error variance to the true value: Σ = 0.52IG.

For both faBART and the variational autoencoder, we set the number of factors to the

truth, K = 2.

For both faBART and the variational autoencoder, we constructed scatterplots of the ob-

served columns versus the estimated factors, as detailed in the previous section. Again,

faBART correctly found the true underlying structure between the observed data and the

factors (Figure 18a). The variational autoencoder recovered the second factor, albeit with

some curvature in the mapping from the factor to the fourth and fifth columns of Y (Fig-

ure 18b). Further, the variational autoencoder found a factor x̃·1 which appears to be a

quadratic of the true factor: i.e. x̃·1 = x2
·1. As such, the variational autoencoder found an

inverse quadratic relationship between the first factor and columns one and two of Y, and

a linear relationship between the first factor and the third column of Y.

4.6.3. Example 3

Our final simulated parametric example extends the previous example to include an inter-

action term between the factors. Specifically, we have N = 100 samples, G = 7 features
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(a) faBART results.
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(b) Variational autoencoder results.

Figure 18: Example 2: Each subplot is a plot of a column y·j of the observed data vs the
factors found by each method for j = 1, . . . , G. The true models are: (i) yi1 = xi1; (ii)
yi2 = 2xi1; (iii) yi3 = 3x2

i1; (iv) yi4 = 4xi2; (v) yi5 = 5xi2; and (vi) yi6 = 6 sin(π/2 ·xi2). The
fitted model (up to scale change of each column of X) are displayed in the subplot titles.

and K = 2 factors. The data is generated as follows. The elements of the factor matrix,

X, are each drawn independently from a Uniform[−3, 3] distribution. Each row of the data

matrix Y is generated as:

yi = (xi1, 2xi1, 3x2
i1, 4xi2, 5xi2, 6 sin(π/2 · xi2), 7xi1 · xi2)T + εi (4.40)

where εi denotes the ith row of the noise matrix E ∈ RN×G and is generated as εi
ind∼

N(0, σ2IG) with σ = 0.5. That is, the first three columns of Y are functions of the first

factor, x·1, the next three columns of Y are functions of the second factor, x·2, and the final

column is an interaction of both factors.

With Y and the factor dimension K = 2 as the only inputs, we ran faBART for 2000

iterations with a burn-in period of 1000 iterations. The prior variance for the factors was

set to τ2 = 10. The estimated factor matrix, X̂, was calculated as the mean of the factor

samples after burn-in. We again considered the performance of a Gaussian variational
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autoencoder with one hidden layer consisting of 6 latent variables; we found this number

of latent variables to have the best performance from the set of choices: {3, 4, 5, 6, 7}.

For the activation functions, we used a ReLU function. Additionally, for the variational

autoencoder, we set the error variance to the true value: Σ = 0.52IG.

Again, faBART was able to recover both the latent factors and the mapping between

the factors and the observed data (Figure 19a). The variational autoencoder was able to

recover the second factor and the sine relationship between this factor and the sixth column

of Y; however, it was not able to recover the first factor or the interaction relationship

in the final column of Y (Figure 19b). It is certainly possible that with more tuning of

the variational autoencoder (or more hidden layers) that it may be able to recover this

relationship; however, a benefit of BART (and faBART) is that it requires very little tuning

“out of the box” while still maintaining excellent performance.

4.7. Visualization Examples

In this section, we consider two canonical datasets used in dimensionality reduction and

data visualization: (i) the (simulated) “Swiss-roll” dataset; and (ii) MNIST, a dataset of

handwritten digits. These data are highly stylized; for example, the Swiss-roll data contains

zero noise. To allow faBART to handle such data, we develop a modified version, called

tempered faBART.

4.7.1. Tempered faBART

The tempered faBART algorithm is very similar to the original Algorithm 1. The only

modification is the acceptance ratio: instead of αi, we use a tempered version, αtempi , in

which we raise the likelihood to the power of a. This tempered acceptance ratio is given by:

αtempi = exp

a
G∑
j=1

[
(yij − h(t)

ij )2

2σ
(t)2
j

− (yij − h̃ij)2

2σ2
j

+ log

(
σ

(t)
j

σ̃j

)]
+

K∑
k=1

x
(t)2
ik − x̃

2
ik

2τ2

 ,

(4.41)
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after which we take αtempi ← min{1, αtempi }.

Tempering the acceptance ratio has been used to great extent in MCMC sampling (see, for

example, Neal, 1996). However, the tempered faBART strategy differs in two ways from

many previous methods. Firstly, most tempering methods raise both the likelihood and

the prior to the power of a, whereas here we only raise the likelihood. Secondly, previous

methods generally take 0 ≤ a ≤ 1. Instead, we take a ≥ 1.

The reason tempering methods take 0 ≤ a ≤ 1 is to “flatten” the target distribution,

helping the algorithm to better navigate highly multimodal posteriors. For the visualization

examples we consider here, we instead take a ≥ 1 to make the landscape more “spiked” to

emphasize the structure of interest. This is especially the case for the Swiss-roll data, which

contains zero noise.

Further, we raise only the likelihood to the power of a. To see why this is useful, consider

again (4.41): having a larger value of a places more weight on the likelihood component,

encouraging the MCMC algorithm to accept x̃i which yield fitted values h̃i that are very

close to yi.

4.7.2. Swiss-Roll

The “Swiss-roll” dataset is a two-dimensional spiral manifold which lies in three-dimensional

space (Figure 20a). Popularized by Tenenbaum et al. (2000) and Roweis and Saul (2000),

the goal is to find a two-dimensional representation of the data which “un-wraps” the roll.

Here, however, we simply consider the dataset to gain insight into the workings of faBART.

Note that we do not promote faBART as necessarily the best method to use for visualization,

but it is informative to consider how it performs on such data.

We considered a sample of size N = 1000, generated as follows: for i = 1, . . . , N :

1. Draw ui ∼ U [0, 1], vi ∼ U [0, 1];

2. Compute ϕ = 3/2π(1 + 2ui);
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3. Set yi = [ϕ cos(ϕ), 21vi, ϕ sin(ϕ)]T .

Note that the observed yi has zero additive noise; all variation in yi is due to the signal.

We first consider the performance of PCA on this dataset. While PCA does not “unwrap”

the roll, it still successfully finds meaningful latent structure in the data. The first two

principle components represent the variation in the x-z plane, “flattening” the Swiss-roll to a

one-dimensional swirl (Figure 20b). The second and third principle components, meanwhile,

“flatten” the roll in a direction orthogonal to the swirl (Figure 20c). Essentially, these latent

representations are views of the Swiss-roll from two different angles: from the side and from

above.

We ran tempered faBART for 1000 iterations with a burn-in of 500 iterations with K =

2. The prior variance was set to τ2 = 1 and we considered three different values of the

tempering parameter: (i) a = 1, (ii) a = 5, and (iii) a = 10. When a = 1, the factors do not

find any meaningful structure (Figure 20d). When we increase a = 5, the faBART factors

replicate the “swirl” found by PCA (Figure 20e). With a further increase to a = 10, the

faBART factors “view” the Swiss-roll from above in a manner reminiscent of the second

and third principle components (Figure 20f). Thus, the tempering strategy is important to

direct faBART towards factors which result in a better reconstruction of Y.

Although faBART allows for a nonlinear mapping between yi and xi, it essentially minimizes

a similar objective to PCA: the sum of squared errors between the observed Y and its

reconstruction from the latent factors. As a result, it is not too unsurprising that they both

yield similar results on the Swiss-roll. It is important to note, however, that faBART finds

such structure with no assumptions on the form of the mapping between xi and yi.

As a further comparison to faBART, we additionally display the latent representations

found by Isomap (Tenenbaum et al., 2000), t-SNE and a variational autoencoder (Figures

20g, 20h and 20i, respectively). Isomap was designed to model large geodesic distances

and consequently can “unwrap” the Swiss-roll; however, both t-SNE and a variational
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(a) “Swiss-roll”
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(b) PCA1 vs PCA2.
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(c) PCA2 vs PCA3.
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(d) faBART with a = 1.
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(i) Variational Autoencoder.

Figure 20: Comparison of methods for Swiss-roll dataset.



autoencoder do not. Details for the implementation of each of these methods are provided

in Section 4.9.4 of the Appendix.

4.7.3. MNIST

MNIST is a dataset of labeled handwritten digits (LeCun et al., 1998). It is often used

as a benchmark for dimensionality reduction techniques, where the goal is to find a two-

dimensional latent representation of the data which reflects the true labels of the digits

(digit examples shown in Figure 21). An alternate goal for this dataset is to accurately

classify the handwritten digits; however, here we simply consider visualization of the data.

Each digit is contains 28× 28 pixels, yielding a feature dimension of G = 784. We consider

a randomly drawn subset of the data of size N = 1000.

We ran tempered faBART for 1000 iterations with a burn-in period of 500 iterations. The

prior variance was set to τ2 = 1 and the tempering parameter a = 50. In the two-

dimensional latent factors found by faBART, clear separation of different digits can be

observed (Figure 22a). In particular, faBART grouped together the “ones” and “sevens”

particularly well, while finding more diffuse groups for other digits, including the “zeros”,

“twos” and “fours” . Compared to the PCA embedding, faBART appeared slightly better

at separating the digits (Figure 22b). Note that the faBART model did not include any

clustering component; placing a mixture prior on the factors to better find latent clusters

may be interesting future work.

Both t-SNE and the variational autoencoder find latent representations with more sep-

aration between the digit classes than faBART (Figures 22c and 22d, respectively). In

particular, t-SNE separates almost all the digits into distinct groups (Figure 22c). We re-

iterate that the goal here is not to promote faBART as the best method for visualization,

but to investigate how it performs on such structured data. t-SNE in particular is expressly

designed for interpretable data visualization.
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Figure 21: A sample of digits labelled 0 to 9 in the MNIST dataset. Each digit is a 28 ×
28 matrix of values between 0 (white) and 255 (black).
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Figure 22: Two-dimensional latent representations of the MNIST data found by each
method.



4.8. Conclusion

In this chapter, we developed faBART, a method for nonlinear factor analysis where both

the factors and the mapping between the factors and observed data are unknown. The

faBART MCMC algorithm alternates between sampling the from the posterior of the latent

factors and a functional approximation to the unknown mapping. The latter step utilizes

BART of Chipman et al. (2010), a method for non-parametric regression which uses a

sum-of-trees model to estimate a broad class of functions.

On a number of simulated datasets, we demonstrated that faBART can successfully find

both the unobserved factors and their functional relationship to the observed data Y. On

two canonical datasets used in dimension reduction, we highlighted that faBART can find

meaningful low-dimensional embeddings of the data.

We note that faBART requires estimating the fitted values from BART, H, at every iteration

of the MCMC algorithm and as such, has a high computational cost. However, there have

been recent developments in the speeding up of the original BART algorithm which may

prove useful here (He et al., 2018). Moreover, this computationally burdensome step is

embarrassingly parallel and so may benefit from the use of multiple computing cores.

4.9. Appendix

4.9.1. Elliptical slice sampler

We also consider an elliptical slice sampler to draw from the posterior for X (Murray et al.,

2010). The elliptical slice sampler is feasible as it only requires the prior for X to be

a Gaussian, while the likelihood may be any function of X. The elliptical slice sampler

always accepts a draw of X. Given the previous draw X(t), the process for sampling a new

draw X̃ is as follows:

1. Sample an ellipse ν ∼MN(0, τ2I)
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2. Calculate log-likelihood threshold:

u ∼ Uniform[0, 1] (4.42)

log y ← logL(Y|X(t),H(t),Σ(t)) + log u (4.43)

3. Draw an initial proposal and define a bracket:

θ ∼ Uniform[0, 2π] (4.44)

[θmin, θmax]← [θ − 2π, θ] (4.45)

4. X̃→ X(t) cos(θ) + ν sin(θ).

5. If logL(Y|X̃, H̃, Σ̃) > log y, return X̃

6. Else, shrink the bracket and try a new point:

(a) If θ < 0, then θmin → θ

(b) Else, θmax → θ

7. θ ∼ Uniform[θmin, θmax]

8. Go to 4.

However, we found that the elliptical slice sampler would often get “stuck” as it continues

to loop until accepting a draw. We postulate that this is because the BART likelihood is

not differentiable with respect to X. In contrast, the Metropolis algorithm appears better

able to “jump” up or down the steps in the BART likelihood.

4.9.2. Distance-based proposal

We also consider an alternate proposal distribution to the spherical Gaussian used in Algo-

rithm 2. This proposal distribution is also a multivariate Gaussian centered at the previous
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draw, X(t); however, it uses a covariance matrix that is a distance matrix of Y. This is to

encourage draws x̃i and x̃j that are similar if their corresponding feature vectors yi and yj

are similar. Specifically, we considered the matrix normal proposal:

X̃ ∼MN (X(t), c2D, IK×K), (4.46)

where D ∈ RN×N is a distance matrix of Y and c2 is a tuning parameter. We considered a

distance matrix with a Gaussian kernel:

Dij = exp

{
−1

2
‖yi − yj‖2

}
, 1 ≤ i, j ≤ N. (4.47)

Ultimately, however, this proposal distribution yielded similar results to the spherical Gaus-

sian in the visualization examples in Section 4.7, and somewhat worse results in the para-

metric examples in Section 4.6.

4.9.3. Additional Linear Example

Here, we provide an additional simulated example of faBART. We consider the linear setup

used by Ročková and George (2016) to illustrate their method for sparse (linear) factor

analysis. The dimensions we consider are smaller, however, with N = 100, G = 105 and

K = 5. The data is generated as:

yi = Bxi + εi, εi ∼ N(0, σ2I), i = 1, . . . , N (4.48)

where the factors are drawn from a standard normal xi∼N(0, I). The columns of the

loadings matrix B each have 25 elements equal to one and the remaining elements zero;

each column shares five overlapping non-zero elements with the adjacent columns (Figure

23). As a result, B is not an orthogonal matrix. The goal is to recover the loadings matrix

B, using only the observed data Y.

We ran faBART for 2000 iterations with a burn-in period of 1500 iterations. The prior

120



True Loadings PCA Loadings BART Loadings PCA Varimax BART Varimax

Figure 23: Section 9.3: From left to right: (i) true B loadings matrix; (ii) PCA loadings
matrix; (iii) faBART loadings matrix B̂; (iv) PCA loadings matrix after varimax rotation;
(v) faBART loadings matrix after varimax rotation.

variance for the factors was set to τ2 = 10. Of course, faBART provides posterior draws of

the latent factors xi and the fitted values hi only, and not the loadings matrix B as no linear

relationship between the observed yi and latent xi is assumed. As a result, we estimate how

well faBART captures this true linear relationship by finding the implicit loadings matrix

B̂ = [X̂T X̂]−1X̂Y, where X̂ is the posterior mean of the factors calculated from the samples

after burn-in (Figure 23).

As a comparison, we also show the PCA loadings matrix (including only the first five

components). In Figure 23 we see that the loadings matrices from PCA and faBART are

not sparse; neither model explicitly models sparsity in the loadings, however, so this is to

be expected. As such, we implement a varimax rotation (Kaiser, 1958) to both PCA and

faBART to better visualize the latent structure found by each method (Figure 23). The

varimax step rotates the loadings to a coordinate system where they are either large or

very small. After this varimax step, we can see that faBART, along with PCA, recovers

the original sparse structure of the loadings matrix. We note that even after the varimax

rotation, faBART features larger loading values than PCA in sparse regions of the loadings

matrix. However, PCA explicitly assumes a linear relationship between the data and the

loadings matrix, unlike faBART, and so may be expected to better reconstruct the true

loadings matrix in this example.
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4.9.4. Implementation settings

Here, we provide the implementation details for the methods used in this chapter. All

methods were implemented using R.

• t-SNE: we used the Rtsne package (Krijthe, 2015) with the default settings.

• Variational autoencoder: we used a script from the R Studio GitHub, accessed from:

https://github.com/rstudio/keras/blob/master/vignettes/examples/variational_

autoencoder.R. For the Swiss-roll dataset, we changed the dimension of the hidden

layer to two, and the loss function to mean squared error. For MNIST, we retained

the original settings.

• Isomap: we used the function Isomap with the default settings from the RDRToolbox

package (Bartenhagen, 2018).
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