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Essays In Matching Markets

Abstract
I present two experiments exploring failures in matching markets.

In the first experiment, I introduce a new experimental paradigm to evaluate employer preferences, called
Incentivized Resume Rating (IRR). Employers evaluate resumes they know to be hypothetical in order to be
matched with real job seekers, preserving incentives while avoiding the deception necessary in audit studies. I
deploy IRR with employers recruiting college seniors from a prestigious school, randomizing human capital
characteristics and demographics of hypothetical candidates. I measure both employer preferences for
candidates and employer beliefs about the likelihood candidates will accept job offers, avoiding a typical
confound in audit studies. I discuss the costs, benefits, and future applications of this new methodology.

In the second experiment, I examine out-of-equilibrium truth-telling in strategic matching markets. In two-
sided settings, market designers tend to advocate for deferred acceptance (DA) over priority mechanisms,
even though theory tells us that both types of mechanisms can yield unstable matches in incomplete
information equilibrium. However, if match participants on the proposed-to side deviate from equilibrium by
truth-telling, then DA yields stable outcomes. In a novel experimental setting, I find out-of-equilibrium truth-
telling under DA but not under a priority mechanism, which could help to explain the success of DA in
preventing unraveling in the field. I then attempt to explain the difference in behavior across mechanisms by
estimating an experience-weighted learning model adapted to this complex strategic environment. I find that
initial cognition and willingness to explore new strategies drive the difference in agents' ability to find strategic
equilibria.
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ABSTRACT

ESSAYS IN MATCHING MARKETS

Colin D. Sullivan

Judd B. Kessler

I present two experiments exploring failures in matching markets.

In the first experiment, I introduce a new experimental paradigm to evaluate employer pref-

erences, called Incentivized Resume Rating (IRR). Employers evaluate resumes they know

to be hypothetical in order to be matched with real job seekers, preserving incentives while

avoiding the deception necessary in audit studies. I deploy IRR with employers recruiting

college seniors from a prestigious school, randomizing human capital characteristics and

demographics of hypothetical candidates. I measure both employer preferences for candi-

dates and employer beliefs about the likelihood candidates will accept job offers, avoiding

a typical confound in audit studies. I discuss the costs, benefits, and future applications of

this new methodology.

In the second experiment, I examine out-of-equilibrium truth-telling in strategic matching

markets. In two-sided settings, market designers tend to advocate for deferred acceptance

(DA) over priority mechanisms, even though theory tells us that both types of mechanisms

can yield unstable matches in incomplete information equilibrium. However, if match par-

ticipants on the proposed-to side deviate from equilibrium by truth-telling, then DA yields

stable outcomes. In a novel experimental setting, I find out-of-equilibrium truth-telling un-

der DA but not under a priority mechanism, which could help to explain the success of DA

in preventing unraveling in the field. I then attempt to explain the difference in behavior

across mechanisms by estimating an experience-weighted learning model adapted to this

complex strategic environment. I find that initial cognition and willingness to explore new

strategies drive the difference in agents’ ability to find strategic equilibria.
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CHAPTER 1 : Incentivized Resume Rating: Eliciting Employer Preferences

without Deception (with Corinne Low and Judd B. Kessler)

1.1. Introduction

How labor markets reward education, work experience, and other forms of human capital is

of fundamental interest in labor economics and the economics of education (e.g., Autor and

Houseman (2010); Pallais (2014)). Similarly, the role of discrimination in labor markets is

a key concern for both policy makers and economists (e.g., Altonji and Blank (1999); Lang

and Lehmann (2012)). Correspondence audit studies, including resume audit studies, have

become powerful tools to answer questions in both domains.1 These studies have generated

a rich set of findings on discrimination in employment (e.g., Bertrand and Mullainathan

(2004)), real estate and housing (e.g., Hanson and Hawley (2011), Ewens et al. (2014)),

retail (e.g., Pope and Sydnor (2011); Zussman (2013)), and other settings (see Bertrand

and Duflo (2016)). More recently, resume audit studies have been used to investigate

how employers respond to other characteristics of job candidates, including unemployment

spells (Kroft et al., 2013; Eriksson and Rooth, 2014; Nunley et al., 2017), for-profit college

credentials (Darolia et al., 2015; Deming et al., 2016), college selectivity (Gaddis, 2015),

and military service (Kleykamp, 2009).

Despite the strengths of this workhorse methodology, however, resume audit studies are

subject to two major concerns. First, they use deception, generally considered problematic

within economics (Ortmann and Hertwig, 2002; Hamermesh, 2012). Employers in resume

1Resume audit studies send otherwise identical resumes, with only minor differences associated with
a treatment (e.g., different names associated with different races), to prospective employers and measure
the rate at which candidates are called back by those employers (henceforth the “callback rate”). These
studies were brought into the mainstream of economics literature by Bertrand and Mullainathan (2004).
By comparing callback rates across groups (e.g., those with white names to those with minority names),
researchers can identify the existence of discrimination. Resume audit studies were designed to improve
upon traditional audit studies of the labor market, which involved sending matched pairs of candidates (e.g.,
otherwise similar study confederates of different races) to apply for the same job and measure whether the
callback rate differed by race. These traditional audit studies were challenged on empirical grounds for not
being double-blind (Turner et al., 1991) and for an inability to match candidate characteristics beyond race
perfectly (Heckman and Siegelman, 1992; Heckman, 1998).
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audit studies waste time evaluating fake resumes and pursuing non-existent candidates. If

fake resumes systematically differ from real resumes, employers could become wary of certain

types of resumes sent out by researchers, harming both the validity of future research and

real job seekers whose resumes are similar to those sent by researchers. These concerns

about deception become more pronounced as the method becomes more popular.2 To

our knowledge, audit and correspondence audit studies are the only experiments within

economics for which deception has been permitted, presumably because of the importance

of the underlying research questions and the absence of a method to answer them without

deception.

A second concern arising from resume audit studies is their use of “callback rates” (i.e., the

rates at which employers call back fake candidates) as the outcome measure that proxies for

employer interest in candidates. Since recruiting candidates is costly, firms may be reluctant

to pursue candidates who will be unlikely to accept a position if offered. Callback rates

may therefore conflate an employer’s interest in a candidate with the employer’s expectation

that the candidate would accept a job if offered one.3 This confound might contribute to

counterintuitive results in the resume audit literature. For example, resume audit studies

typically find higher callback rates for unemployed than employed candidates (Kroft et al.,

2013; Nunley et al., 2017, 2014; Farber et al., 2018), results that seem much more sensible

when considering this potential role of job acceptance. In addition, callback rates can only

identify preferences at one point in the quality distribution (i.e., at the threshold at which

employers decide to call back candidates). While empirically relevant, results at this callback

threshold may not be generalizable (Heckman, 1998; Neumark, 2012). To better understand

the underlying structure of employer preferences, we may also care about how employers

2Baert (2018) notes 90 resume audit studies focused on discrimination against protected classes in labor
markets alone between 2005 and 2016. Many studies are run in the same venues (e.g., specific online
job boards), making it more likely that employers will learn to be skeptical of certain types of resumes.
These harms might be particularly relevant if employers become aware of the existence of such research.
For example, employers may know about resume audit studies since they can be used as legal evidence of
discrimination (Neumark, 2012).

3Researchers who use audit studies aim to mitigate such concerns through the content of their resumes
(e.g., Bertrand and Mullainathan (2004) notes that the authors attempted to construct high-quality resumes
that did not lead candidates to be “overqualified,” page 995).
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respond to candidate characteristics at other points in the distribution of candidate quality.

In this paper, we introduce a new experimental paradigm, called Incentivized Resume Rat-

ing (IRR), which avoids these concerns. Instead of sending fake resumes to employers, IRR

invites employers to evaluate resumes known to be hypothetical—avoiding deception—and

provides incentives by matching employers with real job seekers based on employers’ evalu-

ations of the hypothetical resumes. Rather than relying on binary callback decisions, IRR

can elicit much richer information about employer preferences; any information that can be

used to improve the quality of the match between employers preferences and real job seekers

can be elicited from employers in an incentivized way. In addition, IRR gives researchers the

ability to elicit a single employer’s preferences over multiple resumes, to randomize many

candidate characteristics simultaneously, to collect supplemental data about the employers

reviewing resumes and about their firms, and to recruit employers who would not respond

to unsolicited resumes.

We deploy IRR in partnership with the University of Pennsylvania (Penn) Career Services

office to study the preferences of employers hiring graduating seniors through on-campus

recruiting. This market has been unexplored by the resume audit literature since firms

in this market hire through their relationships with schools rather than by responding to

cold resumes. Our implementation of IRR asked employers to rate hypothetical candidates

on two dimensions: (1) how interested they would be in hiring the candidate and (2) the

likelihood that the candidate would accept a job offer if given one. In particular, employers

were asked to report their interest in hiring a candidate on a 10-point Likert scale under the

assumption that the candidate would accept the job if offered—mitigating concerns about

a confound related to the likelihood of accepting the job. Employers were additionally

asked the likelihood the candidate would accept a job offer on a 10-point Likert scale. Both

responses were used to match employers with real Penn graduating seniors.

We find that employers value higher grade point averages as well as the quality and quantity

of summer internship experiences. Employers place extra value on prestigious and substan-

3



tive internships but do not appear to value summer jobs that Penn students typically take

for a paycheck, rather than to develop human capital for a future career, such as barista,

server, or cashier. This result suggests a potential benefit on the post-graduate job market

for students who can afford to take unpaid or low-pay internships during the summer rather

than needing to work for an hourly wage.

Our granular measure of hiring interest allows us to consider how employer preferences

for candidate characteristics respond to changes in overall candidate quality. Most of the

preferences we identify maintain sign and significance across the distribution of candidate

quality, but we find that responses to major and work experience are most pronounced

towards the middle of the quality distribution and smaller in the tails.

The employers in our study report having a positive preference for diversity in hiring.4

While we do not find that employers are more or less interested in female and minority

candidates on average, we find some evidence of discrimination against white women and

minority men among employers looking to hire candidates with Science, Engineering, and

Math majors.5 In addition, employers report that white female candidates are less likely

to accept job offers than their white male counterparts, suggesting a novel channel for

discrimination.

Of course, the IRR method also comes with some drawbacks. First, while we attempt to

directly identify employer interest in a candidate, our Likert-scale measure is not a step

in the hiring process and thus—in our implementation of IRR—we cannot draw a direct

link between our Likert-scale measure and hiring outcomes. However, we imagine future

4In a survey employers complete after evaluating resumes in our study, over 90% of employers report
that both “seeking to increase gender diversity / representation of women” and “seeking to increase racial
diversity” factor into their hiring decisions, and 82% of employers rate both of these factors at 5 or above
on a Likert scale from 1 = “Do not consider at all” to 10 = “This is among the most important things I
consider.”

5We find suggestive evidence that discrimination in hiring interest is due to implicit bias by observing
how discrimination changes as employers evaluate multiple resumes. In addition, consistent with results
from the resume audit literature finding lower returns to quality for minority candidates (see Bertrand and
Mullainathan (2004)), we also find that—relative to white males—other candidates receive a lower return
to work experience at prestigious internships.

4



IRR studies could make advances on this front (e.g., by asking employers to guarantee

interviews to matched candidates). Second, because the incentives in our study are similar

but not identical to those in the hiring process, we cannot be sure that employers evaluate

our hypothetical resumes with the same rigor or using the same criteria as they would real

resumes. Again, we hope future work might validate that the time and attention spent on

resumes in the IRR paradigm is similar to resumes evaluated as part of standard recruiting

processes.

Our implementation of IRR was the first of its kind and thus left room for improvement on

a few fronts. For example, as discussed in detail in Section 1.4, we attempted to replicate

our study at the University of Pittsburgh to evaluate preferences of employers more like

those traditionally targeted by resume audit studies. We underestimated how much Pitt

employers needed candidates with specific majors and backgrounds, however, and a large

fraction of resumes that were shown to Pitt employers were immediately disqualified based

on major. This mistake resulted in highly attenuated estimates. Future implementations of

IRR should more carefully tailor the variables for their hypothetical resumes to the needs

of the employers being studied. We emphasize other lessons from our implementation in

Section 2.6.

Despite the limitations of IRR, our results highlight that the method can be used to elicit

employer preferences and suggest that it can also be used to detect discrimination. Conse-

quently, we hope IRR provides a path forward for those interested in studying labor markets

without using deception. The rest of the paper proceeds as follows: Section 1.2 describes

in detail how we implement our IRR study; Section 1.3 reports on the results from Penn

and compares them to extant literature; Section 1.4 describes our attempted replication at

Pitt; and Section 2.6 concludes.
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1.2. Study Design

In this section, we describe our implementation of IRR, which combines the incentives

and ecological validity of the field with the control of the laboratory. In Section 1.2.1, we

outline how we recruit employers who are in the market to hire elite college graduates. In

Section 1.2.2, we describe how we provide employers with incentives for reporting preferences

without introducing deception. In Section 1.2.3, we detail how we created the hypothetical

resumes and describe the extensive variation in candidate characteristics that we included

in the experiment, including grade point average and major (see 1.2.3), previous work

experience (see 1.2.3), skills (see 1.2.3), and race and gender (see 1.2.3). In Section 1.2.4,

we highlight the two questions that we asked subjects about each hypothetical resume,

which allowed us to get a granular measure of interest in a candidate without a confound

from the likelihood that the candidate would accept a job if offered.

1.2.1. Employers and Recruitment

IRR allows researchers to recruit employers in the market for candidates from particular

institutions and those who do not screen unsolicited resumes and thus may be hard —

or impossible — to study in audit or resume audit studies. To leverage this benefit of

the experimental paradigm, we partnered with the University of Pennsylvania (Penn) Ca-

reer Services office to identify employers recruiting highly skilled generalists from the Penn

graduating class.

Penn Career Services sent invitation emails (see Appendix Figure 5 for recruitment email) in

two waves during the 2016-2017 academic year to employers who historically recruited Penn

seniors (e.g., firms that recruited on campus, regularly attended career fairs, or otherwise

hired students). The first wave was around the time of on-campus recruiting in the fall of

2016. The second wave was around the time of career-fair recruiting in the spring of 2017. In

both waves, the recruitment email invited employers to use “a new tool that can help you to

identify potential job candidates.” While the recruitment email and the information that

6



employers received before rating resumes (see Appendix Figure 7 for instructions) noted

that anonymized data from employer responses would be used for research purposes, this

was framed as secondary. The recruitment process and survey tool itself both emphasized

that employers were using new recruitment software. For this reason, we note that our

study has the ecological validity of a field experiment.6 As was outlined in the recruitment

email (and described in detail in Section 1.2.2), each employer’s one and only incentive for

participating in the study is to receive 10 resumes of job seekers that match the preferences

they report in the survey tool.

1.2.2. Incentives

The main innovation of IRR is its method for incentivized preference elicitation, a variant

of a method pioneered by Low (2017) in a different context. In its most general form, the

method asks subjects to evaluate candidate profiles, which are known to be hypothetical,

with the understanding that more accurate evaluations will maximize the value of their

participation incentive. In our implementation of IRR, each employer evaluates 40 hypo-

thetical candidate resumes and their participation incentive is a packet of 10 resumes of

real job seekers from a large pool of Penn seniors. For each employer, we select the 10 real

job seekers based on the employer’s evaluations.7 Consequently, the participation incentive

in our study becomes more valuable as employers’ evaluations of candidates better reflect

their true preferences for candidates.8

6Indeed, the only thing that differentiates our study from a “natural field experiment” as defined by
Harrison and List (2004) is that subjects know that academic research is ostensibly taking place, even
though it is framed as secondary relative to the incentives in the experiment.

7The recruitment email (see Appendix Figure 5) stated: “the tool uses a newly developed machine-
learning algorithm to identify candidates who would be a particularly good fit for your job based on your
evaluations.” We did not use race or gender preferences when suggesting matches from the candidate pool.
The process by which we identify job seekers based on employer evaluations is described in detail in Appendix
A.1.3.

8In Low (2017), heterosexual male subjects evaluated online dating profiles of hypothetical women with
an incentive of receiving advice from an expert dating coach on how to adjust their own online dating profiles
to attract the types of women that they reported preferring. While this type of non-monetary incentive is
new to the labor economics literature, it has features in common with incentives in laboratory experiments,
in which subjects make choices (e.g., over monetary payoffs, risk, time, etc.) and the utility they receive
from those choices is higher as their choices more accurately reflect their preferences.

7



A key design decision to help ensure subjects in our study truthfully and accurately report

their preferences is that we provide no additional incentive (i.e., beyond the resumes of the

10 real job seekers) for participating in the study, which took a median of 29.8 minutes

to complete. Limiting the incentive to the resumes of 10 job seekers makes us confident

that participants value the incentive, since they have no other reason to participate in the

study. Since subjects value the incentive, and since the incentive becomes more valuable

as preferences are reported more accurately, subjects have good reason to report their

preferences accurately.

1.2.3. Resume Creation and Variation

Our implementation of IRR asked each employer to evaluate 40 unique, hypothetical re-

sumes, and it varied multiple candidate characteristics simultaneously and independently

across resumes, allowing us to estimate employer preferences over a rich space of baseline

candidate characteristics.9 Each of the 40 resumes was dynamically populated when a sub-

ject began the survey tool. As shown in Table 1 and described below, we randomly varied

a set of candidate characteristics related to education; a set of candidate characteristics

related to work, leadership, and skills; and the candidate’s race and gender.

We made a number of additional design decisions to increase the realism of the hypothetical

resumes and to otherwise improve the quality of employer responses. First, we built the

hypothetical resumes using components (i.e., work experiences, leadership experiences, and

skills) from real resumes of seniors at Penn. Second, we asked the employers to choose

the type of candidates that they were interested in hiring, based on major (see Appendix

Figure 8). In particular, they could choose either “Business (Wharton), Social Sciences,

and Humanities” (henceforth “Humanities & Social Sciences”) or “Science, Engineering,

9In a traditional resume audit study, researchers are limited in the number of resumes and the covariance
of candidate characteristics that they can show to any particular employer. Sending too many fake resumes
to the same firm, or sending resumes with unusual combinations of components, might raise suspicion. For
example, Bertrand and Mullainathan (2004) send only four resumes to each firm and create only two quality
levels (i.e., a high quality resume and a low quality resume, in which various candidate characteristics vary
together).
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Computer Science, and Math” (henceforth “STEM”). They were then shown hypothetical

resumes focused on the set of majors they selected. As described below, this choice affects

a wide range of candidate characteristics; majors, internship experiences, and skills on the

hypothetical resumes varied across these two major groups. Third, to enhance realism, and

to make the evaluation of the resumes less tedious, we used 10 different resume templates,

which we populated with the candidate characteristics and component pieces described

below, to generate the 40 hypothetical resumes (see Appendix Figure 9 for a sample resume).

We based these templates on real student resume formats (see Appendix Figure 10 for

examples).10 Fourth, we gave employers short breaks within the study by showing them a

progress screen after each block of 10 resumes they evaluated. As described in Section 1.3.4

and Appendix A.2.4, we use the change in attention induced by these breaks to construct

tests of implicit bias.

Education Information

In the education section of the resume, we independently randomized each candidate’s grade

point average (GPA) and major. GPA is drawn from a uniform distribution between 2.90

and 4.00, shown to two decimal places and never omitted from the resume. Majors are

chosen from a list of Penn majors, with higher probability put on more common majors.

Each major was associated with a degree (BA or BS) and with the name of the group or

school granting the degree within Penn (e.g., “College of Arts and Sciences”). Appendix

Table 17 shows the list of majors by major category, school, and the probability that the

major was used in a resume.

Work Experience

We included realistic work experience components on the resumes. To generate the compo-

nents, we scraped more than 700 real resumes of Penn students. We then followed a process

10We blurred the text in place of a phone number and email address for all resumes, since we were not
interested in inducing variation in those candidate characteristics.
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Table 1: Randomization of Resume Components

Resume Component Description Analysis Variable

Personal Information
First & last name Drawn from list of 50 possible names given selected Female, White (32.85%)

race and gender (names in Tables 15 & 16) Male, Non-White (17.15%)
Race drawn randomly from U.S. distribution (65.7% Female, Non-White (17.15%)
White, 16.8% Hispanic, 12.6% Black, 4.9% Asian) Not a White Male (67.15%)
Gender drawn randomly (50% male, 50% female)

Education Information
GPA Drawn Unif [2.90, 4.00] to second decimal place GPA
Major Drawn from a list of majors at Penn (Table 17) Major (weights in Table 17)
Degree type BA, BS fixed to randomly drawn major Wharton (40%)
School within university Fixed to randomly drawn major School of Engineering and
Graduation date Fixed to upcoming spring (i.e., May 2017) Applied Science (70%)

Work Experience
First job Drawn from curated list of top internships and Top Internship (20/40)

regular internships
Title and employer Fixed to randomly drawn job
Location Fixed to randomly drawn job
Description Bullet points fixed to randomly drawn job
Dates Summer after candidate’s junior year (i.e., 2016)

Second job Left blank or drawn from curated list of regular Second Internship (13/40)
internships and work-for-money jobs (Table 19) Work for Money (13/40)

Title and employer Fixed to randomly drawn job
Location Fixed to randomly drawn job
Description Bullet points fixed to randomly drawn job
Dates Summer after candidate’s sophomore year (i.e., 2015)

Leadership Experience
First & second leadership Drawn from curated list

Title and activity Fixed to randomly drawn leadership
Location Fixed to Philadelphia, PA
Description Bullet points fixed to randomly drawn leadership
Dates Start and end years randomized within college

career, with more recent experience coming first

Skills
Skills list Drawn from curated list, with two skills drawn from

{Ruby, Python, PHP, Perl} and two skills drawn from
{SAS, R, Stata, Matlab} shuffled and added to skills
list with probability 25%.

Technical Skills (25%)

Resume components are listed in the order that they appear on hypothetical resumes. Italicized variables in
the right column are variables that were randomized to test how employers responded to these characteristics.
Degree, first job, second job, and skills were drawn from different lists for Humanities & Social Sciences
resumes and STEM resumes (except for work-for-money jobs). Name, GPA, work-for-money jobs, and
leadership experience were drawn from the same lists for both resume types. Weights of characteristics are
shown as fractions when they are fixed across subjects (e.g., each subject saw exactly 20/40 resumes with
a Top Internship) and percentages when they represent a draw from a probability distribution (e.g., each
resume a subject saw had a 32.85% chance of being assigned a white female name).
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described in Appendix A.1.2 to select and lightly sanitize work experience components so

that they could be randomly assigned to different resumes without generating conflicts or

inconsistencies (e.g., we eliminated references to particular majors or to gender or race).

Each work experience component included the associated details from the real resume from

which the component was drawn, including an employer, position title, location, and a few

descriptive bullet points.

Our goal in randomly assigning these work experience components was to introduce varia-

tion along two dimensions: quantity of work experience and quality of work experience. To

randomly assign quantity of work experience, we varied whether the candidate only had an

internship in the summer before senior year, or also had a job or internship in the summer

before junior year. Thus, candidates with more experience had two jobs on their resume

(before junior and senior years), while others had only one (before senior year).

To introduce random variation in quality of work experience, we selected work experience

components from three categories: (1) “top internships,” which were internships with pres-

tigious firms as defined by being a firm that successfully hires many Penn graduates; (2)

“work-for-money” jobs, which were paid jobs that—at least for Penn students—are unlikely

to develop human capital for a future career (e.g., barista, cashier, waiter, etc.); and (3)

“regular” internships, which comprised all other work experiences.11

The first level of quality randomization was to assign each hypothetical resume to have

either a top internship or a regular internship in the first job slot (before senior year). This

allows us to detect the impact of having a higher quality internship.12

11See Appendix Table 18 for a list of top internship employers and Table 19 for a list of work-for-money job
titles. As described in Appendix A.1.2, different internships (and top internships) were used for each major
type but the same work-for-money jobs were used for both major types. The logic of varying internships
by major type was based on the intuition that internships could be interchangeable within each group of
majors (e.g., internships from the Humanities & Social Sciences resumes would not be unusual to see on
any other resume from that major group) but were unlikely to be interchangeable across major groups (e.g.,
internships from Humanities & Social Sciences resumes would be unusual to see on STEM resumes and vice
versa). We used the same set of work-for-money jobs for both major types, since these jobs were not linked
to a candidate’s field of study.

12Since the work experience component was comprised of employer, title, location, and description, a
higher quality work experience necessarily reflects all features of this bundle; we did not independently
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The second level of quality randomization was in the kind of job a resume had in the

second job slot (before junior year), if any. Many students may have an economic need

to earn money during the summer and thus may be unable to take an unpaid or low-pay

internship. To evaluate whether employers respond differentially to work-for-money jobs,

which students typically take for pay, and internships, resumes were assigned to have either

have no second job, a work-for-money job, or a standard internship, each with (roughly)

one-third probability (see Table 1). This variation allows us to measure the value of having

a work-for-money job and to test how it compares to the value of a standard internship.

Leadership Experience and Skills

Each resume included two leadership experiences as in typical student resumes. A leadership

experience component includes an activity, title, date range, and a few bullet points with a

description of the experience (Philadelphia, PA was given as the location of all leadership

experiences). Participation dates were randomly selected ranges of years from within the

four years preceding the graduation date. For additional details, see Appendix A.1.2.

With skills, by contrast, we added a layer of intentional variation to measure how employers

value technical skills. First, each resume was randomly assigned a list of skills drawn from

real resumes. We stripped from these lists any reference to Ruby, Python, PHP, Perl, SAS,

R, Stata, and Matlab. With 25% probability, we appended to this list four technical skills:

two randomly drawn advanced programming languages from {Ruby, Python, PHP, Perl}

and two randomly drawn statistical programs from {SAS, R, Stata, Matlab}.

Names Indicating Gender and Race

We randomly varied gender and race by assigning each hypothetical resume a name that

would be indicative of gender (male or female) and race (Asian, Black, Hispanic, or White).13

To do this randomization, we needed to first generate a list of names that would clearly

randomize the elements of work experience.
13For ease of exposition, we will refer to race / ethnicity as “race” throughout the paper.
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indicate both gender and race for each of the groups. We used birth records and Census

data to generate first and last names that would be highly indicative of race and gender,

and combined names within race.14 The full lists of names are given in Appendix Tables

15 and 16 (see Appendix A.1.2 for additional details).

For realism, we randomly selected races at rates approximating the distribution in the US

population (65.7% White, 16.8% Hispanic, 12.6% Black, 4.9% Asian). While a more uniform

variation in race would have increased statistical power to detect race-based discrimination,

such an approach would have risked signaling to subjects our intent to study racial pref-

erences. In our analysis, we pool non-white names to explore potential discrimination of

minority candidates.

1.2.4. Rating Candidates on Two Dimensions

As noted in the Introduction, audit and resume audit studies generally report results on

callback, which has two limitations. First, callback only identifies preferences for candidates

at one point in the quality distribution (i.e., at the callback threshold), so results may

not generalize to other environments or to other candidate characteristics. Second, while

callback is often treated as a measure of an employer’s interest in a candidate, there is

a potential confound to this interpretation. Since continuing to interview a candidate,

or offering the candidate a job that is ultimately rejected, can be costly to an employer

(e.g., it may require time and energy and crowd out making other offers), an employer’s

callback decision will optimally depend on both the employer’s interest in a candidate and

the employer’s belief about whether the candidate will accept the job if offered. If the

14For first names, we used a dataset of all births in the state of Massachusetts between 1989-1996 and New
York City between 1990-1996 (the approximate birth range of job seekers in our study). Following Fryer
and Levitt (2004), we generated an index for each name of how distinctively the name was associated with
a particular race and gender. From these, we generated lists of 50 names by selecting the most indicative
names and removing names that were strongly indicative of religion (such as Moshe) or gender ambiguous in
the broad sample, even if unambiguous within an ethnic group (such as Courtney, which is a popular name
among both black men and white women). We used a similar approach to generating racially indicative
last names, assuming last names were not informative of gender. We used last name data from the 2000
Census tying last names to race. We implemented the same measure of race specificity and required that the
last name make up at least 0.1% of that race’s population, to ensure that the last names were sufficiently
common.
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likelihood that a candidate accepts a job when offered is decreasing in the candidate’s

quality (e.g., if higher quality candidates have better outside options), employers’ actual

effort spent pursuing candidates may be non-monotonic in candidate quality. Consequently,

concerns about a candidate’s likelihood of accepting a job may be a confound in interpreting

callback as a measure of interest in a candidate.15

An advantage of the IRR methodology is that researchers can ask employers to provide

richer, more granular information than a binary measure of callback. We leveraged this

advantage to ask two questions, each on a Likert scale from 1 to 10. In particular, for each

resume we asked employers to answer the following two questions (see an example at the

bottom of Appendix Figure 9):

1. “How interested would you be in hiring [Name]?”

(1 = “Not interested”; 10 = “Very interested”)

2. “How likely do you think [Name] would be to accept a job with your organization?”

(1 = “Not likely”; 10 = “Very likely”)

In the instructions (see Appendix Figure 7), employers were specifically told that responses

to both questions would be used to generate their matches. In addition, they were told to

focus only on their interest in hiring a candidate when answering the first question (i.e.,

they were instructed to assume the candidate would accept an offer if given one). We denote

responses to this question “hiring interest.” They were told to focus only on the likelihood

a candidate would accept a job offer when answering the second question (i.e., they were

instructed to assume they candidate had been given an offer and to assess the likelihood

they would accept it). We denote responses to this question a candidate’s “likelihood of

acceptance.” We asked the first question to assess how resume characteristics affect hiring

interest. We asked the second question both to encourage employers to focus only on

hiring interest when answering the first question and to explore employers’ beliefs about

15Audit and resume audit studies focusing on discrimination do not need to interpret callback as a measure
of an employer’s interest in a candidate to demonstrate discrimination (any difference in callback rates is
evidence of discrimination).
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the likelihood that a candidate would accept a job if offered.

The 10-point scale has two advantages. First, it provides additional statistical power,

allowing us to observe employer preferences toward characteristics of inframarginal resumes,

rather than identifying preferences only for resumes crossing a binary callback threshold in

a resume audit setting. Second, it allows us to explore how employer preferences vary across

the distribution of hiring interest, an issue we explore in depth in Section 1.3.3.

1.3. Results

1.3.1. Data and Empirical Approach

We recruited 72 employers through our partnership with the University of Pennsylvania

Career Services office in Fall 2016 (46 subjects, 1840 resume observations) and Spring 2017

(26 subjects, 1040 resume observations).16

As described in Section 1.2, each employer rated 40 unique, hypothetical resumes with ran-

domly assigned candidate characteristics. For each resume, employers rated hiring interest

and likelihood of acceptance, each on a 10-point Likert scale. Our analysis focuses initially

on hiring interest, turning to how employers evaluate likelihood of acceptance in Section

1.3.5. Our main specifications are ordinary least squares (OLS) regressions. These specifi-

cations make a linearity assumption with respect to the Likert-scale ratings data. Namely,

they assume that, on average, employers treat equally-sized increases in Likert-scale ratings

16The recruiters who participated in our study as subjects were primarily female (59%) and primarily
white (79%) and Asian (15%). They reported a wide range of recruiting experience, including some who had
been in a position with responsibilities associated with job candidates for one year or less (28%); between
two and five years (46%); and six or more years (25%). Almost all (96%) of the participants had college
degrees, and many (30%) had graduate degrees including an MA, MBA, JD, or Doctorate. They were
approximately as likely to work at a large firm with over 1000 employees (35%) as a small firm with fewer
than 100 employees (39%). These small firms include hedge fund, private equity, consulting, and wealth
management companies that are attractive employment opportunities for Penn undergraduates. Large firms
include prestigious Fortune 500 consumer brands, as well as large consulting and technology firms. The most
common industries in the sample are finance (32%); the technology sector or computer science (18%); and
consulting (16%). The sample had a smaller number of sales/marketing firms (9%) and non-profit or public
interest organizations (9%). The vast majority (86%) of participating firms had at least one open position
on the East Coast, though a significant number also indicated recruiting for the West Coast (32%), Midwest
(18%), South (16%), or an international location (10%).
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equivalently (e.g., an increase in hiring interest from 1 to 2 is equivalent to an increase

from 9 to 10). In some specifications, we include subject fixed effects, which account for

the possibility that employers have different mean ratings of resumes (e.g., allowing some

employers to be more generous than others with their ratings across all resumes), while pre-

serving the linearity assumption. To complement this analysis, we also run ordered probit

regression specifications, which relax this assumption and only require that employers, on

average, consider higher Likert-scale ratings more favorably than lower ratings.

In Section 1.3.2, we examine how human capital characteristics (e.g., GPA, major, work

experience, and skills) affect hiring interest. These results report on the mean of preferences

across the distribution; we show how our results vary across the distribution of hiring interest

in Section 1.3.3. In Section 1.3.4, we discuss how employers’ ratings of hiring interest

respond to demographic characteristics of our candidates. In Section 1.3.5, we investigate

the likelihood of acceptance ratings and identify a potential new channel for discrimination.

In Section 1.3.6, we compare our results to prior literature.

1.3.2. Effect of Human Capital on Hiring Interest

Employers in our study are interested in hiring graduates of the University of Pennsylvania

for full-time employment, and many recruit at other Ivy League schools and other top

colleges and universities. This labor market has been unexplored by resume audit studies,

in part because the positions employers aim to fill through on-campus recruiting at Penn are

highly unlikely to be filled through online job boards or by screening unsolicited resumes.

In this section, we evaluate how randomized candidate characteristics—described in Section

1.2.3 and Table 1—affect employers’ ratings of hiring interest.

We denote an employer i’s rating of a resume j on the 1–10 Likert scale as Vij and esti-

mate variations of the following regression specification (1.1). This regression allows us to
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investigate the average response to candidate characteristics across employers in our study.

Vij =β0 + β1 GPA + β2 Top Internship + β3 Second Internship + β4 Work for Money +

β5 Technical Skills + β6 Female, White + β7 Male, Non-White+

β8 Female, Non-White + µj + γj + ωj + αi + εij (1.1)

In this regression, GPA is a linear measure of grade point average. Top Internship is a

dummy for having a top internship, Second Internship is a dummy for having an internship

in the summer before junior year, and Work for Money is a dummy for having a work-

for-money job in the summer before junior year. Technical Skills is a dummy for having

a list of skills that included a set of four randomly assigned technical skills. Demographic

variables Female, White; Male, Non-White; and Female, Non-White are dummies equal to

1 if the name of the candidate indicated the given race and gender.17 µj are dummies for

each major. Table 1 provides more information about these dummies and all the variables

in this regression. In some specifications, we include additional controls. γj are dummies for

each of the leadership experience components. ωj are dummies for the number of resumes

the employer has evaluated as part of the survey tool. Since leadership experiences are

independently randomized and orthogonal to other resume characteristics of interest, and

since resume characteristics are randomly drawn for each of the 40 resumes, our results

should be robust to the inclusion or exclusion of these dummies. Finally, αi are employer

(i.e., subject) fixed effects that account for different average ratings across employers.

Table 2 shows regression results where Vij is Hiring Interest, which takes values from 1 to

10. The first three columns report OLS regressions with slightly different specifications.

The first column includes all candidate characteristics we varied to estimate their impact

on ratings. The second column adds leadership dummies γ and resume order dummies

ω. The third column also adds subject fixed effects α. As expected, results are robust to

17Coefficient estimates on these variables report comparisons to white males, which is the excluded group.
While we do not discuss demographic results in this section, we include controls for this randomized resume
component in our regressions and discuss the results in Section 1.3.4 and Appendix A.2.4.
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the addition of these controls. The fourth column, labeled GPA-Scaled OLS, rescales all

coefficients from the third column by the coefficient on GPA (2.196) so that the coefficients

on other variables can be interpreted in GPA points. These regressions show that employers

respond strongly to candidate characteristics related to human capital.

GPA is an important driver of hiring interest. An increase in GPA of one point (e.g., from a

3.0 to a 4.0) increases ratings on the Likert scale by 2.1–2.2 points. The standard deviation

of quality ratings is 2.81, suggesting that a point improvement in GPA moves hiring interest

ratings by about three quarters of a standard deviation.

As described in Section 1.2.3, we created ex ante variation in both the quality and quantity

of candidate work experience. Both affect employer interest. The quality of a candidate’s

work experience in the summer before senior year has a large impact on hiring interest

ratings. The coefficient on Top Internship ranges from 0.9–1.0 Likert-scale points, which is

roughly a third of a standard deviation of ratings. As shown in the fourth column of Table

2, a top internship is equivalent to a 0.41 improvement in GPA.

Employers value a second work experience on the candidate’s resume, but only if that

experience is an internship and not if it is a work-for-money job. In particular, the coefficient

on Second Internship, which reflects the effect of adding a second “regular” internship to

a resume that otherwise has no work experience listed for the summer before junior year,

is 0.4–0.5 Likert-scale points—equivalent to 0.21 GPA points. While listing an internship

before junior year is valuable, listing a work-for-money job that summer does not appear

to increase hiring interest ratings. The coefficient on Work for Money is small and not

statistically different from zero in our data. While it is directionally positive, we can reject

that work-for-money jobs and regular internships are valued equally (p < 0.05 for all tests

comparing the Second Internship and Work for Money coefficients). This preference of

employers may create a disadvantage for students who cannot afford to accept (typically)

unpaid internships the summer before their junior year.18

18These results are consistent with a penalty for working-class candidates. In a resume audit study of
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Table 2: Human Capital Experience

Dependent Variable: Hiring Interest

OLS OLS OLS
GPA-Scaled

OLS
Ordered
Probit

GPA 2.125 2.190 2.196 1 0.891
(0.145) (0.150) (0.129) (.) (0.0626)

Top Internship 0.902 0.900 0.897 0.409 0.378
(0.0945) (0.0989) (0.0806) (0.0431) (0.0397)

Second Internship 0.465 0.490 0.466 0.212 0.206
(0.112) (0.118) (0.0947) (0.0446) (0.0468)

Work for Money 0.116 0.157 0.154 0.0703 0.0520
(0.110) (0.113) (0.0914) (0.0416) (0.0464)

Technical Skills 0.0463 0.0531 -0.0711 -0.0324 0.0120
(0.104) (0.108) (0.0899) (0.0410) (0.0434)

Female, White -0.152 -0.215 -0.161 -0.0733 -0.0609
(0.114) (0.118) (0.0963) (0.0441) (0.0478)

Male, Non-White -0.172 -0.177 -0.169 -0.0771 -0.0754
(0.136) (0.142) (0.115) (0.0526) (0.0576)

Female, Non-White -0.00936 -0.0220 0.0281 0.0128 -0.0144
(0.137) (0.144) (0.120) (0.0546) (0.0573)

Observations 2880 2880 2880 2880 2880
R2 0.129 0.181 0.483
p-value for test of joint

significance of Majors < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Major FEs Yes Yes Yes Yes Yes
Leadership FEs No Yes Yes Yes No
Order FEs No Yes Yes Yes No
Subject FEs No No Yes Yes No

Ordered probit cutpoints: 1.91, 2.28, 2.64, 2.93, 3.26, 3.60, 4.05, 4.51, and 5.03.

Table shows OLS and ordered probit regressions of Hiring Interest from Equation
(1.1). Robust standard errors are reported in parentheses. GPA; Top Internship;
Second Internship; Work for Money ; Technical Skills; Female, White; Male, Non-
White; Female, Non-White and major are characteristics of the hypothetical resume,
constructed as described in Section 1.2.3 and in Appendix A.1.2. Fixed effects for ma-
jor, leadership experience, resume order, and subject included in some specifications
as indicated. R2 is indicated for each OLS regression. GPA-Scaled OLS presents
the results of Column 3 divided by the Column 3 coefficient on GPA, with standard
errors calculated by delta method. The p-values of tests of joint significance of major
fixed effects are indicated (F -test for OLS, likelihood ratio test for ordered probit).
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We see no effect on hiring interest from increased Technical Skills, suggesting that employers

on average do not value the technical skills we randomly added to candidate resumes or

that listing technical skills does not credibly signal sufficient mastery to affect hiring interest

(e.g., employers may consider skills listed on a resume to be cheap talk).

Table 2 also reports the p-value of a test of whether the coefficients on the major dummies are

jointly different from zero. Results suggest that the randomly assigned major significantly

affects hiring interest. While we do not have the statistical power to test for the effect of each

major, we can explore how employers respond to candidates being from more prestigious

schools at the University of Pennsylvania. In particular, 40% of the Humanities & Social

Sciences resumes are assigned a BS in Economics from Wharton and the rest have a BA

major from the College of Arts and Sciences. In addition, 70% of the STEM resumes are

assigned a BS from the School of Engineering and Applied Science and the rest have a BA

major from the College of Arts and Sciences. As shown in Appendix Table 22, in both

cases, we find that being from the more prestigious school—and thus receiving a BS rather

than a BA—is associated with an increase in hiring interest ratings of about 0.4 Likert-scale

points or 0.18 GPA points.19

We can loosen the assumption that employers treated the intervals on the Likert scale

linearly by treating Hiring Interest as an ordered categorical variable. The fifth column

of Table 2 gives the results of an ordered probit specification with the same variables as

the first column (i.e., omitting the leadership dummies and subject fixed effects). This

specification is more flexible than OLS, allowing the discrete steps between Likert-scale

points to vary in size. The coefficients reflect the effect of each characteristic on a latent

variable over the Likert-scale space, and cutpoints are estimated to determine the distance

between categories. Results are similar in direction and statistical significance to the OLS

law firms, Rivera and Tilcsik (2016) found that resume indicators of lower social class (such as receiving a
scholarship for first generation college students) led to lower callback rates.

19Note that since the application processes for these different schools within Penn are different, including
the admissions standards, this finding also speaks to the impact of institutional prestige, in addition to field
of study (see, e.g., Kirkeboen et al. (2016)).
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specifications described above.20

As discussed in Section 1.2, we made many design decisions to enhance realism. However,

one might be concerned that our independent cross-randomization of various resume com-

ponents might lead to unrealistic resumes and influence the results we find. We provide two

robustness checks in the appendix to address this concern. First, our design and analysis

treat each work experience as independent, but, in practice, candidates may have related

jobs over a series of summers that create a work experience “narrative.” In Appendix A.2.1

and Appendix Table 21, we describe how we construct a measure of work experience nar-

rative, we test its importance, and find that while employers respond positively to work

experience narrative (p = 0.054) our main results are robust to its inclusion. Second, the

GPA distribution we used for constructing the hypothetical resumes did not perfectly match

the distribution of job seekers in our labor market. In Appendix A.2.2, we re-weight our

data to match the GPA distribution in the candidate pool of real Penn job seekers and show

that our results are robust to this re-weighting. These exercises provide some assurance that

our results are not an artifact of how we construct hypothetical resumes.

1.3.3. Effects Across the Distribution of Hiring Interest

The regression specifications described in Section 1.3.2 identify the average effect of can-

didate characteristics on employers’ hiring interest. As pointed out by Neumark (2012),

however, these average preferences may differ in magnitude—and even direction—from dif-

ferences in callback rates, which derive from whether a characteristic pushes a candidate

above a specific quality threshold (i.e., the callback threshold). For example, in the low

callback rate environments that are typical of resume audit studies, differences in callback

rates will be determined by how employers respond to a candidate characteristic in the right

20The ordered probit cutpoints (2.14, 2.5, 2.85, 3.15, 3.46, 3.8, 4.25, 4.71, and 5.21) are approximately
equally spaced, suggesting that subjects treated the Likert scale approximately linearly. Note that we only
run the ordered probit specification with the major dummies and without leadership dummies or subject
fixed effects. Adding too many dummies to an ordered probit can lead to unreliable estimates when the
number of observations per cluster is small (Greene, 2004).
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tail of their distribution of preferences.21 To make this concern concrete, Appendix A.2.3

provides a simple graphical illustration in which the average preference for a characteristic

differs from the preference in the tail of the distribution. In practice, we may care about

preferences in any part of the distribution for policy. For example, preferences at the call-

back threshold may be relevant for hiring outcomes, but those thresholds may change with

a hiring expansion or contraction.

An advantage of the IRR methodology, however, is that it can deliver a granular measure

of hiring interest to explore whether employers’ preferences for characteristics do indeed

differ in the tails of the hiring interest distribution. We employ two basic tools to explore

preferences across the distribution of hiring interest: (1) the empirical cumulative distribu-

tion function (CDF) of hiring interest ratings and (2) a “counterfactual callback threshold”

exercise. In the latter exercise, we impose a counterfactual callback threshold at each pos-

sible hiring interest rating (i.e., supposing that employers called back all candidates that

they rated at or above that rating level) and, for each possible rating level, report the OLS

coefficient an audit study researcher would find for the difference in callback rates.

While the theoretical concerns raised by Neumark (2012) may be relevant in other settings,

the average results we find in Section 1.3.2 are all consistent across the distribution of

hiring interest, including in the tails (except for a preference for Wharton students, which

we discuss below). The top half of Figure 1 shows that Top Internship is positive and

statistically significant at all levels of selectivity. Panel (a) reports the empirical CDF of

hiring interest ratings for candidates with and without a top internship. Panel (b) shows

the difference in callback rates that would arise for Top Internship at each counterfactual

callback threshold. The estimated difference in callback rates is positive and significant

everywhere, although it is much larger in the midrange of the quality distribution than at

21A variant of this critique was initially brought up by Heckman and Siegelman (1992) and Heckman (1998)
for in-person audit studies, where auditors may be imperfectly matched, and was extended to correspondence
audit studies by Neumark (2012) and Neumark et al. (2015). A key feature of the critique is that certain
candidate characteristics might affect higher moments of the distribution of employer preferences so that
how employers respond to a characteristic on average may be different than how an employer responds to a
characteristic in the tail of their preference distribution.
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either of the tails.22 The bottom half of Figure 1 shows that results across the distribution

for Second Internship and Work for Money are also consistent with the average results

from Section 1.3.2. Second Internship is positive everywhere and almost always statistically

significant. Work for Money consistently has no impact on employer preferences throughout

the distribution of hiring interest.

As noted above, our counterfactual callback threshold exercise suggests that a well-powered

audit study would likely find differences in callback rates for most of the characteristics that

we estimate as statistically significant on average in Section 1.3.2, regardless of employers’

callback threshold. This result is reassuring both for the validity of our results and in

considering the generalizability of results from the resume audit literature. However, even

in our data, we observe a case where a well-powered audit study would be unlikely to

find a result, even though we find one on average. Appendix Figure 11 mirrors Figure 1

but focuses on having a Wharton degree among employers seeking Humanities & Social

Sciences candidates. Employers respond to Wharton in the middle of the distribution of

hiring interest, but preferences seem to converge in the right tail (i.e., at hiring interest

ratings of 9 or 10), suggesting that the best students from the College of Arts and Sciences

are not evaluated differently than the best students from Wharton.

1.3.4. Demographic Discrimination

In this section, we examine how hiring interest ratings respond to the race and gender of

candidates. As described in Section 1.2 and shown in Table 1, we use our variation in

names to create the variables: Female, White; Male, Non-White; and Female, Non-White.

As shown in Table 2, the coefficients on the demographic variables are not significantly

22This shape is partially a mechanical feature of low callback rate environments: if a threshold is set high
enough that only 5% of candidates with a desirable characteristic are being called back, the difference in
callback rates can be no more than 5 percentage points. At lower thresholds (e.g., where 50% of candidates
with desirable characteristics are called back), differences in callback rates can be much larger. In Appendix
A.2.3, we discuss how this feature of difference in callback rates could lead to misleading comparisons across
experiments with very different callback rates.
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Figure 1: Value of Quality of Experience Over Selectivity Distribution

(a) Empirical CDF for Top Internship
(b) Linear Probability Model for Top Intern-
ship

(c) Empirical CDF for Second Job Type
(d) Linear Probability Model for Second Job
Type

Empirical CDF of Hiring Interest (Panels 1a & 1c) and difference in counterfactual callback rates (Panels
1b & 1d) for Top Internship, in the top row, and Second Internship and Work for Money, in the bottom
row. Empirical CDFs show the share of hypothetical candidate resumes with each characteristic with a
Hiring Interest rating less than or equal to each value. The counterfactual callback plot shows the difference
between groups in the share of candidates at or above the threshold—that is, the share of candidates who
would be called back in a resume audit study if the callback threshold were set to any given value. 95%
confidence intervals are calculated from a linear probability model with an indicator for being at or above a
threshold as the dependent variable.
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different from zero, suggesting no evidence of discrimination on average in our data.23 This

null result contrasts somewhat with existing literature—both resume audit studies (e.g.,

Bertrand and Mullainathan (2004)) and laboratory experiments (e.g., Bohnet et al. (2015))

generally find evidence of discrimination in hiring. Our differential results may not be

surprising given that our employer pool is different than those usually targeted through

resume audit studies, with most reporting positive tastes for diversity.

While we see no evidence of discrimination on average, a large literature addressing di-

versity in the sciences (e.g., Carrell et al. (2010); Goldin (2014)) suggests we might be

particularly likely to see discrimination among employers seeking STEM candidates. In

Table 3, we estimate the regression in Equation (1.1) separately by major type. Results

in Columns 5-10 show that employers looking for STEM candidates display a large, statis-

tically significant preference for white male candidates over white females and non-white

males. The coefficients on Female, White and Male, Non-White suggest that these candi-

dates suffer a penalty of 0.5 Likert-scale points—or about 0.27 GPA points—that is robust

across our specifications. These effects are at least marginally significant even after multi-

plying our p-values by two to correct for the fact that we are analyzing our results within

two subgroups (uncorrected p-values are: p = 0.009 for Female, White; p = 0.049 for Male,

Non-White). Results in Columns 1-5 show no evidence of discrimination in hiring interest

among Humanities & Social Sciences employers.

As in Section 1.3.3, we can examine these results across the hiring interest rating distribu-

tion. Figure 2 shows the CDF of hiring interest ratings and the difference in counterfactual

callback rates. For ease of interpretation and for statistical power, we pool female and

minority candidates and compare them to white male candidates in these figures and in

some analyses that follow. The top row shows these comparisons for employers interested

in Humanities & Social Sciences candidates and the bottom row shows these comparisons

for employers interested in STEM candidates. Among employers interested in Humanities &

23In Appendix Table 26, we show that this effect does not differ by the gender and race of the employer
rating the resume.
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Social Sciences candidates, the CDFs of Hiring Interest ratings are nearly identical. Among

employers interested in STEM candidates, however, the CDF for white male candidates first

order stochastically dominates the CDF for candidates who are not white males. At the

point of the largest counterfactual callback gap, employers interested in STEM candidates

would display callback rates that were 10 percentage points lower for candidates who were

not white males than for their white male counterparts.

One might be surprised that we find any evidence of discrimination, given that employers

may have (correctly) believed we would not use demographic tastes in generating their

matches and given that employers may have attempted to override any discriminatory

preferences to be more socially acceptable. One possibility for why we nevertheless find

discrimination is the role of implicit bias (Greenwald et al., 1998; Nosek et al., 2007), which

Bertrand et al. (2005) has suggested is an important channel for discrimination in resume

audit studies. In Appendix A.2.4, we explore the role of implicit bias in driving our results.24

In particular, we leverage a feature of implicit bias—that it is more likely to arise when

decision makers are fatigued (Wigboldus et al., 2004; Govorun and Payne, 2006; Sherman

et al., 2004)—to test whether our data are consistent with employers displaying an implicit

racial or gender bias. As shown in Appendix Table 27, employers spend less time evaluating

resumes both in the latter half of the study and in the latter half of each set of 10 resumes

(after each set of 10 resumes, we introduced a short break for subjects), suggesting evidence

of fatigue. Discrimination is statistically significantly larger in the latter half of each block

of 10 resumes, providing suggestive evidence that implicit bias plays a role in our findings,

although discrimination is not larger in the latter half of the study.

Race and gender could also subconsciously affect how employers view other resume compo-

nents. We test for negative interactions between race and gender and desirable candidate

24Explicit bias might include an explicit taste for white male candidates or an explicit belief they are
more prepared than female or minority candidates for success at their firm, even conditional on their re-
sumes. Implicit bias (Greenwald et al., 1998; Nosek et al., 2007), on the other hand, may be present even
among employers who are not explicitly considering race (or among employers who are considering race but
attempting to suppress any explicit bias they might have).
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characteristics, which have been found in the resume audit literature (e.g., minority status

has been shown to lower returns to resume quality (Bertrand and Mullainathan, 2004)).

Appendix Table 28 interacts Top Internship, our binary variable most predictive of hiring

interest, with our demographic variables. These interactions are all directionally negative,

and the coefficient Top Internship × Female, White is negative and significant, suggesting

a lower return to a prestigious internships for white females. One possible mechanism for

this effect is that employers believe that other employers exhibit positive preferences for

diversity, and so having a prestigious internship is a less strong signal of quality if one is

from an under-represented group. This aligns with the findings shown in Appendix Figure

16, which shows that the negative interaction between Top Internship and demographics

appears for candidates with relatively low ratings and is a fairly precisely estimated zero

when candidates receive relatively high ratings.
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1.3.5. Candidate Likelihood of Acceptance

In resume audit studies, traits that suggest high candidate quality do not always increase

employer callback. For example, several studies have found that employers call back em-

ployed candidates at lower rates than unemployed candidates (Kroft et al., 2013; Nunley

et al., 2017, 2014; Farber et al., 2018), but that longer periods of unemployment are un-

appealing to employers. This seeming contradiction is consistent with the hypothesis that

employers are concerned about the possibility of wasting resources pursuing a candidate

who will ultimately reject a job offer. In other words, hiring interest is not the only factor

determining callback decisions. This concern has been acknowledged in the resume audit

literature, for example when Bertrand and Mullainathan (2004, p. 992) notes, “In creat-

ing the higher-quality resumes, we deliberately make small changes in credentials so as to

minimize the risk of overqualification.”

As described in Section 1.2.4, for each resume we asked employers “How likely do you think

[Name] would be to accept a job with your organization?” Asking this question helps

ensure that our measure of hiring interest is unconfounded with concerns that a candidate

would accept a position when offered. However, the question also allows us to study this

second factor, which also affects callback decisions.

Table 4 replicates the regression specifications from Table 2, estimating Equation (1.1) when

Vij is Likelihood of Acceptance, which takes values from 1 to 10. Employers in our sample

view high quality candidates as more likely to accept a job with their firm than low quality

candidates. This suggests that employers in our sample believe candidate fit at their firm

outweighs the possibility that high quality candidates will be pursued by many other firms.

In Appendix A.2.5, we further consider the role of horizontal fit and vertical quality and

find that—holding hiring interest in a candidate constant—reported likelihood of acceptance

falls as evidence of vertical quality (e.g., GPA) increases. This result highlights that there

is independent information in the likelihood of acceptance measure.
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Figure 2: Demographics by Major Type Over Selectivity Distribution

(a) Empirical CDF: Not a White Male, Human-
ities & Social Sciences

(b) Linear Probability Model: Not a White
Male, Humanities & Social Sciences

(c) Empirical CDF: Not a White Male, STEM
(d) Linear Probability Model: Not a White
Male, STEM

Empirical CDF of Hiring Interest (Panels 2a & 2c) and difference in counterfactual callback rates (Panels
2b & 2d) for White Male and Not a White Male. Employers interested in Humanities & Social Sciences
candidates are shown in the top row and employers interested in STEM candidates are shown in the bottom
row. Empirical CDFs show the share of hypothetical candidate resumes with each characteristic with a
Hiring Interest rating less than or equal to each value. The counterfactual callback plot shows the difference
between groups in the share of candidates at or above the threshold—that is, the share of candidates who
would be called back in a resume audit study if the callback threshold were set to any given value. 95%
confidence intervals are calculated from a linear probability model with an indicator for being at or above a
threshold as the dependent variable.
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Table 4 shows that employers report female and minority candidates are less likely to accept

a position with their firm, by 0.2 points on the 1–10 Likert scale (or about one tenth of

a standard deviation). This effect is robust to the inclusion of a variety of controls, and

it persists when we hold hiring interest constant in Appendix Table 29. Table 5 splits the

sample and shows that while the direction of these effects is consistent among both groups

of employers, the negative effects are particularly large among employers recruiting STEM

candidates.

If minority and female applicants are perceived as less likely to accept an offer, this could

induce lower callback rates for these candidates. Our results therefore suggest a new channel

for discrimination observed in the labor market, which is worth exploring. Perhaps due to

the prevalence of diversity initiatives, employers expect that desirable minority and female

candidates will receive many offers from competing firms and thus will be less likely to

accept any given offer. Alternatively, employers may see female and minority candidates

as less likely to fit in the culture of the firm, making these candidates less likely to accept

an offer. This result has implications for how we understand the labor market and how we

interpret the discrimination observed in resume audit studies.25

1.3.6. Comparing our Demographic Results to Previous Literature

Qualitative comparison

Our results can be compared to those from other studies of employer preferences, with two

caveats. First, our measure of the firms’ interest in hiring a candidate may not be directly

comparable to findings derived from callback rates, which likely combine both hiring interest

and likelihood of acceptance into a single binary outcome. Second, our subject population

is made up of firms that would be unlikely to respond to cold resumes and thus may have

25In particular, while audit studies can demonstrate that groups are not being treated equally, differen-
tial callback rates need not imply a lack of employer interest. The impact of candidate characteristics on
likelihood of acceptance is a case of omitted variable bias, but one that is not solved by experimental random-
ization, since the randomized trait endows the candidate with hiring interest and likelihood of acceptance
simultaneously.
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different preferences than the typical firms audited in prior literature.

Resume audit studies have consistently shown lower callback rates for minorities. We see

no evidence of lower ratings for minorities on average, but we do see lower ratings of minor-

ity male candidates by STEM employers. Results on gender in the resume audit literature

have been mixed. In summarizing results from 11 studies conducted between 2005 and 2016,

(Baert, 2018) finds four studies with higher callback rates for women, two with lower callback

rates, and five studies with no significant difference. None of these studies found discrimina-

tion against
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Table 4: Likelihood of Acceptance

Dependent Variable: Likelihood of Acceptance

OLS OLS OLS
Ordered
Probit

GPA 0.605 0.631 0.734 0.263
(0.144) (0.150) (0.120) (0.0603)

Top Internship 0.683 0.677 0.664 0.285
(0.0943) (0.0979) (0.0763) (0.0396)

Second Internship 0.418 0.403 0.394 0.179
(0.112) (0.119) (0.0911) (0.0472)

Work for Money 0.197 0.192 0.204 0.0880
(0.111) (0.116) (0.0896) (0.0467)

Technical Skills -0.0508 -0.0594 -0.103 -0.0248
(0.104) (0.108) (0.0861) (0.0435)

Female, White -0.231 -0.294 -0.258 -0.0928
(0.114) (0.118) (0.0935) (0.0476)

Male, Non-White -0.125 -0.170 -0.117 -0.0602
(0.137) (0.142) (0.110) (0.0574)

Female, Non-White -0.221 -0.236 -0.162 -0.103
(0.135) (0.142) (0.112) (0.0568)

Observations 2880 2880 2880 2880
R2 0.070 0.124 0.492
p-value for test of joint

significance of Majors < 0.001 < 0.001 < 0.001 < 0.001
Major FEs Yes Yes Yes Yes
Leadership FEs No Yes Yes No
Order FEs No Yes Yes No
Subject FEs No No Yes No

Ordered probit cutpoints: -0.26, 0.13, 0.49, 0.75, 1.12, 1.49, 1.94, 2.46, and 2.83.

Table shows OLS and ordered probit regressions of Likelihood of Acceptance
from Equation (1.1). Robust standard errors are reported in parentheses.
GPA; Top Internship; Second Internship; Work for Money ; Technical Skills;
Female, White; Male, Non-White; Female, Non-White and major are char-
acteristics of the hypothetical resume, constructed as described in Section
1.2.3 and in Appendix A.1.2. Fixed effects for major, leadership experience,
resume order, and subject included in some specifications as indicated. R2 is
indicated for each OLS regression. The p-values of tests of joint significance
of major fixed effects are indicated (F -test for OLS, likelihood ratio test for
ordered probit).
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women in a U.S. setting. This may be due to resume audit studies targeting female-

dominated occupations, such as clerical or administrative work. Riach and Rich (2006),

which specifically targets male-dominated occupations, shows lower callback rates for women.

Outside the labor market, Bohren et al. (2018) and Milkman et al. (2012) found evidence

of discrimination against women using audit-type methodology. We find that firms recruit-

ing STEM candidates give lower ratings to white women, demonstrating the importance of

being able to reach new subject pools with IRR. We also find that white women receive a

lower return to prestigious internships. This result matches a type of discrimination—lower

return to quality—seen in Bertrand and Mullainathan (2004), but we find it for gender

rather than race.

We also find that employers believe white women are less likely to accept positions if offered,

which could account for discrimination found in the resume audit literature. For example,

Quadlin (2018) finds that women with very high GPAs are called back at lower rates than

women with lower GPAs, which could potentially arise from a belief these high quality

women will be recruited by other firms, rather than from a lack of hiring interest.

Quantitative comparison using GPA as a numeraire

In addition to making qualitative comparisons, we can conduct some back-of-the-envelope

calculations to compare the magnitude of our demographic effects to those in previous

studies, including Bertrand and Mullainathan (2004). We conduct these comparisons by

taking advantage of the ability—in our study and others—to use GPA as a numeraire.

In studies that randomize GPA, we can divide the observed effect due to race or gender by

the effect due to GPA to compare with our GPA-scaled estimates. For example, exploiting

the random variation in GPA and gender from Quadlin (2018), we calculate that being

female leads to a decrease in callback equivalent to 0.23 GPA points.26 Our results (shown

26Quadlin (2018) reports callback rate in four GPA bins. The paper finds callback is lower in the highest
GPA bin than the second highest bin, which may be due to concerns about likelihood of acceptance. Looking
at the second and third highest bins (avoiding the non-monotonic bin), we see that an increase in GPA
from the range [2.84, 3.20] to [3.21, 3.59]—an average increase of 0.38 GPA points—results in a callback
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in Tables 2 and 3) suggest that being a white female, as compared to a white male, is

equivalent to a decrease of 0.073 GPA points overall and 0.290 GPA points among employers

recruiting for STEM.

When a study does not vary GPA, we can benchmark the effect of demographic differences

on callback to the effect of GPA on counterfactual callback in our study. For example, in

Bertrand and Mullainathan (2004), 8% of all resumes receive callbacks, and having a black

name decreases callback by 3.2 percentage points. 7.95% of resumes in our study receive a

9 or a 10 rating, suggesting that receiving a 9 or higher is a similar level of selectivity as

in Bertrand and Mullainathan (2004). A linear probability model in our data suggests that

each 0.1 GPA point increases counterfactual callback at this threshold by 1.13 percentage

points. Thus, the Bertrand and Mullainathan (2004) race effect is equivalent to an increase

of 0.28 GPA points in our study.27 This effect can be compared to our estimate that being

a minority male, as compared to a white male, is equivalent to a decrease of 0.077 GPA

points overall and 0.270 GPA points among employers recruiting for STEM.

1.4. Pitt Replication: Results and Lessons

In order to explore whether preferences differed between employers at Penn (an elite, Ivy

League school) and other institutions where recruiters might more closely resemble the

employers of typical resume audit studies, we reached out to several Pennsylvania schools

in hopes of running an IRR replication. We partnered with the University of Pittsburgh

(Pitt) Office of Career Development and Placement Assistance to run two experimental

rounds during their spring recruiting cycle.28 Ideally, the comparison between Penn and

rate increase of 3.5 percentage points. Dividing 0.38 by 3.5 suggests that each 0.11 GPA points generates 1
percentage point difference in callback rates. Quadlin (2018) also finds a callback difference of 2.1 percentage
points between male (14.0%) and female (11.9%) candidates. Thus, applicant gender has about the same
effect as a 0.23 change in GPA.

27Bertrand and Mullainathan (2004) also varies quality, but through changing multiple characteristics at
once. Using the same method, these changes, which alter callback by 2.29 percentage points, are equivalent
to a change of 0.20 GPA points, providing a benchmark for their quality measure is in our GPA points.

28Unlike at Penn, there is no major fall recruiting season with elite firms at Pitt. We recruited employers in
the spring semester only, first in 2017 and again in 2018. The Pitt recruitment email was similar to that used
at Penn (Figure 5), and originated from the Pitt Office of Career Development and Placement Assistance.
For the first wave at Pitt we offered webinars, as described in Appendix A.1.1, but since attendance at these
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Pitt would have given us additional insight into the extent to which Penn employers differed

from employers traditionally targeted by audit studies.

Instead, we learned that we were insufficiently attuned to how recruiting differences between

Penn and Pitt employer populations should influence IRR implementation. Specifically, we

observed significant attenuation over nearly all candidate characteristics in the Pitt data.

Table 6 shows fully controlled OLS regressions highlighting that our effects at Pitt (shown

in the second column) are directionally consistent with those at Penn (shown in the first

column for reference), but much smaller in size. For example, the coefficient on GPA is

one-tenth the size in the Pitt data. We find similar attenuation on nearly all characteristics

at Pitt for both Hiring Interest and Likelihood of Acceptance, in the pooled sample and

separated by major type. We find no evidence of Pitt employers responding to candidate

demographics. (Appendix A.3 provides details for our experimental implementation at Pitt

and Tables 31, 32, and 33 display the full results.)

We suspect the cause of the attenuation at Pitt was our failure to appropriately tailor

resumes to meet the needs of Pitt employers who were seeking candidates with specialized

skills or backgrounds. A large share of the resumes at Pitt (33.8%) received the lowest

possible Hiring Interest rating, more than double the share at Penn (15.5.%). Feedback

from Pitt employers suggested that they were also less happy with their matches: many

respondents complained that the matches lacked a particular skill or major requirement for

their open positions.29 In addition, the importance of a major requirement was reflected on

the post-survey data in which 33.7% of Pitt employers indicated that candidate major was

sessions was low, we did not offer them in the second wave. We collected resume components to populate the
tool at Pitt from real resumes of graduating Pitt seniors. Rather than collect resumes from clubs, resume
books, and campus job postings as we did at Penn, we used the candidate pool of job-seeking seniors both
to populate the tool and to suggest matches for employers. This significantly eased the burden of collecting
and scraping resumes. At Pitt, majors were linked to either the “Dietrich School of Arts and Sciences” or
the “Swanson School of Engineering”. Table 30 lists the majors, associated school, major category, and the
probability that the major was drawn. We collected top internships at Pitt by identifying the firms hiring
the most Pitt graduates, as at Penn. Top internships at Pitt tended to be less prestigious than the top
internships at Penn.

29As one example, a firm wrote to us in an email: “We are a Civil Engineering firm, specifically focused
on hiring students out of Civil and/or Environmental Engineering programs... there are 0 students in the
group of real resumes that you sent over that are Civil Engineering students.”
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among the most important considerations during recruitment, compared to only 15.3% at

Penn.

After observing these issues in the first wave of Pitt data collection, we added a new checklist

question to the post-tool survey in the second wave: “I would consider candidates for this

position with any of the following majors....” This question allowed us both to restrict

the match pool for each employer, improving match quality, and to directly assess the

extent to which our failure to tailor resumes was attenuating our estimates of candidate

characteristics. Table 6 shows that when splitting the data from the second wave based on

whether a candidate was in a target major, the effect of GPA is much larger in the target

major sample (shown in the fourth column), and that employers do not respond strongly to

any of the variables when considering candidates with majors that are not Target Majors.

The differential responses depending on whether resumes come from Target Majors high-

lights the importance of tailoring candidate resumes to employers when deploying the IRR

methodology. We advertised the survey tool at both Pitt and Penn as being particularly

valuable for hiring skilled generalists, and we were ill equipped to measure preferences of

employers looking for candidates with very particular qualifications.

This was a limitation in our implementation at Pitt rather than in the IRR methodology

itself. That is, one could design an IRR study specifically for employers interested in hiring

registered nurses, or employers interested in hiring mobile software developers, or employ-

ers interested in hiring electrical engineers. Our failure at Pitt was in showing all of these

employers resumes with the same underlying components. We recommend that researchers

using IRR either target employers that specifically recruit high quality generalists, or con-

struct resumes with appropriate variation within the employers’ target areas. For example,

if we ran our IRR study again at Pitt, we would ask the Target Majors question first and

then only generate hypothetical resumes from those majors.
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Table 6: Hiring Interest at Penn and Pitt

Dependent Variable: Hiring Interest

Penn Pitt
Pitt, Wave 2

Non-Target Major
Pitt, Wave 2
Target Major

GPA 2.196 0.265 -0.196 0.938
(0.129) (0.113) (0.240) (0.268)

Top Internship 0.897 0.222 0.0199 0.0977
(0.0806) (0.0741) (0.142) (0.205)

Second Internship 0.466 0.212 0.0947 0.509
(0.0947) (0.0845) (0.165) (0.220)

Work for Money 0.154 0.153 0.144 0.378
(0.0914) (0.0807) (0.164) (0.210)

Technical Skills -0.0711 0.107 0.125 -0.0354
(0.0899) (0.0768) (0.149) (0.211)

Female, White -0.161 0.0279 -0.0152 -0.151
(0.0963) (0.0836) (0.180) (0.212)

Male, Non-White -0.169 -0.0403 0.00154 -0.331
(0.115) (0.0982) (0.185) (0.251)

Female, Non-White 0.0281 -0.000197 0.182 -0.332
(0.120) (0.100) (0.197) (0.256)

Observations 2880 3440 642 798
R2 0.483 0.586 0.793 0.596
p-value for test of joint
significance of Majors < 0.001 < 0.001 0.120 0.850

Major FEs Yes Yes Yes Yes
Leadership FEs Yes Yes Yes Yes
Order FEs Yes Yes Yes Yes
Subject FEs Yes Yes Yes Yes

Table shows OLS regressions of hiring interest from Equation (1.1). Sample differs in
each column as indicated by the column header. Robust standard errors are reported
in parentheses. GPA; Top Internship; Second Internship; Work for Money ; Tech-
nical Skills; Female, White; Male, Non-White; Female, Non-White and major are
characteristics of the hypothetical resume, constructed as described in Section 1.2.3
and in Appendix A.1.2. Fixed effects for major, leadership experience, resume order,
and subject included in all specifications. R2 is indicated for each OLS regression.
The p-value of an F -test of joint significance of major fixed effects is indicated for all
models.
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1.5. Conclusion

This paper introduces a novel methodology, called Incentivized Resume Rating (IRR), to

measure employer preferences. The method has employers rate candidate profiles they know

to be hypothetical and provides incentives by matching employers to real job seekers based

on their reported preferences.

We deploy IRR to study employer preferences for candidates graduating from an Ivy League

university. We find that employers highly value both more prestigious work experience the

summer before senior year and additional work experience the summer before junior year.

We use our ten-point rating data to demonstrate that preferences for these characteristics

are relatively stable throughout the distribution of candidate quality. We find no evidence

that employers are less interested in female or minority candidates on average, but we

find evidence of discrimination among employers recruiting STEM candidates. Moreover,

employers report that white female candidates are less likely to accept job offers than their

white male counterparts, a novel channel for discrimination.

Here, we further discuss the benefits and costs of the IRR methodology, highlight lessons

learned from our implementation—which point to improvements in the method—and discuss

directions for future research.

A key advantage of the IRR methodology is that it avoids the use of deception. We speculate

that economics has tolerated the use of deception in correspondence audit studies in part

because of the absence of a deception-free alternative. We developed IRR to provide such

an alternative. The availability of an alternative is particularly important given the recent

proliferation of deceptive audit studies both within labor economics and into settings beyond

labor markets. As discussed in the Introduction, the increasing use of audit studies within

labor markets risks contaminating the subject pool—biasing estimates from future audit

studies and harming real applicants whose profiles look like fake candidates created by

researchers.
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Extending deception in new settings may have additional unintended consequences. As

prominent examples, researchers have recently audited college professors requesting in-

person meetings (Milkman et al., 2012, 2015) and politicians requesting information (Butler

and Broockman, 2011; Distelhorst and Hou, 2017). Professors are likely to learn about au-

dit studies ex post and may take the existence of such studies as an excuse to ignore emails

from students in the future. Audits of politicians’ responses to correspondence from pu-

tative constituents might distort politicians’ beliefs about the priorities of the populations

they serve, especially when researchers seek a politician-level audit measure, which requires

sending many fake requests to the same politician.

We hope that further development of the IRR method will lead to stricter standards for

when deception can be used in economics research and that it will be a welcome change

even among researchers who run audit studies, since reducing the number of deceptive audit

studies limits contamination of the subject pool.

A second advantage of the IRR method is that it elicits richer preference information than

binary callback decisions.30 In our implementation, we elicit granular measures of employ-

ers’ hiring interest and of employers’ beliefs about the likelihood of job acceptance. We also

see the potential for improvements in preference elicitation by better mapping these metrics

into hiring decisions, by collecting additional information from employers, and by raising

the stakes, which we discuss below.

The IRR method has other advantages. IRR can access subject populations that are inac-

cessible with audit or resume audit methods. IRR allows researchers to gather rich data

from a single subject—each employer in our implementation rates 40 resumes—which is

helpful for power and makes it feasible to identify preferences for characteristics within

30Bertrand and Duflo (2016) argues that the literature has generally not evolved past measuring differences
in callback means between groups, and that it has been less successful in illuminating mechanisms driving
these differences. That said, there have been some exceptions, like Bartoš et al. (2016), which uses emails
containing links to learn more about candidates to show that less attention is allocated to candidates who
are discriminated against. Another exception is Bohren et al. (2018), which uses evaluations of answers
posted on an online Q&A forum—which are not conflated with concerns about likelihood of acceptance—to
test a dynamic model of mistaken discriminatory beliefs.
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individual subjects. IRR allows researchers to randomize many candidate characteristics

independently and simultaneously, which can be used to explore how employers respond to

interactions of candidate characteristics. Finally, IRR allows researchers to collect supple-

mental data about research subjects, which can be correlated with subject-level preference

measures and allows researchers to better understand their pool of employers.

A final advantage of IRR is that it may provide direct benefits to subjects and other partic-

ipants in the labor market being studied; this advantage stands in stark contrast to using

subject time without consent, as is necessary in audit studies. We solicited subject feedback

at numerous points throughout the study and heard very few concerns.31 Instead, many

employers reported positive feedback. Positive feedback also came by way of the career

services offices at Penn and Pitt, which were in more direct contact with our employer sub-

jects. Both offices continued the experiment for a second wave of recruitment and expressed

interest in making the experiment a permanent feature of their recruiting process. In our

meetings, the career services offices reported seeing value in IRR to improve their matching

process and to learn how employers valued student characteristics (thus informing the ad-

vice they could give to students about pursuing summer work and leadership experience and

how to write their resumes). While we did not solicit feedback from student participants in

the study, we received hundreds of resumes from students at each school, suggesting that

they valued the prospect of having their resumes sent to employers.32

Naturally, IRR also has some limitations. Because the IRR method informs subjects that

responses will be used in research, it may lead to experimenter demand effects (see, e.g.,

de Quidt et al. (2018)). We believe the impact of any experimenter demand effects is

31First, we solicited feedback in an open comments field of the survey itself. Second, we invited participants
to contact us with questions or requests for additional matches when we sent the 10 resumes. Third, we ran
a follow-up survey in which we asked about hiring outcomes for the recommended matches (unfortunately,
we offered no incentive to complete the follow-up survey and so its participation was low).

32Student involvement only required uploading a resume and completing a short preference survey. We
did not notify students when they were matched with a firm, in order to give the firms freedom to choose
which students to contact. Thus, most students were unaware of whether or not they were recommended to
a firm. We recommended 207 unique student resumes over the course of the study, highlighting the value to
students.
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likely small, as employers appeared to view our survey tool as a way to identify promising

candidates, rather than as being connected to research (see discussion in Section 1.2). For

this reason, as well as others highlighted in Section 1.3.4, IRR may be less well equipped to

identify explicit bias than implicit bias. More broadly, we cannot guarantee that employers

treat our hypothetical resumes as they would real job candidates. As discussed in the

Introduction, however, future work could help validate employer attention in IRR studies.33

In addition, because the two outcome measures in our study are hypothetical objects rather

than stages of the hiring process, in our implementation of IRR we cannot draw a direct link

between our findings and hiring outcomes. Below, we discuss how this might be improved

in future IRR implementations.

Finally, running an IRR study requires finding an appropriate subject pool and candidate

matching pool, which may not be available to all researchers. It also requires an investment

in constructing the hypothetical resumes (e.g., scraping and sanitizing resume components)

and developing the process to match employer preferences to candidates. Fortunately, the

time and resources we devoted to developing the survey tool software can be leveraged by

other researchers.

Future research using IRR can certainly improve upon our implementation. First, as dis-

cussed at length in Section 1.4, our failed attempt to replicate at Pitt highlights that future

researchers must take care to effectively tailor the content of resumes to match the hiring

needs of their subjects. Second, we suggest developing a way to translate Likert-scale re-

sponses to the callback decisions typical in correspondence audit studies. One idea is to

ask employers to additionally answer, potentially for a subset of resumes, a question of the

form: “Would you invite [Candidate Name] for an interview?” By having the Likert-

scale responses and this measure, researchers could identify what combination of the hiring

interest and likelihood of acceptance responses translates into a typical callback decision

33The time employers spent evaluating resumes in our study at Penn had a median of 18 seconds and
a mean that was substantially higher (and varies based on how outliers are handled). These measures are
comparable to estimates of time spent screening real resumes (which include estimates of 7.4 seconds per
resume (Dishman, 2018) and a mean of 45 seconds per resume (Culwell-Block and Sellers, 1994)).
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(and, potentially, how the weight placed on each component varies by firm). Researchers

could also explore the origin and accuracy of employer beliefs about likelihood of acceptance

by asking job candidates about their willingness to work at participating firms. Third, re-

searchers could increase the stakes of IRR incentives (e.g., by asking employer subjects to

guarantee interviews to a subset of the recommended candidates) and gather more informa-

tion on interviews and hiring outcomes (e.g., by building or leveraging an existing platform

to measure employer and candidate interactions).34

While we used IRR to measure the preferences of employers in a particular labor market,

the underlying incentive structure of the IRR method is much more general, and we see

the possibility of it being applied outside of the resume rating context. At the heart of

IRR is a method to elicit preference information from experimental subjects by having

them evaluate hypothetical objects and offering them an incentive that increases in value

as preference reports become more accurate. Our implementation of IRR achieves this by

eliciting continuous Likert-scale measures of hypothetical resumes, using machine learning

to estimate the extent to which employers care about various candidate characteristics, and

providing employers with resumes of real candidates that they are estimated to like best.

Researchers could take a similar strategy to explore preferences of professors over prospective

students, landlords over tenants, customers over products, individuals over dating profiles,

and more, providing a powerful antidote to the growth of deceptive studies in economics.

34An additional benefit of collecting data on interviews and hiring is that it would allow researchers to
better validate the value of matches to employers (e.g., researchers could identify 12 potential matches
and randomize which 10 are sent to employers, identifying the effect of sending a resume to employers on
interview and hiring outcomes). If employers do respond to the matches, one could imagine using IRR as
an intervention in labor markets to help mitigate discrimination in hiring, since IRR matches can be made
while ignoring race and gender.
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CHAPTER 2 : Learning to Manipulate: Experimental Evidence on

Out-of-Equilibrium Truth-Telling (with Clayton R. Featherstone and

Eric Mayefsky)

2.1. Introduction

Why do some two-sided matching mechanisms continue to be used from year to year while

others are abandoned? Although the usual distinction concerns whether a mechanism is

stable with respect to the reported preferences,1 such an explanation is incomplete without

also considering whether preferences are truthfully revealed.2 Previous theoretical literature

has looked at large markets to do this; however, we take a different tack by observing

strategic preference revelation in the lab. Our evidence suggests that out-of-equilibrium

truth-telling under the deferred acceptance mechanism can lead to matches that are more

stable than theory predicts.

Two-sided matching mechanisms are widely used in the field. The most well-known exam-

ple is the National Resident Matching Program (NRMP) which every year makes about

25,000 matches between newly-minted doctors and residency programs in the United States

(NRMP, 2009). Once participants have formed their preferences, they submit rank-order

lists of acceptable match partners to the NRMP clearinghouse, which then runs those lists

through an algorithm, outputting a match. Other examples of two-sided matching include

the Association of Psychology Post-doctoral and Internship Centers (APPIC) match (about

2,800 clinical psychologists matched to internship programs per year (APPIC, 2009)), and

the New York City Department of Education public high school match (about 90,000 high

school students per year (NYC-DOE, 2009)).3

1One might also bypass truthful preference revelation entirely and simply look at whether a mechanism
yields a stable allocation in equilibrium. See, for instance, Roth (1984b), Ergin and Sönmez (2006) and
Pathak and Sönmez (2008).

2Roth (1982) shows that any mechanism that is stable with respect to reported preferences cannot admit
truth-telling as a dominant strategy for all players.

3For papers on these matches, see Roth (1984a, 1996, 2003); Roth and Peranson (1999); Roth and Xing
(1997); Abdulkadiroğlu et al. (2005); Abdulkadiroglu et al. (2009).
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When deciding which mechanism to use in a matching market, the literature has consistently

come back to the idea of stability. A stable match has no agents who would prefer to

remain unmatched (individual rationality) and no blocking pairs (pairwise stability), where

a blocking pair is two agents who prefer each other to their assigned matches. If agents

are free to recontract ex post, it is not too hard to see how instabilities might render

the match moot, but even if agents must abide by the match, they can sidestep it by

anticipating blocking pairs and either formally contracting early or informally prearranging

a match.4 This has been shown both theoretically (Sönmez, 1999; Roth, 1991) and in the

lab (Kagel and Roth, 2000). If too many agents leave the match or prearrange, then the

clearinghouse will fail to achieve its purpose, and will likely be abandoned. Of course,

a stable matching mechanism does not necessarily prevent unraveling,5 but in many real

world markets, whether or not a stable mechanism is used seems to make the difference.

Most matching schemes we see in the field can be classified as either priority mechanisms

or deferred acceptance (DA) mechanisms.6 DA mechanisms are based on the Gale-Shapley

algorithm. One such mechanism, M -Proposing DA, is implemented in the following way,

denoting the members of the two sides of the market Ms and W s (Gale and Shapley, 1962):

M-Proposing DA

Step 1: All Ms make an offer to their first-choice W ; W s hold their favorite acceptable

offer, rejecting all others.

Step t: Rejected Ms make an offer to their favorite acceptable W that hasn’t rejected them

4Usually a pair can do this by agreeing to rank each other first to the clearinghouse. Most mechanisms
guarantee that two partners who rank each other first will be matched.

5Other causes of early contracting include: insuring over states of the world before payoff relevant infor-
mation is revealed (Roth and Xing, 1994; Li and Rosen, 1998; Li and Suen, 2000; Suen, 2000), the presence of
market power (Roth and Xing, 1994), similar preferences (Ha laburda, 2010), arrival of new agents (Du and
Livne, 2010), excess supply of workers combined with insufficient supply of high quality workers (Niederle
et al., 2009), cultural norms concerning exploding offers (Niederle and Roth, 2009), information transmission
through a social network (Fainmesser, 2013), and costs of participation (Damiano et al., 2005).

6Another important class of mechanisms, based on linear programming optimization, is not considered
here. See Ünver (2001) and Ünver (2005).
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yet; W s hold their favorite acceptable offer from this round and previous rounds,

rejecting all others.

STOP: The algorithm stops in the first round where no new offers are made. All held offers

become finalized matches.

Priority mechanisms instead use the preferences submitted by the participants to order

the set of all possible match pairs. They then try to implement those match pairs in that

order, skipping those that are not feasible due to previously implemented matches (Roth

and Sotomayor, 1990). For concreteness, consider the M -Proposing Priority mechanism

implemented by the following algorithm:7

M-Proposing Priority

Step 1: All Ms make an offer to their first-choice W ; W s are permanently matched to

their favorite acceptable M who made an offer, rejecting all other offers.

Step t: Rejected Ms make an offer to their favorite acceptable W that has not yet rejected

them; matched W s reject all offers; and unmatched W s are permanently matched to

their favorite acceptable M who made an offer.

STOP: The algorithm stops in the first round where no new offers are made.

A key difference between the M -Proposing DA and M -Proposing Priority algorithms is that

DA mechanisms yield matches that are stable with respect to the reported preferences, while

priority mechanisms generally do not. Since the literature looks for stable mechanisms, it

has tended to look to DA, a preference which seems to be empirically justified. Unlike

in the U.S., residency matches in the United Kingdom are organized at the regional level.

Policy variation across regions then provides a natural experiment that is exploited by Roth

7The priority ordering for this mechanism ranks potential match pairs in the order of Ms’ preferences,
with ties broken by W s’ preferences.
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(1991), which finds that regions that adopted DA mechanisms tended to keep using them,

while regions that adopted priority mechanisms tended to abandon them after a few years.8

Unfortunately, the simple fact that DA is stable relative to the true preferences cannot

explain why it outlasts priority mechanisms. Under DA, only participants on the proposing

side have incentive to truthfully report. The receiving side often fails to truthfully reveal

in Bayes-Nash equilibrium (Roth and Rothblum, 1999; Coles, 2009).9 Furthermore, equi-

librium predicts that, under incomplete information, neither DA nor priority mechanisms

should yield matches that are stable relative to true preferences. Why then does DA persist

where Priority fails? Several contributing causes have been considered, but there are still

some markets where these explanations are not fully satisfactory.

It could be that preferences are near perfectly correlated on one or both sides of the market.

This would push the market toward a unique stable match, thereby removing the incentive

to deviate from truth-telling under DA.10 Although it is intuitive to expect some correlation

in preferences, we might also expect a lack of correlation in preferences across matches that

are commonly perceived to be of similar quality.

Another possibility is that agents find being unmatched extremely distasteful. Potentially

profitable manipulations take a gamble at being unmatched in exchange for a higher prob-

ability of matching to a more preferred partner (Roth and Rothblum, 1999). If being

unmatched is bad enough, no agent will take this gamble. Even so, in many situations, it

is unclear how bad being unmatched is. For instance, in the NRMP match, where hospi-

tals are on the receiving side of the market, unmatched positions can still be filled in the

centrally organized aftermarket, known as the “Scramble”.

8An interesting nuance of the U.K. study is that, due to the nationalization of healthcare in that country,
doctors and hospitals had no choice but to go through the regional match clearinghouses. Unraveling seems
to have been enacted through informal prearrangement.

9Similar results holds for priority mechanisms (Ehlers, 2008).
10The simplest way to see this is in the one-to-one case, where it is a straightforward application of the

Blocking Lemma and the fact that no individually rational matching can make all the members of one side
of the market strictly better off than the unique stable match (Roth and Sotomayor 1990, Lemma 3.5 and
Theorem 2.27).
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A third option is that the number of stable matches gets small as the market gets large,

as established theoretically in Immorlica and Mahdian (2005) and significantly extended

in Kojima and Pathak (2009). Although these papers lay out an intuitive mechanism by

which core convergence might occur, they do so in the context of a very slowly converging

asymptotic (Kadam, 2011); for example, if agents are allowed to list five acceptable members

on the other side of the market, as is the case in our experiment, then the Kojima and

Pathak bound on the fraction of agents who could proviatably deviate from a truth-telling

equilibrium does not go below 1 until the market has in excess of 1034 agents.11 Because

of the extreme looseness of this upper bound at more reasonable market sizes, we must

instead rely on computational work to give us an idea of how “big” a market must be for

large market results to kick in.

Fortunately, Roth and Peranson (1999) provides just such a benchmark. They show that

there is little leeway for manipulation relative to submitted preferences in the NRMP match,

although, as they mention, this could be because the submitted preferences had already been

manipulated to an equilibrium. To evaluate this possibility, they then look at large simulated

markets, finding that markets the size of the NRMP have little room for manipulation,

while smaller ones do.12 Unfortunately, such computational work merely tells us that there

is likely a much better bound than the one derived in Kojima Pathak. How much better

remains an open question.

Hence, previous research leaves us reasonably confident that very large markets, such as

the NRMP (around 20,000 agents), have very small cores, but leaves us less certain about

smaller markets. And there are many such markets; in addition to the small regional

matches in the UK (about 150 agents) there are many smaller fellowship matches run by

the NRMP where DA also seems to halt unraveling, most of which have fewer than 100

11Specifically, the asymptotic states that the upper bound equals 16·q·k
log(q·n) , where q is the maximum capacity

of any hospital, k is the number of hospitals that each doctor is allowed to list, and n is the number of
hospitals. We set q = 1 and k = 5, and solve for the n that makes the bound equal to 1.

12See Figure 2 in Roth and Peranson (1999). Further, note that its simulations involve are for one-to-one
markets. The asymptotic mentioned in Footnote 11 implies that there is more leeway for manipulation in
many-to-one markets, as q and k must increase.
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fellowship programs represented, some with multiple positions for each program (Roth,

1991; NRMP, 2009).

A new cause for the empirical success of DA, which we pursue in this paper, is that

match participants on the receiving side of a DA mechanism might truth-tell in an out-of-

equilibrium manner, leading to truly stable matches. To confirm this intuition, we will look

at strategies used by experimental participants on the receiving side of DA and M -Proposing

Priority both in an environment where they should truth-tell and in an environment where

they should deviate from truth-telling. We find that truth-telling rates are similarly high in

both environments under DA, but that truth-telling rates are both economically and sta-

tistically different under Priority. The first result supports our story of out-of-equilibrium

truth-telling, while the second demonstrates that the truth-telling is unlikely to be a mere

artifact of the lab.

To understand what drives the differences in strategic play, we estimate a flexible Experience-

Weighted Attraction (EWA) learning model that decomposes initial beliefs about successful

strategies from willingness to explore new strategies, learning from past play, and learning

from counterfactual play. We find major differences between treatments only in players’

initial beliefs, suggesting that correcting these beliefs—for instance, by instructing players

on the benefits of strategic play, or setting defaults that increased strategic play—could

increase best response rates and improve individual players’ outcomes, but lead to market

unraveling.

We would like to emphasize that we think of the out-of-equilibrium truth-telling explanation

put forward by this paper as a complement of, rather than a replacement for, the other

explanations we have mentioned. The persistence of DA even in small markets implies that

there might be something else going on besides the core convergence explanations which have

previously been put forward, and we primarily seek to address this gap in understanding.

Before proceeding, we briefly mention how the current paper fits into the previous experi-
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mental matching literature. The first two-sided matching experiments date to the early 90’s

(Sondak and Bazerman, 1991; Harrison and McCabe, 1996). An experiment that explicitly

compares priority and DA mechanisms is described in Kagel and Roth (2000), although

their paper focuses more on unraveling behavior than on strategic preference revelation.

They do, however, provide a nice demonstration of the intuitive link between stability and

persistence. Ünver (2005) runs a similar experiment that also includes linear programming

mechanisms. Other different, but related experiments include Haruvy and Unver (2007)

and Echenique and Yariv (2010), which look at repeated decentralized markets, and Nal-

bantian and Schotter (1995), which looks at several mechanisms that involve matching with

money. Our experiment is perhaps most closely related to Echenique et al. (2010), which

also looks at strategies in a two-sided matching market. Their design allows agents to go

through the DA algorithm as an extensive form game, and their main finding is that agents

on the proposing side tend to skip over proposals sub-optimally. Our design treats the DA

algorithm as a normal form game, and we focus on the strategies of the receiving side of the

algorithm, finding some sub-optimal truth-telling. To our knowledge, we are the first paper

to focus on the strategies of the receiving side explicitly. Finally, we mention several other

experiments that focus on strategies used by the proposing side, mainly in the context of

school choice, such as Chen and Sönmez (2006); Pais and Pintér (2008); Calsamiglia et al.

(2009), and Featherstone and Niederle (2008).

2.2. Two markets

In our experiment, we will use M -Proposing DA and M -Proposing Priority in conjunc-

tion with two different market structures.13 Under one structure, theory predicts that the

receiving side will deviate from truth-telling in a particular way under both mechanisms,

while under the other structure, theory predicts truth-telling. Note that our experimental

design will constrain the Ms to truth-tell, focusing on the behavior of the W s. Because of

this design feature, our equilibrium characterizations concern how the W s respond to the

13See the Introduction for definitions of these mechanisms.
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truth-telling from the Ms and whether truth-telling can be sustained in equilibrium for the

Ms.

Throughout this section, we will only present results specific to our experimental markets,

but in the Appendix, we show that there are a broad class of symmetric environments in

which we expect similar results.14 Symmetric environments can be thought of as repre-

senting realistic situations where match participants have little information about others’

preferences. In such settings, the kinds of manipulations that we expect to see in the lab

(truncations) are, in the sense of Roth and Rothblum (1999) and Ehlers (2008), fundamen-

tal.15

2.2.1. The uncorrelated market

Consider a small matching market with 5 Ms and 5 W s. The true ordinal preferences of

each participant are drawn independently from the uniform distribution over rank-order

lists that rank ∅ (the outcome of being unmatched) last. Cardinal payoffs are a decreasing

function of ordinal rank only. We call this the uncorrelated market.

Before proceeding to characterize equilibrium, we must first introduce a few definitions.

A revelation strategy is a mapping from true preferences to reported preferences. Now,

due to the symmetry of the problem, any equilibrium in which some agent used a strategy

that depended only on a match partner’s label would seem unnatural. Therefore, think of

an agent’s true preferences as a six element vector with the outcome of being unmatched,

∅, as its last entry, and define an anonymous strategy to be a revelation strategy that

always reports the same permutation of the true preference vector.16 Further, define a

truncation strategy to be an anonymous strategy where the permutation simply switches

the sixth element and some other element of the true preference. We will also consider it

14The results in the Appendix are also of some independent interest because they extend the results of
Roth and Rothblum (1999) and Ehlers (2008) to show how truncation strategies are not just best-responses
to symmetric beliefs, but are also the strategies used in equilibria in which agents use anonymous strategies.

15Also see Day and Milgrom (2008) on how such strategies also appear in core selecting auctions.
16Note that there is some redundancy in this definition, as the ordering of agents ranked as unacceptable

does not matter in any of the mechanisms we consider.
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a truncation if the permutation is the identity, that is, truth-telling is also a truncation

strategy.

Under M -Proposing DA, the characterization of equilibrium is quite simple, extending the

main result of Roth and Rothblum (1999).17

Proposition 1. In the uncorrelated market, under M -Proposing DA, any equilibrium in

anonymous, weakly undominated strategies involves truth-telling for each m ∈M and trun-

cation for each w ∈W .

Under M -Proposing Priority, the best-response of the W s when the Ms are constrained to

truth-tell is similar, extending the main result from Ehlers (2008).

Proposition 2. In the uncorrelated market, under M-Proposing Priority, if all agents play

anonymous, weakly undominated strategies, and all m ∈ M truth-tell, then all w ∈ W

best-respond to the other agents by playing truncations.

In the uncorrelated market, then, the unifying principle is that, under both mechanisms,

we expect to see the members of W playing truncation strategies.18

2.2.2. The correlated market

Now, instead of drawing preferences independently for the members of M , draw only one

preference and give it to all members of M . Continue to draw a new preference for each

member of W . We call this the correlated market. A few propositions demonstrate that we

expect truth-telling for the members of W under both mechanisms.

Proposition 3. In the correlated market, under M -Proposing DA, the unique equilibrium

in anonymous, weakly undominated strategies entails truth-telling by all agents.

Proposition 4. In the correlated market, under M -Proposing Priority, if all members of

17Roth and Rothblum (1999) concerns best response to a certain class of beliefs; our theorem concerns
strategies used in a certain class of equilibria.

18We might be worried that an experiment that constrains the Ms to truth-tell doesn’t have much external
validity if such behavior cannot be supported in equilibrium. To this critique, we can provide two statements
which are proven in the Appendix. The first is that, at any symmetric equilibrium, the Ms must truth-tell.
The second is that the strategic problem of the W s is the same, regardless of what anonymous, weakly
undominated strategies the Ms play, since filtering a uniform distribution through a permutation yields a
uniform distribution.
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Table 7: Experimental treatments

Truncation Truth-telling
(uncorrelated market) (correlated market)

Priority 9 groups 8 groups
DA 9 groups 8 groups

M have the same anonymous, weakly undominated strategy, then all members of W best

respond by truthfully revealing.

Proposition 3 follows from realizing that if the members of M must truth-tell, then there

is a unique stable match relative to the reported preferences. With a unique stable match,

there is no reason to deviate from truth-telling.19 Proposition 4 follows from realizing that

if all members of M play the same revelation strategy, then they will all submit the same

reported preferences, which means that a member of W receives all offers in the same round

of the M -Proposing Priority algorithm.

To conclude, we might worry that it is unrealistic that all members of M should use the

same revelation strategy. The next proposition addresses this concern.

Proposition 5. In the correlated environment, there exist cardinal payoffs that rationalize

an equilibrium where all Ms and W s truthfully reveal their preferences.

Intuitively, we know this is so by thinking of a case where the payoff for getting a first-

ranked W is more than 5 times the payment for getting a second-ranked W , which in turn

is more than 4 times the payment for getting a third-ranked W , etc.

2.3. Experimental setup

Table 7 shows the four treatments which comprise the experiment’s 2×2 design. We switch

the profitability of truncation on and off by switching between the correlated and uncorre-

lated markets. If our hypothesis holds, we would see no significant difference across these

markets under M -Proposing DA. It could then be, however, that experimental participants

19See Footnote 10 for the sketch of the proof.
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always tell the truth in the lab. To control for this, we also observe participant behavior un-

der M -Proposing Priority, where the rationale for deviating from truth-telling seems more

straightforward. If we observe a difference in truth-telling across markets under Priority,

but not under DA, then we will have shown a real effect.

In the experiment, only W s will be played by human participants; the Ms will be played by

the computer and constrained to truthfully reveal their preferences. Obviously, in real life

two-sided matching markets, the proposing side’s report to the matching mechanism is not

automatic. Under Priority, proposers do not necessarily have dominant strategy incentives

to report their preferences truthfully (although as discussed in the theory section, this

behavior can occur in equilibrium), and under DA, truthful reporting is a dominant strategy,

but there is some experimental evidence that proposing side agents may not propose to all

agents in order in an extensive form matching market without frictions (Echenique et al.,

2010). We nevertheless use automated proposers playing fixed strategies so that we can focus

on the previously unexamined behavior of the receiving side under DA. Using automated Ms

reduces the complexity and noise in the decision the participants face. If, as we anticipate,

subjects have difficulty learning to successfully manipulate the mechanism in this simplified

environment, we are confident they will also have trouble in the more complicated real world

markets of interest.

In the lab, each participant plays the same market for 40 rounds. In every repetition,

each W privately learns their new preferences and submits a ranking of some, all or none

of the Ms. The computer then generates a match outcome according to the rules of the

appropriate mechanism to the treatment. W s then learn their match outcome, as well as the

outcomes of all other W s. They gain points based on where their match partner appeared

in their true preference list for that round, according to payoffs given in Table 8. When

designing these payoffs, our goal was to find a payoff scheme which provided behavioral

incentives that were as comparable as possible between treatments. In Figure 3, we show
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Table 8: Payoff table

Match 1stchoice 2nd 3rd 4th 5th No match
Payoff 32 points 16 8 4 2 0

Figure 3: Expected payoff versus number of Ms truncated (empirical)
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that we succeeded, relative to the actual behavior observed in the lab.20

Finally, we address the design choice to allow for repetition, even though most individuals

participate in a matching process in the field only once (or perhaps a handful of times in

some applications). In the lab, we can adequately mimic neither the stakes faced by partic-

ipants in real matching markets nor can we realistically allow experimental participants as

much time to consider their prospects as they would have in the field. Instead, by having

them participate in repeated trials, we allow for participants to learn about the environ-

ment and possibly alter their strategy as they progress. One could argue that this makes

20Note that a simple reinforcement learning model would predict that the slopes of the curves are much
more important than the levels.
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participants better able to understand the mechanism and behave strategically than in real

world markets; however, if this is the case, and, as we anticipate, subjects nonetheless have

difficulty successfully manipulating effectively, we can be confident that manipulation is

even more difficult in the field.

Briefly, we mention the symmetry of our experimental environments. Non-truncation strate-

gies are not profitable in our setup, but in the field, they might be. Even so, such strategies

require much information to implement. Also, though preferences in real-world markets

might not look much like those in our experiment, preferences are often tiered. One set

(tier) of match partners is clearly preferred to another set, which is preferred to yet an-

other set, but over each tier, preferences are idiosyncratic. In this context, the setup of

our experiment can be interpreted as an approximation of at least a sector of the matching

market.21

All treatments were run at Stanford University during the Spring of 2009. Each session

consisted of one or two groups of 5 participants. In sessions with two groups, groups were

not mixed during the session, and participants were not informed which other participants

were in their group. At the start of each session, participants were read detailed instruc-

tions22 and had to successfully work through the steps of the appropriate mechanism for

an example set of reported preferences. Actual play commenced only after all participants

completed the exercise and indicated they understood the mechanism rules. Nothing was

done to overtly suggest what the treatment variables were, i.e., there was no mention of

matching mechanisms or preference distributions other than the ones in use in that partic-

ular treatment.

During the experimental session, participants could see their preferences for a given round on

21Additionally, since interview constraints often prevent match participants from evaluating all potential
match partners, we might think that pre-match sorting would lead to market segmentation, to similar effect.
For more on modeling the interview process, see Lee and Schwarz (2007), Lee and Schwarz (2009), and Coles
et al. (2010).

22In the lab, we provide a specific context in the hopes of making understanding easier for participants.
Proposing side agents (referred to here as Ms) are referred to as “Schools” and the agents receiving offers
(here, W s) are referred to as “Students.”
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Table 9: Truth-telling rates (all periods)

DA Priority

Truth-Telling 66.0% ↔(0.372) 58.4%
l(0.200) l(0.002)∗∗

Truncation 56.6% ↔(0.001)∗∗ 25.3%

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level averages as the

units of observation.

their computer screen and were reminded of payments for all possible match outcomes. They

were then directed to click on radio buttons to rank each of the Ms.23 After all participants

submitted rankings, a results screen showing the participant’s match for that round, their

point accrual for that round and their total cumulative points would be displayed. At all

times, a participant had the ability to see, for all prior rounds, the match outcomes for all

participants, her own true preferences, and the rank list she submitted in that round.

2.4. Experimental Results

2.4.1. Overall Truth-telling Rates

We are most interested in the rate of truth-telling over all periods across the four primary

treatments. This value is significantly higher in the DA truncation treatment than in the

Priority truncation treatment; however, for the two truth-telling treatments, the differences

between the DA and Priority treatments are not statistically significant. Furthermore, the

rate difference between the two DA treatments is not statistically significant, while the

difference between the two Priority treatments is highly significant.

When we restrict attention to the last ten periods, focusing on the behavior of subjects

when they are more experienced, we find qualitatively similar effects. Statistically, there is

a mildly significant difference between the two DA treatments, as well as the high significance

between the Priority treatments and the truncation treatments seen in the data for all 40

23We did this so that participants would have to click the same number of times regardless of what
preference they wished to report. If declaring all Ms unacceptable were too easy, some participants might
choose to do this in order to save time and effort.
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Table 10: Truth-telling rates (last 10 periods)

DA Priority

Truth-Telling 70.2% ↔(0.340) 60.8%
l(0.046)∗∗ l(0.002)∗∗

Truncation 54.7% ↔(0.003)∗∗ 19.3%

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level averages as the

units of observation.

Table 11: Non-truncation rates

DA Priority

Truth-Telling 16.3% ↔(0.226) 11.1%
l(0.673) l(0.210)

Truncation 14.3% ↔(0.508) 17.9%

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level averages as the

units of observation.

periods.

Note that for DA, truth-telling rates are slightly lower in the last 10 periods (2% lower)

in the truncation treatment, but also 4% higher in the truth-telling treatment. Thus, the

significance of the difference in truth-telling rates between the two groups is in some sense

as much due to participants in the truth-telling treatment learning to tell the truth as it is

those in the truncation treatment learning to truncate. In sum, we only see a significant

deviation from the benchmark truth-telling rate under the Priority truncation treatment.

Under DA, participants do not respond to the truncation treatment by deviating from

truth-telling.

Of course, failure to tell the truth is not synonymous with truncation, and although trun-

cation weakly dominates other non-truth-telling strategies, we do observe some portion of

suspects employing “switching” or “dropping” strategies in some rounds. Frequency of this

behavior, however, is not significantly different between any of the treatments.
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Table 12: Number of Blocking Pairs per Period

DA Priority

Truth-Telling 0.47 ↔(0.574) 0.59
l(0.809) l(0.001)∗∗

Truncation 0.49 ↔(0.000)∗∗ 1.87

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level averages as the

units of observation.

2.4.2. Blocking Pairs and Overall Match Stability

For practical market design, we may be primarily concerned not with the rate at which

participants tell the truth, but rather with how successfully a mechanism generates desirable

(i.e., stable) match outcomes. One measure of this is the number of blocking pairs present

in any given assignment. Since the outcome is never 100% stable in any treatment at any

time, the number of blocking pairs is one measure of the degree of stability of a match

outcome: a mechanism which generates an outcome that is stable for most participants

may still work well enough to be persistent.

Blocking pairs were found to occur significantly more often in the Priority truncation treat-

ment than in the DA truncation treatment or the Priority truth-telling treatment. The two

DA treatments were not significantly different in blocking pair frequency; nor were the two

truth-telling treatments.

Note that the same M or W can be involved in multiple blocking pairs if there is more than

one attainable match partner that they prefer to their actual match partner. However, we

do not observe any interesting asymmetries in terms of which unique agents are involved

in multiple blocking pairs: the number of unique Ms involved in blocking pairs is not

significantly different than the number of unique W s for any treatment, and the between-

treatment differences are similar qualitatively and in terms of statistical significance when

the number of unique Ms and W s in blocking pairs are considered separately. The total

probability of an M or W being unmatched thus follows a similar pattern across treatments.
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Table 13: Percentage of Ms and W s Unmatched

DA Priority

Truth-Telling 2.7% ↔(0.065)∗ 4.9%
l(0.311) l(0.030)∗∗

Truncation 3.7% ↔(0.010)∗∗ 11.1%

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level averages as the

units of observation.

2.4.3. Best Response Frequencies

Truth-telling rates establish how apt participants are to manipulate, and low non-truth,

non-truncation rates24 establish that these manipulations are, for the most part, some sort

of truncation. However, participants who truncate are not automatically maximizing their

expected payoff: they may be truncating too much or too little. For the set of payoffs used

in the experiment, we can find an equilibrium where all agents truncate symmetrically;

however, as out-of-equilibrium strategies may be a best response to other out of equilibrium

strategies, we would not necessarily expect sophisticated participants to truncate as if in

equilibrium. We instead look at the ability of participants to find the strategy which is a

best response to the environment in which they find themselves. If a significant proportion

of subjects are able to achieve this in a significant portion of sessions for a certain mecha-

nism, we might reach different conclusions as to their sophistication than we would looking

strictly at truth-telling rates (or looking at the frequency of play consistent with theoretical

equilibrium, for that matter). Also, we might wonder if there is a great deal of heterogeneity

in participant sophistication, or if all participants reported optimal truncations about the

same fraction of the time.

However, simply comparing subjects’ behavior in an individual round to the optimal be-

havior possible in that period ex post fails to capture the uncertainty which is inherent in

truncation strategies—it can be optimal ex ante to truncate in each period, even though

24The characterization of this other behavior as “non-truthful, non-truncation” is redundant, as truth-
telling is one extreme of the set of truncation strategies for participants. We nevertheless use the terminology
to ensure clarity.

61



it may be suboptimal ex post. Thus, we consider the participant to be playing optimally

in their “environment” if they play the truncation strategy which generates the highest

expected utility across some set of rounds they played, given the actual behavior of other

participants and generated proposer preferences.

Figure 4a indicates the proportion of participants playing an overall best response at most

the indicated proportion of the time for the truncation treatments. For example, approx-

imately 36% of Priority participants never played a best response (compared with about

52% for DA), and 50% of participants played a best response no more than 20% of the time

(compared with around 75% for DA). Note that the Priority treatment first order stochas-

tically dominates the DA treatment: for any level of frequency of best response play we

consider, more participants best respond at least that frequently in the Priority treatment

than in the DA treatment. However, this gap closes when only the last 20 periods are con-

sidered, as seen in Figure 4b. Note that this closing of the gap simply implies that under

both mechanisms, participants have converged to similarly bad distributions of sub-optimal

play.

In the truth-telling treatments (Figures 4c and 4d), truthful reporting is always the unique

best response, and much as there was no significant difference in the overall truth-telling

rates between DA and Priority in these treatments, there is no noticeable difference in the

frequency with which individual subjects play this best response, either in the whole sample

or restricting attention to the last 20 periods.

2.5. Learning Model

We have shown that subjects learn to manipulate reported preferences advantageously un-

der the Priority mechanism but not under DA, despite theoretical predictions. A recent

body of literature has developed comparing predicted and actual play under different al-

location mechanisms (e.g., Li (2017); Rees-Jones (2017); Duflo (2017); Zhang and Levin

(2017)). However, there has been little research on the learning process itself, describing
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how players approach new mechanisms and learn strategic play over time. These insights

could improve the design of mechanisms suggest relationshps between properties of mecha-

nisms and characteristics of human players. In this section, we estimate a structural model

and describe the dynamics of learning in a repeated game. We lay out a reparametrized

version of the Experience-Weighted Attraction model in 2.5.1, and describe our approach

to estimation in 2.5.2. We provide estimation results in 2.5.3.

2.5.1. Parameters and Model Dynamics

To understand how subjects determine strategies under the different mechanisms and condi-

tions, we estimate a reparametrized Experience-Weighted Attraction (EWA) learning model

introduced by Camerer and Ho (1999). EWA is a flexible model incorporating elements of

belief-based and choice reinforcement models.25 We estimate a reparametrized EWA that

separately identifies initial cognition and interactive learning.

In the original EWA, the key objects in the model are attractions to strategies. Each agent

i begins the game with an initial attraction A to each strategy j, denoted Aji (0), derived

from pre-game analysis or prior experience. Let sji represent strategy j for agent i, and

s(t) represent the set of strategies played in period t. Additionally, define πi(s
j
i (t), s−i(t))

as the round t payoffs for player i, which depend on player i’s strategy (sji (t)) and all other

player’s strategies (s−i(t)).

After each round of play, each agent updates the previous round’s attractions using a

weighted combination of their prior attraction, and the payoff from playing the strategy,

according to the recursive formula:

Aji (t) = ϕ ·Aji (t− 1) +
[
δ + (1− δ) · 1{sji}(si(t))

]
· πi(sji , s−i(t)). (2.1)

The parameter ϕ represents a discount factor, and determines how quickly previous at-

25EWA nests belief-based models, where players form expectations about other players’ strategies and
choose a best response, and choice reinforcement models, in which past payoffs reinforce successful strategies.
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tractions decay; the parameter δ is an introspection factor, dictating how much the new

attractions depend on realized payoffs from the previous round relative to counterfactual

payoffs from unplayed strategies.

In this model, attractions map to probabilities of play in each round according to a power

form:

P ji (t+ 1) =

(
Aji (t)

)λ
∑
k=1

(
Aki (t)

)λ . (2.2)

In this equation, the “exploitation factor” λ determines how often a player chooses her

more attractive strategies, relative to the probability of exploring less attractive strategies.

This dictates the amount of randomness in a player’s sequence of strategies: when λ = 0,

the player plays all strategies with equal probability, and as λ increases, the probability of

playing the most attractive strategy increases.26

Thus, learning dynamics are determined by initial attractions, the weight of previous at-

tractions relative to updating from recent payoffs, and the relative weight of actual and

counterfactual payoffs. However, this parametrization fails to fully flesh out the distinction

between initial cognition and interactive learning, as well as how these two forces relate.

We define initial cognition to be the process of thinking through a game absent any chance

to learn by actually playing it. The culmination of initial cognition is the set of play

probabilities for each possible action j, for each individual or type i, in the first round of

play, {P ji (1)}i,j . Although these are encoded by the initial attractions, {Aji (0), }i,j , and the

exploitation factor, λ, the mapping from these parameters to the initial play probabilities

is not one-to-one, since the power-form probability function is invariant to multiplying all

initial attractions by a common factor.

It is instructive to consider what other information is codified in the initial attractions and

26Camerer and Ho (1999) refer to λ as the “exploration” factor. We have changed the name to match the
intuition behind the model: it is more likely that the player “exploits” its most attractive strategies (rather
than “exploring” new strategies) as λ increases.
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the exploitation factor. Towards that end, let ‖Ai(0)‖ denote the λ-norm of the vector of

initial attractions. That is,

‖Ai(0)‖ ≡

(
mi∑
k=1

(
Aki (0)

)λ)1/λ

.

This norm of the vector of initial attractions contains the extra information: we can now

encode our model in terms of initial probabilities of play and ‖Ai(0)‖. In this reparametriza-

tion, the initial attractions are no longer free parameters; instead, they are determined by

Aji (0) = ‖Ai(0)‖ ·
(
P ji (1)

)1/λ
.

The free parameters of this reparametrized learning model are now {P ji (1)}i,j , ‖Ai(0)‖, λ,

φ, and δ. To endow these parameters with simple interpretations, we must first discuss the

intuition behind the interactive learning component of the model.

Essentially, each attraction is the net present value of the stream of payoffs associated

with a strategy. The parameter ϕ represents the discount rate, while the parameter δ

represents how much counterfactual payoffs are weighted relative to realized payoffs. Agents

choose an action randomly according to the power-form probability function discussed above

and the exploitation factor λ. All of this is sensible, but we have yet to discuss where

these discounted sums should start in the first round of play. The initial play probabilities

constrain these initial attractions, but don’t completely pin them down.

This is the role of ‖Ai(0)‖. Intuitively, it is the natural way to sum up all of the payoff

streams that have been aggregated across the different actions.27 It tells us how initial

cognition will be weighted relative to interactive learning in terms of payoffs from the game.

27Mathematically, the λ-norm is the NPV required to yield the same probability weight while concentrating
the NPVs from all the actions into just one. As such, it is, in some sense, the norm that weights entries in a
way that corresponds to probability of play. For instance, note that as the exploitation factor λ grows large,
‖Ai(0)‖ approaches max

j
Aji (0), which makes sense as the maximum attraction is the only one that matters

as λ→∞.
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In other words, if the average payoff in a game is $1 per round, then (very roughly), ‖Ai(0)‖

tells us how initial cognition is weighted in terms of discounted rounds of interactive play.

2.5.2. Model Estimation

In order to estimate the parameters of the model through maximum likelihood estimation

(MLE), we first need to simplify the parameter space. Many previous papers estimating

the EWA model have done so in games with a small strategy space. With more strategies,

it becomes computationally challenging to estimate the initial attraction to each strategy.

In our setting, each player chooses between a computationally intractable 325 strategies in

each round.28

However, most (225 of 325) strategies are never played in any round of play, and only 20

strategies are played in the first round of any session. Moreoever, only 11 strategies are

played more than once in an initial round, suggesting that initial probabilities of play are

concentrated across a small number of strategies. Rather than estimate initial probabilities

for each strategy, we estimate initial probabilities for these 11 strategies, and a single initial

probability shared uniformly across all other strategies. This drastically reduces the param-

eter space, while maintaining flexibility to explain a wide range of observed behaviors.29

With this setup, we can now estimate 15 parameters for each treatment condition: 11 initial

probabilities P ji (1) describing the initial cognition process, three scalar parameters (φ, δ,

and λ) to describe the learning process, and ‖Ai(0)‖ identifying the relative weight of initial

cognition and learning.30

28The strategy space for each player during each round of play includes any permutation of preferences
over all 5 outcomes, and permutations of any set of truncated preferences (as long as at least one preference
is listed). The number of possible strategies in a round is 5! + 4×

(
5
1

)
+ 3!×

(
5
3

)
+ 2!×

(
5
2

)
+ 1!×

(
5
1

)
= 325.

29The 11 estimated strategies include all truncation strategies and six permutation strategies that are not
predicted by theory. For a list of all estimated probabilities, see Table 14.

30Note that we only need to estimate 11 probabilities, since the sum of initial probabilities must be one.
The probability of playing one of the non-estimated strategies is pinned down by the other estimates. For
more details on model estimation, see Appendix B.3.
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2.5.3. Structural Model Results

Differences in both initial cognition and learning dynamics help explain subjects’ failure

to manipulate reported preferences under DA. To summarize the results of the structural

estimation clearly in Table 14, we pool initial probabilities of play into three categories:

truth-telling, non-truthful truncation, and permutation strategies.

Initial probabilities of truth telling are similar across the DA Truth (55.4%), DA Truncation

(51.9%), and Priority Truth (50.8%) treatments, but much lower under Priority Truncation

(27.4%). This suggests that before play begins, players in the Priority Truncation believe

there are profitable deviations from truth-telling. The estimates for initial probabilities of

playing non-truthful truncation strategies bear out this finding: subjects under Priority

Truncation are much more likely to trunctate (46.7%) than under any other treatment.

Under all treatment treatments, permutation strategies are approximately equally likely

(between 15.7% and 19.4%) and are not driving differences in the truth-telling rate.

In addition, the weight of initial cognition ‖Ai(0)‖ is higher under DA treatments, indicating

that subjects rely more heavily on pre-game analysis when determining their strategies

under DA. This reliance on analysis compounds the errors that subjects make in determining

their initial probabilities of play in the DA Truncation treatment. Subjects under DA

Truncation play as if they had about 30% more pre-game experience than their counterparts

under Priority Truncation.

Three parameters in our model—φ, λ, and δ—determine the dynamics of the interactive

learning process. We find that λ is significantly lower under Priority than under DA,

suggesting that Priority players are more inclined to explore new strategies, while under

DA players prefer to exploit their most preferred strategy. This difference may explain why

gaps in truncation rates persist after many rounds of play.

Differences between some treatments of the parameters φ and δ are also statistically signifi-

cant, but the differences are economically less significant and unlikely to explain differences
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in truncation rates. The introspection factor δ describes how much players are able to learn

from unplayed strategies. We find that δ is precisely estimated to be between 0.0002 and

0.005 for all treatments, suggesting that more than 99.5% of learning from any round is

from realized payoffs rather than counterfactual learning.

Estimates for discount factor φ range between 0.850 for the Priority Truth treatment and

0.921 for the DA Truth treatment. The parameter φ dictates how the influence of previous

attractions persist over time. To interpret these values, we calculate the half-life of the

attraction—the number of periods required to halve the influence of the attraction. The half-

life of attractions is about 8.4 periods under DA Truth, 5.5 periods under DA Truncation,

4.3 periods under Priority Truth, and 6.0 under Priority Truncation.31 These figures provide

some insight into the learning process, but they do not explain the systematic differences

in learning to manipulate reported preferences.

2.6. Conclusion

Participants in matching markets might not truncate under DA, even when doing so would

be significantly profitable. We show this in a simple experimental environment where partic-

ipants were trained on the mechanism, given ample opportunity to learn through feedback,

and were not subject to any randomness that might come from non-straightforward play on

the proposing side. Even in this simple setting, players use very little counterfactual analy-

sis, and learning dynamics vary only in players’ initial assessment of the game. In the field,

where things are more complicated and information is more sparse, we have little reason to

think that match participants would be more likely to learn to truncate. These results also

suggest that the persistence of DA clearinghouses may rely on participant misoptimization,

and that interventions designed to improve understanding could lead to unravelling.

In addition to understanding the persistence of DA in the field, we also think an experiment

such as ours feeds into the broader concerns of market design. Whenever a matching

31The half-life is given by t 1
2

= − log(2)
log(φ)

.
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mechanism is strategy-proof, it is straightforward for designers to predict agent behavior in

the field, since both focality and optimality push towards truth-telling. Sometimes though,

strategy-proofness is either not desired or cannot be achieved due to other design goals.

Consider the job of a market designer who has been tasked with creating a two-sided

matching mechanism that persists. We can view the current paper as an experiment that

would help inform our theoretical designer. Persistence can be intuitively linked to ex post

stability, so DA is a natural candidate. Unfortunately, under DA, truth-telling is generally

not an equilibrium. Theory provides a set of strategies which could outperform truthful

preference revelation: the question is then whether our designer should expect market

participants to use these deviations from truth-telling, which is a clear candidate for a focal

strategy. If agents use these profitable deviations from truth-telling, then DA will not yield

an ex post stable outcome, but if they don’t, then it will. To determine which is the more

likely outcome, the present lab experiment becomes very informative.

In demonstrating that agents learn to play some deviations from truth-telling, but not

others, we bring up the idea that not all equilibria are equal in their predictive power. De-

pending on the mechanism and environment, agents are sometimes very close to equilibrium

play and sometimes not. Some intuitive factors that seem like they should be important for

whether a theoretical equilibrium will be realized in the field are focality of truth-telling,

obviousness that some deviation from truth-telling will be profitable, difficulty of finding

the optimal such deviation, and the profitability of that deviation. Unfortunately, although

these factors may guide us intuitively, there is no formal theory for how they might trade off

in determining the accuracy of an equilibrium prediction; in fact, most of them are difficult

even to define. This is where lab experiments can prove most useful for design. The current

paper, for instance, implies that truth-telling is more strongly focal for the receiving side

under DA than under Priority. It also shows that under both mechanisms, equilibrium pre-

dictions might not hold: under DA, participants truth-tell when they shouldn’t, while under

Priority, they deviate from truth-telling, but in a sub-optimal way. In short, although the

main contribution of this experiment is to show how out-of-equilibrium truth-telling could
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lead to ex post stability of DA in the field, we also feel that the experiment is the sort of

inquiry that should be used in practical market design.
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Appendices to Chapter 1

We provide three appendices. In Appendix A.1, we describe the design of our experiment

in detail, including recruitment materials (A.1.1), survey tool construction (A.1.2), and the

candidate matching process (A.1.3). In Appendix A.2, we present additional analyses and

results, including human capital results (A.2.1), regressions weighted by GPA (A.2.2), a

discussion of our discrimination results (A.2.4), and a discussion of preferences over the

quality distribution (A.2.3). In Appendix A.3, we discuss additional details related to

replicating our experiment at Pitt.

A.1. Experimental Design Appendix

A.1.1. Recruitment Materials

University of Pennsylvania Career Services sent recruitment materials to both recruiting

firms and graduating seniors to participate in the study. All materials marketed the study

as an additional tool to connect students with firms, rather than a replacement for any usual

recruiting efforts. The recruitment email for employers, shown in Figure 5, was sent to a list

of contacts maintained by Career Services and promised to use a “newly developed machine-

learning algorithm to identify candidates who would be a particularly good fit for your job

based on your evaluations.” In our replication at the University of Pittsburgh, a similar

email was sent from the Pitt Office of Career Development and Placement Assistance.

Penn Career Services recruited graduating seniors to participate as part of the candidate

matching pool through their regular newsletter called the “Friday Flash.” The relevant

excerpt from this email newsletter is shown in Figure 6.

We timed recruitment so that employers would receive their 10 resume matches around the

time they were on campus in order to facilitate meeting the job seekers. In addition, we

offered webinars for employers who were interested in learning about the survey screening

experience before they participated. Employers could anonymously join a call where they
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viewed a slideshow about the survey software and could submit questions via chat box.

Attendance at these webinars was low.

A.1.2. Survey Tool Design

In this appendix, we describe the process of generating hypothetical resumes. This appendix

should serve to provide additional details about the selection and randomization of resume

components, and as a guide to researchers wishing to implement our methodology. In

Section A.1.2, we describe the structure of the IRR survey tool and participant experience.

In Section A.1.2, we describe the structure of our hypothetical resumes. In Section A.1.2, we

detail the randomization of candidate gender and race through names. Section A.1.2 details

the randomization of educational background. Section A.1.2 describes the process we used

to collect and scrape real resume components to randomize work experience, leadership

experience, and skills.

Survey Tool Structure

We constructed the survey tool using Qualtrics software for respondents to access from

a web browser. Upon opening the survey link, respondents must enter an email address

on the instructions page (see Figure 7) to continue. Respondents then select the type of

candidates they will evaluate for their open position, either “Business (Wharton), Social

Sciences, and Humanities” or “Science, Engineering, Computer Science, and Math.” In

addition, they may enter the position title they are looking to fill. The position title is not

used in determining the content of the hypothetical candidate resumes. The major selection

page is shown in Figure 8. After this selection, the randomization software populates 40

resumes for the respondent to evaluate, drawing on different content by major type. The

subject then evaluates 40 hypothetical resumes. After every 10 resumes, a break page

encourages subjects to continue.
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Figure 5: Employer Recruitment Email

Email sent to firms recruiting at Penn originating from the Senior Associate Director of Career Services at
the University of Pennsylvania. Subjects who followed the link in the email were taken to the instructions
(Figure 7).
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Figure 6: Email Announcement to Graduating Seniors

Excerpt from email newsletter sent to the Career Services office mailing list. The email originated from
the Senior Associate Director of Career Services at the University of Pennsylvania. Students following the
link were taken to a survey page where they were asked to upload their resumes and to answer a brief
questionnaire about their job search (page not shown).
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Figure 7: Survey Tool Instructions & Contact Information

Screenshot of the instructions at the start of the survey tool. This page provided information to subjects
and served as instructions. Subjects entered an email address at the bottom of the screen to proceed with
the study; the resumes of the 10 real job seekers used as an incentive to participate are sent to this email
address.
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Figure 8: Major Type Selection

Screenshot of major selection page, as shown to subjects recruiting at the University of Pennsylvania.
Subjects must select either Business (Wharton), Social Sciences, and Humanities, or Science, Engineering,
Computer Science, and Math. Subjects may also enter the name of the position they wish to fill in the free
text box; the information in this box was not used for analysis. Here, we have selected Business (Wharton),
Social Sciences, and Humanities and entered “Analyst” as a demonstration only—by default all radio boxes
and text boxes were empty for all subjects.
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Resume Structure

We designed our resumes to combine realism with the requirements of experimental iden-

tification. We designed 10 resume templates to use as the basis for the 40 resumes in the

tool. Each template presented the same information, in the same order, but with vari-

ations in page layout and font. Figures 9 and 10 show sample resume templates. All

resumes contained five sections, in the following order: Personal Information (including

name and blurred contact information); Education (GPA, major, school within university);

Work Experience; Leadership Experience; and Skills.1 While the real student resumes we

encountered varied in content, most contained some subset of these sections. Since our

main objective with resume variation was to improve realism for each subject rather than

to test the effectiveness of different resume formats, we did not vary the order of the resume

formats across subjects. In other words, the first resume always had the same font and page

layout for each subject, although the content of the resume differed each time. Given that

formats are in a fixed order in the 40 hypothetical resumes, the order fixed effects included

in most specifications control for any effect of resume format. Resumes templates were built

in HTML/CSS for display in a web browser, and populated dynamically in Qualtrics using

JavaScript. Randomization occurred for all 40 resumes simultaneously, without replace-

ment, each time a subject completed the instructions and selected their major category

of interest. Each resume layout was flexible enough to accommodate different numbers of

bullet points for each experience, and different numbers of work experiences. If only one job

was listed on the resume, for instance, the work experience section of the resume appeared

shorter rather than introducing empty space.

1These sections were not always labelled as such on candidate resumes. Personal Information was gener-
ally not identified, though each resume contained a name and blurred text in place of contact information.
Skills were also marked as “Skills & Interests” and “Skill Summary”.
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Figure 9: Sample Resume

A sample resume rating page from the Incentivized Resume Rating tool. Each resume is dynamically
generated when the subject begins the study. Each resume has five sections: Personal Information (including
first and last name, and blurred text to represent contact information); Education Information (university,
school within university, degree, major, GPA, and expected graduation date); Work Experience (one or
two experiences with employer name, location, job title, date, and descriptive bullet points); Leadership
Experience (two experiences with organization, location, position title, date, and descriptive bullet points);
and Skills. Resume randomization described in detail in Section 1.2 and Appendix A.1.2. At the bottom of
each resume, subjects must respond to two questions before proceeding: “How interested would you be in
hiring [Name]?” and “How likely do you think [Name] would be to accept a job with your organization?”
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Names

A hypothetical candidate name appears as the first element on each resume. Names were

generated to be highly indicative of race and gender, following the approach of Fryer and

Levitt (2004). As described in Section 1.2.3, first names were selected from a dataset of all

births in the state of Massachusetts between 1989-1996 and in New York City between 1990-

1996. These years reflect the approximate birth years of the job seekers in our study. We

identified 100 first names with the most indicative race and gender for each of the following

race-gender combinations: Asian Female, Asian Male, Black Female, Black Male, Hispanic

Female, Hispanic Male, White Female, and White Male. We then eliminated names that

were gender-ambiguous in the broad sample even if they might be unambiguous within

an ethnic group. We also eliminated names strongly indicative of religion. We followed

a similar process for last names, using name and ethnicity data from the 2000 Census.

Finally, we paired first and last names together by race and selected 50 names for each

race-gender combination for randomization. Names of hypothetical female candidates are

shown in Table 15; names of hypothetical male candidates are shown in Table 16.

At the point of randomization, names were drawn without replacement according to a dis-

tribution of race and gender intended to reflect the US population (50% female, 50% male;

65.7% White, 16.8% Hispanic, 12.6% Black, 4.9% Asian). Gender and race were randomized

independently. In other words, we selected either Table 15 or Table 16 with equal prob-

ability, then selected a column to draw from according to the race probabilities. Finally,

names were selected uniformly and without replacement from the appropriate column of

the table. We use the variation induced by these names for the analysis variables Female,

White; Male, Non-White; Female, Non-White; and Not a White Male.
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Figure 10: Four Sample Resumes

Four sample resumes generated by the survey tool. Note that the resumes each have a different format,
differentiated by elements such as font, boldface type, horizontal rules, location of information, and spacing.
All resumes have the same five sections: Personal Information, Education, Work Experience, Leadership
Experience, and Skills. Resumes differ in length based on the dynamically selected content, such as the
randomized number of work experiences and the (non-randomized) number of description bullet points
associated with an experience.
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Table 15: Female Names Populating Resume Tool

Asian Female Black Female Hispanic Female White Female

Tina Zheng Jamila Washington Ivette Barajas Allyson Wood
Annie Xiong Asia Jefferson Nathalie Orozco Rachael Sullivan
Julie Xu Essence Banks Mayra Zavala Katharine Myers
Michelle Zhao Monique Jackson Luisa Velazquez Colleen Peterson
Linda Zhang Tianna Joseph Jessenia Meza Meghan Miller
Anita Zhu Janay Mack Darlene Juarez Meaghan Murphy
Alice Jiang Nia Williams Thalia Ibarra Lindsey Fisher
Esther Zhou Latoya Robinson Perla Cervantes Paige Cox
Winnie Thao Jalisa Coleman Lissette Huerta Katelyn Cook
Susan Huang Imani Harris Daisy Espinoza Jillian Long
Sharon Yang Malika Sims Cristal Vazquez Molly Baker
Gloria Hwang Keisha James Paola Cisneros Heather Nelson
Diane Ngo Shanell Thomas Leticia Gonzalez Alison Hughes
Carmen Huynh Janae Dixon Jesenia Hernandez Bridget Kelly
Angela Truong Latisha Daniels Alejandra Contreras Hayley Russell
Janet Kwon Zakiya Franklin Iliana Ramirez Carly Roberts
Janice Luong Kiana Jones Julissa Esparza Bethany Phillips
Irene Cheung Ayana Grant Giselle Alvarado Kerry Bennett
Amy Choi Ayanna Holmes Gloria Macias Kara Morgan
Shirley Yu Shaquana Frazier Selena Zuniga Kaitlyn Ward
Kristine Nguyen Shaniqua Green Maribel Ayala Audrey Rogers
Cindy Wu Tamika Jenkins Liliana Mejia Jacquelyn Martin
Joyce Vu Akilah Fields Arlene Rojas Marissa Anderson
Vivian Hsu Shantel Simmons Cristina Ochoa Haley Clark
Jane Liang Shanique Carter Yaritza Carillo Lindsay Campbell
Maggie Tsai Tiara Woods Guadalupe Rios Cara Adams
Diana Pham Tierra Bryant Angie Jimenez Jenna Morris
Wendy Li Raven Brown Esmeralda Maldonado Caitlin Price
Sally Hoang Octavia Byrd Marisol Cardenas Kathryn Hall
Kathy Duong Tyra Walker Denisse Chavez Emma Bailey
Lily Vang Diamond Lewis Gabriela Mendez Erin Collins
Helen Trinh Nyasia Johnson Jeanette Rosales Marisa Reed
Sandy Oh Aliyah Douglas Rosa Castaneda Madeleine Smith
Christine Tran Aaliyah Alexander Beatriz Rodriguez Mackenzie King
Judy Luu Princess Henderson Yessenia Acevedo Sophie Thompson
Grace Cho Shanae Richardson Carolina Guzman Madison Stewart
Nancy Liu Kenya Brooks Carmen Aguilar Margaret Parker
Lisa Cheng Charisma Scott Yesenia Vasquez Kristin Gray
Connie Yi Shante Hunter Ana Munoz Michaela Evans
Tiffany Phan Jada Hawkins Xiomara Ortiz Jaclyn Cooper
Karen Lu Shanice Reid Lizbeth Rivas Hannah Allen
Tracy Chen Chanelle Sanders Genesis Sosa Zoe Wilson
Betty Dinh Shanequa Bell Stephany Salinas Caitlyn Young
Anna Hu Shaniece Mitchell Lorena Gutierrez Charlotte Moore
Elaine Le Ebony Ford Emely Sandoval Kaitlin Wright
Sophia Ly Tanisha Watkins Iris Villarreal Holly White
Jenny Vo Shanelle Butler Maritza Garza Kate Taylor
Monica Lin Precious Davis Marilyn Arroyo Krista Hill
Joanne Yoon Asha Willis Lourdes Soto Meredith Howard
Priya Patel Ashanti Edwards Gladys Herrera Claire Turner

Names of hypothetical female candidates. 50 names were selected to be highly indicative of each combination
of race and gender. A name drawn from these lists was displayed at the top of each hypothetical resume, and
in the questions used to evaluate the resumes. First and last names were linked every time they appeared.
For details on the construction and randomization of names, see Section 1.2.3 and Appendix A.1.2.
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Table 16: Male Names Populating Resume Tool

Asian Male Black Male Hispanic Male White Male

Richard Thao Rashawn Washington Andres Barajas Kyle Wood
Samuel Truong Devonte Jefferson Julio Orozco Derek Sullivan
Daniel Cheung Marquis Banks Marcos Zavala Connor Myers
Alan Tsai Tyree Jackson Mike Velazquez Douglas Peterson
Paul Li Lamont Joseph Jose Meza Spencer Miller
Steven Zhang Jaleel Mack Alfredo Juarez Jackson Murphy
Matthew Zheng Javon Williams Fernando Ibarra Bradley Fisher
Alex Vu Darryl Robinson Gustavo Cervantes Drew Cox
Joshua Vo Kareem Coleman Adonis Huerta Lucas Cook
Brandon Lu Kwame Harris Juan Espinoza Evan Long
Henry Dinh Deshawn Sims Jorge Vazquez Adam Baker
Philip Hsu Terrell James Abel Cisneros Harrison Nelson
Eric Liang Akeem Thomas Cesar Gonzalez Brendan Hughes
David Yoon Daquan Dixon Alberto Hernandez Cody Kelly
Jonathan Yu Tarik Daniels Elvin Contreras Zachary Russell
Andrew Trinh Jaquan Franklin Ruben Ramirez Mitchell Roberts
Stephen Yi Tyrell Jones Reynaldo Esparza Tyler Phillips
Ryan Nguyen Isiah Grant Wilfredo Alvarado Matthew Bennett
Aaron Jiang Omari Holmes Francisco Macias Thomas Morgan
Kenneth Zhao Rashad Frazier Emilio Zuniga Sean Ward
Johnny Hwang Jermaine Green Javier Ayala Nicholas Rogers
Tony Choi Donte Jenkins Guillermo Mejia Brett Martin
Benjamin Luong Donnell Fields Elvis Rojas Cory Anderson
Raymond Tran Davon Simmons Miguel Ochoa Colin Clark
Michael Duong Darnell Carter Sergio Carillo Jack Campbell
Andy Hoang Hakeem Woods Alejandro Rios Ross Adams
Alexander Pham Sheldon Bryant Ernesto Jimenez Liam Morris
Robert Yang Antoine Brown Oscar Maldonado Max Price
Danny Xu Marquise Byrd Felix Cardenas Ethan Hall
Anthony Huynh Tyrone Walker Manuel Chavez Eli Bailey
Jason Liu Dashawn Lewis Orlando Mendez Patrick Collins
John Chen Shamel Johnson Luis Rosales Luke Reed
Brian Vang Reginald Douglas Eduardo Castaneda Alec Smith
Joseph Zhou Shaquille Alexander Carlos Rodriguez Seth King
James Cho Jamel Henderson Cristian Acevedo Austin Thompson
Nicholas Lin Akil Richardson Pedro Guzman Nathan Stewart
Jeffrey Huang Tyquan Brooks Freddy Aguilar Jacob Parker
Christopher Wu Jamal Scott Esteban Vasquez Craig Gray
Timothy Ly Jabari Hunter Leonardo Munoz Garrett Evans
William Oh Tyshawn Hawkins Arturo Ortiz Ian Cooper
Patrick Ngo Demetrius Reid Jesus Rivas Benjamin Allen
Thomas Cheng Denzel Sanders Ramon Sosa Conor Wilson
Vincent Le Tyreek Bell Enrique Salinas Jared Young
Kevin Hu Darius Mitchell Hector Gutierrez Theodore Moore
Jimmy Xiong Prince Ford Armando Sandoval Shane Wright
Justin Zhu Lamar Watkins Roberto Villarreal Scott White
Calvin Luu Raheem Butler Edgar Garza Noah Taylor
Edward Kwon Jamar Davis Pablo Arroyo Ryan Hill
Peter Phan Tariq Willis Raul Soto Jake Howard
Victor Patel Shaquan Edwards Diego Herrera Maxwell Turner

Names of hypothetical male candidates. 50 names were selected to be highly indicative of each combination
of race and gender. A name drawn from these lists was displayed at the top of each hypothetical resume, and
in the questions used to evaluate the resumes. First and last names were linked every time they appeared.
For details on the construction and randomization of names, see Section 1.2.3 and Appendix A.1.2.
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Education

We randomized two components in the Education section of each resume: grade point

average (GPA) and major. We also provided an expected graduation date (fixed to May

2017 for all students), the name of the university (University of Pennsylvania), the degree

(BA or BS) and the name of the degree-granting school within Penn to maintain realism.

GPA We selected GPA from a Unif [2.90, 4.00] distribution, rounding to the nearest

hundredth. We chose to include GPA on all resumes, although some students omit GPA

on real resumes. We decided to avoid the complexity of forcing subjects to make inferences

about missing GPAs. The range was selected to approximate the range of GPAs observed

on real resumes. We chose a uniform distribution (rather than, say, a Gaussian) to increase

our power to identify preferences throughout the distribution. We did not specify GPA in

major on any resumes. We use this variation to define the variable GPA.

Major Majors for the hypothetical resumes were selected according to a predefined prob-

ability distribution intended to balance the realism of the rating experience and our ability

to detect and control for the effect of majors. Table 17 shows each major along with its

school affiliation and classification as Humanities & Social Sciences or STEM, as well as the

probability assigned to each. We use this variation as the variable Major and control for it

with fixed effects in most regressions.

Components from Real Resumes

For work experiences, leadership experiences, and skills, we drew on components of resumes

of real Penn students. This design choice improved the realism of the study by matching the

tone and content of real Penn job seekers. Moreover, it improved the validity of our results

by ensuring that our distribution of resume characteristics is close to the true distribution.

This also helps us identify the range of interest for the study, since resumes of unrealistically
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Table 17: Majors in Generated Penn Resumes

Type School Major Probability

Humanities &
Social Sciences

The Wharton School BS in Economics 0.4

College of Arts and Sciences

BA in Economics 0.2
BA in Political Science 0.075
BA in Psychology 0.075
BA in Communication 0.05
BA in English 0.05
BA in History 0.05
BA in History of Art 0.025
BA in Philosophy 0.025
BA in International Relations 0.025
BA in Sociology 0.025

STEM

School of Engineering and
Applied Science

BS in Computer Engineering 0.15
BS in Biomedical Science 0.075
BS in Mechanical Engineering and Applied Mechanics 0.075
BS in Bioengineering 0.05
BS in Chemical and Biomolecular Engineering 0.05
BS in Cognitive Science 0.05
BS in Computational Biology 0.05
BS in Computer Science 0.05
BS in Electrical Engineering 0.05
BS in Materials Science and Engineering 0.05
BS in Networked and Social Systems Engineering 0.025
BS in Systems Science and Engineering 0.025

College of Arts and Sciences

BA in Biochemistry 0.05
BA in Biology 0.05
BA in Chemistry 0.05
BA in Cognitive Science 0.05
BA in Mathematics 0.05
BA in Physics 0.05

Majors, degrees, schools within Penn, and their selection probability by major type. Majors (and their
associated degrees and schools) were drawn with replacement and randomized to resumes after subjects
selected to view either Humanities & Social Sciences resumes or STEM resumes.
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low (or high) quality are unlikely to produce useful variation for identification.

Source resumes came from campus databases (for example, student club resume books) and

from seniors who submitted their resumes in order to participate in the matching process.

When submitting resumes, students were informed that components of their resumes could

be shown directly to employers. We scraped these resumes using a commercial resume

parser (the Sovren Parser). From the scraped data we compiled one list with collections of

skills, and a second list of experiences comprising an organization or employer, a position

title, a location, and a job description (generally in the form of resume bullet points).

Resume components were selected to be interchangeable across resumes. To that end, we

cleaned each work experience, leadership experience, and skills list in the following ways:

• Removed any information that might indicate gender, race, or religion (e.g., “Penn

Women’s Varsity Fencing Team” was changed to “Penn Varsity Fencing Team” and

“Penn Muslim Students Association” was not used)

• Screened out components indicative of a specific major (e.g., “Exploratory Biochem-

istry Intern” was not used)

• Corrected grammatical errors

Work Experience We designed our resumes to vary both the quality and quantity of

work experience. All resumes had a work experience during the summer before the candi-

date’s senior year (June–August 2017). This work experience was either a regular internship

(20/40) or a top internship (20/40). In addition, some resumes also had a second work ex-

perience (26/40), which varied in quality between a work-for-money job (13/40) or a regular

internship (13/40). The job title, employer, description, and location shown on the hypo-

thetical resumes were the same as in the source resume, with the minimal cleaning described

above.
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Before selecting the work experiences, we defined a Top Internship to be a substantive po-

sition at a prestigious employer. We chose this definition to both identify prestigious firms

and distinguish between different types of jobs at those firms, such as a barista at a local

Starbucks and a marketing intern at Starbucks headquarters. We identified a prestigious

employer to be one of the 50 firms hiring the most Penn graduates in 2014 (as compiled by

our Career Services partners). Since experiences at these firms were much more common

among Humanities & Social Sciences majors, we supplemented this list with 39 additional

firms hiring most often from Penn’s School of Engineering and Applied Science. We ex-

tracted experiences at these firms from our full list of scraped experiences, and selected

a total of 40 Top Internship experiences, with 20 coming from resumes of Humanities &

Social Sciences majors and 20 from resumes of STEM majors. All of these Top Internship

experiences had to be believably interchangeable within a major category. These internships

included positions at Bain Capital, Goldman Sachs, Morgan Stanley, Northrop Grumman,

Boeing Company, and Google (see Table 18 for a complete list). This variation identified

the variable Top Internship in our analysis, which is measured relative to having a regular

internship (since all resumes had some job in this position).

We selected 33 regular internships separately for the two major groups: 20 regular in-

ternships for randomization in the first work experience position, and 13 for the second

position. Regular internships had few restrictions, but could not include employment at the

firms who provided top internships, and could not include work-for-money job titles (de-

scribed below and shown in Table 19). All jobs had to be believably interchangeable within

major category. The regular internships in the second job position defined the variable

Second Internship, and is measured relative to having no job in the second work experience

position. Our dynamically generated resumes automatically adjusted in length when no

second job was selected, in order to avoid a large gap on the page.

The remaining 13 jobs in the second work position (the summer after the sophomore year)

were identified as Work for Money. We identified these positions in the real resume com-
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Table 18: Top Internship Employers

Humanities &
Social Sciences STEM

Accenture plc Accenture
Bain Capital Credit Air Products and Chemicals, Inc
Bank of America Merrill Lynch Bain & Company
Comcast Corporation Boeing Company
Deloitte Corporate Finance Credit Suisse Securities (USA) LLC
Ernst & Young U.S. LLP Deloitte
Goldman Sachs Epic Systems
IBM Ernst & Young
McKinsey & Company Federal Reserve Bank of New York
Morgan Stanley Google
PricewaterhouseCoopers J.P. Morgan
UBS Financial Services Inc. McKinsey & Company

Microsoft
Morgan Stanley Wealth Management
Northrop Grumman Aerospace Systems
Palantir Technologies
Pfizer Inc
PricewaterhouseCoopers, LLP

Employers of top internships in Humanities & Social Sciences and STEM. A total of 20 Top Internship
positions were used for each major type; some employers were used multiple times, when they appeared on
multiple source resumes. Each firm name was used as provided on the source resume, and may not reflect
the firm’s official name. The names of some repeat Top Internship employers were provided differently on
different source resumes (e.g., “Ernst & Young U.S. LLP” and “Ernst & Young”); in this case, we retained
the name from the source resume associated with the internship.
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ponents by compiling a list of job titles and phrases that we thought would be indicative

of typical in this category, such as Cashier, Barista, and Waiter or Waitress (see Table

19 Columns 2–4 for the full list). We extracted components in our full list of scraped

experiences that matched these search terms, and selected 13 that could be plausibly in-

terchangeable across any major. During randomization, these 13 jobs were used for both

Humanities & Social Sciences and STEM majors. The first column of Table 19 shows the

job titles that appeared as Work for Money jobs in our hypothetical resumes. Columns 2–4

provide the list of job titles used for identifying work-for-money jobs in the scraped data,

and for matching candidates to employer preferences.

Leadership Experience We defined leadership experiences to be those resume compo-

nents that indicated membership or participation in a group, club, volunteer organization,

fraternity/sorority, or student government. We selected leadership experiences from our

full list of scraped experience components, requiring that the positions be clearly non-

employment, include a position title, organization, and description, be plausibly inter-

changeable across gender, race, and major type. While many real resumes simply identified

a position title and organization, we required that the components for our hypothetical

resumes include a description of the activity for use as bullet points. We curated a list of 80

leadership experiences to use for both Humanities & Social Sciences and STEM resumes.

Each resume included two randomly selected leadership experiences. We used the same

leadership positions for both major types under the assumption that most extracurricular

activities at Penn could plausibly include students from all majors; however, this required

us to exclude the few leadership experiences that were too revealing of field of study (e.g.,

“American Institute of Chemical Engineers”).

Every leadership position was assigned to the location of Penn’s campus, Philadelphia, PA.

This was done for consistency and believability, even if some of the leadership positions
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Table 19: Work for Money Job Titles & Identifying Phrases

Used for Resume Tool Used for Identifying Components & Matching

Assistant Shift Manager Assistant coach Courier Phone Bank
Barista Attendant Custodian Prep Cook
Cashier Babysitter Customer Service Receptionist
Front Desk Staff Backroom Employee Dishwasher Retail Associate
Host & Cashier Bag Boy Doorman Rug Flipper
Sales Associate Bagger Driver Sales Associate
Salesperson, Cashier Bank Teller Employee Sales Representative
Server Barback Front Desk Salesman

Barista Fundraiser Salesperson
Bartender Gardener Saleswoman
Bellhop Host Server
Bodyguard Hostess Shift Manager
Bookseller House Painter Stock boy
Bouncer Instructor Stockroom
Bus boy Janitor Store Employee
Busser Laborer Temp
Caddie Landscaper Tour Guide
Caddy Librarian Trainer
Call center Lifeguard Tutor
Canvasser Line Cook Valet
Cashier Maid Vendor
Caterer Messenger Waiter
Cleaner Mover Waitress
Clerk Nanny Work Study
Counselor Petsitter Worker

Position titles and relevant phrases used to identify work for money in hypothetical resumes for evaluation
and in candidate pool resumes. The first column contains the eight unique positions randomized into
hypothetical resumes; position titles Cashier, Barista, Sales Associate, and Server were used more than once
and associated with different firms. Columns 2–4 specify the work-for-money positions used to predict hiring
interest of potential candidates from the pool of prospective matches. Any position title containing one of
these phrases was identified as work for money for the purposes of matching.
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were held in other locations in the source resume. We randomly selected two ranges of

years during a student’s career to assign to the experiences, and we ordered the experiences

chronologically on the hypothetical resume based on the end year of the experience.

Skills We selected 40 skill sets from STEM resumes and 40 from Humanities & Social

Sciences resumes for randomization in the survey tool. We intended for these skill sets to

accurately reflect the types of skills common in the resumes we collected, and to be plausibly

interchangeable within a major type. For randomization, skill sets were drawn from within

a major type. To induce variation for the variable Technical Skills, we randomly upgraded

a skill set with probability 25% by adding two skills from the set of programming languages

{Ruby, Python, PHP, Perl} and two skills from the set of statistical programming packages

{SAS, R, Stata, Matlab} in random order. To execute this randomization, we removed any

other references to these eight languages from the skill sets. Many display their skills in list

format, with the word “and” coming before the final skill; we removed the “and” to make

the addition of Technical Skills more natural.

A.1.3. Matching Appendix

Students

For job-seeking study participants, the career services office sent an email to seniors offering

“an opportunity to reach more employers” by participating in our pilot study, to be run

in parallel with all existing recruiting activities. The full student recruitment email is

reproduced in Appendix 6. After uploading a resume and answering basic questions on their

industry and locations of interest, students were entered into the applicant pool, and we

did not contact them again. If matched with an employer, we emailed the student’s resume

to the employer and encouraged the employer to contact the student directly. Students

received no other incentive for participating.
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Matches with Job Seekers

To match job seeking students with the recruiters in our study, we parsed the student

resumes and coded their content into variables describing the candidate’s education, work

experience, and leadership experience, using a combination of parsing software and manual

transcription. We did not include any measure of ethnicity or gender in providing matches,

nor did we take into account any employer’s revealed ethnic or gender preferences. The full

list of variables used for matching is shown in Table 20.

We ran individual ridge regressions for each completed firm-position survey, merging the

responses of multiple recruiters in a company if recruiting for the same position. We ran

separate regressions using the hiring interest rating (the response to the question “How

interested would you be in hiring [Name]?”) and the likelihood of acceptance (the response

to the question “How likely do you think [Name] would be to accept a job with your

organization?”) as outcome variables. We used cross-validation to select the punishment

parameter of the ridge regression by running pooled regressions with a randomly selected

hold-out sample, and identifying the punishment parameter that minimized prediction error

in the hold-out sample. Repeating this process with 100 randomly selected hold-out samples

separately for Humanities & Social Sciences and STEM employers, we use the average of

the best-performing punishment parameters as the punishment parameter for the individual

regressions. Based on the individual regression results, we then generated out-of-sample

predictions of hiring interest and likelihood of acceptance for the resumes in our match pool

that met minimal matching requirements for industry and geographic location. Finally,

we generated a “callback index” as a weighted average of the predicted hiring interest and

likelihood of acceptance (callback = 2
3hiring interest + 1

3 likelihood of acceptance). The 10

resumes with the highest callback indices for each employer were their matches.

We emailed each employer a zipped file of these matches (i.e., 10 resumes in PDF format).

If multiple recruiters from one firm completed the tool for one hiring position, we combined
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Table 20: Candidate Matching Variables

Variable Definition

GPA
Overall GPA, if available. If missing, assign

lowest GPA observed in the match pool

Engineering
Indicator for Computer Sciences, Engineering, or

Math majors (for STEM candidates)

Humanities
Indicator for Humanities majors (for Humanities &

Social Sciences Candidates)

Job Count Linear variable for 1, 2, or 3+ work experiences.

Top Firm
Resume has a work experience at one of the firms

hiring the most Penn graduates

Major City
Resume has a work experience in New York, San

Francisco, Chicago, or Boston

Work for Money Resume has a job title including identifying phrase
from Table 19

S&P500 or Fortune 500 Resume has an experience at an S&P 500
or Fortune 500 firm

Leader
Resume has a leadership position as Captain,

President, Chair, Chairman, or Chairperson

Variables used to identify individual preferences and recommend matched candidates. Variables were iden-
tified in hypothetical resumes and in the candidate resume pool. Subjects were provided with 10 real job
seekers from Penn whose qualifications matched their preferences based on predictions from a ridge regression
with these features.

95



their preferences and provided a single set of 10 resumes to the group.2 This set of candidate

resumes was the only incentive for participating in the study.

2In cases where multiple recruiters from a firm completed the tool in order to fill different positions,
or where a single recruiter completed multiple times for different positions, we treated these as unique
completions and provided them with 10 candidate resumes for each position.
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A.2. Results Appendix

In this section, we describe additional results and robustness checks to validate our main

results. In Section A.2.1, we show additional analysis related to our main human capital

results. In Section A.2.2, we verify our results after reweighting observations to the true dis-

tribution of GPAs in actual Penn student resumes. In Section A.2.3, we discuss preferences

over the quality distribution. In Section A.2.4, we provide additional results on candidate

demographics. Finally, in Section A.2.5, we discuss the relationship between Likelihood of

Acceptance and Hiring Interest.

A.2.1. Additional Results on Human Capital

The human capital results in Section 1.3.2 rely on the independent randomization of work

experiences and other resume elements. This randomization leads to some combinations of

resume elements that are unlikely to arise in practice, despite drawing each variable from a

realistic univariate distribution. If employers value a set of experiences that form a cohesive

narrative, independent randomization could lead to strange relationships in our data. If

employers value combinations of work experiences, narrative might be an omitted variable

that could introduce bias (e.g., if our Top Internships are more likely to generate narratives

than regular internships, we may misestimate their effect on hiring interest). In Table 21,

we address this concern by showing that the cross-randomization of work experiences does

not drive our results. To test this, we had three undergraduate research assistants at the

University of Pennsylvania rate all possible combinations of work experiences that could

have appeared on our hypothetical resumes.3 We used their responses to create a dummy—

denoted Narrative—that is equal to 1 when a resume has a work experience in the summer

3As Penn students, these RAs were familiar with the type of work experiences Penn students typically
have in the summers before their junior and senior years. Each RA rated 1040 combinations (40 work
experiences in the summer before senior year × 26 work experiences in the summer before junior year)
for Humanities & Social Sciences majors, and another 1040 combinations (40 × 26) for the STEM majors
blind to our results. They rated each combination on the extent to which the two work experiences had a
cohesive narrative on a scale of 1 to 3 where 1 indicated “These two jobs are not at all related,” 2 indicated
“These two jobs are somewhat related,” and 3 indicated “These two jobs are very related.” The majority of
combinations received a rating of 1 so we introduce a binary variable Narrative equal to 1 if the jobs were
rated as somewhat or very related, and 0 if the jobs were not at all related.
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before junior year that is related to the work experience before senior year, and 0 otherwise.

As a result of this process, we identified that 17.5% of the realized resumes in our study

(i.e., those resumes actually shown to subjects) had a cohesive work experience narrative.

None of these resumes included Work for Money because our RA raters did not see these

jobs as contributing to a narrative. Appendix Table 21 runs the same regressions as Table

2 but additionally controls for Narrative. All results from Table 2 remain similar in size

and statistical significance.

In Table 22, we estimate the value of degrees from more prestigious schools within Penn. We

replace the major fixed effects of Table 2 with binary variables for School of Engineering

and Applied Science and Wharton, as well as a binary control for whether the subject

has chosen to review Humanities & Social Sciences or STEM resumes (coefficients not

reported).4 We find that employers find degrees from these schools 0.4–0.5 Likert-scale

points more desirable than degrees from Penn’s College of Arts and Sciences. As shown in

Figure 11, and as discussed in Section 1.3.3, we also investigate the effect of having a degree

from Wharton across the distribution of hiring interest.

A.2.2. Re-weighting by GPA

In generating hypothetical resumes, we randomly selected candidate GPAs from Unif [2.90,

4.00], rather than from the true distribution of GPAs among job seekers at Penn, which is

shown in Figure 12.5 In this section, we demonstrate that this choice does not drive our

results. In Tables 23, 24, and 25, we rerun the regressions of Tables 2, 3, and 4 weighted to

reflect the naturally occurring distribution of GPA among our Penn senior candidate pool

(i.e., the job seekers used for matching, see Appendix A.1.3). We do not include missing

GPAs in the reweighting, though our results are robust to re-weighting with missing GPAs

4Major fixed effects are perfectly multicollinear with the variables for school, since no two schools grant
the same degrees in the same major.

5We parameterized GPA to be drawn Unif [2.90, 4.00] to give us statistical power to test the importance
of GPA on hiring interest, but this distribution is not exactly the distribution of GPA among Penn seniors
engaging in on campus recruiting.
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Table 21: Work Experience Narrative

Dependent Variable: Hiring Interest

OLS OLS OLS
GPA-Scaled

OLS
Ordered
Probit

GPA 2.128 2.194 2.200 1 0.892
(0.145) (0.150) (0.129) (.) (0.0613)

Top Internship 0.896 0.892 0.888 0.404 0.375
(0.0945) (0.0989) (0.0806) (0.0428) (0.0397)

Second Internship 0.349 0.364 0.319 0.145 0.156
(0.142) (0.150) (0.122) (0.0560) (0.0593)

Work for Money 0.115 0.160 0.157 0.0714 0.0518
(0.110) (0.114) (0.0914) (0.0416) (0.0468)

Technical Skills 0.0424 0.0490 -0.0759 -0.0345 0.0102
(0.104) (0.108) (0.0898) (0.0409) (0.0442)

Female, White -0.149 -0.213 -0.159 -0.0725 -0.0597
(0.114) (0.118) (0.0963) (0.0441) (0.0478)

Male, Non-White -0.174 -0.181 -0.175 -0.0794 -0.0761
(0.137) (0.142) (0.115) (0.0524) (0.0569)

Female, Non-White -0.0108 -0.0236 0.0261 0.0119 -0.0150
(0.137) (0.144) (0.120) (0.0545) (0.0578)

Narrative 0.214 0.237 0.278 0.126 0.0930
(0.165) (0.175) (0.144) (0.0656) (0.0678)

Observations 2880 2880 2880 2880 2880
R2 0.130 0.181 0.484
p-value for test of joint
significance of Majors < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Major FEs Yes Yes Yes Yes Yes
Leadership FEs No Yes Yes Yes No
Order FEs No Yes Yes Yes No
Subject FEs No No Yes Yes No

Ordered probit cutpoints: 1.91, 2.28, 2.64, 2.94, 3.26, 3.6, 4.05, 4.52, and 5.03.

Table shows OLS and ordered probit regressions of hiring interest from Equation (1.1), with an
additional control for Narrative. Robust standard errors are reported in parentheses. GPA; Top
Internship; Second Internship; Work for Money ; Technical Skills; Female, White; Male, Non-
White; Female, Non-White and major are characteristics of the hypothetical resume, constructed
as described in Section 1.2.3 and in Appendix A.1.2. Narrative is a characteristic of resumes, defined
as work experiences that are related in some way. Fixed effects for major, leadership experience,
resume order, and subject included in some specifications as indicated. R2 is indicated for each OLS
regression. GPA-Scaled OLS presents the results of Column 3 divided by the Column 3 coefficient
on GPA, with standard errors calculated by delta method. The p-value of a test of joint significance
of major fixed effects is indicated (F -test for OLS regressions, likelihood ratio test for ordered probit
regressions).
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Table 22: Prestigious Schools

Dependent Variable: Hiring Interest

OLS OLS OLS
GPA-Scaled

OLS
Ordered
Probit

GPA 2.129 2.187 2.192 1 0.887
(0.145) (0.149) (0.128) (.) (0.0624)

Top Internship 0.908 0.913 0.905 0.413 0.378
(0.0943) (0.0984) (0.0804) (0.0431) (0.0395)

Second Internship 0.443 0.465 0.451 0.206 0.195
(0.112) (0.118) (0.0945) (0.0446) (0.0466)

Work for Money 0.108 0.141 0.143 0.0654 0.0493
(0.110) (0.113) (0.0918) (0.0419) (0.0461)

Technical Skills 0.0378 0.0404 -0.0820 -0.0374 0.00871
(0.103) (0.107) (0.0901) (0.0411) (0.0430)

Female, White -0.146 -0.207 -0.160 -0.0730 -0.0573
(0.113) (0.118) (0.0962) (0.0442) (0.0473)

Male, Non-White -0.189 -0.196 -0.181 -0.0828 -0.0801
(0.137) (0.142) (0.115) (0.0527) (0.0573)

Female, Non-White -0.0000775 -0.0107 0.0371 0.0169 -0.00885
(0.137) (0.144) (0.120) (0.0549) (0.0570)

School of Engineering 0.497 0.441 0.403 0.184 0.239
(0.199) (0.206) (0.164) (0.0758) (0.0863)

Wharton 0.459 0.502 0.417 0.190 0.184
(0.110) (0.115) (0.0934) (0.0435) (0.0455)

Observations 2880 2880 2880 2880 2880
R2 0.115 0.168 0.472
Major FEs No No No Yes No
Leadership FEs No Yes Yes Yes No
Order FEs No Yes Yes Yes No
Subject FEs No No Yes Yes No

Ordered probit cutpoints: 2.48, 2.84, 3.20, 3.49, 3.81, 4.15, 4.60, 5.06, and 5.57.

Table shows OLS and ordered probit regressions of hiring interest from Equation
(1.1), with effects for school, and a control for whether the employer selected to view
Humanities & Social Sciences resumes or STEM resumes (coefficient not displayed).
Robust standard errors are reported in parentheses. GPA; Top Internship; Second
Internship; Work for Money ; Technical Skills; Female, White; Male, Non-White;
Female, Non-White and major are characteristics of the hypothetical resume, con-
structed as described in Section 1.2.3 and in Appendix A.1.2. School of Engineering
indicates a resume with a degree from Penn’s School of Engineering and Applied Sci-
ences; Wharton indicates a resume with a degree from the Wharton School. Fixed
effects for major, leadership experience, resume order, and subject included in some
specifications as indicated. GPA-Scaled OLS presents the results of Column 3 di-
vided by the Column 3 coefficient on GPA, with standard errors calculated by delta
method. R2 is indicated for each OLS regression.
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Figure 11: Wharton

(a) Empirical CDF (b) Linear Probability Model

Empirical CDF of Hiring Interest (Panel 11a) and difference in counterfactual callback rates (Panel 11b)
for Wharton and Other Humanities & Social Sciences. Empirical CDFs show the share of hypothetical
candidate resumes with each characteristic with a Hiring Interest rating less than or equal to each value. The
counterfactual callback plot shows the difference between groups in the share of candidates at or above the
threshold—that is, the share of candidates who would be called back in a resume audit study if the callback
threshold were set to any given value. 95% confidence intervals are calculated from a linear probability
model with an indicator for being at or above a threshold as the dependent variable.

treated as low GPAs.6 These regressions confirm the results of Tables 2, 3, and 4 in direction

and statistical significance.

Matching the underlying distribution of characteristics in hypothetical resumes to the dis-

tribution of real candidates is also an issue for resume auditors who must contend with a

limited number of underlying resumes (i.e., resumes that they manipulate to create treat-

ment variation). Given uncertainty about the characteristics of candidates and the limited

number of underlying resumes, resume auditors may not be able to perfectly match the

distribution of characteristics of a target population. An additional advantage of the IRR

methodology is that it involves collecting a large number of resumes from an applicant pool

of real job seekers, which gives us information on the distribution of candidate characteristics

that we can use to re-weight the data ex post.

6Some students may strategically omit low GPAs from their resumes, and some resume formats were
difficult for our resume parser to scrape.
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Figure 12: Distribution of GPA Among Scraped Resumes
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Histogram representing the distribution of GPA among scraped resumes in our candidate matching pool.
Distribution excludes any resumes for which GPA was not available (e.g., resume did not list GPA, resume
listed only GPA within concentration, or parser failed to scrape). GPAs of participating Penn seniors may
not represent the GPA distribution at Penn as a whole.
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Table 23: Human Capital Experience—Weighted by GPA

Dependent Variable: Hiring Interest

OLS OLS OLS
GPA-Scaled

OLS
Ordered
Probit

GPA 2.274 2.339 2.320 1 0.963
(0.175) (0.168) (0.146) (.) (0.0785)

Top Internship 0.831 0.832 0.862 0.372 0.353
(0.110) (0.109) (0.0882) (0.0428) (0.0474)

Second Internship 0.488 0.482 0.513 0.221 0.216
(0.129) (0.130) (0.105) (0.0475) (0.0545)

Work for Money 0.178 0.193 0.199 0.0856 0.0753
(0.129) (0.125) (0.100) (0.0436) (0.0556)

Technical Skills 0.0768 0.0388 -0.106 -0.0455 0.0224
(0.118) (0.119) (0.102) (0.0439) (0.0507)

Female, White -0.0572 -0.0991 -0.0382 -0.0165 -0.0214
(0.134) (0.130) (0.105) (0.0453) (0.0574)

Male, Non-White -0.239 -0.181 -0.111 -0.0480 -0.0975
(0.154) (0.154) (0.123) (0.0530) (0.0658)

Female, Non-White -0.0199 -0.0316 0.0398 0.0171 -0.0175
(0.166) (0.162) (0.134) (0.0577) (0.0710)

Observations 2880 2880 2880 2880 2880
R2 0.146 0.224 0.505
p-value for test of joint
significance of Majors < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Major FEs Yes Yes Yes Yes Yes
Leadership FEs No Yes Yes Yes No
Order FEs No Yes Yes Yes No
Subject FEs No No Yes Yes No

Ordered probit cutpoints: 2.30, 2.71, 3.04, 3.34, 3.66, 3.99, 4.49, 4.95, and 5.46.

Table shows OLS and ordered probit regressions of Hiring Interest from Equation
(1.1), weighted by the distribution of GPA in resumes in the candidate matching
pool. Robust standard errors are reported in parentheses. GPA; Top Intern-
ship; Second Internship; Work for Money ; Technical Skills; Female, White; Male,
Non-White; Female, Non-White and major are characteristics of the hypothetical
resume, constructed as described in Section 1.2.3 and in Appendix A.1.2. Fixed
effects for major, leadership experience, resume order, and subject included in
some specifications as indicated. R2 is indicated for each OLS regression. GPA-
Scaled OLS presents the results of Column 3 divided by the Column 3 coefficient
on GPA, with standard errors calculated by delta method. The p-value of a test of
joint significance of major fixed effects is indicated for each model (F -test for OLS
regressions, χ2 test for ordered probit regression).
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Table 25: Likelihood of Acceptance—Weighted by GPA

Dependent Variable:
Likelihood of Acceptance

OLS OLS OLS
Ordered
Probit

GPA 0.545 0.552 0.663 0.246
(0.174) (0.168) (0.132) (0.0738)

Top Internship 0.725 0.709 0.694 0.299
(0.111) (0.108) (0.0833) (0.0472)

Second Internship 0.524 0.456 0.432 0.220
(0.132) (0.133) (0.101) (0.0556)

Work for Money 0.205 0.150 0.185 0.0872
(0.128) (0.125) (0.0977) (0.0544)

Technical Skills 0.0409 -0.0390 -0.114 0.0122
(0.120) (0.120) (0.0972) (0.0504)

Female, White -0.209 -0.276 -0.224 -0.0830
(0.135) (0.133) (0.103) (0.0571)

Male, Non-White -0.248 -0.273 -0.114 -0.113
(0.157) (0.155) (0.120) (0.0660)

Female, Non-White -0.174 -0.224 -0.155 -0.0856
(0.160) (0.156) (0.124) (0.0684)

Observations 2880 2880 2880 2880
R2 0.077 0.162 0.509
p-value for test of joint
significance of Majors < 0.001 < 0.001 < 0.001 < 0.001

Major FEs Yes Yes Yes Yes
Leadership FEs No Yes Yes No
Order FEs No Yes Yes No
Subject FEs No No Yes No

Ordered probit cutpoints: -0.09, 0.29, 0.64, 0.90, 1.26, 1.67, 2.13, 2.65, and 3.02.

Table shows OLS and ordered probit regressions of Likelihood of Ac-
ceptance from Equation (1.1), weighted by the distribution of GPA
in resumes in our candidate matching pool. Robust standard errors
are reported in parentheses. GPA; Top Internship; Second Internship;
Work for Money ; Technical Skills; Female, White; Male, Non-White;
Female, Non-White are characteristics of the hypothetical resume, con-
structed as described in Section 1.2.3 and in Appendix A.1.2. Fixed
effects for major, leadership experience, resume order, and subject in-
cluded in some specifications as indicated. R2 is indicated for each OLS
regression. The p-value of a test of joint significance of major fixed ef-
fects is indicated (F -test for OLS regressions, χ2 test for ordered probit
regression).

105



A.2.3. Distributional Appendix

As discussed in Section 1.3.3, average preferences for candidate characteristics might differ

from the preferences observed in the tails. The stylized example in Figure 13 shows this con-

cern graphically. Imagine the light (green) distribution shows the expected productivity—

based on the content of their resumes—of undergraduate research assistants (RAs) majoring

in Economics at the University of Pennsylvania and the dark (gray) distribution shows the

expected productivity of undergraduate RAs enrolled at the Wharton School. In this ex-

ample, the mean Wharton student would make a less productive RA, reflecting a lack of

interest in academic research relative to business on average; however, the tails of the Whar-

ton distribution are fatter, reflecting the fact that admission into Wharton is more selective,

so a Wharton student who has evidence of research interest on her resume is expected to

be better than an Economics student with an otherwise identical resume. Looking across

the panels in Figure 13, we see that as callback thresholds shift from being high (panel (a),

where professors are very selective, only calling back around 8% of resumes) to medium

(panel (b), where professors are calling back around 16% of resumes) to low (panel (c),

where professors are calling back around 28% of resumes), a researcher conducting a re-

sume audit study might conclude that there is an advantage on the RA market of being at

Wharton, no effect, or a disadvantage.7

A researcher might particularly care about how employers respond to candidate character-

istics around the empirically observed threshold (e.g., the researcher may be particularly

interested in how employers respond to candidates in a particular market, with a particular

level of selectivity, at a particular point in time). Nevertheless, there are a number of rea-

sons why richer information about the underlying distribution of employer preferences for

characteristics would be valuable for a researcher to uncover. A researcher might want to

know how sensitive estimates are to: (1) an economic expansion or contraction that changes

firms’ hiring needs or (2) new technologies, such as video conferencing, which may change

7This stylized example uses two normal distributions. In settings where distributions are less well-
behaved, the difference in callback rates might be even more sensitive to specific thresholds chosen.
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Figure 13: Callback Thresholds Example
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(b) Medium Threshold
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(c) Low Threshold

A stylized example where average preferences differ from preferences at the upper tail. The distribution in
green has a higher mean and lower variance, leading to thinner tails; the distribution in gray has a lower mean
but higher variance, leading to more mass in the upper tail. As the callback threshold decreases from Panel
(a) to Panel (c), the share of candidates above the threshold from each distribution changes. Estimating
preferences from callbacks following this type of threshold process might lead to spurious conclusions.
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the callback threshold by changing the costs of interviewing. Similarly, a researcher may

be interested in how candidate characteristics would affect callback in different markets

(e.g., those known to be more or less selective) than the market where a resume audit was

conducted. To conduct these counterfactual analyses, richer preference information would

be valuable.

Comparing Results Across the Distribution

Resume audit studies often report differences in callback rates between two types of job

candidates, either in a t-test or in a regression. However, as the overall callback rate becomes

very large (i.e., almost all candidates get called back) or very small (i.e., few candidates get

called back), the differences in callback rates tend toward zero. This is because, as discussed

in footnote 22, the maximum possible difference in callback rates is capped by the overall

callback rate.

This is not a threat to the internal validity of most resume audit studies executed in a single

hiring environment. However, this can cause problems when comparing across studies, or

within a study run in different environments. For example, if one wanted to show that there

was less racial discrimination in one city versus another, and the underlying callback rates

in those cities differed, an interaction between city and race may be difficult to interpret.

Note that such an exercise is performed in Kroft et al. (2013) to compare the response to

unemployment in cities with high unemployment (and likely low overall callback rates) ver-

sus cities with low unemployment rates (and high callback rates). In that particular study,

the “bias” caused by comparing across different callback rates does not undermine the find-

ing that high unemployment rate cities respond less to unemployment spells. Nonetheless,

researchers should use caution when implementing similar study designs.

In Figures 14 and 15, we look at how two different ways of measuring callback differences

perform across the distribution compared to the linear probability model. The lefthand

side of each figure shows the ratio of the callback rates, another common way of reporting
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Figure 14: Alternative Specifications: Top Internship

(a) Callback Ratio (b) Logit

Counterfactual callback ratios (Panel 14a) and counterfactual logit coefficients (Panel 14b) for Top Intern-
ship. Counterfactual callback is an indicator for each value of Hiring Interest equal to 1 if Hiring Interest is
greater than or equal to the value, and 0 otherwise. Callback ratio is defined as the counterfactual callback
rate for candidates with the characteristic divided by the counterfactual callback rate for candidates with-
out. 95% confidence intervals are calculated from a linear probability model using the delta method. Logit
coefficients are estimated from a logit regression with counterfactual callback as the dependent variable.

resume audit study results. For the positive effects in our study, this odds ratio tends to be

larger at the upper tail, where a small difference in callbacks can result in a large response

in the ratio. On the righthand side of each figure, we show effects estimated from a logit

specification. We find that in our data, the effects estimated in logistic regression tend to

be flatter across the quality distribution.

A.2.4. Candidate Demographics Appendix

In this section, we provide additional analyses for our main results on candidate demo-

graphics. In A.2.4, we analyze our findings by the demographics of employers evaluating

resumes. In A.2.4 we describe a test for implicit bias. In A.2.4, we discuss differential

returns to quality by demographic group.
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Figure 15: Alternative Specifications: Second Job Type

(a) Callback Ratio (b) Logit

Counterfactual callback ratios (Panel 15a) and counterfactual logit coefficients (Panel 15b) for Work for
Money and Second Internship. Counterfactual callback is an indicator for each value of Hiring Interest
equal to 1 if Hiring Interest is greater than or equal to the value, and 0 otherwise. Callback ratio is defined
as the counterfactual callback rate for candidates with the characteristic divided by the counterfactual
callback rate for candidates without. 95% confidence intervals are calculated from a linear probability model
using the delta method. Logit coefficients are estimated from a logit regression with counterfactual callback
as the dependent variable.

Rater Demographics

IRR allows us to collect information about the specific individuals rating resumes at the

hiring firm. In Table 26 we explore our main results by rater gender and race. White and

female raters appear more likely to discriminate against male, non-white candidates than

non-white or female raters.

Test for Implicit Bias

We leverage a feature of implicit bias—that it is more likely to arise when decision makers

are fatigued (Wigboldus et al., 2004; Govorun and Payne, 2006; Sherman et al., 2004)—to

test whether our data are consistent with implicit bias. Appendix Table 27 investigates how

employers respond to resumes in the first and second half of the study and to resumes before
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Table 26: Hiring Interest by Rater Demographics

Dependent Variable: Hire Rating
Rater Gender Rater Race

All
Female
Raters

Male
Raters

Non-White
Raters

White
Raters

GPA 2.196 2.357 2.092 2.187 2.131
(0.129) (0.170) (0.212) (0.378) (0.146)

Top Internship 0.897 0.726 1.139 1.404 0.766
(0.0806) (0.105) (0.140) (0.234) (0.0914)

Second Internship 0.466 0.621 0.195 0.636 0.459
(0.0947) (0.126) (0.154) (0.273) (0.107)

Work for Money 0.154 0.303 -0.0820 -0.124 0.192
(0.0914) (0.120) (0.156) (0.255) (0.104)

Technical Skills -0.0711 -0.0794 -0.0202 -0.123 -0.0164
(0.0899) (0.122) (0.151) (0.231) (0.104)

Female, White -0.161 -0.202 -0.216 0.00413 -0.209
(0.0963) (0.128) (0.165) (0.265) (0.109)

Male, Non-White -0.169 -0.311 -0.105 0.119 -0.241
(0.115) (0.149) (0.200) (0.285) (0.132)

Female, Non-White 0.0281 0.00110 -0.0648 -0.124 0.0968
(0.120) (0.159) (0.202) (0.325) (0.137)

Observations 2880 1720 1160 600 2280
R2 0.483 0.525 0.556 0.588 0.503

Major FEs Yes Yes Yes Yes Yes
Leadership FEs Yes Yes Yes Yes Yes
Order FEs Yes Yes Yes Yes Yes
Subject FEs Yes Yes Yes Yes Yes

OLS regressions of Hiring Interest on candidate characteristics by rater gender and race.
Sample includes 29 male and 42 female subjects; 57 White and 15 non-White subjects. Ro-
bust standard errors are reported in parentheses. GPA; Top Internship; Second Internship;
Work for Money ; Technical Skills; Female, White; Male, Non-White; Female, Non-White
are characteristics of the hypothetical resume, constructed as described in Section 1.2.3 and
in Appendix A.1.2. R2 is indicated for each OLS regression. Fixed effects for major, lead-
ership experience, resume order, and subject included in some specifications as indicated.
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and after the period breaks—after every 10 resumes—that we built into the survey tool.8

The first and second columns show that subjects spend less time evaluating each resume in

the second half of the study and in the latter half of each block of 10 resumes, suggesting

evidence of fatigue. The third column reports a statistically significant interaction on Latter

Half of Block × Not a White Male of −0.385 Likert-scale points, equivalent to about 0.18

GPA points, suggesting more discrimination against candidates who are not white males in

the latter half of each block of 10 resumes. The fourth column reports, however, that the

bias in the second half of the study is not statistically significantly larger than the bias in

the first half. These results provide suggestive, though not conclusive, evidence that the

discrimination we detect may indeed be driven by implicit bias.

8As described in Section 1.2, after every 10 resumes an employer completed, the employer was shown a
simple webpage with an affirmation that gave them a short break (e.g., after the first 10 resumes it read:
“You have rated 10 of 40 resumes. Keep up the good work!”). Research suggests that such “micro breaks”
can have relatively large effects on focus and attention (Rzeszotarski et al., 2013), and so we compare bias
in the early half and latter half of each block of 10 resumes under the assumption that employers might be
more fatigued in the latter half of each block of 10 resumes.
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Table 27: Implicit Bias

Dependent Variable:
Response Time

Dependent Variable:
Hiring Interest

Latter Half of Block -3.518 0.360
(0.613) (0.137)

Second Half of Study -4.668 -0.142
(0.598) (0.138)

Not a White Male -0.642 -0.648 0.0695 -0.107
(0.666) (0.665) (0.115) (0.118)

Latter Half of Block ×
Not a White Male -0.385

(0.165)
Second Half of Study ×

Not a White Male -0.0225
(0.166)

GPA 2.791 2.944 2.187 2.187
(0.961) (0.949) (0.128) (0.128)

Top Internship -0.799 -0.638 0.905 0.904
(0.622) (0.620) (0.0802) (0.0800)

Second Internship 2.163 2.118 0.471 0.458
(0.752) (0.750) (0.0934) (0.0934)

Work for Money 1.850 1.813 0.154 0.140
(0.741) (0.740) (0.0909) (0.0910)

Technical Skills 0.881 0.892 -0.0668 -0.0780
(0.715) (0.713) (0.0889) (0.0890)

Observations 2880 2880 2880 2880
R2 0.405 0.412 0.475 0.475
p-value for test of joint
significance of Majors < 0.001 < 0.001 < 0.001 < 0.001

Major FEs Yes Yes Yes Yes
Leadership FEs Yes Yes Yes Yes
Order FEs No No No No
Subject FEs Yes Yes Yes Yes

Regressions of Response Time and Hiring Interest on resume characteristics and re-
sume order variables. The first and second columns show Response Time regressions;
the third and fourth columns show Hiring Interest regressions. Response Time is
defined as the number of seconds before page submission, Winsorized at the 95th per-
centile (77.9 seconds). Mean of Response Time: 23.6 seconds. GPA, Top Internship,
Second Internship, Work for Money, Technical Skills, and Not a White Male are char-
acteristics of the hypothetical resume, constructed as described in Section 1.2.3 and in
Appendix A.1.2. Latter Half of Block is an indicator variable for resumes shown among
the last five resumes within a 10-resume block. Second Half of Study is an indicator
variable for resumes shown among the last 20 resumes viewed by a subject. Fixed
effects for subjects, majors, and leadership experience included in all specifications.
R2 is indicated for each OLS regression. The p-value of an F−test of joint significance
of major fixed effects is indicated for all models.
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Interaction of Demographics with Quality

Table 28 shows that white males gain more from having a Top Internship than candidates

who are not white males. The largest of these coefficients, that for non-white females,

nearly halves the benefit of having a prestigious internship. We speculate that this may

be due to firms believing that prestigious internships are a less valuable signal of quality if

the previous employer may have selected the candidate due to positive tastes for diversity.

Figure 16 looks at the relationship between Top Internship and being Not a White Male

throughout the quality distribution. We find that when a candidate is of sufficiently high

quality, a Top Internship is equally valuable for white male candidates and those who are

not white males. This may suggest that other signals of quality may inoculate candidates

from the assumption that an impressive work history is the result of diversity initiatives.
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Table 28: Return to Top Internship by Demographic Group

Dependent Variable: Hiring Interest

OLS OLS OLS
GPA-Scaled

OLS
Ordered
Probit

GPA 2.119 2.184 2.191 1 0.889
(0.145) (0.150) (0.129) (.) (0.0613)

Top Internship 1.147 1.160 1.155 0.527 0.471
(0.168) (0.175) (0.145) (0.0736) (0.0704)

Second Internship 0.468 0.495 0.470 0.214 0.208
(0.112) (0.118) (0.0944) (0.0446) (0.0469)

Work for Money 0.109 0.151 0.148 0.0675 0.0496
(0.110) (0.113) (0.0913) (0.0417) (0.0469)

Technical Skills 0.0494 0.0576 -0.0670 -0.0306 0.0132
(0.104) (0.108) (0.0899) (0.0411) (0.0442)

Female, White 0.0327 -0.0188 0.0225 0.0103 0.0118
(0.146) (0.152) (0.121) (0.0554) (0.0617)

Male, Non-White -0.0604 -0.0488 -0.0553 -0.0253 -0.0287
(0.175) (0.184) (0.145) (0.0659) (0.0741)

Female, Non-White 0.0806 0.0685 0.159 0.0727 0.0104
(0.182) (0.191) (0.156) (0.0717) (0.0768)

Top Internship ×
Female, White -0.464 -0.492 -0.459 -0.209 -0.181

(0.234) (0.243) (0.199) (0.0920) (0.0974)
Top Internship ×

Male, Non-White -0.280 -0.316 -0.276 -0.126 -0.116
(0.279) (0.288) (0.233) (0.107) (0.116)

Top Internship ×
Female, Non-White -0.229 -0.224 -0.316 -0.144 -0.0653

(0.273) (0.286) (0.240) (0.110) (0.116)

Observations 2880 2880 2880 2880 2880
R2 0.130 0.182 0.484
p-value for test of joint
significance of Majors < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Major FEs Yes Yes Yes Yes Yes
Leadership FEs No Yes Yes Yes No
Order FEs No Yes Yes Yes No
Subject FEs No No Yes Yes No

Ordered probit cutpoints: 1.94, 2.31, 2.68, 2.97, 3.29, 3.63, 4.09, 4.55, and 5.06.

Table shows OLS and ordered probit regressions of hiring interest from Equation
(1.1). Robust standard errors are reported in parentheses. GPA; Top Intern-
ship; Second Internship; Work for Money ; Technical Skills; Female, White; Male,
Non-White; Female, Non-White are characteristics of the hypothetical resume,
constructed as described in Section 1.2.3 and in Appendix A.1.2. Fixed effects for
major, leadership experience, resume order, and subject included in some specifi-
cations as indicated. R2 is indicated for each OLS regression. GPA-Scaled OLS
presents the results of Column 3 divided by the Column 3 coefficient on GPA, with
standard errors calculated by delta method. The p-value of a test of joint signifi-
cance of major fixed effects is indicated (F -test for OLS, likelihood ratio test for
ordered probit). 115



Figure 16: Top Internship × Not a White Male

(a) Empirical CDF (b) Linear Probability Model

Empirical CDF of Hiring Interest (Panel 16a) and difference in counterfactual callback rates (Panel 16b)
for Top Internship, Not a White Male, and Top Internship × Not a White Male. Empirical CDFs show the
share of hypothetical candidate resumes with each characteristic with a Hiring Interest rating less than or
equal to each value. The counterfactual callback plot shows the difference between groups in the share of
candidates at or above the threshold—that is, the share of candidates who would be called back in a resume
audit study if the callback threshold were set to any given value. 95% confidence intervals are calculated
from a linear probability model with an indicator for being at or above a threshold as the dependent variable.

A.2.5. Relationship Between Likelihood of Acceptance and Human Capital

In evaluating candidates’ likelihood of accepting a job offer, the firms in our sample exhibit a

potentially surprising belief that candidates with more human capital—indicated by higher

GPA, more work experience, and a more prestigious internship—are more likely to accept

jobs than candidates with less human capital. This correlation could arise in several ways.

First, it is possible that the hiring interest question—which always comes first—creates

anchoring for the second question that is unrelated to true beliefs. Second, it is possible

that likelihood of acceptance is based on both horizontal fit and vertical quality. Horizontal

fit raises both hiring interest and likelihood of acceptance, which would lead to a positive

correlation between responses; vertical quality, on the other hand, would be expected to

increase hiring interest and decrease likelihood of acceptance, since as it increases hiring

interest it also makes workers more desirable for other firms.9

9It is also possible that respondents deliberately overstate candidates’ likelihood of acceptance in order
to be sent the best quality candidates. However, firms who are willing to do this likely have a low cost of
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If the correlation between Hiring Interest and Likelihood of Acceptance is driven mostly by

horizontal fit, it is important to test whether Likelihood of Acceptance is simply a noisy

measure of Hiring Interest, or whether Likelihood of Acceptance contains additional, valu-

able information. This will help us confirm, for example, that the gender bias we find in

Likelihood of Acceptance is indeed its own result, rather than a result of bias in Hiring

Interest. Approaching this is econometrically tricky, since Hiring Interest and Likelihood

of Acceptance are both simultaneous products of the rater’s assessment of the randomized

resume components. We considered multiple approaches, such as subtracting hiring interest

from likelihood of acceptance to capture the difference, regressing likelihood of acceptance

on hiring interest and taking residuals, and including controls for hiring interest. All yield

similar results, and so we use the latter approach, as it is the most transparent. Despite its

econometric issues, we believe this is nonetheless a helpful exercise that can be thought of as

akin to a mediation analysis. We want to see if all of the effect on Likelihood of Acceptance

is mediated through Hiring Interest, or if there is independent variation in Likelihood of

Acceptance.

The first two columns of Table 29 include a linear control for Hiring Interest, while Columns

3 and 4 include fixed effect controls for each level of the Hiring Interest rating, examining

Likelihood of Acceptance within each hiring interest band. We find that after controlling

for Hiring interest, the relationship between GPA and Likelihood of Acceptance becomes

negative and statistically significant under all specifications. This indicates that the part

of Likelihood of Acceptance that is uncorrelated with Hiring Interest is indeed negatively

correlated with one measure of vertical quality. We also find that the coefficients on Top

Internship and Second Internship become statistically indistinguishable from zero.

Under all specifications, the coefficients on Female, White and Female, Non-White remain

negative and significant, indicating that employers believe women are less likely to accept

interviewing candidates with a lower probability of acceptance. This is in line with the data, where the firms
who consistently rate people a 10 on Likelihood of Acceptance are among the most prestigious firms in our
sample.
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jobs if offered, even controlling for the firm’s interest in the candidate.

Thus, we conclude that Likelihood of Acceptance does provide some additional information

above and beyond Hiring Interest. We hope future research will tackle the question of how

to measure beliefs about Likelihood of Acceptance accurately, how to disentangle them from

Hiring Interest, and exactly what role they play in hiring decisions.
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Table 29: Likelihood of Acceptance with Hiring Interest Controls

Dependent Variable:
Likelihood of Acceptance

OLS
Ordered
Probit OLS

Ordered
Probit

GPA -0.812 -0.638 -0.823 -0.660
(0.0820) (0.0641) (0.0815) (0.0646)

Top Internship 0.0328 0.000290 0.0313 0.000698
(0.0535) (0.0406) (0.0534) (0.0408)

Second Internship 0.0656 0.0511 0.0680 0.0491
(0.0634) (0.0477) (0.0634) (0.0480)

Work for Money 0.0951 0.0824 0.0954 0.0868
(0.0611) (0.0475) (0.0610) (0.0477)

Technical Skills -0.0527 -0.0572 -0.0608 -0.0661
(0.0596) (0.0449) (0.0594) (0.0452)

Female, White -0.145 -0.0781 -0.147 -0.0820
(0.0638) (0.0484) (0.0638) (0.0486)

Male, Non-White 0.00212 -0.0162 0.000650 -0.00832
(0.0744) (0.0577) (0.0744) (0.0580)

Female, Non-White -0.182 -0.154 -0.185 -0.159
(0.0741) (0.0587) (0.0737) (0.0591)

Hiring Interest 0.704 0.478 FEs FEs
(0.0144) (0.0104)

Observations 2880 2880 2880 2880
R2 0.766 0.768
p-value for test of joint
significance of Majors 0.025 < 0.001 0.031 < 0.001

Major FEs Yes Yes Yes Yes
Leadership FEs Yes No Yes No
Order FEs Yes No Yes No
Subject FEs Yes No Yes No

Cutpoints (Col 2): -1.82, -1.18, -0.55, -0.11, 0.49, 1.07, 1.71, 2.39, 2.81.

Cutpoints (Col 4): -2.00, -1.26, -0.58, -0.14, 0.45, 1.01, 1.62, 2.28, 2.69.

Table shows OLS and ordered probit regressions of Likelihood of Acceptance from
Equation (1.1), with additional controls for Hiring Interest. Robust standard er-
rors are reported in parentheses. GPA; Top Internship; Second Internship; Work
for Money ; Technical Skills; Female, White; Male, Non-White; Female, Non-White
and major are characteristics of the hypothetical resume, constructed as described
in Section 1.2.3 and in Appendix A.1.2. Fixed effects for major, leadership experi-
ence, resume order, and subject included in some specifications as indicated. R2 is
indicated for each OLS regression. The p-values of tests of joint significance of ma-
jor fixed effects and demographic variables are indicated (F -test for OLS, likelihood
ratio test for ordered probit).
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A.3. Pitt Appendix

In our replication study at the University of Pittsburgh, we followed a similar approach

to that described for our experimental waves at Penn in Section A.1.2. The tool structure

was essentially the same as at Penn, with references to Penn replaced with Pitt in the in-

structions, and the reference to Wharton removed from the major selection page. Resume

structure was identical to that described in Sections A.1.2 and A.1.2. Names were ran-

domized in the same manner as described in Section A.1.2. The education section of each

resume at Pitt followed the same structure as that described in Section A.1.2, but had a de-

gree from the University of Pittsburgh, with majors, schools, and degrees randomly drawn

from a set of Pitt’s offerings. In selecting majors for our Pitt replication, we attempted to

match the Penn major distribution as closely as possible, but some majors were not offered

at both schools. When necessary, we selected a similar major instead. The majors, schools,

classifications, and probabilities for Pitt are shown in Table 30.

We used a single pool of Pitt resumes for both the hypothetical resume elements and for a

candidate pool for Pitt employers, saving significant effort on scraping and parsing. These

components were compiled and randomized in much the same way as at Penn, as described

in Section A.1.2. For Top Internship at Pitt, we collected work experiences from Pitt

resumes at one of Pitt’s most frequent employers, or at one of the employers used to define

Top Internship at Penn. Similarly, Pitt Work for Money was identified from the same list

of identifying phrases shown in Table 19. Technical Skills were randomized in the same way

as at Penn, described in A.1.2.
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Table 30: Majors in Generated Pitt Resumes

Type School Major Probability

Humanities &
Social Sciences

Dietrich School of
Arts and Sciences

BS in Economics 0.4
BA in Economics 0.2
BS in Political Science 0.075
BS in Psychology 0.075
BA in Communication Science 0.05
BA in English Literature 0.05
BA in History 0.05
BA in History of Art and Architecture 0.025
BA in Philosophy 0.025
BA in Social Sciences 0.025
BA in Sociology 0.025

STEM

Dietrich School of
Arts and Sciences

BS in Natural Sciences 0.1
BS in Molecular Biology 0.075
BS in Bioinformatics 0.05
BS in Biological Sciences 0.05
BS in Chemistry 0.05
BS in Mathematical Biology 0.05
BS in Mathematics 0.05
BS in Physics 0.05
BS in Statistics 0.025

Swanson School of
Engineering

BS in Computer Engineering 0.15
BS in Mechanical Engineering 0.075
BS in Bioengineering 0.05
BS in Chemical Engineering 0.05
BS in Computer Science 0.05
BS in Electrical Engineering 0.05
BS in Materials Science and Engineering 0.05
BS in Civil Engineering 0.025

Majors, degrees, schools within Pitt, and their selection probability by major type. Majors (and their
associated degrees and schools) were drawn with replacement and randomized to resumes after subjects
selected to view either Humanities & Social Sciences resumes or STEM resumes.
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Table 32: Likelihood of Acceptance at Pitt

Dependent Variable: Likelihood of Acceptance

OLS OLS OLS
Ordered
Probit

GPA 0.178 0.161 0.0104 0.0710
(0.148) (0.155) (0.101) (0.0572)

Top Internship 0.233 0.245 0.235 0.0873
(0.103) (0.108) (0.0680) (0.0398)

Second Internship 0.224 0.221 0.199 0.0739
(0.114) (0.119) (0.0768) (0.0447)

Work for Money 0.142 0.143 0.130 0.0504
(0.114) (0.120) (0.0738) (0.0443)

Technical Skills 0.195 0.187 0.111 0.0843
(0.106) (0.110) (0.0700) (0.0403)

Female, White -0.0627 -0.0795 0.0152 -0.0268
(0.115) (0.122) (0.0774) (0.0448)

Male, Non-White -0.000104 -0.0119 -0.0641 -0.0111
(0.139) (0.145) (0.0907) (0.0539)

Female, Non-White -0.198 -0.197 -0.0483 -0.0702
(0.140) (0.147) (0.0904) (0.0549)

Observations 3440 3440 3440 3440
R2 0.037 0.061 0.643
p-value for test of joint

significance of Majors < 0.001 < 0.001 < 0.001 < 0.001
Major FEs Yes Yes Yes Yes
Leadership FEs No Yes Yes No
Order FEs No Yes Yes No
Subject FEs No No Yes No

Ordered probit cutpoints: -0.10, 0.14, 0.38, 0.58, 0.86, 1.08, 1.42, 1.86, and 2.35.

Table shows OLS and ordered probit regressions of Likelihood of Acceptance
from Equation (1.1). Robust standard errors are reported in parentheses.
GPA; Top Internship; Second Internship; Work for Money ; Technical Skills;
Female, White; Male, Non-White; Female, Non-White and major are char-
acteristics of the hypothetical resume, constructed as described in Section
1.2.3 and in Appendix A.1.2. Fixed effects for major, leadership experience,
resume order, and subject included in some specifications as indicated. R2 is
indicated for each OLS regression. The p-values of tests of joint significance
of major fixed effects and demographic variables are indicated (F -test for
OLS, likelihood ratio test for ordered probit).
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Appendices to Chapter 2

B.1. Model and definitions

A marriage market under incomplete information is a quadruple (M,W,P, λ), where

M and W are sets of agents on the two sides of the market, P is the set of all possible

preference profiles for the agents, and λ is a measure over P. We require that all agents

in the market find at least one match partner acceptable. An element of P is a vector

(Pi)i∈M∪W of individual preference profiles. Pm for some m ∈ M is an ordering over

W ∪{∅}, where ∅ represents the outcome of being unmatched; Pw for some w ∈W is defined

similarly. Hence, we can think of some W ’s preference ordering as an (|M |+1)-vector whose

elements are ∅ and the members of M .1 A matching is a function µ : M∪W 7→M∪W∪{∅}

such that for any m ∈ M and w ∈ W , we have µ(m) ∈ W ∪ {∅}, µ(w) ∈ M ∪ {∅}, and

µ(m) = w ⇔ µ(w) = m. A strategy for an agent i is a function σi : Pi 7→ Pi where Pi

denotes the projection of P onto only agent i’s preference profile.

Next, we define an important concept, introduced in Roth and Rothblum (1999), which we

use to analyze the information structure of the matching markets used in our experiment.

Let the m↔ m′ operation switch the places of m and m′ in the preference of each W and

assigns the preferences of m to m′ (and vice versa). Let w ↔ w′ be defined analogously.

The following definition codifies the idea of a low information environment.

Definition 1. For some w ∈ W , a marriage market (or a distribution over M and W

preferences) is M-symmetric with respect to w if and only if, for any two m,m′ ∈ M ,

λ(P−w|Pw) = λ(Pm↔m
′

−w |Pw). If this holds for all w ∈ W , we simply call the market

M-symmetric. W -symmetry is analogously defined. If a marriage market is both W -

symmetric and M -symmetric, then we call it MW -symmetric.

In such symmetric environments, we want to be able to rule out equilibria where strategies

1In our context, thinking of preferences as vectors introduces a bit of redundancy since the mechanisms
we consider are all individually rational; for example, (m1,m2,m3, ∅,m4,m5) and (m1,m2,m3, ∅,m5,m4)
are functionally equivalent.
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depend on label, as these seem artificial. Formally,

Definition 2. A strategy σi is anonymous if and only if, for any two preferences, Pi and

P ′i , that list the same number of acceptable match partners, there exists some permutation

π such that σi(Pi) = π(Pi) and σi(P
′
i ) = π(P ′i ).

Note that this definition allows for different permutations to be used when a different

number of match partners are acceptable. Of the set of anonymous strategies, in the low

information environments we look at in the lab, we will find that we expect a certain type

of strategy in equilibrium.

Definition 3. A truncation is an anonymous strategy where the permutation for a given

number of acceptable match partners, k − 1, is a composition of permutations that first

exchanges the kth position (i.e. ∅) with the jth position, where j ≤ k, and then permutes

all positions besides k and j in a way that if a position started ranked (above j/between j

and k/below k), its permuted position is ranked (above j/between j and k/below k).2

Finally, we introduce a technical condition needed for uniqueness (but not existence) of the

types of equilibria we will be looking for.

Definition 4. A distribution over preferences is called W-thick if, for any w ∈W , m,m′ ∈

M , andm′′ ∈M\{m,m′} there is a positive probability thatm andm′ rank w first, whilem′′

ranks w′′ 6= w first and w′′ ranks m′′ first. M-thick is defined analogously. A distribution

over preferences is called MW-thick if it is both M and W thick.

Thickness is a sufficient condition that prevents an agent from ruling out the possibility

that any two potential match partners are her only two stable match partners. Weaker

conditions are possible, but thickness itself is quite weak: for instance, it is met when all

possible profiles of first choices are drawn with positive probability.

2Note that under this definition, a truthful strategy is a truncations.
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B.2. Proofs

Lemma 1. Under M -Proposing DA, truth-telling is the only weakly undominated strategy

for all m ∈M .

Proof. Assume than the strategy of some m ∈ M submits a preference P̃m that is not the

true preference, Pm. Dubins and Freedman (1981) show that truth-telling cannot yield a

worse outcome than a lie. Let k be the first position in the submitted rank-order list that

P̃m differs from the true preference, Pm. Let w = Pm(k) and w′ = P̃m(k). If all W s except

for w and w′ rank m as uncceptable, and w and w′ only rank m as acceptable, then m

gets w if he submits Pm and w′ (which he likes less) if he submits P̃m. Hence, we have

shown that truth-telling is never worse than a lie and is strictly better given some profile

of strategies for the other agents.

Lemma 2 (Roth, 1989). Under M-Proposing DA, it is weakly dominated for any w ∈ W

to not list her true first choice first.

Lemma 3. In a marriage market that is M -symmetric with respect to w, if all agents besides

w play anonymous strategies, and all m ∈ M play the same strategy, then the distribution

over submitted preferences, λ̃(·), is also M -symmetric with respect to w.

Proof. To prove this, we show why the following equation must hold:

λ̃(σ−w(P−w)|Pw) = λ(P−w|Pw) = λ(Pm↔m
′

−w |Pw)

= λ̃(σ−w(Pm↔m
′

−w )|Pw) = λ̃((σ−w(P−w))m↔m
′ |Pw)

The first equality comes from the definition of λ̃, the second from the fact that the true

preferences are M -symmetric with respect to w, and the third, again from the definition

of λ̃. For the last equality, we must note two things. First, since the m ↔ m′ does not
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change the rank of ∅ for the W ’s, the σ−w operator applies the same permutation to Pm↔m
′

w′

as it does to Pw′ . Second, since the M ’s are all playing the same anonymous strategy, it

makes no difference whether we switch the preferences of m and m′ before we apply the

σ−w operator or after. Hence, σ−w commutes with m↔ m′.3

Proposition 6. In an M -symmetric marriage market, under M -Proposing DA, there exists

an equilibrium in anonymous, weakly undominated strategies that involves truth-telling for

each m ∈ M and truncation for each w ∈ W . Furthermore, if the market is also W -thick,

all equilibria in anonymous, weakly undominated strategies are like this.

Proof. By Lemma 1, any equilibrium in weakly undominated strategies involves truth-telling

by all M ’s. By Lemma 3, we then know that, at an equilibrium in weakly undominated,

anonymous strategies, the distribution of reported preferences, λ̃, is M -symmetric. Then,

by the main proposition of Roth and Rothblum (1999), we know that truncation is a best

response for all w ∈ W . Furthermore, by Lemma 2, every W must be truthfully ranking

her first choice M . Then, by the W -thickness assumption, it is with positive probability

that for any m,m′ ∈ M , w can only potentially match to m or m′. In these states of the

world, we are in Case D of the proof from Roth and Rothblum (1999), which means that

truncation strictly dominates non-truncation.

Since the uncorrelated market is M -symmetric and W -thick, Proposition 1 in the main

text is an immediate corollary.

Lemma 4. Under M -Proposing Priority, it is weakly dominated for any w ∈ W to not

truthfully rank her first choice M .

Proof. In the first round w gets proposals, she will be permanently matched. Ranking her

first choice, m ∈M first can not hurt her, but failing to do so can hurt her if she also receives

a proposal in that round from an m′ ∈M that she ranked higher than m, but actually likes

3Note that we are not claiming that permutations commute: our interchange operator references school
names and not positions in a rank-order list.
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less. Let m and her declared first choice, P̃w(1), both rank w first, and let all other m′′ ∈M

declare w unacceptable. Ranking m first instead of P̃w(1) is an improvement.

Proposition 7. In an M -symmetric marriage market, under M -Proposing Priority, if all

agents play anonymous, weakly undominated strategies, and in addition, all m ∈ M truth-

tell, then all w ∈ W can best-respond to the other agents by truncating. If the market is

also W -thick, then all of their best responses are truncations.

Proof. By Lemma 3, we know that the distribution of reported preferences, λ̃, is M -

symmetric with respect to w. Then, by Proposition 3.2 and Remark 3.2 of Ehlers (2008),

we know that truncation is a best response for all w. Furthermore, by Lemma 4, every

W must be truthfully ranking her first choice M . Then, by the W -thickness assumption,

it is true with positive probability that for any m,m′ ∈ M , w can only potentially match

to m or m′; hence, Equation A2 from Ehlers (2008) must hold strictly, which means that

truncation strictly dominates non-truncation.

Since the uncorrelated market is M -symmetric and W -thick, Proposition 2 in the main

text is an immediate corollary.

Lemma 5. Under M-Proposing Priority, any report for any m ∈ M that does not list all

and only all truly acceptable w ∈W as acceptable is weakly dominated by one that does.

Proof. Consider an arbitrary m ∈M submitting a list L with n acceptable match partners

which excludes at least one acceptable w′ ∈W . Now consider L′, a list identical to L for the

first n entries with w′ listed in the (n + 1)st position and no acceptable entries thereafter.

Under M -Proposing Priority, any set of submissions for other agents resulting in m being

matched to a given W when m submits L will also result in M being matched to that

W when m submits L′. So L′ never generates a worse outcome for m than L. However,

consider a set of submissions such that no member of W listed in L ranks m as acceptable,

and the submitted preference list of w′ lists only m as acceptable. In this case, M -Proposing

Priority will match m and w′ when L′ is submitted and will match m to no one when L is
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submitted. Since w′ is acceptable to m by construction, m achieves a better result in this

case by submitting L′.

Now consider some m ∈M who lists a truly unacceptable w ∈W as acceptable. Removing

this w from his list cannot hurt m, since M -Proposing Priority makes permanent matches

after each round. Now, let all w′ ∈ W \ w declare m unacceptable, let all m′ ∈ M \ m

declare w unacceptable and let w declare m acceptable. With this strategy profile, m will

match to w which he could have avoided by declaring her unacceptable.

Lemma 6. Under M -Proposing Priority, if the distribution of reported preferences for all

agents besides m ∈ M are W -symmetric with respect to m, then truth-telling is a best-

response for m.

Proof. This proof borrows heavily from Roth and Rothblum (1999). First, we lay out a

few of the properties of M -Proposing Priority. Consider, P , w′, w ∈ W , m ∈ M , and let

v ∈ (W \ {w,w′}) ∪ {∅}. Denote the match of m when the submitted preferences are P

under M -Proposing Priority as MPP [P ] (m). Then,

MPP[P ](m) = v ⇔ MPP[Pw↔w
′
](m) = v

MPP[P ](m) = w ⇔ MPP[Pw↔w
′
](m) = w′

Moreover,

MPP[Pw↔w
′

m , P−m](m) = v ⇔MPP [Pm, P
w↔w′
−m ](m) = v

MPP[Pw↔w
′

m , P−m](m) = w ⇔MPP [Pm, P
w↔w′
−m ](m) = w′

The first set of logical statements follows immediately from the fact that MPP does not

give special treatment to any given label. The fact that applying the w ↔ w′ interchange

operator to (Pw↔w
′

m , P−m) yields (Pm, P
w↔w′
−m ), implies the second set.
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Table 34: Table of cases

Lie: MPP[Pw↔w
′

m , P−m](m)
= v /∈ {w,w′} = w = w′

Truth: MPP[Pm, P−m](m)
= v /∈ {w,w′} Case A Case B Impossible

= w Impossible Case C Impossible
= w′ Case D Case E Case F

Now, let w ≺m w′. Then,

(MPP[P ](m) = w)⇒ (MPP[Pw↔w
′

m , P−m](m) = w)

Moreover, (
MPP[Pw↔w

′
m , P−m](m) = w′

)
⇒
(
MPP[P ](m) = w′

)
Switching w′ and w in a submitted ordering means that w is proposed to in an earlier round.

If it was available in the later round, it will still be available in the earlier round, and no

one else will be proposing to it in that round. This yields the first logical statement. The

second follows from a similar line of reasoning.

Now, consider the outcome for some m ∈ M for whom w ≺m w′ when he submits a

preference that truthfully ranks w and w′, MPP[P ](m), and when he submits a preference

that switches w and w′, MPP[Pw↔w
′

m , P−m](m). Using the formulas we just derived, we

summarize what can potentially happen in Table 34, while Table 35 tells us what lottery

over outcomes m can expect when he truthfully orders w and w′ and when he switches

their ordering, given that everyone else’s preferences are either P−m or Pw↔w
′

−m with equal

probability.

Clearly, under every case, if we take symmetry into account, truthfully ordering w and w′

either yields an outcome that is equivalent to the outcome achieved with the lie, or weakly

stochastically dominates the outcome from the lie. Now, Lemma 5 shows us that an M

cannot be hurt by listing all acceptable Ws, so we know that truth-telling is a best response
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Table 35: Payoffs for the cases

Truth Lie

MPP[Pm, P−m] MPP[Pm, P
w↔w′
−m ] MPP[Pw↔w

′
m , P−m]MPP[Pw↔w

′
m , Pw↔w

′
−m ]

Case A v v v v
Case B v w′ w v
Case C w w′ w w′

Case D w′ v v w
Case E w′ w′ w w
Case F w′ w w′ w

for Ms to W -symmetry.

Note that if we can show that the probability of being in Cases B, D, or E is strictly positive,

then we also show that truthfully ordering the W s strictly stochastically dominates any lie,

although we would need a further restriction to weakly undominated strategies to get truth-

telling as a unique best response.

Lemma 7. In an M -thick, W -symmetric marriage market, under M -Proposing Priority,

if all w ∈ W are playing the same weakly undominated, anonymous strategy, and all m′ ∈

M\{m} are playing anonymous strategies, then all best responses for m ∈M must truthfully

rank his true first choice partner.

Proof. By similar logic to Lemma 3, the submitted preferences are W -symmetric with

respect to m. Consider the argument of Lemma 6 with regard to the true first choice and

some other reported first choice. By the M -thickness assumption and Lemma 4, there

is some probability that those two W s rank m first, meaning that we are in Case E of

Lemma 6, meaning that m does strictly better to truthfully rank his first choice.

Lemma 8. In an M -thick, W -symmetric marriage market, if each w ∈W plays the same

anonymous, weakly undominated strategy, and each m′ ∈ M \ {m} truthfully reveals his

first choice partner, then under M -Proposing Priority, the only best-response for m′ is to

truth-tell.
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Proof. By Lemma 2, weakly undominated means that all W s must truthfully rank their first

choice partner. Since, by an argument analogous to Lemma 3, reported preferences must

be W -symmetric with respect to m, we conclude through Lemma 6 that m cannot do worse

than to truthfully reveal. Further, by Lemma 7, m must also best respond by truthfully

ranking his first choice partner at equilibrium. From here, the M -thickness assumption

allows us to go the rest of the way in showing that, for any two W ’s, the probability of

being in Case E of Lemma 6 is strictly positive, and that the only best response for m is to

truthfully reveal.

Formally, a symmetric equilibium is one in which any two Ms are playing the same

strategy, and any two W s are playing the same strategy.

Proposition 8. In an MW -symmetric marriage market, under M -Proposing Priority,

there exists a symmetric equilibrium in anonymous strategies that involves truth-telling by

the Ms and truncation by the W s. Furthermore, if the market is MW -thick, then all

symmetric equilibria in anonymous, weakly undominated strategies are of this form.

Proof. If every M is playing the same anonymous strategy, and every W is playing an

anonymous strategy, then by Lemma 3,the reported preferences are M -symmetric, and by

Ehlers (2008), all W s can best-respond with a truncation.

Now, consider the problem of finding the best-response of some w ∈ W to the symmetric

M strategies, σM , and a profile σ−w in which all members of W \ {w} are playing the same

mixed strategy over truncations. Call this best response σ∗w (σ−w|σM ). Solving for the best

response is an optimization problem in which w must choose her mix over truncation levels

for each possible number of acceptable Ms her preference could hold. The objective is

linear in the mixing probabilities,4 and the set of possible mixing probabilities is closed and

convex. Hence, we know that the solution exists, it is convex, and by the Theorem of the

Maximum (Mas-Colell et al. 1991, Theorem M.K.6), it is upper hemicontinuous. Hence,

4For a given pure strategy profile, w gets an expected payoff. Her expected payoff from a mixed strategy
is just a probability-weighted sum of these expected payoffs from pure strategies.
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by Kakutani’s Fixed Point Theorem (Mas-Colell et al. 1991, Theorem M.I.2), σ∗w (σ−w|σM )

has a fixed point. Hence, for any symmetric σM , there is a symmetric σW where each W is

best responding to the other players.

Now, in any such setup, the Ms will not necessarily be best-responding. Since the market is

W -symmetric, we know that the reported preferences are W -symmetric, which means that,

by Lemma 6, the Ms can best-respond by truth-telling. Hence, we have found a symmetric

equilibrium of the sort we were looking for.

Now, if strategies are anonymous and weakly undominated, then M -thickness coupled with

Lemmas 7 and 8 requires that all such symmetric equilibria involve Ms truth-telling. Simi-

larly, W -thickness couples with Lemma 2 requires that all such symmetric equilibria involve

W s truncating.

This proposition has an immediate corollary, which is referenced in Footnote 17 of the

main text.

Corollary (to Proposition 8). In the uncorrelated market, under M-Proposing Priority,

there exists a symmetric equilibrium that involves all Ws playing the same truncation strat-

egy and all Ms truth-telling. Furthermore, all symmetric equilibria in anonymous, weakly

undominated strategies are of this form.Also, we can note that so long as the Ms use anony-

mous, weakly undominated strategies, the W s still best-respond with truncation. So long as

the M strategies don’t key in on a label, the W s view them strategically in the same way as

they view truth-telling Ms.

The big implication here is that if an M believes that the equilibrium played will be a

symmetric truncation equilibrium, then truth-telling is the best response. This proposition

extends work done in Roth and Rothblum (1999) and Ehlers (2008) to conditions that lead

to truth-telling for the proposing side under a priority mechanism.5 In a broader sense,

5Roth and Rothblum (1999) and Ehlers (2008) focus on incentives for the receiving side. These papers
also assume that reported preferences are M -symmetric instead of assuming that the true preferences are M -
symmetric and backing out sufficient conditions to ensure that the reported preferences inherit M -symmetry
as well.
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though, it turns out not to matter whether the Ms truthfully reveal.

Proposition 9. In a M -symmetric market, under M -Proposing Priority, for any w ∈W ,

if for any distinct m,m′ ∈ M , Pm and Pm′ are conditionally independent given Pw and

for any m′ ∈ M and w′ ∈ W , Pm′ and Pw′ are conditionally independent given Pw, and

all agents play anonymous, weakly undominated strategies, then w can best-respond with a

truncation. Furthermore, if the market is also W -thick, then any best response must be a

truncation.

Proof. Since the preferences of the Ms are all conditionally independent, it must be that

for any given number of truly acceptable match partners, all lists with that number of ac-

ceptable partners are equally likely. By Lemma 5, the weakly undominated requirement

means that the Ms must list all acceptable W s. The anonymous requirement then means

that these lists must be permutations. Running a uniform distribution through a permu-

tation yields a uniform distribution. Hence, the reported preferences of the Ms must be

uniformly distributed for each number of acceptable partners, meaning that the reported

preferences of the Ms are independent of the strategies they use. Looking back to the proof

of Lemma 3, the fact that the Ms’ reported preferences are conditionally independent and

uniform for each list length, and that M preferences are conditionally independent of W

preferences means that we no longer need that all Ms play the same strategy to get the

same result. This means, that through a proof very similar to that of Proposition 7, w must

best-respond with a truncation.

This proposition has an immediate corollary, which is references in Footnote 17 of the

main text.

Corollary (to Proposition 9). In the uncorrelated market, under M -Proposing Priority, if

all agents play anonymous, weakly undominated strategies, then all W s must best-respond

with a truncation.

Proposition (Proposition 3 in the main text). In the correlated market, under M -

Proposing DA, the unique equilibrium in anonymous, weakly undominated strategies entails
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truth-telling by all agents.

Proof. Under M -Proposing DA, weakly undominated strategies require that the Ms truth-

fully reveal (Lemma 1). Hence, under the assumptions, a given W will receive all offers she

is going to receive in one round of the algorithm. To see this, first note that the top-ranked

W , w1, will receive all offers in the first round of the algorithm. She will be matched to her

declared favorite M , and since this is a declared top-top match, the algorithm will never

break it up. In the next round, the second ranked W , w2, will receive offers from all other

Ms. She will accept her declared favorite M who proposes, and the algorithm will never

break this match (since the only potential M that w2 might defect to is matched to w1,

who he prefers, and w1 was given her declared top M). And so on. So at some point in the

algorithm, a W ’s preference is used to choose a favorite M from a set of Ms that higher

ranked W s have not yet taken. There is no gain to not truthfully revealing, as our member

of W is facing a static decision problem. Since every W has a one-in-five chance of being

the last ranked W by all Ms, there is always a positive loss to dropping.

Proposition (Proposition 4 in the main text). In the correlated market, under M -

Proposing Priority, if all members of M have the same anonymous, weakly undominated

strategy, then all members of W best respond by truthfully revealing.

Proof. Under M -Proposing Priority, weakly undominated for the Ms means that all women

are listed as acceptable (Lemma 5). Under the assumptions, a member of W will receive

all offers in one round of the algorithm. There is no gain to not truthfully revealing then,

as our member of W is facing a static decision problem. Since every W has a positive

probability of being the last ranked W by all Ms, there is always a positive loss to dropping

any M.

Proposition (Proposition 5 in the main text). In the correlated environment, there

exist cardinal payoffs that rationalize an equilibrium where all Ms and W s truthfully reveal

their preferences.
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Proof. For each M , consider a payoff vector π = (p1, p2, p3, p4, p5) which is constructed as

p5 = 1, p4 = p5 · |M | + 1, p3 = p4 · |M | + 1, etc. In the correlated M -Proposing Priority

environment, each M has a 1/|M | chance of being the first choice of any W. Thus, from

the perspective of an M with payoffs described by π, even in the worst case when all other

Ms also rank M ’s first choice as first, the M would still prefer the 1/|M | chance of getting

its first choice than a certainty of getting its second choice. Similarly, an M failing to get

its first choice would prefer the 1/|M— chance of getting its second choice to a certainty

of getting its third choice, and so on. Hence all Ms truthfully reveal, and by the previous

Proposition, the W s must as well.
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B.3. Model Estimation

The reparameterized EWA model suggests the need to estimate parameters for the learning

process δ, φ, and λ; an initial probability of play for each strategy (with initial probabilities

either shared across individuals or estimated separately for each subject); and ‖A0‖ (again,

either shared across individuals or estimated separately by subject or group), representing

the weight of initial cognition in units of payoff amounts. In a Bayesian model, this initial

cognition would be akin to pseudo-observations of play from previous rounds.

This suggests a parameter space of at least 329 dimensions, with still higher dimensionality

if we allow probabilities of play and the weight of initial cognition to vary across individuals.6

This is computationally intractable due to the large number of initial probabilities, even

when we assume assume all initial probabilities are shared by all players in a treatment.

However, most (225 of 325) strategies are never played in any round of any treatment.

Moreover, only 20 strategies are ever played in the first round of any session, and only

11 strategies are played more than once in any first round. This suggests that estimating

initial probabilities for all 325 strategies is not only computationally infeasible, but also not

necessary for us to understand the dynamics of play. Instead, for each of the four treatment

groups, we estimate the initial probabilities of play for all strategies played more than once

in any initial round, and a single joint attraction toward playing all other strategies. This

reduces the search space to 15 dimensions (three learning parameters, 11 probabilities, and

the initial cognition weight).7

Let us denote strategies by five digits, denoting the true preference ranks of the player’s

submitted preferences by the digits themselves, and the submitted preferences by the order

the digits. Let the symbol ∅ represent a match listed as unacceptable in the submit-

ted preference list. For instance, the strategy {12345} represents complete truth-telling,

6The number of possible strategies in a round is 5! + 4×
(
5
1

)
+ 3!×

(
5
3

)
+ 2!×

(
5
2

)
+ 1!×

(
5
1

)
= 325

7Note that we actually want to estimate 12 probabilities that are mutually exclusive and comprehensively
exhaustive, and therefore must sum to 1. By estimating 11 of the probabilities directly, we get the 12th for
free).
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while {12354} represents a permutation strategy with the least preferred options listed in

reverse order. A truncation strategy such as {123∅∅} consists of listing only the most

preferred three preferences. These 11 strategies played more than once in an initial round

include both complete truth-telling {12345} and the four possible truncation strategies:

{123∅∅}, {12∅∅∅}, {1234∅}, {1∅∅∅∅}. The six remaining strategies are permutations,

or combinations of permutation and truncation: {21345}, {213∅∅}, {13245}, {21435},

{12354}, {23145}. Thus, this estimation strategy allows us to measure differences in initial

probability to truth telling and various truncation strategies, and to use these parameters

to follow the trajectory of attractions over the course of the game. For the remaining strate-

gies—those played either once or not at all in an initial round—we estimate a single initial

attraction in each treatment. While limiting our estimation of individual attractions to

repeated initial strategies requires a post hoc justification, we believe this is necessary to

make the model tractable, and allows the use of this model in a much more complex space

than usual. This approach allows us to capture the differences between truth-telling and

truncation that we care about, while significantly simplifying the strategy space. Estimat-

ing a joint attraction for all unplayed strategies, also allows the model to scale with payoff

values. Thus, this approach is flexible to applications with different payoffs.

B.3.1. Technical Details

To maximize over the rugged likelihood terrain, we implement the stochastic, derivative-

free Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) optimizer. CMA-ES

is designed to be robust to local optima, ridges, and discontinuities in ill-conditioned and

non-separable problems (Hansen, 2016). We estimate standard errors using a numerical

approximation of the Hessian, and transform to our reparametrized EWA via the delta

method. We executed all maximum likelihood estimation in Java.

For the treatment-level estimation, we directly estimate initial probabilities of 10 of the

11 strategies played initially more than once, and an additional probability shared among

all other strategies. We estimate one strategy (truth-telling, {12345}) indirectly, by taking
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one minus the sum of the other probabilities. This decision was merely practical: our

optimizer accepts simple boundaries (a minimum and a maximum) for each of the estimated

parameters, so we run the risk at each iteration of the optimizer to have the sum of the

directly-estimated probabilities sum to more than one. By leaving out the most commonly

played strategy, we reduce the frequency of this event. When the sum of the randomly-

drawn probability proposal points is greater than one, we instruct the log likelihood function

to return an arbitrarily large negative value, encouraging the optimizer to seek elsewhere.

For the practical purposes of estimation, we imposed search boundaries on the estimated

parameters as follows:

φ ∈ [0.00001, 1000]

λ ∈ [0.00001, 1000]

δ ∈ [0, 1]

||A0|| ∈ [0, 10, 000]

Initial probabilities ∈ [1e− 9and1.0]

∑
Initial probabilities = 1
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