
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2019

Sensor-Based Topological Coverage And Mapping
Algorithms For Resource-Constrained Robot
Swarms
Rattanachai Ramaithitima
University of Pennsylvania, hanuman337@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Robotics Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3337
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ramaithitima, Rattanachai, "Sensor-Based Topological Coverage And Mapping Algorithms For Resource-Constrained Robot Swarms"
(2019). Publicly Accessible Penn Dissertations. 3337.
https://repository.upenn.edu/edissertations/3337

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3337?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3337
mailto:repository@pobox.upenn.edu

Sensor-Based Topological Coverage And Mapping Algorithms For
Resource-Constrained Robot Swarms

Abstract
Coverage is widely known in the field of sensor networks as the task of deploying sensors to completely cover
an environment with the union of the sensor footprints. Related to coverage is the task of exploration that
includes guiding mobile robots, equipped with sensors, to map an unknown environment (mapping) or clear
a known environment (searching and pursuit- evasion problem) with their sensors. This is an essential task for
robot swarms in many robotic applications including environmental monitoring, sensor deployment, mine
clearing, search-and-rescue, and intrusion detection. Utilizing a large team of robots not only improves the
completion time of such tasks, but also improve the scalability of the applications while increasing the
robustness to systems’ failure.

Despite extensive research on coverage, mapping, and exploration problems, many challenges remain to be
solved, especially in swarms where robots have limited computational and sensing capabilities. The majority of
approaches used to solve the coverage problem rely on metric information, such as the pose of the robots and
the position of obstacles. These geometric approaches are not suitable for large scale swarms due to high
computational complexity and sensitivity to noise. This dissertation focuses on algorithms that, using tools
from algebraic topology and bearing-based control, solve the coverage related problem with a swarm of
resource-constrained robots.

First, this dissertation presents an algorithm for deploying mobile robots to attain a hole-less sensor coverage
of an unknown environment, where each robot is only capable of measuring the bearing angles to the other
robots within its sensing region and the obstacles that it touches. Next, using the same sensing model, a
topological map of an environment can be obtained using graph-based search techniques even when there is
an insufficient number of robots to attain full coverage of the environment. We then introduce the landmark
complex representation and present an exploration algorithm that not only is complete when the landmarks
are sufficiently dense but also scales well with any swarm size. Finally, we derive a multi-pursuers and multi-
evaders planning algorithm, which detects all possible evaders and clears complex environments.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Vijay Kumar

Second Advisor
Subhrajit Bhattacharya

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3337

https://repository.upenn.edu/edissertations/3337?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages

Keywords
exploration, mapping, sensor coverage, swarms

Subject Categories
Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3337

https://repository.upenn.edu/edissertations/3337?utm_source=repository.upenn.edu%2Fedissertations%2F3337&utm_medium=PDF&utm_campaign=PDFCoverPages

SENSOR-BASED TOPOLOGICAL COVERAGE AND MAPPING ALGORITHMS FOR

RESOURCE-CONSTRAINED ROBOT SWARMS

Rattanachai Ramaithitima

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2019

Vijay Kumar, Supervisor of Dissertation
Nemirovsky Family Dean of Penn Engineering

Subhrajit Bhattacharya, Co-Supervisor of Dissertation
Assistant Professor, Mechanical Engineering and Applied Mechanics

Rajeev Alur, Graduate Group Chairperson
Zisman Family Professor, Computer and Information Science

Dissertation Committee

Camillo J. Taylor, Professor of Computer and Information Science
M. Ani Hsieh, Research Associate Prof. of Mechanical Engineering and Applied Mechanics
Robert W. Ghrist, Professor of Mathematics and Electrical and Systems Engineering
Alberto Speranzon, Technical Fellow, Honeywell

Acknowledgments

This thesis would not have been possible without the support of many people. First and

foremost, I would like to thank my advisors, Vijay Kumar and Subhrajit Bhattacharya, for

all of their support and guidance throughout my Ph.D. It has been my pleasure to work

under their guidance and be involved in many interesting projects. I would also like to

thank my entire committee for all the valuable feedback that helped improve my writing

and presentation of this project.

Some of the projects included in this thesis were collaboration projects that involved efforts

of many people. In particular, I would like to thank Michael Whitzer, who helped me with

all the Scarab experiments. Alberto Speranzon, Siddharth Srivastava, and Shaunak Bopar-

dikar also provided many ideas that helped shape this thesis during my internship at United

Technologies Research Center. Additionally, I would like to thank everyone at MRSL and

PERCH for making my time in graduate school as enjoyable as I could hope for.

I also want to thank all my Thai friends at Penn who made me feel at home despite being

halfway around the world. Last but not least, I would like to thank my family overseas for

being patient and supportive throughout my long journey at Penn.

ii

ABSTRACT

SENSOR-BASED TOPOLOGICAL COVERAGE AND MAPPING ALGORITHMS FOR

RESOURCE-CONSTRAINED ROBOT SWARMS

Rattanachai Ramaithitima

Vijay Kumar

Subhrajit Bhattacharya

Coverage is widely known in the field of sensor networks as the task of deploying sensors to

completely cover an environment with the union of the sensor footprints. Related to coverage

is the task of exploration that includes guiding mobile robots, equipped with sensors, to map

an unknown environment (mapping) or clear a known environment (searching and pursuit-

evasion problem) with their sensors. This is an essential task for robot swarms in many

robotic applications including environmental monitoring, sensor deployment, mine clearing,

search-and-rescue, and intrusion detection. Utilizing a large team of robots not only improves

the completion time of such tasks, but also improve the scalability of the applications while

increasing the robustness to systems’ failure.

Despite extensive research on coverage, mapping, and exploration problems, many challenges

remain to be solved, especially in swarms where robots have limited computational and

sensing capabilities. The majority of approaches used to solve the coverage problem rely

on metric information, such as the pose of the robots and the position of obstacles. These

geometric approaches are not suitable for large scale swarms due to high computational

complexity and sensitivity to noise. This dissertation focuses on algorithms that, using

tools from algebraic topology and bearing-based control, solve the coverage related problem

with a swarm of resource-constrained robots.

First, this dissertation presents an algorithm for deploying mobile robots to attain a hole-less

sensor coverage of an unknown environment, where each robot is only capable of measuring

the bearing angles to the other robots within its sensing region and the obstacles that it

touches. Next, using the same sensing model, a topological map of an environment can be

obtained using graph-based search techniques even when there is an insufficient number of

iii

robots to attain full coverage of the environment. We then introduce the landmark complex

representation and present an exploration algorithm that not only is complete when the

landmarks are sufficiently dense but also scales well with any swarm size. Finally, we derive

a multi-pursuers and multi-evaders planning algorithm, which detects all possible evaders

and clears complex environments.

iv

Contents

Abstract iii

Contents v

List of Figures viii

1 Introduction 1

1.1 Research Problems . 3
1.1.1 Key Contributions . 4

1.2 Thesis Overview . 4

2 Background and Related Work 6

2.1 Algebraic Topology . 6
2.1.1 Topological Background . 6
2.1.2 Coverage via Homology . 9
2.1.3 Landmark Complex . 11

2.2 Bearing-based Controllers . 12
2.2.1 Gradient Field Approach . 12
2.2.2 Biologically Inspired Approach . 13

2.3 Related Work . 13
2.3.1 Coverage . 14
2.3.2 Topological Mapping . 15
2.3.3 Exploration . 16
2.3.4 Pursuit-Evasion . 18

3 Sensor Coverage 20

3.1 Preliminaries . 21
3.2 Rips Complex of Visibility Disk . 22
3.3 Algorithmic Designs . 23

3.3.1 Identifying Frontier and Obstacle Subcomplexes 24
3.3.2 Identifying Path in 1-skeleton for “Pushing” Robots 29
3.3.3 Identification and Reallocation of Redundant Robots 32

3.4 Results . 33
3.4.1 Guarantees . 33
3.4.2 Simulations . 35
3.4.3 Experiment with Heterogeneous team of Live and Virtual Robots 36

v

3.5 Conclusion . 38

4 Topological Mapping 39

4.1 Overview . 40
4.2 Multi-stage Construction and Stitching of APGVGs 41

4.2.1 Generalized Voronoi Graph and its Approximate Discrete Construction . . 41
4.2.2 Robot Redeployment and Stitching the APGVGs 47
4.2.3 Estimation of the Number of Robots Required 49

4.3 Results . 51
4.4 Conclusion . 51

5 Landmark-based Exploration 54

5.1 Preliminaries . 56
5.1.1 Notations . 56
5.1.2 Dispersion . 56
5.1.3 Multi-robot Exploration . 57

5.2 Algorithmic Design . 58
5.2.1 Frontier Identification . 59
5.2.2 Landmark Complex and Navigation Graph Construction 63
5.2.3 Cost-Utility Function . 65
5.2.4 Task Execution . 66

5.3 Statistical Analysis . 66
5.3.1 Idealized Scenario . 66
5.3.2 Benchmarking . 70

5.4 Alternative Control Strategies in Presence of Coarse Range Measurement 75
5.4.1 Unscaled Distance Exploration Strategy 76
5.4.2 Misdetection of Holes/Obstacles . 85

5.5 Conclusion . 89

6 Pursuit-Evasion 90

6.1 Preliminaries . 92
6.1.1 Problem Description . 92
6.1.2 Pursuit-Evasion on Landmark Complex 96
6.1.3 Solving PE as a Partially Observable Planning Problem 97

6.2 Abstraction Framework . 98
6.2.1 Abstraction State Space . 98
6.2.2 Partition Algorithm . 101

6.3 Hierarchical algorithm . 103
6.3.1 Planning in the abstraction state space . 104
6.3.2 Refinement . 104
6.3.3 Minimizing the number of pursuers . 105

6.4 Results . 106
6.4.1 Simulation Results . 106
6.4.2 Comparison . 110
6.4.3 Discussion . 110

vi

7 Conclusion and Future Work 112

7.1 Contribution . 112
7.2 Future Work . 113

Bibliography 116

vii

List of Figures

2.1 Simplices . 7
2.2 Čech Complex . 8
2.3 Rips Complex . 9
2.4 Relative H2 homology . 10
2.5 Landmark Complex . 10

3.1 Sensor Coverage Overview . 21
3.2 Touch/Contact Sensors . 22
3.3 Overlap of Visibility Disk . 22
3.4 Rips complex of Visibility Disk . 23
3.5 Identifying Fence Subcomplex . 25
3.6 Identifying Frontiers using Bearing angles . 25
3.7 Identifying Robot Placement . 29
3.8 Identifying Path for Deployment . 31
3.9 Controls of Robots . 32
3.10 Comparison with Optimal Arrangement . 36
3.11 Simulation in simple environment . 36
3.12 Experiment with Heterogeneous team of Live and Virtual Robots 37
3.13 Architecture of the Experimental Setup . 38

4.1 Overview of Topological Mapping Alrogithm 40
4.2 GVG vs APGVG . 41
4.3 Obstacle Subcomplex Segmentation . 43
4.4 APGVG Construction . 44
4.5 Segmentation of Obstacle Subcomlex . 45
4.6 Identify Redeployable Robots . 47
4.7 Stitching APGVGs . 48
4.8 Approximation of the number of robots required 49
4.9 Simulation in Simple Environment . 52
4.10 Simulation in Complex Environment . 53

5.1 Overview of Landmark-based Exploration . 55
5.2 Sensing Model . 57
5.3 Frontier Identification . 61
5.4 Obstacle Boundary . 62
5.5 Landmark Distribution . 63

viii

5.6 Navigation Graph . 64
5.7 Testing Environments . 67
5.8 Performance Graph . 68
5.9 Obstacle-Free Environment Exploration . 69
5.10 Simple Environment Exploration . 70
5.11 Complex Environment Exploration . 71
5.12 Explotation of Landmark Complex . 72
5.13 Comparison with Random Walk . 72
5.14 Realistic Test Set 1 . 74
5.15 Result Test Set 1 . 75
5.16 Realistic Test Set 2 . 76
5.17 Result Test Set 2 . 77
5.18 Result Test Set 3 . 78
5.19 Unscaled Distance Estimation . 79
5.20 Bounded Voronoi Diagram . 79
5.21 Vector Fields . 80
5.22 Color Map of ' . 82
5.23 Intersection of BVG with obstacles . 83
5.24 Navigation Graph of BVD . 84
5.25 Exploration Path of Revise Strategy . 84
5.26 Misdetection of holes/obstacles . 85
5.27 Observation of Antipodal Corners . 86
5.28 Domain of Visibility of an Edge . 87
5.29 Misdetection of obstacle with edge as landmarks 88
5.30 Accuracy for using Edge as Landmark . 88

6.1 PE Algorithm Overview . 91
6.2 Clearing Process and Recontamination . 93
6.3 Example of Graph Representation . 95
6.4 Edges Traversal . 96
6.5 Connected Component Function . 99
6.6 Edges Removal . 99
6.7 Abstraction Framework . 101
6.8 Refining the Abstract Solution . 105
6.9 Testing Environments . 107
6.10 Performance in Tree Structure . 107
6.11 Performance in Ladder Structure . 108
6.12 Clearing Loop Structure 1 . 109
6.13 Clearing Loop Structure 2 . 109

ix

Chapter 1

Introduction

The recent advent of technologies called the Internet of Things (IoT) clearly holds significant

potential benefit to individuals, society, and the economy [19, 33]. As the demand for sensors

and processors continues to increase, their price/performance ratio has been steadily falling;

thus leading to the new wave of technological advancement in autonomy including smart

home, smart city, and self-driving vehicles. Nevertheless, robustness has been one of the main

hurdles in deployment of these technologies. The current trend to achieve robustness has

been focused on using a large number of high precision sensors, resulting in high production

costs as well as intensive computational requirements such as processor and memory usage.

These components would also come with high energy consumption and a large amount of

payload. For instance, the autonomous vehicle, developed by Waymo, consists of three

Lidar (Light Detection and Ranging) sensors, five Radar (Radio Detection and Ranging)

sensors, and a vision system [91]. The total cost of these sensors alone would be more than

$50,000. Certainly, the price of these sensors will drop as their demand increases. However,

the specification for other corresponding requirements will likely increase. For instance,

the complexity of associating sensing information increases as large numbers of autonomous

vehicles will eventually need to share their sensing information.

A similar situation occurs in sensor networks which form an important component of

the smart city/home. The majority of existing solutions assume that the absolute global

1

position of the sensors and the map are available. In contrast, this dissertation explores an

alternative approach to robustness through use of a large number of basic sensors. There is

very little work on how small, resource-constrained sensors and processors can be utilized

in large-scale environments, especially when the map is not available a priori. These small,

resource-constrained sensors are particularly appealing to commercial applications such as

crop monitoring [60], vacuum cleaning [100], structural inspection [32, 68], environmental

monitoring [83], and intruder detection [45] due to the low production cost, the robustness

to failure of individual sensors, and the scalability of the environment they can operate in.

The fundamental problems of these applications include information gathering, mapping,

and exploration, all of which require the mobile robots to cover an environment with their

sensors either permanently, persistently, or temporarily. Designing a swarm of robots to

solve the sensor coverage problem in these applications encompasses many different areas

of robotic research including, but not limited to, planning, localization, control, perception,

and mapping. For instance, each robot must be able to autonomously navigate to various

parts of the environment. This step requires the robot to plan a path that does not collide

with obstacles, and then generate control inputs driving the actuators to follow this path.

Each robot also needs to determine where it is in the configuration space, a task known as

localization. This generally requires a robot to perceive and process information gathered

by its sensor(s). Additionally, the robot may need to construct a representation of the

environment, using the gathered information if the environment is unknown. Last but not

least, the robots must also coordinate with each other to determine where each robot should

move given an overall task based on the available information about the environment.

Although each of these components deserves substantial attention, the primary focus

of this dissertation is to design efficient planning and control strategies that enables robot

swarms to address the coverage and mapping problem with minimal resources. The resource

here refers to the capabilities of the robots in terms of sensing, computing, and sharing

information. Ultimately, our goal is to provide a guideline for developing an algorithm

to solve more complex problems in robotics using resource-constrained robot swarms. In

2

the remainder of this chapter, we identify the main challenges in designing algorithms for

resource-constrained robots and discuss some potential remedies. We then summarize the

remainder of this dissertation which discusses a series of sensor coverage problems and the

proposed algorithms to solve them.

1.1 Research Problems

Most of the modern state-of-the-art approaches developed to solve the sensor coverage prob-

lem focus on a metric space where the environment is represented by a map constructed by

integrating range measurement of the obstacles with the poses of the robots. The pose of

the robot is either provided by external sensors such as Global Positioning Systems (GPS)

or motion capture systems, or estimated through a combination of internal sensors including

accelerometer and gyroscopes (IMU), visual and/or range sensors (Lidar, camera). Although

this metric information provides highly accurate and efficient solutions, external sensors are

often not available while the integration of internal sensors generally requires high precision

sensing information and huge computational resources which are not achievable with low

budget sensors and processors.

On the other hand, a topological approach, where information is represented by a set

of points without geometric coordinate system, is more suitable for handling a swarm with

these types of mobile sensors. In recent years sensor coverage has been studied more formally

using simplicial complex and homological tools from algebraic topology [24, 26, 43]. Such

approaches are completely topological and require little to no metric information, which is

particularly attractive for our purposes. Nevertheless, there still remains many challenges

in the adaptation of these topological approaches to solve the coverage problem, especially

in guidance, navigation, and control of these mobile sensors in a coordinate-free system. To

this end, the vision-based controllers which have been inspired by biological systems that

are capable of utilizing minimal resources to carry out their everyday tasks can be applied.

Specifically, these controllers utilize bearing information which can be obtained from the

cameras with relatively high accuracy compared to the range information.

3

1.1.1 Key Contributions

This dissertation presents algorithms for some core problems, namely (sensing) coverage,

topological mapping, exploration, and pursuit-evasion, which can be generalized to many

other applications in robotics. In each problem, the proposed algorithm is designed to

solve such a task using as little sensing capability as possible while still being efficient and

complete.

1.2 Thesis Overview

To provide a guideline for developing coverage and mapping algorithms for these resource-

constrained robots, this document introduces some notation from algebraic topology and

bearing-based controllers in Chapter 2. This chapter also discusses some of the related work

on these sensor coverage problems.

The algorithm for deployment of a swarm of mobile robots into an unknown environment

to attain complete sensor coverage is presented in Chapter 3. Each robot is only capable of

measuring the bearing to other robots within its convex sensing footprint without knowledge

of any other metric or global information. Using the same sensing model, an algorithm

to construct a topological map - a global description of an environment - is presented in

Chapter 4.

Chapter 5 introduces a new sensing model where each robot is capable of identifying a

set of unique landmarks in the environment to solve an exploration problem. The proposed

approaches apply a frontier-based strategy to a special type of topological map called a

landmark complex. The first strategy directly constructs a navigation roadmap from the

dual of the landmark complex and utilizes an existing bearing-based controller to guide

the robots around the environment. Under the assumption of sufficiently dense landmarks,

the proposed method could construct a map that encapsulates all topological features of the

environment. However, the existing bearing-based controller does not guarantee a collision-

free path and requires a knowledge of global orientation to achieve globally asymptotic

stability. To address these limitations, we propose a new control policy that utilizes a local

4

range information obtained from consecutive bearing measurements to navigate the robots

around and explore the environment. Additionally, we demonstrate the performance of

our proposed method in a more realistic setup, discuss the limitations of landmark-based

exploration, and then propose solutions to address some of those limitations.

Next, we consider a variation of the multi-pursuer and multi-evader planning problem

where the objective is to clear a given environment from any potential intruders in Chapter 6.

We propose a framework that partitions the configuration space into sets of topologically

similar configurations that preserve the possible intruder positions and then synthesizes

solutions in the reduced space. We first propose a framework to solve the pursuit-evasion

problem on a metric map and then explain how to apply similar framework to the topological

map such as one introduced in Chapter 5, as its key idea focuses on the topological features

of the map which is readily available in the topological map.

Lastly, we conclude this entire thesis as well as discuss possible future directions in

Chapter 7.

5

Chapter 2

Background and Related Work

This chapter introduces the tools from algebraic topology and the bearing-based controllers

that will be used in this dissertation. It then surveys some of the recent research that

is related to the sensor-based coverage and mapping problem discussed in the following

chapters.

2.1 Algebraic Topology

This section briefly summarizes the key definitions and results in algebraic topology that

are used extensively in this thesis. The reader should refer to the literature [24, 41, 43, 47]

for examples and details of the topics discussed in this chapter.

2.1.1 Topological Background

A topological space is a nonempty set, X , equipped with a topology, a collection of open

subsets of X , such that a topology (i) contains both the empty set and the set X and (ii)

remains closed under a finite intersection and arbitrary union of its member. Two topological

spaces X , and Y are then homotopy equivalent if there exists continuous maps f : X ! Y

and g : Y ! X such that f ·g ' IdY and g ·f ' IdX . One particularly simple class of spaces

that we will work with is a simplicial complex whose purely combinatorial counterpart is an

abstract simplicial complex.

6

(a) 0-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 2.1: Examples of simplices in a simplicial complex.

Simplicial Complex

A simplicial complex, informally speaking, is a higher dimensional generalization of a graph,

which not only consists of 0-simplices (vertices) and 1-simplices (edges), but also their

higher-dimensional counterparts such as 2-simplices, 3-simplices and so on (illustrated in Fig-

ure 2.1). Consequentially, it is possible to create a topologically equivalent piece-wise linear

representation of a configuration space of 2 and higher dimensions using a simplicial complex.

We start with the formal combinatorial definition of a simplicial complex.

Definition 1 (Simplicial Complex). A simplicial complex, S, constructed over a set V (the

vertex set) is a collection of sets Cn, n = 0, 1, 2, · · · , such that

i. An element in Cn, n � 0 is a subset of V and has cardinality n + 1 (i.e., For all

� 2 Cn, � ✓ V, |�| = n + 1). � is called a “n-simplex ” (Simplex definition).

ii. If � 2 Cn, n � 1, then ��v 2 Cn�1, 8v 2 �. Such a (n�1)-simplex, ��v, is called a

“face” of the simplex � (Boundary property).

The simplical complex is the collection S = {C0, C1, C2, · · · }.

Two examples of simplicial complexes that have been widely used to convert data in a

metric space to a topological space are the Čech complex and the Rips complex [24, 25].

Definition 2 (Čech Complex). A Čech complex, C✏(X), constructed over a set of points

X = {x↵} in a metric space and a fixed ✏ > 0, is a simplicial complex whose n-simplices

correspond to unordered (n+1)-tuples of points in X such that an intersection of ✏/2�balls

around each point is nonempty.

7

Figure 2.2: The Čech complex correctly approximates the topology of the covered
regions (one connected component and two holes).

Given a sensor network where X represents the positions of all sensors whose sensing

footprints are circular disks with radius of ✏/2, a Čech complex, C✏(X), is homotopy equiv-

alent to the regions covered by the sensor network (homotopy equivalence) as illustrated

in Figure 2.2. Nevertheless, the Čech complex is generally difficult to compute as checking

nonempty intersection requires precise distances between the sensors. As a result, we turn

to the Vietoris-Rips complex or simply the Rips complex.

Definition 3 (Rips Complex). A Rips complex R✏(X), constructed over a set of points

X = {x↵} in a metric space and with a fixed ✏ > 0, is a simplicial complex whose n-

simplices correspond to unordered (n + 1)-tuples of points in X which are pairwise within

distance ✏ of each other.

The computation of the Rips complex is less expensive. Nevertheless, it may not correctly

capture the topology of the covered regions due to the geometric properties of the disk as

depicted in Figure 2.3.

The topological invariant of a space can be captured by computing the homology of a

simplicial complex. Given S = {C0, C1, C2, ...} with dn being the boundary map from Cn to

Cn�1, the homology of S is defined as Hn(S) = ker dn/im dn+1 [47]. The resulting homology

groups indicate the topological features of the space. For instance, H0(S) corresponds to

the number of connected components in the simplicial complex while H1(S) corresponds to

the number of holes in the simplicial complex.

8

(a) A sensor network (b) Čech complex (c) Rips complex

Figure 2.3: The Rips complex does not always capture the topology of the cover as
there are two holes in the sensor network (and in the corresponding Čech complex)
but no hole in the Rips complex.

2.1.2 Coverage via Homology

De Silva and Ghrist formally studied the coverage problem in an idealized sensor network

using tools from computational homology [24]. They assumed that the Rips complex R

was constructed on a set of sensors X with the broadcast radius rb and the cover radius of

rc.

Remark 1. rc � rb/
p

3 is the optimal ratio such that the topological features of the

Rips complex, Rrb(X), suffice to conclude the geometric properties such as the number of

connected components and the number of holes of the union of the cover with radius rc.

Let F ⇢ R denote a 1-dimensional fence cycle which is the boundary of the covered

regions. One can then construct a relative chain complex, C⇤(R,F) for computing the

relative homology H2(R,F). This chain complex, in essence, is the complex obtained by

quotienting out the subcomplex F . This can be viewed as collapsing F to a single point, or

introducing a new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to every {i, j} 2 F –

as illustrated in Figure 2.4b.

Remark 2. The 0-simplices (sensors) making up a nontrivial relative cycle in C2(R,F) such

that it passes through all the 0-simplices in the fence cycle, F , is sufficient for maintaining

the sensor coverage.

9

8

12
10

11

6

7

3

2

1

9

54

13

(a) A Rips complex R with the fence cycle F ,
marked in cyan and brown.

Q

8

12

10

11

6

7
3

2

1

9
54

13

(b) Topology of the space where the fence cycle
F is connected to a new 0-simplex Q.

Figure 2.4: An instance where the redundant sensor (#10) can be identified from
a nontrivial element of the relative homology H2(R,F).

Figure 2.5: Landmark Complex (right) is constructed by a robot wandering in an
environment (dashed trajectory) and observing the landmarks (colored stars), the
landmark complex captures the topology of the workspace (left) correctly where a
hole corresponds to an obstacle.

10

2.1.3 Landmark Complex

Introduced by Ghrist et al. [43], the landmark complex – a simplicial complex constructed

from the observation of landmarks in the environment. The construction of a landmark com-

plex requires that the robots detect the presence of distinguishable landmarks within their

respective sensing footprints, but no distance or bearing measurements to the landmarks

are necessary.

A landmark complex, L = {C0, C1, C2, · · · }, is an abstract simplicial complex constructed

over a set of distinct landmarks, {L1, L2, · · · }, based on observations made by robots with

limited-range sensors navigating in the environment, and is described as follows: Every time

a robot observes a n-tuple of landmarks, it inserts the corresponding (n�1)-simplex in Cn�1

(along with all its faces and sub-faces in Ci, i < n� 1), as illustrated in Figure 2.5.

Under certain density assumption on the landmarks and robot observations, a landmark

complex is a truthful topological representation of the environment (homotopy equivalence).

The landmark density requirement itself is that at least one landmark needs to be visible from

every point in the environment. Or, in other words, the visibility domains of the landmarks

(disks of same radii as the sensing radius, centered at each landmark), {Vj}, need to cover

the entire workspace of the robots. With this condition, and sufficiently dense sampling

of observations by the robots, the landmark complex is identical to the Čech complex (or

nerve) of the visibility domains of the landmarks (since every n-way overlap of the visibility

domains, Vi1i2···in = Vi1 \ Vi2 \ · · · \ Vin , corresponds to a potential observation of those n

landmarks by a robot in Vi1i2···in), and hence by the Nerve theorem, homotopy equivalent

to the workspace W .

Additionally, by Dowker’s theorem [27], the dual of landmark complex, denoted by obser-

vation complex is an abstract simplicial complex, whose vertices are the set of observations,

and an n�simplex represents the set of n + 1 observations that share some landmarks in

common.

11

2.2 Bearing-based Controllers

Bearing-based controllers refer to the control policies that rely solely on the bearing measure-

ment towards static landmarks or features to navigate the robot around the environment.

These type of controllers have been widely used in the vision-based navigation since cameras

yield a relatively good bearing measurement but poor range information (or no range infor-

mation with single camera). Nevertheless, the existing bearing-based controllers generally

require global compass direction to get a globally asymptotically stable solution. On the

other hand, if the global compass direction is unknown, there exist solutions that use the

relative bearing angles (difference between bearing) [5, 62, 63]. Nevertheless, to the best of

the author’s knowledge, none of them provide of the proof of global convergence.

In this section, we introduce two bearing-based controllers that will be used in this thesis.

2.2.1 Gradient Field Approach

The bearing-based visual homing controller, presented in [94], utilizes a gradient field of a

Lyapunov function to control the robots toward the given home location.

Let xg 2 Rd denote the coordinate of the home location, and {xi}
N

i=1 2 Rd denote the

locations of N landmarks. For i = {1, ..., N}, the unit vector representing the bearing

direction at point x 2 Rd is defined as

�i(x) =
xi � x

kxi � xk
, (2.1)

or simply �i. The home bearing direction, �⇤
i
, is then denoted by

�⇤
i = �i(xg) =

xi � xg

kxi � xgk
. (2.2)

Let ci denote the inner product ci = �⇤T
i

�i and f : R ! R denote a univariate reshaping

12

function. The control input u is defined from the gradient of a cost function ' : Rd
! R as

u = �gradx' (2.3)

=

NX

i=1

gradx'i (2.4)

gradx'i = �f(ci)�i � ḟ(ci)(I � �i�
T

i)�⇤
i . (2.5)

For f(ci) = 1� ci, the gradient function can be simplified to

gradx = �

NX

i=1

�i +

NX

i=1

�⇤
i , (2.6)

which is equivalent to the well-known Average Landmark Vector method [58].

2.2.2 Biologically Inspired Approach

This approach, in contrast to the previous, uses the perpendicular vector to the bearing

measurement to create the navigation vector field [64]. Using the same notation as the

previous controller, the perpendicular vector of bearing direction, �?
i

, is defined as

�?
i ,

2

64
0 �1

1 0

3

75�i (2.7)

The control law u:

u = �

NX

i=1

⇣
�⇤T
i �?

i

⌘
�?
i , (2.8)

is globally asymptotically stable. The proof has been shown in the original paper [64].

2.3 Related Work

This section reviews some of the recent findings in literature that are closely related to the

problems discussed in this thesis.

13

2.3.1 Coverage

Coverage of indoor environments using teams of mobile robots is a well-studied problem

in robotics. There are many variations of coverage problems. For instance, coverage path

planning (CPP) refers to the task of visiting every point (or within a certain distance of

every point) in a given environment as has been addressed in [1, 37, 97]. This variation of

the problem only requires the robot(s) to temporarily cover each region of the environment.

Such behavior is highly applicable to the house cleaning robots, one of the most well-known

robotic applications. In contrast, the problem of attaining persistent coverage by a sensor

network is the task of deploying and distributing a team of robots such that they attain and

maintain constant sensory coverage of every point in the environment, which is a charac-

teristic required in applications related to environmental monitoring. In the presence of a

limited number of robots, this problem has often been handled using the Voronoi partition

of the environment and the minimization of a coverage functional [11, 22]. However such

approaches invariably rely on a global localization capability for each robot (for example,

using GPS). Complete sensor coverage of indoor environments using swarm of robots have

been studied in [28, 86], where the known world is modeled as a graph, robots are assumed

to have global localization and can be made to navigate independently from one location

to another in a global coordinate frame. In almost all of these lines of research, global

localization of the robots, a priori knowledge of the environment (obstacle configurations),

availability of metric information and ability to control the robots from one point in the

environment to another have been assumed.

Biologically inspired multi-robot coverage algorithms have also been proposed [53, 97],

which are most often distributed and the robots rely on local sensing only. Similar lo-

cal communication-based algorithms for robot swarms have been used to construct various

shapes [84] in an environment. However, such behavior-based algorithms come with very

limited theoretical guarantee. Likewise, distributed coverage algorithm with no global lo-

calization have been studied in [8]. But the notion of coverage being based purely on a

graph gives limited to no guarantee on the attainment of sensor coverage or the optimality.

14

Furthermore such approaches inherently assume availability of some metric information.

On the other hand, the topological approach which requires little to no metric informa-

tion has been recently applied to the coverage of the idealized sensor network in [24] (also

previously mentioned in Section 2.1). In general, homology computation has been extremely

useful in detecting holes in sensor network coverage. While some progress has indeed been

made in controlling the network as to mend the holes in sensor coverage [26, 70], all these

methods only work in obstacle-free environments and require some localization of the robots

to control them.

At approximately the same period that we developed our algorithm, a similar research

study conducted by Lee, et al. [61] studies the problem of maximization of coverage area with

a limited number of robots equipped with limited local sensors. Similar to our approach,

their solution uses bearing measurement only in deploying the team of robots to achieve the

maximal coverage of the unknown environment. The proposed method iteratively constructs

the triangulation of the explored regions using the local bearing information, which appears

to be similar to the simplicial complex. Then, the new robot is deployed to the unexplored

regions in a breadth-first search pattern. There are three differences between our approach

and their proposed method. First, we use the Rips complex to represent the structure of the

explored regions which automatically yields the topological information of the environment.

Secondly, our approach can repair the holes caused by the failure of any individual sensors.

Lastly, our deployment strategy minimizes the sum of the travel distance square, resulting

in a shorter mission time.

2.3.2 Topological Mapping

A topological map (also, a topological graph), by definition, is a roadmap [80, 92] which is a

sparse representation of the configuration space capturing its topological features such as the

connectivity of the free space. A topological map provides information for fast navigation

in many human environments (urban/rural environments, homes, shops, office buildings),

as well as hazardous environments (collapsed buildings, underground tunnels) and is bene-

ficial for time-critical applications like disaster response and search/rescue. In a resource-

15

constrained environment and in the absence of global localization or metric information, a

topological map not only provides a coarse topological representation of the environment,

but also a roadmap for transporting physical robots, equipment or supplies from one point

to another.

The topological map that is of particular interest in this dissertation is the Generalized

Voronoi Graph (GVG, also called a Generalized Voronoi Diagram or a GVD), which is the

locus of points in the configuration space which have more than one distinct “closest” points

on the boundary of the configuration space. Given a configuration space, the algorithms for

constructing a GVG are well-studied [7, 18, 95]. The practical motivation and applications

of a GVG representation of an environment are diverse, including sensor based mapping [92],

efficient motion planning [38], and computer graphics [71].

Nevertheless, there has been very little work in literature on how small, resource-constrained

sensors and processors can yield global information that is relevant to operation in large-scale

environments. Topological representations that are robust to sensor and actuator noise, and

have reliable local-to-global integration properties, are an ideal choice when working with

resource-constrained robots in GPS-denied environments. Existing works in the topologi-

cal mapping literature ([52, 55, 56, 92]) require robot(s) equipped with sensors that yield

metric information and are able to localize themselves in an inertial frame. However, in the

scenario where robots are prone to failure, such as in hazardous environment, the swarms

of resource-constrained robots would be preferred due to the higher rate of success.

2.3.3 Exploration

Autonomously exploring an unknown environment is another well-studied problem in robotics

as it is one of the most essential task for operations in an unknown environment. This prob-

lem encompasses many areas of research in robotics including planning, control, mapping,

and localization. The exploration can be carried out using a single robot [98] or a team of

robots [13, 36, 99]. While the goal of a single-robot exploration is quite straight forward

as minimizing the overall exploration time, the multi-robot exploration problem introduces

many variables that can be utilized to achieve the optimal results. Some of the main chal-

16

lenges for multi-robot exploration include coordination between robots, map merging, and

limited communication.

The strategies for exploration can be roughly divided into the frontier-based strate-

gies [13, 36, 99] and the information-based strategies [3, 81, 89]. The frontier-based strategies

focus on the coordination between robots to achieve the minimum exploration time while

assuming that the robots have perfect localization and mapping capability. On the other

hand, the information-based strategies consider the uncertainty in the pose of the robots

and the sensors. By utilizing the notions of entropy from information theory, the objective

is to minimize the uncertainty of the constructed map and robot’s poses by choosing actions

that yield high information gain while maintaining low uncertainty. In almost all of these

approaches, the map is represented by a probabilistic map that requires some range mea-

surement and the pose estimation of the robots. As a result, these approaches inherently

require robots to be equipped with high sensing and computing capabilities. Additionally,

the integration of information is challenging with noisy sensors as the uncertainty from each

robot will not yield a consistent map.

Another task that is closely related to exploration is the well-known simultaneous local-

ization and mapping (SLAM). Similarly, most state-of-the-art methods that require precise

metric information (such as range measurements to obstacles), rely on relatively precise

odometry measurements, and require extensive post-processing in order to correct for accu-

mulated errors to build a complete map [4, 14, 17, 23, 29, 69]. Hence the representations

of the environment that the robots build is not coordinate-free (e.g., an occupancy grid).

The problem becomes even more complex when multiple robots need to build such a map

simultaneously since the amount of information that needs to be shared between robots is

extremely large and a precise transformation between the robots’ local coordinates is difficult

to compute [49, 93].

While there has been extensive work in swarm robotics [21], the need for swarm algo-

rithms to be scalable has been the bottleneck in addressing the exploration and mapping

problems using large swarms. The focus of swarm literature has thus primarily been on

17

solving problems such as coverage [30] and estimation [31, 66].

2.3.4 Pursuit-Evasion

The pursuit-evasion problem has been studied extensively from many perspectives including

differential game theory [50], graph-based search [54, 73], visibility-based search [40, 45],

probabilistic search [72], and sensor placement [2]. Isaacs [50] studied the sufficient and

necessary conditions for a pursuer to capture an evader in the scenario where a pursuer and

an evader alternatively take turn moving in finite space.

Parsons [73] pioneered the graph theory aspect of pursuit-evasion problem in 1976 by

solving the problem of searching for a lost man in a known cave structure, which he represents

as a searching on a discrete graph. Evaders reside on the edges and can be adversarial. To

detect the evaders, the pursuer must move along the edge occupied by the evaders and touch

the evader. Initially all edges are contaminated, and will become cleared if they certainly

do not contain any evaders. The edges can also be recontaminated if the evader move back

to the cleared edge without being detected. The pursuers’ goal is to find a trajectory that

clears all edges.

Later in 2007, Kolling and Carpin [54] proposed an algorithm to solve a similar problem

called GRAPH-CLEAR, where the goal was to solve for an optimal solution in clearing the

graph under special circumstances. Nevertheless, this type of edge-search, where evaders

reside on the edges, are not directly applicable to most robotics applications, especially

in the unstructured environment where graph construction is non-trivial. In more recent

work, Hollinger et al. [48] discussed an algorithm called GSST for adversarial search where

evaders reside on the node. Nevertheless, GSST still suffers from the graph construction

in the unstructured environment and the solution is limited to a tree structure, which may

solve the non-tree structure by placing some stationary pursuers to break up the cycles.

On the other hand, Guibas et al. [45] and Gerkey et al. [40] formulated the problem as

searching in a continuous space where each pursuer has infinite line of sight and the goal of

the pursuers is to see all possible evaders. Their method includes partitioning a free space

based on a critical point and then applying a graph-based searching technique. Nevertheless,

18

their approach only works with very few pursuers and the critical point technique which is

adapted from a trapezoidal decomposition is limited to a 2-dimensional environment.

An alternative formulation of the pursuit-evasion is considered in the probabilistic search

by relaxing the worst-case scenario with the model of evaders or some uncertainty. Ong et

al. [72] proposed an approximate sampling-based algorithm to solve the pursuit-evasion as

a Partially Observable Markov Decision Process (POMDP) problem.

In sensor network, Adams and Carlsson [2] use tools in algebraic topology combined

with information about the affine structure of covered region to determine the sufficient and

necessary condition for the existence of an evasion path given the positions of each mobile

sensor in the space-time dimension of 2D environment. Later, Ghrist and Krishnan [42]

generalize the previous criterion to an arbitrary dimension without information regarding

the affine structure.

19

Chapter 3

Sensor Coverage

Coverage by a sensor network is the task of deployment and distribution of mobile sensors

such that they attain and maintain constant sensory coverage of every point in the environ-

ment as illustrated in Figure 3.1. This task is useful in a wide range of applications such

as health monitoring, traffic monitoring, environmental risks monitoring, and prevention of

disasters. These monitoring tasks often involve a large number of sensors with limited com-

putational and communication capabilities. In the event that the map of an environment

is not available a priori, a sensor network (or a swarm of robots) also needs to explore and

learn about an environment in order to complete the global mission. In this chapter, we

focus on the problem of efficiently exploring an unknown indoor environment with a rapidly

expanding swarm of robots with limited and noisy local sensing with no global localization

or sensing capabilities.

This chapter makes two primary contributions. First, we design a distributed control al-

gorithm for deploying the robots to attain full coverage of the entire environment using their

disks of visibility. That means, at least one robot should be able to see each and every point

in the environment after the coverage is attained. However, the robots only have information

regarding the bearing to their neighbors in their respective local coordinate frames and a

directional touch information with obstacles. This means that there is absolutely no range

information or any localization capability available. Second, we present an experimental

20

(a)

Hole

(b) (c)

Figure 3.1: Illustration of a swarm of robots entering an environment (a) and
attaining full coverage (c). The hole shown on figure (b) is something we would like
to avoid.

platform involving a heterogeneous team of real and virtual robots for demonstrating the

proposed algorithm.

The research contained in this chapter was originally published in [76] and part of [78].

3.1 Preliminaries

We denote by W ⇢ R2 the obstacle-free region where the robots are being deployed and the

sensor coverage of which needs to be attained. If there are n robots deployed in W , we assign

IDs to them, 1, 2, · · · , n, and represent their joint configuration by X = [x1, x2, · · · , xn], xi 2

W .

A robot i, is equipped with an omnidirectional camera that can measure the bearing to

a neighbor, j 2 Ni, in its local coordinate frame, where Ni = {j | kxi � xjk rv} are the

neighbors of i. We call this measurement ✓i
j
2 [�⇡, ⇡). If it measures the bearing to another

robot, k as ✓i
k
, then we define ✓i

jk
=

⇣
(✓i

k
� ✓i

j
) mod 2⇡

⌘
� ⇡ — i.e., the bearing to k

relative to the bearing to j (and the angle converted to a value in [�⇡, ⇡)).

Additionally, each robot is also equipped with a collection of touch/contact sensors at

the base in order to detect the obstacles. The touch sensors are binary sensors, and are

triggered when in contact with an obstacle/wall or another robot (Figure 3.2). The presence

of multiple touch sensors (NT) at the base also provides a rough estimate of the direction

of contact (within an error of ⌧ =
⇡

NT
when a single touch sensor is activated).

21

Figure 3.2: The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch sensors
providing a rough estimate of the direction of contact.

1 2

(a) Robots can’t see each other, and hence
have no way of detecting that their disks of
visibility overlap.

1 2

(b) Robots can see each other, and hence know
that their disks of visibility overlap. Visibility is
represented by the dotted magenta line.

Figure 3.3: Detection of overlap of disks of visibility using only local visibility-based
sensing.

3.2 Rips Complex of Visibility Disk

We do not assume that the robots can localize themselves and the only way of sens-

ing/identifying neighbors is by using the equipped camera. Thus, if the disks of visibility of

two robots merely overlap, there is no way of detecting that fact (Figure 3.3a). We need to

use a stronger notion of overlap — two robots know that their disks of visibility overlap if

and only if they are in each other’s disks of visibility and their line of sight is not blocked

(Figure 3.3b). Using the IDs of their neighbors, we can then construct a simplicial complex

that is homotopy equivalent to the Rips complex over a set of X with ✏ = rv as described

in Section 2.1. According to Remark 1 in 2.1.2, the Rips complex Rrv(X) can capture all

topological features of the union of the regions covered by the swarm of robots with cover

radius rc = rv. Note that we do not construct any 3 or higher dimensional simplices since

22

1 2

3

4

5

9

6

7

8

1

2

3

4

5 6

7

8

9

Figure 3.4: Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .

on a planar environment with obstacles, we are only concerned with the H1 homology.

In contrast to [24], the fence subcomplex (or fence cycle), F , is not known a priori and

will be identified as the swarm expands. Due to the present of obstacles and the process

of exploration, the fence subcomplex will be further divided into the frontier subcomplex K

and the obstacle subcomplex O, F = K [O.

Additionally, we periodically compute a nontrivial 2-cycle of the relative complex (Rrv ,F)

so that we can identify redundant/extra robots that can be removed from the complex with-

out sacrificing sensor coverage (see Remark 2 in 2.1.2). It is important to note that Rrv

can be constructed with local visibility information only, as described earlier, and does not

require the entire configuration, X, of the robots to be known in a centralized manner.

Furthermore, as will be evident in the next section, we do not need to construct the entire

simplicial complex in a centralized fashion for most of the algorithmic components. It’s

only when we compute generators for the relative homology H2(Rrv ,F), for optimization

purposes, that we will need to store Rrv in a centralized manner.

3.3 Algorithmic Designs

The outline of our swarm coverage algorithm is presented in Algorithm 1. We begin by

deploying robot 1 into the unknown environment using an open-loop control so that it

maintains visual contact with the source/base. Then, in line 3, we start our deployment cycle

by constructing the Rips complex in a distributed manner as described in Section 2.1.1 (and

23

Algorithm 2). Using the current Rips complex Rrv , we update the frontier, K, and obstacle,

O, subcomplexes (line 4, and Algorithm 3) along with computing the target location for

deployment of the new robot in the local coordinates of a frontier robot. Note that at

the end of the first deployment, the robot 1 belongs to K (as described in Section 3.3.1).

Although our implementation uses a centralized server that collects local information from

the individual robots through an emulated wireless communication channel, most of the

algorithmic components described in this section can be done in a decentralized fashion.

We periodically compute relative H2 homology to identify redundant robots for rede-

ployment (line 5). We then find the shortest path to a frontier robot (from the source or

a redundant robot) through the 1-skeleton of the complex (line 6), along which we execute

the “push” action (described in Section 3.3.2) for deployment of the next robot (line 7). In

presence of multiple sources, deployment can be performed in parallel along multiple paths

as long as the paths do not intersect (which can be computed using an optimal routing

algorithm).

Algorithm 1 Swarm Coverage Overview

1: Deploy Robot 1; n 1

2: do

3: Construct Rips cplx. through local communication:

Rrv = ComputeRipsComplex({Ni}i=1,2,··· ,n)

4: Compute fence subcplx. using local bearing info.:

[K,O] = FenceSubcomplex(Rrv , {✓a
bc})

5: (Periodically) Identify redundant robots using H2 hom.

6: Find path in 1-skeleton for “Pushing” robots

7: “Push” robots in path
8: Deploy (n + 1)

th
robot; n n + 1

9: while K 6= ;

3.3.1 Identifying Frontier and Obstacle Subcomplexes

At a particular robot configuration, X, we identify the 1-simplices (and the corresponding

0-simplices that constitute) in the Rips complex, Rrv , which form the frontier to the un-

explored regions, as well as the ones that are adjacent to the obstacles. They respectively

constitute the frontier subcomplex, K, and the obstacle subcomplex, O. We define the fence

subcomplex as F = K [O.

24

i j

k

k
1

k
2

(a) Exception case where a 1-simplex,
{i, j}, has all adjacent 1-simplices lying on
the same side, but is not a fence simplex.
This can be detected from the perspective
of robot k.

i

j
θjo

θio
i

j

(b) Detecting that a 1-simplex, {i, j}, is
in O ✓ Rrv (thick brown line).

i
j

k

(c) Convex corner case where a pair of
1-simplices, {i, j1} and {i, j2}, are recog-
nized as obstacle 1-simplices (thick brown
lines).

j
2

ij
1

(d) If the robot i is to be “pushed” along
a path in the graph to expand frontier
{i, j1}, it performs a “test drive” to en-
sure an obstacle is not right in front of it.

Figure 3.5: Identifying simplices for fence subcomplex F = K [O.

i

j

k
1

k
2

i

j

k
1

k
2

Figure 3.6: {i, j, k1} and {i, j, k2} are two 2-simplices which have {i, j} in their
boundaries. {i, j} is a fence 1-simplex if both k1 and k2 lie on the same side of ij
(thick purple line in left figure), otherwise not (right figure).

25

Algorithm 2 Compute the Rips complex from lists of neighbors
Input: Neighbor information, Ni, i = 1, 2, · · · , n
Output: Rips complex, Rrv

1: function ComputeRipsComplex({Ni}i=1,2,··· ,n)

2: Rrv ;

3: for Robot i = 1, ...n do

4: Rrv Rrv [{i}
5: for Robot j 2 Ni do

6: Rrv Rrv [{i, j}
7: for Robot k 2 Ni do

8: if j 6= k and j 2 Nk then

9: Rrv Rrv [{i, j, k}
10: end if

11: end for

12: end for

13: end for

14: return Rrv

15: end function

Algorithm 3 describes our method of identifying the frontier subcomplex and obstacle

subcomplex. We begin (line 3) by identifying the 1-simplices in Rrv that are part of an

exception set, E, as described later in Section 3.3.1 (Figure 3.5a). For each 1-simplex

{i, j} in Rrv that is not in E, we then compute the sign of ✓i
jku

for all of the 2-simplices

{i, j, ku} 2 Rrv (i.e., the ones which have both i and j as their vertices).

If all the 2-simplices adjacent to {i, j} lie on the same side of the 1-simplex (Figure 3.6),

then the bearing angle to all the robots ku relative to j (resp. i) have the same sign, and

thus in line 5, UnCovij is not empty. Thus, i, j belongs to the fence subcomplex, and we

compute and store the location (in the local coordinates of i and j) for potentially deploying

a new robot to expand the frontier using a “pushing” action (line 7). The exact computation

of the bearings to the potential new location, ✓i
j,new

, ✓j
i,new

, is described in Section 3.3.1 and

Algorithm 4.

Finally, in lines 8-12, we classify each fence simplex, {i, j}, as frontier or obstacle using

touch sensor readings and the outputs of DeploymentAngle as follows:

i. If i and j are in contact with an obstacle (i.e., a touch sensor is activated, and there

are no robots visible in the direction of the activated touch sensor) in the expanding

direction, then the 1-simplex {i, j} and 0-simplices i, j are placed in O (Figure 3.5b).

26

Algorithm 3 Identify Frontier and Obstacle subcomplexes
Input: Rips complex, Rrv ; Relative bearings, ✓a

bc, {a, b, c} 2 Rrv

Output: Frontier subcomplex, K; Obstacle subcomplex, O

1: function FenceSubcomplex(Rrv , {✓a
bc})

2: K ;, O ;

3: E ComputeException(Rrv)

4: for {i, j} 2 RrvrE do

5: UnCovij {+1,�1}r{sign(✓i
jku

)|{i, j, ku}2Rrv}

6: if UnCovij 6=; then . A side of {i, j} is uncovered.

7: [✓i
j,new, ✓j

i,new] DeploymentAngle(i, j,UnCovij)

8: if {i, j} is an obstacle simplex then

9: O O [{{i}, {j}, {i, j}}
10: else if {i, j} is a fronter simplex then

11: K K [{{i}, {j}, {i, j}}
12: end if

13: end if

14: end for

15: return [K,O]

16: end function

ii. Otherwise, we check for possibility of {i, j} being an obstacle simplex at a convex

corner as follows: We compute the “closest” other fence 1-simplex attached to i and j

(this is computed as a part of the DeploymentAngle procedure – say it is {i, k}).

If the magnitude of the angle between ik and ij is less than ⇡

3 � 2� (figure 3.5c, where

� is the error in measurement of bearings to neighbors), then the two robots, j and

k, do not see each other due to occlusion by an obstacle, but every free point (points

outside obstacles) in their convex hull is in the visibility disk of at least one robot (aside

from possibly small non-convex sub-features present in that convex corner, which we

ignore). Thus, these 1-simplices are marked as obstacle 1-simplices to be added to O.

iii. Otherwise, at least one of the robots can be expanded/moved to the unexplored region,

and thus {i, j} is placed in K along with the corresponding robots (Figure 3.6, left).

iv. Since the obstacles can only be detected by touch sensors, we perform a “test drive”

in the planned deployment direction for a small distance to ensure sufficient space

availability for new deployment near obstacles (Figure 3.5d).

The complete illustration of the process of identifying 1-simplices as part of K or O is given in

Figures 3.6 and 3.8a. We next describe the ComputeException and DeploymentAngle

27

procedures.

The Exception Case

The aforesaid approach in detecting fence 1-simplices using UnCovij may give false positives

in some cases when a 1-simplex, {i, j}, is completely covered by 2 simplices, of which {i, j}

do not form a boundary, as shown in Figure 3.5a. Nevertheless, this special case can be

easily detected from the perspective of a common neighbor, k, of i, j. If it is detected that

✓k
ij

= ✓k
ik1

+ ✓k
k1k2

+ · · · + ✓k
krj

(for some k1, · · · , kr 2 Nk), such that all the summands have

the same sign as the summation, then clearly {i, j} lies inside 2-simplices of which {i, j} do

not form a boundary but k is a vertex. Then {i, j} is marked as an exception 1-simplex.

Identifying Locations for Robot Placement (Triangular Tessellation)

Given a 1-simplex {i, j} 2 K and the uncovered direction � 2 {+1,�1}, we need to find,

in the local coordinates of i and j, the location for the new robot position. Figure 3.7a

illustrates the uncovered side of 1-simplex {i, j} in i’s local coordinate. Our strategy for

choosing the position to deploy next robot is to try and achieve a triangular tessellation [15]

(which is the most optimal packing on an obstacle-free plane) of robots as much as possible,

only to be interrupted by the presence of obstacles or control’s error. This essentially boils

down to sending robots at an angle of 60
�
(=

⇡

3) with respect to ij into the free region.

Algorithm 4 describes our DeploymentAngle function which first determines (lines 4-7)

the “closest” other fence 1-simplices attached to i and j (e.g., {i, k} in Figure 3.7b). If

there is no other fence 1-simplex attached to i, we set ✓inew = ✓i
j
+ �i

j

⇡

3 — the 60
� angle for

deployment in a triangular tessellation. Otherwise we set the angle to the minimum between

the one for triangular tessellation (⇡3) and the one that bisects ✓i
jki

. Likewise for ✓jnew.

If i is not attached to a frontier 1-simplex (e.g., i is a frontier robot in a narrow passage

with a single file of robots), then we simply choose the direction away from the neighbors

of i as the bearing to the new location (in the local coordinates of i) for deployment of the

new robot.

28

Algorithm 4 Identify the Location for Robot Placement

Input: Robots i, j; the side of ij that is open/uncovered

Output: New location for deployment in local coordinates of i, j OR {i, j} is marked as an obstacle

simplex.

1: function DeploymentAngle(i, j,UnCovij)

2: ✓i
j,new ;, ✓j

i,new ;

3: for � in UnCovij do

4: Si {l | {i, l} 2 Rrv and sign(✓i
j,l) = �}

5: ki argmink02Si
|✓i

j,k0 |

6: Sj {l | {j, l} 2 Rrv and sign(✓j
i,l) = ��}

7: kj argmink02Sj
|✓j

i,k0 |

8: if |✓i
j,ki

| < ⇡
3 (or |✓j

i,kj
| < ⇡

3) then

9: Mark {i, ki} (or {j, kj}) as an obstacle simplex.

10: else

11: ✓i
j,new � min{

⇡
3 , |

✓i
j,ki
2 |}

12: ✓j
i,new �� min{

⇡
3 , |

✓j
i,kj

2 |}

13: end if

14: end for

15: return [✓i
j,new, ✓j

i,new]

16: end function

3.3.2 Identifying Path in 1-skeleton for “Pushing” Robots

The strategy in our algorithm for robot deployment in every control cycle is to keep the

structure of the existing simplicial complex (and hence the positions of the existing robots

in W) unchanged. New robots are deployed through the complex simply by “pushing”

through paths (i.e., making each robot on a path move forward to take the place of the

one in front of it) in the 1-skeleton (graph) of the complex (Figure 3.8). For computing

this path, a centralized knowledge of the entire graph is used (constructed by the robots

i

j
u

θju
i Valid bearing

for new robot

new

(a) The free side of {i, j} where sign(✓i
j,new) = �

i

j

k
θjk
i

θj,new
i

(b) The bearing to the new location, ✓i
j,new =

min{
⇡
3 ,

✓i
jk

2 }, in i’s local coordinate.

Figure 3.7: Determining bearing to the new location

29

communicating each of their local information – the IDs of the neighbors that each see –

to a central server via wireless communication), although the computation of the path can

indeed be performed in a decentralized manner through peer-to-peer communication only

(see [87] for a decentralized implementation of the Dijkstra’s algorithm).

We consider the graph made out of the 1 and 0 simplices in Rrv . The frontier subcomplex,

K, computed in previous section (the 0-simplices in it) provides the list of robots which we

need to potentially move to expand the frontier. We assign a cost of 1 to all the 1-simplices

in the graph, except the 1-simplies in O, to which we assign cost of wO > 1 in order to avoid

paths that pass through robots adjacent to obstacles, where navigation is more challenging.

We use Dijkstra’s search algorithm to find the shortest path from the source, which is the

robot next to the base station (in case of multiple source, we can initiate the open list in

Dijkstra’s algorithm with the multiple sources as illustrated in [11]), to the closest vertex

(0-simplex) in K.

Robots are then “pushed” along this path where each robot on the path simply gets

replaced by the one behind it on the path, while the robot that is on the frontier computes

(as described next) and moves to a new location in the free/unexplored region. Since robots

on the path get replaced by the robots behind them, this requires that we not only update

the IDs in Rrv , but also the robot IDs in K and O.

We use the visual homing controller described in Section 2.2.1 (Figure 3.9a). For a

frontier robot, i, the desired bearings ✓i
j,des can be computed easily for the planned direction

for deployment of the new robot (✓jnew in the current coordinate frame of robot i), and

assuming that the robots are separated by a distance of rv � ✏. For every other robot, i0, on

the path through which robots are being “pushed”, ✓i
0
j,des are the current bearing values for

the robot ahead of i0 in the path (with correct ID re-orderings performed).

When robots are being “pushed” along a path, multiple robots move simultaneously,

and for a robot moving on the path, some of its landmarks (i.e., neighbors) are themselves

moving. The bearing-based controller that we use, is in fact capable of dealing with moving

landmarks, and give similar convergence properties. A few static landmarks (at least two

30

8

12

10

11

6

7

3

2

1

9

source

5

4

(a) Shortest path 12! 10! 6! 2 identified
from the source to a vertex in K.

8

12

10

11

6

7

3

2

1

9

source

5

4

13

(b) Robots are “pushed” along the path. Notice
how the new robot 13 appears near the source.

Figure 3.8: The complex Rrv , and the subcomplexes K (cyan) and O (brown).
Path through the 1-skeleton illustrate “pushing”

in total) referenced by some of the moving robots on the path are sufficient in attaining

convergence. In addition, the desired bearing is set for each robot for all of their surrounding

neighbors. This allows robots to adaptively correct their trajectory while simultaneously

gaining and loosing landmarks along their trajectory.

No robots reference the robot that is moving to a new (unexplored) location for expanding

the frontier. This is because there are uncertainties about the unexplored region (e.g., about

presence of obstacles), and errors due to that should not propagate upstream. Furthermore,

if a robot does not have more than one another robot to reference to as landmark, it employs

an open-loop control to reach the desired location using odometry estimate, and drives back

in case it loses the single visual link that it had. This is unavoidable when, for example, the

robots move in a narrow passage in a single file.

Action on Touching an Obstacle

Upon touching an obstacle at a bearing of ✓io±⌧ (⌧ being the resolution in the measurement

of bearing to touch), the robot will not be able to progress in the direction between (✓io �

⇡

2 + ⌧, ✓i
jo

+
⇡

2 � ⌧) (Figure 3.9b). Hence, if the command velocity, vi, computed using the

bearing-only controller “pushes” the robot inside an obstacle, we take the best projection

of that velocity into the set of allowed velocities (ui in the figure, falling inside the brown

31

(a) The bearing-based controller uses neigh-
bors as landmarks and use the bearing angles to
them to navigate to the desired location know-
ing the desired bearing angles.

vi

θ

ui

(b) Upon touching an obstacle, the robot use
the component of the computed velocity that is
the projection in the valid/free sector (brown).

Figure 3.9: Components of the controller.

sector) such that using ui as the velocity command the robot moves out toward the obstacle-

free area freeing itself from the obstacle. Overall, this results in a behavior akin to sliding

along the obstacle using the component of the velocity parallel to the obstacle.

Scale Correction

Since our controller is purely bearing-based, and although we attempt to create a hexagonal

packing, small accumulation of the errors can decrease the average separation between the

robots as we move further away from the source. To correct this, we perform a scale

correction periodically, where we make a frontier robot, i, move forward keeping the reference

robots behind it (opposite to a mean bearing to those robots), until it breaks visual link

with at least one of those neighboring robots. Then we make the robot i drive back until it

reestablishes the visual link with all its neighbors. This ensures that the average separation

between the robots stay close to rv.

3.3.3 Identification and Reallocation of Redundant Robots

Using the results from [24] as discussed in Section 2.1.2, we can identify redundant robots in

the complex by computing a generator (non-trivial relative cycle) of the relative homology

H2(Rrv ,F), where F = K [O is the fence subcomplex.

We use the JavaPlex [90] library for the computation of the non-trivial relative cycle

32

using persistence algorithm. The required filtration over Rrv is achieved by inserting the 0,

1 and 2 dimensional simplices in sequence. We add a disjoint 0-simplex, Q, as illustrated

in Figure 2.4b, and construct the 1-simplices {i, Q} and the 2-simplices {i, j, Q}, for every

0-simplex, i, in F , and every 1-simplex, {i, j}, in F . Call this new complex (Rrv ,F).

Computation of persistent homology up to dimension 2 for this complex with Z2 coefficients

using JavaPlex gives us a set of non-trivial generating 2-cycles in (Rrv ,F) which generate

H2(Rrv ,F). Any non-zero linear combination (in Z2 coefficients) of these cycles will also

be a valid non-trivial 2-cycle which can be used to identify the robots that are sufficient for

maintaining coverage. Thus we perform a greedy search for the best linear combination (a

linear combination of cycles such that it contains the least number of 0-simplices) that also

contain all the fence 0-simplices.

Thus, finally we have a set of 0-simplices which constitute robots that are sufficient

to maintain the sensor coverage that is currently being maintained. All other robots are

redundant and can be removed/reallocated. Once we have identified the redundant robots,

in the next deployment cycle we use them, instead of deploying new ones from the source.

3.4 Results

3.4.1 Guarantees

Since throughout the deployment and covering process we keep the graph (1-skeleton of

Rrv) of the already-covered region fixed (we only “push” robots along paths in the graph

to the frontiers), we eliminate the possibility that the algorithm gets stuck in an infinite

cycle in which the graph keeps cycling/switching between two configurations. Furthermore,

by choosing to keep the graph structure fixed across deployment cycles, we eliminate the

possibility that our control algorithm results in recession of a frontier or opens up a new

hole in the already-covered region of the environment. If due to accumulation of errors we

do open up a hole, and hence a new set of frontier 1-simplices appear, we send robots to

those frontier 1-simplices to fill the hole.

Algorithm Termination: The algorithm, as described, will keep deploying robots to

33

frontier 1-simplices as long as they exist. In absence of obstacles nearby, a robot will be

deployed for every frontier 1-simplex at an angle of 60
� with the simplex into the uncovered

region. This will always make the frontier progress (as illustrated in Figure 3.8). Although

this may result in deployment of redundant robots (which are later identified and removed

using the relative H2 homology generator computation), the progress in the expansion of the

frontier is always finite in obstacle-free regions. Nevertheless, when the expanding location

lies inside an obstacle we need to consider, and thus avoid, the possibility that robots

are deployed indefinitely to a region close to an obstacle because the unexplored region

changing only infinitesimally at each deployment. This is however prevented by the design

of our algorithm, as described in Section 3.3.1 item ‘iv.’, where we prevent the deployment of

unnecessary robots near obstacles that make little to no progress in expanding the frontier.

Thus, in a finite environment the algorithm will terminate with no more frontiers left for

exploration.

Completeness: As described, when K is not empty, more robots will be deployed to close

the frontier. When K is empty, then one can observe that for every 2-simplex {i, j, k} in

Rrv , the convex hull of the robots i, j and k will be covered by the disk of visibility for each

of these robots. If {i, j} is a 1-simplex in O, then due to the way we introduce elements

in O (Section 3.3.1), the region between the obstacle 1-simplices and the actual obstacles

themselves will always remain covered by some robot’s disk of visibility (except for non-

convex features on the side of the obstacles that are smaller than rv). Thus, when K is

empty, we can guarantee sensor coverage of the entire environment.

Robustness to Robot Failure: The proposed algorithm can adapt to failure of robots. If

a robot fails (and its neighbors can detect that), the swarm will ignore the presence of the

failed robot. Thus a “hole” in the complex gets created, and hence K will have the frontier

simplices surrounding that hole. This will result in new robot(s) being deployed to the newly

open frontier, until K becomes empty once again.

Optimal Coverage: While our deployment algorithm itself does not guarantee optimality,

the process of identifying redundant robots by computing the smallest non-trivial relative cy-

34

cle in (Rrv ,F) (described in section 3.3.3), and hence redistribution of the redundant robots,

makes sure that we do not use more robots than required to cover the entire environment.

While this still is not a guarantee of global optimality, this indeed is a local optimality in the

sense that after redistribution we end up with a complex that is the optimum subcomplex

of the original complex without any redundant robot.

Limitations: Since the robots use the omnidirectional cameras only to obtain bearing to

neighbors, and the only way they sense obstacles is through direct touch/contact, it is not

possible to detect features that are smaller than rv. Thus, presence of non-convex features

on the surface of the obstacles that are smaller than rv may result in some “blind-spots”

inside the non-convex “grooves”.

3.4.2 Simulations

We demonstrate the performance of the proposed algorithm in simulation using integrated

platform between Robot Operating System (ROS) [74], Stage Simulator [39] and JavaPlex

[90]. We use ROS as a backbone that links all components together. Stage simulates the

dynamics and sensors of the robots, while JavaPlex is used to compute the relative homology

for identifying the redundant robot.

Comparison with Triangular Tessellation

To evaluate the performance of the proposed algorithms, we compare the number of robots

used in covering an obstacle-free rectangular region using our algorithm and using the tri-

angular tessellation, which we constructed manually by overlaying the environment on a

triangular tessellation in a free space. In an obstacle-free environment, the performance of

our algorithms is comparable to the triangular tessellation solution as illustrated in Fig-

ure 3.10. The majority of the robots deployed by our algorithm are in the triangular tessel-

lation arrangement. However, due to accumulated errors and collision with the boundary,

the arrangement gets distorted and the clutter of robots is higher near the boundary.

35

(a) Deployment using the proposed algorithms
(robots deployed from the source on the right).

(b) Triangular tessellation using the same av-
erage separation between the robots, rv.

Figure 3.10: Our algorithm deployed 98 robots while the hexagonal packing requires
approximately 78 robots.

(a) T = 14 (b) T = 64 (c) T = 106 (d) Triangular Tessel-
lation

Figure 3.11: Demonstration in a structured environment with obstacles. Figures
(a)-(c) illustrate the progress of our sensor coverage algorithm at 14, 64, and 106

deployment cycles respectively. Figure (d) is the “ideal” triangular tessellation in the
environment for comparison, attained using 82 robots and using the same average
separation between the robots.

Structured environment

Our algorithm attains a similar performance in a structured environment with few obstacles

as illustrated in Figure 3.11. Comparison between figures (c) and (d) illustrates that the

performance of our algorithm is comparable to the hexagonal packing.

3.4.3 Experiment with Heterogeneous team of Live and Virtual Robots

We also tested our algorithm on a real experimental platform. Because of limited number of

available physical robots, as well as to demonstrate a new paradigm in combining physical

robots with virtual/simulated ones in a real-time experiment, we use a heterogeneous team

of virtual and real robots to constitute the swarm in the experimental setup.

We used Scarab robot [67] as the physical robot platforms for some of the robots, and

used Stage robot simulator to simulate the remaining robots in the swarm. The Scarab is

a differential drive robot, while the virtual robots consisted of holonomic robots simulated

in Stage. Each real robot in the environment was coupled with a robot in the simulation

36

(a) t = 103s. (b) t = 276s. (c) t = 600s. (d) t = 938s.

Figure 3.12: A heterogeneous team of live (green) and virtual (red) robots cov-
ering a simple, obstacle-free environment. The dashed green lines are drawn for
comparison between the formation of the live robots and the simulated version of
the live robots. The accompanying multimedia attachment shows the video of the
simulation environment overlaid on the experiment for better comparison.

environment (virtual models of real robots), besides the remaining robots in the swarm being

simulated as well (simulated robots).

In order to make the real robot work coherently with all virtual robots, its correspond-

ing simulated peer needs to be synchronized through the feedback loop as illustrated in

Figure 3.13. Localization of the real robots was done through the use of a motion capture

system. The motion capture system would broadcast the pose information of the physical

robots in the environment. These poses were used to update the poses of the simulated

versions of the real robots using a proportional position control on the pose. This is used in

conjunction with the pose of the other simulated robots to emulate bearing sensors for all

the robots (real as well as simulated). The real robots would then utilize this sensor data

to compute and execute bearing-based visual homing control. In summary, a bearing-based

visual homing control was implemented in a heterogeneous team of real and virtual robots.

As a proof of concept, an obstacle free environment was selected for exploration by the

heterogeneous team. The results are illustrated in Figure 3.12. The top row shows the

simulated environment, with virtual robots colored in red and the simulated version of the

live robots colored in green. The snapshots of the experiment in the lower row shows the live

robots. The heterogeneous team is able to explore the environment with the limited sensing

and communication capabilities. Testing in more complex environments and construction

37

Virtual(Model(
of(Real(Robots(

Simulated(
Robots(

Simula'on*

Mo3on(Capture(
System((

Real(Robots(

Hardware*

Bearing(
Controller(

vel.(vel.(

pos.(and(orient.(

Emulated(Bearing(Sensor(

Figure 3.13: Block digram describing the communication and feedback between
the simulation platform, experimental (real) robots and the motion capture system.

of the GVG is within the scope of future work.

3.5 Conclusion

This chapter propose an algorithm for the deployment of a swarm of resource-constrained,

mobile robots in an unknown environment with the objective of attaining complete sensor

coverage of the environment without using any metric information. The only sensors are a

limited range omnidirectional camera that can detect bearing to neighboring robots and a

touch sensor for detecting contact with obstacles and other robots. No global information

is available. The proposed algorithm, which is derived from concepts in algebraic topology,

is complete, terminates in finite environments, is robust to noise and robot failures, and is

locally optimal. We demonstrated the proposed algorithm in a ROS-Stage simulation, as

well as introduced a new paradigm in experimental demonstration involving a heterogeneous

team of real and virtual robots.

38

Chapter 4

Topological Mapping

This chapter addresses the problem of building a topological map of an unknown 2-D envi-

ronment using a swarm of resource-constrained robots. Although the algorithm in Chapter 3

also can provide an estimation of the environment, it requires a large number of robots to

fully explore an environment. With limited number of available robots, this chapter proposes

an algorithm to create a topological representation of the environment that can be used as a

roadmap for navigation of other robots around the environment. The topological map that

is of particular interest to us is the Generalized Voronoi Graph (GVG, also called a Gener-

alized Voronoi Diagram or a GVD), which is the locus of points in the configuration space

which have more than one distinct “closest” points on the boundary of the configuration

space.

Similar to Chapter 3, each robot is only equipped with a limited-range bearing sensor

that allows a robot to detect the bearing of its neighbors, and touch sensors that allow a

robot to perform obstacle avoidance. As a result, the robot does not have access to range

information and cannot localize themselves in any global coordinate system. Our algorithm

allows the swarm of robots to construct an approximate GVG of the environment. The graph

must be approximate since robots lack the ability to make range measurements. Further

since all sensors are local, the graph must be constructed incrementally.

The research contained in this chapter was originally published in [78].

39

(a) A finite swarm of robots enters an unknown
environment.

(b) The swarm “floods” part of the environment
and attains hole-less sensor coverage.

(c) A topological map of the partially covered
environment (APGVG) is computed – magenta
curve).

(d) Robots not constituting APGVG are re-
deployed to the unexplored region and the pro-
cess continues.

Figure 4.1: Illustration of the main steps in construction of a physical representation
of a topological map using a finite swarm of robots with limited local sensing.

4.1 Overview

The essence of our approach is illustrated in Figure 4.1. The robot swarm enters a com-

pletely unknown area (Figure 4.1a). The robots navigate the environment, gather infor-

mation, construct a simplicial complex representation (a Rips complex) of the environment

with sensor coverage, and attain a hole-less sensor coverage using all the available robots.

Since there are a finite number of robots available, we can only ensure coverage of a subset

of the environment (Figure 4.1b). This can be accomplished with the algorithm described

in Chapter 3. Once the hole-less sensor coverage of the partial environment is attained, we

run a discrete graph-based GVG construction algorithm (similar to [95]) on the 1-skeleton

of the Rips complex formed by the robot sensor footprints to identify the robots that can

be removed and the ones that need to be kept in order to retain the approximate physical

representation of the GVG of the partially covered environment (which we call an approx-

imate physical/partial GVG or an APGVG for simplicity – Figure 4.1c). The robots that

40

are not tagged to be part of the APGVG can now be redeployed beyond the frontier to

the unknown part of the environment to attain hole-less sensor coverage of a new portion

of the environment, while the robots stationed on the APGVG of the previously covered

environment maintain their position (Figure 4.1d).

The overall algorithm involves interleaving robot deployment cycles with the construction

of the APGVG. Every new deployment cycle results in a new APGVG which must be stitched

together with the old APGVG so that the stitched result is an approximate GVG of the

entire environment. This process results in a sparse topological map for the free environment

and is a deformation retract of the environment.

We call each of these cycles (involving robot deployment, hole-less sensor coverage of

part of the environment, and computation of APGVG for identifying robots for deployment

in next cycle) a APGVG computation cycle or a APGVGCC for simplicity.

4.2 Multi-stage Construction and Stitching of APGVGs

4.2.1 Generalized Voronoi Graph and its Approximate Discrete Con-

struction

C ∂C

(a) The exact GVG of the free space.

C ∂C

(b) A topological map that approximates the GVG.

Figure 4.2: Comparison of the Genealized Voronoi Graph and its approximation.

The topological map of a configuration space, C, is a 1-dimensional subspace such that it

is topologically equivalent to C. In particular, the topology of the topological map captures

all the “holes” in the space C as loops in the topological map (Figure 4.2b). If C is a

41

subset of R2 (say, part of the plane with obstacles in it), the topological map can be more

precisely described as a 1-dimensional deformation retract of the space, and can always be

constructed [16, 18, 47]. The GVG is a special topological map with the property that each

point on the GVG has two or more equidistant closest points on the obstacle boundary of

the configuration space, @C (Figure 4.2a).

The 1-skeleton of the simplicial complex, Rrv(X), formed by the robots as described in

the previous section, can be considered as an approximate discrete graph representation of

the covered subset of the workspace, with the robots being the vertices of the graph and the

1-simplices being the edges. Let’s call this graph Grv(X) (or Grv for simplicity) for the set

of robot positions, X. One can employ a wave-front propagation algorithm in Grv(X), as

described in [11, 95], for identifying the vertices (the robots) in the graph which constitute

an approximate GVG.

The overall idea is not very different from the continuous gradient flow method for the

Computation of GVGs [18] – we employ a breadth-first search (Dijkstra’s algorithm) with

the initial open list containing all the vertices adjacent to the obstacles. Out of those initial

vertices adjacent to obstacles, we mark the ones lying between two “concave corners” of an

obstacle with the same label, so that the part of the wavefront originating from the vertices

with the same label sweep a Voronoi cell of the approximate GVG. By the virtue of the

Dijkstra’s algorithm, the property of the wavefront is that at every instant all points on it

are at an equal shortest distance from the closest obstacle. Thus, wherever the wavefronts

with different labels collide, it ought to be a point on the GVG. The overall process is

illustrated in Figure 4.4, and the pseudocode of the algorithm is provided later.

Segmentation of the Obstacle Subcomplex by Concave Corners

As described above, we need to segment the workspace boundary (boundary next to the

obstacles) based on the presence of concave corners. However, since we do not have global

knowledge of the environment, all that we can use to identify corners at the boundaries is

the obstacle subcomplex, O ✓ Grv(X) ✓ Rrv(X). This is achieved through communication

between adjacent robots in the obstacle subcomplex. We choose the criteria on the angle at

42

a corner in the environment to be �, which, for example in environments with only right-

angle corners will be ⇡

2 + ✏ (where the factor ✏ accounts for mismatch of the robot placement

with the corners, and for all the simulations we choose ✏ =
⇡

4).

j
2i

j
1

(a) Not a concave corner.

j
2

i

j
1

(b) A concave corner at i since
\j1ij2 < �.

i

j
1

j
2

j
3

(c) Not a concave corner at i since \ij2j3 does
not satisfy normality condition.

Figure 4.3: Detection of concave corners from the simplicial complex with � =
⇡
2 + ✏.

Suppose robots{i, j1} and {i, j2} are 1-simplices in O, and let \j1ij2 be the angle made

by the 1-simplices at i (which, in the local frame of i, is the relative bearing between j1 and

j2 as seen by i) on the side opposite to the obstacles. We identify i as a concave corner if

\j1ij2 < � (Figure 4.3b).

However, under some circumstances (as shown in Figure 4.3c, where we mark ij2 and

j2j3 as obstacle 1-simplices due to Algorithm 3, it is not sufficient to consider only the angle

made by two consecutive boundary 1-simplices at i. We also need to put some normality

condition on angles made by the boundary 1-simplices at j1 and j2 in order to avoid too much

spurious detection of concave corners. This method for corner detection is, nevertheless,

mostly heuristic-based, given that we can only estimate the presence of the corners from

relative bearings between the robots, and thus can lead to false positives or false negatives

in concave corner detections. However, it is to be noted that the presence of concave corners

43

(a) The initial stage in the wavefront propaga-
tion, with different labels (marked by different
colors) assigned to parts of the wavefront orig-
inating from segments of boundaries with no
concave corner.

(c) Final approximate APGVG shown in ma-
genta.

(b) The vertices at which the wavefronts with different labels (marked by different colors) “collide”
constitute the approximate GVG (magenta disks) for the partially covered environment. Figures
show the steps with 930 and 1430 vertices expanded.

Figure 4.4: Illustration of the progress of wavefront algorithm for construction of
APGVG using a discrete graph representation of the partially covered environment.
The vertices of the graph are marked by the small disks and are representative of
the physical robots (not to scale, and dense, ideal placement for illustration

only effects the “branchiness” of the Voronoi graph, and does not effect its more fundamental

property of being a deformation retract.

Once we identify the concave corner robots on the obstacle subcomplex, we assign iden-

tical labels to all robots between two concave corners, while the corner robot is assigned

either of the labels of the obstacle robots on its two sides. This gives a segmentation of the

obstacle subcomplex, O = O1 [O2 [· · · [O�, where Om contains all the robots that are

assigned label m (Figure 4.5). Note that Om is itself a subgraph of O (which in turn is a

subgraph of Grv(X)), and we denote the vertex and edge sets of this subgraph by V (Om)

and E(Om), respectively.

44

Figure 4.5: Obstacle subcomplex O is segmented by the corners. The segments
O1,O2, . . . are the curves in different hues of brown. In cyan we show the frontier
subcomplex K

Wavefront Algorithm For Voronoi Graph Construction

Algorithm 5 presents the pseudocode of the wavefront algorithm for computing the GVG

in a discrete graph setting as described earlier (also see Figure 4.4). The basic framework

of the algorithm is that of Dijkstra’s [20]. The algorithm takes as input the 1-skeleton of

the Rips complex – the graph Grv , and the segmented boundary subgraphs, O1,O2, · · · ,O�.

We assume that the cost of each edge in Grv is 1 (i.e., “distance” is measured in hop count)

since we do not have the inter-robot distances available. The algorithm outputs the set of

vertices in the graph Grv which will constitute the discrete approximate GVG in the graph.

We initiate the open list in the search algorithm with all the vertices in the obstacle

subcomplex, set their g-value to zero (i.e., they are at a distance of zero from the obstacle

subcomplex) and attach a label to them based on the segmentation of O (lines 5-10). The

rest of the algorithm is the usual breadth-first search — at every iteration we choose the

vertex, q, in the open list with smallest g-value (line 13), place it in the closed list (i.e.,

“expand” the vertex – line 17) and update its un-expanded neighbors if they will have better

g-values if reached via q (lines 22-26).

We determine whether the vertex q, which is being expanded, is part of the GVG by

looking at its expanded neighbors that have a label different to q’s label. Precisely, q is

equidistant from two different segments of the obstacle subcomplex if its g-value would have

45

Algorithm 5 Compute Approximate Physical Generalized Voronoi Graph
Input: Graph Grv , with vertex set V (Grv) and edge set E(Grv);

Segmented obstacle subgraphs, O↵ ✓ O

Output: Vertex set constituting APGVG, V ✓ V (Grv)

1: function ComputeGVG(Grv , {O↵}↵=1,2,··· ,�)

2: g(v) 1, 8v 2 V (Grv) . Distances to obstacle

3: l(v) �1, 8v 2 V (Grv) . Labels

4: V ;

5: for k = 1, 2, · · · , � do

6: for each v 2 V (Ok) do

7: g(v) 0

8: l(v) k . Assign label k to vertices in Ok

9: end for

10: end for

11: Q V (Grv) . Set of un-expanded vertices

12: while Q 6= ; do

13: q argminq02Qg(q
0
) . Maintained by a heap

14: if g(q) ==1 then . Open list is empty

15: break

16: end if

17: Q Q� q . Remove q from Q
. Look at expanded neighbors with a different label

18: u argminu02NGrv
(q){g(u

0
) | u

0 /2 Q, l(u0
) 6= l(q)}

19: if g(u) + 1 == g(q) OR g(u) == g(q) then

20: Insert q into V . It’s a GVG vertex!

21: end if

. un-expanded neighbors that need updating:

22: W {w 2 NGrv
(q) | w 2 Q, g(w) > g(q) + 1}

23: for w 2W do

24: g(w) g(q) + 1 . Update to lower g-value

25: l(w) l(q) . Copy label to neighbor

26: end for

27: end while

28: return V

29: end function

been the same (or one more) had it been expanded via a differently labeled vertex, and

hence placed in V (lines 18-21). However, this process may end up including some redundant

vertices (and corresponding 2-simplices from Rv) in the GVG, which are not essential in

maintaining the connectivity of the GVG (Figure 4.6b). We remove such vertices from the

GVG through a simple post-check of the number of 2 and 1-simplices connected to a vertex

belonging to the GVG. In particular, if a vertex in the GVG is connected to n edges (1-

simplices) that are part of the GVG, which in turn form a boundary of at least n� 1 counts

of 2-simplices, and also is part of the GVG, then the vertex is redundant in the GVG and

46

(a) None of the robots in the marked GVG can
be removed.

(b) Robot marked by red ellipse in the GVG is
redundant.

Figure 4.6: Identifying robots that can be removed from the GVG computed by
ComputeGVG.

can be removed (an explicit deformation retract can be constructed).

4.2.2 Robot Redeployment and Stitching the APGVGs

As illustrated in Section 4.1, we construct the partial GVGs in the discrete setting (the

APGVGs) at every APGVGCC.

For easy reference, for the ith APGVGCC we will use superscripts of i to indicate the

different objects described so far (e.g., Xi will be the set of robot positions constituting the

hole-less coverage of the partial environment at the ith APGVGCC, Ri
rv

its Rips complex,

G
i
rv

its 1-skeleton, Ki the frontier subcomplex, APGVGi the GVG computed on G
i
rv

using

segmented obstacle subcomplex O
i
= O

i
1 [O

i
2 [· · ·[O

i

�i , etc.). Thus, we have APGVGi
=

ComputeGVG(G
i
rv

, {Oi
↵}↵=1,2,··· ,�i)).

By the virtue of its construction, APGVGi and APGVGi+1 will be connected to K
i (Fig-

ure 4.7(a)). Following the computation of APGVGi+1, we consider each connected compo-

nent of Ki, and identify the subcomplex, Si, necessary to keep the branches of APGVGi and

APGVGi+1 emanating from that component of Ki connected to each other (this essentially

boils down to eliminating the robots at the trailing ends of the connected component of Ki –

Figure 4.7(b)). We exclude the robots in S
i from the set of robots, ⇤

i+1, for re-deployment

in the (i + 1)
th APGVGCC (Figure 4.7(b)).

Thus we identify the set of robots that can be redeployed for the APGVGCCi+1 as

47

Figure 4.7: Stitching APGVGi and APGVGi+1 by considering each connected com-
ponent of Ki. The set of robots re-deployed/removed in going from (a) to (b) is
⇤

i+1
= G

i+1
rv
� (APGVGi+1

[K
i+1
[S

i
)

⇤
i+1

= G
i+1
rv
� (APGVGi+1

[K
i+1
[S

i
) (i.e., we leave the robots on the partial GVG just

computed, as well as those on the current frontier subcomplex and the subcomplex of the

past frontier, Si).

In general, we use the “push” strategy through the 1-skeleton as described in 3.3.2 for

finding paths to transport the robots one at a time to explore new locations outside the

frontier K
i+1. We then use the local bearing-based control described in Section 2.2.1 to

move the robots. However, in some cases the path from a re-deployable robot to a frontier

may contain parts of the approximate GVG which are not surrounded by neighboring robots

any more. The “push” strategy does not work well under such circumstances due to lack of

a sufficient number of landmark robots for the bearing-based controller. For that we need

to use a separate controller, which we are in the process of implementing, that physically

navigates the re-deployable robot along the single-robot chain constituting the GVG. In the

simulations presented in this paper such a situation does not arise since we use sufficient

number of robots in the swarm.

The overall algorithm for the multi-stage approximate GVG construction can thus be

summarized as follows:

48

Algorithm 6 Multi-stage approximate GVG construction using a finite robot swarm
1: ⇤

0
:= the set of all robots

2: K
0

:= the initial frontier at the entrance

3: i := 0

4: while K
i
6= ; and ⇤

i
6= ; do

. APGVGCC
i+1

5: Deploy robots in ⇤
i
to unexplored region outside K

i
for hole-less coverage and construct the

final R
i+1
rv

(which includes K
i
), with its 1-skeleton G

i+1
rv

.

6: Compute the obstacle and frontier subcomplexes, O
i+1,Ki+1

✓ R
i+1
rv

7: APGVG
i+1

= ComputeGVG(G
i+1
rv

, {Oi+1
↵ }↵=1,··· ,�i+1)

8: Identify robots S
i
✓ K

i
to keep for proper of APGVG

i
and APGVG

i+1
stitching

9: ⇤
i+1

= G
i
rv
� (APGVG

i+1
[K

i+1
[S

i

10: i := i + 1

11: end while

4.2.3 Estimation of the Number of Robots Required

a
i

a
i-1

+a
i-2

+. . .+a
1

L

W

Figure 4.8: Illustration of the number of robots required for an obstacle-free envi-
ronment with � = 1.

The number of robots required for being able to completely construct the approximate

GVG is generally highly dependent on the precise structure of the environment. However,

under some assumptions of the environment, a very rough and informal estimate can be

worked out. In this section, we provide an extremely simplified estimate of the number

of robots that will be required for constructing the complete approximate GVG using the

algorithm described in this paper. We consider the dimensions of the environment described

in terms of number of average robot separations along X or Y directions (which, we approx-

imately assume to be uniform, and equal to rv for some constant). Suppose the width

49

of an environment (the dimension orthogonal to the main flow direction of the robots) is

W times the average robot separation, and the length (dimension in the direction of robot

flow) is L times the average robot separation (Figure 4.8 shows the obstacle-free case). Fur-

thermore, in the presence of obstacles, let the average number of “branches” that the final

GVG will have in the vertical direction be �.

Say we start with n = n1 robots. In APGVGCC1, those robots will be able to progress a

distance of a1 =
n1
W

average robot separations along the width of the environment. This will

also be equal to the approximate number of robots that will constitute APGVG1 with

�a1 robots. Thus, the remaining robots, n2 ' n1 � �a1 = n1
W��

W
can be deployed

for APGVGCC2. In general, using an inductive argument, at the beginning of the ith

APGVGCC, the number of robots available will be nk ' nk�1⇢ ' n1⇢k�1, where ⇢ =
W��

W
.

However, if the algorithm terminates at the mth APGVGCC, we should at least have the

final free robots span the entire width of the environment (so that there are enough robots

to have the complete obstacle subcomplex and empty frontier subcomplex, for being able to

compute the final APGVG effectively). This gives us

n1⇢
m�1

'W (4.1)

Furthermore, we should be able to span the entire length of the environment using the

APGVGs of length a1, a2, · · · , am�1. Thus,

1

W
(n1 + n2 + · · · + nm�1) ' L (4.2)

)
1� ⇢m�1

1� ⇢
'

LW

n1
(4.3)

Combining the above equations, and eliminating m, one gets n1 ' W + �L. Thus, this

simplified estimate puts the required number of robots at W + �L.

In practice we would surely like to keep a margin for safety and have more robots than

what is presented in this simple estimate. For instance, the estimation for the environment

in Figure 4.9 is about 60 robots, while we used about 100 robots in the simulation.

50

4.3 Results

We implemented the proposed algorithm on the Robot Operating System (ROS) [74] plat-

form with the kinematic robots and the on-board sensors simulated by Stage robot simula-

tor [39]. All the APGVG related computations are performed and kept by the server node,

while each robot sends the locally-sensed data to the server and listens to commands from

the server. Obstacle avoidance is performed individually by each robot.

Figure 4.9 shows a simple environment with an entrance at the top. A team of 100

robots construct a topological map (an approximate GVG) using the proposed algorithm

in four APGVGCCs, with a total of 259 deployment iterations, which is the approximate

number of robots required to cover the entire environment.

Figure 4.10 shows a simulation in a more complex indoor environment (a part of the

4
th floor plan of the Levine building at the University of Pennsylvania). We construct the

approximate GVG of the environment with a swarm of 270 robots that is not sufficient to fill

the entire environment (Figure 4.10a). The experiment was completed in three APGVGCCs

with 535 deployment iterations.

4.4 Conclusion

This chapter presents the basic theory and algorithms that allow a swarm of resource-

constrained robots to automatically create a topological map, specifically a Generalized

Voronoi Graph, of indoor environments without requiring metric information. This method

involves covering part of the free space of an environment prior to constructing a Generalized

Voronoi Graph from the covered space. The excess robots are then used to extend the covered

space and further construct a GVG of the environment until a full topological representation

is completed. We demonstrate the proposed algorithm in a ROS-Stage simulation on a simple

and complex office-like environment. The constructed topological can then be used for fast

and efficient transportation of other robots and resources from one region to another in

unknown, GPS-denied environments.

51

(a) The Rips complex, G
1
rv

, with fron-
tier subcomplex, F1, marked in cyan and
black, and the discrete GVG, APGVG1,
computed in G

1
rv

shown in blue.

(b) Robots are re-deployed to construct
G

2
rv

. The new discrete Voronoi graph,
APGVG2, is also shown in blue, stitched
with the earlier APGVG1.

(c) The end of APGVGCC3,
showing the three subsequent
APGVGs stitched together.

(d) The conclusion of
APGVGCC4.

(e) The algorithm terminates
since there are no more unex-
plored frontiers (F5

= ;).

Figure 4.9: Demonstration of the proposed algorithm in ROS simulation using a
simple environment.

52

(a) APGVG1, computed in G
1
rv

. (b) At the end of the computation of
APGVG2.

(c) The end of APGVGCC3. (d) Algorithm terminates since there are
no more unexplored frontiers.

Figure 4.10: Simulation in the complex (office structure) environment.

53

Chapter 5

Landmark-based Exploration

Chapter 3 and 4 focus on robot swarms with inter-robot sensing only. Although these robots

are capable of exploring and gaining the global information of the unknown environment with

few assumptions regarding its geometry, the number of robots required is proportional to the

dimension of the environment. This drawback leads us to consider a little more sophisticate

sensing model where each robot is equipped with an omni-directional, limited-range sensor

that can identify landmarks in its neighborhood. These landmarks can be obtained from

computer vision tools such as feature detections or object recognitions. Nevertheless, there

is no global information regarding the robot’s position or any range measurements available

and thus the robot needs to use the bearing angles to the landmarks for local navigation.

In this chapter, we assume that the detection of landmarks is trivial, i.e., the robot

always detects any landmarks within its disk of visibility and identify them with unique

IDs. Given a collection of identifiable landmarks, a landmark complex, a simplicial com-

plex constructed from observations of landmarks as discussed in Section 2.1.3, can then

be cumulatively constructed to encapsulate the topological information of the environment.

Under the assumption that there are sufficiently dense landmarks, we propose exploration

and exploitation strategies that guide a swarm of robots to explore an environment using

only bearing measurements without any global information or explicit range measurement.

These strategies are built on top of the coordinated exploration technique discussed in Sec-

54

tion 2.3.3.

(a) (b)

Figure 5.1: Illustration of the geometric realization of the landmark complex (b)
that represents the environment (a). The map is constructed from a collections
of observations of the distinguishable landmarks (green stars) by the robots during
exploration.

Given the environment filled with distinguishable landmarks, we first present the strategy

to actively guide the robot swarms to explore the environment and construct a landmark

complex, as illustrated in Figure 5.1. The basic strategy directly constructs a navigation

roadmap from the dual of the landmark complex and utilizes an existing bearing-based

controller to guide the robots around the environment. We then establish the necessary

and sufficient conditions that guarantee the completeness of this metric-free exploration

strategy. In simulation, we extensively evaluate the performance of the proposed method in

both idealized and more realistic scenarios.

In the last section, we propose the solutions to address some of the limitations of our

landmark-based exploration strategy. First, we propose an alternative control method that

utilizes the relative distances toward the landmarks, which can obtained from consecutive

bearing measurements, for exploration and exploitation. The advantages of this new control

policy are threefold: lowering the requirement on the density of landmarks, not relying on

the global compass direction, and yielding a collision-free path during navigation. Second,

for specific scenarios, we redefine the notion of landmarks so that the landmark complex

can detect some of the small features in the environment. Lastly, we discuss the method to

handle the misidentification of landmarks.

Part of the research contained in this chapter was originally published in [75].

55

5.1 Preliminaries

5.1.1 Notations

We denote by W ⇢ R2 the obstacle free region where the swarm of robots can be deployed

to explore the environment. Our objective is to deploy a swarm of N robots, denoted by

{Ri}
N

i=1, to explore W and construct a sparse map that encapsulates all topological features

of the environment. The position of Ri is denoted as xi 2 W, and we represent the set of

the positions of all the robots as X = {x1, x2, ..., xn}.

Given a collection of m identifiable, stationary landmarks, {Li}
m

i=0, we represent the

position of Li as yi 2 W , and represent the set of the positions of all the landmarks as

Y = {y1, y2, ..., ym}. A robot, Ri, equipped with an omni-directional camera, can measure

the bearing toward the landmarks within its disk-shaped sensing footprint of radius r. Thus,

Si = {Lj | kxi� yjk r, and 8↵ 2 [0, 1], (1�↵)xi + ↵yj 2W} denotes the set of landmarks

detected by Ri. The bearing measurement (relative to a fixed reference frame) to landmark

Lj 2 Si is denoted by ✓i
j
2 [�⇡, ⇡). The relative bearing between landmarks Lj , Lk 2 Si

is defined as ✓i
jk

= (✓i
k
� ✓i

j
) mod 2⇡, which is between 0 and 2⇡. Given an observation

Si by robot Ri, let ✓✓✓i = {✓i
j
|Lj 2 Si} denotes the snapshot of bearing measurement by Ri.

Figure 5.2 illustrates the sensing model of two robots with four landmarks. All landmarks

are within the distance of r from R1. However, S1 = {L1, L2, L4} because L3 is occluded

from the line-of-sight of R1.

We assume a very simple obstacle detection model: A robot can detect and identify the

general direction of an obstacle only upon contact. In practice, computer vision techniques

such as stereo vision system can be used for collision avoidance in local navigation [34].

Additionally, we assume that the robots are holonomic, hence the configuration of each robot

is simply the position, x 2W ✓ R2.

5.1.2 Dispersion

We borrow the notion of dispersion from sampling theory [59] to numerically quantify the

sparsity of landmark distribution. The dispersion of a finite set P of samples in a metric

56

Figure 5.2: Observation: S1 = {L1, L2, L4}, and S2 = {L3, L4}. The mea-
surement for robot R1 are ✓1

1, ✓
1
2, ✓

1
4, , which be used to calculate relative bearing

✓1
12, ✓

1
24, ✓

1
41. Although L3 is within radius r from R1, it is occluded by obstacle and

hence not a member of S1.

space (X , ⇢) is

�(P) = sup
x2X

{min
p2P

{⇢(x, p)}}

Using L2 metric, the L2 dispersion in R2 can viewed as the radius of the largest ball that

does not touch any sample points p.

The dispersion of the landmarks �({Li}) or simply � over L2 metric is defined as

� = sup
x2W

{min
yj2Y

{kx� yjk}}

Hence, the upper bound of the dispersion is r so that every point in the environment can

observe at least one landmark.

5.1.3 Multi-robot Exploration

To demonstrate the application of landmark complex in exploration task, we adapt the

frontier-based coordinated strategy from [13], which has an assumption of centralized co-

ordination. The frontier assignment and the mapping occur in a centralized manner, while

each robot executes their task individually. In summary, the exploration process can be

divided into three general steps as the following.

1. Identify all unexplored frontiers.

2. Calculate the cost-utility function for each frontier for all robots.

57

3. Update the map as robots navigate to the frontiers

Generally, the cost-utility function is the estimated difference between profits (utility)

and expenses (cost), which can be defined as the following.

Cost: The cost function is the distance between current location and the frontier.

Utility: The utility function is the expected information gain, which can be defined as the

expected area that a robot will explore.

5.2 Algorithmic Design

This section presents the basic strategy where we assume that the global compass direction is

available, i.e., the robots can determine their own orientations either by using magnetometer

or by sharing inter-robot bearing measurement when crossing other robots. The robots are

locally controlled using the bearing-only navigation system discussed in Section 2.2.2.

The outline of an algorithm is presented in Algorithm 7. The exploration process occurs

in an iterative manner until all frontiers are explored. In line 2, the process begins with

identifying the set of frontiers – a collection of unexplored areas as defined in Section 5.2.1.

As the robots explore beyond the frontiers, they construct the landmark complex L, and

thus exploit it for navigation by constructing its dual navigation graph G in line 3. Since

landmark complex is a topological representation of the entire environment, it is constructed

cumulatively (see Algorithm 8), while the navigation graph G is computed for each instance

of L as described in Section 5.2.2.

Using the navigation graph G and the list of frontiers F , we compute the cost-utility for

all pairs of free robots Ri and frontiers ha, bi 2 F in line 5. We then choose the pair of the

frontier ha, bi and free robot Ri such that the cost-utility function is maximized in line 6.

The assignment table, A, is used to keep track of the current assignment, where A[i] = {a, b}

denotes frontier ha, bi is assigned to Ri.

The robot-to-frontier assignment can be done using a greedy algorithm for simplicity or

the Hungarian algorithm for the optimal assignment. However, since the task assigned to

one robot affects the utility function of other robots, it is not trivial to apply the Hungar-

58

ian algorithm. Furthermore, although all robots begin as free, each robot will execute its

assigned task in parallel and may not finish at the same time. The task assignment will

often occur in asynchronous manner and thus the benefit of Hungarian algorithm would be

diminished.

After receiving an assignment, each robot individually navigates to its assigned frontier

using the bearing-based controller and the navigation graph G. As the swarms navigate and

explore the environment, their observations are used for cumulatively updating the landmark

complex L and frontier list F .

Algorithm 7 Swarm Exploration Overview

1: do

2: Identify the set of frontiers F

3: Construct/update the landmark complex L and compute the navigation graph G.

4: while exist robot with no frontier assignment do

5: Compute the cost-utility for each free robot Ri with each frontier ha, bi 2 F .

6: Assign frontier to free robot with maximal cost-utility function .

7: end while

8: while F 6= ;

5.2.1 Frontier Identification

In frontier-based exploration, the boundaries of the unexplored regions constitute frontiers.

In our case, a frontier constitutes of an ordered pair of landmarks with the order describing

the orientation of the frontier region.

With m landmarks, there are m(m � 1) combinations of possible frontiers. At the

beginning, all frontiers’ statuses are unknown. As robots explore the environment, the

frontiers are identified using relative bearing measurements. Given an observation Si, every

pair of landmarks and orientations become potential frontiers. The potential frontier is then

either identified as clear or unexplored. Once the frontier is marked as clear, it will remain

unchanged throughout the exploration. The objective of the exploration process is then to

clear all unexplored frontiers.

A frontier can be cleared in two ways. Firstly, the frontier is observed as part of the

59

inner diagonal of the explored polygon, where an explored polygon is the convex hull of

the observed landmarks. Without the range measurement to landmarks, we use the relative

bearing to determine whether the observation occur inside or outside the explored polygon.

The largest relative bearing between any two adjacent landmarks can be larger than ⇡ if and

only if the observation occurs outside the explored polygon. This is checked by sorting the

bearing in the polar coordinate system and calculating the different between the adjacent

landmarks on the list. Figure 5.3 illustrates the examples of observation that occurs inside

and outside the explored polygon during exploration process. With limited information,

either half of the potential frontiers are cleared or all of them are marked as unexplored for

each observation.

Secondly, the frontier is cleared if it is an obstacle boundary, i.e., a boundary that is

adjacent to the obstacles. For actual obstacle boundary, the robot will most likely run into

obstacles which can then be detected. On the other hand, it is difficult to determine that

the frontier is not the boundary without any filtering process as illustrated by Figure 5.4.

There are two potential solutions to resolve this issue.

The first solution involves tracing the 1�skeleton of the landmark complex after the

exploration is completed. During the task execution, the frontier that is undetermined after

randomly investigating for a certain amount of time is then marked as a potential obstacle

boundary. After the exploration process is completed, we calculate the 1�skeleton of the

landmark complex to trace of all obstacle boundaries and re-explored potential boundaries

that remain ambiguous, i.e. there is an inconsistency between the obstacle boundary from

the landmark complex and the actual boundary marked by the exploration process. Never-

theless, this approach does not guarantee any completeness as the frontier exploration relies

on the random walk process.

On the other hand, we can decrease the unpredictability of the random walk during

frontier exploration by decreasing the dispersion of the landmarks, i.e., making them denser.

As dispersion decreases, the landmark becomes closer causing the overlapped regions to be

larger. Hence, the robot is more likely to observe simplices in the landmark complex.

60

(a) (b)

(c)

Figure 5.3: Frontier Identification: A method to determine the frontiers during
exploration process. The robot is assigned to explore frontier h2, 3i with the current
observation includes three landmarks {L1, L2, L3}. The explored polygon is shaded
in yellow and the largest relative bearing is shaded in orange. Before getting inside
the explored polygon (a-b), the largest relative bearing is larger than ⇡ and none of
the frontiers is cleared since the robot cannot determine the placement of landmarks
with bearing measurement alone. For instance, the robot observes the exact same
bearing measurement for both (a) and (b) and hence none of the frontiers can be
cleared. However, after moving inside the explored polygon (c), the bearing becomes
smaller than ⇡ and three of the potential frontiers, including the assigned frontier,
h1, 2i, h2, 3i, h3, 1i are cleared.

Ideally, the entire configuration along the edge between two landmarks should be con-

tained inside the overlapped region so that crossing the boundary would suffice to clear the

frontier as illustrated in Fig 5.5a. In other words, the landmark complex constructed from

observations of every boundary would suffice to capture all topological features of the envi-

61

(a) (b)

Figure 5.4: Obstacle Boundary: A frontier constituting of the boundary of the
obstacle. In the first case (a), the robot hit the obstacle right after crossing the
edge and cannot continue the exploring h2, 3i, so h2, 3i can be masked as obstacle
boundary. On the other hand (b), the robot can continue exploration for a while after
crossing the boundary into h2, 3i. Thus, the status of h2, 3i is uncertain. Although
h2, 3i is not an obstacle boundary, the desired observation occurs at the position
denoted by the yellow striped disk, where the robot may or may not reach.

ronment. We consider the optimal and worst case to determine the upper and lower bound

of �.

Proposition 1. The density of landmarks, �,2 [
r

2
rp
3
] is necessary and sufficient.

The optimal landmark distribution occurs when all landmarks have the distance of r from

each other. This forms a uniform triangular tessellation where each equilateral triangle has

the side length of r (Fig 5.5b). Hence, the radius of the circumscribed of equilateral triangle

provide the upper bound of the dispersion, � rp
3
. Nevertheless, it is not sufficient as one

of the counter example illustrated in Figure 5.5c.

For sufficient condition, we consider the worst case scenario when the landmarks form the

lines with the maximal separation as illustrate in the counter example in Figure 5.5c. Hence,

without minimal distance between landmarks, the sufficient condition needs to constrain the

separation between lines to r. As a result, the lower bound of the dispersion is r

2 �.

In practice, the necessary condition would be good enough since intersected regions is

large enough that the robot will hardly miss it. Additionally, with the dispersion of rp
3
, it

will satisfy the necessary landmarks required for navigation in all scenarios as the landmarks

62

(a) Ideal Distribution (b) Triangular Tessellation (c) Poor Distribution

Figure 5.5: In ideal scenario (a), a robot can see other adjacent landmarks from
any point along the boundary frontier. A robot can detect red landmark from any
point along between two green landmarks. The optimal landmark distribution forms
a triangular tessellation with side length of r and the circumscribed of equilateral
triangle is rp

3
(b). However, in poor distribution (c), the robot may not detect other

landmarks from the boundary even if � rp
3
.

become approximately three times denser. Note that additional landmarks may be required

near the obstacle to satisfy the necessary condition for navigation.

5.2.2 Landmark Complex and Navigation Graph Construction

The landmark complex L is cumulatively constructed as the robots explore an environment.

The update function is defined in Algorithm 8. For any given observation, the landmark

complex is updated by adding simplices constructed from all possible combination of detected

landmarks as defined in line 5. P(Si) denotes the power set of Si. Additionally, a bearing

lookup table, BLT , is bookkeeping a snapshot of observed bearing for guidance during

navigation. The landmark complex only need to be updated when changes occur in the

set of detected landmarks and each robot may choose any instance of bearing measurement

as the reference stored in BLT . Due to noisy measurement, one may use the average of

multiple measurements to reduce the noise.

Algorithm 8 Update Landmark Complex
Input: List of landmarks Si and the bearing measurement ✓✓✓i

Output: Landmark complex L and bearing lookup table BLT .

1: function UpdateLC(Si,✓✓✓i)

2: if L and BLT not initialize then

3: L ;, BLT = []

4: end if

5: L L [(P(Si) \ ;)

6: BLT [Si] = ✓✓✓i

7: end function

63

(a) (b)

Figure 5.6: Navigation Graph (b) is a partial 1�skeleton of the observation complex,
a dual complex of landmark complex (a). A vertex on navigation graph corresponds
to the free simplex in the observation complex, while an edge between them corre-
sponds to two set of observations that shares common landmarks. The number on
the edges represents the dimension of sub-simplex which is the number of common
landmarks subtract by one. Note that we don’t include all simplices because the free
simplex already encapsulates the observation of its faces in the navigation graph.
This also significantly reduces the size of navigation graph.

We then construct the navigation graph G = (VG , EG) which is a 1�skeleton of the ob-

servation complex for exploiting the landmark complex. This graph can be viewed as a road

map where each vertex represents a unique observation. To minimize the size of naviga-

tion graph, the vertex set VG only consists of the interesting observations. An observation

is interesting if it contains the unique combination of landmarks that cannot be observed

elsewhere. We denote an interesting observation as free simplex in the landmark complex.

The free simplex is a simplex that is not the face (or simply subset) of any other simplex.

VG = {Si 2 L| 8Sj 2 L \ {Si}, Si \ Sj 6= Si}

The edges are added for every pair of free simplices that share sufficient dimension of

sub-simplex, nl, required for navigation.

EG = {(Si, Sj)| Si, Sj 2 VG , Si 6= Sj , |Si \ Sj | � nl},

where nl = 2 for our holonomic robots.

Since we are only interested in the free simplices when constructing a navigation graph,

64

it is sufficient to add only the simplex representing current observation to the landmark

complex in line 5 of Algorithm 8.

5.2.3 Cost-Utility Function

The cost function C (Si, ha, bi) is defined as the minimum distance from a vertex rep-

resenting the current configuration, Si, to one of the vertices adjacent to the frontier,

{Sj 2 VG | {La, Lb} ✓ Sj}. Since there is no actual metric information that can mea-

sure the real distance needed to traverse an edge, we choose the dimension of overlapping

sub-simplex to estimate the difficulty of traversing it, i.e. the number of common landmarks

between two observations subtract by one. Hence, the weight can be defined as:

8(Si, Sj) 2 EG , W (Si, Sj) =
1

|Si \ Sj |� 1
. (5.1)

Given the weighted graph, the cost function can then be calculated using any graph-

based searching method such as Dijkstra’s or A*. The output of the graph-based searching

method is cost to reach each frontier and the best sequences of observations that can guide

the robot there.

The utility function U(ha, bi) is defined as the potential information gain from exploring

that frontier. One potential indicator is the number of unexplored frontiers that share

common landmarks with it. Additionally, the robot should avoid exploring the frontier in

the same area as other robots. Hence, we define the utility function as:

U(ha, bi) =
|{hc, di 2 F| {La, Lb} \ {Lc, Ld} 6= ;}|

|{Ri| A[i] \ {a, b} 6= ;}|
(5.2)

Hence, the cost-utility function is defined as

CU(Si, ha, bi) = U(ha, bi)� � · C(Si, ha, bi), (5.3)

where � � 0 determines the relative importance between utility and cost function.

65

5.2.4 Task Execution

The task assignment outputs the target frontier ha, bi and the sequence of observations,

Si0 , Si1 , ..., Sik , that guides a robot to the assigned frontier, where Si0 corresponds to the

current observation and Sik corresponds to the observation adjacent to the assigned frontier.

The execution consists of two phases: navigating to Sik and then explore ha, bi.

In phase one, the robot uses bearing-based controller to go through the sequence of

observations where the desired bearing is recorded in the lookup table BLT. Note that the

sequence of observations is simply the guidance. For each target observation Sij , the robot

does not require to reach the exact observation. It can skip to the next target as soon as it

observes enough landmarks to reach the next one. Once the robot reaches a configuration

where it can observe both landmarks La, Lb, it continues to the next phase.

In phase two, the robot begins by approaching the regions that constitute the frontier,

i.e. driving toward areas between two corresponding landmarks if it is on the opposite side.

After arriving at the right region, the robot begins exploring the frontier by searching for

other landmarks that can be observed from this region. This can be done using biased

random walk to search locally. Each robot carries out phase two until either the frontier

is identified or a time limit is reached, where time limit depends on the dispersion of the

landmarks.

5.3 Statistical Analysis

In this section, we evaluated the performance of the landmark-based exploration through

simulations on various setups using MATLAB. First, we demonstrate the performance of

the proposed method in idealized scenarios where landmarks can be found anywhere in the

environment and they are always sufficiently dense. Then, we consider the more realistic

scenarios where landmarks are limited to the corners of the obstacles.

5.3.1 Idealized Scenario

In the idealized scenarios, we assume that the ideal landmark complex, i.e. a landmark

complex constructed from a collection of all possible observations, can correctly capture all

66

(a) Obstacle-free Environment (b) Simple Environment (c) Complex Environment

Figure 5.7: Testing Environments: The topological exploration are evaluated on
three different environments with teams of up to 30 robots.

topological features of the environment and the landmarks are sufficiently dense.

We first demonstrate the performance of the proposed method with various size of swarms

in various environments. We then show that the landmark complex constructed by the

proposed method can be used for navigating a robot to a vertex in the landmark complex.

Lastly, we compare the performance of the proposed method with a random walk algorithm.

In all studies, we assume that the bearing measurement has the Gaussian noise N (0, �)

with � =
⇡

72 , which means that the errors are within 5 degrees 95% of the time.

Exploration

We evaluate our proposed method on three different environments: obstacle-free, simple

structure, and complex structure, based on two criteria: completion rate and execution

time. In each environment, the landmarks are randomly generated with � =
rp
3
, averaging

in 130, 260, and 800 landmarks, respectively.

The completion rate is measured as the percentage of the coverage area corresponding to

the simplices that have been observed, while the execution time is measured by the number

of iterations, where each iteration represents one movement and one measurement for each

robot.

With the simulation of 30 trials for each environment with random initial positions for

the robots, the results are as the following. The completion rates are consistent across the

67

Figure 5.8: Execution Time vs. Number of Robots: The dashed-lines represent the
expected execution time which is approximated by a rectangular hyperbola curve
(number of robots ⇥ execution time = constant total workload).

size of robot swarms with an average of 98% on an obstacle-free environment, 95% on a

simple structure, and 91.5% on a complex structure. On the other hand, the execution

times signify the efficiency of exploration with team of robots as illustrated in Figure 5.8.

The outcomes beat the expectation in most cases, where the expected execution time is

approximated by a rectangular hyperbola curve (number of robots ⇥ execution time =

constant total workload). The total workload is determined by the total execution times

used by the smallest swarm size on each environment.

Nevertheless, we observed that the efficiency seems to be diminished beyond a certain

size of the swarm which could have resulted from limited amount of traversal space or poor

coordination between robots.

Figures 5.9, 5.10, and 5.11 illustrate the snapshots of geometric realization of the land-

mark complex constructed during exploration on all three environments. The geometric

realization uses the approximated position of landmarks for the purpose of visualization

only. The first top-left of each figure illustrates the coverage map of the landmarks, follow-

ing by the updated landmark complex at various iterations. The coverage map is generated

68

by overlaying the sensing disk from each landmark with different color. The progress are

smaller and smaller toward the end as robots need to traverse larger distance to explores

different frontiers including the false ones, which do not contribute any new information.

(a) Coverage Map (b) Ite: 100 (c) Ite: 500

(d) Ite: 800 (e) Ite: 1864 (Final)

Figure 5.9: Obstacle-Free Environment: The algorithm finishes exploring the trivial
environment filled with 133 landmarks using teams of 10 robots in 1864 iterations.
Figure (a) illustrates the coverage map of all landmarks. Figures (b-e) show the
geometric realization of the constructed landmark complex at different iteration,
where green-dashed lines denote the unexplored frontiers. At the beginning, the
landmark complex belongs to different homotopy class as it contains many connected
components and holes. The disconnected components are linked and the holes are
mended as more simplices are observed.

Exploitation

In this simulation, we demonstrate the exploitation of observation complex constructed by

other robots in the past. The targets are given as the set of observation and we use the

navigation graph to guide the robot there.

Comparison with Random Walk

In this section, we compare the performance of our proposed method with a random walk

algorithm in the simple environment with 167 landmarks. In each trial, we first simulate our

proposed method until termination and then use the final completion rate as the stopping

criterion for the random walk algorithm. The simulated result over 30 trials has been shown

69

(a) Coverage Map (b) Ite: 10 (c) Ite: 100

(d) Ite: 500 (e) Ite: 1000 (f) Ite: 1483 (Final)

Figure 5.10: Simple structure: The constructed landmark complex successfully
captures all topological features of the environment with non-trivial topology, i.e.
the number of holes is equal to the number of obstacles. The exploration with teams
of 20 robots is completed in 1483 iterations.

in Figure 5.13, where the task progress is determined by percentage of current completion

rate over the final one. Up until 50% task completion, the performance of both methods

are comparable. However, the proposed method is approximately three time more efficient

when consider the full exploration task.

5.3.2 Benchmarking

We consider a more realistic scenario where the landmarks are the corners of the obstacles

which can be detected by the existing methods in computer vision [46, 82, 85]. We then

evaluate the proposed methods based on various characteristics of the environment. To sim-

plify the experimental setup, each obstacle is represented by a rectangle and the environment

is defined using the following parameters:

d : the average diameter of the obstacles

o : the ratio of the occupied spaces to the entire environment

r : the sensing radius of the robots

70

(a) Coverage Map (b) Ite: 100 (c) Ite: 500

(d) Ite: 1000 (e) Ite: 1500 (f) Ite: 2373 (Final)

Figure 5.11: Complex Environment: The proposed method is evaluated on the
large map resembling the building floor plan filled with 869 landmarks using team
of 30 robots. The exploration is completed in 2373 iterations

We simulate the experiment on three different setups where each of the parameters

become an independent variable and then evaluate them based on the accuracy of the con-

structed landmark complex. Additionally, the control policy is modified such that each robot

will terminate its mission if it does not observe any landmark in order to limit the noises

from random behavior.

Accuracy of Landmark Complex

In realistic scenario, the landmark complex may not be able to correctly capture the topology

of the environment. Hence, we define the accuracy of the constructed landmark complex

as the function of the coverage rate (previously defined as the completion rate), which is

71

(a) Current (red) and Destination (green)
observation

(b) Ite: 200

(c) Ite: 494 (d) Paths taken by robot

Figure 5.12: Navigation Example: Robot exploits the landmark complex con-
structed by other robots for navigation from initial simplex to goal simplex.

Figure 5.13: The comparison between the execution time of the exploration task
between our proposed method and the random walk algorithm. Up until 50% task
completion, the performance of both methods are comparable. However, the pro-
posed method is approximately three time more efficient when consider the full
exploration task.

72

the proportion of free space covered by the geometric realization of the landmark complex,

and the percentage of holes/obstacles correctly captured by the landmark complex. Let ⇢

denote the completion rate and denote the ratio of the holes in the landmark complex

(the first Betti number) to the number of disconnected obstacles in the environment then

the accuracy can be defined as

Acc = exp(�a(� 1)
2
)⇢.

The exponential term has a value between 0 and 1 where a determines the penalty rate

of the missing holes and the extra holes created by the landmark complex. Hence, Acc = 1

if and only if ⇢ = = 1, i.e. the landmark complex correctly captures all the obstacles in

the environment and its geometric realization covers the entire free space.

In all simulations, the dimension of the environment is set to be 400⇥ 640 pixels2. The

result is collected from 50 randomly generated maps for each set of parameters. For the

evaluation, a is set to be 5 which will deduce the accuracy rate to 50%, 25%, and 5% if the

landmark complex misses 35%, 50%, and 80% of the holes, respectively.

Exp-1: Diameter of Obstacles

In the first setup, we fix the occupancy ratio to 0.3 and the sensing radius to 80 pixels while

set the average diameter of obstacles to various values between 70 to 270 pixels as illustrated

in Figure 5.14.

According to the simulation results, both the coverage rate and the accuracy of land-

mark complex are low in the environments filled with large obstacles since there are not

enough landmarks for navigation and mapping. The coverage rate increases as the diameter

of obstacles decreases as more obstacles lead to larger number of landmarks. However, the

accuracy peaks at the diameter of 130 pixels, which is slightly lower than twice the sensing

radius, and then sharply drops afterward due to the misdetection of small obstacles. In

general, the landmark complex may misdetect any obstacle that is smaller than twice the

sensing radius. However, due to the geometrical features of the rectangular obstacle, the

73

(a) d = 70 px (b) d = 100 px (c) d = 130 px (d) d = 160 px

(e) d = 190 px (f) d = 220 px (g) d = 270 px

Figure 5.14: Examples of test environments with various diameters (d) of obstacles
in pixels (px).

landmark complex will only misidentify it if a robot can observe any three corners simulta-

neously. Thus, any obstacle with diameter larger than
p

2 times the sensing radius should

be detected. As a result, the landmark complex only detects some of the obstacles with the

diameter of 100 pixels and none of the obstacles with the diameter of 70 pixels.

Exp-2: Ratio of Occupied Space

In the second setup, we fix the diameter of obstacles to 130 pixels and the sensing radius

to 80 pixels while set the ratio of occupied space to various values between 0.1 to 0.5 as

illustrated in Figure 5.16.

With low occupancy rate, there are not enough obstacles (and landmarks) for naviga-

tion and mapping, resulting in the low score in both the coverage rate and the accuracy.

As the ratio of occupied spaces increases, there are more obstacles and landmarks in the

environment, leading to a better coverage rate. Similarly, the score in the accuracy goes up

as the landmark complex gain more coverage as most of the obstacles are correctly detected

(d >
p

2r). Note that the accuracy slightly goes down for cluttered environment due to

some narrow corridors that the robots fail to discover.

Exp-3: Sensing Radius

In the last setup, we use the third set of maps from the first setup where the diameter of

obstacles is around 130 pixels and the ratio of occupied space is 0.3 and set the sensing

74

(a) Performance VS Diameter of Obstacles

(b) Box plot of ⇢ (c) Box plot of Acc

Figure 5.15: The performance of the proposed method on test set 1.

radius to various values between 40 to 200 pixels.

The coverage rate increases along with the sensing radius while the accuracy sharply

drops after the sensing radius grows pass 80 pixels. As the sensing radius increases, the

obstacles become relatively small and are hence misdetected by the landmark complex.

5.4 Alternative Control Strategies in Presence of Coarse Range

Measurement

In this section, we discuss the adjustments that could address some of limitations in our

proposed method.

75

(a) o = 0.1 (b) o = 0.2 (c) o = 0.3

(d) o = 0.4 (e) o = 0.5

Figure 5.16: Examples of test environments with various ratios of occupied spaces.

5.4.1 Unscaled Distance Exploration Strategy

Although the basic strategy performs reasonably well with the bearing-only controllers, there

are some downsides that can be avoided with the additional information derived from consec-

utive bearing measurements such as the minimum density of landmarks and the requirement

for global compass direction.

Unscaled Distance Estimation

The distance toward landmark i can be estimated from two consecutive bearing measure-

ments and the heading direction using the law of Sines as illustrated in Figure 5.19. By

utilizing this information, we propose a revised exploration strategy that guides a robot to

follow the sequence of line segments that are either equidistant to each pair of landmarks

or aligned with the obstacles. Coincidentally, the traversal path of the robot is similar to

the bounded Voronoi graph (BVG), a boundary of the bounded Voronoi diagram (BVD) as

illustrated in Figure 5.20. The bounded Voronoi diagram is a Voronoi diagram where the

visibility of each generator is constrained by the obstacles [35]. Before going into the details

of the exploration strategy, we first introduce the controller that guides to robot along the

equidistant line between a pair of landmarks.

76

(a) Performance VS Ratio of Occupied Space

(b) Box plot of ⇢ (c) Box plot of Acc

Figure 5.17: The performance of the proposed method on test set 2.

Controller

Given La and Lb as the pair of reference landmarks, the unscaled vector toward landmark

Li is defined as

~i =
yi � x

C
, i 2 {a, b}

where yi denote the position of landmark Li, x denote the position of the robot, and C denote

the unknown scaling factor due to unknown travel distance. Note that ~i can be estimated

directly as previously described and C is constant across landmarks for each observation.

77

(a) Performance VS Sensing Radius

(b) Box plot of ⇢ (c) Box plot of Acc

Figure 5.18: The performance of the proposed method on test set 3.

The control input

u0 =
~ak~ak+~bk~bk

k~ak2 + k~bk2

will drive the robot toward the center point between two landmarks as illustrated by the

plot of vector field in Figure 5.21a.

Let

ĉ =

~b� ~a

k~b� ~ak

78

Figure 5.19: Assuming that a robot is moving in a straight line, an unscaled distance
toward the landmarks can be estimated from consecutive bearing measurements
using the law of Sines, i.e., d̃i =

di
|~v| =

sin(↵)

sin(✓̇i)
. Since the distance traveled |~v| is

unknown, we cannot calculate the exact the distance toward landmark di.

(a) The gray dashed lines represent the bisec-
tors of the overlapping regions corresponding to
the 1-simplices.

(b) The bounded Voronoi graph, a boundary
of the bounded Voronoi diagram that is con-
structed with landmarks at the corner obsta-
cles, is a subset of the bisectors of overlapping
regions in 1-simplices.

Figure 5.20: The environment can be explored by traversing a sequence of line
segments equivalent to bounded Voronoi graph and the boundary of the obstacles.

denote the unit vector from La to Lb and

ĉ? =

2

64
0 �1

1 0

3

75 ĉ

denote the perpendicular vector of ĉ that is aligned with the desired heading direction. By

projecting a vector u0 onto ĉ and ĉ?, we can manipulate the output to get the desired

79

behavior such as the following control input

u = k(u0 · ĉ)ĉ + |u0 · ĉ
?
|ĉ?.

The first term will drive the robot toward the equidistant line between two landmarks where

k determines the convergence rate, while the second term will force the robots to move along

the line segment in the desired direction. Note that u becomes ~0 as u0 = ~0 at the midpoint

between La and Lb, which is not desirable. However, we can simply set u to be ĉ? when

u0 = ~0 to fix this issue. Additionally, a control input u can be treated as a unit directional

vector since a robot does not have any odometry information, as illustrated in Figure 5.21b.

(a) u0 =
~ak~ak+~bk~bk
k~ak2+k~bk2

(b) Unit vector of u = k(u0 · ĉ)ĉ + |u0 · ĉ?
|ĉ?

with k = 1

Figure 5.21: The plots of vector field: (a) u0 guides a robot to the center between
two landmarks ,denoted by two red starts; (b) u guides a robot toward the equidistant
line, denoted by a magenta line, while also heading toward the desired direction
(upward).

Revised Exploration Strategy

In the revised strategy, our goal is to construct our landmark complex by traversing an

bounded Voronoi graph (BVG). Hence, we assume that the corners of the obstacles will be

detected as landmarks in order to satisfy the condition for constructing BVG. We will mainly

consider the scenario where the landmarks are at the corner of the obstacles. However, the

80

same strategy can handle the environment with additional landmarks in the free space as

well since adding more landmarks will increase the connectivity of the graph and generally

make it easier to traverse.

• Frontier Identification: Since our goal is to traverse the BVG, we can ignore all other

edges that are not part of the BVG using the relative distance information. Given the

pair of successive bearing measurements, we first embed the landmarks that have been

observed consecutively into a local coordinate frame and then determine whether the

current position is on the BVG. To be part of BVG, the robot, which locates at the

origin, should form an isosceles triangle with a pair of the nearest landmarks. This

condition can be relaxed to a pair of the nearby landmarks, i.e. within certain distance

ratio of the closet landmark, to allow room for error in bearing measurement. Let ~a,~b

be the vectors toward a pair of nearest landmarks in the local coordinate frame. Then

4OAB is formed by connecting ~a, ~b and ~o = ~b � ~a, where I is the angle opposite to

~i, i 2 {o, a, b}. 4OAB is an isosceles triangle if and only if A = B. Hence, we define

the evaluation function ' : R2
⇥ R2

! R�0 as

'(~a,~b) = exp(|A�B|) +
k~ak+ k~bk

2�
� 2,

where � is the distance toward the nearest landmark in the current observation. This

' function measures how close the triangle is to the ideal isosceles one. The first term

penalizes the triangle with unbalanced base angles while the second term penalizes

the pair of landmarks that are not the nearest ones. Note that the term � is used

for normalizing the unscaled distance measurement. We can then determine whether

a pair of landmarks should be explored using the threshold on '. For instance, the

color map in Figure 5.22 displays the minimal value of ' among all pairs of visible

landmarks at each location (with the upper limit at 5 in the color map). It can be

seen that the regions with minimal values form a graph similar to BVG that can be

utilized in exploring the environment.

81

Figure 5.22: The color map displays the minimal value of ' among all pairs of
visible landmarks at each location.

• Control Policy: The proposed controller allows the robot to move along the bisector of

the overlapping region between two landmarks in either direction which is sufficient to

traverse the majority of the BVG as illustrated in Figure 5.20. Nevertheless, the BVG

may not be fully connected in the region with sparse landmarks such as those near the

long obstacle/wall. Hence, the robot may need to traverse along the boundary of the

obstacles to ensure that the environment is fully explored when the BVG intersects

with the obstacles. There are three scenarios where the BVG intersects with the

obstacles as illustrated in Figure 5.23. The robot needs to explore the obstacles in

the directions where the corners have not been observed yet. Additionally, during

initialization (and also exploration if the bearing measurement is too sparse), the

robot may need to reorient itself with the BVG if it only observes one landmark or

situates too far from the BVG. For instance, the robot may circle around the landmarks

outwardly if it only observes one landmark or increase the value of k in the control

input u to push the robot toward BVG if it can observe more than two landmarks.

• Navigation Graph: One of the downsides of this strategy is that the navigation graph

cannot be constructed directly from the landmark complex since it does not contain

any directional information. Additionally, some of the 1-simplices are not parted of

the BVG. Hence, the navigation graph has to be constructed iteratively during the

exploration process. Let the navigation graph be a directed graph G = (V, E), where

82

(a) (b) (c)

Figure 5.23: The are three scenarios where BVG intersects with obstacles. In
scenario (a), both landmarks are the corner of the intersecting obstacle, so the
robot does not need to explore any further. In scenario (b), one of the landmark
is the corner of the intersecting obstacle, so the robot needs to explore along the
obstacle in the direction opposite to observed corner. In scenario (c), both landmarks
do not belong to the intersecting obstacle, hence the robot needs to explore in both
direction.

the vertex ,v 2 V corresponds to the junction of paths in the BVG or the intersection of

BVG with the obstacles and the edge in e 2 E corresponds to the path along the BVG

or the boundary of the obstacles, as illustrated in Figure 5.24. The navigation graph

of the BVG consists of the vertices, where the blue ones correspond to the junctions of

paths on BVG and the orange ones correspond to the intersection with obstacles, and

the edges, where the blue lines correspond to the movement along the BVG and the

orange lines correspond to the movement along the boundary of the obstacles. The

number of blue nodes and edges in the navigation graph might vary depending on

the threshold we use for '. Additionally, we can set the weight of the orange edges

to be much higher to avoid the movement along the obstacles while maintaining the

connectivity of the graph.

Discussion

Using a simple greedy algorithm, we simulate the exploration with the revised strategy. The

result shows that the robot can explore and construct the topological map of the environment

by following the paths that either belong to the BVG or the boundary of the obstacles as

illustrated in Figure 5.25.

83

(a) The BVG of the environment. (b) The navigation graph of the BVG.

Figure 5.24: The navigation graph of the BVG consists of the vertices, where
the blue ones correspond to the junctions of paths on BVG and the orange ones
correspond to the intersection with obstacles, and the edges, where the blue lines
correspond to the movement along the BVG and the orange lines correspond to the
movement along the boundary of the obstacles.

(a) The paths traversed by the robot during the
exploration.

(b) The landmark complex constructed from
observations along the traversed paths.

Figure 5.25: Using the revised strategy, the robot successfully explores the envi-
ronment and constructs the right landmark complex.

There are three advantages of the revised strategy. First, it has much higher success

rate compared to the basic strategy when operating in the environment filled with sparse

landmarks since the revised strategy uses little to no random walk process during the explo-

ration. Second, there is no need for global compass direction and the bearing lookup table

since the robot can use the direction from the navigation graph with proposed controller

to navigate the environment. Additionally, the motion along the BVG is guarantee to be

collision-free. Lastly, the execution time is significantly reduced since the robot no longer

84

needs to explore all possible frontiers, where some of them are very difficult to observe.

Nevertheless, the use of relative distance information for both exploration and exploitation

causes the revised strategy to be more sensitive to noise.

5.4.2 Misdetection of Holes/Obstacles

Until now, we have been focusing on addressing the limitations of the landmark-based nav-

igation. In this section, we consider an adjustment on the definition of landmark complex

to address some of its limitation.

(a) Environment (b) Landmark complex with r = 80 px

(c) Landmark complex with r = 120 px (d) Landmark complex with r = 160 px

Figure 5.26: Using the corners of the obstacle as landmarks, the landmark complex
correctly captures all the obstacles with sensing radius of 80 pixels but fails to identify
the obstacles as the sensing radius increases to 120 and 160 pixels.

In the realistic scenario, we observe that the constructed landmark complex only accu-

rately determine the topology of the environment in a very limited ranges of parameters as

illustrated in Figure 5.26. For the scenario with insufficient landmarks, the accuracy of the

landmark complex is low since it cannot cover an entire environment and thus it is the phys-

ical limitation on the sensing capability. On the other hand, for the scenario with plenty of

landmarks, the accuracy of the landmark complex still sharply fells when the obstacles be-

85

come relatively small compared to the sensing radius. In Figure 5.26, the landmark complex

nicely represents the environment with the sensing radius of 80 pixels but fails to identify

most and all of them at the sensing radius of 120 and 160 pixels respectively. The issue lies

in the non-convexity of the domain of visibility of each landmark. For rectangular obstacle,

the hole, corresponding to the obstacle, will not be detected by the landmark complex if

there exists an observation that can see its antipodal corners as illustrated in Figure 5.27.

Figure 5.27: The hole, corresponding to the obstacle, will not be detected by the
landmark complex if there exists an observation that can see its antipodal corners.

According to the definition in [43], the landmark complex is the nerve of the cover of the

collection of observations that see at least one landmark. By Dowker duality, the landmark

complex is homotopy equivalent to the observation complex, which is the nerve of the cover

of the landmarks. Hence, the landmark complex is homotopy equivalent to the free-space

as long as the nerve of the cover of the landmarks is. Nevertheless, the nerve lemma, which

proves the homotopy equivalent relation, only applies to weakly convex sets in Euclidean

space.

One may consider the cover of landmark l to be the regions in the free space that can

observed l, i.e. its domain of visibility. Due to the occlusion of obstacle, the domain of

visibility at each corner of the obstacle is non-convex and hence the underlying nerve cover

may not be homotopy equivalent to the free-space.

In this section, we propose an alternative definition of the landmark. Instead of using

corners as the landmarks, we redefine the landmark to be an edge of the obstacle, where a

pair of corners that constitute the edge and the regions between them are fully visible as

shown in Figure 5.28. This is simply an edge detection, which can be done with the existing

86

techniques in computer vision. With an edge of the obstacle as a landmark, the domain of

visibility for this new landmark becomes a half plane, which by itself is convex.

Figure 5.28: The domain of visibility of an edge is the intersection of the domain
of visibility of the corners which becomes a half plan for infinite sensing radius.

Nevertheless, the occlusion of other obstacles can still cause the domain of visibility to

be non-convex. As a result, some of the smaller obstacles can still be misdetected. For

instance, if there exists a location where an edge is completely visible along with another

fixed unoccluded edge (of a different obstacle) for every edge of an obstacle, then that

obstacle will not be detected. Figure 5.29 illustrates such example where 8b 2 {b1, ...b4},

there exist a location such that b is visible along with g1. Thus, g1 will cone out the blue

obstacle. Nevertheless, in practice, this limitation could actually be useful in filtering out

the small objects in the environment such as chair or table.

Using the result from data set 3, we recompute the accuracy of the landmark complex

using edges as the landmarks. The accuracy significantly improves for a larger sensing

radius, as illustrated in Figure 5.30. However, this method also increases the minimum

sensing radius as it requires a longer-range sensor to observe an entire edge.

An alternative solution would be to redefine the landmarks as the set of edges that

can be simultaneously observed and belong to different obstacles. For instance, given an

environment with two obstacles in Figure 5.29, the set of landmarks would be all unique

pairs of edges from each obstacle. The domain of visibility of this new landmark is the

intersections of all half planes without any occlusion since the occluded edge must be part

of the landmark and hence convex. However, this method can quickly become intractable

87

Figure 5.29: 8b 2 {b1, ...b4}, there exist a location such that b is visible along with
g1. Thus, g1 will cone out the blue obstacle.

Figure 5.30: By replacing the corner with the edge as landmark, the accuracy
significantly improves for a larger sensing radius. However, this also increase the
minimum sensing radius as an edge requires a longer sensing range to observe.

as the sensing radius increases since the number of simplices grows exponentially with the

number of obstacles.

88

5.5 Conclusion

This chapter first presents the metric-free exploration algorithm for the swarms of limited

sensing capabilities using a topological representation of an environment. Each robot is

equipped with an omni-directional, limited range sensor that can uniquely identify land-

marks in its neighborhood and measure their bearing angles for local navigation. The

landmark complex, a simplicial complex that encapsulates the topological information of

the environment, is constructed based on the observation of identifiable landmarks. With

sufficiently dense landmarks, we demonstrate the performance of our proposed method on

three environments with different structures in simulations. Additionally, the constructed

landmark complex can be further exploited for future navigation. We then present an al-

ternative exploration strategy in the presence of coarse distance measurement. Using the

coarse distance information, the robot can follow the paths that either belong to the bounded

Voronoi graph or align with the obstacles to completely explore an environment. Lastly, we

discuss some solutions to address the misdetection of the obstacles by the landmark complex.

Although our strategies are implemented in a centralized manner, similar results can

be achieved in a decentralized implementation if all robots can maintain a communica-

tion link with each other. Since the map representation is simply a set of landmarks’ ids,

which is sparse and compact, the communication bandwidth is not an issue. Of course,

resource-constrained robots will also have limited range radios and may not be able to form

a connected graph. The study of decentralized exploration algorithms and creating the

landmark complex would be an interesting direction to explore.

89

Chapter 6

Pursuit-Evasion

There are many variations of the pursuit-evasion as described in 2.3.4. This chapter ad-

dresses the pursuit-evasion where a team of coordinated pursuers needs to search a given

environment for an unknown number of evaders or targets. Pursuit-evasion formulation can

be used to represent many useful applications such as surveillance or search and rescue. For

instance, consider the problem of deploying a team of mobile sensing robots to patrol a mil-

itary base in order to detect any intruders breaking into the base, or to search for survivors

after a disaster. In such scenarios, pursuers must take into account the fact that evaders

are mobile and may avoid being detected; they may also know the location of all pursuers

at all times and may move faster than the pursuers. As a result, simply checking all areas

is not sufficient and one needs to generate sophisticated pursuit strategies. Without any

assumptions regarding the number, the speed, or the maneuverability of evaders, we design

a general algorithm for automatically computing the strategy that pursuers should follow

for detecting all evaders.

In this chapter, we propose an alternative approach for solving the worst-case adversarial

pursuit-evasion problems where multiple pursuers equipped with limited-range sensors are

used to detect and capture all possible mobile evaders in a given environment. Our main

objective is to design a general algorithm for automatically computing the strategy that

pursuers should follow for detecting all evaders. First, we demonstrate the proposed frame-

90

(a) A graph representation is con-
structed for the given environment
and the pursuers’ sensor model

s1

s2

s3

s4

(b) The entire of configuration space of N = 2 pursuers is
partitioned into a set of abstraction states (purple boxes),
where subset of them are being shown s1, s2, s3, s4 above.
This abstraction is described in section 6.2. An edge oc-
curs between two abstraction states s1 and s2 because it is
possible to go in one move of a pursuer, from a concrete
member state of s1 to a concrete member state of s2.

⇡ :

t0 t1 t2 tT�2 tT�1 tT

si1 si2 sik�1
sik

(c) The hierchical planner synthesizes a strategy as a sequence of abstraction actions
(⇡S) and then refine ⇡S into a sequence of actions (⇡) that can be executed by the
pursuers for N = 2.

Figure 6.1: Illustration of the main steps for synthesize the solution strategy for
pursuit-evasion problem with our framework.

work on the metric map and then explain how to apply similar framework on the landmark

complex constructed in Chapter 5.

Part of the research contained in this chapter was originally published in [77].

Overview

Given inputs as a map of the environment and sensor models for the pursuers, we obtain a

graph representation of an environment using the Čech Complex. Even with such represen-

tations, the configuration space grows exponentially with the number of pursuers. In order

to address this challenge, we propose an abstraction framework to partition the configura-

tion space into sets of topologically similar configurations that preserve the space of possible

evader locations.

91

The essence of our approach is illustrated in Figure 6.1. Our algorithm takes as input

a map representing the environment, a sensor model of the pursuers, and the number of

pursuers. Using the sensor model of the pursuers, we first construct a graph representation

of the environment as shown in Figure 6.1a. Next, we formulate the configuration space of

the pursuers using the graph representation and the number of pursuers N and partition it

into the set of abstract states (Figure 6.1b). Finally, we synthesize the strategy as a sequence

of abstract actions and then perform the refinement step to map the abstract strategy into

the solution strategy in the configuration space of the pursuers as illustrated in Figure 6.1c.

6.1 Preliminaries

6.1.1 Problem Description

We considers the problem of pursuit-evasion (PE) for worst-case adversarial targets with

N pursuers, where the number of evaders is unknown and the evader is capable of moving

arbitrary fast.

A map is defined as a free space, W , in an n-dimensional Euclidean space, where n is

typically 2 or 3. The position of the ith pursuer is specified by pi 2W, which can be applied

to the sensor model O to get the sensor footprint, a set of points in W that can be observed

from position pi, O(pi) ✓ W . An evader space E is defined as a set of points not being

observed by any pursuers,

E = W \

[

i

O(pi).

Each point in the map can be clear or contaminated. The point is contaminated if an evader

could be present in it, otherwise it is clear. The map is said to be clear when all points in

W are clear. The point can be clear by being observed by any pursuer. However, the clear

point p 2 E can become contaminated again if there exists a path in an evader space from p

to another contaminated point q 2 E , where the path from p to q is defined as a continuous

function ⌧pq : [0, T]! E such that ⌧pq(0) = p, ⌧pq(T) = q.

The process of clearing and contaminating the map as the pursuer move around is il-

lustrated in Figure 6.2. Initially, evader can be in any unobserved points, so they are all

92

Figure 6.2: Illustration of the contaminated regions, shaded in red, and cleared
regions, shaded in green, as the pursuer moves around in the free space. Initially,
evader can be in any regions, so they are all contaminated. The pursuer then
moves forward and clear the regions along the path. However, as the pursuer moves
further and the cleared regions are connected to the contaminated ones, they become
contaminated again.

contaminated. The pursuer then moves forward and clear the points along the path. How-

ever, as the pursuer moves further and the clear points are exposed to the contaminated

ones, they become contaminated again. The objective of PE is then to compute trajectories

for each pursuer for clearing all regions in the evader space, where a trajectory of ith pursuer

is defined as a continuous function of time, pi(t) for t 2 [0, T].

Definition 4 (Strategy on map). Let W be a free space representing a map. A strat-

egy (⇡) is a collection of trajectories for all pursuers, ⇡W : [0, T] ! W
N , i.e. ⇡W(t) =

[p1(t), p2(t), ..., pN (t)].

Definition 5 (PE problem on a map). Given the map W with N pursuers with sensor

model O, determine a strategy ⇡ that clears the map W .

Synthesizing a solution in continuous space can quickly become intractable, especially

when multiple pursuers are required. As a result, we choose to reduce PE problem on a map

to PE problem on a graph using Čech complex construction. We will first describe how to

construct a graph and then formally introduce PE problem on a graph.

One of the main step in graph construction is choosing a set of representative points

such that every point in W can be observed from at least one of the samples. Ideally,

we also want to minimize the size of the representative set. However, this is essentially a

93

minimum set cover problem, one of the well-known NP-complete problems and hence we use

the sampling-based method. First, we uniformly distribute the points to cover the convex

hull of W based on the sensor model O. We then keep the sampling points that lie within

W and set aside the rest. Next, we iterate through the points in W that are not within the

sensor footprints of any chosen positions and choose the point in W closest to the nearest

samples from the discarded points.

Assuming that O is convex and the pursuer can move holonomically, we then construct

the Čech complex over the sampling points. For Čech complex, a 0-simplex exists for each

sampling point; a 1-simplex exists between two 0-simplices whose their corresponding points

have a non-empty intersected sensor footprints; and a 2-simplex exists for every 3-tuple of

points whose sensor footprints have a non-empty intersection. To assert that we attain the

hole-less coverage of the free space, we want the 2-simplices to cover all the points that are

sufficiently faraway from the obstacle. The points are sufficiently faraway if they cannot be

observed from the closest boundary of the obstacles.

Definition 6 (Graph representation). G = (V, E), where V is the set of 0-simplices and E

is the set of 1-simplices.

Similar to the map, each vertex on G can be either clear or contaminated. The vertex v

is clear when pursuer visits. However, v can be recontaminated if there exists a sequence of

unobserved vertices to another point u, i.e. (w1, ..., wk), where w1 = v, wk = u, (wi, wi+1) 2

E and all wi’s are unobserved. G is clear when all vertices are clear.

The trajectory on a graph is then defined as a sequence of vertices, (v0, v1, ..., vT), vi 2 V

such that (vi, vi+1
) 2 E. For simplicity, we will discretize the movement of pursuer into time

step of 1. In addition, we assume that multiple pursuers can occupied same vertex.

Definition 7 (Strategy on a graph). Let G = (V, E) be a graph. A strategy on graph (⇡G or

⇡) is a collection of trajectories on graph, ⇡ : {0, 1, ..., T}! V N , i.e. ⇡(t) = [vt1, v
t
2, ..., v

t

N
].

Definition 8 (PE on graph). Let G = (V, E) be a graph. Determine a strategy ⇡ that

clears G.

94

Furthermore, the strategies computed on the graph can be translated back into exe-

cutable trajectories on the map. For any (u, v) 2 E, a path between u, v is defined as a

continuous function ⌧uv : [0, 1] ! W such that ⌧(0) = u and ⌧(1) = v. Additionally, to

prevent v from immediately contaminate u during execution, ⌧uv must satisfy the following

property:
\

t2[0,1]

O(⌧uv(t)) = O(u) \O(v).

Since the every path from a point in O(v) to a point in O(u) while remaining inside O(v)[

O(u) must go through O(v) \ O(u), this property ensures that the intersection is always

observed and hence no path in evader space from points in O(v) to O(u) (without going

through other vertices).

2 4

3

6

7

8

5

9

1

2 4

5

6

7

1 8

9

3

Figure 6.3: Example of graph representation in 2D environment with holomomic
pursuer equipped with circular sensor footprint (left) and its Čech Complex (right).
The path between vertices are denoted by solid lines, which are either a straight line
or a pair of lines through an intermediate point in the presence of obstacles.

We will focus on the holonomic pursuer with sensor model of a ball with radius r.

We demonstrate the construction of graph representation using Čech complex on a map

with circular sensor model in Figure 6.3. The path between any vertices will either be a

straight line or a pair of straight lines through the point inside the intersection of their

sensor footprints due to the presence of obstacles. In both cases, these paths satisfy the

property for ⌧ that prevents the immediate contamination during execution. For instance,

95

7

8 3

⌧3,8

Figure 6.4: A valid path exist for any edges in G. For instance, any points along
⌧3,7 and ⌧3,8 remain observing O(3) \O(7) and O(3) \O(8) respectively.

⌧3,7, a straight line from vertex 3 to 7, and ⌧3,8, a pair of straight lines from vertex 3 to 8,

always cover their corresponding intersection as shown in Figure 6.4.

6.1.2 Pursuit-Evasion on Landmark Complex

This section derives the problem of pursuit evasion on the landmark complex, constructed

in Chapter 5, as PE on graph. Since the landmark complex is identical to the Čech complex

when the landmarks are sufficiently dense, the navigation graph described in Section 5.2.2

can be used as a graph representation of the landmark complex. Thus, all evaders in the

environment will be captured by clearing the navigation graph of the landmark complex

under the following assumptions.

1. The geometric realization of the landmark complex fully covers of the environment.

This can be satisfied if the landmark is sufficiently dense and there exists landmark

at every corner of the obstacles. This assumption ensures that clearing all of the free

simplices of the landmark complex will capture all possible evaders in the environment.

2. The pursuer must maintain the visibility of all shared landmarks when transitioning

between free simplices. This assumption ensures that the transition between free

simplices won’t trigger the re-contamination.

96

6.1.3 Solving PE as a Partially Observable Planning Problem

Since the positions of the evaders are unknown, we could not fully observe the state during

planning. Hence, we introduce the notion of belief state which is a unique situation that

may occur during execution.

The belief state, denoted by x, consists of the configuration/position of all pursuers,

denoted by p, and the possible positions of the evaders, which will be referred as the con-

taminated regions denoted by c. The collection of all belief states is referred as the belief

space (X) , while the configuration space (P) is spanned by the position of the pursuers.

The span of contaminated regions will be referred as the contamination space, (C).

Thus we have that

x = (p, c) 2 X, with p 2 P, c 2 C.

On the graph representation G, the configuration space, P , is spanned by the pursuer

positions, p = {p1, ..., pN}, where pi 2 V. On the other hand, the contamination space, C,

can be defined as a set of vertices that the evaders could be present in. Hence, it is a subset

of a power of set of V , c 2 C ✓ P(V).

The update step occurs when the pursuers take action, i.e. move along an edge in

G. With the time discretization on graph, the action can simply be written as the next

configuration of the pursuers, p0, and hence the update function can be defined as

Update(xt,p
0
) :

xt+1 = (p0, UpdateContaminate(ct,p
0
))

UpdateContaminate updates the contaminated vertices based on the current contamination

status and next configuration of the pursuers by computing a set of reachable vertices on

G0
= (V \ p0, E \ p0

) beginning at ct \ p0. In addition to all edges that contain occupied

vertices, the edge subtraction may require removing some additional edges. The additional

edge removal will be explained in section 6.2.1.

The solution strategy is then a sequence of actions in the belief space such that the

97

contaminated regions becomes an empty set, i.e. ⇡ = {(p0, c0), (p1, c1), ..., (pT , ;)}, where

(p0, c0) is the initial state. Solving this as a partially observable planning problem requires

search in an intractably large space of belief states, which is exponential in the number of

joint pursuer-evader configurations. To address this challenge, we will use a novel abstraction

technique that is described in the next section.

6.2 Abstraction Framework

6.2.1 Abstraction State Space

To cope with the exponential growth of the belief space, we propose the novel method to

partition the configuration space into abstraction state space, denoted by S, by utilizing the

topological invariants of the evader space.

Although the contamination space might appear to be exponential of |V |, not all com-

binations of the contaminated regions are reachable. Since the evader can move arbitrary

fast, any adjacent regions in the evader space will both be either contaminated or cleared.

Utilizing this fact, we define the connected component (CC) function which returns the

sets of adjacent vertices in the evader space of G based on the assignment of pursuers,

p, denoted by CC(p, G) or simply CC(p) when G is obvious. The connected component

function can be computed by projecting the sensor footprints of the pursuers onto the free

space, and then reconstructing the graph representation of the evader space, E , as illustrated

in Figure 6.5.

The connected component function can also be computed by subtracting the vertices

(and their associated edges) occupied by the pursuers from G. Nevertheless, in the present

of obstacles, the evader space might remain connected in G while become disconnected in W

as illustrated in Figure 6.6. These exceptions lead to additional edges removal from G. For

2D environment, there are only two possible scenarios. The first scenario occurs when the

intersection of two sensor footprints is completely contained inside the sensor footprint of

another vertex (Figure 6.6a). The other scenario occurs when there is a 4-way intersection

of sensor footprints, resulting in edge intersection in G (Figure 6.6b).

98

(a)

7

1

2

3

4

5

6

(b)

Figure 6.5: Illustration of an connected component function on G with pursuers at
p = h3, 3i. (a) Sensor footprint is projected onto W which then separate the evader
space into multiple connected components (b) The graph is reconstructed on the
evader space where the position of pursuers are depicted by blue-shaded vertices,
while the evader space are grouped by shaded boxes for each connected component.
CC(h3, 3i, G) = {{1, 2}, {4, 5}, {6, 7}}

2

1 3

(a) With pursuer at h2i, 1 and 3 remain con-
nected with removal of 2 in G but actually get
disconnected in W.

2 4

1 3

(b) Similarly, with pursuers at h2, 3i, 1 and 4

remain connected with removal of 2 and 3 in G
but actually get disconnected in W.

Figure 6.6: Additional edges removal is required when computing connected com-
ponent on G on these cases.

99

During graph construction, we can keep track of the intersection between sensor foot-

prints to handle the first scenario, while edge intersection can be easily computed. Hence,

the CC function can be computed on G for 2D environment. For higher dimension, the CC

function can be computed on G only if all exceptions are tractable. Otherwise, completeness

is not guarantee.

Using the results of the CC function, we want to partition the configuration space into

abstract states in a way that preserves the topology of the evader space, which is equiva-

lent to the contamination status of each connected component remains unchanged. Using

abstract state S1 in Figure 6.7 as an example, h3, 3i ⇠ h3, 4i and there exists a one-to-one

mapping between CC(h3, 3i) and CC(h3, 4i) which preserves the contamination status of

each connected component. On the other hand, the edge between two abstract states de-

notes the transition that does not preserve the topology of an evader space, which could

then lead to the changes in contamination status of the evader space. For instance, the

edge between S1 and S2 represents the transition between h3, 4i and h4, 4i which is resulted

in two connected components of CC(h3, 4i) merging and could potentially changes their

contamination statuses. We first introduce a relation between two adjacent configurations

and then formally define an equivalence relation for partitioning the configuration space as

follow.

Let p ! q denotes two adjacent configurations p,q 2 P s.t. (pk, qk) 2 E, 8k 2

{1, ..., N}. Given two adjacent configurations we can define a relation, which we call transi-

tion relation, as follows.

Definition 9 (Transition Relation). Let p,q 2 P s.t. p! q. The transition relation ⇢p,q

between connected components of p and q is defined as

(ccp
i
, ccq

j
) 2 ⇢p,q , ccp

i
\ ccq

j
6= ; ,

where ccp
i
2 CC(p), ccq

j
2 CC(q).

Given the previous definition we can now formally introduce an equivalence relation

100

7

1
2
3
4
5

6 7

1
2
3
4
5

6

7

1
2
3
4
5

6

7

1
2
3
4
5

6

7

1
2
3
4
5

6

7

1
2
3
4
5

6

7

1
2
3
4
5

6 s1

s2

s3

s4

Figure 6.7: Simple configuration space of two pursuers is partitioned into abstrac-
tion state space using equivalence relation.

between states, which we will use to define a state abstraction.

Definition 10 (Equivalence Relation). For all p,q 2 P we say that p is equivalent to q, or

p ⇠ q, if and only if there exists a finite sequence {z
i
}
T
0 2 P T+1 with ⇢ such that

1. z
0

= p, and z
T

= q;

2. z
i
! z

i+1, with i 2 {0, ..., T � 1};

3. ⇢zi,zi+1 is a bijection.

Hence, the abstraction state space can be defined as S = P/⇠, where each abstraction

state si 2 S is a collection of equivalent configurations.

As a result, the contamination status of each connected component could only be changed

upon transition between abstraction states. Hence, we can synthesize the solution strategy

on the abstraction state space instead of synthesize the strategy directly in the configuration

space.

In next section, we will describe the algorithm to incrementally construct the abstraction

state space S, the function mapping P to S, denoted by (�), and the adjacency matrix of

abstraction states, denoted by M.

6.2.2 Partition Algorithm

Algorithm 9 outlines an incrementally construction of the abstraction state space and other

components required for synthesizing a strategy. The concept is to perform a forward search

101

Algorithm 9 Partition algorithm
1: S ;,M ;

2: Q.Insert(pI) for some arbitrary pI

3: while Q 6= ; do

4: p Q.GetF irst(), mark p as visited
5: �(p) null, AdjacentS ;
6: for p0

2 Adjacent(p) do

7: if p0 is visited then

8: if CC(p) ⇠ CC(p0
) then

9: if �(p) is null then

10: �(p) �(p0
)

11: else

12: Resolve conflict if needed
13: end if

14: else

15: AdjacentS .Insert(�(p0
))

16: end if

17: else if p0 is unvisited then

18: Q.Insert(p0
), mark p0 as alive

19: end if

20: end for

21: if �(p) is null then

22: S.Insert(Abstract(p)), �(p) Abstract(p)

23: end if

24: for a 2 AdjacentS do

25: Update M(�(p), a)

26: end for

27: end while

over P beginning at an arbitrary state pI and partition them into the abstraction state,

a 2 S, based on the output of CC(p).

Following standard forward search algorithm (line 2-6, 17-18), each state in P begins

as unvisited and will be marked alive or visited upon inserting to or removing from Q

respectively. The set of alive states is stored the in list Q and the search is completed when

the list Q is empty. The function Adjacent(·) in line 6 returns the set of adjacent states by

moving the pursuers along graph G. In this step, we will restrict the adjacent states to one

pursuer movement only.

The partitioning occurs between line 7-15 and 21-25, where we compare the connected

components of the current state to the visited adjacent states and either assign the current

102

state to the new abstraction state or append it to the existing one.

In general, comparing the connected component between two arbitrary configurations is

nontrivial. Nevertheless, comparing those of the adjacent configurations is much simpler.

In line 8, we compute the transition relation, ⇢p,p0 , as defined in Definition ?? and check

whether it is bijective. This transition relation is also used for updating the contaminated

regions when transiting between abstraction states.

If the graph consists of cycles, a conflict might occur when two similar configurations

get assigned into two different abstraction states. This will be resolved in line 12 where two

abstraction states will be combined.

Furthermore, the adjacency matrix, M, is updated based on the connectivity of the

corresponding configuration states. In line 15, AdjacentA keeps track of the adjacent ab-

straction states which will then update M in line 25. The adjacency matrix also store the

transition relation(s) between two abstraction states and the corresponding configurations.

The transition relation might not be unique if G consists of cycles.

As a result, the computational complexity of the partition algorithm is approximately

O(dN |V |
N+1

), which consists of O(dN |V |
N

) from the forward search algorithm over the

configuration space of size |V |
N where each configuration has O(dN) adjacent states, d

denotes the average degrees of the vertices, and O(|V |) from comparison of evader space in

line 8. Although the number might seems large, it is much smaller comparing to searching

over original belief space because the partition algorithm is only exponential with respect to

the number of pursuers, which is commonly known as curse of dimensionality in multi-robot

motion planning problem. In the next section, we will explain how to use the output of the

partition algorithm to synthesize the solution strategy.

6.3 Hierarchical algorithm

To synthesize the strategy using the abstraction framework, we first search for the strategy

in the abstraction state space and then refine the strategy into the configuration space. If the

number of pursuers, N is given, planning in abstraction framework would either return the

103

strategy or indicate that no solution exists for the given N . The search for strategy in the

abstraction state space can be done using existing techniques for graph-based searching such

as Dijkstra’s algorithm. We will describe the abstraction believe space for planning in the

abstraction state space in section 6.3.1, and then discuss the refinement step in section 6.3.2.

6.3.1 Planning in the abstraction state space

The abstraction believe state for the abstraction state space, denoted by xS , becomes a

pair of the abstraction state (s) and the list of contaminated regions (L), where each region

represents a set of adjacent vertices of the evader space.

xS = (s, L), L = {sj}.

The update step during planning will keep track of the contaminated regions using the

information stored in the adjacency matrix M. Since the transition relation ⇢ may not be

unique, the update step with input sk has to be called for each ⇢ stored in M(st, sk).

Update(xS,t, sk, ⇢) : Lt+1 = {sj
k
| 9sit 2 Lt, (s

i

t, s
j

k
) 2 ⇢} (6.1)

xS,t+1 = (sk, Lt+1) (6.2)

The solution strategy is a sequence of abstract belief states such that the list of contami-

nated regions eventually becomes empty, denoted by ⇡S = (ai1 , {a
j

i1
}), (ai2 , {a

j

i2
}), ..., (aik , ;).

We will then describe how to map the solution strategy into the strategy on a graph with

the refinement process on the following section.

6.3.2 Refinement

The information stored in M provides the boundary configurations representing the tran-

sition between abstraction states. Nevertheless, given the sequence of abstraction states,

the entering configuration might not be adjacent to the leaving one. For instance, in Fig-

ure 6.8, the incoming and outgoing configuration of abstraction state sj are not adjacent.

Thus, the refinement step is required to find the trajectory from the incoming to outgoing

104

?

Figure 6.8: The transition between abstraction states represents the action between
boundary configurations, however, the incoming configuration need not be adjacent
to the outgoing one. Hence, the refinement step is necessary to find the trajectories
between them.

configuration such that all intermediate configurations are the member of sj .

Using mapping function �, one method for refinement is to perform the forward search

inside each abstraction state to find the trajectory from the incoming to outgoing config-

urations. Nevertheless, this method might be inefficient since we already expand the full

configuration space while executing partition algorithm.

An alternative method is to store information of the spanning trees of each abstraction

state during the partition algorithm and then search for the trajectory on the spanning trees

during refinement. The downside of this method is that the result is usually suboptimal

compared with one from forward search method.

Given the strategy ⇡A = {s0, s1, s2, ..., sk} where �(pI) = s0, the refinement then first

search for a trajectory from pI to the boundary configuration connecting to s1 while remain-

ing within s0. Then, we continue refine the solution inside s1 from the incoming configuration

from s0 to the outgoing configuration connecting to s2 while remaining within s1. The same

process continue until we reach the final abstraction state sk.

6.3.3 Minimizing the number of pursuers

The full algorithm for synthesize the solution strategy is given in algorithm 10 when the

number of pursuers, N , required is unknown. Note that incrementing N by one at each

iteration is more efficient that doing binary search because the computational complexity is

exponential with respect to N .

105

Algorithm 10 Hierarchical Strategy Synthesis
1: Construct G of free space W with sensor model O(·)

2: N 1, ⇡S []

3: while ⇡S is empty do

4: Partition GN into abstraction state space S

5: ⇡S Planning(S,pI)

6: Increment N
7: end while

8: ⇡ Refine(⇡S)

6.4 Results

The construction of graph representation is implemented in MATLAB, whereas the remain-

ing components are implemented in C++. We validate the proposed method in simulations

with environments of varying topologies and using different number of pursuers as discussed

in section 6.4.1. Then, we compare our results with the graph-based searching over the full

belief space on simple environments in section 6.4.2.

6.4.1 Simulation Results

We evaluated the performance in simulation on environments with three different topologies

as show in Figure 6.9. Each pursuer has a disc sensor footprint with a radius of one meter.

Due to various structures of the environments, we represent their dimensions with the num-

ber of vertices in the graph representation. Figure 6.9c illustrates the graph representation

of the testing environments and the sensor footprint of the pursuer. The number of pursuers

required in each environment is computed by iterating from N = 1.

Tree Structure

We evaluated on the tree structures with varying number k and width w of branches (vertical

corridors). The graph representations contain 8� 48 vertices. It requires 2 pursuers to clear

the map for w = 1 and 3 pursuers to clear the map for w = 2. The execution times of each

component are illustrated in Figure 6.10.

106

(a) Tree structure (b) Ladder Structure (c) Random Loops Structure

Figure 6.9: Testing Environments

0	
1	
2	
3	
4	
5	
6	
7	
8	

k=
1,	
w=
1,	
V=
8,	
N=
2	

k=
2,	
w=
1,	
V=
13
,N=
2	

k=
3,	
w=
1,	
V=
20
,	N
=2
	

k=
4,	
w=
1,	
V=
25
,N=
2	

k=
5,	
w=
1,	
V=
31
,N=
2	

k=
6,	
w=
1,	
V=
37
,N=
2	

k=
1,	
w=
2,	
V=
13
,N=
3	

k=
2,	
w=
2,	
V=
26
,N=
3	

k=
3,	
w=
2,	
V=
35
,N=
3	

k=
4,	
w=
2,	
V=
48
,N=
3	

Ti
m
e	
(s
)	

Refinement	

Planning	

AbstracAon	

Figure 6.10: The execution time of the proposed method on tree structure with k
branches of width w using N pursuers on graph with V vertices.

107

0	

20	

40	

60	

80	

100	

120	

140	

k=2,	w=1,	
V=30,	N=2	

k=3,	w=1,	
V=37,	N=3	

k=4,	w=1,	
V=43,N=3	

k=5,	w=1,	
V=52,	N=3	

k=2,	w=2,	
V=40,	N=3	

k=3,	w=2,	
V=48,	N=4	

Ti
m
e	
(s
)	

Refinement	

Planning	

AbstracAon	

Figure 6.11: The execution time of proposed method on ladder structure with k
steps of width w using N pursuers on graph with V vertices.

Ladder Structure

We evaluated on the ladder structures with varying number k and width, w, of steps (vertical

corridors). The graph representations contain 30� 52 vertices. For ladder with single loop

k = 2, it requires 2 pursuers to clear the map with w = 1 and 3 pursuers to clear the map

with w = 2. If the ladder with multiple loops k > 2, it requires 3 pursuers to clear the

map with w = 1 and 4 pursuers to clear the map with w = 2. The execution times of each

component are illustrated in Figure 6.11.

Random Loops Structure

We evaluated the proposed methods on two maps shown in 6.9c using 4 pursuers for the

top one, which consists of 46 vertices, and 5 pursuers for the bottom map, which consists of

53 vertices. The total execution times are 105.59 and 4076.32 seconds, in which abstraction

framework are accounted for 103.25 and 4074.44 seconds respectively. The intermediate

steps during the clearing process are shown in Figure 6.12 and Figure 6.12.

As explained in section 6.3.2, one the main disadvantages of refinement using spanning

tree is the lengthy strategy as indicated by a high number of iteration in both examples.

This strategy can be further improved; however, this is out the scope of this thesis.

The simulation results show that the abstraction framework is responsible for the major-

108

(a) Iteration: 10 (b) Iteration: 30

(c) Iteration: 100 (d) Final Iteration (147)

Figure 6.12: Snapshots of clearing process on 3 ⇥ 4 grid map with all narrow
passages using 4 pursuers.

(a) Iteration: 30 (b) Iteration: 70

(c) Iteration: 250 (d) Final Iteration (309)

Figure 6.13: Snapshots of clearing process on curved hallway with vary passages
size using 5 pursuers.

109

Map Our framework Baseline planner
Tree with 1 branch, V= 8 0.014 0.04

Tree with 2 branches, V=13 0.034 49.95
Ladder with 2 steps, V=14 0.018 1082.77

Table 6.1: Comparison of execution time (s) between our framework and baseline
planner.

ity of computation time as N increases, which conforms with our analysis on computational

complexity of the partition algorithm. Nevertheless, the abstraction framework only needs

to be executed once for each given map with the same number of pursuers. It is invariant of

the initial position and thus we can quickly synthesize the strategy again for different initial

position. This can be useful if an error occurs while executing the solution strategy and the

pursuers are deviated from the planned strategy.

6.4.2 Comparison

We compare the results of our proposed algorithm with a baseline (brute force) planner which

searches for a strategy on the full belief space, described in section 6.1.3. We used maps

with tree and ladder structures. The baseline planner can only solve the maps containing up

to 2 branches (13 vertices) for tree structure and the maps containing one loop (14 vertices).

The execution time of the baseline planner quickly grow exponential as V increases.

Additionally, the baseline planner suffers greatly from the topological invariant of the loop

structure (such as a ladder) because each configuration is mapped to a new believe state.

On the other hand, our framework reduces the configuration space of 2 pursuers with one

loop into 2 abstraction states; one for two pursuers being adjacent and other when they are

separated.

6.4.3 Discussion

In this chapter, we proposed an abstraction framework to solve a worst-case adversarial

pursuit-evasion problem where multiple pursuers with limited-range sensor coverage are

used to detect all possible mobile evaders. This method involves constructing the graph

representation of an environment using the sensor model equipped on the pursuers, par-

110

titioning the configuration space of the pursuers over graph into an abstract state space,

searching for a strategy in the abstract state space, and finally refine the strategy into the

configuration space. We validate our proposed method by simulating environments with

different topologies and compare the result with a brute force searching over the full belief

space. Since the full belief space grows exponentially with N and the number of vertices in

V , the brute force search can only solve PE problems on small maps (|V | < 20) for N = 2.

In contrast, our approach reduces the complexity into exponential of N with base |V | and

can solve the PE problems with a few hundred vertices for N = 2 and up to 50 vertices for

N = 5.

Although the abstraction framework requires inspecting the full configuration space of

N pursuers, this step needs to be done only once for a given map with the same number

of pursuers. The output can be reused for different initial configurations. Furthermore, we

observe that many maps with the similar structure yield the same abstraction. This opens

up an interesting problem of how can we apply the result of one abstraction framework to the

new maps with similar structure without recomputing it. Additionally, we are interested in

converting an abstraction framework into an on-line algorithms so that we can concurrently

synthesize for the solution strategy, which may avoid exploring the entire configuration

space.

111

Chapter 7

Conclusion and Future Work

7.1 Contribution

This dissertation addresses a series of problems related to coverage and mapping of an

unknown environment by a swarm of resource-constrained robots. In particular, we consider

the instantiations of problems related to sensor coverage, mapping, exploration, and pursuit-

evasion. This dissertation makes various contributions in each of these areas focusing on

the design and development of algorithms that require a minimal amount of sensing and

computational capability.

Using a swarm of robots only capable of measuring bearing angles to other robots within

their sensing region, we present algorithms for the deployment of mobile robots to attain

full sensor coverage, followed by the computation of a topological map of an unknown

environment without knowledge of any global or metric information. We then adopt a

frontier-based strategy on a landmark complex to develop an exploration strategy that does

not rely on metric information for autonomous exploration that will ultimately create a

topological map of a feature-rich environment with any number of robots. Lastly, we propose

a pursuit-evasion algorithm to detect all possible evaders and clear a known environment,

given as either a metric map or landmark complex.

112

7.2 Future Work

This dissertation only begins to scratch the surface of potential applications that can be

provided by a swarm of resource-constrained robots. There are a number of interesting

directions for future work.

One immediate question is how to implement them in real-world applications. The

coverage and mapping algorithms, presented in Chapter 3 and 4, have been implemented

in a heterogeneous team of real and virtual robots. Due to the limited number of physical

robots and sensors, we only ran the experiment in a controlled space where sensing was

greatly simplified through the use of a motion capture system and simulation. From our small

experiment, which only deployed single robot per iteration, we noticed that the issue of total

execution time would have to be addressed before application to a large scale system. Hence,

the proposed method should be extended to handle multiple deployments per iteration as

well as asynchronous execution between each deployment.

For the landmark-based exploration, presented in Chapter 5, one of the main challenges

was the detection of landmarks, especially in terms of consistency and uniqueness. There

are many potential representations of landmarks from visual inputs such as image features

(SIFT [65] or ORB [85]) or object classes with Deep Learning techniques [44, 79]. Generally,

the environment is rich with features/objects that can be used as landmarks. Hence, the

key question here is how to find a set of unique landmarks that could correctly capture

all the geometric properties of an environment. A potential solution is to use a persistent

homology to filter out the common landmarks that occur frequently. Nevertheless, the

problem of determining the uniqueness of features (such as landmarks) is a challenging task,

even in the area of computer vision [96]. An object detector yields a classification confidence

which seems useful, while it does not differentiate between two objects of the same class.

Another interesting direction would be to extend the landmark-based exploration al-

gorithm to higher dimension. The landmark complex is already well-defined for 3D en-

vironment, while the stochastic different equation (SDE) model could be utilized to drive

the robots in frontier-based exploration of 3D environment [51, 88]. Additionally, it would

113

be worth testing the relative bearing-only controllers proposed in [6, 9], despite the lack

of evidence for global convergence, to relax the assumption of global compass direction

in Chapter 5.

The next question is related to the use of topological maps for other tasks. In Chapter 6,

we discussed the assumptions of the landmark complex, in which the proposed framework

could solve the multi-pursuers and multi-evaders planning problem on the landmark com-

plex. Those assumptions could potentially be further generalized or relaxed to solve a PE

problem on a broader range of landmark complexes. Additionally, the topological map could

also be utilized in other multi-robot applications where the objective is to find a feasible

solution instead of the optimal one, such as patrolling or a multi-vehicle routing task.

Regarding the constraint on resources, our focus has been on sensing capabilities. How-

ever, there are other avenues for future research such as limited communication range or

the deployment of the proposed strategies in a distributed system. Although our algorithms

have been designed to require as minimal exchange of information as possible, we assume

that information sharing has neither delay nor range limitation. The limited communication

range would not only make information unavailable to/from disconnected robots but also

introduce delays when propagating information across the swarm, which is likely to cause

some of the proposed algorithms to fail. The issue with delays could be addressed by adding

timestamps into the shared information, while the issue with disconnected swarms require

each robot to model and predict the states of other robots to rendezvous and exchange

information. Additionally, as the number of the robots in the swarm increases, the system

should move toward being fully distributed by designing policies allowing each individual

robot to compute with local information only without propagating information across entire

swarms.

Finally, the coordination strategies in this dissertation are all designed based on greedy

methods that, although a sensible choice in many combinatorial problems, can yield sub-

optimal solutions, as it occurs in vehicle routing problems [10, 12, 57]. Thus, it would be

an interesting direction to apply the techniques from the vehicle routing literature such as

114

auction-based multi-robot routing algorithms or divide and conquer policies [12, 57] to the

coordination strategies of the robot swarms.

115

Bibliography

[1] Ercan U Acar, Howie Choset, Alfred A Rizzi, Prasad N Atkar, and Douglas Hull. Morse
decompositions for coverage tasks. The International Journal of Robotics Research, 21
(4):331–344, 2002. doi: 10.1177/027836402320556359.

[2] Henry Adams and Gunnar Carlsson. Evasion paths in mobile sensor networks. The
International Journal of Robotics Research, 34(1):90–104, 2015. URL http://ijr.
sagepub.com/content/34/1/90.

[3] Francesco Amigoni and Vincenzo Caglioti. An information-based exploration strategy
for environment mapping with mobile robots. Robotics and Autonomous Systems, 58
(5):684–699, 2010.

[4] Adrien Angeli, David Filliat, Stéphane Doncieux, and Jean-Arcady Meyer. Fast and
incremental method for loop-closure detection using bags of visual words. IEEE Trans-
actions on Robotics, 24(5):1027–1037, 2008.

[5] Antonis A Argyros, Kostas E Bekris, and Stelios C Orphanoudakis. Robot homing
based on corner tracking in a sequence of panoramic images. In Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
CVPR 2001, volume 2, pages II–II. IEEE, 2001.

[6] Antonis A Argyros, Kostas E Bekris, Stelios C Orphanoudakis, and Lydia E Kavraki.
Robot homing by exploiting panoramic vision. Autonomous Robots, 19(1):7–25, 2005.

[7] David Avis and Binay K Bhattacharya. Algorithms for computing d-dimensional
Voronoi diagrams and their duals. Advances in Computing Research, 1:159–180, 1983.

[8] Maxim Batalin and Gaurav S. Sukhatme. The design and analysis of an efficient local
algorithm for coverage and exploration based on sensor network deployment. IEEE
Transactions on Robotics, 23(4):661–675, Aug 2007.

[9] Kostas E Bekris, Antonis A Argyros, and Lydia E Kavraki. Exploiting panoramic
vision for bearing-only robot homing. In Imaging beyond the pinhole camera, pages
229–251. Springer, 2006.

[10] Marc Berhault, He Huang, Pinar Keskinocak, Sven Koenig, Wedad Elmaghraby, Paul
Griffin, and Anton Kleywegt. Robot exploration with combinatorial auctions. In
Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ In-
ternational Conference on, volume 2, pages 1957–1962. IEEE, 2003.

116

http://ijr.sagepub.com/content/34/1/90
http://ijr.sagepub.com/content/34/1/90

[11] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Multi-robot coverage and
exploration on riemannian manifolds with boundary. International Journal of Robotics
Research, 33(1):113–137, January 2014. DOI: 10.1177/0278364913507324.

[12] Francesco Bullo, Emilio Frazzoli, Marco Pavone, Ketan Savla, and Stephen L Smith.
Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, 99(9):1482–
1504, 2011.

[13] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. Coordinated
multi-robot exploration. IEEE Transactions on robotics, 21(3):376–386, 2005.

[14] Jose A Castellanos, JMM Montiel, José Neira, and Juan D Tardós. The SPmap: A
probabilistic framework for simultaneous localization and map building. IEEE Trans-
actions on Robotics and Automation, 15(5):948–952, 1999.

[15] Hai-Chau. Chang and Lih-Chung Wang. A Simple Proof of Thue’s Theorem on Circle
Packing. ArXiv e-prints, September 2010.

[16] Howie Choset. Sensor based motion planning: The hierarchical generalized Voronoi
graph. PhD thesis, California Institute of Technology, Department of Mechanical
Engineering, 1996.

[17] Howie Choset and Keiji Nagatani. Topological simultaneous localization and mapping
(SLAM): toward exact localization without explicit localization. IEEE Transactions
on robotics and automation, 17(2):125–137, 2001.

[18] Howie Choset, Sean Walker, Kunnayut Eiamsa-Ard, and Joel Burdick. Sensor-based
exploration: Incremental construction of the hierarchical Generalized Voronoi Graph.
The International Journal of Robotics Research, 19(2):126–148, 2000. doi: 10.1177/
02783640022066789.

[19] Louis Coetzee and Johan Eksteen. The internet of things-promise for the future? an
introduction. In IST-Africa Conference Proceedings, 2011, pages 1–9. IEEE, 2011.

[20] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT Press, 2nd edition, 2001.

[21] Nikolaus Correll and Heiko Hamann. Probabilistic modeling of swarming systems. In
Springer Handbook of Computational Intelligence, pages 1423–1432. Springer, 2015.

[22] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control
for mobile sensing networks. IEEE Trans. Robot. Autom., 20(2):243–255, April 2004.

[23] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam:
Real-time single camera slam. IEEE transactions on pattern analysis and machine
intelligence, 29(6):1052–1067, 2007.

[24] Vin De Silva and Robert Ghrist. Coordinate-free coverage in sensor networks with
controlled boundaries via homology. The International Journal of Robotics Research,
25(12):1205–1222, 2006. doi: 10.1177/0278364906072252.

117

[25] Vin De Silva, Robert Ghrist, and Abubakr Muhammad. Blind swarms for coverage in
2-d. In Robotics: Science and Systems, pages 335–342, 2005.

[26] Jason Derenick, Vijay Kumar, and Ali Jadbabaie. Towards simplicial coverage repair
for mobile robot teams. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 5472–5477. IEEE, 2010.

[27] Clifford H Dowker. Homology groups of relations. Annals of mathematics, pages 84–95,
1952.

[28] Gregory Dudek, Michael Jenkin, Evangelos Milios, and David Wilkes. Robotic explo-
ration as graph construction. Robotics and Automation, IEEE Transactions on, 7(6):
859–865, Dec 1991.

[29] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part
i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[30] Karthik Elamvazhuthi and Spring Berman. Optimal control of stochastic coverage
strategies for robotic swarms. In Proceedings of the IEEE International Conference on
Robotics and Automation,, pages 1822–1829. IEEE, 2015.

[31] Karthik Elamvazhuthi, Chase Adams, and Spring Berman. Coverage and field estima-
tion on bounded domains by diffusive swarms. In of the IEEE Conference on Decision
and Control, pages 2867–2874. IEEE, 2016.

[32] Brendan Englot and Franz S Hover. Three-dimensional coverage planning for an
underwater inspection robot. The International Journal of Robotics Research, 32(9-
10):1048–1073, 2013.

[33] Gerald Weinberg et al. Hypecycle. In AYE Conference, September 5 2003.

[34] F. Ferrari, Enrico Grosso, Giulio Sandini, and M. Magrassi. A stereo vision system
for real time obstacle avoidance in unknown environment. In Proceedings of IEEE
International Workshop on Intelligent Robots and Systems, pages 703–708. IEEE, 1990.

[35] Steven Fortune. Voronoi diagrams and delaunay triangulations. In Computing in
Euclidean geometry, pages 225–265. World Scientific, 1995.

[36] Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Dirk Schulz, and Ben-
jamin Stewart. Distributed multirobot exploration and mapping. Proceedings of the
IEEE, 94(7):1325–1339, 2006.

[37] Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12):1258 – 1276, 2013.

[38] Santiago Garrido, Luis Moreno, Mohamed Abderrahim, and Fernando Martin. Path
planning for mobile robot navigation using Voronoi diagram and fast marching. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages
2376–2381, Oct 2006. doi: 10.1109/IROS.2006.282649.

118

[39] Brian Gerkey, Richard T Vaughan, and Andrew Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th in-
ternational conference on advanced robotics, volume 1, pages 317–323, 2003.

[40] Brian P Gerkey, Sebastian Thrun, and Geoff Gordon. Visibility-based pursuit-evasion
with limited field of view. The International Journal of Robotics Research, 25(4):
299–315, 2006. URL http://dl.acm.org/citation.cfm?id=1124588.

[41] Robert Ghrist. Elementary Applied Topology. URL http://www.math.upenn.edu/
~ghrist/notes.html. From http://www.math.upenn.edu/⇠ghrist/notes.html.

[42] Robert Ghrist and Sanjeevi Krishnan. Positive alexander duality for pursuit and
evasion. 2017.

[43] Robert Ghrist, David Lipsky, Jason Derenick, and Alberto Speranzon. Topological
landmark-based navigation and mapping. University of Pennsylvania, Department of
Mathematics, Tech. Rep, 8, 2012.

[44] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[45] Leonidas J Guibas, Jean-Claude Latombe, Steven M LaValle, David Lin, and Ra-
jeev Motwani. A visibility-based pursuit-evasion problem. International Journal
of Computational Geometry & Applications, 9(04n05):471–493, 1999. URL http:
//www.worldscientific.com/doi/abs/10.1142/S0218195999000273.

[46] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[47] Allen Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University
Press, 2002. ISBN 9780521795401. URL https://books.google.com/books?id=
BjKs86kosqgC.

[48] Geoffrey Hollinger, Athanasios Kehagias, and Sanjiv Singh. GSST: anytime guaran-
teed search. Autonomous Robots, 29(1):99–118, 2010. URL http://link.springer.
com/article/10.1007/s10514-010-9189-9.

[49] Andrew Howard. Multi-robot simultaneous localization and mapping using particle
filters. The International Journal of Robotics Research, 25(12):1243–1256, 2006.

[50] Rufus Isaacs. Differential games: a mathematical theory with applications to warfare
and pursuit, control and optimization. Courier Corporation, 1999.

[51] Simon Karpenko, Ivan Konovalenko, Alexander Miller, Boris Miller, and Dmitry Niko-
laev. Uav control on the basis of 3d landmark bearing-only observations. Sensors, 15
(12):29802–29820, 2015.

[52] Jonghoek. Kim, Fumin Zhang, and Magnus Egerstedt. A provably complete explo-
ration strategy by constructing Voronoi diagrams. Autonomous Robots, 29(3-4):367–
380, 2010.

119

http://dl.acm.org/citation.cfm?id=1124588
http://www.math.upenn.edu/~ghrist/notes.html
http://www.math.upenn.edu/~ghrist/notes.html
http://www.worldscientific.com/doi/abs/10.1142/S0218195999000273
http://www.worldscientific.com/doi/abs/10.1142/S0218195999000273
https://books.google.com/books?id=BjKs86kosqgC
https://books.google.com/books?id=BjKs86kosqgC
http://link.springer.com/article/10.1007/s10514-010-9189-9
http://link.springer.com/article/10.1007/s10514-010-9189-9

[53] Sven Koenig, Boleslaw Szymanski, and Yaxin Liu. Efficient and inefficient ant coverage
methods. Annals of Mathematics and Artificial Intelligence, 31(1-4):41–76, 2001. ISSN
1012-2443. doi: 10.1023/A:1016665115585. URL http://dx.doi.org/10.1023/A%
3A1016665115585.

[54] Andreas Kolling and Stefano Carpin. The graph-clear problem: definition, theoretical
properties and its connections to multirobot aided surveillance. In Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 1003–
1008. IEEE, 2007. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=4399368.

[55] David Kortenkamp and Terry Weymouth. Topological mapping for mobile robots
using a combination of sonar and vision sensing. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (Vol. 2), AAAI’94, pages 979–984, Menlo Park,
CA, USA, 1994. American Association for Artificial Intelligence. ISBN 0-262-61102-3.
URL http://dl.acm.org/citation.cfm?id=199480.199508.

[56] Benjamin Kuipers, Joseph Modayil, Patrick Beeson, Matt MacMahon, and Francesco
Savelli. Local metrical and global topological maps in the hybrid spatial semantic
hierarchy. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 5, pages 4845–4851 Vol.5, April 2004. doi: 10.
1109/ROBOT.2004.1302485.

[57] Michail G Lagoudakis, Evangelos Markakis, David Kempe, Pinar Keskinocak, Anton J
Kleywegt, Sven Koenig, Craig A Tovey, Adam Meyerson, and Sonal Jain. Auction-
based multi-robot routing. In Robotics: Science and Systems, volume 5, page 343C350.
Rome, Italy, 2005.

[58] Dimitrios Lambrinos, Ralf Möller, Rolf Pfeifer, and Rüdiger Wehner. Landmark nav-
igation without snapshots: the average landmark vector model. In Proceedings of
Neurobiology Conference Göttingen, 1998.

[59] Steven M LaValle. Planning Algorithms. Cambridge university press, 2006.

[60] Valentine Lebourgeois, Agnès Bégué, Sylvain Labbé, Benjamin Mallavan, Laurent
Prévot, and Bruno Roux. Can commercial digital cameras be used as multispectral
sensors? a crop monitoring test. Sensors, 8(11):7300–7322, 2008.

[61] SeoungKyou Lee, Aaron Becker, Sándor P. Fekete, Alexander Kröller, and James
McLurkin. Exploration via structured triangulation by a multi-robot system with
bearing-only low-resolution sensors. CoRR, abs/1402.0400, 2014. URL http://arxiv.
org/abs/1402.0400.

[62] John Lim, Nick Barnes, et al. Robust visual homing with landmark angles. In Robotics:
science and systems, 2009.

[63] Ming Liu, Cédric Pradalier, Qijun Chen, and Roland Siegwart. A bearing-only 2d/3d-
homing method under a visual servoing framework. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 4062–4067. IEEE, 2010.

120

http://dx.doi.org/10.1023/A%3A1016665115585
http://dx.doi.org/10.1023/A%3A1016665115585
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4399368
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4399368
http://dl.acm.org/citation.cfm?id=199480.199508
http://arxiv.org/abs/1402.0400
http://arxiv.org/abs/1402.0400

[64] Savvas G Loizou and Vijay Kumar. Biologically inspired bearing-only navigation and
tracking. In Proceedings of the IEEE Conference on Decision and Control, pages
1386–1391. IEEE, 2007.

[65] David G Lowe. Object recognition from local scale-invariant features. In Computer vi-
sion, 1999. The proceedings of the seventh IEEE international conference on, volume 2,
pages 1150–1157. Ieee, 1999.

[66] Z Lu, TY Ji, WH Tang, and QH Wu. Optimal harmonic estimation using a particle
swarm optimizer. IEEE Transactions on Power Delivery, 23(2):1166–1174, 2008.

[67] N. Michael, J. Fink, and V. Kumar. Experimental testbed for large multi-robot teams:
Verification and validation. IEEE Robot. Autom. Mag., 15(1):53–61, March 2008.

[68] Nathan Michael, Shaojie Shen, Kartik Mohta, Yash Mulgaonkar, Vijay Kumar, Keiji
Nagatani, Yoshito Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya Yoshida, et al.
Collaborative mapping of an earthquake-damaged building via ground and aerial
robots. Journal of Field Robotics, 29(5):832–841, 2012.

[69] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fast-
SLAM: A factored solution to the simultaneous localization and mapping problem. In
Proceedings of the AAAI National Conference on Artificial Intelligence, pages 593–598,
2002.

[70] Abubakr Muhammad and Magnus Egerstedt. Control using higher order laplacians
in network topologies. In Proceedings of the 17th International Symposium on Math-
ematical Theory of Networks and Systems, pages 1024–1038, Kyoto, Japan, 2006.

[71] Renata Nascimento and Thomas Lewiner. Streamline-based topological graph con-
struction with application to self-animated images. In Graphics, Patterns and Images
(SIBGRAPI), 2013 26th SIBGRAPI-Conference on, pages 296–303. IEEE, 2013.

[72] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under un-
certainty for robotic tasks with mixed observability. The International Journal of
Robotics Research, 29(8):1053–1068, 2010.

[73] Torrence D Parsons. Pursuit-evasion in a graph. In Theory and applications of graphs,
pages 426–441. Springer, 1978. URL http://link.springer.com/chapter/10.1007%
2FBFb0070400.

[74] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
Proc. of the IEEE Intl. Conf. on Robot. and Autom., volume 3, page 5, Kobe, Japan,
May 2009.

[75] Rattanachai Ramaithitima and Subhrajit Bhattacharya. Landmark-based exploration
with a swarm of resource constrained robots. In Robotics and Automation (ICRA),
2018 IEEE International Conference on. IEEE, 2018. to appear.

121

http://link.springer.com/chapter/10.1007%2FBFb0070400
http://link.springer.com/chapter/10.1007%2FBFb0070400

[76] Rattanachai Ramaithitima, Michael Whitzer, Subhrajit Bhattacharya, and Vijay Ku-
mar. Sensor coverage robot swarms using local sensing without metric information.
In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages
3408–3415. IEEE, 2015.

[77] Rattanachai Ramaithitima, Siddharth Srivastava, Subhrajit Bhattacharya, Alberto
Speranzon, and Vijay Kumar. Hierarchical strategy synthesis for pursuit-evasion prob-
lems. In Proceedings of the European Conference on Artificial Intelligence (ECAI) 2016
conference, 2016.

[78] Rattanachai Ramaithitima, Michael Whitzer, Subhrajit Bhattacharya, and Vijay Ku-
mar. Automated creation of topological maps in unknown environments using a swarm
of resource-constrained robots. IEEE Robotics and Automation Letters, 1(2):746–753,
2016.

[79] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in neural in-
formation processing systems, pages 91–99, 2015.

[80] Elon Rimon. Construction of C-space roadmaps from local sensory data. what should
the sensors look for? Algorithmica, 17(4):357–379, 1997. ISSN 0178-4617. doi: 10.
1007/BF02523678.

[81] Rui Rocha, Jorge Dias, and Adriano Carvalho. Cooperative multi-robot systems:: A
study of vision-based 3-d mapping using information theory. Robotics and Autonomous
Systems, 53(3-4):282–311, 2005.

[82] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detec-
tion. In European conference on computer vision, pages 430–443. Springer, 2006.

[83] Anthony Rowe, Mario E Berges, Gaurav Bhatia, Ethan Goldman, Ragunathan Ra-
jkumar, James H Garrett, José MF Moura, and Lucio Soibelman. Sensor andrew:
Large-scale campus-wide sensing and actuation. IBM Journal of Research and Devel-
opment, 55(1.2):6–1, 2011.

[84] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

[85] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE international
conference on, pages 2564–2571. IEEE, 2011.

[86] Samuel Rutishauser, Nikolaus Correll, and Alcherio Martinoli. Collaborative coverage
using a swarm of networked miniature robots. Robotics and Autonomous Systems, 57
(5):517 – 525, 2009.

[87] Manel Sghaier, Hayfa Zgaya, Slim Hammadi, and Christian Tahon. A distributed
Dijkstra’s algorithm for the implementation of a real time carpooling service with an
optimized aspect on siblings. In Intelligent Transportation Systems (ITSC), 2010 13th
International IEEE Conference on, pages 795–800. IEEE, 2010.

122

[88] Shaojie Shen, Nathan Michael, and Vijay Kumar. Autonomous indoor 3d exploration
with a micro-aerial vehicle. In 2012 IEEE international conference on robotics and
automation, pages 9–15. IEEE, 2012.

[89] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Information gain-based ex-
ploration using rao-blackwellized particle filters., 2005.

[90] Andrew Tausz, Mikael Vejdemo-Johansson, and Henry Adams. Javaplex: A research
software package for persistent (co) homology, 2011.

[91] Waymo Team. Introducing waymo’s suite of custom-built, self-
driving hardware, 2017. URL https://medium.com/waymo/
introducing-waymos-suite-of-custom-built-self-driving-hardware-c47d1714563.

[92] Sebastian Thrun and Arno Bücken. Integrating grid-based and topological maps for
mobile robot navigation. In Proceedings of the AAAI Thirteenth National Conference
on Artificial Intelligence, pages 944–951, Portland, Oregon, 1996.

[93] Sebastian Thrun and Yufeng Liu. Multi-robot SLAM with sparse extended information
filers. Robotics Research, pages 254–266, 2005.

[94] Roberto Tron and Kostas Daniilidis. An optimization approach to bearing-only vi-
sual homing with applications to a 2-d unicycle model. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 4235–4242. IEEE, 2014.

[95] E.G. Tsardoulias, A.T. Serafi, M.N. Panourgia, A. Papazoglou, and L. Petrou. Con-
struction of minimized topological graphs on occupancy grid maps based on GVD
and sensor coverage information. Journal of Intelligent and Robotic Systems, 75(3-4):
457–474, 2014. ISSN 0921-0296. doi: 10.1007/s10846-013-9995-3.

[96] Tinne Tuytelaars, Krystian Mikolajczyk, et al. Local invariant feature detectors: A
survey. Foundations and trends in computer graphics and vision, 3(3):177–280, 2008.

[97] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. Distributed covering
by ant-robots using evaporating traces. Robotics and Automation, IEEE Transactions
on, 15(5):918–933, Oct 1999.

[98] Brian Yamauchi. A frontier-based approach for autonomous exploration. In Compu-
tational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997
IEEE International Symposium on, pages 146–151. IEEE, 1997.

[99] Brian Yamauchi. Frontier-based exploration using multiple robots. In Proceedings of
the second international conference on Autonomous agents, pages 47–53. ACM, 1998.

[100] Fumio Yasutomi, Makoto Yamada, and Kazuyoshi Tsukamoto. Cleaning robot control.
In Robotics and Automation, 1988. Proceedings., 1988 IEEE International Conference
on, pages 1839–1841. IEEE, 1988.

123

https://medium.com/waymo/introducing-waymos-suite-of-custom-built-self-driving-hardware-c47d1714563
https://medium.com/waymo/introducing-waymos-suite-of-custom-built-self-driving-hardware-c47d1714563

	University of Pennsylvania
	ScholarlyCommons
	2019

	Sensor-Based Topological Coverage And Mapping Algorithms For Resource-Constrained Robot Swarms
	Rattanachai Ramaithitima
	Recommended Citation

	Sensor-Based Topological Coverage And Mapping Algorithms For Resource-Constrained Robot Swarms
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	Abstract
	Contents
	List of Figures
	Introduction
	Research Problems
	Key Contributions

	Thesis Overview

	Background and Related Work
	Algebraic Topology
	Topological Background
	Coverage via Homology
	Landmark Complex

	Bearing-based Controllers
	Gradient Field Approach
	Biologically Inspired Approach

	Related Work
	Coverage
	Topological Mapping
	Exploration
	Pursuit-Evasion

	Sensor Coverage
	Preliminaries
	Rips Complex of Visibility Disk
	Algorithmic Designs
	Identifying Frontier and Obstacle Subcomplexes
	Identifying Path in 1-skeleton for ``Pushing'' Robots
	Identification and Reallocation of Redundant Robots

	Results
	Guarantees
	Simulations
	Experiment with Heterogeneous team of Live and Virtual Robots

	Conclusion

	Topological Mapping
	Overview
	Multi-stage Construction and Stitching of APGVGs
	Generalized Voronoi Graph and its Approximate Discrete Construction
	Robot Redeployment and Stitching the APGVGs
	Estimation of the Number of Robots Required

	Results
	Conclusion

	Landmark-based Exploration
	Preliminaries
	Notations
	Dispersion
	Multi-robot Exploration

	Algorithmic Design
	Frontier Identification
	Landmark Complex and Navigation Graph Construction
	Cost-Utility Function
	Task Execution

	Statistical Analysis
	Idealized Scenario
	Benchmarking

	Alternative Control Strategies in Presence of Coarse Range Measurement
	Unscaled Distance Exploration Strategy
	Misdetection of Holes/Obstacles

	Conclusion

	Pursuit-Evasion
	Preliminaries
	Problem Description
	Pursuit-Evasion on Landmark Complex
	Solving PE as a Partially Observable Planning Problem

	Abstraction Framework
	Abstraction State Space
	Partition Algorithm

	Hierarchical algorithm
	Planning in the abstraction state space
	Refinement
	Minimizing the number of pursuers

	Results
	Simulation Results
	Comparison
	Discussion

	Conclusion and Future Work
	Contribution
	Future Work

	Bibliography

