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interact with their patients (customers) in a facility that introduces significant heterogeneity in necessary
walking distance. Our findings show that even in services, the spatial organization of a facility can lead to
servers with discretion over task timing using that discretion in ways that help the server but that lead to
reduced customer quality. In chapter two, we examine the hospital intensive care unit (ICU) to investigate the
impact of exogenous medication delays, introduced by shift changes, on granular patient health outcomes. The
ICU is an ideal setting for this research because patients are often in critical condition and require medications
to remain in healthy states (as measured by vital signs). Using patient vital sign data electronically archived
every few minutes, merged with the electronic medical record and the medication order/delivery database, we
are able to estimate the marginal impact of a minute of medication delay on patient vital status following the
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Edward, Gemma, Lucy, and Özge, thank you so much for your unwavering friendship and

support throughout the years - I could not imagine going through this without you! Aman,

Celia, Chloe, Dawson, Jiding, Park, Rowena, Tan, and Vanitha - thank you for forming the

rest of my OID PhD student family, it is all of you that made coming to work each day a

joy, and I look forward to staying in touch as we continue to grow as academics!

Of course, none of this would have been possible without my family. Mom and Dad, thank

you for teaching me to chase my own goals, and for always being my loudest cheerleaders.

Your love and support throughout the years have made all the difference. Thank you to

my grandparents, for not only showing me what a life of learning looks like, but also the

importance of being good and doing good within the world we live in. To my little brother

Lloyd, thank you for your undying support of my continuous pursuit of education - it would

not have been the same without your humor and encouragement. I promise that this will

be the last graduation ceremony of mine you’ll have to sit through.

Lastly, a heartfelt thanks to Min, for challenging me when I needed a push, for supporting

me when things got tough, and for reminding me to believe in myself when it slipped my

mind. You inspire me each day with your thirst for knowledge, and I look forward to always

pushing each other to be the best researchers we can be.

v



ABSTRACT

EMPIRICAL INVESTIGATIONS INTO THE CAUSAL IMPACT OF HEALTHCARE

PROVIDER BEHAVIOR ON PATIENT CARE

Lesley Meng

Christian Terwiesch

This dissertation in operations management focuses on the study of healthcare operations

management using large-scale empirical datasets and econometric methods. In chapter one,

we utilize infrared location tracking data to study the impact of physical facility layout

on how service workers organize their tasks. We focus on the hospital emergency depart-

ment as a service setting where nurses (servers) have discretion over how they interact with

their patients (customers) in a facility that introduces significant heterogeneity in necessary

walking distance. Our findings show that even in services, the spatial organization of a

facility can lead to servers with discretion over task timing using that discretion in ways

that help the server but that lead to reduced customer quality. In chapter two, we examine

the hospital intensive care unit (ICU) to investigate the impact of exogenous medication

delays, introduced by shift changes, on granular patient health outcomes. The ICU is an

ideal setting for this research because patients are often in critical condition and require

medications to remain in healthy states (as measured by vital signs). Using patient vital

sign data electronically archived every few minutes, merged with the electronic medical

record and the medication order/delivery database, we are able to estimate the marginal

impact of a minute of medication delay on patient vital status following the late medication.

Beyond providing actionable, data-driven insight to managers and healthcare practitioners

surrounding how we can better enable workers to maximize effectiveness and efficiency, the

research in this dissertation utilizes novel large-scale datasets, unique econometric tech-

niques, and innovative measurement of health outcomes.
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CHAPTER 1 : Introduction

In my dissertation, I use novel large-scale datasets to understand how healthcare providers

can make operational improvements to achieve better outcomes. In chapter one, I study the

impact of spatial organization-level factors such as facility layout on individual healthcare

provider behavior in the emergency department (ED). In chapter two, I focus on the patient

health implications of delayed medications due to temporal organization-level factors such

as shift changes. More generally, I am interested in uncovering the (often hidden) causal

impact of management decisions at the organization level on healthcare worker behavior,

and subsequently, its impact on the effectiveness and efficiency of patient care. My research

interest in empirical healthcare operations management combines my past education in

medical science and public health with my doctoral training in operations management,

econometrics, and causal inference.

The data that has enabled my research comes from the electronic collection and storage of

increasingly larger and more granular types of information. Examples of the terabyte-scale

datasets used in my work include infrared nurse location tracking data in the emergency

department, and patient vital sign data electronically archived every few minutes for the

duration of a patient’s stay in the intensive care unit (ICU). Combining detailed datasets

like these with in-person interviews, nurse shadowing, and rigorous econometric methods, I

am able to investigate and identify more details surrounding provider behavior and patient

outcomes than previously possible using only the electronic medical record (EMR).

In chapter one of my dissertation, “An Econometric Analysis of How Facility Layout

Impacts Care Provision in the Emergency Department”, we utilize infrared location

tracking data to study the impact of physical facility layout on how service workers organize

their tasks. We focus on the hospital emergency department as a service setting where nurses

(servers) have discretion over how they interact with their patients (customers) in a facility

that introduces significant heterogeneity in necessary walking distance. We combine the

1



tracking data with patient EMR data, bedside call data, and the architectural floor plan, to

show that nurses reduce their total walking distance by decreasing the frequency of visits to

patient rooms far away. We find that this behavior is consistent with batching their tasks for

these patients in rooms farther away rather than reducing their tasks. While this behavior

decreases necessary nurse walking, it comes at the expense of diminished care quality. We

find that patients in rooms farther away press the call button more frequently, an action

that is linked with poor patient satisfaction. Our findings show that even in services, the

spatial organization of a facility can lead to servers with discretion over task timing using

that discretion in ways that help the server but that lead to reduced customer quality.

Examples of other service settings where our results would generalize include restaurants,

airlines, maintenance services, and surveillance security services, among others.

In chapter two, “The Impact of Medication Delays on Patient Health in the ICU:

Estimating Marginal Effects Under Endogenous Delays”, we examine the ICU to

investigate the impact of exogenous medication delays, introduced by shift changes, on

granular patient health outcomes. The ICU is an ideal setting for this research because

patients are often in critical condition and require medications to remain in healthy states

(as measured by vital signs). Using patient vital sign data electronically archived every

few minutes, merged with the electronic medical record and the medication order/delivery

database, we are able to estimate the marginal impact of a minute of medication delay

on patient vital status following the late medication. We use temporal organization-level

factors such as shift changes, physician rounding, and care coordination activities to identify

the exogenous portion of delays to find that delaying certain groups of medications result in

an increased probability that the patient will enter an unhealthy state following the delay.

The interesting, and practically relevant, finding is that the magnitudes of these effects vary

significantly by medication type, which allows us to generate a priority list of medications

that could help providers focus their resources during busy times (such as shift changes

and physician rounding). This work generalizes to services where delay can lead to an

undesirable outcome and prioritization of attention is important due to limited resources;

2



examples of this include emergency services such as firetrucks, ambulances, and project

management, among others.

My goal in conducting this research is to provide actionable, data-driven insight to managers

and healthcare organizations surrounding how we can better enable workers to maximize

effectiveness and efficiency in light of organizational constraints. I am excited at the possi-

bility of expanding my future contributions to other clinical settings, different econometric

methods, and possibly even other areas of personal interest, such as environmental sustain-

ability.
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CHAPTER 2 : The Impact of Facility Layout on Service Worker Behavior: An

Empirical Study of Nurses in the Emergency Department

Joint work with Robert J. Batt and Christian Terwiesch

“In the ordinary hospital the nurses make many useless steps. More of their time is spent

in walking than in caring for the patient. This hospital is designed to save steps. Each floor

is complete in itself, and just as in the factories we have tried to eliminate the necessity for

waste motion, so we have also tried to eliminate waste motion in the hospital.” -(Ford et al.,

1922), Henry Ford describing his vision for the hospital of the future

2.1. Introduction

The physical layout of an operation can have a substantial impact on process flow and

quality. The Lean Operations movement identified motion as one of the seven sources of

waste, and thus improving facility layout to reduce the cost of walking and wasted motion

is a key element of the Lean improvements (Ohno, 1988). While such effects have been

well studied in manufacturing environments (e.g., Vollmann and Buffa, 1966; Rosenblatt,

1986; Benjaafar, 2002) and recently have also been studied in the field of warehouse facility

design (Roodbergen, 2001; Heragu et al., 2005; Tompkins et al., 2010) and pick-worker

performance (Batt and Gallino, 2017), the effects of physical layout on the productivity

and quality of services has received much less attention. This is surprising because in

many service settings, especially those in knowledge intensive domains such as healthcare,

engineering, banking, or education, the work to be executed by an employee is subject to

a substantial amount of discretion, which could be used by the employee to reduce motion

waste. For example, it seems unlikely that a warehouse employee picking items for an online

order will decide to leave an order unfulfilled when fulfilling it might be associated with a

substantial amount of walking. In the domain of research and engineering, however, it has

long been documented through self-reported surveys on communication patterns that the

architectural design of the office building can prevent cross-functional communication from

happening (Allen, 1970), thus preventing two employees from communicating with each

4



other because their offices are located far away from each other. The aim of this article is

thus to analyze the effects of the physical facility on the productivity and quality of work

provided by skilled service workers.

To study this aim, we choose the hospital emergency department (ED) as the empirical

domain for our research. In this environment, customers (patients) remain largely in one

location, and servers (nurses, doctors, etc.) travel to the customer repeatedly to provide

a face-to-face service. Though one might believe that the care provided by the nurses and

doctors is entirely determined by the medical needs of the patients, hospital facilities have

a physical layout in which the care for some patients requires more walking and movement

by care providers compared to other patients. Many EDs are constructed with a central

work area for care providers (commonly known as the nurses’ station), which serves as a

hub for most work, much of which is digital and can thus be done away from the bedside.

The distance from this hub to the point of care can vary substantially across patients and

hence might lead to some variation in care. In particular, since walking is “costly” in terms

of time and energy for the provider, it is plausible that care providers attempt to reduce

the total distance walked by factoring such movements into their decision making process

of which patient to see at what time. Such discretion about which patient to see at what

time is an important difference between skilled service workers and plant and warehouse

operations.

This article is based on a dataset that captures how nurses move through the emergency

department of a large hospital. For a period of five months, our dataset combines patient

and encounter level data (extracted from the electronic medical record system), detailed

data of nurse movements throughout the ED (each nurse was equipped with a wireless

device that submitted location data to a central database every 6 seconds), patient call-

button activation and response timestamps, and measurements from the architectural floor

plan of the ED. A large-scale dataset as granular and objective as this one uniquely enables

us to compute the nurse-station-to-patient-room distance (or simply “distance”) for each

5



patient and to analyze how this distance impacts clinical variables such as the length of

stay (LOS), and how often patients press the nurse call button, both of which have been

shown to be important determinants of the quality of the patient experience (Pines et al.,

2008; Tzeng et al., 2012). This allows us to make the following contributions.

1. We find that nurses in our study setting walk 4.9 miles per shift, on average, which

occupies 85 minutes per day, corresponding to 12% of their total work time. This

is consistent with prior literature documenting how far nurses walk. We extend this

work to show how nurses make adaptations to their work behavior to mitigate some

of the fatigue associated with all this walking distance.

2. We find that nurses make fewer visits to patient rooms that are farther away from the

nurses’ station, but the average visit duration is longer, suggesting a batching of tasks.

However, the total time a nurse spends with the patient each hour remains unchanged

with room distance. The net effect of this behavior on the nurse is a reduction in the

total distance walked per hour.

3. We test for indirect effects of distance on the patient experience and find that patients

in more distant rooms observe longer waits between nurse visits and press the nurse

call button more often, an action that differs in frequency by patient race and has

previously been shown to be associated with decreased patient satisfaction. While

some call button activations lead to a physical nurse visit, many do not. Further, we

show that nurses are less likely to physically visit a patient in response to a call if the

patient is in a distant room.

4. We do not find an association between room distance and patient LOS.

Together, these findings show that skilled service workers, just like their counterparts in

plant or warehouse operations, spend a sizable portion of their work time in transit. How-

ever, there exists a second, more subtle effect of distance in the case of skilled service

workers. In the absence of clear work instructions, skilled service workers have substantial
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discretion over how they organize their work, which they use to reduce walking distance by

batching tasks. Interestingly, we find that nurses working in a busy ED are able to provide

an equal amount of care to patients in rooms of varying distances away while batching their

tasks. However, this results in longer wait times between nurse visits for patients in rooms

farther away, which results in increased nurse call button activations coming from these

rooms. Patients may be using the call button as a means to minimize the time they have to

spend waiting, however this strategy is not entirely effective because nurses are less likely

to react to calls coming from distant rooms with a physical visit. Thus, patients in rooms

farther away are not only made to wait longer between visits, but their calls for attention

are more likely to be ignored. Short of redesigning the facility layout to mitigate these

effects, management can assist workers in minimizing the negative effects associated with

task batching by creating an infrastructure for additional operational transparency to the

customer, a strategy that has been shown to improve customer satisfaction with services

where there exist delays (Buell et al., 2016).

2.2. Literature Review

Our work builds upon three main streams of literature: empirical studies of worker behavior

in service operations, the medical literature studying healthcare provider behavior, and

facility layout studies in the architecture domain.

Many of the prior empirical studies of worker behavior in the Operations Management

literature have relied on customer-centered data. This is at least partly because modern

record-keeping systems, such as electronic medical record (EMR) systems in hospitals and

point-of-sale systems in restaurants, capture granular time-stamped data on customer en-

counters. Using such data, prior work has analyzed such topics as the impact of workload

on productivity (KC and Terwiesch, 2009; Tan and Netessine, 2014) and worker discretion

(Jaeker and Tucker, 2017; Batt and Terwiesch, 2016; Freeman et al., 2017), the impact of

interruptions (Cai et al., 2017), delays (Chan et al., 2016), and performance feedback (Song

et al., 2017) on productivity, and the impact of multitasking on performance (KC, 2013).
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In contrast, much of the literature studying healthcare provider behavior directly using

provider-centered data has, until recently, relied on observational or survey data. For ex-

ample, a study using direct observation of ED nurses found that on average nurses spend

32% of their time on direct patient care, 47% on indirect patient care, and 21% on non-

patient care activities (Hollingsworth et al., 1998). Similarly, Tucker (2004) observed nurses

across multiple hospitals to describe the impact of operational failure on their work. Stud-

ies on hospital facility layout in the healthcare architecture literature have utilized provider

survey data to compare the impact of nurse-patient visibility (Bosch et al., 2016) and ward

layout (Hua et al., 2012) on patient satisfaction and length of stay (Soriano-Meier et al.,

2011).

The recent introduction of pedometer, radiofrequency identification (RFID) and infrared

(IR) tracking of individuals has allowed for the large-scale collection of a much more granular

and objective source of data to describe provider behavior. For example, Welton et al. (2006)

use pedometer data to show that nurses walk an average of 4.1 miles during a typical 12-

hour inpatient unit shift, which translates to approximately 70 minutes of time that is

not available for care or rest. Hendrich et al. (2009); Choudhary et al. (2010) and Fahey

et al. (2013) show using RFID tracking data that the layout of a hospital inpatient medical

unit significantly influences nurse walking patterns, and Staats et al. (2017) uses this type

of data to examine nurse adherence to process compliance such as hand-washing. Digital

location tracking data has also been used in the marketing literature, where by attaching

location tracking devices to shopping carts, researchers have been able to study the shopping

path behavior of grocery store customers (Hui et al., 2009, 2013). Collecting datasets as

granular and objective as these using observation or survey methods would have required

an insurmountable number of labor hours.

We contribute to this work along a methodological as well as a theoretical dimension.

On the methodological dimension, we compile a unique and novel dataset that combines

provider tracking data, patient EMR data, and patient bedside call data. Compared to the
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observational or survey based work done before, such data is objective and available at a

very large scale. Compared to the cited studies of hospital provider behavior using only

location tracking data (such as in Hendrich et al. (2009); Choudhary et al. (2010); Fahey

et al. (2013)), we expand the research scope beyond descriptive analyses of provider behavior

by linking this type of location tracking data to the patient electronic medical record and

patient bedside call data to cleanly study the impact of facility layout on provider behavior,

and subsequently, patient care quality. For example, we track 217 nurses, 29,430 patients,

and a total of 4,150,000 recordings of a provider location at a particular time; this enables

us to perform a very different type of econometric analysis.

On the theoretical dimension, we propose a framework that disentangles two effects of

distance on work behavior. Prior work has entirely focused on the direct effect of distance,

demonstrating that distance leads to workers spending a large portion of their time in

transit leading to reduced productivity. This effect, as we discussed above, is common

across manufacturing plants and hospitals alike. However, we also identify an indirect effect

of distance in settings where workers have discretion surrounding how they organize their

work. We propose that service workers use this discretion to reduce the time they spend

walking. In particular, we show that they batch tasks, which trades off how long they have

to spend walking with the service requirement of the customers they are serving. Patients

in rooms of varying distances from the nurses’ station all receive the same amount of nurse

time per hour, but patients in rooms far away end up experiencing a longer wait time

between visits. This comes at the expense of customer impatience, and a lower perceived

service quality.

2.3. Empirical Setting & Data

Our data come from a large, urban, academic medical center with an ED patient volume of

over 72,000 patients per year. This ED contains 33 patient rooms, 7 hallway beds, a trauma

bay for high acuity patients, and a fast-track area for low acuity patients. Figure 1 shows

the floor plan of the 33 main patient rooms. The rooms are labeled and the nurses’ stations
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Figure 1: Layout of the 33 Core ED Patient Rooms; shaded region indicates nurses’ station.

are shaded in grey. To reduce patient heterogeneity and to ensure accurate location data,

we focus only on the patients placed in the 33 main patient rooms, however we include all

patients in the relevant census variables.

The patient experience follows a process typical to many EDs in the United States (e.g.,

Song et al., 2017; Batt and Terwiesch, 2016). Upon arrival to the ED, patients undergo a

triage process where they are assigned an Emergency Severity Index (ESI) value ranging

from 1 (most severe) to 5 (least severe) (Gilboy et al., 2005). After triage, patients wait

in the waiting room to be assigned a treatment bed. Bed assignment is generally made

on a first-come-first-served basis by decreasing severity level. The assignment of nurse to

patient is based on the treatment room to which the patient is assigned. Each treatment

room belongs to a fixed cluster of three or four adjacent rooms, and the ED nurses sign

up first-come-first-served for a cluster at the beginning of each shift. Nurses have primary

responsibility for any patient placed in the rooms for which they signed up. There are three

nursing shifts at this ED, which run from 7am through 7pm, 3pm through 3am, and 11pm

through 11am.

Once in a treatment bed, treatment occurs over multiple interactions with care providers
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who come to the patient’s room. Once ED treatment is complete, patients are either

discharged home or moved to a bed in an inpatient unit in the hospital. Following (Song

et al., 2015b), we refer to the time from bed assignment to being ready to leave the ED as

the “length of stay” (LOS).

While most care provider interactions are initiated by the provider, the patient has the

ability to summon a nurse by pressing a call button located on a bedside controller. Pressing

the call button both illuminates a call light outside the room and initiates a phone call to a

clerk at the nurses’ station. The clerk speaks with the patient and then either assigns the

call to a nurse (generally, the nurse with primary responsibility for that room and patient)

to visit the patient, or handles the call themselves from the nurses’ station. Sometimes a

nurse sees the call light outside the patient room and visits the patient without prompting

from the clerk. The call is recorded as “resolved” when either a nurse physically visits

the patient in the room and turns off the call alert, or the patient’s concern or request is

addressed by the clerk over the phone without a physical visit and the clerk turns off the

call alert. Approximately 62% of calls result in an immediate physical visit by the nurse.

We bring together four sources of data from our study hospital to create our analysis

dataset: patient-level EMR data, nurse real-time location tracking data, call button data,

and measurements from the architectural floorplan of the ED. The data spans five months

in 2013, during which time the ED saw 29,430 patients. After removing the critically ill

patients seen in the trauma bay and the more stable patients seen in the fast-track area,

we have sample of 15,595 patients seen in the main treatment rooms throughout our study

period.

In this ED, patient-to-bed assignment occurs based on (1) the severity of the patient, and

(2) load balancing patients across working nurses by the “charge nurse”. To avoid potential

endogeneity concerns resulting from room assignment based on variables observed by the

charge nurse but not by us researchers, we reduce the dataset to patient room assignments

that occurred when there was only one free room in the ED. In these scenarios, the charge
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Figure 2: Distribution of ED Rooms Becoming Available

nurse has only one option for where to place the new patient. The ED was in this state for

63% of patient encounters during our study period (9,880 patient encounters of 15,595 total

patient encounters); we conduct all of our analyses on this subset of the data. To ensure

that the one free room is consistently randomly sampled across the 33 available rooms, we

plot the frequency of observations across the rooms to find that they are roughly equal in

frequency (Figure 2). We repeat the main analyses on the full dataset in the Appendix and

find qualitatively similar results.

Table 1: Summary Statistics of Key ED Patient-Care Variables

Statistic (n = 9,880) Mean Median 5th 95th

percentile percentile
Patient ESI 2.7 3.0 2.0 4.0
Age 46.9 47.0 20.0 79.0
Admitted (binary) 29.1%
Female (binary) 59.0%
Lab Orders (#) 5.2 5.0 0.0 13.0
Wait Room Census (#) 12.2 11.0 2.0 26.0
ED Bed Census (#)* 47.3 47.0 40.0 56.0
*Census includes Fast Track & Trauma

The nurse location tracking data comes from unique infrared identification tags that are

worn by each nurse. This location tracking system was installed as part of a phone and

communication system which allows calls for nurses to be routed directly to their location.

Every six seconds the tag emits an infrared signal which is picked up by one of the 147
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receivers located throughout the ED, including in each patient room. This generates a

location record in the database. Our data contain over four million such location records

created by 217 unique nurses over the five months. Combining this data with the architec-

tural floor plan of the ED, we can identify the distance traveled by nurses each shift as well

as the frequency and duration of each visit to a patient room. Summary statistics of our

data show that for each hour of work in the ED, nurses walk an average of 669 meters, with

a median of 520 meters, and a standard deviation of 554 meters. This translates to nurses

walking 4.9 miles per shift, on average, which occupies 85 minutes per day, corresponding to

12% of their total work time. These statistics are consistent with published metrics of nurse

walking distance; Welton et al. (2006) use pedometers to find that nurses walk around 4.1

miles during an equally long shift in an inpatient unit.

Besides distance, the 33 patient rooms in the study ED vary over two other characteristics:

physical room size and physician staffing. 27 of the patient rooms are ‘normal’ sized, while

four rooms are larger and two rooms are smaller. Despite the difference in square-footage,

all the rooms are identically equipped and are capable of serving any ED patient. Regarding

staffing, the ED rooms are split almost evenly into three different levels of physician staffing.

‘Normal’ physician staffing involves one attending and one resident. ‘Low’ physician staffing

involves one resident and one physician assistant, and ‘high’ physician staffing involves one

attending and two residents. The reason for these differences in staffing is to allow for

matching of the severity of patients to the physician staffing level by way of room assignment.

However, due to high levels of patient load in the ED, matching is often not possible and

physicians help each other out when there is a complex patient in the unit. We control

for these room size and physician staffing fixed differences in our model estimation; the

distribution of these attributes across room distances are outlined in the Appendix.

To identify the effect of patient room location on nurse work behavior, we code the distance

of each patient room from the nurses’ station based on actual travel distance; we measure

the distance from the closest seated position in the nurses’ station to the patient’s bed in
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each of the patient rooms in meters. The farthest patient room is approximately 45 meters

away, whereas the closest room is 10 meters away.

2.4. Research Framework & Hypotheses Development

To explore the impact of patient room distance on nurse work behavior and patient care, we

separate our hypotheses into two sections. Section 2.4.1 outlines our hypotheses surrounding

how room distance impacts nurse work behavior. Section 2.4.2 outlines our hypotheses

surrounding how room distance indirectly affects the patient care experience.

2.4.1. Impact of Room Distance on Nurse Behavior

To explore the relationship between patient room distance and nurse visit behavior, we break

down nurse-patient visit patterns into its various components and examine the impact of

distance on these elements separately.

Nurses perform many types of tasks as part of treating each patient. Some of these tasks,

such as note-making, preparing medications, and labeling labs are performed at the nurses’

station. Indeed, the nurses’ station serves as a “home base”, with nurses spending 49%

of their time at the station. However, many nursing tasks are performed at the bedside

in the treatment room. Much of this work is routine, for example patient interviews,

physical examinations, vital sign readings, administering medications, and managing pain

and comfort, among others. While these tasks are of varying levels of importance and

urgency, many of them are not time-critical and can be delayed somewhat without major

adverse effects to the patient (Tucker, 2004). Therefore, nurses have some discretion over

when they visit the patient to perform these tasks, and perhaps even over which tasks are

performed. Because nurses have discretion over the “what” and “when” of most routine

tasks, they might use this discretion to reduce distance traveled.

Prior literature using only observational data to describe nurse work behavior has shown

that “the number of entries into patient rooms was negatively correlated with average time
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per visit [...] The data describe two overall strategies of nurse mobility patterns: fewer,

longer visits versus more frequent, shorter visits” (Hendrich et al., 2009). However, the

authors do not explore when or why nurses might vary between these two styles of visits.

This leads to our first hypothesis.

Hypothesis 1 Hypothesis 1: The number of nurse visits to a patient room per patient

hour decreases with room distance.

The null hypothesis is that distance has no impact on the number of times a nurse visits a

patient and that the delivery of care is entirely driven by medical variables. If Hypothesis 1

is supported and nurses are visiting distant rooms less frequently, it is possible that this is

because nurses are skipping some tasks for those patients. Oliva and Sterman (2001) refer

to this as “cutting corners” and Batt and Terwiesch (2016) refer to it as “task reduction.”

Another possibility is that nurses are batching tasks together. For example, rather than

walking to a distant patient room every time a routine task arises, the nurse may wait

until a few tasks need to be done and then make a single trip to the patient to perform

multiple tasks. Prior work shows that healthcare providers sometimes batch tasks when

they believe it saves them time (Ibanez et al., 2017). Nurses could also batch tasks across

nearby rooms rather than within a room, however this is rarely observed in our dataset.

From conversations with the nurse team at the study hospital we learn that nurses typically

like to return to the nurses’ station between visits to patient rooms in order to write patient

notes from the previous visit and prepare new medications, labs, etc. for the next patient

visit. While we cannot directly observe the tasks performed by the nurse in the patient

room, we do observe the amount of time the nurse spends in the room, which we take as

a proxy for the number of tasks being performed. If nurses are engaging in task reduction

then we would expect the total time nurses spend with patients per hour to be lower for

distant rooms. Otherwise, distance should have no effect on the time spent with patients

each hour. We test for this in our next hypothesis.

Hypothesis 2 The total nurse-patient interaction time per patient hour decreases with
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room distance.

If Hypothesis 2 is supported and the total amount of nurse-patient interaction per hour

decreases with an increase in the distance of patient rooms from the nurses’ station, this

would suggest that nurses are engaging in task reduction for the patients in rooms far away.

If Hypothesis 2 is not supported, then all patients receive the same amount of aggregate

time with the provider each hour. However, if patients in rooms far away receive this nurse

time in fewer visits, the visits made to patient rooms far away must be of longer duration.

The pattern of fewer visits but each of longer duration to distant rooms resembles a batching

strategy to reduce the amount of necessary walking. We test for this batching behavior by

also looking at the average duration of visits to the patient room. If nurses are batching

tasks for patients in distant rooms (and not cutting corners) then the average duration of

a visit should be longer as the nurse performs more tasks in a single visit.

Hypothesis 3 Mean nurse visit duration increases with room distance.

Finding support for both Hypothesis 1 and Hypothesis 3, that is distant rooms receive fewer

but longer nurse visits, is evidence of nurses batching tasks and reducing walking.

2.4.2. Impact of Room Distance on the Patient Experience

We next consider the impact on patients of the above hypothesized changes in nursing

behavior due to room distance. If nurses batch tasks for patients in distant rooms to save

on walking, then the time interval between visits likely grows.

Hypothesis 4 The mean time between nurse visits to the patient room increases with room

distance.

If Hypothesis 4 is supported, this can have at least two effects on the patient’s care experi-

ence. First, as the patient is left alone for longer periods of time, the patient is more likely

to press the call button to signal for help.

Hypothesis 5 The number of call button activations per patient hour increases with room
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distance.

The second possible impact of distance-based task batching is increased LOS. As nurses

batch tasks, some tasks happen later than they otherwise would have. If some of these

delayed tasks are on the critical path of treatment, then the LOS of patients in distant

rooms will be longer than patients in nearby rooms. In addition, increased distance might

directly impact LOS simply due to the additional time it takes care providers to walk to a

distant room.

Hypothesis 6 The patient length of stay increases with room distance.

Prior work has shown that both calls and the response time to calls are drivers of patient

dissatisfaction with care (Tzeng et al., 2012). In addition, patient calls are perceived by

nurses as being disruptive of work flow (Kalisch and Aebersold, 2010; Gurvich et al., 2017)

and cause the delay of other tasks (Cai et al., 2017). Increased LOS has also been shown

to be a driver of patient dissatisfaction (Pines et al., 2008; Herring et al., 2009) and also

reduces the productivity of the ED. Further, ED LOS is a key hospital performance metric

that is reported to the Centers for Medicare & Medicaid Services for public review (Carrier

et al., 2014).

2.5. Econometric Specification

To test these hypotheses, we estimate six regression models with the following dependent

variables: Visits per Hour, Duration per Hour, Duration per Visit, Time Between Visits,

Calls per Hour, and the ED LOS. These dependent variables are constructed at the patient

encounter level and we utilize ordinary least squares (OLS) regression to estimate these

models. The summary statistics for these variables are shown in Table 2. The independent

variables are identical across the six models. We choose to use OLS to allow us to keep a

linear relationship between distance and our response variables. To ensure the robustness of

our estimates, we repeat the analysis using robust regression (Huber’s M-estimator, (Huber

et al., 1964; Huber, 2011)) in Section 2.8 and find qualitatively identical results.
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Table 2: Summary Statistics of Dependent Variables

Statistic (n = 9,880) Mean Median 5th percentile 95th percentile
Visits per Hour 2.54 2.13 0.44 5.95
Duration per Hour (nurse-mins) 5.60 4.13 0.29 11.90
Duration per Visit (mins) 2.18 1.86 0.33 5.07
Time Between Visits (mins) 25.87 19.26 5.30 66.91
Patient Calls Placed (calls/hour) 1.31 1.02 0.00 4.09
LOS (hours) 5.66 4.70 1.67 12.56
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Our main estimation equation is:

Yij = βo + βpDISTij + Wjβq + Xijβr + Ziβs + εij

We use index i for each unique patient visit to the ED and j for rooms. Y stands for the

relevant dependent variable we are testing. The room-specific variables (W) control for

the room size and staffing characteristics described in Section 2.3. The encounter-specific

controls (X) include the ESI level of the patient, the patient’s age, the patient’s gender

(male or female), the patient’s race (Asian, Black, Hispanic, White, or Unknown), the

physician assigned to the encounter, the nurse assigned to the encounter, the number of

diagnostic orders for the encounter, the chief complaint of the patient, whether the patient

was admitted, the census in the ED wait room, and the bed census in the ED. The values

captured by the categorical variables of patient gender and race were based on the dataset;

reference categories used in estimation for the patient’s gender and race are male and White,

respectively. The time-related controls (Z) include the month, the hour of day, and the shift

during which the patient arrived. These controls are listed in Table 3. We define patient

room distance (DISTij) as the actual walking distance from the closest seated position in

the nurses’ station to the patient’s bedside, measured in units of 10 meters in length.

Table 3: Control Variables for Main Estimation Models

Control Group Controls
Room-Specific Controls W Physician Staffing Level (High, Regular, Low)

Room Size (Large, Regular, Small)
Encounter-Specific Controls X Patient ESI

Patient Age
Patient Gender
Patient Race
Assigned Physician
Assigned Nurse
Number of Diagnostic Orders
Patient’s Chief Complaint
Whether Patient was Admitted
ED Wait Room Census
ED Bed Census

Time-Related Controls Z Month
Hour of Day
Nurse Shift
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We now turn to testing the hypotheses laid out in Section 2.4 by estimating Equation 2.5

with each of the dependent variables as specified.

2.6. Results: The Impact of Room Distance on Nurse Behavior

The results for this estimation are presented in Table 4; all controls are listed in Table 16

and standard errors are clustered at the room level. Model 1 is estimated with the number

of nurse visits per hour as the dependent variable, and our results show that rooms more

distant from the nurses’ station receive fewer nurse visits per patient hour (βp = −0.390,

p < 0.001). This supports Hypothesis 1. We find that every additional 10 meters of distance

from the nurses’ station leads to 0.39 fewer visits per hour (a 15% reduction from the mean).

Recall that the patient rooms farthest away from the nurses’ station are approximately 35

meters farther away than the nearest rooms (45m vs. 10m), thus the farthest rooms receive

an average of 1.4 fewer visits per hour (35m × 0.039). This suggests that nurses are likely

reducing their walking by decreasing the number of visits they make to distant patient

rooms.

Table 4: Results: OLS Regression Estimation on Nurse Visit Models

(1) (2) (3)
Vis/Hr Dur/Hr Dur/Vis

Distance (10m) −0.390∗∗∗ (0.024) 0.034 (0.047) 0.343∗∗∗ (0.020)
Patient Race: Asian 0.151 (0.128) 0.117 (0.248) −0.007 (0.104)
Patient Race: Black 0.079 (0.043) −0.043 (0.084) −0.114∗∗ (0.035)
Patient Race: Hispanic 0.120 (0.127) 0.028 (0.247) −0.098 (0.104)
Female Patient −0.065 (0.040) 0.109 (0.077) 0.086∗∗ (0.032)
Room Size: Large 0.198∗∗ (0.073) 0.341∗ (0.142) 0.072 (0.060)
Room Size: Small −0.176∗ (0.082) 0.242 (0.160) 0.139∗ (0.067)
MD Staffing: High 0.225∗∗∗ (0.059) 0.226∗ (0.114) −0.039 (0.048)
MD Staffing: Low −0.293∗∗∗ (0.051) 0.451∗∗∗ (0.100) 0.463∗∗∗ (0.042)
Diagnostic Lab Orders 0.060∗∗∗ (0.006) 0.162∗∗∗ (0.011) 0.008 (0.005)
Admitted Patient 0.313∗∗∗ (0.051) 0.673∗∗∗ (0.100) 0.009 (0.042)
Shift 2 (3p-3a) 0.500∗∗∗ (0.090) 0.954∗∗∗ (0.175) −0.027 (0.074)
Shift 3 (11p-11a) 0.873∗∗∗ (0.127) 1.944∗∗∗ (0.246) −0.020 (0.103)
Constant 1.747∗∗∗ (0.420) 1.754∗ (0.816) 1.271∗∗∗ (0.343)

Observations 9,880 9,880 9,880
Adjusted R2 0.241 0.170 0.139

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Given that nurses are reducing the number of visits made to patient rooms farther away,

we use Model 2 to determine whether or not task reduction is the reason we observe this

visit reduction. We use the total minutes per patient hour spent in the patient room as

the dependent variable to estimate the aggregate amount of time the patients had with

providers. If task reduction is the reason behind the observed reduction in visit frequency,

then the total number of minutes per hour spent with the provider should be reduced for

distant patients. Our results show that distance does not have a significant effect on the

total time a nurse spends with a patient per patient hour (βp = 0.034, p > 0.05), suggesting

that distance does not affect the aggregate amount of time with nurses. Thus we do not

find support for Hypothesis 2.

If all patients receive the same amount of aggregate nurse time and patients in rooms farther

away receive fewer visits, then it follows that these patients must also receive longer visits.

Model 3 studies the average duration of individual nurse visits. We find that the average

duration of nurse visits is longer for more distant rooms (βp = 0.343, p < 0.001). This

supports Hypothesis 3 and to the extent that time in the room correlates with the number

of tasks performed, this suggests that nurses are batching tasks for patients in distant rooms.

We find that nurses spend a mean of 0.343 minutes (21 seconds) longer per visit for each

10 meters of distance from the nurses’ station. This translates to an additional 1.2 minutes

spent per visit for the patients in rooms farthest away. As shown in Table 2, the average

visit duration over all visits is 2.2 minutes, so this marginal effect due to distance is large,

relative to the mean.

To illustrate our results, we calculate the expected nurse visit frequencies across different

patient rooms for a typical patient. In our study sample, a typical patient is a 45-year-old

female patient of White race visiting the ED during a weekday between 7am and 7pm,

presenting with abdominal pain, the most common chief complaint in the ED. We use our

estimated coefficients to calculate and plot the predicted values of our main dependent

variables given the covariates of our typical patient (Figure 3). As patient room distance
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Figure 3: Effects of Distance on Nurse Visit Patterns

(a) Visit Patterns (b) Duration per Hour

Note: Error bars indicate 95% confidence interval

increases, the number of visits the nurses make to the room per hour decreases (Figure 3a,

solid line). However, nurses compensate these patients with more time spent each time a

visit is made (Figure 3a, dashed line). As a result, the total minutes per hour spent with

the patient does not change across room distances (Figure 3b).

2.6.1. Post hoc Analysis: Nurse Walking Distance

As shown in prior work (e.g., Welton et al., 2006; Hendrich et al., 2008), nurses spend a

significant portion of their shift duration walking. Presumably, the total distance a nurse

walks in a shift is a function of the room distance he or she is working that shift. It is

reasonable to assume that nurses working more distant rooms walk greater distances each

hour. However, because walking is both time consuming and tiring, nurses have an incentive

to reduce the amount of walking they do. If nurses are making decisions to minimize the

distance traveled by batching tasks for patients in far away rooms, it is possible that such

efforts result in less walking when responsible for patients in rooms farther away. We

construct a model to test this.

We specify the following OLS regression model to test this at the nurse-hour level. We use

index n for each unique nurse and t for each working hour; all variables are constructed at

the nurse-hour level based on the rooms the nurse is responsible for that hour.
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DistWalkednt = β0 +β1AvgPtDistnt+RNnβk+RMntβl+PTntβm+TCtβn + εnt (2.1)

The main independent variable of interest, AvgPtDistnt, is the average of the patient

room distances from the nurses’ station that the nurse is responsible for each hour. The

room-specific controls (RMnt) contain a fixed effect for the physician assigned to these

rooms, an indicator for whether or not there was a small or large room in the set, and an

indicator for the staffing level of the rooms (these room characteristics were explained in

detail in Section 2.3). The patient-specific controls (PTnt) include the average ESI level

of the patients the nurse is responsible for, the average age of these patients, the number

of diagnostic orders required by these patients, and the number of these patients who are

admitted. The census and time-related controls (TCt) include the month, the hour of day,

the shift, the census in the ED wait room, and the bed census in the ED. Lastly, we apply

a fixed-effect on the nurse ID to control for heterogeneity across nurses (RNn).

We find that as the average distance between the nurses’ station and a nurses’ patients

increase by 10 meters, nurses tend to walk on average 31 meters less during each hour

of work (Table 5). Thus, this finding provides additional support that nurses might be

engaging in distance-based task batching to save on walking.

2.7. Results: The Impact of Room Distance on the Patient Experience

Given the evidence in support of distance-based task batching by nurses, we are interested in

understanding the impact this has on the patient. Hypothesis 4 focuses on the waiting time

experienced by patients between nurse visits, Hypothesis 5 considers call button activations,

and Hypothesis 6 considers the patient LOS. Again, we estimate Equation 2.5 using the

relevant dependent variables, and the estimation results for these three models are shown

in Table 6; all controls are listed in Table 16, and standard errors are clustered at the room

level.
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Table 5: Nurse Walking Distance per Nurse-Hour (OLS)

(4)
Distance per Nurse-Hour (m)

Mean Patient Distance -31.070∗∗∗ (4.030)
Room Size: Large 212.615∗∗∗ (9.425)
Room Size: Small 12.935 (11.765)
MD Staffing: High -249.535∗∗∗ (8.320)
MD Staffing: Low -4.420 (7.345)
Total Labs Required 2.600∗∗∗ (0.195)
Total Admitted Patients 132.535∗∗∗ (1.625)
Shift 2 (3p-3a) -7.735 (6.630)
Shift 3 (11p-11a) -29.510∗∗∗ (8.515)
Constant 284.310∗∗∗ (47.190)
Observations 29,526
Adjusted R2 0.372

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 6: Results: OLS Regression Estimation on Call Frequency and LOS Models

(5) (6) (7)
Time btw. Visits (Mins) Calls/Hr LOS (Hrs)

Distance (10m) 3.058∗∗∗ (0.331) 0.112∗∗∗ (0.008) 0.016 (0.044)
Female Patient 0.008 (0.540) −0.008 (0.013) −0.019 (0.071)
Patient Race: Asian −1.713 (1.739) −0.130∗∗ (0.043) −0.007 (0.231)
Patient Race: Black −0.030 (0.586) −0.066∗∗∗ (0.014) −0.055 (0.078)
Patient Race: Hispanic 3.804∗ (1.727) −0.125∗∗ (0.047) −0.193 (0.230)
Room Size: Large −1.049 (0.995) 0.067∗∗ (0.025) −0.068 (0.132)
Room Size: Small −0.540 (1.120) −0.021 (0.026) 0.077 (0.147)
MD Staffing: High −2.180∗∗ (0.802) −0.102∗∗∗ (0.019) −0.278∗∗ (0.105)
MD Staffing: Low 1.918∗∗ (0.700) −0.079∗∗∗ (0.016) −0.034 (0.092)
Diagnostic Lab Orders −0.472∗∗∗ (0.080) −0.022∗∗∗ (0.002) 0.324∗∗∗ (0.011)
Admitted Patient 0.559 (0.698) −0.009 (0.015) 1.389∗∗∗ (0.094)
Shift 2 (3p-3a) −5.133∗∗∗ (1.227) −0.100∗∗∗ (0.017) 0.726∗∗∗ (0.114)
Shift 3 (11p-11a) −7.052∗∗∗ (1.719) −0.057∗ (0.024) 0.662∗∗∗ (0.152)
Constant 29.807∗∗∗ (5.712) 0.362∗∗∗ (0.106) 2.060∗∗∗ (0.606)
Observations 9,880 9,880 9,880
Adjusted R2 0.062 0.143 0.336

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Model 5 shows that patients in more distant rooms experience longer wait times between

visits by the nurse. Specifically, for every additional 10 meters farther away a patient is, the

wait time between nurse visits increases by approximately 3 minutes (βp = 3.058, p < 0.001).

For the patients in the rooms farthest away from the nurses’ station, this represents an

additional wait time of 10.7 minutes between visits. Compared to the empirical average of

26 minutes, the magnitude of this effect is substantial.

Model 6 shows that the mean number of call button activations per hour increases with

room distance (βp = 0.112, p < 0.001). This supports Hypothesis 5 and suggests that

patients might be attempting to affect their own care by pressing the call button when

they are made to wait longer between visits. We find that the mean number of calls per

hour increases by 0.112 for each 10 meters of distance, an 8.5% increase from the mean

value of 1.3 calls per hour. With 35 meters between the nearest and farthest rooms, this

results in distant rooms generating 0.39 more calls per hour, on average. Interestingly, the

rate of call button activations differs by patient race. Under-represented minorities press

the call button less frequently compared to White patients (βr,Asian = −0.130, p < 0.01,

βr,Black = −0.066, p < 0.001, βr,Hispanic = −0.125, p < 0.001). To the extent that patients

are using the call button to influence the care they receive, patients that are less prone to

use the call button may receive reduced nurse visits. We examine these effects further in the

Appendix, where we repeat the estimation on the interaction of race and gender to obtain

more granular group estimates.

The finding that patients in distant rooms generate additional nurse calls is particularly

relevant in the ED, where nurses are frequently interrupted by patients (28% of interruptions

are due to patient calls) (Kalisch and Aebersold, 2010). Due to the high cost of errors in the

ED, nurses are advised to try and ‘decrease external interruptions’ (Skaugset et al., 2016).

Not only are these calls disruptive to nurse work flow (Cai et al., 2017; Gurvich et al.,

2017), but they are also associated with decreased patient satisfaction with care (Tzeng

et al., 2012). Yet, evidence has previously not linked these interruptions with the physical
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Figure 4: Effects of Distance on the Patient

(a) Patient Wait Time & Call Frequency (b) Patient Length of Stay

Note: Error bars indicate 95% confidence interval

facility layout of the unit.

Model 7 shows that distance is not significantly related to LOS, and Hypothesis 6 is not

supported (βp = 0.016, p > 0.05). Thus, despite finding that patients in distant rooms

receive batched tasks, and longer inter-visit wait times, this behavior does not translate

to an increased LOS. Given the importance of the patient length of stay as a hospital

performance metric, one possible explanation is that nurses are acutely aware of the tasks

that must not be delayed and prioritize those on the critical path.

To illustrate the impact of this behavior on the patient, we calculate the expected frequency

of patient call button activations per hour and show that patients make more calls as the

distance between their room and the nurses’ station increases (Figure 4a, dashed line). This

is likely driven by the extended wait time between visits that patients in the distant rooms

experience (Figure 4a, solid line). If nurses are making fewer visits, then the patients wait

longer between visits, on average. We do not see an impact on the patient length of stay

across room distances (Figure 4b), which suggests that tasks on the critical path of ED

treatment are usually delivered in a timely manner, regardless of room distance.
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2.7.1. Post hoc Analysis: Patient Calls

These findings highlight a hidden side-effect to nurses using their discretion to minimize

the cost of motion in their workplace. Despite the equal allocation of total care time across

patients of varying room distances, the patients in rooms far away observe longer times

between visits by the nurse and press the call button more, perhaps in an attempt to

mitigate this additional waiting. We are interested in better understanding two metrics

related to the patient call button activations: (1) the extent to which the equal distribution

of care time across patient rooms is a result of patients being proactive in engaging with

the nurse, and (2) the extent to which patient calls are successful in triggering a physical

visit by the nurse.

We first look at the proportion of nurse visits that were a result of a patient call across room

distances. To study this question we specify an OLS model using Equation 2.5, and the same

controls as listed in Table 16. The dependent variable of interest is %V isitsDueToCallij ,

and represents the proportion of nurse visits during a patient’s stay that occurred during

an ‘active call’. We define an active call as the time duration between when a call is placed,

and when the call has been resolved. Visits made to the patient during these timeframes

are likely to have been the result of the patient call. The second metric is the proportion

of patient calls that resulted in a physical visit by the nurse. Similar to the first question,

we specify an OLS model using Equation 2.5, and the same controls as listed in Table 16.

The dependent variable of interest is %CallTriggeredAV isitij .

Results are presented in Table 7. Model 8 shows that the marginal effect of 10 meters of

distance is a 1.5 percentage point increase in the proportion of visits that come from a call

button activation (βp = 0.015, p < 0.001). The empirical average proportion of patient

call-driven visits across all nurse visits is approximately 15%. The patients in the most

distant rooms would observe a proportion of call-driven visits that is 5.25 percentage points

higher compared to patients in the closest rooms. Thus, patients in distant rooms play a

larger role in affecting their own care. However, when we look at the results in Model 9, we
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Table 7: Post-Hoc Analysis on Patient Calls

(8) (9)
% Call-Driven Visits % Visit-Triggering Calls

Distance (10m) 0.015∗∗∗ (0.003) −0.041∗∗∗ (0.003)
Female Patient 0.016∗∗∗ (0.004) −0.003 (0.005)
Patient Race: Asian −0.004 (0.014) 0.052∗∗∗ (0.015)
Patient Race: Black 0.001 (0.005) −0.007 (0.005)
Patient Race: Hispanic −0.006 (0.014) 0.044∗∗ (0.017)
Room Size: Large 0.018∗ (0.008) 0.033∗∗∗ (0.009)
Room Size: Small −0.0002 (0.009) −0.014 (0.010)
MD Staffing: High −0.023∗∗∗(0.007) 0.033∗∗∗ (0.007)
MD Staffing: Low 0.006 (0.006) 0.0004 (0.006)
Diagnostic Lab Orders 0.002∗ (0.001) 0.004∗∗∗ (0.001)
Admitted Patient 0.016∗∗ (0.006) 0.038∗∗∗ (0.005)
Constant 0.071 (0.038) 0.537∗∗∗ (0.039)
Observations 9,880 9,880
Adjusted R2 0.032 0.148

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

see that patient calls are also less likely to result in a physical visit by the nurse when these

calls are coming from far away (βp = −0.041, p < 0.001). Specifically, the proportion of

patient calls that result in a physical visit by the nurse decreases by 4.1 percentage points

for every 10 meters farther away the room is located. The rooms farthest away observe

a reduction in the proportion of calls that trigger physical visits of 14.35% compared to

patients in the rooms closest to the nurses’ station. On average, 62% of patient calls trigger

a physical visit by the nurse.

We know from our findings in Section 2.6 that the total minutes of time nurses spend with

patients each hour remains constant with room distance. For the patients in rooms farther

away, this care is being delivered in fewer visits, but each of longer duration. Patients are

likely getting frustrated with the additional wait time and placing more calls. We find that

nurse visits to patient rooms due to patient calls increases with room distance; this suggests

that patients are utilizing the nurse call button in an attempt to mediate their own care.

However, these calls are not always successful in triggering a visit, and the probability that

a call generates a visit is lowest for the most distant rooms. Therefore, despite attempts

at rushing the nurse using the call button, the patient ends up receiving the same amount

of time with the provider, but with longer inter-visit wait times. It is possible that not
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responding to these patient calls with a physical visit results in the patient feeling an even

greater sense of being neglected, which likely results in poor patient satisfaction with the

stay.

2.8. Robustness Analysis

To ensure the robustness of our estimates, we repeat our analysis using robust regression

(Ripley, 2002). This method uses Huber’s M-estimator and is appropriate for situations

where there exist outliers in the response variables of interest (Huber et al., 1964; Huber,

2011). The distribution of our response variables are right-skewed with several outliers.

While many of these outliers seem to be representative of normal ED operations, we conduct

robust regression on the data to ensure our findings are consistent even when using a much

more conservative estimator that is robust to outliers. We choose to use OLS and robust

regression to avoid needing to log-transform the data just to satisfy OLS assumptions,

therefore preserving the linear relationship between distance and our response variables.

Using this more conservative method, our results are qualitatively identical (see Appendix

for results). The number of visits made to patient rooms per hour decreases by 0.315 visits

for every additional 10 meters of distance. Similar to our OLS findings, there appears to

be no significant difference in the total nurse-patient interaction minutes per hour across

room distances. As a patient’s room distance increases by 10 meters, the duration spent

per visit by a nurse increases by about 0.303 minutes. The rooms farthest away from the

nurses’ station receive visits that are, on average, 1.06 minutes longer compared to the rooms

closest to the nurses’ station. Similar to our OLS estimates, we find evidence suggestive of

nurses using a batching heuristic when managing patients staying in rooms farthest away

from the nurses’ station. When using robust regression to understand the impact of this

behavior on perceived care quality, we find that patients in rooms every 10 meters farther

away experience 2.65 additional minutes of wait time between visits, and make on average

0.040 more calls per hour for the nurse. In the rooms farthest away this translates to 9.28

minutes of additional inter-visit wait time and 0.126 more calls per hour. The length of
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stay of patients across rooms of varying distances remains unchanged.

2.9. Managerial Implications

In our study, we find that nurses spend 12% of each shift walking, covering a total distance

of almost 5 miles. Given the physical demands of this work, it is only human that nurses

make an effort to reduce the distance they walk by reducing the number of visits they make

to patient rooms far away from the nurses’ station, which we show. Interestingly, the data

shows that nurses compensate for the reduced number of visits by spending more time with

the patient, on average, during the visits they do make, which suggests a batching of tasks.

In fact, we find no change in the mean total nurse-patient interaction time.

Despite the nurses successfully managing their work so that patients in rooms of varying

distances receive the same total amount of care time, the reduced visit rate leads to increased

time between nurse visits, which in turn triggers an increase in call button activations. Call

button activations are correlated with decreased patient satisfaction (Tzeng et al., 2012)

and are disruptive to work happening at the nurses’ station, potentially incurring significant

changover costs (Gurvich et al., 2017), and increasing the rate of errors (Cai et al., 2017).

We also examine patient LOS and do not find evidence of the reduced visit rate leading to

a change in patient LOS.

According to the handbook on patient safety and quality for nurses by the US Agency

for Healthcare Research and Quality, “cognitive psychologists have identified the physical

environment as having a significant impact on safety and human performance”, more specif-

ically, “some of the effects of long work hours and increasing workload can be mitigated by

minimizing the distances staff must travel between patient rooms” (Reiling et al., 2008).

Our findings are especially relevant when planning the layout of new facilities. Consider the

situation currently facing the study ED. To increase ED capacity, the study ED will soon

be moving to a new building that introduces significantly more heterogeneity in patient

room distance compared to the status quo. The new ED will be elongated and narrowed
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to double the length and half the width. Some members of hospital management have

expressed concerns surrounding this new layout, even without the support of data. If the

new ED is designed with a central nurses’ station, similar to the current ED, this new

facility layout would double the distance required to walk to the patient rooms farthest

from the nurses’ station from 45 meters to 90 meters. While we hesitate to extrapolate our

estimated results to 90 meters (well beyond the range of our data), it seems likely that such

extreme distances would lead to further visit rate reduction, increased inter-visit wait times

and increased call button activations.

Of course, investments into new hospital buildings are multi-million dollar projects and

changing the layout of the ED is not an option for most. So, another option to counteract the

increased waiting times experienced by patients in distant rooms is to improve operational

transparency. Showing patients what is taking so long between moments of interaction

is known to decrease frustration and increasing ratings of the service, sometimes so much

so that the patient actually values the wait time more than receiving an instantaneous

service (Buell and Norton, 2011). The experiments conducted by Buell and Norton (2011)

translate well into this setting because patients do not observe what nurses are doing when

they are outside the patient’s room. If nurses provided patients with information between

each visit suggesting that the providers are working hard towards completing their care

(i.e. “I am going to send these labs in now and will come back once I get your results from

the technician”, or, “I am going to consult the doctor about what medications to send you

home with, I will be back once I get that information”), then patients might place fewer

calls, or at the very least feel less frustrated (Maister et al., 1984; Larson, 1987).

2.10. Conclusion

In this study, we provide detailed empirical evidence from a hospital ED on how the physical

layout of an operation can influence the work behavior of service workers and subsequently,

the resulting service quality perceived by patients (customers). While our results are specific

to the setting we study, we believe that these findings have implications for other service
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settings in which (1) the service is carried out in a physical environment (as opposed to being

all digital), (2) there exists heterogeneity in the location of customers (not all customers

are equidistant to where servers spend the majority of their time), and (3) workers have

discretion over when to complete their work (as opposed to having to adhere to a strict

operating protocol) and how much effort to exert.

Several other service settings meet these three conditions. Certainly many other areas

of healthcare delivery, such as inpatient wards and post-anesthesia care units (“recovery

rooms”), meet the conditions and face similar challenges as the ED. We note that part

of what makes the distance-based variation in service quality troubling in the healthcare

setting is that the patient generally has no choice over the location of their room and thus

some patients experience longer wait times due to “bad luck” in room assignment.

Beyond healthcare, services such as full-service restaurants, many retail stores, and even

airplanes, likewise have heterogeneity in distance between customers and server and the

servers have discretion over the timing of service provided. Consider full-service restaurants,

a setting that has been studied with a productivity focus by Tan and Netessine (2014).

Servers spend a lot of time walking through the restaurant and face heterogeneity in walking

distances to their customers. Thus, they might engage in distance-based visit reduction

similar to the ED nurses in this study. Diners located farther away would thus be made to

wait longer by the server (and would need to “press the call button” by flagging down the

server), likely decreasing perceived service quality, which could translate into lost revenue or

tips. Similar to the healthcare settings, customers often have little choice over the location

of their table relative to the server station and thus can experience longer wait times due

to bad luck.

In retail settings such as department stores, large furniture stores, and car dealerships,

salespeople often have a “home base” (e.g., cash register, front desk, showroom, etc.) where

they spend much of their time, periodically venturing out to help customers (Fisher and

Raman, 2010; Musalem et al., 2016). If the store layout is such that there is significant
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heterogeneity in distance of browsing areas, then customers who are browsing in distant

locations may experience reduced and delayed sales help, leading to reduced sales and

customer satisfaction.

Lastly, one can imagine the same dynamics at work on a large commercial airliner, especially

on a long-haul flight. Passengers in seats close to the galleys often are served food and drinks

first and can benefit from the frequent passing-by of the flight attendants as the attendants

come and go from their seats near the galleys and doors. Passengers in more distant seats

may be stuck waiting longer for a drink or to get rid of garbage. And much like the ED

setting, passengers with longer inter-visit times may have to resort to pressing the call

button to summon assistance leading to interruptions of other tasks and reduced customer

satisfaction.

While in the ED, the data show that visit rate reduction is offset by task batching leading to

no change in total nurse-patient interaction time, it is not known if such offsetting actions

occur in these other settings. This is an area for possible future study. In all these settings,

as in the ED of our study, the negative effects of distance-based visit rate reduction can

likely be addressed through careful facility design (i.e., reducing distance heterogeneity), and

in the cases where service workers have successfully traded off the fatigue associated with

facility layout and the service needs of the customer, improved operational transparency.

2.11. Appendix

2.11.1. OLS on All Data: Nurse Visit Models

To compare our findings estimated from the subset of data against the full dataset that

includes instances where there were multiple patient beds available when a patient was

assigned to a bed, we repeat the OLS regression analysis using all of the data and the same

models. The coefficient estimates are qualitatively identical (Table 8). The number of visits

made to patient rooms per hour decreases by 0.385 visits for every additional 10 meters of

distance. This translates to 1.34 fewer visits for the patients in the rooms farthest away

34



Table 8: OLS Results Using All Patient Encounters - Nurse Visit Models

(1) (2) (3)
Vis/Hr Dur/Hr Dur/Vis

Distance (10m) −0.385∗∗∗ (0.021) 0.002 (0.040) 0.309∗∗∗ (0.017)
Female Patient −0.022 (0.034) 0.146∗ (0.065) 0.076∗∗ (0.027)
Patient Race: Asian 0.100 (0.105) −0.155 (0.202) −0.084 (0.085)
Patient Race: Black 0.046 (0.037) −0.069 (0.071) −0.102∗∗∗ (0.030)
Patient Race: Hispanic 0.093 (0.111) −0.018 (0.213) −0.104 (0.089)
Room Size: Large 0.172∗∗ (0.061) 0.196 (0.118) 0.003 (0.049)
Room Size: Small −0.259∗∗∗ (0.071) 0.132 (0.137) 0.179∗∗ (0.057)
MD Staffing: High 0.223∗∗∗ (0.050) 0.204∗ (0.096) −0.057 (0.040)
MD Staffing: Low −0.253∗∗∗ (0.044) 0.361∗∗∗ (0.084) 0.389∗∗∗ (0.035)
Diagnostic Lab Orders 0.055∗∗∗ (0.005) 0.154∗∗∗ (0.010) 0.011∗∗ (0.004)
Admitted Patient 0.356∗∗∗ (0.045) 0.635∗∗∗ (0.086) −0.029 (0.036)
Shift 2 (3p-3a) 0.390∗∗∗ (0.081) 0.648∗∗∗ (0.156) −0.043 (0.065)
Shift 3 (11p-11a) 0.667∗∗∗ (0.104) 1.373∗∗∗ (0.201) −0.047 (0.084)
Constant 2.011∗∗∗ (0.329) 2.857∗∗∗ (0.632) 1.477∗∗∗ (0.264)

Observations 15,595 15,595 15,595
Adjusted R2 0.219 0.150 0.126

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

from the nurses’ station. Similar to our findings on the truncated dataset, there appears to

be no significant difference in the total nurse-patient interaction minutes per hour across

room distances. This suggests that nurses are reducing visits, but not reducing the total

time spent; we find support for the hypothesis that they are batching tasks. As a patient’s

room distance increases by 10 meters, the duration spent per visit by a nurse increases by

about 0.309 minutes. The rooms farthest away from the nurses’ station receive visits that

are, on average, 1.08 minutes longer compared to the rooms closest to the nurses’ station.

Similarly, when using the full dataset to understand the impact of this behavior on care

quality (Table 9), we find that patients in rooms every 10 meters farther away experience a

2.9 minute increase in their inter-visit wait time, and make on average 0.120 more calls per

hour for the nurse. In the rooms farthest away this translates to 10.15 minutes of additional

waiting time between visits and 0.42 more calls per hour. The length of stay of patients

across rooms of varying distances remains unchanged.
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Table 9: OLS Results Using All Patient Encounters - Call Frequency and LOS Models

(4) (5) (6)
Time btw. Visits (Mins) Calls/Hr LOS (Hrs)

Distance (10m) 2.942∗∗∗ (0.266) 0.120∗∗∗ (0.007) 0.029 (0.033)
Female Patient 0.022 (0.434) 0.012 (0.012) −0.088 (0.053)
Patient Race: Asian −2.107 (1.359) −0.145∗∗∗ (0.039) −0.032 (0.168)
Patient Race: Black −0.059 (0.476) −0.039∗∗ (0.013) −0.040 (0.059)
Patient Race: Hispanic 2.603 (1.431) −0.164∗∗∗ (0.044) −0.203 (0.177)
Room Size: Large −0.364 (0.793) −0.016 (0.023) −0.033 (0.098)
Room Size: Small 1.453 (0.918) −0.011 (0.024) 0.152 (0.112)
MD Staffing: High −0.256 (0.164) −0.020 (0.017) −0.237∗∗ (0.078)
MD Staffing: Low 1.590∗∗ (0.566) −0.055∗∗∗ (0.015) −0.036 (0.069)
Diagnostic Lab Orders −0.383∗∗∗ (0.066) −0.021∗∗∗ (0.002) 0.314∗∗∗ (0.008)
Admitted Patient 0.977 (0.581) −0.041∗∗ (0.014) 1.378∗∗∗ (0.073)
Shift 2 (3p-3a) −3.205∗∗ (1.047) −0.078∗∗∗ (0.016) 0.746∗∗∗ (0.089)
Shift 3 (11p-11a) −3.966∗∗ (1.350) −0.007 (0.021) 0.858∗∗∗ (0.104)
Constant 25.483∗∗∗ (4.249) 0.455∗∗∗ (0.086) 1.551∗∗∗ (0.389)

Observations 15,595 15,595 15,595
Adjusted R2 0.057 0.109 0.340

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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2.11.2. Call Frequency by Gender and Race Patient Groups

We test for differences in call button use across gender and race using an interaction term,

and find differences between White, male patients and the following groups: White female

patients seem to call more frequently compared to White male patients, whereas Asian male

patients, Black female patients, and Hispanic female patients tended to call less frequently

compared to White male patients. Results are presented in Table 10.

Table 10: OLS Results on Call Frequency by Patient Groups

(7)
Calls/Hr

Distance (10m) 0.110∗∗∗ (0.008)
White Female Patient 0.079∗∗∗ (0.021)
Asian Male Patient −0.153∗ (0.076)
Asian Female Patient 0.020 (0.092)
Black Male Patient 0.020 (0.022)
Black Female Patient −0.141∗∗∗ (0.027)
Hispanic Male Patient −0.010 (0.073)
Hispanic Female Patient −0.202∗ (0.095)
Room Size: Large 0.066∗∗ (0.025)
Room Size: Small −0.025 (0.026)
MD Staffing: High −0.103∗∗∗ (0.019)
MD Staffing: Low −0.080∗∗∗ (0.016)
Triage Level 1 −0.161 (0.103)
Triage Level 2 −0.032∗ (0.015)
Triage Level 4 −0.042 (0.038)
Triage Level 5 −0.018 (0.119)
Patient Age −0.002∗∗∗ (0.0004)
Admitted Patient −0.010 (0.015)
Shift 2 (3p-3a) −0.096∗∗∗ (0.017)
Shift 3 (11p-11a) −0.056∗ (0.024)
Diagnostic Lab Orders −0.021∗∗∗ (0.002)
Constant 0.309∗∗ (0.106)
Observations 9,880
Adjusted R2 0.145

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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2.11.3. Core ED Rooms: Room Distances and Fixed Effects

Table 11 outlines the core ED rooms we consider in our analysis, along with the room’s

distance from the nurses’ station and its size and physician staffing level. These variables

were used to code the room type fixed effects and our main independent variable, DISTij .

Table 11: ED Room Distances & Fixed Effect Categories

Room Number Distance Room Size Room Staffing Level
1 20m Regular High
2 25m Regular High
3 45m Regular High
4 45m Regular High
5 35m Regular High
6 25m Regular High
7 15m Regular High
8 10m Regular High
9 15m Large High
10 10m Large High
11 15m Large High
12 20m Large High
13 10m Regular Low
14 15m Regular Low
15 25m Regular Low
16 25m Regular Low
17 30m Regular Low
18 25m Regular Low
19 20m Regular Low
20 20m Regular Low
21 15m Regular Regular
22 20m Regular Regular
23 30m Regular Regular
24 20m Regular Regular
25 15m Small Regular
26 20m Regular Regular
27 20m Regular Regular
28 10m Regular Regular
29 10m Regular Regular
30 20m Regular Regular
31 25m Regular Regular
32 25m Small Regular
33 25m Regular Regular
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2.11.4. Robust Regression Estimation Tables

The robust regression estimates are outlined below in Tables 12 and 13.

Table 12: Robust Linear Regression Results on Nurse Visit Variables

(8) (9) (10)
Vis/Hr Dur/Hr Dur/Vis

Distance (10m) −0.315∗∗∗ (0.018) 0.069 (0.040) 0.303∗∗∗ (0.016)
Female Patient −0.005 (0.030) 0.149∗ (0.065) 0.077∗∗ (0.025)
Patient Race: Asian 0.072 (0.095) 0.137 (0.208) −0.055 (0.082)
Patient Race: Black 0.066∗ (0.032) −0.057 (0.070) −0.075∗∗ (0.028)
Patient Race: Hispanic 0.112 (0.094) −0.049 (0.207) −0.093 (0.081)
Room Size: Large 0.221∗∗∗ (0.054) 0.348∗∗ (0.119) 0.067 (0.047)
Room Size: Small −0.157∗ (0.061) 0.122 (0.134) 0.152∗∗ (0.053)
MD Staffing: High 0.224∗∗∗ (0.044) 0.187 (0.096) −0.067 (0.038)
MD Staffing: Low −0.240∗∗∗ (0.038) 0.346∗∗∗ (0.084) 0.415∗∗∗ (0.033)
Diagnostic Lab Orders 0.055∗∗∗ (0.004) 0.157∗∗∗ (0.010) 0.020∗∗∗ (0.004)
Admitted Patient 0.233∗∗∗ (0.038) 0.572∗∗∗ (0.083) 0.057 (0.033)
Shift 2 (3p-3a) 0.543∗∗∗ (0.067) 0.972∗∗∗ (0.147) −0.028 (0.058)
Shift 3 (11p-11a) 0.931∗∗∗ (0.094) 1.874∗∗∗ (0.206) 0.061 (0.081)
Constant 1.418∗∗∗ (0.312) 0.877 (0.683) 0.891∗∗∗ (0.268)

Observations 9,880 9,880 9,880
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 13: Robust Linear Regression Results on Patient Length of Stay and Calls

(11) (12) (13)
Time btw. Visits (Mins) Calls/Hr LOS (Hrs)

Distance (10m) 2.650∗∗∗ (0.177) 0.040∗∗∗ (0.005) 0.025 (0.030)
Female Patient −0.066 (0.289) 0.011 (0.009) −0.075 (0.049)
Patient Race: Asian −0.336 (0.932) −0.129∗∗∗ (0.028) 0.082 (0.159)
Patient Race: Black −0.036 (0.314) −0.034∗∗∗ (0.009) 0.069 (0.053)
Patient Race: Hispanic −0.295 (0.926) −0.112∗∗∗ (0.031) 0.001 (0.158)
Room Size: Large −0.544 (0.533) 0.067∗∗∗ (0.017) 0.011 (0.091)
Room Size: Small 0.468 (0.600) 0.00002 (0.017) −0.039 (0.101)
MD Staffing: High −1.649∗∗∗ (0.430) −0.059∗∗∗ (0.013) −0.232∗∗ (0.072)
MD Staffing: Low 1.541∗∗∗ (0.375) −0.023∗ (0.011) 0.029 (0.063)
Diagnostic Lab Orders −0.204∗∗∗ (0.043) −0.012∗∗∗ (0.001) 0.265∗∗∗ (0.007)
Admitted Patient −0.548 (0.374) −0.010 (0.010) 1.034∗∗∗ (0.065)
Shift 2 (3p-3a) −3.583∗∗∗ (0.657) −0.036∗∗ (0.011) 0.097 (0.078)
Shift 3 (11p-11a) −4.290∗∗∗ (0.921) −0.067∗∗∗ (0.016) −0.068 (0.104)
Constant 21.561∗∗∗ (3.061) 0.486∗∗∗ (0.070) 3.112∗∗∗ (0.416)

Observations 9,880 9,880 9,880
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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CHAPTER 3 : The Impact of Medication Delays on Patient Health in the ICU:

Estimating Marginal Effects Under Endogenous Delays

Joint work with Ann Huffenberger, Krzysztof Laudanski, and Christian Terwiesch

3.1. Introduction

In operations, we know that customers value the timely delivery of goods and services.

Timeliness is one of the key measures of service quality and has been explored in all kinds

of service industries. In fact, there is an entire subfield in operations known as queueing

theory that studies how the dynamics of a system affect customer wait times. Many of

these theories have been applied to call centers, airports, restaurants, hospitals, and even

traffic with the goal of improving capacity or prioritization decisions.

From the perspective of service providers, key to any capacity or prioritization decision

is to ensure that the customer does not spend too much time waiting. This is primarily

driven by the fact that customers incur a cost of waiting, and if the customer is made to

wait too long, they might leave. In operations management, there exist many great papers

that empirically quantify the customer’s cost of waiting. Akşin and colleagues structurally

estimate the rewards and waiting cost values for customers calling a bank call center, and

find, among other things, that high priority customers observe a cost of waiting equivalent

to a dollar per minute (Akşin et al., 2013). Allon and colleagues study the cost of waiting

in line at a fast-food drive thru, and find that customers attribute a very high cost to the

time they spend waiting. Specifically, to overcome an additional second of waiting time, the

restaurant would need to compensate an average customer by as much as five cents (Allon

et al., 2011). Batt and Terwiesch study the phenomenon of patients leaving the emergency

department without being seen, and how observing the stocks and flows of patients in the
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waiting room could contribute to this behavior. They find that the predicted probability

of abandonment for a medium severity patient increases by 2% with a one-hour increase in

wait time (Batt and Terwiesch, 2015).

Remarkably, while the cost incurred by customers waiting in service settings such as call

centers and restaurants have been well studied, the health costs incurred by patients waiting

for medical interventions has received less attention. Researchers have examined the impact

of additional wait time in the emergency department waiting room on the likelihood that

patients will leave the queue (Batt and Terwiesch, 2015), and the impact of congestion in

the emergency department on delays in medical interventions (Pines et al., 2007), however

no work has quantified the causal impact of delays in medical interventions on patient health

outcomes.

The causal impact of delays in medical interventions on patient health is both interesting

and important, however it is also challenging to study, which may explain why few re-

searchers have examined this in the past. There are two reasons for this: endogeneity in

observed delays and health measurement. These challenges are prevalent in the medical

literature where empirical questions of this nature are studied cross-sectionally with each

datapoint representing a patient’s visit to the hospital. Delays are then captured by some

one-dimensional best practice target, for example the time to first antibiotic (Gaieski et al.,

2010). Then, a regression is run that measures the association between antibiotic delay and

patient in-hospital mortality, controlling for patient-specific variables. The concern with

this approach is that the observed antibiotic delays in the data are not exogenous, since

providers could be making prioritization decisions that impact the recorded delays in a

way that is impossible for the researcher to observe. As a result, the measured effects are

associations rather than causal relationships. The second challenge is the measurement of

health outcomes, which has largely been the result of a lack of availability of more granular

health data. Mortality is one of the most commonly used outcomes in healthcare-related

research. While mortality as an outcome is clean, it is also crude. Often, the medication
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delays observed by patients visiting a well-run hospital are too short to create real variation

in mortality.

We overcome these two limitations by using instrumental variables to exploit exogenous

variation in medication delays introduced by shift changes and unit care coordination ac-

tivities that allow us to cleanly identify the causal impact of a medication delay on granular

patient health outcomes. To avoid using patient mortality as an outcome, we utilize a novel,

large-scale dataset that contains patient vital signs electronically archived every 15 minutes

during the entire duration of a patient’s stay in the intensive care unit (ICU). This allows

us to make the following contributions:

1. We find that urgent and unplanned medications scheduled for immediate delivery in

the ICU are delayed by 88 minutes on average.

2. We use an identification strategy that uses instrumental variables to capture exogenous

variation in medication delays introduced through nurse shift changes and unit care

coordination activities. Our instrumental variables explain a significant portion of

observed variation in medication delays.

3. We measure the impact of these exogenous delays in medication on novel and granular

measures of patient health constructed using patient vital signs during their stay in

the ICU. We do this for multiple medication groups and multiple vital sign thresholds

so that we can better understand the delay costs of several commonly administered

medications across a broad spectrum of health conditions.

This study is one of the first to causally quantify the impact of medication delays on

patient health. Our construction of novel patient health metrics based on real-time tracking

of patient vital signs during their stay allows us to establish the immediate impact of a

medication delay on the patient’s health state over the next couple of hours. While this

measure of health outcome is correlated to more commonly used outcomes such as the

patient length of stay and mortality, we are uniquely able to also capture patient suffering.
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This is particularly relevant in the intensive care unit, where patients are highly unstable and

rely on healthcare providers to ensure they remain in healthy states. Our findings can assist

healthcare providers to (1) better understand the impact of these delays in medications on

patient health, and (2) improve medication prioritization such that any necessary delays

experienced by the patient incurs minimal harm to the patient’s health.

3.2. Related Work

Our work builds upon two main streams of literature: empirical studies of service delays

in operations management, and empirical studies of medical intervention delays on patient

health outcomes in health services research.

The operations management literature separates neatly into articles studying non-healthcare

service settings and those focusing on healthcare settings. Articles from the former group

have quantified the customer’s empirical cost of waiting across a wide variety of service

settings. Akşin and colleagues structurally estimate the rewards and waiting cost values

for customers calling a bank call center and find, among other things, that high priority

customers observe a cost of waiting equivalent to a dollar per minute (Akşin et al., 2013).

Yu and colleagues show that delay announcements can actually impact customers’ waiting

costs in a call center setting. They find that the per-unit waiting cost of customers actually

decreases with the offered waiting time associated with the announcements (Yu et al., 2016).

Allon and colleagues study the cost of waiting in line at a fast-food drive-thru, and find

that customers attribute a very high cost to the time they spend waiting. Specifically, to

overcome an additional second of waiting time, the restaurant would need to compensate

an average customer by as much as five cents (Allon et al., 2011). The impact of customer

waiting on purchase behavior has also been examined in the retail setting by studying

customer purchase behavior at a deli counter in a supermarket (Lu et al., 2013). Craig and

colleagues have studied the impact of the wait time experienced during a blood donation

encounter on the likelihood of a subsequent donation. They find that a 38% increase in the

average wait time to donate blood results in a 10% decrease in the number of donations per
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year (Craig et al., 2016).

Operations management studies focusing on service delays in the hospital setting have

examined the impact of queue configuration on patient wait times and length of stay in the

emergency department. Song and colleagues compare the wait times experienced by patients

visiting the emergency department under a pooled queueing system versus a dedicated

queueing system and find a 9% decrease in the average wait time experienced by patients

under the dedicated queueing system. One of the main drivers of this reduction in wait

time with the dedicated queue configuration is the physician’s ownership over their own

set of patients and resources (Song et al., 2015a). Much of the literature in this space

has examined how healthcare provider behavior can be a lever through which to control

the delays that exist in the healthcare delivery process. Articles studying this have shown

that focus (Kc and Terwiesch, 2011), multitasking (Kc, 2013), early-task-initiation (Batt

and Terwiesch, 2016), and speeding up (Jaeker and Tucker, 2017) are mechanisms through

which the healthcare provider adapts their work behavior to mitigate the impacts of long

queues and high workload. Further, studies in healthcare operations management have also

examined the impact of intervention delays on the patient. Batt and Terwiesch study the

phenomenon of patients leaving the emergency department without being seen, and how

observing the stocks and flows of patients in the waiting room could contribute to this

behavior. They find that the predicted probability of abandonment for a medium severity

patient increases by 2% with a one-hour increase in wait time (Batt and Terwiesch, 2015).

Song and colleagues study the impact of delays in care introduced by off-service placement

and find that the additional distance that physicians must travel to get to patients placed in

off-service units result in a longer length of stay, and is associated with a higher likelihood

of readmission, in-hospital mortality, and adverse health events (Song et al., 2018).

Studies of delays in the health services research literature have focused their efforts on un-

derstanding the impact of service delays in healthcare on patient health outcomes. However,

due to limitations in the types of data available for researchers to do this type of work, the
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focus has been on utilizing the available data to conduct inference on the delays of inter-

ventions such as medications and ambulances on well-documented patient outcomes such

as mortality. This includes work showing an association between delays in transfer from

the emergency department to the ICU and patient mortality (Chalfin et al., 2007), and an

association between the time to antibiotics in the emergency department on mortality from

sepsis in the emergency department (Gaieski et al., 2010). Other associations surrounding

delayed medical interventions that have been studied include delays in ambulance transit

times on mortality (Jena et al., 2017), delays in emergency surgery on mortality (McIsaac

et al., 2017), and time spent waiting for health services on mortality (Prentice and Pizer,

2007). Upstream from this literature are medical journal articles that have established as-

sociations between hospital crowding and subsequent delays in medical interventions such

as antibiotics (Pines et al., 2007) and pain treatment (Pines and Hollander, 2008).

The impact of such work has been profound in understanding the cost of delays on customer

behavior across a wide variety of service settings; we build upon the work done by our

operations management and clinical colleagues by assembling a dataset that allows us to

causally study the impact of a marginal minute of medication delay on granular patient

health metrics constructed using vital signs. This is doubly important for patients spending

time in the ICU or in any inpatient hospital bed, since these patients are often in critical

condition and are unable to leave if they receive an unsatisfactory service. We contribute to

the existing literature by generating insights surrounding how service delays in healthcare

could directly impact the patient’s health.

3.3. Empirical Setting & Data

Our data come from an academic medical center that serves a large metropolitan city. We

focus on 4 of the main intensive care units in this medical center, which are located across

2 different hospitals. Together, these ICUs maintain 100 critical care beds, and observe

a patient volume of 41,370 patients over our 4 year study period spanning 2012 through

2015. In our study sample, 43% of patients were female, and the average age was 61, with
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Table 14: ICU Patient Vital Sign Thresholds

Vital Sign Lower Threshold Upper Threshold

Mean Arterial Pressure (MAP) (mmHg) 60 90
Systolic Blood Pressure (SBP) (mmHg) 90 120
Diastolic Blood Pressure (DBP) (mmHg) none 80
Heart Rate (bpm) 60 100
Temperature (F) 96 100
Oxygen Saturation 98 none
Respiratory Rate (Bpm) 6 20

a standard deviation of 15 years. The ICU is typically the unit in the hospital that sees

the sickest patients, and patients are usually admitted through the emergency department

(Chan et al., 2016), after surgery, or because the patient’s condition worsened in another

unit or facility.

Patients in our study sample have an average ICU length of stay of 2.7 days, with a median

length of stay of 1.8 days. The distribution of the patient length of stay is shown in Figure 5.

58.4% of patient discharges from the ICU are to a long term care facility for patients to

continue receiving care after leaving the ICU. 8.0% of patients die during their time in the

ICU, and 32.2% of patients are discharged to a regular (non-‘intensive-care’) unit within

the hospital. Thus, patients spending time in these units are typically very unstable, and

require intensive monitoring by healthcare providers. The nurse to patient staffing ratios

in these units are 1 patient to 1 nurse, and at most 2 patients to 1 nurse. The ICU care

environment is ideal to study the clinical impact of medication delays, since it is often a goal

of ICU care to keep patients in healthy vital states, and this is typically done through the

administration of medications. Determining whether or not a patient is in a healthy vital

state is based on established clinical guidelines. The actual clinical vital sign thresholds

used in our study hospitals are outlined in Table 14; note that the mean arterial pressure

(MAP) is equivalent to [(2*the value of the diastolic blood pressure (DBP)) + the value of

the systolic blood pressure (SBP)] ÷ 3. We also include all three measures of blood pressure

here to test the impact of medications on all of them separately, in case effects vary.
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Figure 5: Empirical distribution of the ICU patient length of stay (hours)

We compile three sources of data to create our analysis dataset: the patient medical record,

patient vital sign tracking data, and the database of all medications ordered and delivered

during a patient’s stay in the ICU. To illustrate how we measure medication delay, it is im-

portant to understand how medications are ordered and delivered in the ICU. The moment

a physician places an order for a medication, a timestamp is generated in the medication

database for that patient and labeled the “medication order time”. When the medication

is about to be delivered to the patient, the nurse administering the medication scans the

medication and the patient identification wristband, prior to actual medication delivery.

This process of bar-code scanning medications and patients prior to medication delivery

was implemented as a way to reduce errors in medication delivery (Poon et al., 2010). It

also allows us to cleanly identify the moment a medication was delivered to the patient;

when the nurse scans the medication in, a second timestamp is created in the medication

database labeled “medication delivery time”. In practice, physicians could place an order for

a medication to be delivered at a subsequent time, this would be identified in our dataset as
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Figure 6: Empirical distribution of ICU medication delays

a medication having a later “medication scheduled time” compared to its “medication order

time”. For the purposes of our study, in order to cleanly measure the impact of medication

delays on patient health, we focus only on unplanned, urgent medications ordered to be de-

livered to the patient immediately (i.e. the “medication scheduled time” is identical to the

“medication order time”). This represents about 30% of medication orders in this setting.

Figure 6 shows the distribution of medication delays for unplanned, urgent medications in

the ICU. The average delay is 88 minutes, with a median delay of 62 minutes.

For identification purposes, we focus only on the medications that are typically unplanned,

and ordered urgently for immediate delivery. We also require that the medication be stocked

and available in the ICU such that the delay observed is not confounded by a delay in

medication retrieval from the pharmacy. The dataset originally was comprised of 870 unique

medications, which we group into 50 medication groups based on clinical function. Of these,

we focus on 9 medication groups that satisfy the criteria of (1) being universally prescribed

to a wide variety of patients to assist in keeping them in healthy states in an unplanned
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Figure 7: Empirical distribution of ICU medication delays by medication group

and urgent fashion, and (2) typically being stocked and available for quick retrieval on the

unit where the patient resides. The list of medication names within each group is shown in

the Appendix. The histogram of observed delays separated by these 9 medication groups

is shown in Figure 7 and the empirical average delays observed by the same groups are

outlined in the Table 15.

3.4. Identification Strategy

Ideally, to study this question we would set up the following experiment: we would random-

ize ICU patients into two groups with the control group receiving low to zero medication

delays and the treatment group receiving large exogenous medication delays. We would

ask nurses to monitor patients to study the impact of these delays on their health. Un-
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Table 15: Empirical Medication Delay by Medication Group

Medication Group Mean Empirical Delay

Electrolytes 121 minutes
Antibiotics 111 minutes
Anticoagulants 75 minutes
Inhalers 75 minutes
Fever Reducers 61 minutes
Fluids 57 minutes
Sedatives 52 minutes
Beta Blockers 51 minutes
Vasodilators 45 minutes

fortunately, this is both ethically and practically infeasible, so we utilize an identification

strategy that captures only the exogenous portion of delays so that we can measure the

causal impact of such delays on patient health. This approach is necessary because delays

are endogenous in nature; nurses who deliver the medications make prioritization decisions

that impact the delays we observe, but in a way that is not identifiable in the data. As a

result, any estimation directly using medication delays as an explanatory variable without

addressing endogeneity will result in biased estimates.

To measure the causal impact of delays in medication on patient health, we use as our unit

of analysis each medication order for each patient (using only the orders of the unplanned

& urgently scheduled medications we include in our analysis). Using the illustration in

Figure 8, t1 represents the moment a medication was ordered to be delivered immediately.

Since each individual vital reading is noisy, we average the patient’s vital sign readings over

two hours (h = 2) immediately before and after the medication was ordered to create the

patient’s ‘pre-health state’ and ‘post-health state’, respectively (for each vital threshold, as

outlined in Table 14). We code each of these states into binary indicators where the healthy

state is zero (if the patient’s two-hour average vitals were inside the relevant threshold),

and the unhealthy state is one (if the patient’s two-hour average vitals were outside the

relevant threshold) for each vital threshold. For our main analysis we choose the vital

average time horizon (h) to be two hours; since medication delays average 88 minutes, a

two-hour window would capture the vital readings that could have been the result of most
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Figure 8: Granular health measurement using vital signs

observed medication delays. In Section 3.7, we vary h and show results for when the time

period is 1 hour and 3 hours.

Using these average measures of granular patient health, we use the patient’s pre-health

state across all 12 vital thresholds (as outlined in Table 14) as control variables and the

patient’s post-health state as the dependent variable of interest. Controlling for the pre-

vital states in this way controls for the impact of any correlation between vital states on

the estimated coefficients on medication delay, and ensures that the value we estimate for

medication delay is as accurate as possible. Using this measure of granular patient health,

we can identify the causal impact of a marginal minute of medication delay on the odds

that the patient enters an unhealthy vital state. In addition to controlling for the pre-

health state of the patient, we control for other exogenous patient covariates as outlined in

Table 16.

Using this identification strategy for each instance of an ordered and subsequently delivered

medication, we can capture four scenarios. If the patient started in a healthy state, they can

either remain there after medications were ordered, or transition into an unhealthy state.

If the patient started in an unhealthy state, they can either remain there, or transition

into a healthy state. By using the binary post-health state as the dependent variable, we

can measure how a delay in medications could impact the odds that the patient ends up
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Table 16: Control Variables for Main Estimation Models

Control Group Controls

Unit/Hospital Level W Hospital
Unit

Patient-Medication Level X Patient Gender
Patient Age
Patient Complexity
Primary Diagnosis Code
Percent of Total Stay Elapsed
Origin Health State (12)

Time-Related Controls Z Year Medication Ordered
Month Medication Ordered
Hour Medication Ordered

in an unhealthy state. In addition, using the patient’s origin health states as exogenous

explanatory variables, we can measure the difference in the odds of transitioning from either

origin state.

We use this identification strategy to separately estimate the impact of medication delays

across all 9 medication groups for all 12 vital thresholds. This will allow us to determine

the impact of delays in all medication groups across all vital thresholds. If there exist

differences in the health cost of delaying certain medications, we can assist providers in

better prioritizing the medications to be delivered during busy times.

3.5. Instrumental Variable Estimation

Despite controlling for the patient’s pre-health state across multiple vital thresholds as well

as clinical variables from the patient’s medical record, we cannot rule out the possibility

that there remains unobserved variables that impact the medication delays we observe, as

well as the patient’s vital health status. This is largely because decisions made in the ICU

are complex, and what we observe in the medical record is only a fraction of the information

that nurses have when making these decisions with the patient physically in front of them.

As a result, any unobserved variables that impact both medication delay and patient health

will enter the error term and bias our estimated impact of delay.
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To overcome this challenge, we use an intrumental variable approach to identify the ex-

ogenous portion of medication delay, instruments that we found initially through observing

nurse workflow in these units. Our first instrument is the nurse shift change, and our second

instrument is the average per-medication delay observed by other patients in the same unit

within the same hour that medication was ordered. The nurse shift change occurs daily

at 7am and 7pm. During these time windows (6:30am - 7:30am, 6:30pm - 7:30pm), nurses

can be found conducting a thorough hand-off procedure with the oncoming staff, which

takes their attention off the patient for at least half an hour. We identify this instrument

during each instance of a medication order by using a binary indicator for whether or not

the medication was ordered within the 6:30am - 7:30am or 6:30pm - 7:30pm time windows.

Our second instrument, the average medication delay experienced by other patients on the

same unit within the same hour, captures other exogenous shocks on the unit that affect

medication delay. These shocks include, but are not limited to, census and high patient

load effects, unit level care coordination activities, and any external distractions between

providers. Both instruments were identified by the authors after personally observing activi-

ties on the unit during shift change hours and outside shift change hours. Care-coordination

activities on the unit include meetings held within the central provider staffing area (away

from patient rooms) to discuss the status of patients (often with regards to which patient

can be discharged to make room for a more severe incoming patient).

Since our measure of patient health is binary, we use the control function approach to obtain

consistent coefficient estimates in a two-stage fashion when our second stage is a non-linear

logistic regression (Wooldridge and Imbens, 2007). This method uses the error term to

adjust for the potential bias introduced when the error term from the first stage model is

withheld from the second stage logistic regression. Our first stage equation is the following:
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MedDelayijt = β0 +β1ShiftChangeijt+β2OtherP tDelayijt+Wjβr +Xijtβe+Ztβh+ εijt

(3.1)

Since our unit of analysis is at the medication order level, we index i as the patient, j

as the medication, and t as the time when the medication was ordered. In Equation 3.1,

ShiftChangeijt represents a binary indicator for whether or not the medication order oc-

curred during the shift change time windows. OtherP tDelayijt represents the average

medication delay observed by other patients on the same unit within the same hour that

a medication was ordered for the index patient of interest. We take the fitted values of

medication delay from this first stage regression ( ̂MedDelayijt), and the fitted residuals

from the first stage regression (ε̂ijt), to estimate the second stage regression, which in this

case is a logistic regression on the binary outcome of post-health state:

log(
p(PostUnhealthyStateijt)

1 − p(PostUnhealthyStateijt)
)

= βθ + βγ ̂MedDelayijt + ε̂ijt + β2OtherPtDelayijt + Wjβα + Xijtβδ + Ztβp (3.2)

Using this estimation strategy, βγ represents the causal impact of a marginal minute of

medication delay on the log odds that a patient enters an unhealthy state as a result.

3.5.1. Instrumental Variable Validity

For these instruments to be valid they must satisfy the relevance condition and the exclusion

restriction condition (Wooldridge, 2010), we discuss these in turn.

The relevance condition requires that the chosen instruments explain sufficient variation in

our endogenous variable (medication delay). To test this statistically, we perform ANOVA

F-tests comparing the first stage model without our instruments and the first stage model
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with our instruments. The results are shown in Section 3.6.1, and show that our instru-

ments explain a significant portion of variation in observed medication delay. Both of our

instruments were chosen because they were observed in practice to exogenously drive in-

creases in medication delay. We find evidence of this in the data; the time window around

the nurse shift change is associated with increased medication delays, and increases in the

delay observed by other patients on the same unit drive increases in the delay observed by

the index patient.

The exclusion restriction condition requires that our instruments impact the patient’s health

condition only through its effect on medication delays. Support for this assumption comes

from how care is delivered in the ICU. Patient vitals are a real-time measure of the health

stability of the patient. Providers in the ICU monitor these conditions, and the mechanism

through which they can affect this is through medications (which includes the administration

of fluids and electrolytes, which are not ‘medications’ per se, but are included due to their

therapeutic effect in the ICU). Therefore, our instruments affect medication delays, and

this is the primary mechanism through which they affect patient health. The nursing

shift change does not alter any other aspect of patient care, except that it is a period of

time where the nurses’ attention is taken off the patient. Similarly, delays experienced by

other patients on the same unit around the same timeframe represent moments where the

unit requires the attention of the nurses and so similar to our first instrument, the nurses’

attention is taken off the patient and his or her needs. By itself, nurse attention is not able

to ensure the patient remains in healthy states. However, combined with timely medication

delivery, nurses can ensure that patients remain in healthy vital states because they received

their medication on time. Therefore, we have reason to believe that our instruments satisfy

the exclusion restriction assumption, and affect patient health only through its effects on

medication delay.
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3.6. Instrumental Variable Estimation Results

Results for our first stage estimation are shown in Tables 17, 18, and 19. We present

coefficients from the first stage estimation across all 9 medication groups.

Table 17: Results: OLS First Stage Results

(1) (2) (3)
Antibiotics Inhalers Beta Blockers

Shift Change IV 55.35∗∗∗ (3.44) 39.51∗∗∗ (3.91) 39.97∗∗∗ (1.79)
Other Patient Delay IV 0.79∗∗∗ (0.01) 0.76∗∗∗ (0.02) 0.36∗∗∗ (0.01)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.35 0.08 0.24
F-Statistic 3027.3∗∗∗ 1117.6∗∗∗ 1971.9∗∗∗
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.

Table 18: Results: OLS First Stage Results

(4) (5) (6)
Anticoagulants Fluids Electrolytes

Shift Change IV 89.68∗∗∗ (2.88) 35.56∗∗∗ (3.42) 47.69∗∗∗ (2.89)
Other Patient Delay IV 0.49∗∗∗ (0.01) 0.34∗∗∗ (0.01) 0.65∗∗∗ (0.01)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.27 0.08 0.28
F-Statistic 2141.3∗∗∗ 522.7∗∗∗ 1859.9∗∗∗
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.

We observe strong first stage regressions, with F-Statistic estimates ranging from 522.7

(Model 5, F-Statistic = 522.7∗∗∗) to 3027.3 (Model 1, F-Statistic = 3027.3∗∗∗), suggesting

that the addition of our two instrumental variables explain significantly more variation

in the observed delays compared to models without them. From our first stage results,

we find that the time window around a nurse shift change in the ICU is associated with
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Table 19: Results: OLS First Stage Results

(7) (8) (9)
Fever Reducers Sedatives Vasodilators

Shift Change IV 60.81∗∗∗ (3.14) 48.81∗∗∗ (3.49) 57.11∗∗∗ (2.06)
Other Patient Delay IV 0.56∗∗∗ (0.01) 0.37∗∗∗ (0.01) 0.21∗∗∗ (0.01)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.25 0.07 0.12
F-Statistic 1752.7∗∗∗ 748.52∗∗∗ 1015.0∗∗∗
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.

Table 20: First Stage Estimated Exogenous Delays by Medication Group

Medication Mean Shift Change Other Patient
Group Empirical Delay Delay IV Delay IV
Electrolytes 121 47.69 0.65
Antibiotics 111 55.35 0.79
Anticoagulants 75 89.68 0.49
Inhalers 75 39.51 0.76
Fever Reducers 61 60.81 0.56
Fluids 57 35.56 0.34
Sedatives 52 48.81 0.37
Beta Blockers 51 39.97 0.36
Vasodilators 45 57.11 0.21
Units are in minutes.

an increase in the medication delay of 35 minutes for fluids (Model 5, β1 = 35.56∗∗∗) to

89 minutes for anticoagulants (Model 4, β1 = 89.68∗∗∗). For each additional minute of

the average medication delay experienced by other patients on the unit, an index patient

observes a delay between 0.21 minutes for vasodilators (12.6 seconds; Model 9, β2 = 0.21∗∗∗)

to 0.79 minutes for antibiotics (47.4 seconds; Model 1, β2 = 0.79∗∗∗). We summarize our

instrumented exogenous delays alongside the observed empirical mean endogenous delays

in Table 20.

Our second stage estimation results are presented in Tables 21 and 22; only the coefficients

on βγ are presented here. The coefficients here represent the percentage change in the odds

of entering the relevant adverse vital threshold shown in the corresponding column due
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to a 1 minute delay in a medication from the group in the corresponding row. Since we

run many models to determine these results (each cell represents a model), we apply the

false discovery rate correction using the Benjamini-Hotchberg procedure to address multiple

testing concerns. This is discussed in the Appendix.

Table 21: Second Stage Logistic Regression: βγ Coefficient Estimates (Blood Pressure
Vitals)

MAP Low MAP High SBP Low SBP High DBP High

Antibiotics −0.57%∗ 0.19%∗ 0.07% 0.10% 0.19%
Inhalers -1.05% -0.22% -1.73% -0.31% 0.68%
Beta Blockers -1.10% 0.67%∗∗ -0.10% 0.63%∗ 0.82%∗∗

Anticoagulants -0.30% -0.10% -0.19% 0.08% -0.17%
Fluids 0.50% −0.50%∗ 0.50%∗ −0.40%∗ -0.37%
Electrolytes -0.25% 0.15%∗ −0.30%∗∗ 0.15%∗ 0.01%
Fever Reducers -0.06% -0.36% 0.06% -0.27% -0.39%
Sedatives -0.81% -0.04% 0.32% -0.15% 0.32%
Vasodilators -97.10% 2.99%∗∗∗ -0.43% 3.19%∗∗∗ 1.54%∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health
state in the corresponding column due to one additional minute of delay in a medication
from the corresponding row.
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Table 22: Second Stage Logistic Regression: βγ Coefficient Estimates (All Other Vitals)

HR Low HR High TEMP Low TEMP High O2 Low RR Low RR High

Antibiotics 0.26% -0.07% 0.27% -0.09% 0.06% -0.25% 0.20%∗

Inhalers 1.71% 1.18%∗ -98% 0.76% 0.28% -78.09% 1.06%∗

Beta Blockers -0.12% 0.65%∗ -2.76% -0.18% 0.25% -100% 0.23%
Anticoagulants 0.56% -0.28% -99.95% -1.00% -0.05% -0.34% 0.02%
Fluids 0.61% -0.13% -0.34% -0.53% -0.09% -1.78% −0.47%∗∗

Electrolytes -0.40% −0.17%∗ 0.60%∗ -0.18% -0.07% -0.57% 0.04%
Fever Reducers -1.11% 0.14% -2.41% 0.54%∗ 0.00% 0.91% -0.06%
Sedatives -0.14% 0.06% -0.51% -0.28% -0.17% -100% 0.03%
Vasodilators -0.18% 0.13% 3.97% -0.78% 0.66% -97.84% 1.35%∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health state
in the corresponding column due to one additional minute of delay in a medication from the corre-
sponding row.
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This estimation method has allowed us to quantify the causal impact of a marginal minute

of delay across multiple commonly prescribed medication groups on the odds that a patient

enters an adverse vital state across multiple vital thresholds that are used in clinical practice.

Many of the coefficients estimated make intuitive sense: a 1 minute delay of vasodilators

increases the odds of the patient entering a adverse high blood pressure state by 2.99% (MAP

High, βγ = 2.99, p < 0.001) and 3.19% (SBP High, βγ = 3.19, p < 0.001). Vasodilators are

prescribed to lower blood pressure so it should follow that delaying this medication would

result in the patient entering a high blood pressure state. Similarly, a minute of delay in

fever reducing medication results in an increased odds of entering a fever state by 0.54%

(Temperature High, βγ = 0.54, p < 0.05). Beta blockers are often prescribed to lower blood

pressure and heart rate, so it makes meaningful sense that our results show that delaying

beta blockers results in an increase in the odds of increased blood pressure (MAP High,

βγ = 0.67, p < 0.01; SBP High, βγ = 0.63, p < 0.05; DBP High, βγ = 0.82, p < 0.01) and

heart rate (HR High, βγ = 0.65, p < 0.05). Inhalers are typically given for asthma and

breathing conditions, so delaying the delivery of inhalers increases the odds of entering a

high respiratory rate state (RR High, βγ = 1.06, p < 0.01).

To show the direction of the bias introduced by endogeneity, we present estimates from

models without our instrumental variables in Appendix 3.10.3. To ensure the robustness of

our estimates, we also show the second stage results using a linear probability model with

errors clustered at the patient level in Appendix 3.10.4.

3.6.1. Instrumental Variable Validity Test

We test the relevance of our instruments by performing an ANOVA F-test that compares

models with only our exogenous variables to models with our exogenous variables as well as

our two instrumental variables (Hall et al., 1996). From this analysis we observe F-Statistic

estimates that range from 522.7 (Model 5, F-Statistic = 522.7∗∗∗) to 3027.3 (Model 1, F-

Statistic = 3027.3∗∗∗); all estimates are shown in Tables 17, 18, and 19. This suggests

that our instrumental variables explain a sufficient amount of variation in our endogenous
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regressor, and the coefficients are highly unlikely to equal zero. In fact, our two instrumental

variables are among the two variables in our first-stage regressions with the strongest signal

in explaning delay. This makes sense, since our instruments were selected because of their

exogenous impact on medication delay.

3.7. Robustness Analysis

3.7.1. Vital Average Time Window

We vary the time period over which we average the patient vitals immediately before and

after a medication was ordered, and find the following results from the second stage esti-

mation using a time period of 1 hour (Tables 23 and 24), and 3 hours (Tables 25 and 26).

Results from the first stage estimation are in the Appendix (Tables 31 through 36).

The results we obtain using these two thresholds are slightly different. We average vital

readings over an hourly period instead of using individual vital readings as a way to minimize

the variance in our estimate of the patient’s health state. Patient vital signs can fluctuate

quite a lot (oftentimes because of errors in recording or patient movement that results in

abnormal readings), so using an hourly average reduces the impact of these noisy values on

our estimate of patient health. We initially chose two hours as the hourly cutoff because

(1) the average medication delay in our dataset is 88 minutes (or 1 hour and 28 minutes),

and (2) there is usually a slight lag after medication administration before medications

begin to work. If we assume that most medications begin to work within 30 minutes, then

an hourly average cutoff of 2 hours would capture the impact of most medication delays

on patient vital signs after the medication was ordered, while also capturing the clinical

efficacy of the medication given by including several instances of vital readings after the

medication begins to take effect. When we change this to average vital signs over a 1-hour

window, we only capture patient vitals the hour immediately before and after medications

were ordered, which is noisy. Since the patient’s vital signs have not had sufficient time

to either reach an unhealthy state and stabilize there, or remain in a healthy state, our
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identification strategy does not have sufficient power in identifying an effect. Many of

our effects disappear. When we use a 3-hour window, we identify more effects, since the

measures of health (when averaged over a longer time period) tend to be more stable, and

the efficacy of delayed medications are more likely to be captured in later vital readings.

The effects found using this time-window are very similar to the effects found using the

2-hour time-window. However, with respect to identification, the 2-hour window is a much

cleaner choice since patient vitals over a 3-hour window could be affected by additional

interventions due to the prolonged time-window.

Table 23: Second Stage Logistic Regression Using 1-Hour Window: βγ Coefficient Estimates
(Blood Pressure Vitals)

MAP Low MAP High SBP Low SBP High DBP High

Antibiotics -0.05% 0.26% 0.27% -0.04% 0.10%
Inhalers -1.27% -1.88% -1.29% -0.35% -3.75%
Beta Blockers -0.99% 0.77% 0.22% 0.76% 0.35%
Anticoagulants -1.99% -1.21% -1.93% -1.65% -1.48%
Fluids 1.06% -0.31% 0.57% -0.20% -0.15%
Electrolytes -0.41% -0.04% -0.75% -0.05% -0.04%
Fever Reducers 0.83% 0.00% -0.81% -0.45% 0.28%
Sedatives -5.06% 0.72% -2.04% 1.58% 1.35%
Vasodilators -0.66% 2.44%∗ -0.75% 1.69% 2.02%
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health
state in the corresponding column due to one additional minute of delay in a medication
from the corresponding row.
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Table 24: Second Stage Logistic Regression Using 1-Hour Window: βγ Coefficient Estimates (All Other Vitals)

HR Low HR High TEMP Low TEMP High O2 Low RR Low RR High

Antibiotics 1.33%∗ -0.07% 0.52% 0.44% 0.21% -1.34% 0.16%
Inhalers -0.34% 0.55% -0.22% -1.27% 0.07% -0.97% -0.49%
Beta Blockers -3.21% -0.58% 0.58% -1.30% 0.54% 0.49% -0.32%
Anticoagulants -0.42% -0.27% -96.66% -0.65% -0.01% -0.10% -0.24%
Fluids 2.81% 0.35% -0.99% -0.29% -0.13% -2.62% -0.52%
Electrolytes -0.43% -0.58% 1.37%∗ -0.23% -0.05% -0.47% -0.05%
Fever Reducers -0.98% 0.06% -0.79% 0.05% -0.44% 1.28% 0.24%
Sedatives 1.82% 0.80% 4.31% -1.82% 0.14% -3.45% 0.20%
Vasodilators -0.96% -0.34% -4.29% -0.48% -0.91% -0.38% 1.76%
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health state
in the corresponding column due to one additional minute of delay in a medication from the corre-
sponding row.
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Table 25: Second Stage Logistic Regression Using 3-Hour Window: βγ Coefficient Estimates
(Blood Pressure Vitals)

MAP Low MAP High SBP Low SBP High DBP High

Antibiotics -0.10% 0.04% 0.16% 0.07% -0.13%
Inhalers -0.96% 0.27% -1.64% -0.22% 0.35%
Beta Blockers -0.15% 0.71%∗∗∗ -0.38% 0.56%∗∗∗ 0.77%∗∗∗

Anticoagulants -0.60% 0.01% -0.24% 0.07% -0.09%
Fluids 0.68%∗∗∗ -0.74% 0.64%∗∗∗ -0.44% -0.36%
Electrolytes -0.49% 0.12% -0.30% 0.16%∗∗∗ 0.10%
Fever Reducers -0.44% -0.39% -0.29% -0.20% -0.51%
Sedatives -0.37% 0.07% 0.00% -0.07% 0.24%
Vasodilators -27.13% 2.56%∗∗∗ -0.85% 4.17%∗∗∗ 0.87%∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health
state in the corresponding column due to one additional minute of delay in a medication
from the corresponding row.
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Table 26: Second Stage Logistic Regression Using 3-Hour Window: βγ Coefficient Estimates (All Other Vitals)

HR Low HR High TEMP Low TEMP High O2 Low RR Low RR High

Antibiotics 0.09% -0.06% 0.78%∗∗ -0.03% 0.02% 0.17% 0.13%∗

Inhalers 1.11% 0.40% -0.04% 0.31% 0.07% -0.81% 0.32%
Beta Blockers -0.53% 1.02%∗∗∗ -2.00% 0.13% 0.05% -21.85% 0.31%
Anticoagulants 0.34% 0.04% -2.04% -0.17% -0.11% -0.05% -0.15%
Fluids 0.51% -0.03% -0.02% 0.06% -0.22% 0.95%∗ -0.36%
Electrolytes 0.07% -0.13% 0.19% -0.10% -0.04% -0.60% 0.02%
Fever Reducers -0.51% 0.04% 0.28% 0.60%∗∗∗ 0.08% 0.35% -0.03%
Sedatives -0.07% -0.03% -0.49% -0.18% -0.01% -13.08% 0.08%
Vasodilators 0.20% 0.49% 3.64%∗∗ -0.37% 0.16% -0.09% 0.68%
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health state
in the corresponding column due to one additional minute of delay in a medication from the corre-
sponding row.
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3.8. Managerial Implications

In this study, we find that patients in the ICU experience an average medication delay of

88 minutes for unplanned, urgently scheduled medications meant to be delivered immedi-

ately. We quantify the causal impact of some of this delay on patient health through an

examination of 9 separate medication groups and 12 vital sign thresholds that are regularly

monitored in the intensive care unit. We do this using an instrumental variable approach

that captures exogenous variation in medication delay during shift changes and care coor-

dination activities on the unit.

Despite the existence of literature showing an association between medication delays and

patient mortality in the emergency department, studies have not previously been able to

causally quantify the impact of a delay in medication on patient health in a way that

prescribes an actionable insight for providers to do better. For example, knowing that

delays in medications are associated with a slightly higher risk of in-hospital mortality might

convince providers to improve medication delivery times, but without information about

exactly what the causal effect of such delays are on patient health across different medication

groups, the finding is less actionable. In this work, we quantify the exact increase in the

odds that any patient will enter an unhealthy vital state across 12 closely monitored vital

thresholds in the ICU due to an additional minute of medication delay across 9 medication

groups. Because we do this for 9 groups of commonly used and stocked medications in the

ICU, we can (using our estimated coefficients), create a prioritization list of medications

based on their adverse effects on the patient. Let us assume, for illustration purposes, that

the medications that impact more vital thresholds and cause a larger effect when delayed

are worse to delay. Then, we can order the medications based on their “estimated clinical

urgency”. We can then compare our estimated clinical urgency against the empirical mean

delays that we observe in the data. This would allow us to classify medications as being

“statistically under-prioritized” or “statistically over-prioritized”, this is shown in Figure 9.

This comparison shows us that providers are in fact prioritizing heart and vascular medica-
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Figure 9: A re-prioritization of medications based on the clinical impact of delays
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tions such as vasodilators and beta blockers. In our results these two medications have the

most impact on patient vitals (specifically blood pressure and heart rate vital thresholds),

and it appears that providers prioritize these medications above others since they have the

lowest average empirical delay. Other medications, such as fever reducers and fluids appear

to be ‘over-prioritized’ in that they have lower delays than medications that we estimate

would impact the patient more if delayed, such as electrolytes and inhalers (which we label

as ‘statistically under-prioritized’). Of course, this exercise is simply an illustrative example

that shows the potential for these findings to assist providers in better prioritizing medi-

cation delivery in the ICU. This would be particularly useful if providers know something

about the patient’s condition as it relates to vital sign thresholds. For example, a patient

arriving in the ICU after a heart surgery would require their blood pressure and heart rate

to be kept in healthy vital sign ranges for optimal recovery. Thus, providers knowing this

can use our estimated clinical cost of delays to prioritize medications such that delays do

not adversely affect the patient’s blood pressure and heart rate vital signs.

Given that delays are inevitable in healthcare delivery, particularly in a setting as complex

and fast-paced as the intensive care unit, our findings can enable providers to take a step

towards mitigating the negative impact of some of this medication delay on the patient’s

health in a personalized way. This could be one step towards a more personalized approach

to healthcare delivery, one where observed delays in medication might only minimally impact

patient health.

Further, this work generalizes to services where delays can lead to undesirable outcomes

and the prioritization of attention is important due to limited resources; examples of this

include emergency services such as firetrucks, ambulances, and project management, among

others. Central to the application of this work to these other settings is causally quantifying

the cost of delays. In the case of firetrucks or ambulances, one could imagine a scenario

where there are multiple locations needing assistance. Prioritization decisions would need

to be made given limited resources and the first destination of these rescue vehicles in this
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scenario would be the one with the highest cost of delay. This study provides a causal

framework to study these problems using observational data and instrumental variables;

findings using this approach have the potential to assist service providers to make better

prioritization decisions and mitigate the negative impact of delays on their customers.

3.9. Conclusion

We empirically quantify the cost of medication delays in the ICU on patient health. This is

especially relevant in the ICU setting since patients are typically in critical condition and

require medications to remain in healthy states for optimal recovery. Through quantifying

these effects, we find that vasodilators and beta blockers are two of the worst medication

groups to delay. While it is good to know that vasodilators and beta blockers are among

the least delayed medications in the ICU, they still have an average delay of 45 minutes

and 51 minutes, respectively. This is only slightly shorter than the average delay across all

medication groups in our study, which is 88 minutes. Our contributions can assist providers

in making better prioritization decisions when it comes to medication delivery during busy

times such as shift changes. By understanding the exact health impact of delaying certain

medications on patient vitals across multiple vital thresholds, providers can attempt to

better prioritize medication delivery so that patient harm is minimized.
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3.10. Appendix

3.10.1. Medication Groupings

Antibiotics: sulfamethoxazole-trimethoprim, tigecycline IVPB, tobramycin IVPB, Van-

comycin Injection, amikacin IVPB, amoxicillin oral liquid, ampicillin , Ampicillin/Sulbactam,

azithromycin, aztreonam IVPB, ceFAZolin IVPB, cefepime IVPB, cefTAZidime IVPB,

ceftazidime-avibactam IVPB, cefTRIAXone IVPB, chloramphenicol IVPB, ciprofloxacin,

ceFAZolin IVPB, cefepime IVPB, cefTAZidime IVPB, ceftazidime-avibactam IVPB, cef-

TRIAXone IVPB, chloramphenicol IVPB, ciprofloxacin, clindamycin, colistimethate IVPB,

DAPTOmycin IVPB, doxycycline, erythromycin IVPB, gentamicin IVPB, imipenem and

cilastatin IVPB, levoFLOXacin, linezolid, meropenem IVPB, metroNIDAZOLE, nafcillin

injection, penicillin G K IVPB, Piperacillin/Tazobactam Inj

Inhalers: acetylcysteine nebulizer solution, albuterol inhaler, albuterol-ipratropium in-

haler, ipratropium-albuterol nebulization, beclomethasone 80 MICROgrams inhaler, ipra-

tropium inhaler, levalbuterol 0.63 mg/3mL solution, theophylline, tiotropium bromide in-

haler.

Beta Blockers: Atenolol Tablet, carvedilol, esmolol infusion, labetalol, Metoprolol Injec-

tion, metoprolol tartrate, nadolol, pindolol, propranolol.

Anticoagulants: argatroban infusion, bivalirudin bolus, dabigatran, enoxaparin 120 mg

injection, heparin inf 25000 Units/250 mL, rivaroxaban, warfarin.

Fluids: albumin 5% IVPB, dextrose 10% in water, fluid challenge lactated ringers, fluid

challenge, Free Water Bolus, lactated ringers, sodium chloride.

Electrolytes: calcium acetate, calcium carbonate-vitamin D, calcium chloride IVPB,

potassium chloride IVPB, potassium phosphate IVPB.

Fever Reducers: acetaminophen, acetaminophen oral liquid, acetaminophen suppository,
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acetaminophen oral liquid, acetaminophen oral liquid, Acetaminophen Tablet.

Sedatives: ALPRAZolam, chloral hydrate oral liquid, clonazePAM, LORazepam, midazo-

lam infusion, temazepam, traZODone.

Vasodilators: hydrALAZINE, hydrALAZINE injection.
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3.10.2. Multiple Testing Correction

We do the false discovery rate correction using the Benjamini-Hotchberg procedure (Ben-

jamini and Hochberg, 1995) on our main results from Section 3.6 to address concerns sur-

rounding multiple testing, and find that all of our coefficients are significant at an α level

of 0.26. This suggests that if multiple hypothesis testing is an issue in this study, 26% of

our significant findings were a result of such effects.

3.10.3. Estimated Coefficients without Instrumental Variables

To show the direction of the bias, we estimate our models without instrumental variables,

instead using the endogenous delays as the predictor. The results of this estimation show

‘medication delay’ coefficients that are lower, or less significant. This suggests that the

endogeneity in patient prioritization is such that nurses prioritize patients who are more

sick, and therefore the endogenous medication delays show longer delays for patients who

are less sick. As a result, our estimated cost of medication delay is less than it is in reality,

since sicker patients are typically getting their medication quicker.

Table 27: Second Stage Logistic Regression Without IVs: βγ Coefficient Estimates (Blood
Pressure Vitals)

MAP Low MAP High SBP Low SBP High DBP High

Antibiotics -0.09% 0.11%∗ 0.07% -0.02% 0.07%
Inhalers -0.10% 0.08% -1.68% 0.19% 0.02%
Beta Blockers -0.79% 0.39%∗∗∗ -0.49% 0.39%∗∗∗ 0.36%∗∗

Anticoagulants -0.38% 0.06% -0.23% 0.15% -0.08%
Fluids 0.06% −0.19%∗∗∗ -0.04% -0.07% −0.17%∗

Electrolytes −0.15%∗ 0.04% −0.19%∗∗ 0.07%∗∗ -0.05%
Fever Reducers -0.13% 0.03% 0.10% 0.01% -0.03%
Sedatives 0.10% 0.09% -0.13% -0.05% -0.07%
Vasodilators -97.79% 1.05%∗∗∗ -0.06% 1.01%∗∗∗ 0.56%∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health
state in the corresponding column due to one additional minute of delay in a medication
from the corresponding row.
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Table 28: Second Stage Logistic Regression Without IVs: βγ Coefficient Estimates (All Other Vitals)

HR Low HR High TEMP Low TEMP High O2 Low RR Low RR High

Antibiotics -0.08% 0.01% 0.37%∗ 0.04% 0.01% 0.20% 0.15%∗∗∗

Inhalers 0.18% 0.10% -97.82% 0.03% 0.06% -2.10% -0.05%
Beta Blockers -0.08% 0.22% -0.95% -0.17% 0.08% -4.18% 0.05%
Anticoagulants 0.21% 0.02% -0.53% 0.12% 0.15% -0.72% -0.16%
Fluids 0.16% -0.02% -0.20% 0.00% -0.07% 0.01% -0.06%
Electrolytes -0.02% −0.11%∗∗ 0.24%∗ -0.03% -0.03% -0.17% -0.01%
Fever Reducers -0.97% 0.23%∗ -0.08% 0.10% 0.08% 0.10% 0.17%∗

Sedatives -0.10% 0.11% -1.08% -0.01% -0.04% -4.08% -0.04%
Vasodilators -0.49% -0.35% 1.43%∗∗ -0.11% 0.03% -98.06% -0.16%
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the odds of entering an adverse health state
in the corresponding column due to one additional minute of delay in a medication from the corre-
sponding row.
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3.10.4. Linear Probability Model Coefficients with Clustered Errors

To ensure the robustness of our results under error clustering at the patient level, we utilize

a linear probability model that clusters errors at the patient level. Our results show similar

significance levels and the direction of the coefficients are consistent.

Table 29: Second Stage Linear Probability Model: βγ Coefficient Estimates (Blood Pressure
Vitals)

MAP Low MAP High SBP Low SBP High DBP High

Antibiotics −0.014%∗ 0.022%∗ 0.005% 0.014% 0.012%
Inhalers -0.025% -0.012% -0.052% -0.033% 0.051%
Beta Blockers -0.009% 0.096%∗∗ -0.003% 0.091%∗∗ 0.092%∗∗∗

Anticoagulants -0.010% -0.009% -0.018% 0.007% -0.012%
Fluids 0.024%∗ −0.046%∗ 0.034%∗ −0.054%∗ -0.020%
Electrolytes −0.008%∗ 0.015% −0.014%∗∗ 0.020%∗ -0.002%
Fever Reducers -0.002% -0.043% 0.002% -0.038% -0.035%
Sedatives -0.016% -0.002% 0.011% -0.025% 0.033%
Vasodilators -0.013% 0.328%∗∗∗ -0.011% 0.221%∗∗ 0.262%∗∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the probability of entering an adverse
health state in the corresponding column due to one additional minute of delay in a medi-
cation from the corresponding row.
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Table 30: Second Stage Linear Probability Model: βγ Coefficient Estimates (All Other Vitals)

HR Low HR High TEMP Low TEMP High O2 Low RR Low RR High

Antibiotics 0.003% -0.007% 0.000% -0.010% 0.007% -0.002% 0.029%∗

Inhalers 0.025% 0.125%∗ -0.030% 0.051% 0.047% -0.004% 0.142%∗

Beta Blockers 0.000% 0.064%∗ -0.003% -0.009% 0.049% -0.005% 0.027%
Anticoagulants 0.013% -0.024% 0.002% 0.022% -0.009% 0.005% 0.008%
Fluids 0.007% -0.008% 0.010% -0.025% -0.017% -0.007% −0.061%∗∗

Electrolytes -0.005% −0.015%∗ 0.001% -0.007% -0.011% -0.002% 0.007%
Fever Reducers -0.006% 0.014% -0.003% 0.046%∗∗ 0.001% 0.016%∗∗∗ -0.008%
Sedatives -0.010% 0.015% -0.007% -0.019% -0.028% -0.010% 0.018%
Vasodilators -0.007% 0.026% 0.045%∗ -0.039% 0.103% -0.004% 0.200%∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: Each cell represents the percentage change in the probability of entering an adverse health
state in the corresponding column due to one additional minute of delay in a medication from the
corresponding row.
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3.10.5. Additional Tables from Robustness Checks Section

First-Stage Results Using Vital Sign Window of 1 Hour

Table 31: Results: OLS First Stage Results - 1 Hour Window

(10) (11) (12)
Antibiotics Inhalers Beta Blockers

Shift Change IV 69.10∗∗∗ (7.31) 55.23∗∗∗ (2.35) 28.89∗∗∗ (3.23)
Other Patient Delay IV 0.91∗∗∗ (0.02) 0.19∗∗∗ (0.01) 0.40∗∗∗ (0.01)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.34 0.16 0.25
F-Statistic 732.7∗∗∗ 158.1∗∗∗ 527.7∗∗∗
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.

Table 32: Results: OLS First Stage Results - 1 Hour Window

(13) (14) (15)
Anticoagulants Fluids Electrolytes

Shift Change IV 117.90∗∗∗ (7.99) 27.42∗∗∗ (3.42) 65.51∗∗∗ (6.51)
Other Patient Delay IV 0.36∗∗∗ (0.02) 0.37∗∗∗ (0.01) 0.57∗∗∗ (0.02)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.17 0.25 0.21
F-Statistic 317.38∗∗∗ 146.37∗∗∗ 416.80∗∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.
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Table 33: Results: OLS First Stage Results - 1 Hour Window

(16) (17) (18)
Fever Reducers Sedatives Vasodilators

Shift Change IV 60.13∗∗∗ (6.74) 47.05∗∗∗ (8.43) 82.59∗∗∗ (2.06)
Other Patient Delay IV 0.376∗∗∗ (0.02) 0.28∗∗∗ (0.03) 0.09∗∗∗ (0.009)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.28 0.14 0.24
F-Statistic 231.43∗∗∗ 71.54∗∗∗ 290.10∗∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.

First-Stage Results Using Vital Sign Window of 3 Hours

Table 34: Results: OLS First Stage Results - 3 Hour Window

(19) (20) (21)
Antibiotics Inhalers Beta Blockers

Shift Change IV 60.89∗∗∗ (2.52) 18.58∗∗∗ (2.37) 46.41∗∗∗ (1.50)
Other Patient Delay IV 0.81∗∗∗ (0.01) 0.76∗∗∗ (0.01) 0.36∗∗∗ (0.005)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.35 0.18 0.22
F-Statistic 6105.7∗∗∗ 3296.3∗∗∗ 3505.1∗∗∗
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.
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Table 35: Results: OLS First Stage Results - 3 Hour Window

(22) (23) (24)
Anticoagulants Fluids Electrolytes

Shift Change IV 78.39∗∗∗ (1.92) 45.60∗∗∗ (2.46) 46.22∗∗∗ (1.86)
Other Patient Delay IV 0.56∗∗∗ (0.01) 0.32∗∗∗ (0.01) 0.57∗∗∗ (0.01)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.31 0.11 0.26
F-Statistic 4478.7∗∗∗ 1106.9∗∗∗ 3453.2∗∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.

Table 36: Results: OLS First Stage Results - 3 Hour Window

(25) (26) (27)
Fever Reducers Sedatives Vasodilators

Shift Change IV 61.93∗∗∗ (2.36) 47.27∗∗∗ (2.73) 56.84∗∗∗ (2.06)
Other Patient Delay IV 0.57∗∗∗ (0.01) 0.43∗∗∗ (0.01) 0.19∗∗∗ (0.01)
Origin State Controls X X X
Unit Controls X X X
Patient Controls X X X
Time Controls X X X
Observations 14,474 14,474 14,474
Adjusted R2 0.25 0.11 0.13
F-Statistic 3619.1∗∗∗ 1445.9∗∗∗ 1804.8∗∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Note: F-Statistic and significance from ANOVA F-tests comparing models with our
instruments included with models without instruments.
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