

Publicly Accessible Penn Dissertations

2019

Factors That Mediate Expression Of Unique Ggggcc Repeat Expansions In C9orf72-Associated Als/ftd.

Lindsey D. Goodman
University of Pennsylvania, lindsey@goodman.net

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the <u>Biology Commons</u>, <u>Genetics Commons</u>, and the <u>Neuroscience and Neurobiology Commons</u>

Recommended Citation

Goodman, Lindsey D., "Factors That Mediate Expression Of Unique Ggggcc Repeat Expansions In C9orf72-Associated Als/ftd." (2019). *Publicly Accessible Penn Dissertations*. 3329.

https://repository.upenn.edu/edissertations/3329

Factors That Mediate Expression Of Unique Ggggcc Repeat Expansions In C9orf72-Associated Als/ftd.

Abstract

Amyotrophic lateral sclerosis and frontotemporal dementia spectrum disorders (ALS/FTD) are characterized by the degeneration of motor and cortical neurons. Recently, a hexanucleotide-repeat expansion of >30 repeats was discovered within intron 1 of C9orf72, defining ~40% of familial and ~7% of sporadic ALS/FTD cases. Aberrant accumulation of G4C2-RNA and the aggregation of its repeat-associated non-AUG (RAN-) translation products occurs in diseased tissue. Herein, we developed two Drosophila models that overexpressed G4C2-repeats. Expression of >30 repeats causes degenerative effects supporting gain-offunction mechanisms are contributing to disease. To define disease mechanisms, we performed an unbiased, RNAi-based screen covering ~4000 genes (~25% of the fly genome) and identified the PAF1 complex (PAF1C), an RNAPII-transcription factor, as a suppressor of G4C2-toxicity. Loss of PAF1C reduced RNA and peptide expression from sense-G4C2 and antisense-G2C4 transgenes in Drosophila and in yeast. Importantly, components Paf1 and Leo1 were selective for expression from toxic (>30) G4C2-repeats versus inert (\leq 29) repeats, arguing selectivity to the disease-associated repeat expansion. Leo1 was also shown to interact with C9orf72-chromatin in C9+-patient cells. Expression of PAF1C components became upregulated in response to expression of >30 G4C2-repeats in flies, mice, patient cells, and FTD tissue, further supporting their importance in disease. Interestingly, expression from PAF1 and LEO1 in FTD tissue correlated with expression of the repeat-expansion within C9orf72, supporting that these components of PAF1C are important for expression of the repeat in disease. In addition to PAF1C, we also identified 11 translation factors that may be important for peptide production from G4C2-transcripts in a second, targeted screen. Follow-up studies revealed that eIF4B and eIF4H knockdown reduced GR-peptide levels produced from G4C2-transcripts and G4C2-toxicity in the fly, defining them as potential RAN-translation factors in C9+ disease. In summary, jumping from unbiased forward genetic screens in Drosophila, we took an interdisciplinary approach to uncover key players whose activity regulates expression of the unique G4C2-hexanucleotide repeat expansion found in C9orf72 in a subset of ALS/FTD cases. This work increases our understanding of disease mechanisms while highlighting potential therapeutic targets.

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Neuroscience

First Advisor

Nancy M. Bonini

Keywords

amyotrophic lateral sclerosis, C9orf72, Drosophila, neurodegeneration, Paf1, translation factors

Subject Categories Biology Genetics Neuroscience and Neurobiology	

FACTORS THAT MEDIATE EXPRESSION OF UNIQUE GGGGCC REPEAT EXPANSIONS IN *C9ORF72*-ASSOCIATED ALS/FTD.

Lindsey D. Goodman

A DISSERTATION

in

Neuroscience

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2019

Supervisor of Dissertation

Nancy M. Bonini, PhD
Florence R.C. Murray Professor of Biology

Graduate Group Chairperson

Joshua I. Gold, PhD
Professor of Neuroscience

Dissertation Committee

Edward B. Lee, MD, PhD Assistant Professor of Pathology and Laboratory Medicine

Thomas A. Jongens, PhD Associate Professor of Genetics Zhaolan (Joe) Zhou, PhD Associate Professor of Genetics,

Kenneth H. Fischbeck, MD NIH Distinguished Investigator, NINDS/National Institute of Health

FACTORS THAT MEDIATE EXPRESSION OF UNIQUE GGGGCC REP	EAT
EXPANSIONS IN C90RF72-ASSOCIATED ALS/FTD.	

COPYRIGHT

2019

Lindsey D. Goodman

ACKNOWLEDGMENT

I am forever grateful to the multiple professors who have supported me in my journey to becoming a research scientist. This work would not have been possible without the support of my advisor, Dr. Nancy M. Bonini. I have learned so much about how to be an impactful and rigorous scientist. I cannot thank Nancy enough for everything she has done for me, including giving me the opportunity to work on a highly exploratory project. It was a unique, and dream-fulfilling, opportunity to train under such a prestigious professor while learning about fly genetics and neurodegeneration. In addition to Dr. Bonini, I would also like to thank Dr. Erik P. Sulman who gave me my first research position out of undergraduate school. I would not be where I am today without the training I received in his lab and his continued support. Last, I would like to thank my PhD committee members and the chair of my graduate program. In particular, Dr. Edward B. Lee, my committee chair, was an amazing support.

On a personal note, nobody has been more important to me than my dearest husband, Richard P. SoRelle. Words cannot convey how thankful I am to have found him in my life. His seemingly unending support of me and his drive for us to maintain a fulfilling life outside of our work will always be cherished.

Thank you to my family, friends, and lab-mates, each of whom supported me in their own unique way. Particularly, I would like to thank my in-laws, Ruth and Paul SoRelle, and husband's extended family. More, I would like to thank my parents, both of whom showed me what hard-work and cunning can achieve while giving me unique opportunities to make my dreams come true. My mother, Sheryl A. Goodman, pushed me to be independent and to define what makes me happy in life. Further, thanks to my father, Dr. John G. Goodman, Jr., without whom I likely would not have developed such a passion for research as he exposed me to science and medicine in my youth.

ABSTRACT

FACTORS THAT MEDIATE EXPRESSION OF UNIQUE GGGGCC REPEAT EXPANSIONS IN C9ORF72-ASSOCIATED ALS/FTD.

Lindsey D. Goodman

Nancy M. Bonini

Amyotrophic lateral sclerosis and frontotemporal dementia spectrum disorders (ALS/FTD) are characterized by the degeneration of motor and cortical neurons. Recently, a hexanucleotide-repeat expansion of >30 repeats was discovered within intron 1 of C9orf72, defining ~40% of familial and ~7% of sporadic ALS/FTD cases. Aberrant accumulation of G4C2-RNA and the aggregation of its repeat-associated non-AUG (RAN-) translation products occurs in diseased tissue. Herein, we developed two Drosophila models that overexpressed G4C2-repeats. Expression of >30 repeats causes degenerative effects supporting gain-of-function mechanisms are contributing to disease. To define disease mechanisms, we performed an unbiased, RNAi-based screen covering ~4000 genes (~25% of the fly genome) and identified the PAF1 complex (PAF1C), an RNAPII-transcription factor, as a suppressor of G4C2-toxicity. Loss of PAF1C reduced RNA and peptide expression from sense-G4C2 and antisense-G2C4 transgenes in *Drosophila* and in yeast. Importantly, components *Paf1* and *Leo1* were selective for expression from toxic (>30) G4C2-repeats versus inert (≤29) repeats, arguing selectivity to the disease-associated repeat expansion. Leo1 was also shown to interact with C9orf72-chromatin in C9+-patient cells. Expression of PAF1C components became upregulated in response to expression of >30 G4C2-repeats in flies, mice, patient cells, and FTD tissue, further supporting their importance in disease. Interestingly, expression from PAF1 and LEO1 in FTD tissue correlated with expression

of the repeat-expansion within *C9orf72*, supporting that these components of PAF1C are important for expression of the repeat in disease. In addition to PAF1C, we also identified 11 translation factors that may be important for peptide production from G4C2-transcripts in a second, targeted screen. Follow-up studies revealed that *eIF4B* and *eIF4H* knockdown reduced GR-peptide levels produced from G4C2-transcripts and G4C2-toxicity in the fly, defining them as potential RAN-translation factors in C9+disease. In summary, jumping from unbiased forward genetic screens in *Drosophila*, we took an interdisciplinary approach to uncover key players whose activity regulates expression of the unique G4C2-hexanucleotide repeat expansion found in *C9orf72* in a subset of ALS/FTD cases. This work increases our understanding of disease mechanisms while highlighting potential therapeutic targets.

TABLE OF CONTENTS

ACKNOWLEDGMENT	III
ABSTRACT	IV
LIST OF TABLES	X
LIST OF ILLUSTRATIONS	XI
CHAPTER 1: A CURRENT PERSPECTIVE ON C9ORF72-ALS/FTD	1
Introduction	2
Clinical and pathological features of C9orf72-ALS/FTD	5
Current gain-of-function G4C2 models	10
Unique secondary structures formed by G4C2 DNA and RNA	15
Role of G-quadruplexes and R-loops in general transcription	18
Transcription of G4C2 G2C4 repeat expansions The DSIF complex: Spt4 and Spt5 The PAF1 complex: Paf1, Leo1, CDC73, Ctr9, and Rtf1 Current model for G4C2 G2C4-repeat transcription Additional mechanistic insights	21 24 26
Translation of G4C2 G2C4 repeat expansions Canonical versus non-canonical translation Properties of G4C2-RNA that may influence RAN-translation Potential G4C2-RAN translation factors and mechanisms.	30 32
Thesis work Concluding remarks	
Bibliography	49
CHAPTER 2: TOXIC EXPANDED GGGGCC REPEAT TRANSCRIPTION MEDIATED BY THE PAF1 COMPLEX IN C9ORF72-ASSOCIATED FTD.	_

Competing interests	74
Acknowledgments	75
Abstract	76
Introduction	77
Results	79
RNAPII transcriptional complexes are enriched among suppressors of (G4C2)49-toxicity.	
PAF1C is selective for toxicity from a G4C2-encoding RNA	
dPAF1C is selective for the G4C2 expansion	81
dPAF1C downregulation suppresses (G4C2)49-induced toxicity in fly	82
PAF1C mediates expression of expanded G4C2 in fly and yeast	84
PAF1C is upregulated in response to expanded G4C2	86
hPaf1 is upregulated in C9+ patient-derived cells	87
hLeo1 binds C9orf72 within the genome	
hPAF1 and hLEO1 are upregulated in C9+ FTD and FTD/ALS	88
Expression of hPAF1 and hLEO1 positively correlate with repeat-containing C9orf72	
transcripts	89
D	
Discussion	90
Dete availability atatament	0.5
Data availability statement	95
Methods and materials	95
Bibliography	118
CHAPTER 3: <i>EIF4B</i> AND <i>EIF4H</i> MEDIATE GR PRODUCTION FROM EXPANDED G4C2 IN A <i>DROSOPHILA</i> MODEL FOR <i>C9ORF72</i> -ASSOCIA ALS/FTD	
Author contributions	125
Competing interests	125
Acknowledgments	126
Abstract	127
Introduction	128
Results	120
GFP-tagged GR dipeptides are produced in LDS-(G4C2) _n flies with expanded (>30) repeat	
GFF-tagged GK dipeptides are produced in EDS-(G4C2) _n files with expanded (>SO) repea	
A loss of function screen for candidate RAN-translation factors	
Depletion of eIF4B or eIF4H1 mitigates toxicity in LDS-(G4C2) _{EXP} animals	
Depletion of eIF4B or eIF4H1 reduces GR-production in LDS-(G4C2) _{EXP} animals	
EIF4H is downregulated in ALS/FTD cases harboring a G4C2 expansion in C9orf72	

Discussion	138
Methods and materials	143
Bibliography	160
CHAPTER 4: SIGNIFICANCE AND NEXT STEPS	167
An unbiased, RNAi-based screen	168
Splicing dysfunction	169
The PAF1 complex	
PAF1C in C9+ FTD versus C9+ ALS	
Additional mechanistic studies	177
Candidate G4C2-RAN translation factors	180
Other repeat diseases	183
Closing statements	186
Bibliography	188
APPENDIX 1: ABREVIATIONS	201
APPENDIX 2: CHAPTER 2 SUPPLEMENTARY TABLES, FIGURES	•
DATA	204
Chapter 2: Supplementary data	303
APPENDIX 3: CHAPTER 3 SUPPLEMENTARY TABLES AND FIGU	RES 417
APPENDIX 4: DETAILED PROTOCOLS FOR SELECT EXPERIMEN	I TS 432
gDNA extraction (flies)	43:
Methods 1: High quality DNA (Puregene Kit)	
Method 2: Squash Buffer	
PCR reactions for UAS, GAL4, GS transgenes	435
Repeat-length determination	439
G4C2 PCR Reaction	
Estimate repeat length: agarose gel	
Calculate repeat length: Bioanalyzer	443
RNA extraction (flies)	444
Total RNA extraction (Trizol)	444

DNase Treatment	446
Assessing RNA quality	446
qRT-PCR (SYBR Green)	447
DNA Primer design	
cDNA preparation	
Primer optimization	
gRT-PCR Assays	453
Optimized Primers	
Defining transgene expression	
Heat-shock induced expression of UAS transgenes	461
mRNA Northern blots	462
SV40 probe	468
G4C2 probe	470
18S probe (Loading)	471
Protein extraction (flies)	
Method 1: LDS sample buffer	473
Method 2: RIPA lysis	474
Protein quantification (Bradford)	476
Western blot	480
Transfer methods	484
Reprobing methods	487
Optimized antibodies	489
Behavioral fly assays	491
RU486-infused food	491
Lifespans	493
Negative geotaxis	494
External fly eye imaging	496
Eye morphology	496
Eye Morphology Quantification	
Fluorescence (GFP)	511
Internal fly eye imaging	522
FIBROBLASTS	
Thawing, culturing, freezing	536
Protein extraction	530

LIST OF TABLES

Chapter 3: Tables	148
Table 3-1: Candidate RAN translation factors	
Chapter 2: Supplementary tables	205
Table S2-1: detailed sampling/ reproducibility/ statistics	
Table S2-2: Fly lines	264
Table S2-3: Full Genotypes	266
Table S2-4: Primers	276
Chapter 3: Supplementary tables	418
Table S3-1: Full genotypes	418
Table S3-2: Full screen	421
Table S3-3: Fibroblast cell lines	
Table S3-4: Patient details	423
Table S3-5: Fly lines	424
Table S3-5: Primers	425

LIST OF ILLUSTRATIONS

Chapter 1: Figures and Legends	43
Figure 1-1	
Figure 1-2	
Figure 1-3	
Chapter 2: Figures and legends	105
Figure 2-1	106
Figure 2-2	108
Figure 2-3	110
Figure 2-4	112
Figure 2-5	114
Figure 2-6	116
Chapter 3: Figures and legends	149
Figure 3-1	
Figure 3-2	
Figure 3-3	
Figure 3-4	
Figure 3-5	
Figure 3-6	
Chapter 2: Supplementary figures and legends	277
Figure S2-1	
Figure S2-2	
Figure S2-3	
Figure S2-4	
Figure S2-5	
Figure S2-6	
Figure S2-7	
Figure S2-8	
Figure S2-9	
Figure S2-10	
Figure S2-11	
Figure S2-12	
Chapter 3: Supplementary figures and legends	426
Figure S3-1	
· ·	
Figure S3-2Figure S3-3	427

CHAPTER 1: A CURRENT PERSPECTIVE ON C90RF72-ALS/FTD

Introduction

Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease primarily affecting upper and lower motor neurons within the motor cortex, brain stem and spinal cord (Al-Chalabi and Hardiman, 2013). In recent years, it has become evident that ALS exists as a spectrum disorder with frontotemporal degeneration (FTD) as these diseases share clinical and pathological features (Ji et al., 2017a). FTD is the third most common neurodegenerative disease primarily affecting frontal and temporal cortical neurons (Sieben et al., 2012). Despite a surge in investigations on ALS/FTD, successful therapeutics have yet to be developed, supporting that a greater understanding of disease mechanisms is needed.

The discovery of Tar DNA-binding protein 43 (TDP-43) inclusions as the primary pathology in ALS and ~50% of FTD drove the hypothesis that these two diseases are related (Lee et al., 2011; Neumann et al., 2006). Further evidence came as a number of mutations were found to occur in both diseases (Ito et al., 2017a; Ji et al., 2017a; Zhao et al., 2018), including a hexanucleotide repeat expansion of (GGGGCC)_n (Balendra and Isaacs, 2018; Vatsavayai et al., 2019; Yuva-Aydemir et al., 2018). Termed G4C2, this mutation is associated with disease when >30 repeats are found within the first intron of *C9orf72* (DeJesus-Hernandez et al., 2011; Renton et al., 2011), located on chromosome 9p21. The maximum number of repeats is estimated to be in the thousands (Buchman et al., 2013; Dobson-Stone et al., 2013; van Blitterswijk et al., 2013; Hübers et al., 2014). The presence of G4C2 is associated with ~40% of familial ALS/FTD and ~7% of sporadic ALS/FTD, making it the most common known mutation in these diseases to date (Renton et al., 2014). Further, patients bearing the G4C2-mutation also have TDP-43 pathology, while accumulating evidence suggests that these two etiologies are

connected (Chew et al., 2015, 2019; Cooper-Knock et al., 2015a; Edbauer and Haass, 2016; Steinacker et al., 2018; Vatovec et al., 2014; Vatsavayai et al., 2016).

Currently, there are three leading hypotheses as to how G4C2 confers toxicity: a loss-of-function hypothesis centered around the reduced expression of the C9orf72 protein and two related gain-of-function hypotheses centered around the aberrant expression of the G4C2-containing intron (Balendra and Isaacs, 2018; Yuva-Aydemir et al., 2018). Bidirectional transcription of the repeat-containing intron can produce both expanded sense-G4C2 and antisense-G2C4 RNA (termed G4C2||G2C4). Both RNA strands can accumulate to form foci in patient tissue. These foci are hypothesized to sequester RNA-binding proteins and cause a depletion of these proteins so they cannot function normally, conferring toxicity (Vatovec et al., 2014; Haeusler et al., 2016). Interestingly, these RNAs can also be translated into dipeptides, despite the absence of a canonical AUG start codon: GA and GR (sense-strand associated), PA and PR (antisense-strand associated), and GP (produced from both sense- and antisensestrands) (Ash et al., 2013; Mori et al., 2013a; Mann et al., 2013; Gendron et al., 2013; Mackenzie et al., 2013, 2015; Niblock et al., 2016). This process is termed Repeat-Associated Non-AUG (RAN-) translation and has been reported to occur in multiple repeat-expansion associated diseases (Nguyen et al., 2019; Zu et al., 2018). Notably, the resulting dipeptides can form aggregates in patients and are associated with toxicity in model systems, a common feature in neurodegeneration (Balendra and Isaacs, 2018; Soto and Estrada, 2008; Yuva-Aydemir et al., 2018).

There is accumulating evidence that the gain-of-function mechanisms associated with the aberrant expression of G4C2-RNA and its resulting dipeptides are contributing to toxicity in *C9orf72-ALS/FTD* (Balendra and Isaacs, 2018; Yuva-Aydemir et al., 2018). Significantly, this highlights potential therapeutic avenues for patients with G4C2-

expansion, focused on disrupting expression of the repeat. Recently proposed therapeutics include the use of antisense oligonucleotides (ASOs) (Donnelly et al., 2013; Jiang et al., 2016; Lagier-Tourenne et al., 2013) or small molecules (Simone et al., 2018; Su et al., 2014; Wang et al., 2018b) to disrupt foci formation by the repeat-RNA and its translation. In fact, one such ASO has entered phase I clinical trial (Biogen, 2018). While these approaches are promising, multiple variables need to be considered to improve efficacy including stability of molecules in vivo, their ability to cross the blood-brain barrier (e.g. ASOs cannot cross the BBB and must be directly injected into the CSF), and permeability across cell membranes (Gustincich et al., 2017; Longhena et al., 2017; Magen and Hornstein, 2014; Mathis and Le Masson, 2018; Mis et al., 2017; Riboldi et al., 2014). A limitation relevant to the C9-mutation is that current proposed molecules are unable to simultaneously target sense and antisense G4C2llG2C4 strands, indicating that a cocktail of multiple molecules will be needed (Jiang and Cleveland, 2016; Mathis and Le Masson, 2018). This could complicate drug specificity to the mutation, resulting in increased side effects in patients. An alternative approach has been proposed upon the discovery that G4C2-transcription is sensitive to the loss of specific transcriptional machinery, including components of the DSIF and PAF1 complexes (see Chapter 2 and (Goodman et al., 2019a; Jiang and Cleveland, 2016; Kramer et al., 2016). Pharmacological inhibition of unessential subunits from these complexes could inhibit expression from the G4C2||G2C4-DNA and downstream toxicity, offering an alternative (or additional) therapeutic target. Overall, this work highlights potential mechanisms that can simultaneously disrupt expression of potentially toxic RNA and dipeptides produced from both strands of the repeat within C9orf72. Herein, I discuss limitations to current gain-of-function models, unique features of G4C2 DNA/RNA, and potential mechanisms underlying the expression of this distinct repeat expansion.

Clinical and pathological features of C9orf72-ALS/FTD

Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease and motor neuron disease, MND) results from the progressive loss of upper and lower motor neurons in the motor cortex, brain stem and spinal cord of patients (Al-Chalabi and Hardiman, 2013; Logroscino and Piccininni, 2019). The loss of these neurons causes weakness, spasticity, paralysis, and death, usually within 2-5 years of onset. ALS is the most common motor-neuron disease, affecting ~2-5 in 100,000 individuals (annually). Frontotemporal dementia (FTD), defined pathologically as frontotemporal lobar degeneration (FTLD), is also progressive, with neurodegeneration occurring primarily in the frontal and temporal cortices (Pottier et al., 2016; Raffaele et al., 2019; Seltman and Matthews, 2012). The most common manifestation of FTD is the behavioral variant (bvFTD), characterized by behavioral and personality changes in addition to memory loss. FTD affects ~3-15 in 100,000 individuals (annually), while the risk for FTD is higher among individuals 45-64 years old (Knopman and Roberts, 2011; Pottier et al., 2016). The average lifespan for FTD patients varies between ~5 and ~10 years after disease onset. As mentioned, ALS and FTD represent two extremes of one spectrum disorder. Clinical presentation in patients can fall between these two diagnoses, resulting in both motor and cognitive deficits and a diagnosis of ALS/FTD. Interestingly, different families carrying the same disease-associated mutation or individuals from the same afflicted family can present with ALS only, FTD only, or ALS/FTD symptoms, potentially the result of environmental and genetic modifiers (van Blitterswijk et al., 2014a, 2014b; Renton et al., 2011). Currently, there are no effective disease modifiers for ALS/FTD and therapies are centered around alleviating symptoms. Approved treatments include riluzole (a glutamate antagonist; treats glutamate-sensitivity of motor neurons), edaravone (an antioxidant; antagonizes oxidative stress pathways), and Nuedexta (a drug cocktail

including dextromethorphan, an NMDA receptor antagonist, and quinidine, an inhibitor of Na+/K+ ATPase activity), while other potential drugs have been proposed and/or are being tested (Prasad et al., 2019; Smith et al., 2017).

While there are multiple mutations associated with ALS/FTD, a common theme is that there are disruptions in RNA-based pathways (Zhao et al., 2018). In particular, TDP-43, an RNA-binding protein encoded by the *TARDBP* gene, is the primary component of ubiquitinated inclusions in ALS and a subset of FTD (Neumann et al., 2006). Further, a mutation of a hexanucleotide repeat expansion within *C9orf72* has been identified as the most common mutation known to date. The percentage of reported familial ALS/FTD patients harboring this mutation varies between ~25% and ~60%, with a higher frequency seen in European populations (van Blitterswijk et al., 2012; DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012, 2017; Renton et al., 2011). Non-familial ALS/FTD, termed sporadic ALS/FTD, can also present with this mutation at a ~5-10% frequency. Recently, a number of studies have shown that TDP-43 inclusion formation and the aberrant expression of the hexanucleotide repeat expansions in *C9orf72* are related (Cooper-Knock et al., 2015a; Davidson et al., 2014; Edbauer and Haass, 2016; Saberi et al., 2018). Importantly, TDP-43 pathology may be induced by the expression of the hexanucleotide repeat (Chew et al., 2015, 2019; Solomon et al. 2018).

The G4C2 expansion within *C9orf72* is located between non-coding exons, 1a and 1b, placing it within the first intron of variants 1 and 3 and within the promotor of variant 2 **(Fig. 1-1A)** (Gendron and Petrucelli, 2017; Xiao et al., 2016). The *C9orf72* gene can produce two protein isoforms: C9orf72-Long (produced from mRNA variants 2 and 3) and C9orf72-Short (produced from mRNA variant 1) **(Fig. 1-1B)**. Investigations into the protein encoded by *C9orf72* have revealed that it contains a DENN (Differentially Expressed in Neoplastic versus Normal cells) domain, which is a common feature of

GTP-GDP exchange factors (GEFs) for Rab GTPases (Zhang et al., 2012; Levine et al., 2013). Consistently, C9orf72 interacts with a number of Rabs in cultured neurons and mediates endosomal trafficking and autophagy (Chitiprolu et al., 2018; Farg et al., 2014; Frick et al., 2018; Ho et al., 2019; Sellier et al., 2016; Shi et al., 2018; Webster et al., 2016a).

Overall, C9orf72 expression is significantly downregulated in ALS/FTD cases harboring the G4C2-expansion (van Blitterswijk et al., 2015; DeJesus-Hernandez et al., 2011; Frick et al., 2018; Renton et al., 2011; Viodé et al., 2018; Xiao et al., 2015). All three variants can be downregulated, while variants 1 and 2 show the most robust decrease (Balendra and Isaacs, 2018; van Blitterswijk et al., 2015). On the protein level, two studies have shown that C9orf72-Long is downregulated in the frontal cortex of C9+ ALS/FTD patients (Waite et al., 2014; Xiao et al., 2015). Potential disease mechanisms associated with C9orf72 haploinsufficiency are a focus of current investigations (Vatsavayai et al., 2019; Webster et al., 2016b; Xiao et al., 2016). However, the extent to which C9orf72 downregulation contributes to disease is currently unclear. Mouse models with disrupted murine C9orf72 expression do not show phenotypes expected in neurodegeneration but rather autoimmune defects (Lagier-Tourenne et al., 2013; Koppers et al., 2015; Atanasio et al., 2016; O'Rourke et al., 2016; Sudria-Lopez et al., 2016; Ji et al., 2017b). In contrast, zebrafish and C. elegan models lacking endogenous C9orf72 orthologues develop motor dysfunction (Ciura et al., 2013; Therrien et al., 2013), potentially the result of deficits during development (Ho et al., 2019; Yeh et al., 2018). Importantly, in C9+ patients, an upstream CpG island is methylated, shutting down the C9orf72 gene and effectively the aberrant expression of the G4C2-RNA (Xi et al., 2013; Liu et al., 2014; Xi et al., 2014; Belzil et al., 2014; Russ et al., 2015; McMillan et al., 2015). This mechanism is believed to be neuroprotective as increased methylation

reduces RNA foci formation, dipeptide aggregation and neuron loss in patient brains (Liu et al., 2014; Russ et al., 2015; McMillan et al., 2015). However, if the *C9orf72* gene product was essential for maintaining neuron health, this would be an unexpected response to the G4C2-mutation within *C9orf72* as it would also disrupt C9orf72-function. That said, a recent study suggested that depleted C9orf72 protein may play a synergistic role with dipeptide-associated toxicity in disease (Shi et al, 2018).

Under normal conditions, intron 1 of C9orf72 is spliced out of nascent C9orf72 transcripts and immediately degraded. Evidence suggests that the presence of the repeat expansion disrupts this process through unknown mechanisms and the stable G4C2-RNA remains present. Notably, this RNA could exist in a number of forms, including: intronic RNA (Vatovec et al., 2014; Haeusler et al., 2016; Tran et al., 2015), C9orf72-mRNA transcripts retaining the intron (Niblock et al., 2016), and aborted C9orf72-RNA transcripts (van Blitterswijk et al., 2015; Haeusler et al., 2014) (Fig. 1-1C). Both sense G4C2 and antisense G2C4 RNA foci form throughout the nervous system in patients, and are predominantly nuclear (DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Renton et al., 2011; Vatsavayai et al., 2019; Zu et al., 2013). Foci formation is not specific to neurons as they have been reported in glia and non-neuronal cells, albeit at lower relative frequencies (Gendron et al., 2013; Mizielinska et al., 2013; Zu et al., 2013). Investigations into RNA-binding proteins that interact with G4C2-RNA have revealed a number of candidates, some of which were further shown to co-localize with RNA foci in patients, including: ADARB2, SRSFs (1 and 2), ALYREF, hnRNPs (A1, A3, H, and K), Pur-α, nucleolin (Česnik et al., 2019; Kumar et al., 2017).

G4C2IIG2C4 RNA can undergo RAN-translation through currently undefined mechanisms (discussed later), producing five dipeptides (DPR): GA, GR, GP, PA, PR (Fig. 1-1D) (Ash et al., 2013; Gendron et al., 2013; Mori et al., 2013b, 2013a). These

DPR form aggregates in patient neurons but rarely in glia (Vatsavayai et al., 2019). In patients, DPR aggregates stain positive for p62 (an autophagic marker), predominantly stain negative for TDP-43, and are more frequent in the cytoplasm (Mann et al., 2013; Saberi et al., 2018; Vatsavayai et al., 2019). Rare, diffuse DPR staining has also been reported in patient neurons, arguing that associations with disease do not require visible aggregation (Gendron et al., 2013; Mackenzie et al., 2015; Saberi et al., 2018; Schludi et al., 2015). Further, soluble GP can be found in patient cerebral spinal fluid (CSF) and blood (Gendron et al., 2017; Lehmer et al., 2017).

Overall, sense-strand associated aggregates – GA, GR, and GP_s – are more abundant than antisense-strand associated aggregates – PA, PR, GP_{AS}. Of these, GA aggregates are most prominent (Mackenzie et al., 2015; Schludi et al., 2015). Currently, GP_S and GP_{AS} produced from the separate RNA stands are considered similar, while translation of GP_S extends beyond the repeat to produce a unique C-terminal fragment that is not present in GP_{AS} (Mori et al., 2013b; Zu et al., 2013). This fragment could alter stability or toxicity associated with GP_S versus GP_{AS}. Unique C-terminal fragments are also found in the other reading frames for GA, GR, PA, and PR.

Investigations into DPR-associated toxicity in model systems have revealed that expression of specific DPRs (expressed from non-G4C2 transcripts) may contribute to disease: GA, GR, and PR have been associated with toxicity in multiple model systems while GR and PR cause consistent, strong degenerative effects across systems (Balendra and Isaacs, 2018; Yuva-Aydemir et al., 2018). In patients, targeted investigations have shown colocalization of DPR aggregates with specific proteins, suggesting mechanistic disruptions to related endogenous pathways may contribute to toxicity: GA has been reported to interact with Drosha, Unc119, HR23B (May et al., 2014; Porta et al., 2015; Zhang et al., 2016b); GR has been reported to interact with

eIF3B (also called eIF3η), STAU2, and multiple ribosomal proteins, including S6, S25, L19, L21, L36A (Hartmann et al., 2018; Zhang et al., 2018). Despite these findings and the observation that DPR aggregation predominantly occurs in neurons (versus glia), potential positive correlations between DPR expression and disease still need to be defined. Since the discovery of the repeat expansion in *C9orf72*-ALS/FTD, multiple studies have reported that the frequency of DPR aggregates does not correlate with degenerating tissue or clinical symptoms (i.e. age-of-onset, disease progression, disease severity) (Babić Leko et al., 2019; Vatsavayai et al., 2019). Only recently have two compelling studies described positive correlations between GR, but not the other DPRs, and diseased tissue (Saberi et al., 2018; Sakae et al., 2018). Overall, it is evident that additional, systematic investigations are needed, while consideration of multiple factors may help clarify results (i.e. disease stage, soluble versus insoluble DPR).

Current gain-of-function G4C2 models

Current investigations into disease mechanisms underlying the G4C2-expansion in ALS/FTD have relied on model systems expressing sense G4C2-repeat RNA. Antisense G2C4-RNA models showing degenerative effects have been limited (Swinnen et al., 2018). These models have highlighted a large number of potential cellular mechanisms that may be disrupted in C9+ patients by the aberrant expression of G4C2-RNA and its dipeptide products (Balendra and Isaacs, 2018; Batra and Lee, 2017; Yuva-Aydemir et al., 2018). Here, I will discuss pertinent information in regard to current gain-of-function models and highlight areas requiring further investigation to elucidate gain-of-function disease mechanisms.

In patients, G4C2-expansions of >30 repeats are associated with ALS/FTD, while healthy individuals can maintain short, inert repeats of < 25 within *C9orf72*. Consistent

with human data, expression of < 25 G4C2 repeats does not produce degenerative effects in mice, zebrafish, *Drosophila*, and *C. elegans* (Balendra and Isaacs, 2018; Batra and Lee, 2017; Yuva-Aydemir et al., 2018). Positive correlations between repeat-length and repeat-expression level with toxicity are consistent among models, despite no correlation in repeat-length and clinical symptoms currently reported in patients with C9+ disease. Investigations into intermediate (25-30) repeats in patients have reported associations with neuropsychiatric symptoms and potentially other movement disorders (Bourinaris and Houlden, 2018; Ng and Tan, 2017). In support of shorter repeat expansions being moderately toxic in neurons, expression of a (G4C2)29 transgene in *Drosophila* showed mild degenerative effects (see Chapter 2 and (Goodman et al., 2019a)). Further, BAC-mice expressing (G4C2)29/36 from a human *C9orf72*-gene show toxic effects (Liu et al., 2016).

A major on-going debate relevant to gain-of-function disease mechanisms in *C9orf72*-ALS/FTD is whether the RNA is contributing to toxicity or if dipeptides are driving gain-of-function disease mechanisms. Based on data from model systems, it is evident that the expression of specific dipeptides – GA, GR, and PR – from RNA transcripts lacking the G4C2-repeat sequence can cause degenerative effects across multiple species (Balendra and Isaacs, 2018; Yuva-Aydemir et al., 2018). However, given the lack of strong correlative data in patients for DPR-expression and clinical symptoms, whether the DPR are the major contributor to gain-of-function disease mechanisms in humans is unclear. In contrast to DPR, the G4C2-RNA could potentially contribute to toxicity through the sequestration of RNA binding proteins (RBPs). In fact, disruptions in RNA-metabolism is a common theme in neurodegeneration (Conlon and Manley, 2017; Ito et al., 2017b). In particular, mutations in RBPs is a reoccurring feature of ALS/FTD (Zhao et al., 2018).

As one can appreciate, it is technically difficult to separate G4C2-RNA associated toxicity from toxicity caused by DPR produced from these RNA transcripts. Compelling investigations have depended on the use of G4C2-RNA transcripts containing translation stop codons between every 12 repeats of a G4C2-expansion, termed "RNA-only" models (Mizielinska et al., 2013). In Drosophila, no appreciable DPR or degenerative effects are observed with the expression of these RNA-only transcripts, despite the RNA forming similar secondary structures as those formed by a pure G4C2expansion, the formation of RNA foci, and the colocalization of Glorund (fly orthologue to hnRNPH) with 15% of these foci (Mizielinska et al., 2013; Moens et al., 2018). In contrast, these same transgenes disrupted axon morphology in zebrafish, suggesting that RNA-only transcripts can be toxic in vertebrates, particularly during neurodevelopment (Swinnen et al., 2018). Overall, the full effects of adding interruptions between the G4C2-repeats is unclear as such interruptions within the repeat-expansion could alter transient versus stable interactions with RBPs. Further, investigations into the impact of stress on potential RNA-toxicity needs to be evaluated. Remarkably, recent studies have found that RAN-translation is upregulated during stress arguing that even these RNA-only models may produce toxic DPR under different conditions (Cheng et al., 2018; Green et al., 2017; Sonobe et al., 2018).

A considerable factor of most, current gain-of-function models for *C9orf72* is that the G4C2-transcript produced is processed into mRNA, containing a 5' m⁷G cap and a 3' polyadenylated (poly(A)) tail. As mentioned earlier, the G4C2-RNA within patients could exist in several forms: intronic RNA (Vatovec et al., 2014; Haeusler et al., 2016; Tran et al., 2015), truncated *C9orf72* transcripts (van Blitterswijk et al., 2015; Haeusler et al., 2014), and *C9orf72* transcripts retaining the intron/repeat (Niblock et al., 2016). Of these, only the latter would be predicted to be fully processed to include a 5' cap and a 3'

poly(A) tail. Validating current models, *C9orf72*-transcripts retaining the G4C2-expansion have been reported in patient samples and shown to be shuttled into the cytoplasm, where they can undergo RAN-translation to produce toxic DPR (Green et al., 2017; Hautbergue et al., 2017; Niblock et al., 2016; Tabet et al., 2018; Tran et al., 2015; Westergard et al., 2019). However, as this only represents one potential form of the G4C2-RNA in patients, further investigations into the potential contribution of the additional forms of G4C2-RNA in disease are needed.

To our knowledge, only two studies have actively investigated potential toxicity associated with G4C2-intronic RNA with conflicting results. One investigation expressed a truncated C9orf72-mutant transgene in Drosophila (Tran et al., 2015). Researchers confirmed that the G4C2-repeat was properly spliced from the C9orf72-mutant transgene but, curiously, it failed to induce toxicity or cause appreciable expression of one of the DPRs - GP - at normal temperatures. In contrast, Wen and colleagues argued that G4C2-intronic RNA could be toxic ex vivo in neurons (Wen et al., 2014). These researchers smartly developed a G4C2-reporter construct that placed the repeat within an intron flanked by truncated GFP-exons. Only when the repeat-containing intron was properly spliced was the GFP-transcript complete and GFP fluorescence could be observed in cells. Importantly, GFP-expressing cortical and motor neurons, but not hippocampal neurons, contained G4C2 RNA foci and demonstrated progressive, dosedependent cell death. Consistent with Tran and colleagues' fly data, the G4C2-intronic RNA failed to express appreciable amounts of DPR (Tran et al.; 2015). While further analysis is needed to confirm that no DPR was present and that all G4C2-containing transcripts were indeed properly spliced from the chimeric transgene, this study presented compelling data in support of the idea that the G4C2-intronic RNA could be toxic in mammalian neurons relevant to disease.

To date, only two of five mouse models developed to express either truncated or full-length *C9orf72*-mutant transgenes cause neurodegeneration (Batra and Lee, 2017). While differences in these results could be due to several factors, including the genetic background of the animals and expression level of the transgenes, I note that these studies did not investigate if the G4C2-repeat was properly spliced from the *C9orf72*-mutant transgene *in vivo*. Thus, another variable may be differences in the splicing efficiency between the mouse models. Overall, further investigations are needed to rule out potential toxicity associated with G4C2-RNA lacking a 5' cap and 3' poly(A) tail, while considering multiple variables relevant to patients (i.e. impact of stress, effects of age, tissue-specificity).

In summary, while dramatic advances have been made in a relatively short amount of time since the discovery of the G4C2-expansion in ALS/FTD, vital areas of research remain to be elucidated before we can fully understand disease mechanisms. That said, current gain-of-function models have proven to be valuable and have highlighted numerous pathways that are worth further investigation in C9+ disease. Perturbed endogenous pathways that may be disrupted in C9+ disease by the aberrant expression of the G4C2-RNA and/or its dipeptide products currently include: gene expression (Cooper-Knock et al., 2015b; Prudencio et al., 2015, 2017), mRNA processing (Conlon et al., 2016; Cooper-Knock et al., 2014, 2015a, 2015b; Lee et al., 2013; Prudencio et al., 2015; Yin et al., 2017), nuclear-cytoplasmic shuttling of mRNAs (Boeynaems et al., 2016; Hautbergue et al., 2017; Jovičić et al., 2015; Kramer et al., 2018; Shi et al., 2017; Zhang et al., 2015), ribosome biogenesis (Haeusler et al., 2014; Kwon et al., 2014; Lee et al., 2016; Mizielinska et al., 2017; Suzuki et al., 2018; Tao et al., 2015), translation (Hartmann et al., 2018; Kanekura et al., 2016; Rossi et al., 2015), Zhang et al., 2018), ubiquitin-proteasome system (Gupta et al., 2017; May et al., 2014),

and neuron excitability (Selvaraj et al., 2018; Xu and Xu, 2018). Further, studies have shown that multiple stress-induced pathways may be involved in cellular responses to G4C2/dipeptide expression, including: the integrated stress response (including ER stress and stress granule formation) (Cheng et al., 2018; Chew et al., 2019; Green et al., 2017; Tabet et al., 2018; Tao et al., 2015; Westergard et al., 2019; Zhang et al., 2014), heat-shock response (Mordes et al., 2018; Shaw et al., 2018), DNA damage (Farg et al., 2017; Lopez-Gonzalez et al., 2016; Walker et al., 2017). Additional investigations will begin to highlight key pathways common among models and the role these pathways play in disease.

Unique secondary structures formed by G4C2 DNA and RNA

GC-rich nucleic acid strands have the propensity to form a number of non-canonical secondary structures (Bochman et al., 2012; Kaushik et al., 2016). In particular, quadruplex and R-loop formation by GC-rich DNA/RNA can mediate disease-relevant biological processes, including: transcription, repeat-stability, DNA damage, RNA-processing, and translation (Bochman et al., 2012; Crossley et al., 2019; Kim and Jinks-Robertson, 2012; Sauer and Paeschke, 2017). To date, multiple studies have investigated G4C2llG2C4 DNA and RNA for their abilities to form relevant structures (Kumar et al., 2016), discussed here from a biological perspective.

Typical, duplexed DNA strands preferentially form right-handed double helices (e.g. B-form DNA). In contrast, GC-rich DNA can form into unique, stable secondary structures as a result of strong interactions between the multiple guanines (G) and/or cytosines (C). *In vitro* investigations into sense G4C2-repeat DNA/RNA have shown that short (≤ 5 repeats) strands fold into chair-type G-quadruplexes that exist in equilibrium with hairpin structures (Fig. 1-1E-F) (Ash et al., 2013; Wang et al., 2019). G-

quadruplexes involve the formation of G-tetrads between 4 guanines — a square planar structure held together by Hoogsteen hydrogen bonds. These G-tetrads then stack on top of each other and are stabilized by cations: particularly potassium (K+) and, to a lesser extent, sodium (Na+) then lithium (Li+). In G4C2 structures, the cytosines create edgewise loops connecting the stacked G-tetrads. G-quadruplexes can take several topologies depending on the direction of the strands: parallel, antiparallel or mixed. G4C2-DNA seems to prefer an antiparallel topology (Brčić and Plavec, 2016, 2017; Haeusler et al., 2014; Šket et al., 2015; Zhou et al., 2015) and G4C2-RNA, a parallel topology (Fratta et al., 2012; Haeusler et al., 2014; Reddy et al., 2013; Su et al., 2014). These G-quadruplexes can form within one DNA/RNA strand (termed intermolecular) or between multiple strands (termed intramolecular) (Haeusler et al., 2014; Reddy et al., 2013; Šket et al., 2015; Su et al., 2014; Zhou et al., 2015). Further, G4C2-DNA and its RNA transcripts can interact to form hybrid secondary structures known as R-loops (Fig. 1-1G) (Diab et al., 2018; Haeusler et al., 2014; Reddy et al., 2014), which may be stabilized by quadruplex formation on the complementary strand (Zamiri et al., 2015).

While less studied, the formation of quadruplexes by antisense-G2C4 DNA/RNA is more debated (Reddy et al., 2013; Zamiri et al., 2015). Recent reports present compelling evidence that G2C4 DNA can form non-canonical quadruplex structures. Specifically, Zamiri and colleagues proposed that quadruplexes could result from unique G:C-tetrad structures under physiological conditions (Zamiri et al., 2015, 2018). Further, in acidic conditions, cytosines can become protonated, driving C:C+ interactions and the formation of quadruplex structures termed i-motifs (Kovanda et al., 2015; Zamiri et al., 2018). At neutral pH, these i-motifs exist in equilibrium with hairpins (Zamiri et al., 2018). Last, antisense G2C4 DNA may form e-motifs, a relatively unstudied secondary structure (Pan et al., 2018; Zhang et al., 2017b). In contrast to anti-sense DNA, G2C4

RNA may preferentially form more canonical double helices over i-motifs (Dodd et al., 2016). Further investigations into this RNA are needed to fully elucidate potential structures into which it could fold.

To date, most structural studies have depended on *in vitro* data currently limited to investigating short (typically ≤ 8) repeats. A number of factors could contribute to complexity of G4C2-structures *in vivo*, including the number of repeats (Zhou et al., 2015), pH of tissue (Brčić and Plavec, 2018; Zamiri et al., 2018), and modification of G4C2IIG2C4 strands (Baral et al., 2013; Mukherjee et al., 2019). In particular, G4C2-repeat expansions are methylated in patients (Bauer, 2016; Xi et al., 2015) and methylation of G4C2IIG2C4 DNA has been shown to impact resulting structures *in vitro* (Zamiri et al., 2015). Further, as the repeats are expanded to >30 in patients, the impact of large stretches of G4C2-repeats on structure formation has yet to be defined. One hypothesis is that expanded G4C2IIG2C4-repeats could form multiple, small quadruplex structures in a row (Zamiri et al., 2015). Alternatively, few, very large, compact G-quadruplexes could form (Abu-Ghazalah and Macgregor, 2009; Pedroso et al., 2007). Further, more complex structures could form from a combination of G-quadruplexes and hairpins arranging along the same strand (Palumbo et al., 2009).

G-quadruplexes, hairpins, and R-loops are reported to form *in vivo* based on direct and indirect evidence (Armas et al., 2016; Simone et al., 2015; Vanoosthuyse, 2018). However, with the exception of one study showing that R-loops can form in a C9+ mouse model (Esanov et al., 2017), data supporting the formation of G4C2llG2C4 secondary structures in disease are primarily correlative. Specifically, one study showed that the RNA-binding protein nucleolin (NCL) preferentially binds G4C2-associated G-quadruplexes *in vitro* and may co-localize with G4C2-RNA foci in C9+ patient-derived tissues (Haeusler et al., 2014). Another compelling study identified small molecules that

bind G4C2-associated G-quadruplexes *in vitro* and further showed that these molecules could reduce RNA-foci formation, DPR production, and toxicity in patient-derived iPS neurons (*ex vivo*) and in (G4C2)36-expressing *Drosophila* (*in vivo*) (Simone et al., 2018). A recent study defined a small molecule capable of binding the unique hairpin structure of G4C2-RNA (Wang et al., 2019). Exposing (G4C2)66-transfected cells to this molecule disrupted G4C2-foci formation and RBP interactions *ex vivo*. Overall, data are consistent with the formation of unique quadruplexes, hairpins, and R-loops by G4C2llG2C4 RNA in disease, while more direct *ex vivo* and *in vivo* studies are needed to fully define their role and expand investigations to include G4C2llG2C4 DNA.

Role of G-quadruplexes and R-loops in general transcription

To better understand transcription of expanded G4C2llG2C4 DNA, one must first understand the impact of GC-rich DNA under normal conditions on RNA polymerase II-(RNAPII-) driven transcription.

RNAPII-transcription has been well studied for decades. Overall, RNAPII activity is mediated by a number of factors that can act at multiple stages of transcription in metazoans: initiation, promoter:proximal pausing, elongation, or termination (Jonkers and Lis, 2015; Luse, 2013). Different genes require different factors that can act at one or multiple stages (Hartzog and Fu, 2013; Luo et al., 2012; Soutourina, 2017; Van Oss et al., 2017). Throughout the process, duplexed DNA must locally unwind, exposing the individual strands to transcriptional machinery. However, this leaves the ssDNA, particularly if it is GC-rich, vulnerable to forming secondary structures including quadruplexes, hairpins, or R-loops (Duquette et al., 2004; Wu and Brosh, 2010; Zhang et al., 2013; Zheng et al., 2013). These structures would need to be resolved, likely by transcription activators and helicases, for RNAPII to be able to move along the gene

(Armas et al., 2016; Brázda et al., 2014; Mendoza et al., 2016). Elongating RNAPII seems to be particularly sensitive to issues when transcribing GC-rich DNA, evidenced by high GC-content causing reduced RNAPII-elongation rates (Jonkers et al., 2014; Veloso et al., 2014). Fittingly, there is an array of accessory factors available to help RNAPII during elongation (Jonkers and Lis, 2015). These factors can directly stimulate RNAPII interactions with DNA and can recruit additional transcriptional machinery required to locally open up the chromatin (Izban and Luse, 1992).

Data indicate that secondary structures formed by GC-rich DNA can have both positive and negative effects on RNAPII-driven transcription. G-quadruplexes are found throughout the human genome in more than 300,000 genes (Chambers et al., 2015; Kudlicki, 2016; Lam et al., 2013). They tend to be located within regulatory gene regions: promoters, 5'UTR, 3'UTR, and telomeres. Supporting their regulatory role, the presence of a G-quadruplex within the genome of a species may be evolutionarily conserved (Capra et al., 2010; Nakken et al., 2009). While there are increasing examples of gene regulation by G-quadruplex formation, c-MYC is particularly well studied (Sauer and Paeschke, 2017). This proto-oncogene has a G-quadruplex within its promoter that can be stabilized with small molecules, causing reduced c-MYC expression by blocking transcription factors (Brooks and Hurley, 2010; Brown et al., 2011). Multiple examples of G-quadruplex formation within introns show that they can mediate alternative splicing of genes (Marcel et al., 2011; Verma and Das, 2018). Moreover, their formation within the first intron of TOP1 has been proposed to inhibit RNAPII-transcription (Reinhold et al., 2010), suggesting that multiple mechanisms may be disrupted when G-quadruplexes aberrantly form within the gene-body. Overall, it is hypothesized that the formation of quadruplexes on template ssDNA would inhibit transcription by blocking RNAPII and/or transcription factors (Agarwal et al., 2014; Armas et al., 2016; Bochman et al., 2012;

Miglietta et al., 2016). Their formation on non-template ssDNA could similarly block transcription but also could promote transcription by maintaining the open DNA.

In addition to G-quadruplexes, R-loops also regulate RNAPII-transcription. These DNA:RNA hybrids are proposed to facilitate transcription through multiple mechanisms, including the protection of ssDNA from methylation and recruitment of transcription factors (Crossley et al., 2019). Increasing numbers of studies support that R-loop formation by GC-rich DNA/RNA occurs during transcription and that their accumulation can disrupt polymerase activity in vitro and in vivo (Belotserkovskii et al., 2010; Duquette et al., 2004; Kim and Jinks-Robertson, 2012; Zamft et al., 2012). In support of a high requirement for RNAPII to resolve these structures for successful transcription, a number of RNA-binding and accessory proteins have been identified that are proposed to resolve or prevent R-loop formation (Crossley et al., 2019). One of the earliest examples is the THO/TREX complex. Loss of THO/TREX components causes R-loops to accumulate and a reduction in RNAPII elongation rates (Domínguez-Sánchez et al., 2011; Huertas and Aguilera, 2003; Kim and Jinks-Robertson, 2012). In addition, the oncogenes BRCA1 and BRCA2 have been shown to prevent R-loop accumulation and thus promote RNAPII-driven transcription (Shivji et al., 2018; Zhang et al., 2017a). Of importance, BRCA2 recruits Paf1 (discussed later) to promoter:proximal gene sites and overexpression of Paf1 can rescue deficits caused by BRCA2 loss by resolving accumulated R-loops (Shivji et al., 2018), suggesting that BRCA1/2 is not directly acting on R-loops but rather recruits factors to resolve these hybrids. Overall, the accumulation of R-loops can stall transcription, cause DNA breaks, and has been linked to multiple diseases (Crossley et al., 2019; Richard and Manley, 2017).

Generally, due to the complexity of transcribing GC-rich DNA and the ability for individual sequences to form unique secondary structures, it is likely that there are a

number of factors available to resolve these DNA/RNA structures within cells (e.g. senataxin) (Grunseich et al., 2018).

Transcription of G4C2||G2C4 repeat expansions

Regardless of whether the G4C2-repeat RNA is contributing to toxicity or if DPR-induced toxicity is the primary contributor to gain-of-function disease mechanisms, a potential therapeutic approach would be to inhibit the transcription of the repeat expansion. This would prevent expression of both RNA and DPR simultaneously. Given the unique secondary structures formed by G4C2llG2C4-DNA, it is reasonable to hypothesize that these structures could be targeted by small molecules to inhibit transcription (Brown et al., 2011; Sun et al., 2019). However, multiple molecules would be needed to simultaneously target unique structures formed by sense-G4C2 and antisense-G2C4 strands. Alternatively, pharmacological (e.g. drugs, small molecules, antisense oligonucleotides) inhibition of endogenous machinery required to help RNAPII during transcription of GC-rich DNA would prevent expression of both G4C2llG2C4 strands concurrently. Herein I will discuss complexes found to regulate G4C2llG2C4 transcription in disease – the DSIF and PAF1 complexes – and potential mechanisms.

The DSIF complex: Spt4 and Spt5

The DRB-sensitivity-inducing factor (DSIF) complex was recently shown to modulate expression from expanded G4C2llG2C4 DNA (Kramer et al., 2016). This highly conserved complex is comprised of two subunits, Spt4 and Spt5, which form a heterodimer (Hartzog and Fu, 2013). Originally described as an RNAPII-activating complex in yeast, DSIF has since been implicated in multiple steps of RNAPII transcription, including: promoter:proximal pausing, elongation, and RNA

processing/termination (Jonkers and Lis, 2015; Yamaguchi et al., 2013). It can have both positive and negative impacts on transcription as DSIF interacts with the Negative Elongation Factor (NELF) during RNAPII-promoter:proximal pausing. Phosphorylation of Spt5 by the positive elongation factor-b (P-TEFb) causes DSIF to release NELF and become a positive transcription factor. RNAPII is also phosphorylated by P-TEFb, further driving its interactions with phospho-DSIF and other elongation factors (like PAF1C, discussed below) while promoting the transition into elongation. During elongation, the DSIF complex helps to promote RNAPII-stability on template ssDNA with successful transcription of GC-rich DNA being particularly sensitive to its loss in yeast (Rondón et al., 2003).

The involvement of DSIF in the transcription of repeat-expansions in disease was originally described in CAG-expansion models for Huntington's disease (HD) (Cheng et al., 2015; Liu et al., 2012). Polyglutamine diseases are known to result from CAG-repeat expansions of >30 repeats (Krzyzosiak et al., 2012). Notably, expanded CAG-repeats can form similar secondary structures to G4C2-repeats, including hairpins and R-loops (Ciesiolka et al., 2017; Freudenreich, 2018; Krzyzosiak et al., 2012; Reddy et al., 2014). Cheng and colleagues found that depletion of the DSIF component, Spt4, reduced RNA/protein expression and toxicity associated with (CAG)81+ in yeast and cultured neurons (Liu et al., 2012). Mechanistic studies in yeast revealed that Spt4 deletion caused reduced RNAPII occupancy downstream of a (CAG)99-expansion when the CAG was inserted into a reporter gene. This effect was not seen with an inert, (CAG)29-repeat, arguing repeat-length specificity. Further investigations showed that 50% downregulation of SUPT4H (mammalian Spt4) in two HD-mouse model expressing expanded (CAG)115+ repeats could reduce RNA/protein expression from transgenes *in vivo* (Cheng et al., 2015). Importantly, in one of these mouse models that expressed the

mutant, this reduced expression was associated with reduced neurodegenerative effects caused by the mutant-*Htt-Q115+*. Overall, these data supported DSIF as a transcriptional-regulator of expanded CAG-repeats in human disease.

Kramer and colleagues took a multi-disciplinary approach to extend the discovery of DSIF as a transcriptional regulator of expanded CAG-repeats to G4C2-repeats in C9orf72-disease (Kramer et al., 2016). Using gain-of-function yeast, worm, and fly models that expressed (G4C2)49+ repeats, investigators found that depletion of Spt4 orthologues could suppress RNA expression and toxicity of expanded G4C2-transgenes. Using (G4C2)66- and (G2C4)66-expressing yeast, the effects of Spt4 deletion was shown to impact both repeat-transcripts produced bidirectionally from the C9orf72mutant gene in patients. In addition, the effects of Spt4 were dose-dependent as upregulation of SUPT4H1 (ortholog to Spt4) in C. elegans caused significant increases in G4C2-RNA levels and toxicity. Findings from transgenic models were further translated to C9+ disease situations. Downregulation of both DSIF components, Spt4 and Spt5, in C9+ patient-derived cells caused reduced expression of repeat-associated C9orf72 transcripts, sense-G4C2 and antisense-G2C4 RNA foci formation as well as GP-levels. Finally, positive correlations between SUPT4H1 (mammalian Spt4) and SUPT5H (mammalian Spt5) expression and expression of the repeat were defined using post-mortem tissue from C9+ ALS/FTD patients. Since this initial paper, we have validated Spt4 of the DSIF complex as a transcriptional regulator of G4C2-repeat DNA in flies (see Chapter 2 and (Goodman et al., 2019a)). However, our data showed that Spt4 loss impacted RNA expression from inert (G4C2)8- and (G4C2)29-repeats in addition to toxic, (G4C2)49-repeats, arguing that further investigations are needed to validate selectivity of DSIF towards expanded G4C2-repeats in higher organisms.

Overall, there is accumulating evidence that the DSIF complex is important for regulating GC-rich DNA expression, and this effect is particularly impactful in repeat-expansion diseases. Arguing that this complex may globally affect repeat-associated diseases, a recent study further defined DSIF in mediating RNA-expression from GGCCTG-repeat expansions in spinocerebellar ataxia type 36 (SCA36) (Furuta et al., 2019). However, the global impact of downregulating this complex in higher organisms needs further investigation (see Chapter 2 and (Goodman et al., 2019a; Naguib et al., 2019).

The PAF1 complex: Paf1, Leo1, CDC73, Ctr9, and Rtf1

Similar to DSIF, the Polymerase II Associating Factor 1 complex (PAF1C) was first defined as a RNAPII-transcriptional regulator in *S. cerevisiae* (Van Oss et al., 2017). The core components of PAF1C are highly conserved, including: Paf1, Leo1, CDC73, Ctr9 and Rtf1. Metazoan PAF1C can also include a multifunctional protein, WDR61 (Zhu et al., 2005). Since PAF1C's discovery, accumulating evidence supports conserved roles in regulating RNAPII-transcription at multiple stages, including: initiation, promoter:proximal pausing, elongation, and RNA processing/termination. During the transition of poised to elongating RNAPII, PAF1C displaces NELF upon p-TEFb-mediated phosphorylation of DSIF. In yeast, studies have shown that PAF1C recruitment is dependent on Spt5 interactions with Rtf1. However, in metazoans this requirement for Spt5 may not be conserved. Importantly, metazoan Rtf1 is not tightly associated with PAF1C (Adelman et al., 2006; Cao et al., 2015; Mbogning et al., 2013). Further, Leo1, CDC73, and a Paf1:Ctr9 subcomplex have all been shown to recruit the remaining PAF1C components to RNAPII, independently of DSIF (Amrich et al., 2012; Dermody and Buratowski, 2010; Qiu et al., 2012; Xie et al., 2018). After PAF1C recruitment, structural data shows that

PAF1C directly interacts with elongating RNAPII, stimulating its activity (Kim et al., 2010; Xu et al., 2017; Chu et al., 2013; Vos et al., 2018). PAF1C can also recruit chromatin remodeling factors that promote active transcription (Van Oss et al., 2017). Interestingly, only expression from a subset of genes is impacted by PAF1C loss, suggesting that it selectively regulates RNAPII-transcription versus having a global impact. Further, like DSIF, RNAPII-transcription of GC-rich DNA is particularly susceptible to PAF1C loss (Rondón et al., 2004).

In addition to DSIF, evidence shows that PAF1C may also be important for promoting RNAPII-transcription of G4C2||G2C4-repeat expansions in C9+ ALS/FTD. We identified the components of the PAF1 complex as disease modifiers through a largescale RNAi-based screen encompassing ~25% of the fly genome (see Chapter 2 and (Goodman et al., 2019a)). Reduced expression of core PAF1C components reduced RNA and dipeptide expression from multiple toxic (G4C2)30+ transgenes in the fly and caused concomitant reductions in degenerative effects. Of interest, RNA expression from inert, short (G4C2)<30 transgenes was unaltered by depletion of two PAF1C components - Paf1 and Leo1 (which form a heterodimer within the PAF1 complex (Chu et al., 2013) - arguing selectivity for toxic G4C2-repeat expansions. In contrast, downregulation of the other PAF1C components and Spt4 of DSIF similarly impacted RNA levels produced from all G4C2-transgenes tested: (G4C2)8, (G4C2)29, and (G4C2)49. Continued investigations in yeast expressing sense-(G4C2)66 and antisense-(G2C4)66 transgenes revealed that deletion of PAF1C components, Leo1 and CDC73, could impact expression from both products of the mutant C9orf72 gene. Further mechanistic investigation in C9+ derived patient cells revealed that Leo1 protein bound the C9orf72-intron 1 immediately 3' of the G4C2 expansion. Last, in post-mortem cortical tissue derived from C9+ FTD patients, we found that the expression of Paf1 and Leo1,

but not CDC73, positively correlated with the expression of *C9orf72* transcripts containing the G4C2-repeat expansion, supporting their role in the expression of the repeat in disease. This correlation was not seen in FTD cases lacking the G4C2-repeat or healthy controls, supporting that it was the direct result of the repeat versus PAF1C regulating the normal gene.

Overall, this work provides strong evidence that PAF1C is a transcriptional regulator of expanded G4C2llG2C4-DNA in *C9orf72*-disease. In particular, components Paf1 and Leo1 seem to be selective for expanded G4C2-DNA of >30 repeats in the fly, a finding that is substantiated by correlation data in C9+ FTD tissue.

Current model for G4C2||G2C4-repeat transcription

Current data from multiple model systems and patient samples support that DSIF and PAF1 complexes are important for regulating RNAPII-transcription of G4C2llG2C4-repeat DNA in C9+ situations (see Chapter 2 and (Goodman et al., 2019a; Kramer et al., 2016)). Assuming that both complexes work cooperatively to promote RNAPII-transcription along G4C2llG2C4-repeats, this suggests a model where the PAF1C and DSIF complexes interact with RNAPII during transcription elongation (Fig. 1-2). Moreover, of all the components of these two complexes, only the Paf1:Leo1 heterodimer shows specificity to disease-associated repeat expansions in metazoans (see Chapter 2 and (Goodman et al., 2019a)). Additionally, chromatin immunoprecipitation (ChIP) assays confirmed Leo1 binding to *C9orf72* chromatin, immediately 3' of the repeat in C9+-derived patient cells, supporting the hypothesis that the Paf1:Leo1 heterodimer functions during elongation versus other stages of transcription. This suggests a model wherein Paf1:Leo1 downregulation reduces RNAPII occupancy along the expanded G4C2llG2C4 DNA in C9+ disease.

Recent cryo-EM studies investigated the structure of poised versus elongating RNAPII and its binding partners in humans (Vos et al., 2018, 2018). Vos and colleagues found that DSIF was bound to RNAPII at both stages, while PAF1C was only bound to elongating-RNAPII. The specificity of PAF1C function to elongating RNAPII is further reflected by ChIP and ChIP-sequencing studies looking at binding patterns of DSIF and PAF1C components along genes (Chen et al., 2009; Mayer et al., 2010; Qiu et al., 2006; Van Oss et al., 2016). Overall, Spt4/Spt5 binding is enriched at promoter:proximal regions and at the 3' end of genes. In contrast, PAF1C binding is relatively low at these sites and high within the gene body. Whether this binding pattern is the same for mutated *C9orf72* gene in C9+ disease needs to be determined, but this argues that the DSIF and PAF1 complexes may be acting at different stages of its transcription.

A surprising feature we identified in *C9orf72*-associated disease is that PAF1C components become upregulated in response to expression of toxic (G4C2)30+ repeats but not inert (G4C2)<8 repeats in flies, mice, and patient-derived cells (see Chapter 2 and (Goodman et al., 2019a)). This is not the effect of toxicity as expression of another, related disease gene, TDP-43, did not induce PAF1C upregulation. Supporting our fly data that Paf1 and Leo1 play a particularly important role in mediating RNAPII-transcription of >30 G4C2IG2C4 repeats, these two components were found to be upregulated in C9+ FTD patient tissue but not in C9- FTD tissue or in healthy tissue. In contrast, CDC73 was not upregulated, depletion of this PAF1C component similarly impacted G4C2-RNA levels from multiple G4C2-transgenes: (G4C2)8, (G4C2)29 and (G4C2)49 (see Chapter 2 and (Goodman et al., 2019a)). Based on these findings, I hypothesize that a feed-forward loop exists in C9+ disease wherein the G4C2-repeat expansion sequesters the PAF1C components, resulting in the cells upregulating these genes to compensate for their depletion at other genes (Fig. 1-2).

Additional mechanistic insights

As mentioned, G4C2llG2C4-repeat DNA can form multiple secondary structures that may disrupt RNAPII-transcription. Investigations into whether DSIF and/or PAF1C activity is needed to help resolve these structures would add additional mechanistic insights into C9+ disease.

Of particular significance, DSIF has been shown to mediate transcription from G4C2- and CAG- repeat expansions while both can form hairpins and R-loops (Ciesiolka et al., 2017; Freudenreich, 2018; Krzyzosiak et al., 2012; Lin and Wilson, 2011; Reddy et al., 2014). More, there are accumulating data showing that R-loop formation is an important feature of mutated *C9orf72* (van Blitterswijk et al., 2015; Esanov et al., 2017; Haeusler et al., 2014; Reddy et al., 2014). Thus, it is tempting to hypothesize that DSIF promotes G4C2llG2C4 transcription by resolving these structures. Currently, little data supports the idea that DSIF directly interacts with GC-rich R-loops with the exception of one study (Wang et al., 2018a). Further, DSIF can act on A-rich R-loops (Blythe et al., 2016; Liu et al., 2012). DSIF may recruit factors important for mediating these secondary structures, such as Spt6 (Nojima et al., 2018) and PAF1C (discussed below). It needs to be determined if DSIF can act directly on G4C2llG2C4 DNA/RNA or if it primarily functions by recruiting transcription factors that can act on this DNA/RNA.

In contrast to DSIF, PAF1C could play a more direct role in helping to resolve G-quadruplexes and R-loops along G4C2llG2C4 DNA/RNA (Hershman et al., 2008). Accumulating evidence supports that PAF1C regulates pathways involving these secondary structures. In particular, multiple studies have shown that PAF1C components can mediate R-loop formation in cells to promote transcription (Landsverk et al., 2019; Shivji et al., 2018; Wahba et al., 2011; Wang et al., 2018a). Further, components Paf1 and Ctr9 have been shown to regulate telomere repeat containing

RNA (TERRA), which is GC-rich and prone to R-loop and G-quadruplex formation (Neidle, 2010; Rodrigues and Lydall, 2018; Toubiana and Selig, 2018). PAF1C has also been shown to mediate *c-MYC* expression, a well-characterized proto-oncogene that involves a regulatory G-quadruplex within its promoter (Gerlach et al., 2017; Sauer and Paeschke, 2017; Zhi et al., 2015). Ultimately, unbiased approaches have shown that PAF1C components can directly interact with G-quadruplexes, including those formed by G4C2-RNA (*in vitro*) (Gadaleta and Noguchi, 2017; Gómez Ramos, 2017; Haeusler et al., 2014; Lambert et al., 2005; Wanzek, 2016).

While directed investigations are needed, these data implicate the secondary structures formed by G4C2llG2C4-repeat DNA as potential variables mediating interactions with PAF1C and, potentially, DSIF. PAF1C may act directly on these nucleotides and/or may recruit additional factors meant to resolve these structures, such as the THO/TREX complex (Dermody and Buratowski, 2010; Domínguez-Sánchez et al., 2011; Kim and Jinks-Robertson, 2012). Additional investigations into PAF1C as a transcriptional regulator of other repeat-expansions, such as CAG-repeats (Krzyzosiak et al., 2012), would further define it as a global disease modifier.

Translation of G4C2||G2C4 repeat expansions

As mentioned, G4C2llG2C4-repeat RNA can undergo a process termed Repeat-Associated Non-AUG (RAN-) translation to produce five dipeptides (DPR): GA, GR, GP, PA, PR (**Fig. 1-1D**). As specific dipeptides seem to be particularly toxic in model systems (Balendra and Isaacs, 2018; Freibaum and Taylor, 2017), an alternative therapeutic approach could be to target translation of repeat-containing RNA to disrupt their expression. In fact, a number of small molecules have been proposed that interact with G-quadruplex and hairpin structures formed by G4C2-RNA (Simone et al., 2018; Su

et al., 2014; Wang et al., 2019). *Ex vivo* and *in vivo* data show that these molecules can reduce RNA foci formation, dipeptide levels and G4C2-induced toxicity. Herein, I will discuss current literature on G4C2IIG2C4 RAN-translation.

Canonical versus non-canonical translation

Canonical translation is well studied and involves multiple stages: initiation, elongation, and termination (Marygold et al., 2017; Shatsky et al., 2018; Sonenberg and Hinnebusch, 2009). Of these, initiation seems to be highly regulated and requires a large number of translation factors, termed eukaryotic initiation factors (eIFs). Translation initiation involves the formation of two main complexes, a ternary complex and a preinitiation complex (PIC). eIF5-mediates the ternary complex formation between the eIF2 complex (subunits: eIF2α, eIF2β, eIF2γ) and initiator methionine-transfer ribonucleic acid (Met-tRNA_i). This complex then forms the PIC with the 40S ribosome and eIFs: eIF1, eIF1A, eIF5, eIF3 (a large, multi-subunit complex); this process is mediated by multiple translation factors including eIF2A. For translation to initiate, another complex, the eIF4F complex (subunits: eIF4E, eIF4G, eIF4A), recognizes the 5' m⁷G cap on a template mRNA. Specifically, eIF4E recognizes the cap, recruits the scaffold protein eIF4G, which then recruits eIF4A, an RNA helicase. It is the helicase activity of eIF4A that unwinds secondary structures formed by the mRNA, while this activity is significantly stimulated by one of two RNA-binding proteins, eIF4B and eIF4H. The exposed mRNA then interacts with the PIC and the 48S scanning complex forms. Scanning of the mRNA continues 5' to 3' until a start codon is identified. This triggers the 48S scanning complex to release many of the eIFs and bind the 60S ribosome, forming the elongating 80S ribosome (subunits: 40S and 60S ribosomes). The transition into elongation is further stimulated by eIF5B (and potentially eIF5). During elongation, a

relatively small number of eukaryotic elongation factors (eEFs) associate with the 80S ribosome to aid in productive translation.

Interestingly, non-canonical forms of translation have been described to occur under multiple normal and disease-associated contexts (Godet et al., 2019; Leppek et al., 2018; Shatsky et al., 2018; Terenin et al., 2017), of which internal ribosome entry-site (IRES-) translation is the most studied. The pathway underlying IRES-translation varies dramatically between situations. In many cases, IRES-translation is cap-independent and circumvents canonical translation initiation steps. A common theme is that translation initiation requires a minimal PIC complex, which includes only a small number of specific translation factors and the 40S ribosome. Further, secondary structure formation within the 5' untranslated-region (UTR) of RNA templates plays an important role in the recruitment of translation initiation machinery (Leppek et al., 2018).

Like IRES-translation, disease-associated RAN-translation also seems to depend on secondary structures and/or unique features within the 5' UTR. The first paper describing mechanisms underlying RAN-translation looked at peptide formation from expanded CAGIICTG-repeats associated with spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) (Zu et al., 2011). Zu and colleagues found that peptide formation was repeat-length dependent, with increasing numbers of repeats causing more peptide to be expressed. Interestingly, translation required the formation of a hairpin structure; in contrast to (CAG)100+ repeats, (CAA)100+ repeats did not form hairpins nor undergo translation. Other studies on CGG-repeat expansions associated with fragile X-associated tremor ataxia syndrome (FXTAS) utilizing *Drosophila* and tissue-culture models showed that RAN-translation could initiate upstream of the repeat in a 5' UTR region containing a non-canonical CUG start codon (Kearse et al., 2016; Todd et al., 2013).

Properties of G4C2-RNA that may influence RAN-translation

While mechanisms underlying G4C2-associated RAN-translation are relatively undefined, recent studies have begun to uncover potential variables. Drawing parallels between CGG- and G4C2-associated RAN-translation, Todd and colleagues used a novel *ex vivo* reporter system to show that G4C2-RAN translation requires the caprecognizing factor, eIF4E, and, subsequently, eIF4A (Green et al., 2017). The dependence of G4C2-RAN translation on eIF4E and eIF4A was validated by another research group using an independent *ex vivo* model (Tabet et al., 2018), Moreover, this group showed that eIF4G, the scaffold protein between eIF4E and eIF4A, was required. To date, multiple studies have demonstrated that G4C2-RAN translation is promoted by the presence of a near-cognate start codon within the GA-reading frame, a CUG (Green et al., 2017; Sonobe et al., 2018; Tabet et al., 2018). This CUG is found in the G4C2-RNA transcript, upstream of the G4C2-repeat within the intronic RNA (sequence derived from intron 1 of *C9orf72* and found upstream of G4C2-repeats in patients). Frameshifting is predicted to cause the production of the multiple dipeptides from a single G4C2-RNA strand when translation is initiated at this CUG (Tabet et al., 2018).

In addition to studies showing the dependence of G4C2-RAN translation on caprecognizing eIF4F complex components – eIF4E, eIF4G, and eIF4A – translation may
also be promoted by stress responses expected to inhibit cap-dependent translation
(Cheng et al., 2018; Green et al., 2017; Tabet et al., 2018; Westergard et al., 2019).

During neuronal stress, the integrated stress response (ISR) is triggered, resulting in
eIF2α phosphorylation and activation of pathways hypothesized to protect the cell during
conflict, such as stress granule formation, which sequesters cap-dependent translation
machinery (Moon et al., 2018). Under these stress conditions, cap-independent
translation can persist, allowing for the expression of proteins that help protect the cell

(e.g. Heat-shock proteins) (Godet et al., 2019; Shatsky et al., 2018). Interestingly, multiple studies have shown that triggering ISR can stimulate dipeptide production from expanded G4C2-RNA (Cheng et al., 2018; Green et al., 2017; Sonobe et al., 2018; Westergard et al., 2019). Further, translation of G4C2-RNA can occur independent of a 5' cap (Cheng et al., 2018). Suggesting a feed-forward loop, G4C2-expression can trigger ISR, potentially the result of GR-induced mechanisms (Hartmann et al., 2018; Tao et al., 2015; Zhang et al., 2018).

Overall, a considerable variable when discussing G4C2-RAN translation is that the G4C2-RNA may exist in multiple forms in patients (see Fig. 1-1C): a properly spliced intron (Vatovec et al., 2014; Haeusler et al., 2016; Tran et al., 2015), aborted transcripts (van Blitterswijk et al., 2015; Haeusler et al., 2014), or a retained intron (Niblock et al., 2016). Each of these forms of RNA may undergo different RAN-translation mechanisms. Given that RAN-translation can persist when cap-dependent translation is inhibited (via eIF2α phosphorylation) this suggests that there could be multiple pathways driving dipeptide production. Speculatively, one pathway may require the 5' m⁷G cap, predicted to impact G4C2-RNA still retained within the C9orf72-transcript. Another pathway may initiate in a cap-independent manner, predicted to impact G4C2-RNA that is within a properly spliced intron or aborted C9orf72-transcript. Pertaining to the intron retention model, one study suggested that if the G4C2-containing intron was retained in C9orf72transcripts then RAN-translation may be significantly downregulated or inhibited by upstream sequences found within exon 1a of the C9orf72 gene (Tabet et al., 2018). In conflict, two other groups argued that G4C2-RAN translation persisted when the repeat was retained within C9orf72-transcripts (Hautbergue et al., 2017; Westergard et al., 2019). Further, RAN translation can persist in the presence of a properly spliced intron containing the G4C2-repeat expansion (Cheng et al., 2018; Tran et al., 2015). When the

G4C2-RNA existed in this form, its translation was promoted by ISR (Cheng et al., 2018).

While I note that conflicting data may be technical not biological (different G4C2-models will differ in construct design, cell type, and expression level of constructs), these studies have offered the first pieces of valuable mechanistic insights into G4C2-RAN translation. Current data suggest that G4C2-RAN translation may involve multiple pathways and may vary between cell types (Westergard et al., 2019). With speculation, the process might begin with cap-dependent mechanisms but then, as cells become stressed, RAN translation could be promoted by ISR-dependent mechanisms, driving disease progression. Further investigations will help to confirm and define these pathways while shedding light on relevant C9+ disease mechanisms.

Potential G4C2-RAN translation factors and mechanisms

While continued investigations into mechanisms underlying G4C2llG2C4-RAN translation are underway, a short-list of translation factors have been proposed that may mediate this process. As mentioned, multiple studies have implicated the elF4F complex as an important player (Cheng et al., 2018; Green et al., 2017; Tabet et al., 2018). Depletion or inhibition of the subunits of elF4F – elF4E, elF4G, elF4A – causes reduced GA, GP, and GR production from G4C2-transcripts in *ex vivo* models. Also, elF2A has been proposed to be important for GA-production from G4C2-RNA transcripts, as its downregulation in cells could reduce GA-dipeptide levels (Sonobe et al., 2018). Last, elF2α has been proposed by multiple groups to promote ISR and cause an increase in GA, GP, and GR production, although the pathway underlying this effect needs elucidation (Cheng et al., 2018; Green et al., 2017; Sonobe et al., 2018). In non-G4C2

disease, eIF3F, a component of the eIF3 complex, has also been proposed to mediate CAGIICTG-RAN translation (Ayhan et al., 2018).

In order to shed light on translation factors that may be involved in the production of toxic-GR dipeptide in C9+ ALS/FTD, we took an unbiased, *in vivo* approach (**see Chapter 3**, (Goodman et al., 2019b)). We developed a fly model that expressed the intronic RNA sequence found immediately upstream of a toxic (G4C2)44-repeat. The intronic RNA sequence was derived from the 114 bp sequence found 5' of G4C2-repeats within intron 1 of *C9orf72* in patients. Further, a GFP tag was inserted immediately 3' of the G4C2-repeats in the GR-reading frame, effectively labeling any GR-dipeptides produced from the repeats with this fluorescent marker. We chose to focus on GR as its expression, independent of a G4C2-repeat RNA, is particularly toxic in model systems, including *Drosophila* (Freibaum et al., 2015; Mizielinska et al., 2014). No canonical start codons were found within the construct, while the near-cognate CUG start codon was present in the GA-reading frame, thus mimicking C9+ ALS/FTD. By expressing this transgene specifically within the fly eye, we could rapidly screen for genes that impacted GR-dipeptide levels produced from the (G4C2)44. Comparisons could then be made between GR-levels and toxicity.

Using established loss-of-function mutant or RNAi lines and this new, more patient-relevant (G4C2)44 fly model (described above), we screened 48 of 56 (86%) known translation factors in the fly for their ability to alter GR-GFP production and G4C2-induced toxicity (Marygold et al., 2017). This screen included factors involved in multiple stages of translation: initiation, elongation, and termination. After control experiments ruled out nonspecific effects and factors that were likely acting downstream of toxic GR-production, 11 candidate RAN-translation factors were identified: eIF4B, eIF4H, eIF5B, eIF5, eIF2β, eIF3D1, eIF3I, and multiple orthologues to eIF4E (E3, E4, E5, E7).

Intriguingly, most of the factors identified act with, or are orthologues to, already proposed RAN-translation factors: eIF4F components and eIF2α (**Fig. 1-3**). eIF4B and eIF4H became the focus of further investigations as these two proteins have non-redundant roles in stimulating eIF4A-helicase activity (Rogers et al., 2001; Rozovsky et al., 2008; Nielsen et al., 2011; Sun et al., 2012; Harms et al., 2014; García-García et al., 2015; Vaysse et al., 2015; Sen et al., 2016). These two factors behaved in a manner consistent with them acting as G4C2-RAN translation factors. Their depletion reduced G4C2-toxicity, reduced GR-levels produced from G4C2-RNA, did not alter G4C2-RNA levels, did not reduce toxicity caused by GR-dipeptides. Pertinent to disease, eIF4B and eIF4H contain an RNA recognition motif and were previously shown to interact with G4C2-RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Satoh et al., 2014). Further, we found that eIF4H, but not eIF4B, was downregulated in C9+ derived cells. In post-mortem C9+ ALS/FTD tissue, *eIF4H* downregulation was also observed compared to C9- ALS/FTD and healthy tissue, arguing that *eIF4H* downregulation was a response to the presence of the G4C2 expansion within *C9orf72*.

The importance of eIF4B/H-mediated activation of eIF4A in G4C2-RAN translation is further supported by the observation that G4C2-RNA can form unique secondary structures (Brázda et al., 2014; Nishida et al., 2017; Simone et al., 2015). G-quadruplexes and hairpins formed by GC-rich RNA can inhibit translation (Fay et al., 2017; Maizels, 2015; Wang et al., 2018b). Notably, eIF4A was previously shown to promote translation from RNA transcripts predicted to form G-quadruplexes, presumably by resolving these secondary structures (Wolfe et al., 2014). Fittingly, stabilizing G4C2-RNA quadruplexes/hairpins with small molecules can inhibit dipeptide production and downstream toxic effects (Simone et al., 2018; Su et al., 2014; Wang et al., 2019); this indicates that resolving these structures would be needed to allow translation to occur.

Interestingly, eIF4A's ability to unwind longer, more structured 5' UTRs on transcripts is significantly strengthened by eIF4B or eIF4H (Rozovsky et al., 2008; Sun et al., 2012; Vaysse et al., 2015; Sen et al., 2016). Unwound RNA can then interact with ribosomes and the 43S scanning complex (Sharma et al., 2015; Spirin, 2009; Walker et al., 2013). Overall, these data support a model whereby eIF4A is recruited to G4C2-RNA, potentially by eIF4E/G (**Fig. 1-3D**). Then, with the help of eIF4B/H, eIF4A is able to unwind the secondary structures formed by G4C2-RNA, thus allowing PIC to interact with the RNA template and promoting scanning by the 48S scanning complex until reaching a start translation start site, potentially the near cognate CUG in the GA reading frame (Green et al., 2016; Tabet et al., 2018). Alternatively, the GR-dipeptides could be formed by unknown mechanisms during this scanning process.

Overall, our unbiased approach highlighted additional factors that may be important for G4C2-associated RAN-translation in the fly. Further investigations are needed to validate their involvement in disease mechanisms. Notably, of the 48 translation factors screened, only downregulation of a subset impacted GR-production from G4C2-transcripts. This argues that, like with IRES translation, RAN translation can circumvent canonical translation steps and may utilize only a small number of translation factors.

Thesis work

The following chapters describe our detailed investigations into PAF1C and eIF4B/H, factors that mediate expression from unique G4C2-repeat expansions (>30 repeats) found within *C9orf72* in a subset of ALS/FTD cases. When I began this project, the discovery of the G4C2-repeat expansion was relatively new and no disease mechanisms were known (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The goal of my

thesis work was to define potential disease mechanisms associated with gain-of-function toxicity in C9+ ALS/FTD. By using the powerful genetic tool, *Drosophila melanogaster*, I could test for genetic modifiers of G4C2-associated toxicity in an unbiased manner (Bilen and Bonini, 2007; Jung et al., 2011; Lessing and Bonini, 2008; Li et al., 2008). Overall, I hypothesized that proteins or complexes could be identified that were particularly important in C9+ disease by using this approach. Follow-up, interdisciplinary studies would then allow me to define potential mechanisms associated with identified genes-of-interest. Specifically, the lab was well positioned to perform studies in flies, yeast, mice, patient-derived cells, and/or post-mortem patient tissue, allowing me to define how these genes functioned in the context of human C9+ disease (Elden et al., 2010; Kim et al., 2014).

Drawing parallels with other known repeat-expansions associated with neurodegenerative diseases (Krzyzosiak et al., 2012; Nguyen et al., 2019), Dr. Bonini had developed a novel fly model expressing an expanded, pure G4C2 repeat (see Fig. 2-1a). These constructs lacked any known start codons or additional sequences from human *C9orf72*. The goal was to develop a control line expressing inert (G4C2)12 and a disease line expressing (G4C2)48. Overall, in the (G4C2)48 cohort, expression of these repeats could cause degenerative effects, supporting that gain-of-function mechanisms were contributing to toxicity in C9+ ALS/FTD (Balendra and Isaacs, 2018; Batra and Lee, 2017; Yuva-Aydemir et al., 2018). Interestingly, not all fly lines developed showed this effect and, as a whole, they needed extensive, comprehensive characterization. My early work characterized these flies, defining the exact number of G4C2-repeats inserted into the genome of each line (see Fig. 2-1b), which lines expressed transgenes at similar levels (see Fig. 2-1c), showing that (G4C2)49 expression in all tissues was toxic (data not shown), and defining progressive degenerative effects of expressing (G4C2)n

in neurons (**see Fig. 2-3**; data not shown). This work allowed me to master applicable techniques that resulted in my first publication from the lab (Yu et al., 2015). Due to instability of the G4C2-repeat expansion during molecular cloning, we found that the (G4C2)48 cohort expressed an array of repeat lengths, a finding that we then used to our advantage. Notably, fly lines that had degenerative effects expressed ≥ 29 repeats (**see Fig. 2-1d**), showing that toxicity was dependent on the repeat length.

While the lab had performed targeted, small-scale screens for specific pathways on (G4C2)49 flies, I wanted to define disease mechanisms from an impartial perspective. With Dr. Bonini's input, I developed an unbiased approach to define genes that were able to alter (G4C2)49-induced toxicity in the fly eye (see Fig. 2-1e). By using established shRNA fly lines, I tested for effects of downregulating individual genes on toxicity in flies expressing (G4C2)49 within their optic system. In total, ~4000 genes were tested (~25% of the fly genome). To accomplish this seemingly daunting task, I developed an efficient protocol for determining effects and defined 119 genes that could modify (G4C2)49-toxicity, while ruling out lines that had unspecific effects (see Appendix 4). Gene-ontology term analyses allowed me to define components, processes, or functions that were enriched among these genes, highlighting the PAF1 complex (PAF1C) as a suppressor of G4C2-toxicity when depleted (see Fig. 2-1g-h).

Spt4, one of the components of the DSIF complex (Hartzog and Fu, 2013), was among the 119 (G4C2)49 modifiers, and a collaboration with Dr. Aaron Gitler's laboratory at Stanford University further defined it as a transcriptional regulator of G4C2llG2C4-repeat expansions in C9+ ALS/FTD (Kramer et al., 2016). As components of PAF1C were enriched in our screen and PAF1C is known to interact with the DSIF complex, I hypothesized that PAF1C could also be acting on RNAPII during transcription of (G4C2)49. Like DSIF, PAF1C is a transcription factor important for stabilizing

elongating RNAPII, particularly along GC-rich DNA (Rondón et al., 2004; Van Oss et al., 2017). This hypothesis was tested in flies, yeast, mice, patient-derived cells, and post-mortem patient tissue. Importantly, fly data revealed that PAF1C components, Paf1 and Leo1, selectively impacted expression from toxic G4C2-DNA (> 30) versus inert G4C2-DNA (≤ 29), unlike other PAf1C components and Spt4. Overall, this argued that these components may be of special importance in C9+ disease. The accumulation of data supporting that PAF1C plays a role in expression of expanded G4C2llG2C4-repeat DNA was the basis for my primary research manuscript, "Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD" (see Chapter 2 and (Goodman et al., 2019a)).

While we had focused on PAF1C in post-screen studies, I also noted that a select list of translation factors was enriched among the 119 (G4C2)49-modifers (see Fig. 2-2c). This observation led to the development of a second G4C2 fly model meant to test for RAN-translation of toxic GR-dipeptides (see Fig. 3-1). This model contained a 5' leader sequence (the 114 bp sequence found immediately upstream of the repeat in intron 1 of *C9orf72* in patients) upstream of the repeat expansion, placing the repeat in a more patient-relevant context. This sequence is hypothesized to be important for RAN-translation (Kearse et al., 2016; Todd et al., 2013). To aid in experimentation, the GR-dipeptide was tagged with a fluorescent marker, GFP. To test for translation factors that may be involved in G4C2-RAN translation, I developed a novel approach to allow for the rapid screening of genes that altered GR-GFP levels and toxicity in the fly (see Fig. 3-2A). This work defined 11 candidate translation factors of 48 genes tested whose loss resulted in reduced GR-GFP levels and (G4C2)44-toxicity *in vivo*. Ensuing investigations focused on two factors, eIF4B and eIF4H, as these had previously been reported to interact with G4C2-RNA and they function with eIF4A, a previously reported G4C2-RAN

translation factor (Cooper-Knock et al., 2014; Haeusler et al., 2014; Marygold et al., 2017; Satoh et al., 2014; Shatsky et al., 2018; Sonenberg and Hinnebusch, 2009). Using flies, patient-derived cells, and post-mortem patient tissue, evidence that eIF4B and eIF4H play a role in C9+ ALS/FTD resulted in the publication, "eIF4B and eIF4H mediate GR production from expanded G4C2 in a *Drosophila* model for *C9orf72*-associated ALS." (see Chapter 3 and (Goodman et al., 2019b)).

While the direct results of my thesis work centered around defining factors important for the expression of G4C2llG2C4-repeat expansions in C9+ ALS/FTD, other pathways were also tested in our G4C2-fly models. Notably, in collaboration with Dr. Kevin Eggan's laboratory at Harvard University, we found that stress-genes were upregulated in C9+ ALS/FTD patient tissue, likely the result of the repeat expansion being expressed as gene orthologues were also upregulated (G4C2)49- and (GR)100-expressing flies (Mordes et al., 2018). In another study with co-first author Dr. Amit Berson in the Bonini lab, we found that the mRNA-export factor, *ALYREF*, may also regulate expression from expanded G4C2-repeats while showing overlapping effects with a TDP-43 fly model (Berson et al., 2019).

Concluding remarks

In C9+ ALS/FTD, there is a rapid surge in studies defining disease mechanisms associated with the G4C2-repeat expansion in *C9orf72*. Breakthroughs in the field have centered around gain-of-function disease mechanisms associated with the aberrant expression of G4C2llG2C4-RNA and its dipeptide products. In particular, data in *Drosophila* showing that the dipeptide products, particularly GR and PR, could cause degenerative effects independent of a G4C2-RNA transcript promoted the idea that these dipeptides may be a key contributor to disease (Mizielinska et al., 2014). A key

breakthrough in the field was made using a mouse model which overexpressed >30 G4C2-repeats (Chew et al., 2015, 2019). Along with multiple progressive, neurodegenerative phenotypes, expression of the G4C2-repeat expansion induced TDP-43 cytoplasmic aggregates in the mouse brain, introducing the first mechanistic link between G4C2-repeat expression and TDP-43 pathology, a hallmark of ALS/FTD (Cooper-Knock et al., 2015a; Edbauer and Haass, 2016; Steinacker et al., 2018; Vatovec et al., 2014; Vatsavayai et al., 2016). In addition to this work, a number of groups have performed unbiased screens in simple systems, such as my own, to define pathways perturbed by expression of G4C2-repeats and/or its dipeptide products (Boeynaems et al., 2016; Freibaum et al., 2015; Jovičić et al., 2015; Kramer et al., 2018; Zhang et al., 2015). This work has generated a new and large focus on perturbed nuclear-cytoplasmic shuttling in disease (Zhang et al., 2016a). Evidence from ex vivo, in vivo and patient-derived samples shows this essential process to be disrupted in C9+ ALS/FTD. Last, multiple groups have defined proteins that can interact with G4C2-RNA and/or its dipeptide products, while disruptions to their normal function(s) may be contributing to C9+ disease (Balendra and Isaacs, 2018; Yuva-Aydemir et al., 2018).

Currently, there seems to be a complex number of pathways underlying disease mechanisms associated with the aberrant expression of expanded G4C2llG2C4-DNA. However, as investigations are pursued, key pathways will become more evident while, hopefully, highlighting effective therapeutic targets.

Chapter 1: Figures and Legends

Figure 1-1

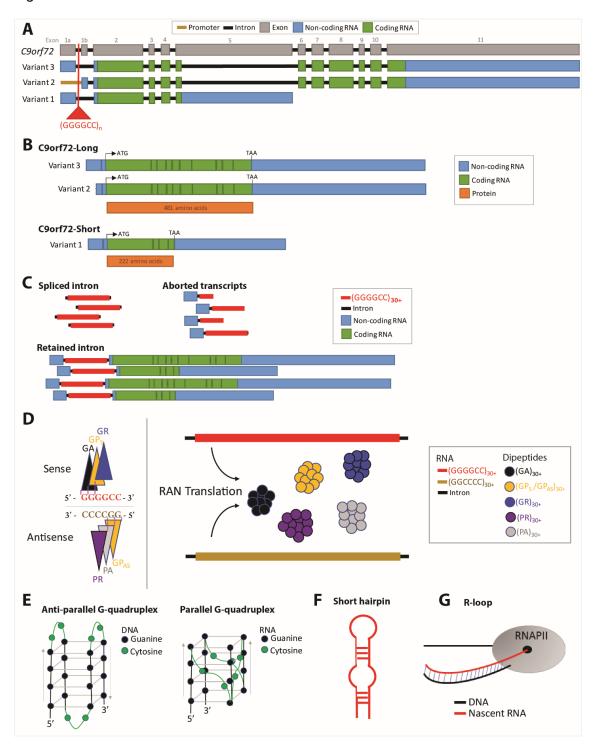


Figure 1-1: C9orf72-associated ALS/FTD.

A. A hexanucleotide expansion of >30 (G4C2)n repeats is found within the C9orf72 gene in ~40% of familial ALS/FTD cases and ~7% of sporadic ALS/FTD cases. Three mRNA variants are produced from C9orf72, while the repeat expansion is found within intron 1 of mRNA Variants 1 and 3. For mRNA Variant 2, it is in the promoter. B. Two protein products are made from C9orf72, C9orf72-long and C9orf72 short. mRNA Variants 2 and 3 code for C9orf72-Long and mRNA Variant 1 codes C9orf72-Short. C. Three RNA products could be produced from mutant C9orf72, each carrying the G4C2-exansion in different contexts. Only RNA produced based on the "retained intron" hypothesis would be predicted to include a 5' m⁷G-cap and a 3' polyadenylated tail. **D.** Repeat-associated Non-AUG (RAN-) translation occurs in C9+ ALS/FTD, producing 5 dipeptide products from the sense-G4C2 and antisense-G2C4 repeat RNA. The reading frame determined with dipeptide is produced while frameshifting could occur. All five dipeptides can form insoluble aggregates in diseased tissue. E. (G4C2)4 DNA and RNA can form chair-type G-quadruplex secondary structures in vitro. DNA prefers an anti-parallel confirmation and RNA prefers a parallel confirmation. How these structures look in vivo and with >30 G4C2 repeats still needs to be investigated. F. G-quadruplex structures formed by G4C2 D/RNA can coexist with another secondary structure, a short hairpin. These structures have been implicated in RAN-translation when found in repeat-containing RNA. G. During RNAPII-driven transcription of G4C2-DNA, unique DNA:RNA hybrids known as R-loops can form between the ssDNA and nascent RNA. R-loops can promote transcription while their accumulation can inhibit RNAPII, cause genomic instability, and cause DNA damage.

Figure 1-2

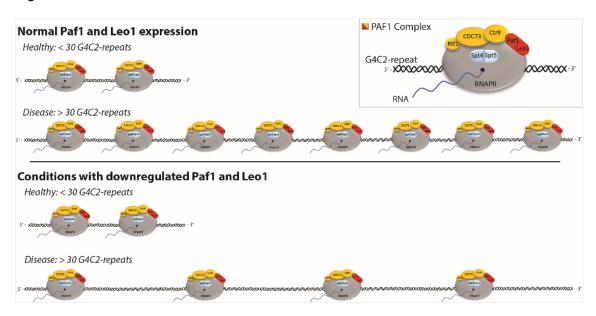


Figure 1-2: A model for G4C2||G2C4 transcription.

Transcription elongation factors, DSIF (Spt4/5) and PAF1C (Paf1/ Leo1/ CDC73/ Ctr9/ Rtf1), are recruited to, and important for, elongating RNAPII at G4C2-repeats. In flies, PAF1C components Paf1 and Leo1 (which form a heterodimer within PAF1C) seem most important for this transcription, showing specificity to >30 G4C2 repeats. Our data show that PAF1C components are upregulated in response to the expression of >30 G4C2 repeats in flies, in mice, and in patient-derived cells. Further, hPAF1 and hLEO1 are upregulated in patient tissue, in contrast to hCDC73, potentially the result of an increased requirement for them within the cell. I hypothesize that transcription of the expanded G4C2 DNA requires PAF1C along with RNAPII, for elongation through the repeat expansion while we show that PAF1C is bound to *C9orf72* through the repeat. DSIF may be important for recruiting PAF1C to the G4C2-repeat expansion, while additional mechanistic studies are needed.

Figure 1-3

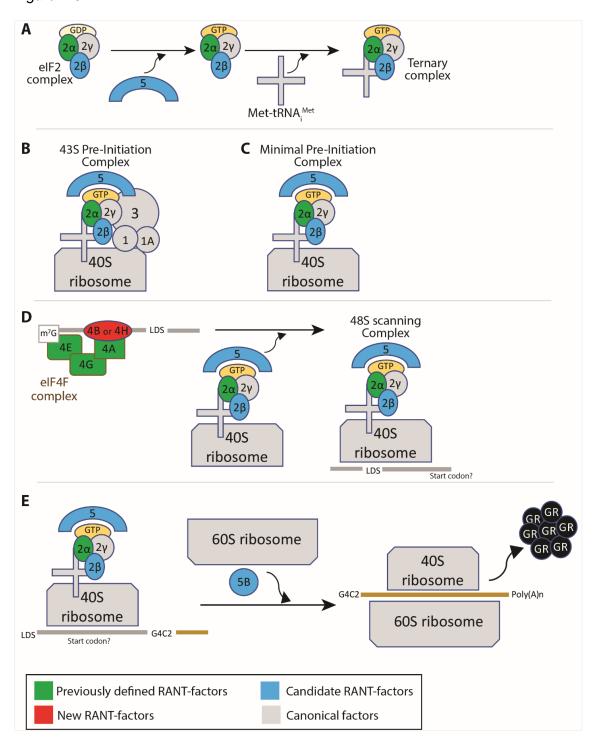


Figure 1-3: A potential model for G4C2 RAN-translation of GR-dipeptides.

Here I draw comparisons between canonical translation and RAN-translation based on current literature and known functions of translation factors. Note that mechanisms underlying RAN-translation are still relatively unknown. A. In normal translation and potentially in RAN-translation, ternary complex formation requires eIF5-mediated exchange of GDP to GTP on eIF2 complex (includes eIFs 2α, 2β, 2γ). eIF2α is highly regulated during stress and is reported to mediate G4C2 translation (Cheng et al., 2018; Green et al., 2017). eIF2 β and eIF5 were identified as modifiers in this study. **B.** In normal translation, the formation of the 43S pre-initiation complex (PIC) involves the joining of a number of factors, including Ternary complex (formed in A) and eIFs 1, 1A, 3, and 5. C. A minimal PIC complex may potentially mediate RAN-translation (Akulich et al., 2016; Leppek et al., 2018; Shatsky et al., 2018; Terenin et al., 2017). D. mRNA transcripts are recognized by the eIF4F complex, includes eIFs 4E, 4G, 4A; all of which have been defined as G4C2 translation factors arguing that G4C2 RAN-translation is cap-dependent (Cheng et al., 2018; Tabet et al., 2018). elF4E recognizes the 5-prime m⁷G cap on mRNAs (Browning and Bailey-Serres, 2015; Sonenberg and Hinnebusch, 2009; Spilka et al., 2013); notably, 4 of 6 eIF4E components were identified in our screen, eIF4A is recruited by eIF4E to mRNA transcripts (via the scaffold protein eIF4G). mRNA is then unwound by eIF4A, an activity that is significantly promoted by eIF4B or elF4H, identified herein (Rogers et al., 2001; Rozovsky et al., 2008; Sun et al., 2012; García-García et al., 2015; Vaysse et al., 2015). This action allows for the formation of the 48S scanning complex. E. In canonical translation, the 48S scanning complex moves down a transcript until identifying an AUG start codon. A CUG codon in the LDS sequence upstream of G4C2 may function as a start codon in the GA-reading frame (Green et al., 2017; Tabet et al., 2018). Frame-shifting could allow for translation of the

GR and GP from this codon. Candidate RAN translation factors eIF5B and potentially eIF5, mediate ribosome scanning, start codon recognition, and translation activation (Browning and Bailey-Serres, 2015; Lin et al., 2018; Pisareva and Pisarev, 2014). (*This model was published in* (Goodman et al., 2019b))

Bibliography

Abu-Ghazalah, R., and Macgregor, R.B. (2009). Structural polymorphism of the four-repeat Oxytricha nova telomeric DNA sequences. Biophys. Chem. *141*, 180–185.

Adelman, K., Wei, W., Ardehali, M.B., Werner, J., Zhu, B., Reinberg, D., and Lis, J.T. (2006). Drosophila Paf1 Modulates Chromatin Structure at Actively Transcribed Genes. Mol Cell Biol *26*, 250–260.

Agarwal, T., Roy, S., Kumar, S., Chakraborty, T.K., and Maiti, S. (2014). In the Sense of Transcription Regulation by G-Quadruplexes: Asymmetric Effects in Sense and Antisense Strands. Biochemistry *53*, 3711–3718.

Akulich, K.A., Andreev, D.E., Terenin, I.M., Smirnova, V.V., Anisimova, A.S., Makeeva, D.S., Arkhipova, V.I., Stolboushkina, E.A., Garber, M.B., Prokofjeva, M.M., et al. (2016). Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Sci. Rep. *6*, 37905.

Al-Chalabi, A., and Hardiman, O. (2013). The epidemiology of ALS: a conspiracy of genes, environment and time. Nat. Rev. Neurol. *9*, 617.

Amrich, C.G., Davis, C.P., Rogal, W.P., Shirra, M.K., Heroux, A., Gardner, R.G., Arndt, K.M., and VanDemark, A.P. (2012). Cdc73 Subunit of Paf1 Complex Contains C-terminal Ras-like Domain That Promotes Association of Paf1 Complex with Chromatin. J. Biol. Chem. 287, 10863–10875.

Armas, P., David, A., and Calcaterra, N.B. (2016). Transcriptional control by G-quadruplexes: In vivo roles and perspectives for specific intervention. Transcription 8, 21–25.

Ash, P.E.A., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.-L., DeJesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646.

Atanasio, A., Decman, V., White, D., Ramos, M., Ikiz, B., Lee, H.-C., Siao, C.-J., Brydges, S., LaRosa, E., Bai, Y., et al. (2016). C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci. Rep. 6

Ayhan, F., Perez, B.A., Shorrock, H.K., Zu, T., Banez-Coronel, M., Reid, T., Furuya, H., Clark, H.B., Troncoso, J.C., Ross, C.A., et al. (2018). SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J. 37, e99023.

Babić Leko, M., Župunski, V., Kirincich, J., Smilović, D., Hortobágyi, T., Hof, P.R., and Šimić, G. (2019). Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion.

Balendra, R., and Isaacs, A.M. (2018). C9orf72 -mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. *14*, 544.

Baral, A., Kumar, P., Pathak, R., and Chowdhury, S. (2013). Emerging trends in G-quadruplex biology – role in epigenetic and evolutionary events. Mol. Biosyst. *9*, 1568–1575.

Batra, R., and Lee, C.W. (2017). Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia. Front. Cell. Neurosci. 11.

Bauer, P.O. (2016). Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci. Lett. *612*, 204–209.

Belotserkovskii, B.P., Liu, R., Tornaletti, S., Krasilnikova, M.M., Mirkin, S.M., and Hanawalt, P.C. (2010). Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc. Natl. Acad. Sci. U. S. A. *107*, 12816–12821.

Belzil, V.V., Bauer, P.O., Gendron, T.F., Murray, M.E., Dickson, D., and Petrucelli, L. (2014). Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res. 1584, 15–21.

Berson, A.*, Goodman, L.D.*, Sartoris, A.N., Otte, C.G., Aykit, J.A., Lee, V.M.-Y., Trojanowski, J.Q., and Bonini, N.M. (2019). Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol. Commun. (* equal contribution)

Bilen, J., and Bonini, N.M. (2007). Genome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila. PLOS Genet. *3*, e177.

Biogen (2018). A Study to Assess the Safety, Tolerability, and Pharmacokinetics of BIIB078 in Adults With C9ORF72-Associated Amyotrophic Lateral Sclerosis. ClinicalTrials.gov Identifier: NCT03626012.

van Blitterswijk, M., DeJesus-Hernandez, M., and Rademakers, R. (2012). How do C9ORF72 repeat expansions cause ALS and FTD: can we learn from other non-coding repeat expansion disorders? Curr. Opin. Neurol. *25*, 689–700.

van Blitterswijk, M., DeJesus-Hernandez, M., Niemantsverdriet, E., Murray, M.E., Heckman, M.G., Diehl, N.N., Brown, P.H., Baker, M.C., Finch, N.A., Bauer, P.O., et al. (2013). Associations of repeat sizes with clinical and pathological characteristics in C9ORF72 expansion carriers (Xpansize-72): a cross-sectional cohort study. Lancet Neurol. *12*.

van Blitterswijk, M., Mullen, B., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Brown, P.H., Murray, M.E., Hsiung, G.-Y.R., Stewart, H., Karydas, A.M., et al. (2014a). Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiol Aging *35*, 2421.e13-2421.e17.

van Blitterswijk, M., Mullen, B., Nicholson, A.M., Bieniek, K.F., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Finch, N.A., Brown, P.H., Murray, M.E., et al. (2014b). TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol *127*, 397–406.

van Blitterswijk, M., Gendron, T.F., Baker, M.C., DeJesus-Hernandez, M., Finch, N.A., Brown, P.H., Daughrity, L.M., Murray, M.E., Heckman, M.G., Jiang, J., et al. (2015). Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol. (Berl.) *130*, 863–876.

Blythe, A.J., Yazar-Klosinski, B., Webster, M.W., Chen, E., Vandevenne, M., Bendak, K., Mackay, J.P., Hartzog, G.A., and Vrielink, A. (2016). The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein: Spt4/5 is an RNA-Binding Protein. Protein Sci. *25*, 1710–1721.

Bochman, M.L., Paeschke, K., and Zakian, V.A. (2012). DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. *13*. 770–780.

Boeynaems, S., Bogaert, E., Michiels, E., Gijselinck, I., Sieben, A., Jovičić, A., De Baets, G., Scheveneels, W., Steyaert, J., Cuijt, I., et al. (2016). Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. *6*, 20877.

Bourinaris, T., and Houlden, H. (2018). C9orf72 and its Relevance in Parkinsonism and Movement Disorders: A Comprehensive Review of the Literature. Mov. Disord. Clin. Pract. *5*, 575–585.

Brázda, V., Hároníková, L., Liao, J.C.C., and Fojta, M. (2014). DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 15, 17493.

Brčić, J., and Plavec, J. (2016). G-quadruplex formation of oligonucleotides containing ALS and FTD related GGGGCC repeat. Front. Chem. Sci. Eng. 10, 222–237.

Brčić, J., and Plavec, J. (2017). ALS and FTD linked GGGGCC-repeat containing DNA oligonucleotide folds into two distinct G-quadruplexes. Biochim. Biophys. Acta BBA - Gen. Subj. 1861, 1237–1245.

Brčić, J., and Plavec, J. (2018). NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism. Nucleic Acids Res. *46*, 11605–11617.

Brooks, T.A., and Hurley, L.H. (2010). Targeting MYC Expression through G-Quadruplexes. Genes Cancer *1*, 641–649.

Brown, R.V., Danford, F.L., Gokhale, V., Hurley, L.H., and Brooks, T.A. (2011). Demonstration that Drug-targeted Down-regulation of MYC in Non-Hodgkins Lymphoma Is Directly Mediated through the Promoter G-quadruplex. J. Biol. Chem. *286*, 41018–41027.

Browning, K.S., and Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. Arab. Book Am. Soc. Plant Biol. *13*.

Buchman, V.L., Cooper-Knock, J., Connor-Robson, N., Higginbottom, A., Kirby, J., Razinskaya, O.D., Ninkina, N., and Shaw, P.J. (2013). Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Mol. Neurodegener. *8*, 12.

Cao, Q.-F., Yamamoto, J., Isobe, T., Tateno, S., Murase, Y., Chen, Y., Handa, H., and Yamaguchi, Y. (2015). Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Mol. Cell. Biol. *35*, 3459–3470.

Capra, J.A., Paeschke, K., Singh, M., and Zakian, V.A. (2010). G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae. PLOS Comput. Biol. *6*, e1000861.

Česnik, A.B., Darovic, S., Mihevc, S.P., Štalekar, M., Malnar, M., Motaln, H., Lee, Y.-B., Mazej, J., Pohleven, J., Grosch, M., et al. (2019). Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies. J Cell Sci jcs.224303.

- Chambers, V.S., Marsico, G., Boutell, J.M., Antonio, M.D., Smith, G.P., and Balasubramanian, S. (2015). High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877.
- Chen, Y., Yamaguchi, Y., Tsugeno, Y., Yamamoto, J., Yamada, T., Nakamura, M., Hisatake, K., and Handa, H. (2009). DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev. 23, 2765–2777.
- Cheng, H.-M., Chern, Y., Chen, I.-H., Liu, C.-R., Li, S.-H., Chun, S.J., Rigo, F., Bennett, C.F., Deng, N., Feng, Y., et al. (2015). Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown. PLoS Genet. 11.
- Cheng, W., Wang, S., Mestre, A.A., Fu, C., Makarem, A., Xian, F., Hayes, L.R., Lopez-Gonzalez, R., Drenner, K., Jiang, J., et al. (2018). C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat. Commun. *9*, 51.
- Chew, J., Gendron, T.F., Prudencio, M., Sasaguri, H., Zhang, Y.-J., Castanedes-Casey, M., Lee, C.W., Jansen-West, K., Kurti, A., Murray, M.E., et al. (2015). C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science *348*, 1151–1154.
- Chew, J., Cook, C., Gendron, T.F., Jansen-West, K., del Rosso, G., Daughrity, L.M., Castanedes-Casey, M., Kurti, A., Stankowski, J.N., Disney, M.D., et al. (2019). Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol. Neurodegener. *14*, 9.
- Chitiprolu, M., Jagow, C., Tremblay, V., Bondy-Chorney, E., Paris, G., Savard, A., Palidwor, G., Barry, F.A., Zinman, L., Keith, J., et al. (2018). A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. *9*, 2794.
- Chu, X., Qin, X., Xu, H., Li, L., Wang, Z., Li, F., Xie, X., Zhou, H., Shen, Y., and Long, J. (2013). Structural insights into Paf1 complex assembly and histone binding. Nucleic Acids Res. *41*, 10619–10629.
- Ciesiolka, A., Jazurek, M., Drazkowska, K., and Krzyzosiak, W.J. (2017). Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front. Cell. Neurosci. *11*.
- Ciura, S., Lattante, S., Le Ber, I., Latouche, M., Tostivint, H., Brice, A., and Kabashi, E. (2013). Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann. Neurol. *74*, 180–187.
- Conlon, E.G., and Manley, J.L. (2017). RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes Dev. *31*, 1509–1528.
- Conlon, E.G., Lu, L., Sharma, A., Yamazaki, T., Tang, T., Shneider, N.A., and Manley, J.L. (2016). The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. ELife *5*, e17820.
- Cooper-Knock, J., Walsh, M.J., Higginbottom, A., Robin Highley, J., Dickman, M.J., Edbauer, D., Ince, P.G., Wharton, S.B., Wilson, S.A., Kirby, J., et al. (2014). Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain *137*, 2040–2051.

Cooper-Knock, J., Higginbottom, A., Stopford, M.J., Highley, J.R., Ince, P.G., Wharton, S.B., Pickering-Brown, S., Kirby, J., Hautbergue, G.M., and Shaw, P.J. (2015a). Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol. (Berl.) *130*, 63–75.

Cooper-Knock, J., Bury, J.J., Heath, P.R., Wyles, M., Higginbottom, A., Gelsthorpe, C., Highley, J.R., Hautbergue, G., Rattray, M., Kirby, J., et al. (2015b). C9ORF72 GGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PLoS ONE *10*.

Crossley, M.P., Bocek, M., and Cimprich, K.A. (2019). R-Loops as Cellular Regulators and Genomic Threats. Mol. Cell 73, 398–411.

Davidson, Y.S., Barker, H., Robinson, A.C., Thompson, J.C., Harris, J., Troakes, C., Smith, B., Al-Saraj, S., Shaw, C., Rollinson, S., et al. (2014). Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 2.

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Gilmer, H.F., Adamson, J., et al. (2011). Expanded GGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron *72*, 245–256.

Dermody, J.L., and Buratowski, S. (2010). Leo1 Subunit of the Yeast Paf1 Complex Binds RNA and Contributes to Complex Recruitment. J. Biol. Chem. 285, 33671–33679.

Diab, M.A., Mor-Shaked, H., Cohen, E., Cohen-Hadad, Y., Ram, O., Epsztejn-Litman, S., and Eiges, R. (2018). The G-rich Repeats in FMR1 and C9orf72 Loci Are Hotspots for Local Unpairing of DNA. Genetics *210*, 1239–1252.

Dobson-Stone, C., Hallupp, M., Loy, C.T., Thompson, E.M., Haan, E., Sue, C.M., Panegyres, P.K., Razquin, C., Seijo-Martínez, M., Rene, R., et al. (2013). C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients. PLOS ONE *8*, e56899.

Dodd, D.W., Tomchick, D.R., Corey, D.R., and Gagnon, K.T. (2016). Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches. Biochemistry *55*, 1283–1286.

Domínguez-Sánchez, M.S., Barroso, S., Gómez-González, B., Luna, R., and Aguilera, A. (2011). Genome Instability and Transcription Elongation Impairment in Human Cells Depleted of THO/TREX. PLOS Genet. 7, e1002386.

Donnelly, C.J., Zhang, P.-W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S., Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., et al. (2013). RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron *80*, 415–428.

Drillon, G., Audit, B., Argoul, F., and Arneodo, A. (2016). Evidence of selection for an accessible nucleosomal array in human. BMC Genomics *17*, 526.

Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F., and Maizels, N. (2004). Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. *18*, 1618–1629.

Edbauer, D., and Haass, C. (2016). An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Curr. Opin. Neurobiol. *36*, 99–106.

Elden, A.C., Kim, H.-J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature *466*, 1069–1075.

Esanov, R., Cabrera, G.T., Andrade, N.S., Gendron, T.F., Brown, R.H., Benatar, M., Wahlestedt, C., Mueller, C., and Zeier, Z. (2017). A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD. Mol. Neurodegener. *12*, 46.

Farg, M.A., Sundaramoorthy, V., Sultana, J.M., Yang, S., Atkinson, R.A.K., Levina, V., Halloran, M.A., Gleeson, P.A., Blair, I.P., Soo, K.Y., et al. (2014). C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 23, 3579–3595.

Farg, M.A., Konopka, A., Soo, K.Y., Ito, D., and Atkin, J.D. (2017). The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet. *26*, 2882–2896.

Fay, M.M., Lyons, S.M., and Ivanov, P. (2017). RNA G-quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. *429*, 2127–2147.

Fratta, P., Mizielinska, S., Nicoll, A.J., Zloh, M., Fisher, E.M.C., Parkinson, G., and Isaacs, A.M. (2012). C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci. Rep. 2.

Freibaum, B.D., and Taylor, J.P. (2017). The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front. Mol. Neurosci. 10.

Freibaum, B.D., Lu, Y., Lopez-Gonzalez, R., Kim, N.C., Almeida, S., Lee, K.-H., Badders, N., Valentine, M., Miller, B.L., Wong, P.C., et al. (2015). GGGGCC repeat expansion in C9ORF72 compromises nucleocytoplasmic transport. Nature *525*, 129–133.

Freudenreich, C.H. (2018). R-loops: targets for nuclease cleavage and repeat instability. Curr. Genet. 1–6.

Frick, P., Sellier, C., Mackenzie, I.R.A., Cheng, C.-Y., Tahraoui-Bories, J., Martinat, C., Pasterkamp, R.J., Prudlo, J., Edbauer, D., Oulad-Abdelghani, M., et al. (2018). Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathol. Commun. *6*, 72.

Furuta, N., Tsukagoshi, S., Hirayanagi, K., and Ikeda, Y. (2019). Suppression of the yeast elongation factor Spt4 ortholog reduces expanded SCA36 GGCCUG repeat aggregation and cytotoxicity. Brain Res.

Gadaleta, M.C., and Noguchi, E. (2017). Regulation of DNA Replication through Natural Impediments in the Eukaryotic Genome. Genes *8*.

García-García, C., Frieda, K.L., Feoktistova, K., Fraser, C.S., and Block, S.M. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science *348*, 1486–1488.

Gendron, T.F., and Petrucelli, L. (2017). Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb. Perspect. Med.

Gendron, T.F., Bieniek, K.F., Zhang, Y.-J., Jansen-West, K., Ash, P.E.A., Caulfield, T., Daughrity, L., Dunmore, J.H., Castanedes-Casey, M., Chew, J., et al. (2013). Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. (Berl.) *126*, 829–844.

Gendron, T.F., Chew, J., Stankowski, J.N., Hayes, L.R., Zhang, Y.-J., Prudencio, M., Carlomagno, Y., Daughrity, L.M., Jansen-West, K., Perkerson, E.A., et al. (2017). Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. *9*, eaai7866.

Gerlach, J.M., Furrer, M., Gallant, M., Birkel, D., Baluapuri, A., Wolf, E., and Gallant, P. (2017). PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. Proc. Natl. Acad. Sci. 114, E9224–E9232.

Gijselinck, I., Van Langenhove, T., van der Zee, J., Sleegers, K., Philtjens, S., Kleinberger, G., Janssens, J., Bettens, K., Van Cauwenberghe, C., Pereson, S., et al. (2012). A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 11, 54–65.

Gijselinck, I., Cruts, M., and Van Broeckhoven, C. (2017). The Genetics of C9orf72 Expansions. Cold Spring Harb. Perspect. Med.

Godet, A.-C., David, F., Hantelys, F., Tatin, F., Lacazette, E., Garmy-Susini, B., and Prats, A.-C. (2019). IRES Trans-Acting Factors, Key Actors of the Stress Response. Int. J. Mol. Sci. 20, 924.

Gómez Ramos, L.M. (2017). Structure, Function, and Drug Targeting: Ribosome Expansion Segments. Georgia Institute of Technology.

Goodman, L.D., Prudencio, M., Kramer, N.J., Martinez-Ramirez, L.F., Srinivasan, A.R., Lan, M., Parisi, M.J., Zhu, Y., Chew, J., Cook, C.N., et al. (2019a). Expanded GGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat. Neurosci.

Goodman, L.D., Prudencio, M., Srinivasan, A.R., Rifai, O.M., Lee, V.M.-Y., Petrucelli, L., and Bonini, N.M. (2019b). elF4B and elF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol. Commun.

Green, K.M., Linsalata, A.E., and Todd, P.K. (2016). RAN translation—what makes it run? Brain Res. *1647*, 30–42.

Green, K.M., Glineburg, M.R., Kearse, M.G., Flores, B.N., Linsalata, A.E., Fedak, S.J., Goldstrohm, A.C., Barmada, S.J., and Todd, P.K. (2017). RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8.

Grunseich, C., Wang, I.X., Watts, J.A., Burdick, J.T., Guber, R.D., Zhu, Z., Bruzel, A., Lanman, T., Chen, K., Schindler, A.B., et al. (2018). Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters. Molecular Cell *69*, 426-437.e7.

Guo, Q., Lehmer, C., Martínez-Sánchez, A., Rudack, T., Beck, F., Hartmann, H., Pérez-Berlanga, M., Frottin, F., Hipp, M.S., Hartl, F.U., et al. (2018). In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell *172*, 696-705.e12.

Gupta, R., Lan, M., Mojsilovic-Petrovic, J., Choi, W.H., Safren, N., Barmada, S., Lee, M.J., and Kalb, R. (2017). The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome. ENeuro *4*.

Gustincich, S., Zucchelli, S., and Mallamaci, A. (2017). The Yin and Yang of nucleic acid-based therapy in the brain. Progress in Neurobiology *155*, 194–211.

Haeusler, A.R., Donnelly, C.J., Periz, G., Simko, E.A.J., Shaw, P.G., Kim, M.-S., Maragakis, N.J., Troncoso, J.C., Pandey, A., Sattler, R., et al. (2014). C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease. Nature *507*, 195–200.

Haeusler, A.R., Donnelly, C.J., and Rothstein, J.D. (2016). The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. *17*, 383–395.

Hamperl, S., and Cimprich, K.A. (2016). Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell *167*, 1455–1467.

Harms, U., Andreou, A.Z., Gubaev, A., and Klostermeier, D. (2014). eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res. *42*, 7911–7922.

Hartmann, H., Hornburg, D., Czuppa, M., Bader, J., Michaelsen, M., Farny, D., Arzberger, T., Mann, M., Meissner, F., and Edbauer, D. (2018). Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Sci. Alliance *1*, e201800070.

Hartzog, G.A., and Fu, J. (2013). The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta *1829*, 105.

Hautbergue, G.M., Castelli, L.M., Ferraiuolo, L., Sanchez-Martinez, A., Cooper-Knock, J., Higginbottom, A., Lin, Y.-H., Bauer, C.S., Dodd, J.E., Myszczynska, M.A., et al. (2017). SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8.

Hershman, S.G., Chen, Q., Lee, J.Y., Kozak, M.L., Yue, P., Wang, L.-S., and Johnson, F.B. (2008). Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. *36*, 144–156.

Ho, W.Y., Tai, Y.K., Chang, J.-C., Liang, J., Tyan, S.-H., Chen, S., Guan, J.-L., Zhou, H., Shen, H.-M., Koo, E., et al. (2019). The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy. Autophagy *0*, 1–16.

Hübers, A., Marroquin, N., Schmoll, B., Vielhaber, S., Just, M., Mayer, B., Högel, J., Dorst, J., Mertens, T., Just, W., et al. (2014). Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol. Aging *35*, 1214.e1-6.

Huertas, P., and Aguilera, A. (2003). Cotranscriptionally Formed DNA:RNA Hybrids Mediate Transcription Elongation Impairment and Transcription-Associated Recombination. Mol. Cell *12*, 711–721.

- Ito, D., Hatano, M., and Suzuki, N. (2017a). RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Sci. Transl. Med. *9*, eaah5436.
- Ito, D., Hatano, M., and Suzuki, N. (2017b). RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Sci. Transl. Med. *9*, eaah5436.
- Izban, M.G., and Luse, D.S. (1992). Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. *267*, 13647–13655.
- Ji, A.-L., Zhang, X., Chen, W.-W., and Huang, W.-J. (2017a). Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J. Med. Genet. *54*, 145–154.
- Ji, Y.J., Ugolino, J., Brady, N.R., Hamacher-Brady, A., and Wang, J. (2017b). Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72. Autophagy *13*, 1254–1255.
- Jiang, J., and Cleveland, D.W. (2016). Bidirectional Transcriptional Inhibition as Therapy for ALS/FTD Caused by Repeat Expansion in C9orf72. Neuron *92*, 1160–1163.
- Jiang, J., Zhu, Q., Gendron, T.F., Saberi, S., McAlonis-Downes, M., Seelman, A., Stauffer, J.E., Jafar-nejad, P., Drenner, K., Schulte, D., et al. (2016). Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron *90*, 535–550.
- Jonkers, I., and Lis, J.T. (2015). Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. *16*, 167–177.
- Jonkers, I., Kwak, H., and Lis, J.T. (2014). Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. ELife 3.
- Jovičić, A., Mertens, J., Boeynaems, S., Bogaert, E., Chai, N., Yamada, S.B., Paul, J.W., Sun, S., Herdy, J.R., Bieri, G., et al. (2015). Modifiers of C9orf72 DPR toxicity implicate nucleocytoplasmic transport impairments in c9FTD/ALS. Nat. Neurosci. *18*, 1226–1229.
- Jung, J., Jaarsveld, M.T.M. van, Shieh, S.-Y., Xu, K., and Bonini, N.M. (2011). Defining Genetic Factors That Modulate Intergenerational CAG Repeat Instability in Drosophila melanogaster. Genetics *187*, 61–71.
- Kanekura, K., Yagi, T., Cammack, A.J., Mahadevan, J., Kuroda, M., Harms, M.B., Miller, T.M., and Urano, F. (2016). Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum. Mol. Genet. *25*, 1803–1813.
- Kaushik, M., Kaushik, S., Roy, K., Singh, A., Mahendru, S., Kumar, M., Chaudhary, S., Ahmed, S., and Kukreti, S. (2016). A bouquet of DNA structures: Emerging diversity. Biochem. Biophys. Rep. *5*, 388.
- Kearse, M.G., Green, K.M., Krans, A., Rodriguez, C.M., Linsalata, A.E., Goldstrohm, A.C., and Todd, P.K. (2016). CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Mol. Cell *62*, 314–322.
- Kim, N., and Jinks-Robertson, S. (2012). Transcription as a source of genome instability. Nat. Rev. Genet. *13*, 204–214.

- Kim, H.-J., Raphael, A.R., LaDow, E.S., McGurk, L., Weber, R., Trojanowski, J.Q., Lee, V.M.-Y., Finkbeiner, S., Gitler, A.D., and Bonini, N.M. (2014). Therapeutic modulation of eIF2α-phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat. Genet. *46*, 152–160.
- Kim, J., Guermah, M., and Roeder, R.G. (2010). The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS. Cell *140*, 491–503.
- Knopman, D.S., and Roberts, R.O. (2011). Estimating the Number of Persons with Frontotemporal Lobar Degeneration in the US Population. J. Mol. Neurosci. MN *45*, 330.
- Koppers, M., Blokhuis, A.M., Westeneng, H., Terpstra, M.L., Zundel, C.A.C., Vieira de Sá, R., Schellevis, R.D., Waite, A.J., Blake, D.J., Veldink, J.H., et al. (2015). C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann. Neurol. 78, 426–438.
- Kovanda, A., Zalar, M., Šket, P., Plavec, J., and Rogelj, B. (2015). Anti-sense DNA d(GGCCCC)n expansions in C9ORF72 form i-motifs and protonated hairpins. Sci. Rep. *5*.
- Kramer, N.J., Carlomagno, Y., Zhang, Y.-J., Almeida, S., Cook, C.N., Gendron, T.F., Prudencio, M., Van Blitterswijk, M., Belzil, V., Couthouis, J., et al. (2016). Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts associated with c9FTD/ALS. Science *353*, 708–712.
- Kramer, N.J., Haney, M.S., Morgens, D.W., Jovičić, A., Couthouis, J., Li, A., Ousey, J., Ma, R., Bieri, G., Tsui, C.K., et al. (2018). CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat. Genet. 1.
- Krzyzosiak, W.J., Sobczak, K., Wojciechowska, M., Fiszer, A., Mykowska, A., and Kozlowski, P. (2012). Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res. *40*, 11–26.
- Kudlicki, A.S. (2016). G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome. PLoS ONE *11*.
- Kumar, V., kashav, T., Islam, A., Ahmad, F., and Hassan, M.I. (2016). Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochem. Int. *100*, 11–20.
- Kumar, V., Hasan, G.M., and Hassan, M.I. (2017). Unraveling the Role of RNA Mediated Toxicity of C9orf72 Repeats in C9-FTD/ALS. Front. Neurosci. *11*.
- Kwon, I., Xiang, S., Kato, M., Wu, L., Theodoropoulos, P., Wang, T., Kim, J., Yun, J., Xie, Y., and McKnight, S.L. (2014). Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science *345*, 1139–1145.
- Lagier-Tourenne, C., Baughn, M., Rigo, F., Sun, S., Liu, P., Li, H.-R., Jiang, J., Watt, A.T., Chun, S., Katz, M., et al. (2013). Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. U. S. A. *110*, E4530–E4539.
- Lam, E.Y.N., Beraldi, D., Tannahill, D., and Balasubramanian, S. (2013). G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. *4*, 1796.

- Lambert, S., Watson, A., Sheedy, D.M., Martin, B., and Carr, A.M. (2005). Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier. Cell *121*, 689–702.
- Landsverk, H.B., Sandquist, L.E., Sridhara, S.C., Rødland, G.E., Sabino, J.C., de Almeida, S.F., Grallert, B., Trinkle-Mulcahy, L., and Syljuåsen, R.G. (2019). Regulation of ATR activity via the RNA polymerase II associated factors CDC73 and PNUTS-PP1. Nucleic Acids Res. *47*, 1797–1813.
- Lee, E.B., Lee, V.M.-Y., and Trojanowski, J.Q. (2011). Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. *13*, 38–50.
- Lee, K.-H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., et al. (2016). C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell *167*, 774-788.e17.
- Lee, Y.-B., Chen, H.-J., Peres, J.N., Gomez-Deza, J., Attig, J., Štalekar, M., Troakes, C., Nishimura, A.L., Scotter, E.L., Vance, C., et al. (2013). Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic. Cell Rep. *5*, 1178–1186.
- Lehmer, C., Oeckl, P., Weishaupt, J.H., Volk, A.E., Diehl-Schmid, J., Schroeter, M.L., Lauer, M., Kornhuber, J., Levin, J., Fassbender, K., et al. (2017). Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med. *9*, 859–868.
- Leppek, K., Das, R., and Barna, M. (2018). Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174.
- Lessing, D., and Bonini, N.M. (2008). Polyglutamine Genes Interact to Modulate the Severity and Progression of Neurodegeneration in Drosophila. PLOS Biol. *6*, e29.
- Levine, T.P., Daniels, R.D., Gatta, A.T., Wong, L.H., and Hayes, M.J. (2013). The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics *29*, 499–503.
- Li, L.-B., Yu, Z., Teng, X., and Bonini, N.M. (2008). RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature *453*, 1107.
- Lin, Y., and Wilson, J.H. (2011). Transcription-induced DNA toxicity at trinucleotide repeats. Cell Cycle *10*, 611–618.
- Lin, K.Y., Nag, N., Pestova, T.V., and Marintchev, A. (2018). Human eIF5 and eIF1A Compete for Binding to eIF5B. Biochemistry *57*, 5910–5920.
- Liu, C.-R., Chang, C.-R., Chern, Y., Wang, T.-H., Hsieh, W.-C., Shen, W.-C., Chang, C.-Y., Chu, I.-C., Deng, N., Cohen, S.N., et al. (2012). Spt4 Is Selectively Required for Transcription of Extended Trinucleotide Repeats. Cell *148*, 690–701.
- Liu, E.Y., Russ, J., Wu, K., Neal, D., Suh, E., McNally, A.G., Irwin, D.J., Van Deerlin, V.M., and Lee, E.B. (2014). C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. (Berl.) *128*, 525–541.

Liu, Y., Pattamatta, A., Zu, T., Reid, T., Bardhi, O., Borchelt, D.R., Yachnis, A.T., and Ranum, L.P.W. (2016). C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD. Neuron *90*, 521–534.

Logroscino, G., and Piccininni, M. (2019). Amyotrophic Lateral Sclerosis Descriptive Epidemiology: The Origin of Geographic Difference. Neuroepidemiology *52*, 93–103.

Longhena, F., Spano, P., and Bellucci, A. (2017). Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Targeting Trafficking in Drug Development 85–110.

Lopez-Gonzalez, R., Lu, Y., Gendron, T.F., Karydas, A., Tran, H., Yang, D., Petrucelli, L., Miller, B.L., Almeida, S., and Gao, F.-B. (2016). Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron *92*, 383–391.

Luo, Z., Lin, C., and Shilatifard, A. (2012). The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol. 13, 543.

Luse, D.S. (2013). Promoter clearance by RNA polymerase II. Biochim. Biophys. Acta 1829, 63.

Mackenzie, I.R., Arzberger, T., Kremmer, E., Troost, D., Lorenzl, S., Mori, K., Weng, S.-M., Haass, C., Kretzschmar, H.A., Edbauer, D., et al. (2013). Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol. (Berl.) *126*, 859–879.

Mackenzie, I.R.A., Frick, P., Grässer, F.A., Gendron, T.F., Petrucelli, L., Cashman, N.R., Edbauer, D., Kremmer, E., Prudlo, J., Troost, D., et al. (2015). Quantitative analysis and clinicopathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol. (Berl.) *130*, 845–861.

Magen, I., and Hornstein, E. (2014). Oligonucleotide-based therapy for neurodegenerative diseases. Brain Research *1584*, 116–128.

Maizels, N. (2015). G4-associated human diseases. EMBO Rep. 16, 910-922.

Mann, D.M., Rollinson, S., Robinson, A., Bennion Callister, J., Thompson, J.C., Snowden, J.S., Gendron, T., Petrucelli, L., Masuda-Suzukake, M., Hasegawa, M., et al. (2013). Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol. Commun. *1*, 68.

Marcel, V., Tran, P.L.T., Sagne, C., Martel-Planche, G., Vaslin, L., Teulade-Fichou, M.-P., Hall, J., Mergny, J.-L., Hainaut, P., and Van Dyck, E. (2011). G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis *32*, 271–278.

Marygold, S.J., Attrill, H., and Lasko, P. (2017). The translation factors of Drosophila melanogaster. Fly (Austin) *11*, 65–74.

Mathis, S., and Le Masson, G. (2018). RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis. Biomedicines *6*, 9.

- Mis, M.S.C., Brajkovic, S., Tafuri, F., Bresolin, N., Comi, G.P., and Corti, S. (2017). Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders. Molecular Neurobiology *54*, 4466–4476.
- May, S., Hornburg, D., Schludi, M.H., Arzberger, T., Rentzsch, K., Schwenk, B.M., Grässer, F.A., Mori, K., Kremmer, E., Banzhaf-Strathmann, J., et al. (2014). C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol. (Berl.) *128*, 485–503.
- Mayer, A., Lidschreiber, M., Siebert, M., Leike, K., Söding, J., and Cramer, P. (2010). Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. *17*, 1272.
- Mbogning, J., Nagy, S., Pagé, V., Schwer, B., Shuman, S., Fisher, R.P., and Tanny, J.C. (2013). The PAF Complex and Prf1/Rtf1 Delineate Distinct Cdk9-Dependent Pathways Regulating Transcription Elongation in Fission Yeast. PLoS Genet. *9*.
- McMillan, C.T., Russ, J., Wood, E.M., Irwin, D.J., Grossman, M., McCluskey, L., Elman, L., Van Deerlin, V., and Lee, E.B. (2015). C9orf72 promoter hypermethylation is neuroprotective: Neuroimaging and neuropathologic evidence. Neurology *84*, 1622–1630.
- Mendoza, O., Bourdoncle, A., Boulé, J.-B., Brosh, R.M., and Mergny, J.-L. (2016). G-quadruplexes and helicases. Nucleic Acids Res. *44*, 1989–2006.
- Miglietta, G., Cogoi, S., Pedersen, E.B., and Xodo, L.E. (2016). GC-elements controlling HRAS transcription form i-motif structures unfolded by heterogeneous ribonucleoprotein particle A1. Sci. Rep. *5*.
- Mizielinska, S., Lashley, T., Norona, F.E., Clayton, E.L., Ridler, C.E., Fratta, P., and Isaacs, A.M. (2013). C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol. (Berl.) *126*, 845–857.
- Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O.C., Pietrzyk, J., et al. (2014). C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science *345*, 1192–1194.
- Mizielinska, S., Ridler, C.E., Balendra, R., Thoeng, A., Woodling, N.S., Grässer, F.A., Plagnol, V., Lashley, T., Partridge, L., and Isaacs, A.M. (2017). Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration. Acta Neuropathol. Commun. *5*, 29.
- Moens, T.G., Mizielinska, S., Niccoli, T., Mitchell, J.S., Thoeng, A., Ridler, C.E., Grönke, S., Esser, J., Heslegrave, A., Zetterberg, H., et al. (2018). Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD. Acta Neuropathol. (Berl.) 1–13.
- Moon, S.L., Sonenberg, N., and Parker, R. (2018). Neuronal Regulation of eIF2 α Function in Health and Neurological Disorders. Trends Mol. Med. 24, 575–589.
- Mordes, D.A., Prudencio, M.*, Goodman, L.D.*, Klim, J.R., Moccia, R., Limone, F., Pietilainen, O., Chowdhary, K., Dickson, D.W., Rademakers, R., et al. (2018). Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol. Commun. 6. (* equal contribution)

- Mori, K., Weng, S.-M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E., Schmid, B., Kretzschmar, H.A., Cruts, M., Van Broeckhoven, C., et al. (2013a). The C9orf72 GGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338.
- Mori, K., Arzberger, T., Grässer, F.A., Gijselinck, I., May, S., Rentzsch, K., Weng, S.-M., Schludi, M.H., Zee, J. van der, Cruts, M., et al. (2013b). Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. (Berl.) *126*, 881–893.
- Mukherjee, A.K., Sharma, S., and Chowdhury, S. (2019). Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet. *35*, 129–144.
- Naguib, A., Sandmann, T., Yi, F., Watts, R.J., Lewcock, J.W., and Dowdle, W.E. (2019). SUPT4H1 Depletion Leads to a Global Reduction in RNA. Cell Rep. 26, 45-53.e4.
- Nakken, S., Rognes, T., and Hovig, E. (2009). The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts. Nucleic Acids Res. 37, 5749–5756.
- Neidle, S. (2010). Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 277, 1118–1125.
- Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al. (2006). Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science *314*, 130–133.
- Ng, A.S.L., and Tan, E.-K. (2017). Intermediate C9orf72 alleles in neurological disorders: does size really matter? J. Med. Genet. *54*, 591–597.
- Nguyen, L., Cleary, J.D., and Ranum, L.P.W. (2019). Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annu. Rev. Neurosci. 42.
- Niblock, M., Smith, B.N., Lee, Y.-B., Sardone, V., Topp, S., Troakes, C., Al-Sarraj, S., Leblond, C.S., Dion, P.A., Rouleau, G.A., et al. (2016). Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol. Commun. *4*.
- Nielsen, K.H., Behrens, M.A., He, Y., Oliveira, C.L.P., Sottrup Jensen, L., Hoffmann, S.V., Pedersen, J.S., and Andersen, G.R. (2011). Synergistic activation of eIF4A by eIF4B and eIF4G. Nucleic Acids Res. 39, 2678–2689.
- Nishida, K., Kuwano, Y., Nishikawa, T., Masuda, K., and Rokutan, K. (2017). RNA Binding Proteins and Genome Integrity. Int. J. Mol. Sci. 18, 1341.
- Nojima, T., Tellier, M., Foxwell, J., Ribeiro de Almeida, C., Tan-Wong, S.M., Dhir, S., Dujardin, G., Dhir, A., Murphy, S., and Proudfoot, N.J. (2018). Deregulated Expression of Mammalian IncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Mol. Cell *72*, 970-984.e7.
- O'Rourke, J.G., Bogdanik, L., Yáñez, A., Lall, D., Wolf, A.J., Muhammad, A.K.M.G., Ho, R., Carmona, S., Vit, J.P., Zarrow, J., et al. (2016). C9orf72 is required for proper macrophage and microglial function in mice. Science *351*, 1324–1329.

- Palumbo, S.L., Ebbinghaus, S.W., and Hurley, L.H. (2009). Formation of a Unique End-to-End Stacked Pair of G-Quadruplexes in the hTERT Core Promoter with Implications for Inhibition of Telomerase by G-Quadruplex-Interactive Ligands. J. Am. Chem. Soc. *131*, 10878–10891.
- Pan, F., Zhang, Y., Man, V.H., Roland, C., and Sagui, C. (2018). E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats. Nucleic Acids Res. *46*, 942–955.
- Pedroso, I.M., Duarte, L.F., Yanez, G., Burkewitz, K., and Fletcher, T.M. (2007). Sequence specificity of inter- and intramolecular G-quadruplex formation by human telomeric DNA. Biopolymers *87*, 74–84.
- Pisareva, V.P., and Pisarev, A.V. (2014). eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning. Nucleic Acids Res. 42, 12052–12069.
- Porta, S., Kwong, L.K., Trojanowski, J.Q., and Lee, V.M.-Y. (2015). Drosha Inclusions Are New Components of Dipeptide-Repeat Protein Aggregates in FTLD-TDP and ALS C9orf72 Expansion Cases. J. Neuropathol. Exp. Neurol. *74*, 380–387.
- Pottier, C., Ravenscroft, T.A., Sanchez-Contreras, M., and Rademakers, R. (2016). Genetics of FTLD: overview and what else we can expect from genetic studies. J. Neurochem. *138*, 32–53.
- Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., and Patel, B.K. (2019). Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. *12*.
- Prudencio, M., Belzil, V.V., Batra, R., Ross, C.A., Gendron, T.F., Pregent, L.J., Murray, M.E., Overstreet, K.K., Piazza-Johnston, A.E., Desaro, P., et al. (2015). Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. *18*, 1175–1182.
- Prudencio, M., Gonzales, P.K., Cook, C.N., Gendron, T.F., Daughrity, L.M., Song, Y., Ebbert, M.T.W., van Blitterswijk, M., Zhang, Y.-J., Jansen-West, K., et al. (2017). Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum. Mol. Genet. *26*, 3421–3431.
- Qiu, H., Hu, C., Wong, C.-M., and Hinnebusch, A.G. (2006). The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol. Cell. Biol. 26, 3135–3148.
- Qiu, H., Hu, C., Gaur, N.A., and Hinnebusch, A.G. (2012). Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. *31*, 3494–3505.
- Raffaele, F., Claudia, M., and John, H. (2019). Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiol. Aging *78*, 98–110.
- Reddy, K., Zamiri, B., Stanley, S.Y.R., Macgregor, R.B., and Pearson, C.E. (2013). The Disease-associated r(GGGCC)n Repeat from the C9orf72 Gene Forms Tract Length-dependent Uniand Multimolecular RNA G-quadruplex Structures. J. Biol. Chem. 288, 9860–9866.
- Reddy, K., Schmidt, M.H.M., Geist, J.M., Thakkar, N.P., Panigrahi, G.B., Wang, Y.-H., and Pearson, C.E. (2014). Processing of double-R-loops in (CAG)-(CTG) and C9orf72 (GGGGCC)-(GGCCCC) repeats causes instability. Nucleic Acids Res. *42*, 10473–10487.

Reinhold, W.C., Mergny, J.-L., Liu, H., Ryan, M., Pfister, T.D., Kinders, R., Parchment, R., Doroshow, J., Weinstein, J.N., and Pommier, Y. (2010). Exon array analyses across the NCI-60 reveals potential regulation of TOP1 by transcription pausing at guanosine quartets in the first intron. Cancer Res. *70*, 2191–2203.

Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.

Renton, A.E., Chiò, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23.

Riboldi, G., Zanetta, C., Ranieri, M., Nizzardo, M., Simone, C., Magri, F., Bresolin, N., Comi, G.P., and Corti, S. (2014). Antisense Oligonucleotide Therapy for the Treatment of C9ORF72 ALS/FTD Diseases. Molecular Neurobiology *50*, 721–732.

Richard, P., and Manley, J.L. (2017). R Loops and Links to Human Disease. J. Mol. Biol. 429, 3168–3180.

Rodrigues, J., and Lydall, D. (2018). Paf1 and Ctr9, core components of the PAF1 complex, maintain low levels of telomeric repeat containing RNA. Nucleic Acids Res. *46*, 621–634.

Rogers, G.W., Richter, N.J., Lima, W.F., and Merrick, W.C. (2001). Modulation of the Helicase Activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922.

Rondón, A.G., García-Rubio, M., González-Barrera, S., and Aguilera, A. (2003). Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22, 612–620.

Rondón, A.G., Gallardo, M., García-Rubio, M., and Aguilera, A. (2004). Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep. *5*, 47–53.

Rossi, S., Serrano, A., Gerbino, V., Giorgi, A., Francesco, L.D., Nencini, M., Bozzo, F., Schininà, M.E., Bagni, C., Cestra, G., et al. (2015). Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS. J Cell Sci *128*, 1787–1799.

Rozovsky, N., Butterworth, A.C., and Moore, M.J. (2008). Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA *14*, 2136–2148.

Russ, J., Liu, E.Y., Wu, K., Neal, D., Suh, E., Irwin, D.J., McMillan, C.T., Harms, M.B., Cairns, N.J., Wood, E.M., et al. (2015). Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol. (Berl.) *129*, 39–52.

Saberi, S., Stauffer, J.E., Jiang, J., Garcia, S.D., Taylor, A.E., Schulte, D., Ohkubo, T., Schloffman, C.L., Maldonado, M., Baughn, M., et al. (2018). Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. (Berl.) *135*, 459–474.

Sakae, N., Bieniek, K.F., Zhang, Y.-J., Ross, K., Gendron, T.F., Murray, M.E., Rademakers, R., Petrucelli, L., and Dickson, D.W. (2018). Poly-GR dipeptide repeat polymers correlate with

- neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathol. Commun. *6*, 63.
- Satoh, J., Yamamoto, Y., Kitano, S., Takitani, M., Asahina, N., and Kino, Y. (2014). Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. J. Cent. Nerv. Syst. Dis. 6, 69–78.
- Sauer, M., and Paeschke, K. (2017). G-quadruplex unwinding helicases and their function *in vivo*. Biochem. Soc. Trans. *45*, 1173–1182.
- Schludi, M.H., May, S., Grässer, F.A., Rentzsch, K., Kremmer, E., Küpper, C., Klopstock, T., Arzberger, T., and Edbauer, D. (2015). Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol. (Berl.) 130, 537–555.
- Schwarzbauer, K., Bodenhofer, U., and Hochreiter, S. (2012). Genome-Wide Chromatin Remodeling Identified at GC-Rich Long Nucleosome-Free Regions. PLOS ONE 7, e47924.
- Sellier, C., Campanari, M.-L., Corbier, C.J., Gaucherot, A., Kolb-Cheynel, I., Oulad-Abdelghani, M., Ruffenach, F., Page, A., Ciura, S., Kabashi, E., et al. (2016). Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 35, 1276–1297.
- Seltman, R.E., and Matthews, B.R. (2012). Frontotemporal Lobar Degeneration: Epidemiology, Pathology, Diagnosis and Management. CNS Drugs *26*, 841–870.
- Selvaraj, B.T., Livesey, M.R., Zhao, C., Gregory, J.M., James, O.T., Cleary, E.M., Chouhan, A.K., Gane, A.B., Perkins, E.M., Dando, O., et al. (2018). C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca 2+ -permeable AMPA receptor-mediated excitotoxicity. Nat. Commun. *9*, 347.
- Sen, N.D., Zhou, F., Harris, M.S., Ingolia, N.T., and Hinnebusch, A.G. (2016). eIF4B stimulates translation of long mRNAs with structured 5' UTRs and low closed-loop potential but weak dependence on eIF4G. Proc. Natl. Acad. Sci. U. S. A. *113*, 10464–10472.
- Sharma, S.D., Kraft, J.J., Miller, W.A., and Goss, D.J. (2015). Recruitment of the 40S Ribosome Subunit to the 3'-Untranslated Region (UTR) of a Viral mRNA, via the eIF4 Complex, Facilitates Cap-independent Translation. J. Biol. Chem. *290*, 11268–11281.
- Shatsky, I.N., Terenin, I.M., Smirnova, V.V., and Andreev, D.E. (2018). Cap-Independent Translation: What's in a Name? Trends Biochem. Sci.
- Shaw, M.P., Higgenbottom, A., McGown, A., Castelli, L.M., James, E., Hautbergue, G.M., Shaw, P.J., Ramesh, T.M. (2018) Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Acta Neuropath Com. 6:125.
- Shi, K.Y., Mori, E., Nizami, Z.F., Lin, Y., Kato, M., Xiang, S., Wu, L.C., Ding, M., Yu, Y., Gall, J.G., et al. (2017). Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl. Acad. Sci. *114*, E1111–E1117.
- Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.-H., Hung, S.-T., Hendricks, E., Linares, G.R., Wang, Y., Son, E.Y., et al. (2018). Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nature Medicine.

- Shivji, M.K.K., Renaudin, X., Williams, Ç.H., and Venkitaraman, A.R. (2018). BRCA2 Regulates Transcription Elongation by RNA Polymerase II to Prevent R-Loop Accumulation. Cell Rep. 22, 1031–1039.
- Sieben, A., Van Langenhove, T., Engelborghs, S., Martin, J.-J., Boon, P., Cras, P., De Deyn, P.-P., Santens, P., Van Broeckhoven, C., and Cruts, M. (2012). The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. (Berl.) *124*, 353–372.
- Simone, R., Fratta, P., Neidle, S., Parkinson, G.N., and Isaacs, A.M. (2015). G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett. *589*, 1653–1668.
- Simone, R., Balendra, R., Moens, T.G., Preza, E., Wilson, K.M., Heslegrave, A., Woodling, N.S., Niccoli, T., Gilbert-Jaramillo, J., Abdelkarim, S., et al. (2018). G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol. Med. *10*, 22–31.
- Šket, P., Pohleven, J., Kovanda, A., Štalekar, M., Župunski, V., Zalar, M., Plavec, J., and Rogelj, B. (2015). Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol. Aging *36*, 1091–1096.
- Smith, R., Pioro, E., Myers, K., Sirdofsky, M., Goslin, K., Meekins, G., Yu, H., Wymer, J., Cudkowicz, M., Macklin, E.A., et al. (2017). Enhanced Bulbar Function in Amyotrophic Lateral Sclerosis: The Nuedexta Treatment Trial. Neurotherapeutics *14*, 762–772.
- Solomon, D.A., Stepto, A., Au, W.H., Adachi, Y., Diaper, D.C., Hall, R., Rekhi, A., Boudi, A., Tziortzouda, P., Lee, Y.-B., et al. (2018). A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain *141*, 2908–2924.
- Sonenberg, N., and Hinnebusch, A.G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell *136*, 731–745.
- Sonobe, Y., Ghadge, G., Masaki, K., Sendoel, A., Fuchs, E., and Roos, R.P. (2018). Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiol. Dis. *116*, 155–165.
- Soto, C., and Estrada, L.D. (2008). Protein Misfolding and Neurodegeneration. Arch. Neurol. *65*, 184–189.
- Soutourina, J. (2017). Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol.
- Spilka, R., Ernst, C., Mehta, A.K., and Haybaeck, J. (2013). Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. *340*, 9–21.
- Spirin, A.S. (2009). How Does a Scanning Ribosomal Particle Move along the 5'-Untranslated Region of Eukaryotic mRNA? Brownian Ratchet Model. Biochemistry *48*, 10688–10692.
- Steinacker, P., Barschke, P., and Otto, M. (2018). Biomarkers for diseases with TDP-43 pathology. Mol. Cell. Neurosci.

- Su, Z., Zhang, Y., Gendron, T.F., Bauer, P.O., Chew, J., Yang, W.-Y., Fostvedt, E., Jansen-West, K., Belzil, V.V., Desaro, P., et al. (2014). Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron 83, 1043–1050.
- Sudria-Lopez, E., Koppers, M., de Wit, M., van der Meer, C., Westeneng, H.-J., Zundel, C.A.C., Youssef, S.A., Harkema, L., de Bruin, A., Veldink, J.H., et al. (2016). Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathol. (Berl.) *132*, 145–147.
- Sun, Y., Atas, E., Lindqvist, L., Sonenberg, N., Pelletier, J., and Meller, A. (2012). The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase. Nucleic Acids Res. *40*, 6199–6207.
- Sun, Z.-Y., Wang, X.-N., Cheng, S.-Q., Su, X.-X., and Ou, T.-M. (2019). Developing Novel G-Quadruplex Ligands: From Interaction with Nucleic Acids to Interfering with Nucleic Acid—Protein Interaction. Molecules *24*, 396.
- Suzuki, H., Shibagaki, Y., Hattori, S., and Matsuoka, M. (2018). The proline—arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis. Cell Death Dis. *9*.
- Swinnen, B., Bento-Abreu, A., Gendron, T.F., Boeynaems, S., Bogaert, E., Nuyts, R., Timmers, M., Scheveneels, W., Hersmus, N., Wang, J., et al. (2018). A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathol. (Berl.) 1–17.
- Tabet, R., Schaeffer, L., Freyermuth, F., Jambeau, M., Workman, M., Lee, C.-Z., Lin, C.-C., Jiang, J., Jansen-West, K., Abou-Hamdan, H., et al. (2018). CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat. Commun. *9*, 152.
- Tao, Z., Wang, H., Xia, Q., Li, K., Li, K., Jiang, X., Xu, G., Wang, G., and Ying, Z. (2015). Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum. Mol. Genet. *24*, 2426–2441.
- Terenin, I.M., Smirnova, V.V., Andreev, D.E., Dmitriev, S.E., and Shatsky, I.N. (2017). A researcher's guide to the galaxy of IRESs. Cell. Mol. Life Sci. *74*, 1431–1455.
- Therrien, M., Rouleau, G.A., Dion, P.A., and Parker, J.A. (2013). Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans. PLoS ONE 8.
- Todd, P.K., Oh, S.Y., Krans, A., He, F., Sellier, C., Frazer, M., Renoux, A.J., Chen, K., Scaglione, K.M., Basrur, V., et al. (2013). CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron *78*, 440–455.
- Toubiana, S., and Selig, S. (2018). DNA:RNA hybrids at telomeres when it is better to be out of the (R) loop. FEBS J. 285, 2552–2566.
- Tran, H., Almeida, S., Moore, J., Gendron, T.F., Chalasani, U., Lu, Y., Du, X., Nickerson, J.A., Petrucelli, L., Weng, Z., et al. (2015). Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS. Neuron *87*, 1207–1214.
- Van Oss, S.B., Shirra, M.K., Bataille, A.R., Wier, A.D., Yen, K., Vinayachandran, V., Byeon, I.-J.L., Cucinotta, C.E., Héroux, A., Jeon, J., et al. (2016). The Histone Modification Domain of Paf1

Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation Through an Interaction with Rad6. Mol. Cell 64. 815–825.

Van Oss, S.B., Cucinotta, C.E., and Arndt, K.M. (2017). Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation. Trends Biochem. Sci. 42, 788–798.

Vanoosthuyse, V. (2018). Strengths and Weaknesses of the Current Strategies to Map and Characterize R-Loops. Non-Coding RNA 4.

Vatovec, S., Kovanda, A., and Rogelj, B. (2014). Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol. Aging 35, 2421.e1-2421.e12.

Vatsavayai, S.C., Yoon, S.J., Gardner, R.C., Gendron, T.F., Vargas, J.N.S., Trujillo, A., Pribadi, M., Phillips, J.J., Gaus, S.E., Hixson, J.D., et al. (2016). Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain *139*, 3202–3216.

Vatsavayai, S.C., Nana, A.L., Yokoyama, J.S., and Seeley, W.W. (2019). C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol. (Berl.) *137*, 1–26.

Vaysse, C., Philippe, C., Martineau, Y., Quelen, C., Hieblot, C., Renaud, C., Nicaise, Y., Desquesnes, A., Pannese, M., Filleron, T., et al. (2015). Key contribution of eIF4H-mediated translational control in tumor promotion. Oncotarget *6*, 39924–39940.

Veloso, A., Kirkconnell, K.S., Magnuson, B., Biewen, B., Paulsen, M.T., Wilson, T.E., and Ljungman, M. (2014). Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. *24*, 896.

Verma, S.P., and Das, P. (2018). G-quadruplex structure at intron 2 of TFE3 and its role in Xp11.2 translocation and splicing. Biochim Biophys Acta Gen Subj *1862*, 630–636.

Viodé, A., Fournier, C., Camuzat, A., Fenaille, F., Bank, N.B., Latouche, M., Elahi, F., Le Ber, I., Junot, C., Lamari, F., et al. (2018). New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers. Front. Neurosci. *12*.

Vos, S.M., Farnung, L., Urlaub, H., and Cramer, P. (2018). Structure of paused transcription complex Pol II–DSIF–NELF. Nature *560*, 601–606.

Wahba, L., Amon, J.D., Koshland, D., and Vuica-Ross, M. (2011). RNase H and Multiple RNA Biogenesis Factors Cooperate to Prevent RNA:DNA Hybrids from Generating Genome Instability. Mol. Cell *44*, 978–988.

Waite, A.J., Bäumer, D., East, S., Neal, J., Morris, H.R., Ansorge, O., and Blake, D.J. (2014). Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol. Aging *35*, 1779.e5-1779.e13.

Walker, C., Herranz-Martin, S., Karyka, E., Liao, C., Lewis, K., Elsayed, W., Lukashchuk, V., Chiang, S.-C., Ray, S., Mulcahy, P.J., et al. (2017). C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. *20*, 1225.

- Walker, S.E., Zhou, F., Mitchell, S.F., Larson, V.S., Valasek, L., Hinnebusch, A.G., and Lorsch, J.R. (2013). Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. RNA *19*, 191–207.
- Wang, I.X., Grunseich, C., Fox, J., Burdick, J., Zhu, Z., Ravazian, N., Hafner, M., and Cheung, V.G. (2018a). Human proteins that interact with RNA/DNA hybrids. Genome Res. 28, 1405–1414.
- Wang, Z.-F., Ursu, A., Childs-Disney, J.L., Guertler, R., Yang, W.-Y., Bernat, V., Rzuczek, S.G., Fuerst, R., Zhang, Y.-J., Gendron, T.F., et al. (2018b). The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chem. Biol.
- Wang, Z.-F., Ursu, A., Childs-Disney, J.L., Guertler, R., Yang, W.-Y., Bernat, V., Rzuczek, S.G., Fuerst, R., Zhang, Y.-J., Gendron, T.F., et al. (2019). The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chem. Biol. *26*, 179-190.e12.
- Wanzek, K. (2016). The investigation of the function of repair proteins at G-quadruplex structures in Saccharomyces cerevisiae revealed that Mms1 promotes genome stability. Universität Würzburg.
- Webster, C.P., Smith, E.F., Bauer, C.S., Moller, A., Hautbergue, G.M., Ferraiuolo, L., Myszczynska, M.A., Higginbottom, A., Walsh, M.J., Whitworth, A.J., et al. (2016a). The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35, 1656–1676.
- Webster, C.P., Smith, E.F., Grierson, A.J., and De Vos, K.J. (2016b). C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases 1–10.
- Wen, X., Tan, W., Westergard, T., Krishnamurthy, K., Markandaiah, S.S., Shi, Y., Lin, S., Shneider, N.A., Monaghan, J., Pandey, U.B., et al. (2014). Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death. Neuron 84, 1213–1225.
- Westergard, T., McAvoy, K., Russell, K., Wen, X., Pang, Y., Morris, B., Pasinelli, P., Trotti, D., and Haeusler, A. (2019). Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress. EMBO Mol. Med. e9423.
- Wolfe, A.L., Singh, K., Zhong, Y., Drewe, P., Rajasekhar, V.K., Sanghvi, V.R., Mavrakis, K.J., Jiang, M., Roderick, J.E., Meulen, J.V. der, et al. (2014). RNA G-quadruplexes cause elF4A-dependent oncogene translation in cancer. Nature *513*, 65.
- Wu, Y., and Brosh, R.M. (2010). G-quadruplex nucleic acids and human disease. FEBS J. 277, 3470–3488.
- Xi, Z., Zinman, L., Moreno, D., Schymick, J., Liang, Y., Sato, C., Zheng, Y., Ghani, M., Dib, S., Keith, J., et al. (2013). Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am. J. Hum. Genet. *92*, 981–989.
- Xi, Z., Rainero, I., Rubino, E., Pinessi, L., Bruni, A., Maletta, R., Nacmias, B., Sorbi, S., Galimberti, D., Surace, E., et al. (2014). Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. 23, 5630–5637.

- Xi, Z., Zhang, M., Bruni, A.C., Maletta, R.G., Colao, R., Fratta, P., Polke, J.M., Sweeney, M.G., Mudanohwo, E., Nacmias, B., et al. (2015). The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. (Berl.) *129*, 715–727.
- Xiao, S., MacNair, L., McGoldrick, P., McKeever, P.M., McLean, J.R., Zhang, M., Keith, J., Zinman, L., Rogaeva, E., and Robertson, J. (2015). Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann. Neurol. *78*, 568–583.
- Xiao, S., MacNair, L., McLean, J., McGoldrick, P., McKeever, P., Soleimani, S., Keith, J., Zinman, L., Rogaeva, E., and Robertson, J. (2016). C9orf72 isoforms in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Brain Res. *1647*, 43–49.
- Xie, Y., Zheng, M., Chu, X., Chen, Y., Xu, H., Wang, J., Zhou, H., and Long, J. (2018). Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Nat. Commun. 9.
- Xu, W., and Xu, J. (2018). C9orf72 Dipeptide Repeats Cause Selective Neurodegeneration and Cell-Autonomous Excitotoxicity in Drosophila Glutamatergic Neurons. J. Neurosci. *38*, 7741–7752.
- Xu, Y., Bernecky, C., Lee, C.-T., Maier, K.C., Schwalb, B., Tegunov, D., Plitzko, J.M., Urlaub, H., and Cramer, P. (2017). Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat. Commun. *8*, 15741.
- Yamaguchi, Y., Shibata, H., and Handa, H. (2013). Transcription elongation factors DSIF and NELF: Promoter-proximal pausing and beyond. Biochim. Biophys. Acta BBA Gene Regul. Mech. 1829, 98–104.
- Yeh, T.-H., Liu, H.-F., Li, Y.-W., Lu, C.-S., Shih, H.-Y., Chiu, C.-C., Lin, S.-J., Huang, Y.-C., and Cheng, Y.-C. (2018). C9orf72 is essential for neurodevelopment and motility mediated by Cyclin G1. Exp. Neurol. *304*, 114–124.
- Yin, S., Lopez-Gonzalez, R., Kunz, R.C., Gangopadhyay, J., Borufka, C., Gygi, S.P., Gao, F.-B., and Reed, R. (2017). Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause mis-splicing in ALS/FTD patients. Cell Rep. *19*, 2244–2256.
- Yu, Z., Goodman, L.D., Shieh, S.-Y., Min, M., Teng, X., Zhu, Y., and Bonini, N.M. (2015). A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Hum. Mol. Genet. *24*, 954–962.
- Yuva-Aydemir, Y., Almeida, S., and Gao, F.-B. (2018). Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models. Trends Neurosci.
- Zamft, B., Bintu, L., Ishibashi, T., and Bustamante, C. (2012). Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc. Natl. Acad. Sci. U. S. A. *109*, 8948–8953.
- Zamiri, B., Mirceta, M., Bomsztyk, K., Macgregor, R.B., and Pearson, C.E. (2015). Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res. *43*, 10055–10064.

- Zamiri, B., Mirceta, M., Abu-Ghazalah, R., Wold, M.S., Pearson, C.E., and Macgregor, R.B. (2018). Stress-induced acidification may contribute to formation of unusual structures in C9orf72 repeats. Biochim. Biophys. Acta BBA Gen. Subj. *1862*, 1482–1491.
- Zhang, C., Liu, H., Zheng, K., Hao, Y., and Tan, Z. (2013). DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res. *41*, 7144–7152.
- Zhang, D., Iyer, L.M., He, F., and Aravind, L. (2012). Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Front. Genet. 3.
- Zhang, K., Donnelly, C.J., Haeusler, A.R., Grima, J.C., Machamer, J.B., Steinwald, P., Daley, E.L., Miller, S.J., Cunningham, K.M., Vidensky, S., et al. (2015). The C9ORF72 repeat expansion disrupts nucleocytoplasmic transport. Nature *525*, 56–61.
- Zhang, K., Grima, J.C., Rothstein, J.D., and Lloyd, T.E. (2016a). Nucleocytoplasmic transport in C9orf72-mediated ALS/FTD. Nucleus *7*, 132–137.
- Zhang, X., Chiang, H.-C., Wang, Y., Zhang, C., Smith, S., Zhao, X., Nair, S.J., Michalek, J., Jatoi, I., Lautner, M., et al. (2017a). Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat. Commun. 8.
- Zhang, Y., Roland, C., and Sagui, C. (2017b). Structure and Dynamics of DNA and RNA Double Helices Obtained from the GGGGCC and CCCCGG Hexanucleotide Repeats That Are the Hallmark of C9FTD/ALS Diseases. ACS Chem. Neurosci. *8*, 578–591.
- Zhang, Y.-J., Jansen-West, K., Xu, Y.-F., Gendron, T.F., Bieniek, K.F., Lin, W.-L., Sasaguri, H., Caulfield, T., Hubbard, J., Daughrity, L., et al. (2014). Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. (Berl.) 128, 505.
- Zhang, Y.-J., Gendron, T.F., Grima, J.C., Sasaguri, H., Jansen-West, K., Xu, Y.-F., Katzman, R.B., Gass, J., Murray, M.E., Shinohara, M., et al. (2016b). C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. *19*, 668–677.
- Zhang, Y.-J., Gendron, T.F., Ebbert, M.T.W., O'Raw, A.D., Yue, M., Jansen-West, K., Zhang, X., Prudencio, M., Chew, J., Cook, C.N., et al. (2018). Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat. Med. *24*, 1136–1142.
- Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol. Cells *41*, 818–829.
- Zheng, K., Xiao, S., Liu, J., Zhang, J., Hao, Y., and Tan, Z. (2013). Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control. Nucleic Acids Res. *41*, 5533–5541.
- Zhi, X., Giroux-Leprieur, E., Wislez, M., Hu, M., Zhang, Y., Shi, H., Du, K., and Wang, L. (2015). Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer. Biochem. Biophys. Res. Commun. *465*, 685–690.

- Zhou, B., Liu, C., Geng, Y., and Zhu, G. (2015). Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci. Rep. *5*.
- Zhu, B., Mandal, S.S., Pham, A.-D., Zheng, Y., Erdjument-Bromage, H., Batra, S.K., Tempst, P., and Reinberg, D. (2005). The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev. *19*, 1668–1673.
- Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D., Margolis, J., Peterson, M., Markowski, T.W., Ingram, M.A.C., et al. (2011). Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U. S. A. *108*, 260–265.
- Zu, T., Liu, Y., Bañez-Coronel, M., Reid, T., Pletnikova, O., Lewis, J., Miller, T.M., Harms, M.B., Falchook, A.E., Subramony, S.H., et al. (2013). RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl. Acad. Sci. U. S. A. *110*, E4968–E4977.
- Zu, T., Pattamatta, A., and Ranum, L.P.W. (2018). Repeat-Associated Non-ATG Translation in Neurological Diseases. Cold Spring Harb. Perspect. Biol. *10* (12).

CHAPTER 2: TOXIC EXPANDED GGGGCC REPEAT TRANSCRIPTION IS MEDIATED BY THE PAF1 COMPLEX IN *C9ORF72*-ASSOCIATED FTD.

Nature Neuroscience, accepted March 26, 2019

Lindsey D. Goodman¹, Mercedes Prudencio³, Nicholas J. Kramer⁴, Luis F. Martinez-Ramirez², Ananth R. Srinivasan², Matthews Lan², Michael J. Parisi², Yongqing Zhu², Jeannie Chew³, Casey N. Cook³, Amit Berson², Aaron D. Gitler⁵, Leonard Petrucelli³, Nancy M. Bonini^{1,2,*}.

¹Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

²Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA

³Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA

⁴Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA

⁵Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA

^{*}corresponding author, email: nbonini@sas.upenn.edu

Author contributions

This work was done by LDG under the mentorship of NMB. MP contributed post-mortem patient studies and analyses under the mentorship of LP. NJK contributed yeast studies under the mentorship of ADG. NJK and ADG also provided iPS cell lysates for western immunoblots performed by LDG. LFR-M provided technical support during dPAF1C-focused studies, including qPCRs and lifespans, under the direction of LDG. AS performed ChIP experiments under the guidance of LDG. ML added technical support during fly screening and performed initial control GAL4/UAS-LacZ westerns post-screening under the direction of LDG. MJP performed technical support for fly-based studies including paraffin sectioning for vacuoles and internal eyes under the direction of LDG. YZ made G4C2 fly constructs under the direction of NMB. AB performed paraffin sectioning for fly internal eyes under the direction of LDG. JC made mouse models for G4C2 under the mentorship of LP. CNC added technical support for mammalian westerns under the mentorship of LP.

Competing interests

The authors declare that they have no conflicts of interest with the contents of this article.

Acknowledgments

We thank Andrew T. Moehlman and Helmut Krämer at UT Southwestern for ERG investigations and Tania Gendron for GP-studies in (G4C2)n animals post-screening. John T. Lis, Peter Gallant, and Michael Buszczak generously shared valuable Drosophila reagents targeting dPAF1C. Further thanks to Edward B. Lee, Thomas A. Jongens, Zhaolan (Joe) Zhou and members of the Bonini laboratory - notably, Jason Kennerdell, Leeanne McGurk, and Janani Saikumar - for helpful comments. Undergraduates Decklan P. Cerza and Alex Chen provided minimal technical support under the direction of L.D.G. We thank the Transgenic RNAi Project (TRiP) at Harvard Medical School (NIH/NIGMS R01-GM084947) and the Vienna Drosophila Research Center for developing transgenic RNAi fly stocks used in this study. We thank the NINDS Human Cell and Data Repository at Rutgers University for fibroblast cells. This work was funded by the Systems and Integrative Biology NIH/NIGMS training grant T32-GM07517 (to L.D.G.), NIH/NINDS R35-NS097263 (to A.D.G.), NIH/NINDS R35-NS097273 (to L.P.), NIH/NINDS P01-NS084974 (to L.P.), NIH/NINDS P01-NS099114 (to L.P.), Mayo Clinic Foundation (to L.P.), ALS Association (to L.P. and M.P.), Robert Packard Center for ALS Research at Johns Hopkins (to L.P.), Target ALS Foundation (to L.P.), NIH/NINDS R01-NS078283 (to N.M.B.), and NIH/NINDS R35-NS09727 (to N.M.B.).

Abstract

An expanded (G4C2)30+ repeat within *C9orf72* is the most prominent mutation in familial FTD and ALS. Through an unbiased, large-scale screen in (G4C2)49-expressing *Drosophila* we identified the CDC73/PAF1 complex (PAF1C), a transcriptional regulator of RNAPII, as a suppressor of G4C2-associated toxicity when depleted. Mechanistically, PAF1C knockdown reduces RNA and GR-dipeptide production from (G4C2)30+ transgenes. Interestingly, dPAF1C components, *dPaf1* and *dLeo1* appear selective for transcription of long, toxic repeat expansions, but not shorter, non-toxic expansions. In yeast, scPAF1C components regulate expression of both sense and anti-sense repeats. PAF1C is upregulated upon expression of (G4C2)30+ in flies and mice. hPaf1 is also upregulated in *C9*+-derived cells and its heterodimer partner, hLeo1, binds *C9*+ repeat chromatin. In *C9*+ FTD, *hPAF1* and *hLEO1* are upregulated and their expression positively correlates with expression of repeat-containing *C9orf72* transcripts. These data indicate that PAF1C activity is an important factor for transcription of the long, toxic repeat in *C9*+ FTD.

Introduction

An intronic GGGCC hexanucleotide (G4C2) expansion of >30 repeats found within *C9orf72* is the most prominent mutation in familial frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) (DeJesus-Hernandez et al., 2011; Renton et al., 2011). These devastating neurodegenerative disorders represent a continuum of the same disease (van Blitterswijk et al., 2014a, 2014b).

While the presence of the expanded G4C2 can confer toxicity through a number of aberrant pathways, amassing evidence supports contributions by gain-of-function mechanisms (Balendra and Isaacs, 2018; Vatovec et al., 2014; Yuva-Aydemir et al., 2018). Accumulation of sense-strand G4C2- and antisense-strand G2C4-containing RNA results in RNA foci throughout the nervous system and may be toxic (Vatsavayai et al., 2019). Further, these RNAs undergo repeat-associated non-AUG (RAN) translation to produce dipeptide-repeats (DPRs) – GA, GR, GP, PA, PR – which form potentially toxic aggregates (Vatsavayai et al., 2019). Expressing (G4C2)30+ repeats, independent of changes to expression of the *C9orf72* gene product, causes toxicity in multiple model systems (Balendra and Isaacs, 2018; Vatovec et al., 2014; Yuva-Aydemir et al., 2018). In *Drosophila*, expression of (G4C2)30+ transgenes results in RNA foci formation, DPR expression, and neurodegenerative effects (Balendra and Isaacs, 2018; Yuva-Aydemir et al., 2018).

Repeat-expansions, like (G4C2)n, have been defined in a number of neurodegenerative diseases. As these repeats tend to be GC-rich, they can form secondary structures (e.g. G-quadraplexes) and R-loops which are thought to diminish RNA polymerase II (RNAPII)-driven transcription (Vatovec et al., 2014; Rhodes and Lipps, 2015; Simone et al., 2015; Hall et al., 2017; Freudenreich, 2018; Sauer and Paeschke, 2017). Specialized transcriptional machinery may be required to promote the

activity of RNAPII through such long repeat expansions (Hall et al., 2017; Sauer and Paeschke, 2017). Of note, DRB-sensitivity-inducing factor complex (DSIF) and the CDC73/PAF1 complex (PAF1C; PAF1 complex) are RNAPII regulators that may be involved since transcription of GC-rich DNA is sensitive to their loss (Rondón et al., 2003, 2004; Zhou et al., 2012).

DSIF and PAF1C are highly conserved and have non-redundant roles in activating RNAPII during elongation (Chen et al., 2009; Hartzog and Fu, 2013; Jaehning, 2010; Van Oss et al., 2017). DSIF is composed of two proteins, Spt4 and Spt5 (SPT4H/5H in humans) (Hartzog and Fu, 2013). SPT4H is implicated as a transcriptional regulator of expanded CAG and G4C2 repeats in disease (Liu et al., 2012; Cheng et al., 2015; Kramer et al., 2016). PAF1C is composed of five proteins – Paf1, Leo1, CDC73, Ctr9, and Rtf1 – and it was unknown if hPAF1C had a role in repeat expansion diseases (Jaehning, 2010; Van Oss et al., 2017). PAF1C downregulation can impact elongation rates of RNAPII, although only a subset of genes are known to require its function for expression (Porter et al., 2002; Yang et al., 2016; Fischl et al., 2017). In the nervous system, PAF1C is critical during development although it remains expressed in mature neurons (Bahrampour and Thor, 2016; Chaturvedi et al., 2016; Moniaux et al., 2009; Nguyen et al., 2010; Tan et al., 2013; Wang et al., 2008).

Here, we identified PAF1C components as modifiers of *C9orf72*-associated disease in an unbiased, large scale RNAi-based screen in *Drosophila* expressing toxic (G4C2)49. Downregulation of PAF1C components disrupted transcription of the G4C2 RNA in both *Drosophila* and *S. cerevisiae* and resulted in reduced toxicity in *Drosophila*. Importantly, components *dPaf1* and *dLeo1* were selective for transcription of long repeat transgenes, unlike the other dPAF1C subunits and *dSpt4*. Furthermore, PAF1C is upregulated in response to expression of the expanded repeat in flies, mouse models,

C9+ patient-derived cells and C9+ FTD tissue. Notably, expression of hPAF1 and hLEO1 positively correlate with expression of repeat-containing C9orf72-transcripts in patient tissue and hLeo1 is bound to C9orf72 chromatin in C9+ cells. These data highlight hPAF1C as an important transcriptional regulator of expanded G4C2 within C9orf72.

Results

RNAPII transcriptional complexes are enriched among suppressors of (G4C2)49-toxicity. To define cellular mechanisms underlying (G4C2)30+ toxicity in vivo, a fly model was developed that expresses (G4C2)n repeats, utilizing the GAL4/UAS expression system (Fig. 2-1a). Quantification of the number of repeats inserted into individual transgenic lines highlighted four lines: control (G4C2)8, intermediate (G4C2)29, and two expanded (G4C2)49 lines with different insertion sites (Fig. 2-1b). These lines were analyzed for RNA level by northern blot to confirm similar expression (Fig. 2-1c). Expression of (G4C2)8, (G4C2)29, or (G4C2)49 transgenes in the fly optic system (Gmr-GAL4) revealed that (G4C2)49 expression caused degenerative effects: disruptions to the external ommatidial organization, red pigmentation, eye size, and internal retinal tissue loss (Fig. 2-1d). (G4C2)29 expression caused mild toxicity in 80% of animals: disruptions to the ommatidial organization and gaps within the internal retinal tissue.

An unbiased fly screen was developed that utilized the degenerative eye caused by (G4C2)49 expression with Gmr-GAL4 (Fig. 2-1e; Appendix 2: Fig. S2-1a). Using transgenic UAS-RNAi fly lines (see methods) we defined individual genes whose downregulation altered this toxicity with enhancement or suppression. Overall, 3,932 genes were tested: ~25% of the fly genome (Appendix 2: Sup. Data). 350 (8.9%) of these altered (G4C2)49-toxicity. Positive RNAi lines were then rigorously assessed to

exclude those with unspecific effects: RNAi lines that altered normal eye morphology in control animals or altered expression of a control UAS-LacZ transgene (Appendix 2: Fig. S2-1b-c) (Kramer et al., 2016). Overall, 119 modifiers of (G4C2)49-toxicity were identified: 55 suppressors and 64 enhancers (Fig. 2-1f).

To define enriched processes, functions or components within these 119 modifiers, gene ontology (GO)-term analyses were performed (see methods). Enrichment scores (the degree to which a list of genes in a GO-term are represented within the modifier list) were plotted for GO-terms that were significantly represented within the panel of modifiers, p-value threshold of 10^-3 (Appendix 2: Fig. S2-1d). Among suppressors, there was strong enrichment for genes associated with RNAPII-driven transcription (Fig. 2-1g, green), including components of the dCDC73/PAF1 complex (dPAF1C; PAF1 complex) and dMediator complex (Soutourina, 2017). Additional transcription regulators included *dELL* and *dEar* of the dSuper Elongation Complex (dSEC) (Zhou et al., 2012) and *dSpt4* of the dDSIF complex. By contrast, enhancers of (G4C2)49-toxicity varied in GO-terms. Genes involved in RNA processing and splicing were identified, with components of the pre-catalytic spliceosome being the most enriched complex (Fig. 2-1h, red).

Overall, dPAF1C was the most enriched complex of transcriptional regulators that suppress (G4C2)49-toxicity.

PAF1C is selective for toxicity from a G4C2-encoding RNA.

Expanded G4C2 RNA can produce dipeptide-repeat proteins GR, GA, and GP in the fly (Balendra and Isaacs, 2018; Vatovec et al., 2014; Vatsavayai et al., 2019; Yuva-Aydemir et al., 2018). Of these, (GR)30+ is strongly toxic (Mizielinska et al., 2014). As modifiers of (G4C2)49-toxicity may be acting downstream of GR-peptide production, we analyzed

the 119 RNAi lines for their ability to modulate (GR)36-toxicity (Fig. 2-2a). GR models express a GR-peptide from a non-G4C2 RNA transcript, thus avoiding potential toxicity caused by a G4C2 repeat-bearing RNA (Mizielinska et al., 2014). As the PAF1 and DSIF complexes may be of particular interest in repeat-associated disease, dPAF1C and dSpt4 RNAi were rigorously examined for modification of (GR)n-toxicity in flies and yeast (Appendix 2: Fig. S2-2a-c; for scSpt4 (Kramer et al., 2016)). Results showed no consistent or significant effects indicating that these modifiers have a minimal effect on (GR)n-associated toxicity.

In *Drosophila*, 48 of the 119 modifiers (40.3%) did not alter (GR)36-toxicity in the same manner that they altered G4C2-repeat toxicity, suggesting that they modulate expression of the RNA or RNA-derived toxicity (Fig. 2-2b). GO-term analysis of these modifiers revealed that suppression by dPAF1C components was selective to the (G4C2)49 model (Fig. 2-2c). In contrast, the dMediator complex and *dELL* and *dEar* of dSEC similarly suppressed both (G4C2)49- and (GR)36-toxicity in the external eye.

Overall, data suggested that dPAF1C suppression of (G4C2)49-toxicity was the result of effects upstream of toxic GR-peptide production.

dPAF1C is selective for the G4C2 expansion.

Biological connections between (G4C2)30+ expression and TAR DNA binding protein 43 (TDP43) pathology have been reported in *C9*+ FTD/ALS (Balendra and Isaacs, 2018; Vatsavayai et al., 2019). Thus, we examined the (G4C2)49 modifiers in a TDP43 model to define G4C2-unique pathways (Fig. 2-2a). Expression of human TDP43 in the fly eye causes toxicity (Chung et al., 2018). Rigorous assessment of dPAF1C and *dSpt4* RNAi showed that they had no significant effect on TDP43-toxicity (Appendix 2: Fig. S2-3a-b). 56 of the 119 (G4C2)49 modifiers (47.1%) were unique to (G4C2)49 (Fig. 2-2b;

Appendix 2: Sup. Data). GO-term analysis indicated that dPAF1C was again highly enriched, underscoring specificity of this complex to the expanded G4C2 (**Fig. 2-2d**). By contrast, other RNAPII-regulators, such as the dMediator complex and *dELL* and *dEar* of dSEC, similarly suppressed (G4C2)49- or TDP43-toxicity in the external eye (also (Chung et al., 2018)). Furthermore, dPAF1C RNAi did not alter TDP43 protein levels (**Appendix 2: Fig. S2-3c**).

Taken together, these data highlight dPAF1C selectivity for (G4C2)49-associated toxicity.

dPAF1C downregulation suppresses (G4C2)49-induced toxicity in fly.

We further examined if dPAF1C downregulation could impact (G4C2)49-toxicity in multiple fly tissues. First, we confirmed that the RNAi lines targeting dPAF1C components – *dPaf1* (*ATMS*), *dLeo1* (*ATU*), *dCDC73* (*HYX*), *dCtr9* and *dRtf1* –resulted in significant downregulation of the target gene, while extending reagents to include an independent set of dPAF1C RNAi lines (**Appendix 2: Fig. S2-4**).

Consistent with effects in the external eye, co-expression of dPAF1C RNAi with (G4C2)49 rescued internal tissue loss (Fig. 2-3a-b). *dPaf1*, *dLeo1*, and *dRtf1* RNAi caused ~80% recovery and *dCDC73* and *dCtr9* RNAi caused ~100% recovery of tissue depth: control =13.4±6.2μm, *dPaf1* =44.4±4.7μm, *dLeo1* =47.2±10.8μm, *dCDC73* =63±6.1μm, *dCtr9* =69.1±18.0μm, *dRtf1* =41.8±12.7μm. This indicates that dPAF1C depletion is markedly effective in mitigating (G4C2)49-toxicity in the eye. Downregulating dPAF1C components did not affect the external or internal eye on their own (Fig. 2-3c-d). The second set of dPAf1C RNAi lines also suppressed (G4C2)49-toxicity, while not affecting the normal fly eye, affirming that suppression is indeed the result of targeting dPAF1C (Appendix 2: Fig. S2-5a-b). To confirm the effect on G4C2-induced toxicity, an

independent (G4C2)30+ disease fly model was examined for interactions with dPAF1C. This model contains 114bp of the intronic sequence found upstream of G4C2 repeat in patients (termed "leader sequence"; LDS). Again, dPAF1C RNAi suppressed toxicity caused by LDS-(G4C2)44^{GR-GFP} expression within the fly optic system (Appendix 2: Fig. S2-5c).

To examine effects of downregulating dPAF1C components in the nervous system, we expressed the (G4C2)49 transgene using a conditional neuronal GAL4 driver, ElavGS. First, we assessed climbing ability of animals with adult-onset expression. At 14d, only 41% of (G4C2)49-expressing animals were able to climb 4cm up the wall of a vial within 20s (Fig. 2-3e). dPAF1C RNAi significantly suppressed this effect, causing climbing abilities to be maintained at 92-96%. Suppression was again seen when using the second set of dPAF1C RNAi lines (Appendix 2: Fig. S2-5d).

Next, we analyzed animals for age-dependent vacuole formation in the fly brain, an indicator of neurodegeneration. (G4C2)49 expression in the adult-fly nervous system caused large vacuoles throughout the brain at 28d. *dCDC73*, *dCtr9*, and *dRtf1* RNAi significantly reduced both vacuole size and number: mean degeneration score (3.4±0.5) was reduced to 2.10±0.6 (*dCDC73* RNAi), 2.38±0.5 (*dCtr9* RNAi), and 1.78±0.8 (*dRtf1* RNAi), with the normal brain being 1.1±0.4 (Fig. 2-3f; Appendix 2: Fig. S2-6). Further, the strong suppressor *dCDC73* increased adult survival of (G4C2)49-expressing animals, with 50% survival extended by 24h and end point extended 72h (Fig. 2-3g). RNAi targeting other dPAF1C components showed reduced lifespan in control flies, making it inaccurate to evaluate their activity as suppressors of (G4C2)49 lifespan (Appendix 2: Fig. S2-7a). We further rigorously ruled out any possible genetic background effects of the RNAi lines within the context of (G4C2)49-expression (Appendix 2: Fig. S2-8).

Together, data support that dPAF1C plays an important role in (G4C2)49-induced toxicity in disease-relevant tissues in the fly.

PAF1C mediates expression of expanded G4C2 in fly and yeast.

Given that PAF1C regulates RNAPII-elongation and is important for transcription of GC-rich DNA (Jaehning, 2010; Rondón et al., 2004; Van Oss et al., 2017), we hypothesized that PAF1C may be important for successful transcription of long G4C2 repeats.

We first determined whether downregulation of dPAF1C components – *dPaf1*, *dLeo1*, *dCDC73*, *dCtr9*, and *dRtf1* – affected the amount of RNA produced from expanded (G4C2)49 transgenes in the fly nervous system, using *dSpt4* RNAi as a positive control (Kramer et al., 2016) (Fig. 2-4a, red). dPAF1C RNAi caused significant reductions in (G4C2)49 RNA: *dPaf1* =41±8% reduction, *dLeo1* =54±4% reduction, *dCDC73* =57±5% reduction, *dCtr9* =62±6% reduction, *dRtf1* =62±5% reduction. These values were similar to *dSpt4* RNAi which caused a 52±5% reduction (also (Kramer et al., 2016)). This effect was consistent in a second (G4C2)49-fly model (Appendix 2: Fig. S2-9a).

We evaluated the specificity of dPAF1C alterations on expanded (G4C2)49-RNA, by assessing expression from a nontoxic (G4C2)8 and an intermediate (G4C2)29 repeat. Surprisingly, *dPaf1* and *dLeo1* were selective for expanded (G4C2)49 as these RNAi did not significantly reduce expression from the shorter, nontoxic repeat transgenes (Fig. 2-4a, black and green). By contrast, *dSpt4*, *dCDC73*, *dCtr9*, and *dRtf1* RNAi caused significant reductions in expression from (G4C2)8 and (G4C2)29 of >30%, similar to effects on the (G4C2)49 transgene. Statistical comparisons between each (G4C2)n transcript levels with individual RNAi (Fig. 2-4a, top), confirmed that *dPaf1* and *dLeo1* RNAi show no significant difference between the expression level of (G4C2)8 and

(G4C2)29 but caused a statistically significant drop between (G4C2)<30 and (G4C2)49 RNA levels. By contrast, *dSpt4* RNAi and other dPAF1C RNAi had statistically similar decreases in RNA levels among short and expanded G4C2 repeat lengths. These findings suggest that, of the dPAF1C components, *dPaf1* and *dLeo1* appear of special importance for expression of longer repeats in the fly. We further confirmed that the reduced expression was specific to the G4C2 construct by examining expression of an alternative disease transgene, TDP43. TDP43 transcript levels were not affected by dPAF1C RNAi in the fly brain, consistent with protein data (Fig. 2-4b; Appendix 2: Fig. S2-3c).

As (G4C2)30+ RNA can produce a toxic GR-dipeptide, we next asked if reduced expression of dPAF1C could alter GR production in the LDS-(G4C2)44^{GR-GFP} fly model (Fig. 2-4c). The GFP tag in the GR reading frame allows for fluorescence imaging and quantitation of GR-levels in the eye with Gmr-GAL4. Congruent with RNA data, dPAF1C RNAi significantly downregulated GR-GFP: $dPaf1 = 40\pm3\%$ reduction, $dLeo1 = 42\pm2\%$ reduction, $dCDC73 = 56\pm1\%$ reduction, $dCtr9 = 50\pm3\%$ reduction, $dRtf1 = 51\pm2\%$ reduction.

These findings were then extended to yeast to assess if scPAF1C could regulate expression of expanded G4C2 in another model system. Transgenes were expressed from a galactose-inducible promoter. scLeo1 ($leo1\Delta$) or scCDC73 ($cdc73\Delta$) deletion had mild or no effect on expression from a control eYFP transgene (Fig. 2-4d, black). Deletion of other scPAF1C components had growth defects and/or significantly repressed expression of control eYFP so could not be assessed (data not shown). Interestingly, RNA levels from an expanded (G4C2)66 transgene were significantly decreased by $leo1\Delta$ or $cdc73\Delta$: $40\pm14\%$ and $38\pm2.5\%$ reduction, respectively (Fig. 2-4d, red). Further, as the hexanucleotide repeat in C9+ FTD/ALS patients can be transcribed

bidirectionally (Vatsavayai et al., 2019), we determined if scPAF1C mutants could also regulate expression from an antisense-(G2C4)66 transgene. Notably, *leo1*Δ or *cdc73*Δ had an even stronger effect on expression from this transgene with *leo1*Δ showing a significantly stronger effect than *cdc73*Δ: 77±4% and 52±11% reduction, respectively (Fig. 2-4d, orange). These data confirmed that PAF1C downregulation impaired expression of expanded G4C2 repeats in an independent model system, and extended data to expanded antisense-G2C4 repeat.

Effects of PAF1C RNAi could be the result of co-regulation of PAF1C components – *Paf1*, *Leo1*, *CDC73*, *Ctr9*, and *Rtf1* – with each other and/or *Spt4*. To examine this, we expressed *dPaf1*, *dLeo1*, or *dCDC73* RNAi in adult flies using the druginducible ubiquitous driver, DaGS. qPCR was used to determine changes in expression from dPAF1C components not targeted by the RNAi or *dSpt4* (Appendix 2: Fig. S2-7b). Data indicated that depleting these dPAF1C components does not alter expression of *dSpt4* or alternative dPAF1C components. Further, we confirmed that downregulating PAF1C in flies and in yeast did not alter general RNAPII transcription of endogenous housekeeping genes (Appendix 2: Fig. S2-9b-c) (Jaehning, 2010; Van Oss et al., 2017; Porter et al., 2002; Yang et al., 2016; Fischl et al., 2017).

These data support that PAF1C mediates transcription of expanded G4C2 and G2C4. Further, data in the fly argues that *dPaf1* and *dLeo1* confer repeat-length specificity to the transcriptional machinery, promoting RNAPII-driven transcription of expanded (G4C2)30+ repeats.

PAF1C is upregulated in response to expanded G4C2.

Given the important role dPAF1C is playing in (G4C2)49-expressing animals, we considered that the complex may be dysregulated in C9+ situations. Thus, we examined

the expression of endogenous dPAF1C components – *dPaf1*, *dLeo1*, *dCDC73*, *dCtr9*, and *dRtf1* – in animals expressing (G4C2)49 in the adult fly nervous system (ElavGS, 16d). Surprisingly, all components were upregulated by qPCR (**Fig. 2-5a**): *dPaf1* =69±10% upregulation, *dLeo1* =58±13% upregulation, *dCDC73* =71±17%upregulation, *dCtr9* =49±12% upregulation, and *dRtf1* =64±5% upregulation. This effect did not occur in response to short (G4C2)8 repeat expression. Further, dPAF1C upregulation appeared selective to G4C2 as dPAF1C components were not upregulated in TDP43 expressing animals, but rather downregulated (**Fig. 2-5b**).

To determine if this same response to expression of the expanded G4C2 repeat occurred in mammals, protein levels of mLeo1 were measured in cortical tissue from (G4C2)2 or (G4C2)149 expressing mice (Fig. 2-5c). Transgenes were expressed using an AAV2/9 vector which predominantly transduces into neurons (see methods). At 3mo post-injection, no significant differences in mLeo1 were detected between cohorts. However, at 6mo a significant upregulation of 30±8% in mLeo1 was observed in (G4C2)149 animals compared to (G4C2)2 animals.

hPaf1 is upregulated in C9+ patient-derived cells.

Our data from flies and mice indicated that PAF1C is upregulated in response to expression of an expanded G4C2 repeat in the brain. To better understand this effect in *C9*+ disease, we extended our studies to patient-derived cells. Protein expression levels of four of the hPAF1C components – hPaf1, hLeo1, hCDC73, and hRtf1 – were assessed by western immunoblot in iPS cells (**Fig. 2-6a**). The mean expression from three *C9*+ patient-derived cell lines was compared to three control cell lines. Notably, hPaf1 and hRtf1 were significantly upregulated by 46±14% and 54±14%, respectively, in *C9*+ derived iPS cells.

hLeo1 binds C9orf72 within the genome.

Thus far, data supported that the levels of select PAF1C components are modulated in response to expression of the repeat in flies, mice, and *C9*+ patient-derived cells. Further, PAF1C is important for expression of expanded G4C2 in flies and yeast. Therefore, we considered that hPAF1C may be recruited and bound to *C9orf72* within the genome of patient-derived cells.

To assess this, chromatin immunoprecipitation (ChIP) studies were performed. Four, independent *C9*+-derived fibroblast lines (Appendix 2: Fig. S2-10a) were assayed, using a hLeo1 antibody (Fig. 2-6b). Importantly, Leo1 forms a heterodimer with Paf1 within PAF1C when bound to RNAPII (Chu et al., 2013; Xu et al., 2017). After pull-down, the presence of the *C9orf72* gene or an *intergenic* (noncoding) sequence was assessed by qPCR and the mean enrichment was calculated from the four lines. Primers used to detect chromatin fragments from the *C9orf72* gene targeted the intronic region immediately 3' of the repeat expansion. Notably, there was a 4.9±1.8-fold enrichment of *C9orf72*-sequence over the *intergenic*-sequence and IgG controls with hLeo1 ChIP, indicating that hLeo1 was bound to the *C9orf72* gene in patient-derived *C9*+ cells. Overall, data support that hLeo1 binds the *C9orf72* gene and that it is bound through the repeat.

hPAF1 and hLEO1 are upregulated in C9+ FTD and FTD/ALS.

Our data from multiple model systems indicated that PAF1C is important for expression of the expanded G4C2 and that PAF1C is upregulated in response to expression of the repeat. To better understand the role of hPAF1C in human disease, we extended our studies to FTD/ALS patient tissue.

RNA was extracted from frontal cortex tissue of *C9*+ patients (n=67), *C9*- patients (n=56), or healthy controls (n=27) and the level of *hPAF1* and *hLEO1* expression were assessed by qPCR (Fig. 2-6c; Appendix 2: Fig. S2-10b). In patients diagnosed with FTD (cortical disease), *hPAF1* and *hLEO1* were significantly upregulated only when the repeat expansion was present: *hPAF1* was upregulated 39% versus healthy controls and 28% versus *C9*- FTD; *hLEO1* was upregulated 23% versus healthy controls and 25% versus *C9*- FTD. Interestingly, in the frontal cortex of *C9*+ ALS cases (motor neuron disease), neither *hPAF1* nor *hLEO1* showed upregulation, independent of the presence of the G4C2-repeat expansion. Patients showing symptoms of both FTD and ALS fell between FTD only and ALS only, with *C9*+ FTD/ALS cases showing weaker upregulation of *hPAF1* and *hLEO1* versus healthy controls: 28% and 22%, respectively. In contrast to *hPAF1* and *hLEO1*, *hCDC73* did not show altered expression in *C9*+ FTD (Appendix 2: Fig. S2-10c), supporting data in *Drosophila* and patient-derived cells that Paf1 and Leo1 may play a unique role over other components.

Upregulation of *hPAF1* and *hLEO1* in *C9*+ FTD is congruent with data in flies, mice, and iPS cells. Interestingly, in cortical tissue this upregulation is unique to *C9*+ FTD patients compared to *C9*+ ALS patients (which lack cortical diagnosis).

Expression of hPAF1 and hLEO1 positively correlate with repeat-containing C9orf72 transcripts.

As *Paf1* and *Leo1* activity were important for the expression of the expanded G4C2 repeat in flies and yeast, and hLeo1 is bound to *C9orf72* in *C9*+ cells, we considered that *hPAF1* and *hLEO1* upregulation in *C9*+ FTD may positively correlate with the expression of *C9orf72* transcripts containing the repeat.

To examine this, Spearman r correlations were performed between transcript levels of *hPAF1* and *hLEO1* versus *C9orf72* pre-mRNA (**Fig. 2-6d**). Results showed strong (r>0.3 to r>0.6) and significant (p-value <0.0005) positive correlations between transcripts in *C9+* FTD cases – for *hPAF1* vs *C9orf72*: r=0.74, 95% CI 0.5 to 0.9; for *hLEO1* vs *C9orf72*: r=0.63, 95% CI 0.3 to 0.8. No correlations were observed in *C9-* FTD cases or healthy controls supporting that this effect was in response to the presence of the repeat expansion. Further, no correlations between *hCDC73* transcripts and *C9orf72* pre-mRNA were observed, arguing that this effect was unique to *hPAF1* and *hLEO1* (**Appendix 2: Fig. S2-10d**). No correlations were observed in *C9+* ALS cases (**Appendix 2: Fig. S2-10e**).

Altogether, data from multiple models and FTD cortical tissue indicate that PAF1C regulates expression of the expanded G4C2 repeats within *C9orf72* in *C9*+ situations.

Discussion

An unbiased, RNAi-based screen in *Drosophila* covering ~4000 genes revealed the CDC73/PAF1 complex (PAF1C) as a *C9orf72*-disease modifier. Downregulation of dPAF1C components – *dPaf1*, *dLeo1*, *dCDC73*, *dCtr9*, and *dRtf1* – selectively suppressed (G4C2)49-toxicity in multiple fly tissues. Mechanistically, PAF1C suppression was associated with reduced RNA and GR-dipeptide production from expanded (G4C2)n transgenes. In particular, depletion of *dPaf1* and *dLeo1*, which form a heterodimer (Chu et al., 2013; Xu et al., 2017), in the fly nervous system selectively reduced expression of long, toxic (G4C2)49 repeats versus shorter, non-toxic repeats. Moreover, *scLeo1* and *scCDC73* deletion in yeast reduced RNA production from sense-(G4C2)66 and antisense-(G2C4)66 transgenes. Additional investigations into dPAF1C in

Drosophila revealed that endogenous dPAF1C was upregulated upon expression of expanded (G4C2)30+ in neurons. This was not the result of toxicity or stress, as upregulation was selective to (G4C2)30+ versus TDP43. Interestingly, mLeo1 is also upregulated in the brain of mice expressing (G4C2)149, while hPaf1 and hRtf1 are upregulated in C9+-derived iPS cells. Further, we provide evidence that hPAF1C binds C9orf72, with ChIP for hLeo1 (of the Paf1/Leo1 heterodimer) in C9+ cells. Using human post-mortem cortical tissue, we further found that hPAF1 and hLEO1 RNA levels were upregulated in C9+ FTD patients. This upregulation positively correlated with expression of the repeat-containing C9orf72 transcripts. Overall, these data from flies, yeast, mice, C9+ patient-derived cells, and post-mortem patient tissue support a mechanistic link between PAF1C activity, expression of a G4C2-repeat, and C9+ disease.

A total of 119 modifiers of (G4C2)49-toxicity were identified in our screen (see Fig 2-1). Remarkably, GO term analysis of the 55 suppressors showed significant enrichment for RNAPII transcriptional regulators – including dPAF1C, the dMediator complex, *dELL* and *dEar* of the dSuper Elongation Complex (dSEC), and *dSpt4* of the dDSIF complex. Not all transcription-related genes tested in the screen modify (G4C2)49 toxicity, arguing that the complexes identified are unique (see Appendix 2: Sup. Data). Although we focused on dPAF1C, the other RNAPII regulators may also be important in disease (Balendra and Isaacs, 2018; Vatovec et al., 2014; Vatsavayai et al., 2019; Yuva-Aydemir et al., 2018). Among the 64 enhancers of (G4C2)49-toxicity, RNA processing and splicing factors were prominent. Curiously, the majority of these enhancers similarly modulate (GR)36-toxicity (see Fig. 2-2). These data are consistent with reports of RNA dysregulation and splicing deficits in *C9*+ FTD/ALS, while suggesting that disruptions in RNA metabolism may result from toxic GR (Balendra and Isaacs, 2018; Vatovec et al., 2014; Vatsavayai et al., 2019; Yuva-Aydemir et al., 2018).

RNAPII-driven transcription across GC-rich DNA is hypothesized to be problematic due to the propensity of the DNA/RNA to form secondary structures, such as R-loops and G-quadraplexes (Vatovec et al., 2014; Rhodes and Lipps, 2015; Simone et al., 2015; Hall et al., 2017; Freudenreich, 2018; Sauer and Paeschke, 2017). Given this, the activity of multiple elongation factors may be required for efficient transcription through expansions like (G4C2)30+ (Hall et al., 2017; Sauer and Paeschke, 2017). Spt4 was previously implicated as a transcriptional regulator of CAG and G4C2 repeat expansions (Liu et al., 2012; Cheng et al., 2015; Kramer et al., 2016). Our data indicates that PAF1C regulates expression of G4C2 repeats in FTD/ALS (see Fig. 2-4). dPaf1 and dLeo1 of dPAF1C seem particularly important for RNAPII-transcription of expanded G4C2 as loss of these two components selectively reduced expression of a (G4C2)49 transgene in fly. While this could be the result of level of knockdown, it is compelling that Paf1 and Leo1 form a heterodimer that is important for PAF1C activation of elongating RNAPII (Yang et al., 2016; Chu et al., 2013; Xu et al., 2017; Kim et al., 2010; Yu et al., 2015a). Further, Paf1 is consistently upregulated in C9+-derived patient cells and tissue over other components and upregulation positively correlates to expression of repeatcontaining transcripts in patient tissue (see Fig. 2-6c-d and Appendix 2: Fig. S2-10). Overall, these data argue that Paf1 and Leo1 are mechanistically special in C9+ disease.

In contrast to *dPaf1/Leo1*, *dSpt4* showed similar effects on different G4C2 repeat lengths in flies (**see Fig. 2-4**). Differences in how Spt4 and Paf1/Leo1 loss impact expanded G4C2 expression may be due to their distinct roles during transcription (Chen et al., 2009; Hartzog and Fu, 2013; Jaehning, 2010; Van Oss et al., 2017). Evidence suggests that Spt4 primarily acts during the transition of RNAPII from poised to elongation or during transcription termination (Chen et al., 2009; Fischl et al., 2017;

Yang et al., 2016). In contrast, Paf1/Leo1 seems to act primarily during elongation (Chen et al., 2009; Fischl et al., 2017; Kim et al., 2010; Mayer et al., 2010; Yang et al., 2016). Notably, DSIF (composed of Spt4 and Spt5) and PAF1C may interact. In yeast, scDSIF recruits scPAF1C via the scRtf1 subunit during the transition of RNAPII from initiation to elongation (Mayekar et al., 2013). However, in higher organisms, including *Drosophila*, the dependence of PAF1C on DSIF for recruitment to elongating RNAPII is less clear. Rtf1 is less tightly associated with other PAF1C components while recent work shows that PAF1C recruitment can be DSIF-independent in mammals (Amrich et al., 2012; Cao et al., 2015; Dermody and Buratowski, 2010; Qiu et al., 2012; Xie et al., 2018). Further, Leo1 of PAF1C directly interacts with elongating RNAPII (Xu et al., 2017) and the *C9orf72* gene (see Fig. 2-6b). Together, these data suggest that PAF1C is playing a unique role in transcription elongation across the G4C2-repeat expansion.

FTD and ALS represent the extremes of a continuous disease spectrum. It remains unclear how one patient presents with FTD and another with ALS or combined FTD/ALS. Among many factors, unique genetic backgrounds of individuals may contribute to specific presentation (van Blitterswijk et al., 2014a, 2014b). For example, *ATXN2* and *TMEM106B* have been suggested as disease modifiers underlying the different diagnoses (van Blitterswijk et al., 2014a, 2014b). Curiously, we see selective upregulation of *hPAF1* and *hLEO1* in the frontal cortex of *C9*+ FTD disease, but not *C9*+ ALS (see Fig. 2-6c). Importantly, the frontal cortex is thought to be a primary brain region resulting in FTD-associated symptoms (Omer et al., 2017; Schönecker et al., 2018). Stage of disease progression could also contribute. Analysis of *hPAF1* and *hLEO1* expression in motor neurons from ALS patients will define if PAF1C plays a tissue-specific role. Based on current data, it is tempting to hypothesize that cortical

modulation of *Paf1* or *Leo1* in response to the repeat may be among several mechanisms contributing to the spectrum of disease phenotypes in *C9orf72*-associated disorders.

PAF1C may be an attractive therapeutic candidate for *C9*+ FTD. In yeast, *scPAF1C* has been reported to be non-essential (Jaehning, 2010; Van Oss et al., 2017). In flies, *dLeo1* is not essential to get viable adults (Gerlach et al., 2017). In mice, *mPAF1*+- or *mLEO1*+- heterozygosity yields no obvious abnormalities, although *mPAF1*-- or *mLEO1*+- null animals show pre-weaning lethality (Meehan et al., 2017). Other components of mPAF1C follow this same trend, with heterozygous mice showing no or few effects (Meehan et al., 2017). While *SUPT4H1* (human *Spt4*; non-essential in yeast) was previously proposed as a potential therapeutic target in *C9*+ FTD/ALS (Kramer et al., 2016), it may have more critical organismal functions than PAF1C in higher organisms: *SUPT4A*+- (murine *Spt4*) heterozygous mice are viable but show a number of abnormalities and *SUPT4A*-- null mice are embryonic lethal (Meehan et al., 2017). These investigations do not consider effects of PAF1C or Spt4 loss in a tissue- or age-specific manner, arguing that further analyses are required. Altogether, we hypothesize that specific components of PAF1C, like *Paf1* or *Leo1*, may represent a potential therapeutic target for *C9orf72*-associated disease.

This study presents the first evidence that PAF1C is an important player in C9orf72-associated disease, particularly in C9+ FTD. Further investigations into PAF1C may define the mechanisms by which it becomes upregulated—potentially in a tissue-specific manner— and its impact in other neurodegenerative situations that result from aberrant expression of repeat expansions.

Data availability statement

The authors are submitting all relevant data for publication. Any additional inquiries can be directed to the corresponding author, while any information relevant to this study will be openly shared including all raw data, unique reagents, or unique protocols.

Methods and materials

Nomenclature

For clarity "d" for *Drosophila melanogaster*, "h" for *Homo sapiens*, "m" for *Mus musculus*, or "sc" for *Saccharomyces cerevisiae* was added in front of gene/protein symbols when discussing endogenous PAF1C components in individual species.

Patient sample consents and approvals

Participants or authorized family members provided written informed consent prior to information gathering. Post-consent, autopsies were performed postmortem. Protocols were approved by the Mayo Clinic Institutional Review Board and Ethics Committee.

Clinical, genetic and pathological assessments

Patients were diagnosed with FTD and/or ALS by trained neurologists after reviewing neurological and pathological information (**Appendix 2: Fig. S2-10**). Repeat-primed polymerase chain reaction was used to determine the presence/absence of a *C9orf72* repeat expansion (DeJesus-Hernandez et al., 2011).

Mouse model and approvals

All mouse procedures were performed in agreement with the National Institutes of Health Guide for Care and Use of Experimental Animals. Approved by the Mayo Clinic Institutional Animal Care and Use Committee. The G4C2 mouse model (C57BL/6J, male mice) were previously established (Chew et al., 2019).

Drosophila work and disease models

Stocks were maintained on standard cornmeal-molasses medium. See Appendix 2: **Table S2-2** for primary fly lines used. For all experiments, multiple w and w⁺ controls were analyzed in parallel and showed similar results. Appendix 2: Table S2-3 details shown controls.

Fly RNAi efficacy

All control and PAF1C RNAi lines defined in Appendix 2: Table S2-2. RNAi efficacy was determined using Da-GAL4 (larvae) or DaGS (adult animals), previously described (Kramer et al., 2016; McGurk and Bonini, 2012). For Paf1 RNAi: larvae were collected using 20% sucrose solution. For Leo1 RNAi: wandering 3rd instar larvae were collected. Characterization of (G4C2)n fly models

All G4C2 fly models: Transgenes inserted into pUAST vectors and randomly inserted into w^{1118} fly genomes. Original G4C2 model detailed in Fig. 2-1a and previously established (Burguete et al.; Kramer et al., 2016; Mordes et al., 2018). LDS-G4C2 model includes: 5' leader sequence (LDS; 114bp of sequence found upstream of the repeat in intron 1 of C9orf72 in patients); 3'-GFP tag in the GR-reading frame.

Repeat-length determination: Inserted transgenes were amplified from genomic DNA using construct-specific primers that flanked the repeat (Appendix 2: Table S2-4) by PCR: KAPA HiFi HotStart kit (Kappa #KK2501) with GC buffer, 1M Betaine, 5% DMSO. PCR products lengths were analyzed: 1.5% agarose/TAE gel, Bioanalyzer. Repeat number was calculated from PCR product length (subtracting 5' and 3' non-G4C2 flanking sequence). Control w^{1118} animals were included and showed no signal.

RNA expression for original UAS-G4C2 model: UAS-G4C2 transgenes were expressed using HS-GAL4, 30min at 37°C. RNA was extracted 3hr post-HS and analyzed by northern blot, probing for the SV40 terminal sequence, previously described (Yu et al., 2015b). Control w^{1118} animals were included and showed no signal.

RNAi external fly eye screen

UAS-RNAi lines developed by the Transgenic RNAi Project (TRiP) (Ni et al., 2011; Perkins et al., 2015) were purchased through Bloomington *Drosophila* Stock Center (BDSC). All available Valium 20 UAS-shRNA lines targeting unique genes were used for screening (**Appendix 2: Sup. Data**). When multiple Valium 20 fly lines were available targeting a single gene, one line was randomly selected for screening. Additional UAS-RNAi lines targeting *dPaf1* and *dLeo1* were obtained from Vienna *Drosophila* Resource Center (VDRC) (Dietzl et al., 2007).

External eye screening and imaging: UAS-RNAi males were crossed to recombinant females: UAS-(G4C2)49, Gmr-GAL4 (III) (25°C). Multiple controls were setup with every experiment to account for natural variability in (G4C2)49-toxicity, including: UAS-Luc RNAi (BDSC #31603) and w¹¹¹⁸; UAS-DSRED. The external eye phenotype for >5 1-2d progeny was observed using a standard dissection microscope. Any changes to the ommatidial organization, eye size, pigmentation, and ability to eclose from pupae were noted. Resulting phenotype was categorized into one of six groups: suppressors, mild suppressors, no effect, mild enhancers, enhancers, and lethal enhancers (Appendix 2: Fig. S2-1a). Animals expressing RNAi that altered (G4C2)49-toxicity were imaged on a Leica Apo16 microscope (Berson et al., 2017; Chung et al., 2018; Elden et al., 2010; Kim et al., 2014). Researchers were blinded to the RNAi targets during screening. Modifiers of (G4C2)49-toxicity were further assessed in Gmr-GAL4 > UAS-(GR)36 (Mizielinska et al., 2014) or UAS-TDP43 (Elden et al., 2010; Kim et al., 2014) animals. Modifier crosses were repeated 3+ independent times to confirm reproducibility of results.

Control experiments defining unspecific RNAi: To determine if RNAi caused toxicity in control scenarios: UAS-RNAi lines that enhanced (G4C2)49-toxicity were tested for effects in a line expressing short repeats, Gmr-GAL4 > (G4C2)6/8, and with Gmr-GAL4 only. UAS-RNAi lines were analyzed for effects on the GAL4/UAS system using β -galactosidase western immunoblots, described (Berson et al., 2017; Chung et al., 2018; Kramer et al., 2016; Mordes et al., 2018).

Gene ontology (GO) enrichment analysis

GO-term enrichment analyses were done using GOrilla software with a p-value threshold of 10^-3 (Eden et al., 2007, 2009; Subramanian et al., 2005). All genes included in the RNAi library, excluding unspecific RNAi, were set as the background. GO-terms with enrichment scores < 3.0 were excluded as these associated with umbrella categories. For final figures, redundant GO-terms were excluded using Revigo, prioritizing terms with high enrichment scores (Subramanian et al., 2005; Supek et al., 2011).

Internal eye and vacuole formation

Heads were paraffin embedded and sectioned at 8μm, described (Auluck et al., 2002; Berson et al., 2017; Chung et al., 2018; Kramer et al., 2016). Quantification of internal eye: measured depth of the retinal tissue at a consistent level of the brain (when the optic chiasm, antennal lobe and ventrolateral protocerebrum were present); retinal tissue depth was measured at the point of the optic chiasm. Animals with collapsed eyes were excluded. Quantification of vacuole formation was done using a scoring schematic (**Appendix 2: Fig. S2-6a**). The whole brain was reviewed for scoring with researchers blinded to genotype.

Drug-inducible expression using geneswitch- (GS-) GAL4 drivers

0-2d adult flies were collected and aged for 24-48h prior to transfer to 0.04mg RU486-containing food (made by pipetting 100µl of 4mg/ml RU486 in 100% ethanol onto

standard food and incubating at RT for 1-2d with slow rotation). Flies were transferred to fresh RU486-containing food every 2d.

Lifespan and negative geotaxis (climbing)

Lifespan and climbing assays were done as described with minor changes (Berson et al., 2017; Kramer et al., 2016). Assays were done at 24°C. For the climbing assay, flies were tapped to the bottom of an empty vial and immediately video recorded. Each vial was subjected to 3 consecutive trials with a 20-30min recovery between trials. For analysis, the number of flies in a vial that crossed a 4cm line after 15 or 20s post-tapping were counted. The mean value from the 3 trials per vial was used to account for technical variability.

Western immunoblots (WB)

Fly lysates and reagents: For assays involving Gmr-GAL4 (3d animals), triplicate samples of 5-10 heads per genotype were homogenized in 1X NuPAGE LDS sample buffer using disposable pellet/pestles tissue grinders (Kimble Chase #749520-0000) and motor (Kimble Chase #749540-0000). WBs were run using a standard protocol with Invitrogen's XCell SureLock blot system, 4-12% Bis-Tris NuPAGE gels, and a iBlot dry transfer system with nitrocellulose membrane.

iPSC lysates and reagents: iPSC (described in Appendix 2: Fig. S2-10a) were cultured as previously described (Kramer et al., 2018) and lysates were prepared using RIPA buffer. 20μg of total protein was run using a standard WB protocol with Invitrogen's XCell SureLock blot system, 4-12% Bis-Tris NuPAGE gels and wet transfer with PVDF membrane.

Mouse lysates and reagents: Mice expressing either (G4C2)2 or (G4C2)149 were generated by intracerebroventricular administration of AAV2/9 vectors, previously described (Chew et al., 2019). Cortical tissues were harvested at 3mo and 6mo. Protein

lysates were prepped using a 1:5 weight/volume of ice-cold buffer (50mM Tris pH 7.4, 50mM NaCl, 1mM EDTA) with 2x protease and phosphatase inhibitors. 1% Triton X-100 and 2% SDS were added. Tissue homogenates were sonicated on ice and centrifuged at 4°C for 20min at 16,000xq. 30µq of total protein was run using a standard WB protocol with 10% Tris-Glycine gels and wet transfer with nitrocellulose membrane.

Fly antibodies: anti-βgalactosidase (Promega #Z3781, 1:2,000), anti-TDP43 (ProteinTech #10782-2-AP, 1:2,000), anti-αTubulin (DSHB #AA4.3, 1:2,000) (Berson et al., 2017; Chung et al., 2018; Kramer et al., 2016; Mordes et al., 2018). Antibodies targeting dCDC73 or dRtf1 were previously developed (Adelman et al., 2006).

Mammalian antibodies: anti-Paf1 (Cell Signaling #12883, 1:1,000) (Yu et al., 2015a), anti-Leo1 (ProteinTech #12281-1-AP, 1:2,000), anti-CDC73 (Cell Signaling #8126, 1:2,000) (Herr et al., 2015), anti-Rtf1 (Cell Signaling #14737, 1:2,000), anti-αTubulin-HRP (Cell Signaling #9099, 1:2,000), anti-GAPDH (IPSCs: Abcam # G8795, 1:5,000; Mice: Meridian Life Science # H86504M, 1:10,000). Antibodies validated by siRNA in fibroblast cells (data not shown): anti-Paf1, anti-Leo1, anti-Rtf1.

Secondary antibodies and imaging: Mouse or Rabbit HRP-conjugated secondary antibodies (Jackson Immunoresearch Labs #115-035-146 and 111-035-144) were used at 1:5,000 (Berson et al., 2017; Chung et al., 2018; Kramer et al., 2016; Mordes et al., 2018). Blots were analyzed using Amersham ECL Prime Detection Reagent and imaged on an Amersham Imager 600.

Real-time quantitative PCR (qPCR)

All primers are defined in **Appendix 2: Table S2-4**.

Flies: Total RNA was collected using TRIzol. For DaGS or Da-GAL4 assays, biological triplicate samples of 10 whole animals were processed per condition. For ElavGS assays, biological triplicate samples of 20-30 fly heads (16d) were processed per condition. qPCRs were run using standard protocols. cDNA was made from 200-400ng of total RNA using random primers, High Capacity cDNA Reverse Transcription Kit (ThermoFisher #4368814). qPCR reactions were setup using SYBR Green Fast reagents, 384-welled plate, and analyzed on an Applied Biosystem's ViiA 7 Real-Time PCR System. Mean fold change was determined using the ΔΔCt method. The housekeeping gene, RP49 (RNAPI-driven), was used. Primers targeting the G4C2 fly transgenes utilized unique restriction enzyme sequences in our construct found immediately 3' of the repeat. All primers were validated using a serial dilution curve. **Appendix 2: Fig. S2-12** shows primer efficiencies between G4C2 and loading control used, RP49, to be similar.

Humans: Total RNA was extracted from frozen postmortem tissue from the frontal cortex using the RNAeasy Plus Mini Kit (QIAGEN), previously described (Prudencio et al., 2015). RNA integrity (RIN) was verified on an Agilent 2100 bioanalyzer. qPCRs were run using standard protocols. cDNA was made from 500ng of total RNA (RIN ≥7.0, mean RIN for all samples =9.3) using random primers, High Capacity cDNA Reverse Transcription Kit (ThermoFisher). qPCR was conducted using SYBR GreenER qPCR SuperMix (Invitrogen) for all samples in triplicate. qPCRs were run in an ABI Prism 7900HT Fast Real-Time PCR System (Applied Biosystems). Fold change was determined using the ΔΔCt method, comparing relative expression to healthy controls (mean=1). Housekeeping genes included RPLP0 and GAPDH. Primers targeting the C9orf72 transcript were previously described (Niblock et al., 2016).

Yeast: Centromeric galactose-inducible plasmids that express *C9orf72* hexanucleotide repeats – sense (G4C2)66 or antisense (G2C4)66 – were transformed into yeast, described (Kramer et al., 2016). Overnight cultures were grown from transformants in 2% raffinose-containing media, then diluted into 2% galactose-containing liquid media

the next morning, and further grown at 30°C for 6 hours to allow for transgene expression. RNA was harvested from these cultures using a MasterPure Yeast RNA Extraction kit (Lucigen), including DNAsel digestions during the purification. Equal amounts of RNA were reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and analyzed by qPCR using SYBR green reagents.

External fly eye GR-GFP imaging

 y^1 sc* v^1 ;; Gmr-GAL4, UAS-LDS-(G4C2)44^{GR-GFP} animals were crossed to RNAi lines or controls. Heads from 1-2d progeny were isolated and positioned for imaging on a glass slide using Vaseline. GFP imaging was immediately performed on a Leica DM6000B microscope using Z-stacks. Total GFP fluorescence in the compiled images was measured in ImageJ and normalized relative to control. Only expanded (G4C2)30+ transgenes produce GR-GFP; lines containing \leq 22 repeats have no GFP signal by external eye fluorescence imaging or by western immunoblot.

Yeast strains and spotting assays

All yeast strains are derivatives of the haploid wildtype BY4741 strain, and all deletion strains were verified by PCR genotyping and qPCR. Centromeric galactose-inducible plasmids expressing codon-optimized *C9orf72* dipeptide repeat proteins – (PR)50 and (GR)100 (Chai and Gitler; Jovičić et al., 2015; Kramer et al., 2016) – or a control protein (CCDB) were transformed into yeast using standard methods and selected for on SD-URA agar plates. For serial dilution growth analysis, transformants were grown overnight in 2% raffinose-containing media. Overnight cultures were all normalized to OD600 = 0.8, and then each strain was diluted serially 5-fold in a 96-well plate. Yeast were spotted onto either 2% glucose or 2% galactose containing agar plates with a multi-pin 'frogger' and allowed to grow for 48h at 30°C before photographed.

Fibroblast cells and chromatin immunoprecipitation (ChIP)

Primary fibroblast cells (described in Appendix 2: Fig. S2-10a) were cultured in a standard 37°C / 5% CO₂ incubator using DMEM (with L-GLUT, hi glucose and sodium pyruvate) supplemented with 15% heat-inactivated FBS, 1% amino-acids, and 1% pen/strep. For ChIP, cells were collected from a confluent T-75 flask using trypsin, washed in DPBS and fixed in 1.1% formaldehyde, 10min. ChIPs were then performed as described (Lee et al., 2006) with the following details. DNA was fragmented using a bucket sonicator for 20min. Dynabeads protein A (Invitrogen # 10001D) were used at 30µl per IP. The primary antibody against hLeo1 (ProteinTech #12281-1-AP) was used at 5µg for 100µg DNA, with overnight incubation. An overnight decrosslinking was done and DNA was isolated using a standard Phenol/Chloroform/Isoamyl alcohol (PCA) protocol into 50µl. 4µl was run per reaction by qPCR using Sybr green. Ct values were normalized to input and transformed relative to Rb IgG control (Cell Signaling #2729). Intergenic sequence was as described (Kim et al., 2013). A positive control gene, p21, was used to validate Leo1 ChIPs (Kim et al., 2010). All primers are defined in Appendix 2: Table S2-4.

Statistical analysis, sampling, and randomization

GraphPad Prism 7.00 or 8.00 software was used to develop all graphs and for all statistical analyses. P-values ≤ 0.05 were considered significant. See **Appendix 2**: **Table S2-1** for details on statistics and Life Sciences Reporting Summary for additional information. No data were excluded from this study. Flies, yeast, mice, and cell lines: Data was assumed to be normal. A two-tailed unpaired student t-test, one-way ANOVA, or two-way ANOVA statistical analysis were performed when appropriate based on the experiment design. For ANOVA's Tukey's multiple comparisons tests were predominantly used. No statistical methods were used to

predetermine sample sizes and numbers were similar to previous work (Elden et al., 2010; Kim et al., 2014; Kramer et al., 2016; McGurk and Bonini, 2012; Mizielinska et al., 2014). Researchers were blinded to the genotype of all samples to maintain unbiased scoring. Humans: Data was found to not fit a normal distribution. Kruskal—Wallis, 1-way ANOVAs with Dunn's multiple comparisons test were performed to assess changes in expression of genes. Follow-up Spearman r correlations were performed. No statistical methods were used to predetermine sample sizes and numbers were similar to previous work (Kramer et al., 2016; Prudencio et al., 2015, 2017). Researchers were not blinded as data is inherently unbiased.

Chapter 2: Figures and legends

Figure 2-1

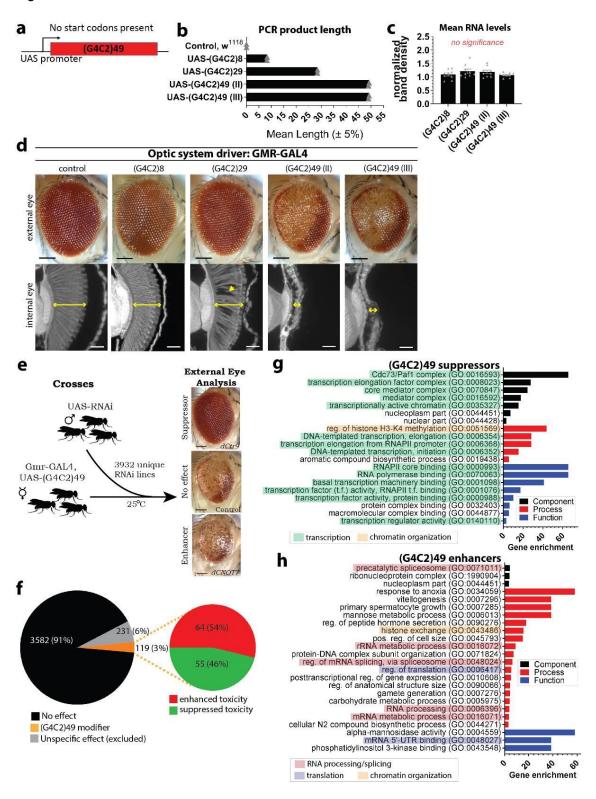


Figure 1: A genetic screen reveals PAF1C as a suppressor of (G4C2)49-toxicity in the fly eye.

(a) UAS-(G4C2)n transgenes were designed expressing a pure repeat. (b) PCR reactions were used to quantify of the number of repeats in individual UAS-G4C2 transgenic fly lines. Shown: individual data points with mean from 2 experiments (30) flies/experiment). (c) RNA expression of UAS-(G4C2)n transgenes using HS-GAL4 were compared by northern blots. Statistics: ANOVA with Tukey's correction, p-value: no significance >0.05. Shown: individual data points with mean±SEM; mean value of biological triplicates (n=30 flies) from 3 independent experiments. (d) Expression of UAS-(G4C2)n transgenes in the fly eye compared to controls: (G4C2)8 had no effect, (G4C2)29 caused mild disruptions in 80% of animals, (G4C2)49 caused strong degeneration. Shown: data from one experiment; data reproduced in 3+ independent experiments. Arrows: internal tissue depth, lost tissue. (e) RNAi were co-expressed with (G4C2)49 (III) within the fly optic system. Effects of RNAi were recorded: "suppressors" reduced degeneration, "enhancers" increased degeneration. Shown: representative images. Hits were independently tested 3+ times to confirm reproducibility (>5 flies examined/cross). (f) 119 modifiers were identified. Control experiments excluded 231 RNAi lines with unspecific effects. (g-h) GO analyses revealed terms enriched in suppressors (55/3582 genes) or enhancers (64/3582 genes). Plotted: significant (p-value ≤10^-3) enrichment scores of >3.00. (d-e) Scale bars: external eye =100µm, internal eye =25µm. (a-h) Additional details for this and subsequent figures: Appendix 2: Fig. S2-1 (extended screen data), Appendix 2: Sup. Data (all screen results), Appendix 2: Table S2-1 (detailed sampling/reproducibility/statistics), methods.

Figure 2-2

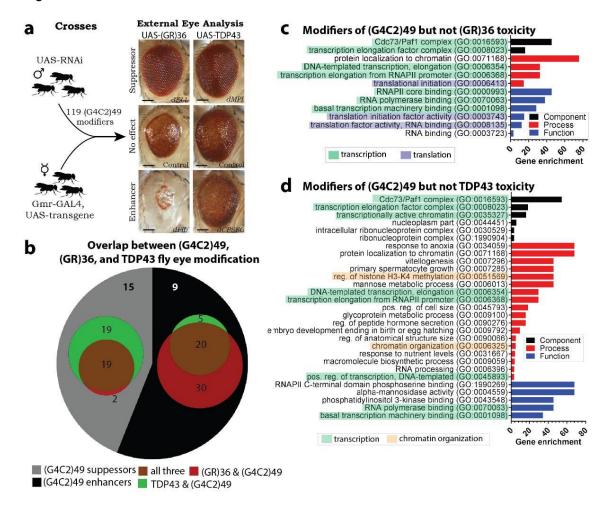


Figure 2: PAF1C is not a modifier of (GR)36 or TDP43 toxicity in *Drosophila*.

(a) The 119 (G4C2)49 modifiers were analyzed in (GR)36 and TDP43 models to determine if they could act on GR-dipeptide toxicity or had overlapping effects on TDP43-toxicity. All were independently tested 3+ times to confirm reproducibility of results (>5 flies examined/cross). Scale bars: 100μm. (b) Of the 119 modifiers of (G4C2)49 toxicity, 71 (59.7%) similarly modified (GR)36, arguing they may be acting on toxic DPR. 63 (52.9%) similarly affected TDP-43 toxicity, arguing overlap between these disease models. (c) GO analyses revealed terms enriched in the modifiers that *did not* similarly alter (GR)36 toxicity (48/3582 genes), revealing those acting selectively on the (G4C2)49 RNA model. (d) GO analyses revealed terms enriched in the modifiers that *did not* similarly alter TDP43 toxicity (56/3582 genes), revealing those specific to the expanded G4C2 repeat in C9+ FTD/ALS. (c-d) Plotted: GO-terms with significant (p-value ≤ 10^-3) enrichment scores of >3.00.

Figure 2-3

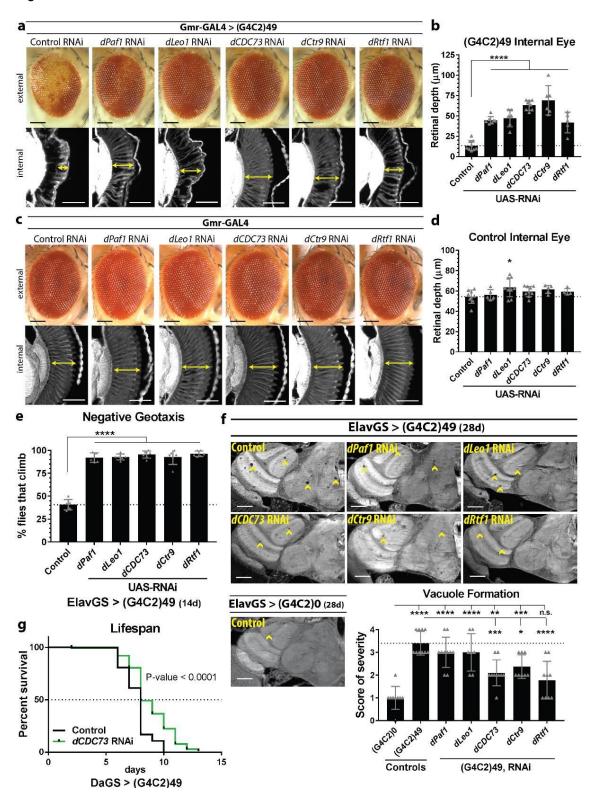


Figure 3: Reduced expression of components of PAF1C suppress (G4C2)49-induced toxicity in multiple contexts in the fly.

(a-b) dPAF1C RNAi mitigates toxicity associated with (G4C2)49 expression in the eye. N flies: control=9, dPaf1=7, dLeo1=6, dCDC73=8, dCtr9=6, dRtf1=5. (c-d) dPAF1C RNAi has no effect on control fly eyes. N flies: control=9, dPaf1=5, dLeo1=9, dCDC73=9, dCtr9=5, dRtf1=4. (a-d) Internal retina depth (arrows) quantified for individual animals. Scale bars: external eye =100µm, internal eye =45µm. (e) Climbing deficits caused by (G4C2)49 expression in the adult nervous system (ElavGS, 14d) are rescued by dPAF1C RNAi. N flies: control=117, dPaf1=98, dLeo1=108, dCDC73=103, dCtr9=120, dRtf1=115. Individual data points are mean % of animals that could climb per tube; average of 19±2 animals per tube. (f) dPAF1C RNAi mitigated vacuole formation (arrowheads) in the brain with ElavGS driven expression of (G4C2)49. For quantification, a vacuole severity scoring system was developed where 0=no vacuoles and 4=medium/large, frequent (>5) vacuoles (see Sup. Fig. 6a). N flies: (G4C2)0=9, (G4C2)49: control=10, dPaf1=10, dLeo1=7, dCDC73=10, dCtr9=8, dRtf1=9. Scale bars: 50µm. (g) Knockdown of dCDC73 in adult flies ubiquitously expressing (G4C2)49 results in lifespan extension. N flies: control=198, dCDC73=197. (b,d,f) each data point represents one animal. Statistics: (a-f) ANOVAs with Tukey's correction, (g) log-rank; pvalues: ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance (n.s.) >0.05. Shown on graphs: individual data points with mean±SD; data from one experiment; all experiments were repeated twice with similar results.

Figure 2-4

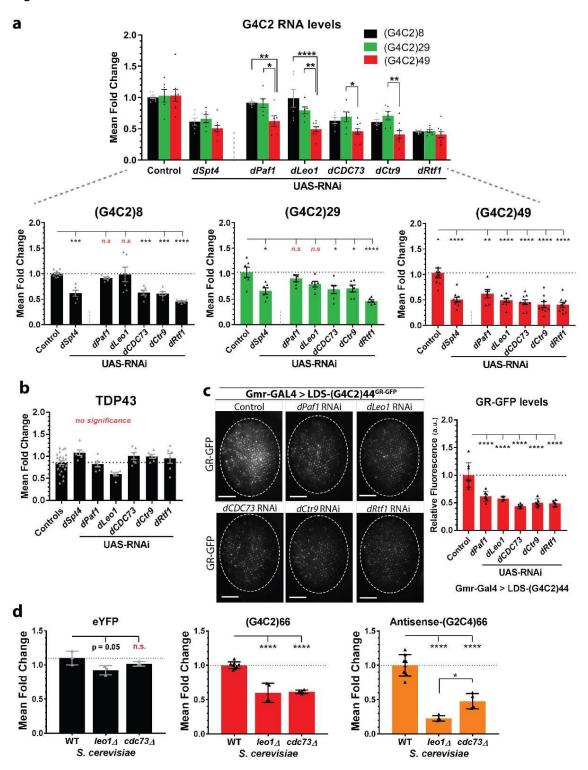


Figure 4: Downregulation of components of PAF1C selectively alter (G4C2)30+ transgene expression.

(a) (G4C2)n transgenes were co-expressed with dPAF1C RNAi lines in the adult brain using a drug inducible, neuronal driver (ElavGS, 16d). Transgene expression levels in heads measured by qPCR. dPaf1 and dLeo1 RNAi did not affect RNA levels of (G4C2)8 and (G4C2)29 but significantly reduced (G4C2)49 expression. dSpt4, dCDC73, dCtr9, dRtf1 RNAi altered expression of all (G4C2)n transgenes. Shown: individual data points with mean±SEM; mean value of 3 biological replicates (n=25 flies/replicate) from 2-3 independent experiments. (b) dPAF1C RNAi did not alter TDP43 (ElavGS, 16d, heads) RNA levels by qPCR. Shown: individual data points with mean±SEM; mean value of 3 biological replicates (n=25 flies/replicate) from 2 independent experiments. (c) Downregulation of dPAF1C components reduces GR-GFP signal in LDS-(G4C2)44GR-GFP animals. Quantification of total GFP fluorescence relative to control animals. N flies: control=8, dPaf1=7, dLeo1=4, dCDC73=6, dCtr9=6, dRtf1=6. Each data point represents one eye of one animal. Shown: data from one experiment; data reproduced in two independent experiments. Scale bars: 100μm. (d) Effects of deleting scCDC73 (cdc73Δ) or scLeo1 (leo1 Δ) in S. cerevisiae on RNA levels from transgenes assessed by qPCR. Transgenes included eYFP (control), sense-(G4C2)66 (disease) and antisense-(G2C4)66 (disease). Shown: individual data points with mean±SD; mean value of biological duplicates from 2 independent experiments. Statistics: ANOVAs with Tukey's correction, p-values: ****<0.0001, ***<0.001, **<0.05, no significance (n.s.) >0.05.

Figure 2-5

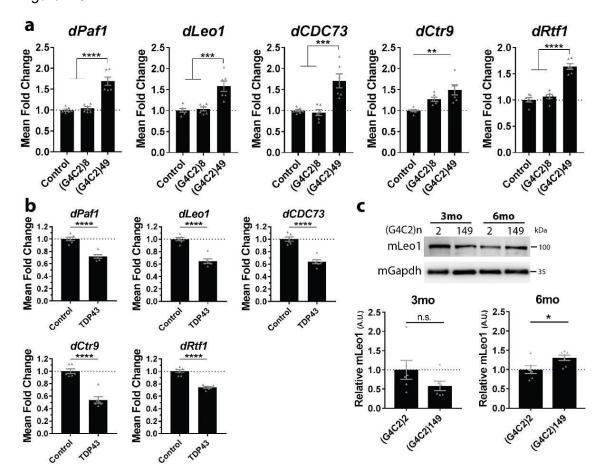


Figure 5: Endogenous PAF1C is upregulated in response to (G4C2)49 expression in the brain in flies and mice.

(a) Endogenous dPAF1C RNA expression is upregulated in (G4C2)49 expressing flies compared to control or (G4C2)8 expressing flies (gPCR). Transgenes expressed in the adult fly nervous system (ElavGS, 16d). Differences in expression are likely underestimated as RNA was extracted from whole head tissue, while transgenes were expressed selectively in neurons. (b) A non-G4C2 disease transgene, TDP43, was expressed with ElavGS (16d). Whole head analysis showed no upregulation of PAF1C components. (a-b) Shown: individual data points with mean±SEM; mean value of biological triplicates (n=25 flies/replicate) from 2 independent experiments. (c) Mouse endogenous mLeo1 protein levels measured in cortical tissue by western immunoblot using lysates from mice injected intracerebroventricularly with AAV2/9-(G4C2)2 or -(G4C2)149 at postnatal day 0. mLeo1 is upregulated by 6mo in response to expression of expanded (G4C2)149. Differences in expression are likely underestimated as protein was extracted from total cortical tissue while transgenes were expressed using AAV2/9 which predominantly transduces neurons. 3mo N animals: (G4C2)2=6, (G4C2)149=6. 6mo N animals: (G4C2)2=6, (G4C2)149=7. Shown: individual data points (each representing 1 animal) with mean±SEM. Data reproduced in two independent experiments. Statistics: (a) ANOVAs with Tukey's correction, (b-c) unpaired 2-tailed student t-test; p-values: ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance (n.s.) >0.05. See Supplementary Figure 11 for uncropped western images for this and subsequent figures.

Figure 2-6

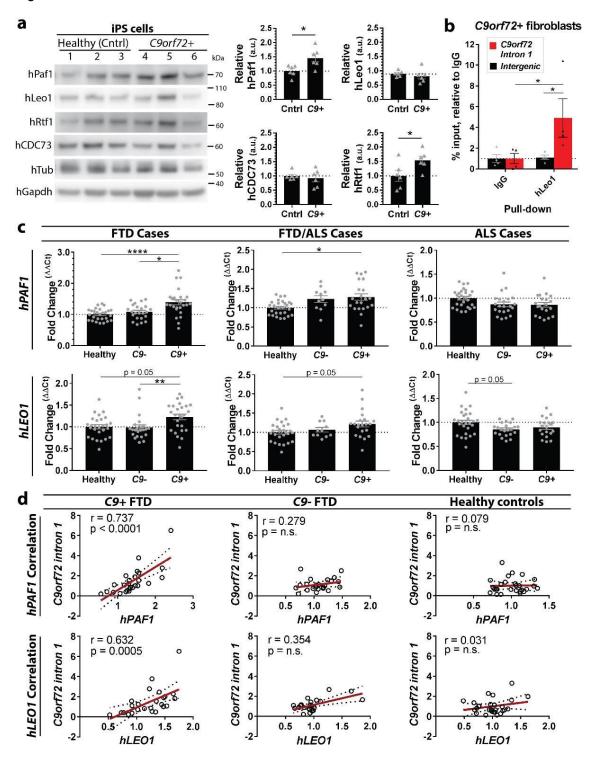


Figure 6: Upregulated *hPAF1* and *hLEO1* positively correlate with expression of repeat-containing *C9orf72* transcripts and hLeo1 binds *C9orf72*.

(a) Western immunoblots for hPAF1C components in iPS cells. hPAF1C band densities were normalized to the mean of loading controls: hTubulin, hGAPDH. Shown: individual data points with mean±SEM; mean value of 2 biological replicates from 2 independent experiments per cell line relative to the mean signal in controls. (b) Chromatin immunoprecipitation studies using a hLeo1 antibody on 4 independent C9+-derived fibroblast lines. Data: relative to IgG controls after normalizing by input. Shown: individual data points (each representing 1 cell line) with mean±SEM; mean value of technical quadruplicates from 1 experiment. Data reproduced in 2 independent experiments per line. (c) qPCR analysis of hPAF1 and hLEO1 expression from healthy control (n=27), C9- (n=56), and C9+ patients (n=67) frontal cortex tissue. Shown: individual data points (each representing 1 individual) with mean±SEM. (d) Spearman r coefficients defined correlations in expression from hPAF1 or hLEO1 expression with C9orf72 transcripts in individuals. r values: 0=no correlation, 1.0=100% correlated. Shown: individual data points (each representing 1 individual) with linear regression±SE. Statistics: (a) unpaired 2-tailed student t-test, (b) ANOVA with Sidak's correction, (c) Kruskal-Wallis ANOVA with Dunn's correction, (d) Spearman R correlation; p-values: ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance >0.05. C9orf72 intron 1: intronic region immediately 3' of the G4C2 repeat in the C9orf72 gene. See Supplementary Figure 10 for cell line and patient characteristics.

Bibliography

Adelman, K., Wei, W., Ardehali, M.B., Werner, J., Zhu, B., Reinberg, D., and Lis, J.T. (2006). Drosophila Paf1 Modulates Chromatin Structure at Actively Transcribed Genes. Mol. Cell. Biol. 26, 250–260.

Amrich, C.G., Davis, C.P., Rogal, W.P., Shirra, M.K., Heroux, A., Gardner, R.G., Arndt, K.M., and VanDemark, A.P. (2012). Cdc73 Subunit of Paf1 Complex Contains C-terminal Ras-like Domain That Promotes Association of Paf1 Complex with Chromatin. J. Biol. Chem. 287, 10863–10875.

Auluck, P.K., Chan, H.Y.E., Trojanowski, J.Q., Lee, V.M.-Y., and Bonini, N.M. (2002). Chaperone Suppression of α-Synuclein Toxicity in a Drosophila Model for Parkinson's Disease. Science *295*, 865–868.

Bahrampour, S., and Thor, S. (2016). Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System. G3 GenesGenomesGenetics *6*, 3229–3239.

Balendra, R., and Isaacs, A.M. (2018). C9orf72 -mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. *14*, 544.

Berson, A. et al. (2017). TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Curr. Biol. *27*, 3579-3590.e6.

van Blitterswijk, M., Mullen, B., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Brown, P.H., Murray, M.E., Hsiung, G.-Y.R., Stewart, H., Karydas, A.M., et al. (2014a). Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiol. Aging *35*, 2421.e13-2421.e17.

van Blitterswijk, M., Mullen, B., Nicholson, A.M., Bieniek, K.F., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Finch, N.A., Brown, P.H., Murray, M.E., et al. (2014b). TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol. (Berl.) 127, 397–406.

Burguete, A.S., Almeida, S., Gao, F.-B., Kalb, R., Akins, M.R., and Bonini, N.M. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. ELife *4*.

Cao, Q.-F., Yamamoto, J., Isobe, T., Tateno, S., Murase, Y., Chen, Y., Handa, H., and Yamaguchi, Y. (2015). Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Mol. Cell. Biol. *35*, 3459–3470.

Chai, N., and Gitler, A.D. Yeast screen for modifiers of C9orf72 poly(Glycine-Arginine) dipeptide repeat toxicity. FEMS Yeast Res.

Chaturvedi, D., Inaba, M., Scoggin, S., and Buszczak, M. (2016). Drosophila CG2469 Encodes a Homolog of Human CTR9 and Is Essential for Development. G3 GenesGenomesGenetics *6*, 3849–3857.

Chen, Y., Yamaguchi, Y., Tsugeno, Y., Yamamoto, J., Yamada, T., Nakamura, M., Hisatake, K., and Handa, H. (2009). DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev. 23, 2765–2777.

- Cheng, H.-M., Chern, Y., Chen, I.-H., Liu, C.-R., Li, S.-H., Chun, S.J., Rigo, F., Bennett, C.F., Deng, N., Feng, Y., et al. (2015). Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown. PLoS Genet. *11*.
- Chew, J., Cook, C., Gendron, T.F., Jansen-West, K., del Rosso, G., Daughrity, L.M., Castanedes-Casey, M., Kurti, A., Stankowski, J.N., Disney, M.D., et al. (2019). Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol. Neurodegener. *14*, 9.
- Chu, X., Qin, X., Xu, H., Li, L., Wang, Z., Li, F., Xie, X., Zhou, H., Shen, Y., and Long, J. (2013). Structural insights into Paf1 complex assembly and histone binding. Nucleic Acids Res. *41*, 10619–10629.
- Chung, C.-Y., Berson, A., Kennerdell, J.R., Sartoris, A., Unger, T., Porta, S., Kim, H.-J., Smith, E.R., Shilatifard, A., Van Deerlin, V., et al. (2018). Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nat. Commun. *9*.
- DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Gilmer, H.F., Adamson, J., et al. (2011). Expanded GGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron *72*, 245–256.
- Dermody, J.L., and Buratowski, S. (2010). Leo1 Subunit of the Yeast Paf1 Complex Binds RNA and Contributes to Complex Recruitment. J. Biol. Chem. 285, 33671–33679.
- Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in *Drosophila*. Nature *448*, 151.
- Eden, E., Lipson, D., Yogev, S., and Yakhini, Z. (2007). Discovering Motifs in Ranked Lists of DNA Sequences. PLoS Comput. Biol. 3.
- Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics *10*, 48.
- Elden, A.C., Kim, H.-J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature *466*, 1069–1075.
- Fischl, H., Howe, F.S., Furger, A., and Mellor, J. (2017). Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Mol. Cell *65*, 685-698.e8.
- Freudenreich, C.H. (2018). R-loops: targets for nuclease cleavage and repeat instability. Curr. Genet. 1–6.
- Gerlach, J.M., Furrer, M., Gallant, M., Birkel, D., Baluapuri, A., Wolf, E., and Gallant, P. (2017). PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. Proc. Natl. Acad. Sci. 114, E9224–E9232.
- Hall, A.C., Ostrowski, L.A., Pietrobon, V., and Mekhail, K. (2017). Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus *8*, 162–181.

- Hartzog, G.A., and Fu, J. (2013). The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta *1829*, 105.
- Herr, P., Lundin, C., Evers, B., Ebner, D., Bauerschmidt, C., Kingham, G., Palmai-Pallag, T., Mortusewicz, O., Frings, O., Sonnhammer, E., et al. (2015). A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair. Cell Discov. *1*, 15034.
- Jaehning, J.A. (2010). The Paf1 complex: Platform or player in RNA polymerase II transcription? Biochim. Biophys. Acta BBA Gene Regul. Mech. *1799*, 379–388.
- Jovičić, A., Mertens, J., Boeynaems, S., Bogaert, E., Chai, N., Yamada, S.B., Paul, J.W., Sun, S., Herdy, J.R., Bieri, G., et al. (2015). Modifiers of C9orf72 DPR toxicity implicate nucleocytoplasmic transport impairments in c9FTD/ALS. Nat. Neurosci. *18*, 1226–1229.
- Kim, H.-J., Raphael, A.R., LaDow, E.S., McGurk, L., Weber, R., Trojanowski, J.Q., Lee, V.M.-Y., Finkbeiner, S., Gitler, A.D., and Bonini, N.M. (2014). Therapeutic modulation of eIF2α-phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat. Genet. *46*, 152–160.
- Kim, J., Guermah, M., and Roeder, R.G. (2010). The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS. Cell *140*, 491–503.
- Kim, N., Sun, H.-Y., Youn, M.-Y., and Yoo, J.-Y. (2013). IL-1β–specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes. Nucleic Acids Res. *41*, 4495–4506.
- Kramer, N.J., Carlomagno, Y., Zhang, Y.-J., Almeida, S., Cook, C.N., Gendron, T.F., Prudencio, M., Blitterswijk, M.V., Belzil, V., Couthouis, J., et al. (2016). Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science *353*, 708–712.
- Kramer, N.J., Haney, M.S., Morgens, D.W., Jovičić, A., Couthouis, J., Li, A., Ousey, J., Ma, R., Bieri, G., Tsui, C.K., et al. (2018). CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat. Genet. 1.
- Lee, T.I., Johnstone, S.E., and Young, R.A. (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. *1*, 729–748.
- Liu, C.-R., Chang, C.-R., Chern, Y., Wang, T.-H., Hsieh, W.-C., Shen, W.-C., Chang, C.-Y., Chu, I.-C., Deng, N., Cohen, S.N., et al. (2012). Spt4 Is Selectively Required for Transcription of Extended Trinucleotide Repeats. Cell *148*, 690–701.
- Mayekar, M.K., Gardner, R.G., and Arndt, K.M. (2013). The Recruitment of the Saccharomyces cerevisiae Paf1 Complex to Active Genes Requires a Domain of Rtf1 That Directly Interacts with the Spt4-Spt5 Complex. Mol. Cell. Biol. 33, 3259–3273.
- Mayer, A., Lidschreiber, M., Siebert, M., Leike, K., Söding, J., and Cramer, P. (2010). Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. *17*, 1272.
- McGurk, L., and Bonini, N.M. (2012). Protein interacting with C kinase (PICK1) is a suppressor of spinocerebellar ataxia 3-associated neurodegeneration in Drosophila. Hum. Mol. Genet. 21, 76.

- Meehan, T.F., Conte, N., West, D.B., Jacobsen, J.O., Mason, J., Warren, J., Chen, C.-K., Tudose, I., Relac, M., Matthews, P., et al. (2017). Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49, 1231–1238.
- Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O.C., Pietrzyk, J., et al. (2014). C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science *345*, 1192–1194.
- Moniaux, N., Nemos, C., Deb, S., Zhu, B., Dornreiter, I., Hollingsworth, M.A., and Batra, S.K. (2009). The Human RNA Polymerase II-Associated Factor 1 (hPaf1): A New Regulator of Cell-Cycle Progression. PLoS ONE *4*.
- Mordes, D.A., Prudencio, M., Goodman, L.D., Klim, J.R., Moccia, R., Limone, F., Pietilainen, O., Chowdhary, K., Dickson, D.W., Rademakers, R., et al. (2018). Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol. Commun. 6.
- Nguyen, C.T., Langenbacher, A., Hsieh, M., and Chen, J.-N. (2010). The Paf1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish. Dev. Biol. 341, 167–175.
- Ni, J.-Q., Zhou, R., Czech, B., Liu, L.-P., Holderbaum, L., Yang-Zhou, D., Shim, H.-S., Tao, R., Handler, D., Karpowicz, P., et al. (2011). A genome-scale shRNA resource for transgenic RNAi in *Drosophila*. Nat. Methods *8*, 405.
- Niblock, M., Smith, B.N., Lee, Y.-B., Sardone, V., Topp, S., Troakes, C., Al-Sarraj, S., Leblond, C.S., Dion, P.A., Rouleau, G.A., et al. (2016). Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol. Commun. *4*.
- Omer, T., Finegan, E., Hutchinson, S., Doherty, M., Vajda, A., McLaughlin, R.L., Pender, N., Hardiman, O., and Bede, P. (2017). Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph. Lateral Scler. Front. Degener. *18*, 611–623.
- Perkins, L.A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.-S., et al. (2015). The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics *201*, 843–852.
- Porter, S.E., Washburn, T.M., Chang, M., and Jaehning, J.A. (2002). The Yeast Paf1-RNA Polymerase II Complex Is Required for Full Expression of a Subset of Cell Cycle-Regulated Genes. Eukaryot. Cell *1*, 830–842.
- Prudencio, M., Belzil, V.V., Batra, R., Ross, C.A., Gendron, T.F., Pregent, L.J., Murray, M.E., Overstreet, K.K., Piazza-Johnston, A.E., Desaro, P., et al. (2015). Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. *18*, 1175–1182.
- Prudencio, M., Gonzales, P.K., Cook, C.N., Gendron, T.F., Daughrity, L.M., Song, Y., Ebbert, M.T.W., van Blitterswijk, M., Zhang, Y.-J., Jansen-West, K., et al. (2017). Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum. Mol. Genet. *26*, 3421–3431.
- Qiu, H., Hu, C., Gaur, N.A., and Hinnebusch, A.G. (2012). Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. *31*, 3494–3505.

Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.

Rhodes, D., and Lipps, H.J. (2015). G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637.

Rondón, A.G., García-Rubio, M., González-Barrera, S., and Aguilera, A. (2003). Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22, 612–620.

Rondón, A.G., Gallardo, M., García-Rubio, M., and Aguilera, A. (2004). Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep. *5*, 47–53.

Sauer, M., and Paeschke, K. (2017). G-quadruplex unwinding helicases and their function in vivo. Biochem. Soc. Trans. *45*, 1173–1182.

Schönecker, S., Neuhofer, C., Otto, M., Ludolph, A., Kassubek, J., Landwehrmeyer, B., Anderl-Straub, S., Semler, E., Diehl-Schmid, J., Prix, C., et al. (2018). Atrophy in the Thalamus But Not Cerebellum Is Specific for C9orf72 FTD and ALS Patients – An Atlas-Based Volumetric MRI Study. Front. Aging Neurosci. *10*.

Simone, R., Fratta, P., Neidle, S., Parkinson, G.N., and Isaacs, A.M. (2015). G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett. *589*, 1653–1668.

Soutourina, J. (2017). Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. *102*, 15545–15550.

Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLOS ONE *6*, e21800.

Tan, P.P.C., French, L., and Pavlidis, P. (2013). Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain. Front. Neurosci. 7.

Van Oss, S.B., Cucinotta, C.E., and Arndt, K.M. (2017). Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation. Trends Biochem. Sci. *42*, 788–798.

Vatovec, S., Kovanda, A., and Rogelj, B. (2014). Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol. Aging 35, 2421.e1-2421.e12.

Vatsavayai, S.C., Nana, A.L., Yokoyama, J.S., and Seeley, W.W. (2019). C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol. (Berl.) *137*, 1–26.

Wang, P., Bowl, M.R., Bender, S., Peng, J., Farber, L., Chen, J., Ali, A., Zhang, Z., Alberts, A.S., Thakker, R.V., et al. (2008). Parafibromin, a Component of the Human PAF Complex, Regulates

Growth Factors and Is Required for Embryonic Development and Survival in Adult Mice. Mol. Cell. Biol. 28, 2930–2940.

Xie, Y., Zheng, M., Chu, X., Chen, Y., Xu, H., Wang, J., Zhou, H., and Long, J. (2018). Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Nat. Commun. *9*.

Xu, Y., Bernecky, C., Lee, C.-T., Maier, K.C., Schwalb, B., Tegunov, D., Plitzko, J.M., Urlaub, H., and Cramer, P. (2017). Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat. Commun. *8*, 15741.

Yang, Y., Li, W., Hoque, M., Hou, L., Shen, S., Tian, B., and Dynlacht, B.D. (2016). PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet. 12.

Yu, M., Yang, W., Ni, T., Tang, Z., Nakadai, T., Zhu, J., and Roeder, R.G. (2015a). RNA polymerase II—associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Science *350*, 1383–1386.

Yu, Z., Goodman, L.D., Shieh, S.-Y., Min, M., Teng, X., Zhu, Y., and Bonini, N.M. (2015b). A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Hum. Mol. Genet. *24*, 954–962.

Yuva-Aydemir, Y., Almeida, S., and Gao, F.-B. (2018). Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models. Trends Neurosci.

Zhou, Q., Li, T., and Price, D.H. (2012). RNA Polymerase II Elongation Control. Annu. Rev. Biochem. *81*, 119–143.

CHAPTER 3: *EIF4B* AND *EIF4H* MEDIATE GR PRODUCTION FROM EXPANDED G4C2 IN A *DROSOPHILA* MODEL FOR *C90RF72*-ASSOCIATED ALS/FTD.

Acta Neuropathologica Communications, accepted March 26, 2019

Lindsey D. Goodman¹, Mercedes Prudencio³, Ananth R. Srinivasan², Olivia M. Rifai², Virginia M-Y. Lee⁴, Leonard Petrucelli³, Nancy M. Bonini^{1,2,*}.

¹Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

²Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA

³Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA

⁴Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

^{*}corresponding author, email: nbonini@sas.upenn.edu

Author contributions

This work was performed by LDG under the mentorship of NMB. MP contributed post-mortem patient studies and analyses under the mentorship of LP. ARS performed western blots under the direction of LDG on fibroblast cell lysates collected by LDG. OR setup crosses and collected samples for DsRed fluorescence imaging under the direction of LDG. VYML provided a GR-antibody.

Competing interests

The authors declare that they have no conflicts of interest with the contents of this article.

Acknowledgments

We thank Shizuka B. Yamada and Aaron Gitler at Stanford University for post-screening investigations. Also, thank you to Edward B. Lee, Thomas A. Jongens, Zhaolan (Joe) Zhou and members of the Bonini laboratory for helpful comments. Further thanks to Peter Todd for discussions on unpublished translation factor data. Undergraduate and post-baccalaureate students Luis F. Martinez-Ramirez, Kimberley Newman, Benjamin Gallo, and Ken Yanagisawa provided minimal technical support under the direction of LDG. We thank the Transgenic RNAi Project (TRiP) at Harvard Medical School (NIH/NIGMS R01-GM084947) and the Vienna Drosophila Research Center for developing transgenic RNAi fly stocks used in this study. We thank the Center for Neurodegenerative Disease Research (CNDR) at the University of Pennsylvania for the antibody targeting GR. This work was supported by the Systems and Integrative Biology NIH/NIGMS training grant T32-GM07517 (to LDG), Amyotrophic Lateral Sclerosis Association (to MP and LP), NIH/NINDS R35-NS097273 (to LP), NIH/NINDS P01-NS084974 (to LP), NIH/NINDS P01-NS099114 (LP)], Mayo Clinic Foundation (to LP), Robert Packard Center for ALS Research at Johns Hopkins (to LP), Target ALS Foundation (to LP), NIH/NINDS R01-NS078283 (to NMB), and NIH/NINDS R35-NS09727 (to NMB).

Abstract

The discovery of an expanded (GGGGCC)n repeat (termed G4C2) within the first intron of *C9orf72* in familial ALS/FTD has led to a number of studies showing that the aberrant expression of G4C2 RNA can produce toxic dipeptides through repeat-associated non-AUG (RAN-) translation. To reveal canonical translation factors that impact this process, an unbiased loss-of-function screen was performed in a G4C2 fly model that maintained the upstream intronic sequence of the human gene and contained a GFP tag in the GR reading frame. 11 of 48 translation factors were identified that impact production of the GR-GFP protein. Further investigations into two of these, *eIF4B* and *eIF4H*, revealed that downregulation of these factors reduced toxicity caused by the expression of expanded G4C2 and reduced production of toxic GR dipeptides from G4C2 transcripts. In patient-derived cells and in post-mortem tissue from ALS/FTD patients, *EIF4H* was found to be downregulated in cases harboring the G4C2 mutation compared to patients lacking the mutation and healthy individuals. Overall, these data define eIF4B and eIF4H as disease modifiers whose activity is important for RAN-translation of the GR peptide from G4C2-transcripts.

Introduction

In Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Degeneration (FTD), the presence of a hexanucleotide expansion of >30 GGGGCC repeats (termed G4C2) within the *C9orf72* gene is the most prominent mutation in familial disease (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The mechanisms underlying potential toxicity associated with G4C2 are still being defined with two leading hypotheses centering around gain-of-function mechanisms (Yuva-Aydemir et al., 2018; Balendra and Isaacs, 2018): sequestration of RNA-binding proteins by the aberrant expression of sense- and antisense- G4C2 RNA (Vatovec et al., 2014; Haeusler et al., 2016); repeat-associated non-AUG (RAN-) translation of repeat-containing transcripts produce dipeptides that are toxic to neurons (Ash et al., 2013; Mori et al., 2013; Mann et al., 2013; Gendron et al., 2013; Mackenzie et al., 2013, 2015; Niblock et al., 2016). Five dipeptides can be produced from these transcripts, depending on the reading frame: GA and GR (sense strand associated), PA and PR (antisense strand associated), and GP (produced from both sense and antisense strands).

In recent years, it has become clear that dipeptides produced from G4C2 RNA transcripts cause neurodegenerative effects (Yuva-Aydemir et al., 2018; Balendra and Isaacs, 2018). Of the 5 potential RAN-translation products, GR and PR cause particularly strong degenerative phenotypes in multiple model systems, including *Drosophila* (Freibaum et al., 2015; Mizielinska et al., 2014). Therefore, increasing understanding of the mechanisms underlying expression of these dipeptides would highlight potential therapeutic avenues centered around preventing their expression.

Many mechanistic questions remain regarding RAN-translation in G4C2-associated disease. Recent investigations have drawn a number of parallels between mechanisms underlying general translation (Browning and Bailey-Serres, 2015;

Sonenberg and Hinnebusch, 2009; Spilka et al., 2013) and RAN-translation (Kearse and Wilusz, 2017; Zu et al., 2018), finding that dipeptide production is sensitive to the inhibition/downregulation of canonical translation factors: eIF4E, eIF4G, eIF4A, eIF2α (Green et al., 2017; Tabet et al., 2018; Cheng et al., 2018). Of interest, eIF4A is a DEAD-Box helicase (Andreou and Klostermeier, 2013), and thus may be important for the unwinding of G4C2-RNA for translation. While eIF4A has relative weak helicase activity, this can be significantly stimulated by accessory proteins eIF4B and eIF4H (Rogers et al., 2001; Rozovsky et al., 2008; Nielsen et al., 2011; Sun et al., 2012; Harms et al., 2014; García-García et al., 2015; Vaysse et al., 2015; Sen et al., 2016). These latter factors contain RRM-domains and, importantly, have been reported to interact directly with the G4C2 RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Satoh et al., 2014).

In an unbiased, directed screen for canonical translation factors, we identified 11 potential translation factors that modulate GR-production in G4C2-expressing flies. Further investigations into two of these, *eIF4B* and *eIF4H1* (fly orthologue to *eIF4H*), further defined them as modifiers of G4C2-toxicity. Their downregulation significantly reduced GR-levels in animals expressing the repeat. Further investigations into eIF4B and eIF4H in C9+ derived cells revealed that eIF4H was significantly downregulated. *EIF4H* downregulation also occurred in post-mortem tissue from C9+ ALS/FTD compared to C9- ALS/FTD and healthy individuals. This work identifies eIF4B and eIF4H as important disease modifiers that alter RAN-translation of the GR-reading frame.

Results

GFP-tagged GR dipeptides are produced in LDS-(G4C2)_n flies with expanded (>30) repeats.

We previously identified a number of translation factors as modifiers of G4C2-toxicity (Goodman et al., 2019a). To investigate these and other factors in the context of RAN-translation, a new *C9orf72* fly model for ALS/FTD was designed (Fig. 3-1A). This model contained the 114-base pair sequence immediately upstream of the repeat in intron 1 of *C9orf72* in ALS/FTD patient genomes (termed a "leader" sequence; LDS). The addition of this sequence puts the repeat in a more patient-relevant context while this region is likely to influence pathological mechanisms, including RAN-translation (Kearse et al., 2016; Sellier et al., 2017; Todd et al., 2013; Zu et al., 2018). G4C2 expansions can produce three sense-strand associated dipeptides: GA, GR, and GP. Importantly, of these GR is associated with extreme toxicity in multiple models, including flies (Mizielinska et al., 2014; Freibaum et al., 2015). To facilitate investigations into genes that may impact RAN-translation of GR, a GFP tag (lacking an ATG initiation codon) was added 3'-prime of the repeat in the GR-reading frame.

LDS-G4C2 transgenes were randomly inserted into the genome of w^{1118} animals. To define the number of repeats inserted into individual lines, primers that flanked the G4C2 repeat were used to PCR amplify the region (Goodman et al., 2019a). The number of repeats was then calculated from the length of the PCR products, resolved by agarose gel electrophoresis and Bioanalyzer. Two primary fly transgenic lines were defined: a control (CTRL) line containing short (G4C2)_{≤12} repeats and an expanded (EXP) line containing (G4C2)_{≤44} repeats (**Fig. 3-1B**). By quantitative-real time PCR (qPCR), these two lines expressed significantly different G4C2 RNA levels (**Fig. 3-1C**),

most likely the result of variability in insertion site within the fly genome (Levis et al., 1985).

Western immunoblots were used to determine whether a (GR)n dipeptide was produced from the LDS-G4C2 transgenes, despite the absence of an AUG in the GR-reading frame. LDS-G4C2 transgenes were expressed in the fly eye using GMR-GAL4 and protein lysates were prepared from heads. Using an antibody designed to target the GR-dipeptide (Liu et al., 2014), we found that a GR peptide was produced only from the expanded LDS-(G4C2)_{EXP} fly line (Fig. 3-1D). Re-probing with an anti-GFP antibody confirmed that the GR-dipeptides produced were tagged with GFP. GFP expressing control flies confirmed that the molecular weight of the GR/GFP band in LDS-(G4C2)_{EXP} animals was higher than GFP alone. As LDS-(G4C2)_{EXP} lines had 2.5-fold higher RNA expression than the LDS-(G4C2)_{CTRL}, longer exposure times were also evaluated and continued to show no GR/GFP signal in LDS-(G4C2)_{CTRL} expressing animals (Appendix 3: Fig. S3-1).

To define potential toxicity associated with LDS-(G4C2)_{EXP}, transgenes were expressed in the fly optic system using GMR-GAL4 (Fig. 3-1E). LDS-(G4C2)_{CTRL} animals showed external and internal eye morphologies similar to controls, supporting that the short repeat was not toxic (Freibaum et al., 2015; Goodman et al., 2019a; Kramer et al., 2016a; Mizielinska et al., 2014). In contrast, expression of LDS-(G4C2)_{EXP} caused mild pigment loss externally and dramatic loss of retinal tissue internally, indicative of neurodegeneration.

To further assess GR production, fluorescence imaging of the fly eyes revealed that the LDS-(G4C2)_{EXP} expressing animals produced GFP-positive puncta (Fig. 3-1F). In contrast, a control fluorescence protein (DSRED) did not show puncta formation but rather had a uniform diffuse signal, indicating that the unique punctate fluorescence

pattern seen with LDS-(G4C2)_{EXP} was the result of the GR. LDS-(G4C2)_{CTRL} animals were also imaged and showed no GFP signal, even with 5-10x longer exposure time (data not shown).

Overall, these data indicate that expression of LDS-(G4C2)_{EXP} in flies can induce toxicity and that GFP-tagged GR are produced by an expanded LDS-G4C2 transcript.

A loss of function screen for candidate RAN-translation factors.

Despite recent advances into mechanisms underlying G4C2-associated RAN-translation, a full understanding of which canonical translation factors are involved remains unclear (Green et al., 2017; Tabet et al., 2018; Cheng et al., 2018; Kearse and Wilusz, 2017; Zu et al., 2018). To define translation factors that may mediate GR-associated RAN-translation, we designed a loss-of-function (LOF) fly screen utilizing external eye imaging for toxicity, and GR-GFP fluorescence of the eyes for protein, in LDS-(G4C2)_{EXP} expressing animals (Fig. 3-2A). 48 RNAi (Ni et al., 2011; Perkins et al., 2015) or LOF mutant (Spradling et al., 1995, 1999; Bellen et al., 2004, 2011) fly lines were obtained that target specific translation factors, covering 86% of the 56 known translation factors in the fly (Marygold et al., 2017). 40 of 48 (83.3%) lines were RNAi and 8 of 48 (16.6%) were mutant lines.

28 of the 48 tested LOF lines altered toxicity and/or GR-GFP levels caused by LDS-(G4C2)_{EXP} expression in the fly eye, assessed by comparing images with controls (Fig. 3-2A, *step 1*). These 28 lines were further examined in a fly model that expresses (GR)₃₆ from a non-G4C2 transcript (Mizielinska et al., 2014), to determine if they acted downstream of toxic GR-production in the LDS-(G4C2)_{EXP} animals (Fig. 3-2A, *step 2*). 6 of the LOF lines targeting translation factors were found to similarly alter GR-induced toxicity in this model and were not further studied. The remaining 22 LOF lines were

further tested for unspecific effects using quality control experiments (Fig. 3-2A, step 3) (Chung et al., 2018; Goodman et al., 2019a; Kramer et al., 2016a; Mordes et al., 2018). Specifically, lines were examined to eliminate those that cause an effect when expressed on their own in the eye and tested to confirm no effect on the protein levels of a control (*LacZ*) transgene.

In summary, 20 of the lines did not alter toxicity or GR-GFP levels in LDS-(G4C2)_{EXP} expressing animals (Fig. 3-2B). 17 lines were excluded from further study because they either caused increased GR-GFP levels (1 line), altered LDS-(G4C2)_{EXP} toxicity but not GR-GFP signal (4 lines), could alter GR-toxicity independent of G4C2-RNA (6 lines), or failed quality control experiments (6 lines; termed "unspecific modifiers"). Thus, from the screen of 48 factors, 11 candidate RAN-translation factors were identified (Table 3-1, Appendix 3: Table S3-2).

Depletion of eIF4B or eIF4H1 mitigates toxicity in LDS-(G4C2)_{EXP} animals.

Of the 11 factors that reduced GR-GFP levels, eIF4B and eIF4H1 (fly orthologue to human eIF4H) were intriguing. These two factors have independent and redundant roles in activating eIF4A (Rogers et al., 2001; Rozovsky et al., 2008; Nielsen et al., 2011; Sun et al., 2012; Harms et al., 2014; García-García et al., 2015; Vaysse et al., 2015; Sen et al., 2016) which was recently identified as a RAN-translation factor in a G4C2-model (Green et al., 2017; Tabet et al., 2018). Further, eIF4B and eIF4H had previously been reported to bind G4C2 RNA through RNA recognition motifs (RRMs) (Cooper-Knock et al., 2014; Haeusler et al., 2014; Satoh et al., 2014).

To further investigate *eIF4B* and *eIF4H1* as modifiers of LDS-(G4C2)_{EXP} in flies, a second, independent set of RNAi lines targeting these genes was obtained (termed RNAi-2). All RNAi lines were confirmed to downregulate the expected targets, *eIF4B* or

eIF4H1 (Fig. 3-3A, Appendix 3: Fig. S3-3A). Further, eIF4B RNAi did not cause reduced expression of eIF4H1, and vice versa, indicating that expression of these two genes is independent and that the RNAi lines are specific. Interestingly, ubiquitous downregulation of eIF4B or eIF4H1 by RNAi produced viable adults with no obvious phenotype (Fig. 3-3B), supporting that these genes are not essential in the fly (also (Hernández et al., 2004)).

The effects of co-expressing *eIF4B*, *eIF4H1*, or control (*Luc*) RNAi with LDS-(G4C2)_{EXP} using GMR-GAL4 were analyzed in the eye. Externally, *eIF4B* or *eIF4H1* RNAi caused reduced toxicity compared to the control RNAi, seen by recovered red pigment and ommatidial organization (Fig. 3-4A). Internally, retinal tissue loss caused by LDS-(G4C2)_{EXP} was also mitigated by depletion of *eIF4B* or *eIF4H1*. Blinded quantification of the total surface area for retina tissue or of tissue depth (at the point of the optic chiasm) revealed that suppression was consistent and significant (Fig. 3-4B). Suppression was recapitulated with a second set of RNAi lines, supporting that the effects seen are the result of downregulating these target genes (Appendix 3: Fig. S3-4B-C).

To further assess if *eIF4B* and *eIF4H1* could be acting downstream of toxic GR-production, RNAi lines targeting *eIF4B*, *eIF4H1*, or control (*Luc*) were co-expressed with (GR)₃₆ in the fly eye using GMR-GAL4. The (GR)₃₆ transgene produces a GR dipeptide from a non-G4C2 repeat transcript (Mizielinska et al., 2014). In contrast to the effect in LDS-(G4C2)_{EXP} animals, *eIF4B* and *eIF4H1* RNAi increased GR-toxicity in both the external and internal eye (Fig. 3-4C-D). This argues that these genes do not act on the same pathway in GR animals as in LDS-(G4C2)_{EXP} animals. Depletion of either *eIF4B* or *eIF4H1* on their own did not alter normal eye morphology (Fig. 3-4E-F).

Depletion of eIF4B or eIF4H1 reduces GR-production in LDS-(G4C2)_{EXP} animals.

As eIF4B and eIF4H1 are canonical translation factors we hypothesized that they modified LDS-(G4C2)_{EXP} toxicity by mediating translation from the G4C2 transcript. To further test if depletion of these factors reduced GR production, eIF4B, eIF4H1, or control (Luc) RNAi were co-expressed with LDS-(G4C2)EXP in the fly eye and fluorescence imaging was performed (Fig. 3-5A). Blinded quantification of GR-GFP signal in LDS-(G4C2)_{EXP} flies revealed that *eIF4B* depletion caused a 48.3±13% decrease in total GR-GFP fluorescence (Fig. 3-5B, grey). Further, eIF4H1 depletion caused a 65.5±3.7% decrease in GR-GFP fluorescence levels. As puncta formation was associated with fluorescently tagged GR (see Fig 3-1.), additional analyses were performed to define changes in the number of bright GR-GFP puncta and the average size of these puncta (Fig. 3-5B, black). eIF4B RNAi reduced the number of puncta from 233 per eye to 44 per eye, an 81% reduction. Additionally, the average size of the puncta per eye was reduced by 63% (7.6µm² to 2.8µm²). eIFH1 RNAi caused a 91% reduction in the number of GR-GFP puncta per eye (233 to 20) and the size of the puncta was reduced from 7.6 µm² to 2.4 µm², a 68% reduction. Effects on GR-GFP levels and puncta were also seen using the second set of RNAi lines targeting eIF4B and elF4H1 (Appendix 3: Fig. S3-3D-E).

While we had already determined that *eIF4B* and *eIF4H1* RNAi did not alter toxicity downstream of GR production (see Fig. 3-4C-D), we considered whether their depletion could modify LDS-(G4C2)_{EXP} upstream of translation, on the transcriptional level. To assess this, we used qPCR to measure transcript levels of the LDS-(G4C2)_{EXP} transgene in animals co-expressing control RNAi (*Luc*), *eIF4B* or *eIF4H1* RNAi (Fig. 3-5B, *light grey*). Depletion of *eIF4B* or *eIF4H1* did not alter LDS-(G4C2)_{EXP} RNA levels, further supporting that they act on the translational level.

To test the specificity of *elF4B* and *elF4H1* to translation of a G4C2 transcript, we first confirmed specificity of the effect of *elF4B* and *elF4H1* RNAi, by assessing whether their depletion had an effect on eye fluorescence of a control DsRed transgene in the fly optic system (GMR-GAL4) (Fig. 3-5C). Blinded quantification supported that total fluorescence was unchanged, arguing that the effect in LDS-(G4C2)_{EXP} animals was specific to the GR-tagged fluorescent protein (Fig. 3-5D). We further used western immunoblots to analyze protein levels produced from a control (*LacZ*) transgene in animals co-expressing *elF4B*, *elF4H1*, or control (*Luc*) RNAi (Fig. 3-5E). Transgenes were expressed using GMR-GAL4 and protein was extracted from whole heads. Consistent with fluorescence data using DsRed, no significant difference in the amount of β-galactosidase protein translated from the *LacZ* transcript was seen. The second set of RNAi lines targeting *elF4B* and *elF4H1* also did not alter protein expression from a control (*LacZ*) gene (Appendix 3: Fig. S3-3F). These data are consistent with previous reports that these factors are not essential for general translation (Altmann et al., 1993; Capossela et al., 2012; Coppolecchia et al., 1993; Hernández et al., 2004).

Overall, these data support that *eIF4B* or *eIF4H1* modify LDS-(G4C2)_{EXP} toxicity by mediating toxic GR production. Importantly, translation from the G4C2 transcript is particularly sensitive to their depletion as expression from a control transcript was unaltered under similar conditions.

EIF4H is downregulated in ALS/FTD cases harboring a G4C2 expansion in C9orf72.

Data in the fly supported that *eIF4B* and *eIF4H1* were modifiers of LDS-(G4C2)_{EXP} that could alter the amount of GR produced from the repeat-containing transcript. To further investigate these translation factors in disease, we considered that the expression of the

human orthologues to these factors, *eIF4B* and *eIF4H*, could be dysregulated if they played a critical role in G4C2-associated expression.

elF4B and elF4H protein levels were assessed by western immunoblot in primary fibroblast cell lines (**Fig. 3-6.A**; lines described in **Appendix 3: Table S3-3**). The mean expression from four independent C9+-patient derived lines was compared to the mean expression from five independent lines derived from healthy individuals. Interestingly, elF4B total levels were unchanged while elF4H levels were reduced by 47.5%. As elF4B is inhibited by phosphorylation at Ser422 (Raught et al., 2004; Roux and Topisirovic, 2018), we further examined levels of phospho-elF4B to determine whether this factor was dysregulated by protein modification. No obvious changes were observed in phospho-elF4B levels visually or relative to total elF4B in C9+ versus healthy cells.

Data from patient-derived cells supported that eIF4H is dysregulated in C9+ situations. To further assess this finding in patients, total RNA was extracted from post-mortem, cerebellar tissue from 112 ALS/FTD individuals or 22 healthy individuals and the expression from *EIF4B* or *EIF4H* were defined by qPCR (Fig. 3-6B; individuals described in Appendix 3: Table S3-4). The ALS/FTD cohort were further broken down based on the presence or absence of the G4C2-repeat expansion in *C9orf72* into 46 C9-ALS/FTD and 66 C9+ ALS/FTD cases. Consistent with protein data from fibroblast lines, *eIF4B* expression was unaltered in disease. Importantly, *eIF4H* was significantly downregulated by 71.2% in C9+ ALS/FTD compared to healthy controls and 54.4% compared to C9- ALS/FTD cases.

These data indicate a significant decrease in *eIF4H* expression in response to the presence of expanded G4C2 in ALS/FTD.

Discussion

Mechanisms underlying repeat-associated non-AUG (RAN-) translation remain unclear despite evidence that this form of translation occurs in disease (Kearse and Wilusz, 2017; Zu et al., 2018). To help define potential RAN-translation factors, we developed a gain-of-function fly model for C9orf72-associated ALS/FTD that expressed an expanded GGGGCC hexanucleotide repeat (termed G4C2) downstream of the sequence normally found upstream of the repeat in patients (114bp of intronic DNA found 5'-prime of the repeat in intron 1 of C9orf72 in ALS/FTD); the transgene expressed also contained a GFP tag downstream of the repeat in the GR reading frame (see Fig. 3-1). Using this model, we screened 48 of 56 canonical translation factors in flies (Marygold et al., 2017) to define those that could impact expression of the GR dipeptide (see Fig. 3-2 and Appendix 3: Table S3-2). 11 candidate RAN-translation factors were defined (see Table 3-1). When depleted, these factors reduced GR-GFP levels, reduced G4C2induced toxicity, and did not reduce toxicity associated with a non-G4C2 transcript generated toxic GR protein. Further investigations into two of these, eIF4B and eIF4H1 (fly orthologue to eIF4H), revealed that their depletion reduced G4C2-induced toxicity and GR-GFP levels, but did not alter G4C2 RNA levels (see Fig. 3-5 and Appendix 3: Fig. S3-3). Investigations into EIF4B and EIF4H expression in patient-derived cells and in post-mortem tissue revealed that EIF4H is significantly downregulated in ALS/FTD patients harboring the G4C2 expansion (C9+ ALS/FTD) (see Fig. 3-6). This effect was not seen in ALS/FTD patients lacking the G4C2 mutation (C9- ALS/FTD), arguing that it is a response to the presence of the repeat. These data highlight eIF4B and eIF4H as novel factors mediating disease-associated pathways.

To our knowledge, this is the first *in vivo* investigation into canonical translation factors that impact dipeptide production in a *C9orf72*-associated disease model. The

simplest hypothesis is that these factors impact the process of RAN translation from the G4C2 repeat-containing transcript. Interestingly, our data suggest that production of the GR dipeptide requires specific factors as only 11 of 48 canonical translation factors screened altered GR-GFP levels in G4C2-expressing animals. Further, investigations into mammalian systems using DPR-specific antibodies will determine if eIF4B or eIF4H depletion disrupts expression of multiple DPR and confirm effects on GR production. Although these factors could function to alter GR-production through alternative means versus RAN-translation (i.e. stability of the protein, altered expression of more direct RAN-translation factors), it is compelling that the factors identified converge at key regulatory steps of translation and that the majority of these factors function together or with previously suggested RAN-translation factors (see Fig. 3-7). We ruled out factors that similarly altered toxicity caused by the GR dipeptide, supporting that they act on pathways not associated with toxicity of the GR protein. We also ruled out mechanisms underlying G4C2 transcription and RNA stability for eIF4B and eIF4H, as G4C2 transcript levels are unaltered by their depletion (see Fig. 3-5B). Although our investigations here focused on eIF4B and eIF4H, we note that we defined a number of other intriguing factors that act on either on G4C2- and/or GR-associated toxicity (see Table 3-1).

The fly model developed herein expresses the LDS-G4C2 transcript as an mRNA, containing a 5'-prime m⁷G cap and polyadenylated (poly(A)-) tail. In disease, the G4C2-RNA could exist in multiple forms (Yuva-Aydemir et al., 2018), including: improperly spliced *C9orf72*-mRNA transcripts retaining the repeat (Niblock et al., 2016), properly spliced intronic sequence kept stable by the repeat (Vatovec et al., 2014; Haeusler et al., 2016), altered transcription initiation products (Sareen et al., 2013), or aborted *C9orf72*-transcript products (Haeusler et al., 2014). Interestingly, fly models that

express expanded G4C2 within properly spliced introns do not show dipeptide expression nor toxicity, despite the formation of RNA foci (Tran et al., 2015). Further, improperly spliced *C9orf72*-transcripts can be shuttled from the nucleus to the cytoplasm where they undergo RAN-translation (Hautbergue et al., 2017). Overall, these data support that G4C2 repeats retained in capped and polyadenylated *C9orf72*-mRNA are able to produce toxic dipeptides and are relevant to patients. Whether or not G4C2-associated RAN translation is dependent on the presence of this 5'-prime cap (and poly(A)-tail) is still debated (Cheng et al., 2018; Green et al., 2017; Tabet et al., 2018) (Cheng et al., 2018; Green et al., 2017; Tabet et al., 2018).

Our investigations draw parallels between the canonical functions of translation factors (Marygold et al., 2017) and RAN-translation (see Model, Figure 1-3). However, there are multiple types of translation that may be pertinent to disease, including capindependent mechanisms, such as IRES translation (Green et al., 2016; Kearse and Wilusz, 2017; Shatsky et al., 2018; Sonenberg and Hinnebusch, 2009). Of the 11 candidate RAN-translation factors we identified, 4 have been reported to function in capindependent translation: eIF4B (Khan and Goss, 2012; Sharma et al., 2015), eIF4H (Vaysse et al., 2015), eIF5B (Galmozzi et al., 2012), eIF2β (Liberman et al., 2015). Interestingly, eIF4B or eIF4H significantly strengthen eIF4A-mediated unwinding of longer, more complex 5' UTRs in transcripts (Rozovsky et al., 2008; Sun et al., 2012; Vaysse et al., 2015; Sen et al., 2016). This activity is thought to mediate scanning of the 5' UTR for translation start sites (Spirin, 2009) and recruitment of ribosomal subunits (Sharma et al., 2015; Walker et al., 2013). Overall, these data suggest a model for G4C2-associated RAN-translation where eIF4B/eIF4H and eIF4A mediate dipeptide production during this scanning process (Green et al., 2016; Tabet et al., 2018). Further,

frame-shifting during scanning could result in the production of all three sense-strand associated dipeptides (GA, GR, GP) from a near-cognate alternative start codon, CUG, found upstream of the repeat in the GA-reading frame (Tabet et al., 2018).

In addition to their involvement in non-canonical translation and in stimulating eIF4A (previously reported as a RAN-translation factor (Green et al., 2017; Tabet et al., 2018), we chose to focus on eIF4B and eIF4H as they are RNA-binding proteins (RBPs) containing homologous RNA recognition motifs (RRMs) (Richter-Cook et al., 1998). Screens for RBPs that interact with G4C2-RNA identified both eIF4B and eIF4H, supporting our data that they function in translation from G4C2 transcripts (Cooper-Knock et al., 2014; Haeusler et al., 2014; Satoh et al., 2014). Both elF4B and elF4H can independently stimulate the helicase activity of eIF4A during translation (Rogers et al., 2001; Rozovsky et al., 2008; Nielsen et al., 2011; Sun et al., 2012; Harms et al., 2014; García-García et al., 2015; Vaysse et al., 2015; Sen et al., 2016) while key differences between them are noted. Structural data supports that eIF4H is constitutively active while eIF4B contains a regulatory carboxyl domain containing multiple phosphorylation sites (Méthot et al., 1996; Raught et al., 2004). This may explain why EIF4H is downregulated in C9+ ALS/FTD but not EIF4B (see Fig. 3-6), as eIF4B can be regulated by de/phosphorylation. However, no significant changes were observed for phosphoeIF4B at Ser422, an inhibitory modification (Sonenberg and Hinnebusch, 2009; Roux and Topisirovic, 2018), in four C9+ derived cell lines versus five control cell lines. Extended analyses are needed to increase the sample size and to test for eIF4B phosphorylation at other marks (Bettegazzi et al., 2017; van Gorp et al., 2009). Overall, we hypothesize that EIF4H is downregulated as the result of compensatory mechanisms: cells may actively downregulate EIF4H to reduce expression of toxic GR dipeptide. Alternatively, as eIF4H had previously been reported to bind G4C2-RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Satoh et al., 2014), the reduced *EIF4H* RNA levels could be the result of a more complex feedback loop: as eIF4H protein is sequestered by G4C2 RNA foci, cells may respond by downregulating *EIF4H* transcription under the assumption that there is plenty of this translation factor present. Localization studies in patient tissue are needed to determine if eIF4H is indeed sequestered into G4C2-foci. In either scenario, data supports that eIF4H plays an important role in C9+ disease while further investigations would help define its role in disease progression.

Studies in multiple model systems support that eIF4B and eIF4H loss does not inhibit global translation, including yeast (Altmann et al., 1993; Coppolecchia et al., 1993), flies (Hernández et al., 2004), and mice (Capossela et al., 2012). Interestingly, yeast and flies (see Fig. 3-3B) with downregulated eIF4B or eIF4H are viable (Altmann et al., 1993; Coppolecchia et al., 1993; Hernández et al., 2004) and EIF4H+/- mice do not have notable deficits (Capossela et al., 2012); although eIF4B and eIF4H have been suggested to be important for brain development (Bettegazzi et al., 2017; Capossela et al., 2012; Eom et al., 2014; Rode et al., 2018). The downstream consequences of EIF4H downregulation in C9+ ALS/FTD may be broader than simply altering RAN-translation: depletion of eIF4B and eIF4H in cultured cells has been shown to induce stress granule formation (Mokas et al., 2009). Interestingly, as EIF4H expression is reduced in C9+ ALS/FTD and C9+ derived cells, this raises a potential connection between that downregulation and mechanisms underlying TDP-43 pathology/toxicity (Coyne et al., 2017; Fernandes et al., 2018). Further, our data in GR-expressing flies argues that the depletion of these factors downstream of GR-production can feed into pathways disrupted by this toxic dipeptide (see Fig. 3-4C-D) (Kanekura et al., 2016; Suzuki et al., 2018; Tao et al., 2015; Zhang et al., 2018).

In conclusion, in an unbiased, targeted screen we identified *eIF4B* and *eIF4H* as canonical translation factors that, when depleted in flies, disrupted toxicity caused by the expression of expanded G4C2 RNA. Interestingly, *EIF4H* was downregulated in C9+ ALS/FTD patients, indicating a distinct role in *C9orf72*-associated disease. These factors may represent unique G4C2 modifiers that couple RAN-translation to dysregulation of RNA metabolism in disease (Coyne et al., 2017; Ito et al., 2017; Zhao et al., 2018).

Methods and materials

Patient samples and clinical, genetic and pathological assessments

Participant information is summarized in Appendix 3: Table S3-4. Protocols were approved by the Mayo Clinic Institutional Review Board and Ethics Committee. All participants (or authorized family members) were provided written informed consent before information gathering, autopsies and postmortem analyses. Trained neurologists diagnosed patients with ALS and/or FTD after reviewing neurological and pathological information. The presence or absence of an expanded G4C2 within intron 1 of *C9orf72* was done using a previously established protocol for repeat-primed polymerase chain reaction (DeJesus-Hernandez et al., 2011).

Drosophila work

Stocks were maintained on standard cornmeal-molasses medium. Fly lines used are detailed in Appendix 3: Tables S3-2 and S3-5. Fly lines obtained from Bloomington *Drosophila* Stock Center (BDSC) and Vienna *Drosophila* Resource Center (VDRC) are noted.

Characterization of LDS-(G4C2)n fly models

Transgenes were inserted into pUAST vectors and randomly inserted into w^{1118} fly genomes. The LDS-G4C2 model has a 5' leader sequence (LDS) inserted immediately

upstream of the G4C2 repeats, 114bp of sequence upstream of the repeat in intron 1 of C9orf72 in patients, and a 3' GFP tag in the GR reading frame. Repeat-length determination: Genomic DNA was extracted from individual fly lines and the transgenes present were amplified by PCR using primers designed to flank the repeat (Appendix 3: Table S3-6). Amplification was done using a KAPA HiFi HotStart kit (Kappa #KK2501) and PCR product sizes were quantified using agarose gels and a Bioanalyzer, previously described (Goodman et al., 2019a). Control w^{1118} animals were included in experiments and showed no signal. RNA expression: Transgenes were expressed as previously described using HS-Gal4 (Goodman et al., 2019a) and RNA levels were assessed by qPCR, using primers designed to amplify the GFP tag (Appendix 3: Table S3-6). Control w^{1118} animals were included in experiments and showed no signal.

LOF external fly eye screen

Publicly available RNAi (Ni et al., 2011; Perkins et al., 2015) or mutant (Bellen et al., 2004, 2011; Spradling et al., 1995, 1999) loss-of-function (LOF) fly lines targeting canonical translation factors were obtained from the Bloomington *Drosophila* Stock Center (BDSC). Additional UAS-RNAi lines targeting *eIF4B* and *eIF4H1* were obtained from Vienna *Drosophila* Resource Center (VDRC) (Dietzl et al., 2007).

External eye imaging: LOF males were crossed to recombinant females: UAS-LDS- $(G4C2)_{EXP}$, GMR-GAL4 (III) (26°C). Multiple w and w^+ controls were setup with every experiment to assess any natural variability, including a UAS-Luc RNAi (BDSC # 31603) and w^{1118} ; UAS-DSRED. External eyes for 1-2d progeny were imaged on a Leica APO16 microscope as described (Goodman et al., 2019a). Any changes to the ommatidia organization, eye size, pigmentation, and ability to eclose from pupae were noted. Resulting phenotype was categorized into one of six groups: suppressors, mild

suppressors, no effect, mild enhancers, enhancers, and lethal enhancers (Appendix 3: Fig. S3-2).

External eye fluorescence imaging: LOF males were crossed to recombinant females: UAS-LDS-(G4C2)_{EXP}, GMR-GAL4 (III) (26°C) and 1-2d progeny were imaged on a Leica DM6000B and quantified as previously described (Goodman et al., 2019a). w or w controls were used for accurate comparisons depending on the background of the LOF lines and the final genotypes of animals. Any changes to the GR-GFP levels using LUT Z-stacked images were noted. Resulting phenotype was categorized into one of six groups: suppressors, mild suppressors, no effect, mild enhancers, enhancers, and lethal enhancers (Appendix 3: Fig. S3-2). Researchers were blinded to the LOF targets during screening. Modifiers of LDS-(G4C2)_{EXP} toxicity and/or GR-GFP levels were further assessed in GMR-GAL4 > UAS-(GR)36 animals. Modifier crosses were repeated 3+ independent times to confirm reproducibility of results.

Quality control experiments defining unspecific LOF lines were performed as previously described (Goodman et al., 2019a).

Fly RNAi efficacy

All control and RNAi lines are defined in Appendix 3: Table S3-5. RNAi efficacy was determined using Da-GAL4 (adults or larvae) as previously described (Goodman et al., 2019a; McGurk and Bonini, 2012).

Fibroblast cells

Cultured using standard protocols in DMEM complete media: 15% FBS (Sigma), 1x MEM Amino Acids (ThermoSci # 11130051), 1% pen/strep, DMEM (high glucose, plus sodium pyruvate). Cells were maintained in a 5% CO₂ incubator at 37°C.

Western immunoblots (WB)

Fly tissue: Triplicate samples of 5-10 heads per genotype were homogenized using disposable pellet/pestles tissue grinders (Kimble Chase #749520-0000) and motor (Kimble Chase #749540-0000). For βgal: heads were directly homogenized into 1X NuPAGE LDS sample buffer. For GR/GFP: heads were homogenized into RIPA buffer (50mM Tris-HCL (pH 7.5), 150mM NaCl, 1% NP-40, 50mM NaF, 0.5% DOC), plus protease inhibitors (Sigma # 05892970001), 1mM PMSF, and 1mM DTT.

Fibroblast cells: cells were lysed in RIPA buffer plus protease, 1mM PMSF, and 1mM DTT, and phosphatase inhibitors (Sigma # 04906845001) for 30min at 4°C. All RIPA lysates: quantified by Bradford; 20μg of protein was run per lane. All WBs: run using a standard protocol with Invitrogen's XCell SureLock blot system, 4-12% Bis-Tris NuPAGE gels and a wet transfer with PVDF membrane, except βgal which was transferred with an iBlot dry transfer system (program 2, 8min) and nitrocellulose membrane. Antibodies: anti-βgalactosidase (Promega #Z3781, 1:2,000), anti-αTubulin (DSHB #AA4.3, 1:2,000), anti-GFPJL8 (Takara #632380, 1:10,000), anti-GR (gift from V. M-Y. Lee #2316, 1:1,000). H. sapiens antibodies: anti-eIF4B (Cell Signaling #3592, 1:1,000), anti-eIF4H (Cell Signaling #3469,1:1,000), anti-phospho-eIF4B (Cell Signaling #3591,1:1,000), anti-GAPDH (Sigma #G8795, 1:5,000). Secondary antibodies: Mouse-HRP (Jackson Immunoresearch Labs #115-035-146, 1:5000), Rabbit-HRP (Jackson Immunoresearch Labs #111-035-144, 1:5000) (Berson et al., 2017). Blots were analyzed using Amersham ECL Prime Detection Reagent and imaged on an Amersham Imager 600.

Quantitative real-time PCR (qPCR)

All primers are defined in Appendix 3: Table S3-6. For both fly and human qPCRs, protocols are previously described with the following changes (Goodman et al., 2019a). Flies: For Da-GAL4 assays, triplicate samples of 5 whole animals were processed per

condition. For GMR-GAL4 assays, triplicate samples of 20 fly heads (1-2d) were processed per condition. Humans: Total RNA was extracted from frozen postmortem tissue from the cerebellum using the RNAeasy Plus Mini Kit (QIAGEN), previously described (Prudencio et al., 2015). RNA integrity (RIN) was verified on an Agilent 2100 bioanalyzer. RIN values ranged from 6.7 to 10, with most of the samples falling between 9.1 and 9.8.

Statistical analysis and data availability

GraphPad Prism 8.00 software was used to develop all graphs and for all statistical analyses. P-values < 0.05 were considered significant. All relevant data is included within the manuscript and Appendix 3. Additional inquiries can be directed to the corresponding author, including reagent requests. No statistical methods were used to predetermine sample sizes and data distributions were assumed to be normal, similar to previous work (Berson et al., 2017; Elden et al., 2010; Goodman et al., 2019a; Kim et al., 2014; Kramer et al., 2016b; McGurk and Bonini, 2012; Mizielinska et al., 2014; Prudencio et al., 2015, 2017). Fly and fibroblast data: A two-tailed unpaired student t-test or one-way ANOVA with Tukey's multiple comparisons test was performed when appropriate. Researchers were blinded to the genotype of all samples to maintain unbiased scoring. Human qPCRs: Nonparametric, one-way ANOVAs with Dunn's multiple comparisons test were performed as data distribution was not normal.

Chapter 3: Tables

Table 3-1: Candidate RAN translation factors.

Fly Gene	Human orthologue	type of LOF line	LDS-(G4C2) _{EXP}		(GR) ₃₆	Alone	Control
			Toxicity	GR-GFP levels	Toxicity	Phenotype	(<i>LacZ</i>) expression
eIF4B	EIF4B	RNAi					
eIF4H1	EIF4H	RNAi					
eIF5B	EIF5B	RNAi					
eIF5	EIF5	RNAi					
eIF4E3	EIF4E	RNAi					
eIF4E4	EIF4E	RNAi					
eIF4E7	EIF4E	mutant					
eIF2β	EIF2S2	RNAi					
eIF3d1	EIF3D	mutant					
eIF4E5	EIF4E	RNAi		1			
eIF3i	EIF3I	RNAi					

Color scheme

Chapter 3: Figures and legends

Figure 3-1

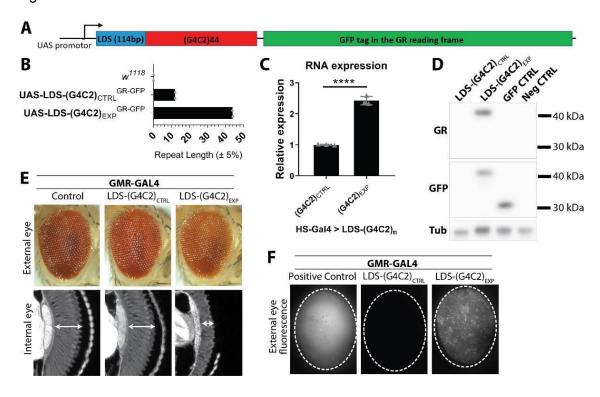


Figure 3-1: Expanded G4C2 transgenes produce GFP-tagged GR.

A. A new transgenic (G4C2)n model was developed to look at RAN-translation of the GR reading frame. A "leader" sequence (LDS) was added 5' of the repeat: 114bp of intronic sequence found upstream of the repeat in patient samples. The GR reading frame has an in-frame GFP coding sequence 3' of the repeat that lacks an ATG initiation. B. To define the number of repeats inserted into genomes of w^{1118} transgenic flies, PCR reactions were developed that amplified the repeat and its flanking region. The number of repeats were calculated from PCR product lengths measured on a Bioanalyzer and agarose gel. Shown: the maximum number of repeats found in the control (CTRL) or expanded (EXP) G4C2 fly lines; individual data points from 2 independent DNA preps with mean. C. qPCR analysis for RNA levels between control and expanded G4C2 fly lines. Shown: individual data points with mean±SD. Statistics: unpaired student t-test, pvalue ****<0.0001. **D.** Western immunoblots confirmed GR is produced and successfully tagged with GFP in EXP-G4C2 flies. No GR/GFP was detected in control G4C2 flies, even with overexposure (Appendix 3: Fig. S3-1). Uncropped westerns (Appendix 3: Fig. S3-4) E. External and internal eye analysis in animals expressing G4C2 or control (DSRED) transgenes using GMR-GAL4. Degeneration was seen only in LDS-(G4C2)_{EXP} animals: external pigment loss and reduced integrity of internal retina tissue. F. External eye imaging for fluorescence caused by transgene expression. Positive (DSRED) control flies show uniform diffuse signal. Control G4C2 flies show no signal, even with increased exposure (data not shown). Expanded G4C2 flies show GFP puncta. Shown (E-F): representative images while all conditions were tested 2+ times. For full genotypes see Appendix 3: Table S3-1.

Figure 3-2

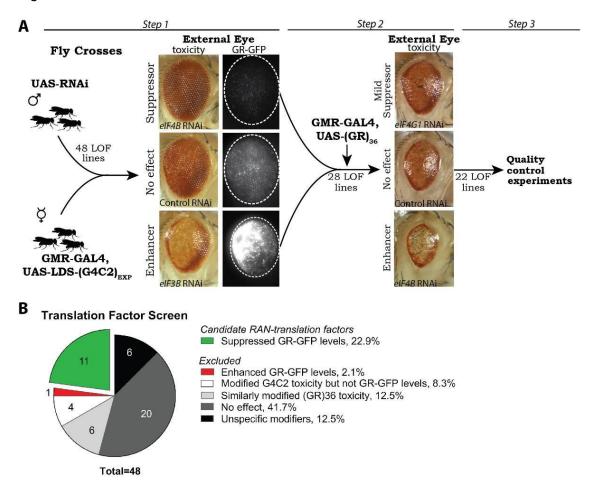


Figure 3-2: A screen of translation factors reveals those important for expression of GR from (G4C2)_{EXP}.

A. To identify canonical translation factors that may be involved in RAN translation of G4C2 in the GR reading frame, a loss-of-function (LOF) based screen was designed utilizing previously developed RNAi (Ni et al., 2011; Perkins et al., 2015) or LOF mutant fly lines (Spradling et al., 1995, 1999; Bellen et al., 2004, 2011) targeting 48 of 56 (86%) known translation factors (Marygold et al., 2017). Individual translation factors were downregulated in animals expressing LDS-(G4C2)_{EXP} and any that altered the external eye phenotype and/or GR-GFP levels were defined (Step 1). These 28 LOF lines were further tested in (GR)36 expressing animals, defining 6 that acted similarly on GRassociated toxicity (Step 2). Additional quality control experiments excluded LOF lines that altered expression from a control (LacZ) transgene by western immunoblot and/or altered a WT eye morphology when expressed alone, as described (Step 3) (Chung et al., 2018; Goodman et al., 2019a; Kramer et al., 2016a). B. Summary of screen results. Overall, 11 translation factors were identified as candidate RAN translation factors as their depletion reduced GR-GFP levels. Overall, excluded LOF lines either: altered toxicity of G4C2 flies but did not alter GR-GFP levels, similarly altered toxicity in a non-G4C2, GR fly model arguing that these acted downstream of GR production, had no effect on G4C2 toxicity or GR-GFP levels, or were "unspecific" modifiers identified by quality control experiments. Shown: representative images while all RNAi were tested 2+ times for effects under each condition. Details on LOF lines used and complete results with each line can be found in Appendix 3: Table S3-2. For full genotypes and RNAi lines see Appendix 3: Table S3-1.

Figure 3-3

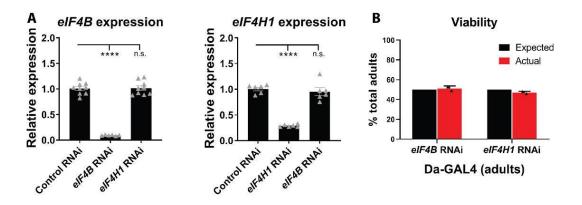


Figure 3-3: Analysis of eIF4B and eIF4H1 RNAi in control flies.

A. RNA levels produced from *elF4B* or *elF4H1* were assessed by qPCR in flies ubiquitously expressing RNAi (by Daughterless-GAL4). Statistics: one-way ANOVAs with Tukey's multiple comparison correction, p-values ****<0.0001, **<0.001, **<0.001, **<0.001, **<0.05, no significance >0.05. Shown: individual data points from 2 independent experiments with mean±SEM. **B.** Viability studies in *Drosophila* reveal that RNAidepletion of elF4B or elF4H1 do not significantly alter the number of adult flies expected to eclose. Shown: ratio of progeny from two individual crosses with RNAi compared to sibling animals with the balancer chromosome that reach adulthood (1-2d adult animals). Comparing the # progeny that eclose from a single vial compensates for differences in mating variability, fertilized eggs laid, among other variables. However, we note that the presence of the balancer chromosome could potentially cause mild sub-viability to adulthood. Crosses: *RNAi/CyO* x *Da-GAL4 (III)*; counted progeny: *RNAi/+; Da-GAL4/+* and *CyO/+; Da-GAL4/+*. RNAi lines: control (JF01355), *elF4B* RNAi (HMS04503), *elF4H1* RNAi (HMS04504). For full genotypes see **Appendix 3: Table S3-1**.

Figure 3-4

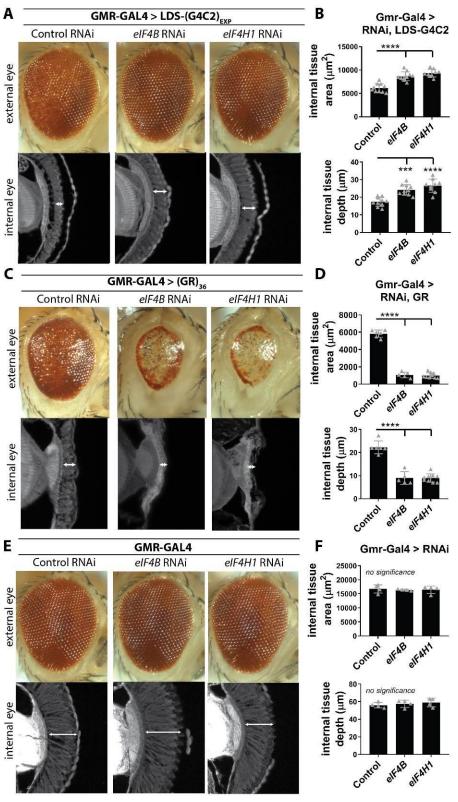


Figure 3-4: Depletion of *eIF4B* and *eIF4H1* selectively suppresses LDS-(G4C2)_{EXP} associated toxicity.

A. Using GMR-GAL4, RNAi-mediated depletion of eIF4B or eIF4H1 in LDS-(G4C2)_{EXP} expressing flies results in reduced toxicity in both the external and internal eye: seen externally by recovered pigment and ommatidial structure, seen internally by recovered retinal tissue integrity. B. Blinded quantification of internal retina tissue was done by measuring the total surface area of tissue present and by measuring the depth of the tissue at the position where the optic chiasm occurs. n=9-10 animals per genotype. C. eIF4B or eIF4H1 RNAi was expressed in (GR)36 flies (GMR-GAL4) and effects on GRassociated toxicity were observed in the external and internal eye. D. Blinded quantification of internal retina tissue. n=5-9 animals per genotype. E. eIF4B or eIF4H1 RNAi was expressed in control flies (GMR-GAL4) and effects on the normal eye were observed externally and internally. F. Blinded quantification of internal retina tissue. n=4 animals per genotype. For graphs, shown are individual data points representing 1 animal with mean±SD. Statistics: one-way ANOVAs with Tukey's multiple comparison correction, p-values ****<0.0001, ***<0.001, *<0.05, no significance >0.05. RNAi lines: control (JF01355), eIF4B (HMS04503), eIF4H1 (HMS04504). For full genotypes see Appendix 3: Table S3-1.

Figure 3-5

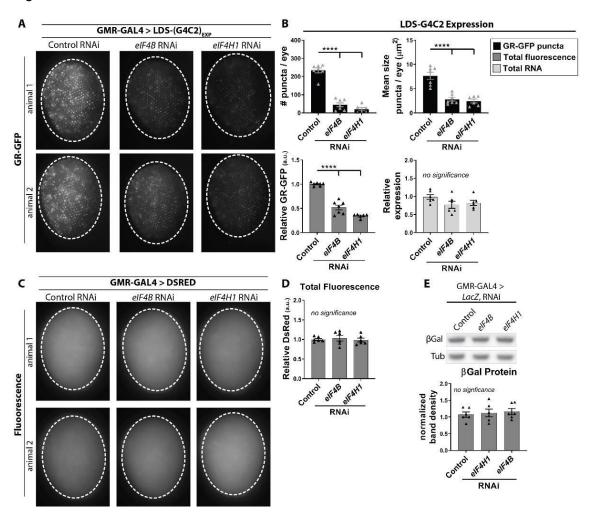


Figure 3-5: *eIF4B* and *eIF4H1* RNAi selectively reduce GR-GFP levels produced from LDS-(G4C2)_{EXP}.

A. Fluorescence imaging in LDS-(G4C2)_{EXP} expressing flies shows that depletion of eIF4B or eIF4H by RNAi results in reduced GR-GFP levels (GMR-GAL4). B. Blinded quantification of GR-GFP signal in LDS-(G4C2)_{EXP} animals relative to the signal in control RNAi animals. Analysis of GR-GFP puncta number and size are shown in black. Total GR-GFP signal is shown in *grey*. n=6-7 animals per genotype. Further, qPCR was used to quantify RNA levels in LDS-(G4C2)_{EXP} flies co-expressing control, eIF4B, or elF4H1 RNAi, shown in light grey. C. A control fluorescent protein, DsRed, was similarly expressed in the fly eye with RNAi to control, eIF4B, or eIF4H. D. Blinded quantification of DsRed fluorescence shows no effect by RNAi. n=6 animals per genotype. E. A representative western immunoblot image for β-Galactosidase in LacZ flies coexpressing control, eIF4B, or eIF4H1 RNAi. Uncropped westerns (Appendix 3: Fig. S3-4). Blinded quantification of β-Galactosidase western immunoblots normalized to the loading control, Tubulin. For graphs, shown are individual data points from 2 independent assays with mean±SEM. Statistics: one-way ANOVAs with Tukey's multiple comparison correction, p-values ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance >0.05. RNAi lines: control (JF01355), eIF4B (HMS04503), eIF4H1 (HMS04504). For full genotypes see Appendix 3: Table S3-1.

Figure 3-6

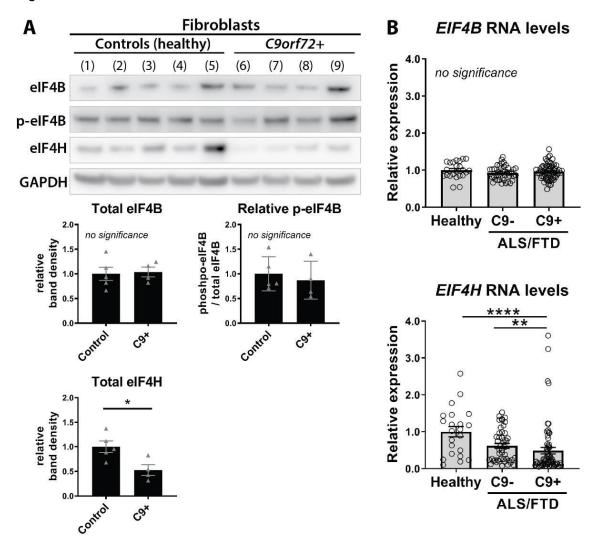


Figure 3-6: *EIF4H* is downregulated in C9+ ALS/FTD.

A. Western immunoblots were used to define changes in eIF4B or eIF4H protein levels from 5 independent control or 4 independent C9+ derived fibroblast cell lines. Data are relative to controls. Quantification of total protein was done after normalizing to loading, using GAPDH. Phospho-eIF4B quantification was further normalized to total eIF4B. Statistics: unpaired student t-tests. Shown: each data point represents 1 cell line with mean±SEM; the mean data from 2 independent protein preparations is shown per line. **B.** RNA levels of *EIF4B* or *EIF4H* were assessed by qPCR in human cerebellar tissue from healthy individuals or ALS/FTD patients with (C9+) or without (C9-) the G4C2 expansion in *C9orf72*. n = 22 (healthy), 46 (C9- ALS/FTD), 66 (C9+ ALS/FTD). Statistics: one-way ANOVAs with Dunn's multiple comparison correction. Shown: individual data points representing 1 individual with mean±SEM. Cell line details: **Appendix 3: Table S3-3.** Patient details: **Appendix 3: Table S3-4.** p-values *****<0.0001, ***<0.001, ***<0.001, **<0.05, no significance >0.05.

Bibliography

Altmann, M., Müller, P.P., Wittmer, B., Ruchti, F., Lanker, S., and Trachsel, H. (1993). A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. *12*, 3997–4003.

Andreou, A.Z., and Klostermeier, D. (2013). The DEAD-box helicase eIF4A. RNA Biol. 10, 19–32.

Ash, P.E.A., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.-L., DeJesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646.

Balendra, R., and Isaacs, A.M. (2018). C9orf72 -mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. *14*, 544.

Bellen, H.J., Levis, R.W., Liao, G., He, Y., Carlson, J.W., Tsang, G., Evans-Holm, M., Hiesinger, P.R., Schulze, K.L., Rubin, G.M., et al. (2004). The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics *167*, 761–781.

Bellen, H.J., Levis, R.W., He, Y., Carlson, J.W., Evans-Holm, M., Bae, E., Kim, J., Metaxakis, A., Savakis, C., Schulze, K.L., et al. (2011). The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics *188*, 731–743.

Berson, A. et al. (2017). TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Curr. Biol. *27*, 3579-3590.e6.

Bettegazzi, B., Bellani, S., Roncon, P., Guarnieri, F.C., Bertero, A., Codazzi, F., Valtorta, F., Simonato, M., Grohovaz, F., and Zacchetti, D. (2017). eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Sci. Rep. 7, 10563.

Browning, K.S., and Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. Arab. Book Am. Soc. Plant Biol. 13.

Capossela, S., Muzio, L., Bertolo, A., Bianchi, V., Dati, G., Chaabane, L., Godi, C., Politi, L.S., Biffo, S., D'Adamo, P., et al. (2012). Growth Defects and Impaired Cognitive—Behavioral Abilities in Mice with Knockout for Eif4h, a Gene Located in the Mouse Homolog of the Williams-Beuren Syndrome Critical Region. Am. J. Pathol. *180*, 1121–1135.

Cheng, W., Wang, S., Mestre, A.A., Fu, C., Makarem, A., Xian, F., Hayes, L.R., Lopez-Gonzalez, R., Drenner, K., Jiang, J., et al. (2018). C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat. Commun. *9*, 51.

Chung, C.-Y., Berson, A., Kennerdell, J.R., Sartoris, A., Unger, T., Porta, S., Kim, H.-J., Smith, E.R., Shilatifard, A., Van Deerlin, V., et al. (2018). Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nat. Commun. 9.

Cooper-Knock, J., Walsh, M.J., Higginbottom, A., Robin Highley, J., Dickman, M.J., Edbauer, D., Ince, P.G., Wharton, S.B., Wilson, S.A., Kirby, J., et al. (2014). Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain *137*, 2040–2051.

Coppolecchia, R., Buser, P., Stotz, A., and Linder, P. (1993). A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO J. *12*, 4005–4011.

Coyne, A.N., Zaepfel, B.L., and Zarnescu, D.C. (2017). Failure to Deliver and Translate—New Insights into RNA Dysregulation in ALS. Front. Cell. Neurosci. *11*.

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Gilmer, H.F., Adamson, J., et al. (2011). Expanded GGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron *72*, 245–256.

Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in *Drosophila*. Nature *448*, 151.

Elden, A.C., Kim, H.-J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature *466*, 1069–1075.

Eom, T., Muslimov, I.A., Tsokas, P., Berardi, V., Zhong, J., Sacktor, T.C., and Tiedge, H. (2014). Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control. J Cell Biol *207*, 237–252.

Fernandes, N., Eshleman, N., and Buchan, J.R. (2018). Stress Granules and ALS: A Case of Causation or Correlation? In RNA Metabolism in Neurodegenerative Diseases, R. Sattler, and C.J. Donnelly, eds. (Cham: Springer International Publishing), pp. 173–212.

Freibaum, B.D., Lu, Y., Lopez-Gonzalez, R., Kim, N.C., Almeida, S., Lee, K.-H., Badders, N., Valentine, M., Miller, B.L., Wong, P.C., et al. (2015). GGGGCC repeat expansion in C9ORF72 compromises nucleocytoplasmic transport. Nature *525*, 129–133.

Galmozzi, E., Aghemo, A., and Colombo, M. (2012). Eukaryotic initiation factor 5B: a new player for the anti-hepatitis C virus effect of ribavirin? Med. Hypotheses *79*, 471–473.

García-García, C., Frieda, K.L., Feoktistova, K., Fraser, C.S., and Block, S.M. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science *348*, 1486–1488.

Gendron, T.F., Bieniek, K.F., Zhang, Y.-J., Jansen-West, K., Ash, P.E.A., Caulfield, T., Daughrity, L., Dunmore, J.H., Castanedes-Casey, M., Chew, J., et al. (2013). Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. (Berl.) *126*, 829–844.

Goodman, L.D., Prudencio, M., Kramer, N.J., Martinez-Ramirez, L.F., Srinivasan, A.R., Lan, M., Parisi, M.J., Zhu, Y., Chew, J., Cook, C.N., et al. (2019). Expanded GGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat. Neurosci.

van Gorp, A.G.M., van der Vos, K.E., Brenkman, A.B., Bremer, A., van den Broek, N., Zwartkruis, F., Hershey, J.W., Burgering, B.M.T., Calkhoven, C.F., and Coffer, P.J. (2009). AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B. Oncogene 28, 95–106.

Green, K.M., Linsalata, A.E., and Todd, P.K. (2016). RAN translation—what makes it run? Brain Res. *1647*, 30–42.

- Green, K.M., Glineburg, M.R., Kearse, M.G., Flores, B.N., Linsalata, A.E., Fedak, S.J., Goldstrohm, A.C., Barmada, S.J., and Todd, P.K. (2017). RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8.
- Haeusler, A.R., Donnelly, C.J., Periz, G., Simko, E.A.J., Shaw, P.G., Kim, M.-S., Maragakis, N.J., Troncoso, J.C., Pandey, A., Sattler, R., et al. (2014). C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease. Nature *507*, 195–200.
- Haeusler, A.R., Donnelly, C.J., and Rothstein, J.D. (2016). The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. *17*, 383–395.
- Harms, U., Andreou, A.Z., Gubaev, A., and Klostermeier, D. (2014). eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res. *42*, 7911–7922.
- Hautbergue, G.M., Castelli, L.M., Ferraiuolo, L., Sanchez-Martinez, A., Cooper-Knock, J., Higginbottom, A., Lin, Y.-H., Bauer, C.S., Dodd, J.E., Myszczynska, M.A., et al. (2017). SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8.
- Hernández, G., Vázquez-Pianzola, P., Zurbriggen, A., Altmann, M., Sierra, J.M., and Rivera-Pomar, R. (2004). Two functionally redundant isoforms of Drosophila melanogaster eukaryotic initiation factor 4B are involved in cap-dependent translation, cell survival, and proliferation. Eur. J. Biochem. *271*, 2923–2936.
- Ito, D., Hatano, M., and Suzuki, N. (2017). RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Sci. Transl. Med. *9*, eaah5436.
- Kanekura, K., Yagi, T., Cammack, A.J., Mahadevan, J., Kuroda, M., Harms, M.B., Miller, T.M., and Urano, F. (2016). Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum. Mol. Genet. 25, 1803–1813.
- Kearse, M.G., and Wilusz, J.E. (2017). Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. *31*, 1717–1731.
- Kearse, M.G., Green, K.M., Krans, A., Rodriguez, C.M., Linsalata, A.E., Goldstrohm, A.C., and Todd, P.K. (2016). CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Mol. Cell *62*, 314–322.
- Khan, M.A., and Goss, D.J. (2012). Poly(A)-binding protein increases the binding affinity and kinetic rates of interaction of viral protein linked to genome with translation initiation factors elFiso4F and elFiso4F·4B complex. Biochemistry *51*, 1388–1395.
- Kim, H.-J., Raphael, A.R., LaDow, E.S., McGurk, L., Weber, R., Trojanowski, J.Q., Lee, V.M.-Y., Finkbeiner, S., Gitler, A.D., and Bonini, N.M. (2014). Therapeutic modulation of elF2 α -phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat. Genet. *46*, 152–160.
- Kramer, N.J., Carlomagno, Y., Zhang, Y.-J., Almeida, S., Cook, C.N., Gendron, T.F., Prudencio, M., Van Blitterswijk, M., Belzil, V., Couthouis, J., et al. (2016a). Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts associated with c9FTD/ALS. Science *353*, 708–712.

- Kramer, N.J., Carlomagno, Y., Zhang, Y.-J., Almeida, S., Cook, C.N., Gendron, T.F., Prudencio, M., Blitterswijk, M.V., Belzil, V., Couthouis, J., et al. (2016b). Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science *353*, 708–712.
- Levis, R., Hazelrigg, T., and Rubin, G.M. (1985). Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558–561.
- Liberman, N., Gandin, V., Svitkin, Y.V., David, M., Virgili, G., Jaramillo, M., Holcik, M., Nagar, B., Kimchi, A., and Sonenberg, N. (2015). DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res. *43*, 3764–3775.
- Liu, E.Y., Russ, J., Wu, K., Neal, D., Suh, E., McNally, A.G., Irwin, D.J., Van Deerlin, V.M., and Lee, E.B. (2014). C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. (Berl.) *128*, 525–541.
- Mackenzie, I.R., Arzberger, T., Kremmer, E., Troost, D., Lorenzl, S., Mori, K., Weng, S.-M., Haass, C., Kretzschmar, H.A., Edbauer, D., et al. (2013). Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol. (Berl.) *126*, 859–879.
- Mackenzie, I.R.A., Frick, P., Grässer, F.A., Gendron, T.F., Petrucelli, L., Cashman, N.R., Edbauer, D., Kremmer, E., Prudlo, J., Troost, D., et al. (2015). Quantitative analysis and clinicopathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol. (Berl.) *130*, 845–861.
- Mann, D.M., Rollinson, S., Robinson, A., Bennion Callister, J., Thompson, J.C., Snowden, J.S., Gendron, T., Petrucelli, L., Masuda-Suzukake, M., Hasegawa, M., et al. (2013). Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol. Commun. *1*, 68.
- Marygold, S.J., Attrill, H., and Lasko, P. (2017). The translation factors of Drosophila melanogaster. Fly (Austin) *11*, 65–74.
- McGurk, L., and Bonini, N.M. (2012). Protein interacting with C kinase (PICK1) is a suppressor of spinocerebellar ataxia 3-associated neurodegeneration in Drosophila. Hum. Mol. Genet. *21*, 76.
- Méthot, N., Song, M.S., and Sonenberg, N. (1996). A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell. Biol. *16*, 5328–5334.
- Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O.C., Pietrzyk, J., et al. (2014). C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science *345*, 1192–1194.
- Mokas, S., Mills, J.R., Garreau, C., Fournier, M.-J., Robert, F., Arya, P., Kaufman, R.J., Pelletier, J., and Mazroui, R. (2009). Uncoupling Stress Granule Assembly and Translation Initiation Inhibition. Mol. Biol. Cell *20*, 2673–2683.
- Mordes, D.A., Prudencio, M., Goodman, L.D., Klim, J.R., Moccia, R., Limone, F., Pietilainen, O., Chowdhary, K., Dickson, D.W., Rademakers, R., et al. (2018). Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol. Commun. *6*.

- Mori, K., Weng, S.-M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E., Schmid, B., Kretzschmar, H.A., Cruts, M., Van Broeckhoven, C., et al. (2013). The C9orf72 GGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338.
- Ni, J.-Q., Zhou, R., Czech, B., Liu, L.-P., Holderbaum, L., Yang-Zhou, D., Shim, H.-S., Tao, R., Handler, D., Karpowicz, P., et al. (2011). A genome-scale shRNA resource for transgenic RNAi in *Drosophila*. Nat. Methods *8*, 405.
- Niblock, M., Smith, B.N., Lee, Y.-B., Sardone, V., Topp, S., Troakes, C., Al-Sarraj, S., Leblond, C.S., Dion, P.A., Rouleau, G.A., et al. (2016). Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol. Commun. *4*.
- Nielsen, K.H., Behrens, M.A., He, Y., Oliveira, C.L.P., Sottrup Jensen, L., Hoffmann, S.V., Pedersen, J.S., and Andersen, G.R. (2011). Synergistic activation of eIF4A by eIF4B and eIF4G. Nucleic Acids Res. 39, 2678–2689.
- Perkins, L.A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.-S., et al. (2015). The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics *201*, 843–852.
- Prudencio, M., Belzil, V.V., Batra, R., Ross, C.A., Gendron, T.F., Pregent, L.J., Murray, M.E., Overstreet, K.K., Piazza-Johnston, A.E., Desaro, P., et al. (2015). Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. *18*, 1175–1182.
- Prudencio, M., Gonzales, P.K., Cook, C.N., Gendron, T.F., Daughrity, L.M., Song, Y., Ebbert, M.T.W., van Blitterswijk, M., Zhang, Y.-J., Jansen-West, K., et al. (2017). Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum. Mol. Genet. *26*, 3421–3431.
- Raught, B., Peiretti, F., Gingras, A.-C., Livingstone, M., Shahbazian, D., Mayeur, G.L., Polakiewicz, R.D., Sonenberg, N., and Hershey, J.W. (2004). Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23, 1761–1769.
- Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.
- Richter-Cook, N.J., Dever, T.E., Hensold, J.O., and Merrick, W.C. (1998). Purification and Characterization of a New Eukaryotic Protein Translation Factor EUKARYOTIC INITIATION FACTOR 4H. J. Biol. Chem. *273*, 7579–7587.
- Rode, S., Ohm, H., Anhäuser, L., Wagner, M., Rosing, M., Deng, X., Sin, O., Leidel, S.A., Storkebaum, E., Rentmeister, A., et al. (2018). Differential Requirement for Translation Initiation Factor Pathways during Ecdysone-Dependent Neuronal Remodeling in Drosophila. Cell Rep. *24*, 2287-2299.e4.
- Rogers, G.W., Richter, N.J., Lima, W.F., and Merrick, W.C. (2001). Modulation of the Helicase Activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922.
- Roux, P.P., and Topisirovic, I. (2018). Signaling Pathways Involved in the Regulation of mRNA Translation. Mol. Cell. Biol. 38.

- Rozovsky, N., Butterworth, A.C., and Moore, M.J. (2008). Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA *14*, 2136–2148.
- Sareen, D., O'Rourke, J.G., Meera, P., Muhammad, A.K.M.G., Grant, S., Simpkinson, M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., et al. (2013). Targeting RNA foci in iPSC-derived motor neurons from ALS patients with C9ORF72 repeat expansion. Sci. Transl. Med. *5*, 208ra149.
- Satoh, J., Yamamoto, Y., Kitano, S., Takitani, M., Asahina, N., and Kino, Y. (2014). Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. J. Cent. Nerv. Syst. Dis. 6, 69–78.
- Sellier, C., Buijsen, R.A.M., He, F., Natla, S., Jung, L., Tropel, P., Gaucherot, A., Jacobs, H., Meziane, H., Vincent, A., et al. (2017). Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron *93*, 331–347.
- Sen, N.D., Zhou, F., Harris, M.S., Ingolia, N.T., and Hinnebusch, A.G. (2016). eIF4B stimulates translation of long mRNAs with structured 5' UTRs and low closed-loop potential but weak dependence on eIF4G. Proc. Natl. Acad. Sci. U. S. A. *113*, 10464–10472.
- Sharma, S.D., Kraft, J.J., Miller, W.A., and Goss, D.J. (2015). Recruitment of the 40S Ribosome Subunit to the 3'-Untranslated Region (UTR) of a Viral mRNA, via the eIF4 Complex, Facilitates Cap-independent Translation. J. Biol. Chem. 290, 11268–11281.
- Shatsky, I.N., Terenin, I.M., Smirnova, V.V., and Andreev, D.E. (2018). Cap-Independent Translation: What's in a Name? Trends Biochem. Sci.
- Sonenberg, N., and Hinnebusch, A.G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell *136*, 731–745.
- Spilka, R., Ernst, C., Mehta, A.K., and Haybaeck, J. (2013). Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. *340*, 9–21.
- Spirin, A.S. (2009). How Does a Scanning Ribosomal Particle Move along the 5'-Untranslated Region of Eukaryotic mRNA? Brownian Ratchet Model. Biochemistry *48*, 10688–10692.
- Spradling, A.C., Stern, D.M., Kiss, I., Roote, J., Laverty, T., and Rubin, G.M. (1995). Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. U. S. A. *92*, 10824–10830.
- Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N., Misra, S., and Rubin, G.M. (1999). The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics *153*, 135–177.
- Sun, Y., Atas, E., Lindqvist, L., Sonenberg, N., Pelletier, J., and Meller, A. (2012). The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase. Nucleic Acids Res. *40*, 6199–6207.
- Suzuki, H., Shibagaki, Y., Hattori, S., and Matsuoka, M. (2018). The proline—arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis. Cell Death Dis. *9*.

- Tabet, R., Schaeffer, L., Freyermuth, F., Jambeau, M., Workman, M., Lee, C.-Z., Lin, C.-C., Jiang, J., Jansen-West, K., Abou-Hamdan, H., et al. (2018). CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat. Commun. 9, 152.
- Tao, Z., Wang, H., Xia, Q., Li, K., Li, K., Jiang, X., Xu, G., Wang, G., and Ying, Z. (2015). Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum. Mol. Genet. *24*, 2426–2441.
- Todd, P.K., Oh, S.Y., Krans, A., He, F., Sellier, C., Frazer, M., Renoux, A.J., Chen, K., Scaglione, K.M., Basrur, V., et al. (2013). CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron *78*, 440–455.
- Tran, H., Almeida, S., Moore, J., Gendron, T.F., Chalasani, U., Lu, Y., Du, X., Nickerson, J.A., Petrucelli, L., Weng, Z., et al. (2015). Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS. Neuron *87*, 1207–1214.
- Vatovec, S., Kovanda, A., and Rogelj, B. (2014). Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol. Aging 35, 2421.e1-2421.e12.
- Vaysse, C., Philippe, C., Martineau, Y., Quelen, C., Hieblot, C., Renaud, C., Nicaise, Y., Desquesnes, A., Pannese, M., Filleron, T., et al. (2015). Key contribution of eIF4H-mediated translational control in tumor promotion. Oncotarget *6*, 39924–39940.
- Walker, S.E., Zhou, F., Mitchell, S.F., Larson, V.S., Valasek, L., Hinnebusch, A.G., and Lorsch, J.R. (2013). Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. RNA *19*, 191–207.
- Yuva-Aydemir, Y., Almeida, S., and Gao, F.-B. (2018). Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models. Trends Neurosci.
- Zhang, Y.-J., Gendron, T.F., Ebbert, M.T.W., O'Raw, A.D., Yue, M., Jansen-West, K., Zhang, X., Prudencio, M., Chew, J., Cook, C.N., et al. (2018). Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat. Med. *24*, 1136–1142.
- Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol. Cells *41*, 818–829.
- Zu, T., Pattamatta, A., and Ranum, L.P.W. (2018). Repeat-Associated Non-ATG Translation in Neurological Diseases. Cold Spring Harb. Perspect. Biol. *10*, a033019.

CHAPTER 4: SIGNIFICANCE AND NEXT STEPS

An unbiased, RNAi-based screen

The discovery that an expanded hexanucleotide repeat of (G4C2)n exists within *C9orf72* and that expansions of >30 repeats are associated with ALS/FTD were made by two independent groups in 2011 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). When I began this project in 2013, little was known about the impact this mutation may have on neuronal health and disease progression. Drawing parallels from previous examples of nucleotide expansions and disease (Krzyzosiak et al., 2012; Nguyen et al., 2019), multiple groups developed gain-of-function models, including ours described in **Chapter 2** (Freibaum et al., 2015; Kramer et al., 2016; Mizielinska et al., 2014; Xu et al., 2013). By using *Drosophila*, investigators could rapidly define degenerative effects associated with gain-of-function mechanisms that resulted with expression >30 G4C2 repeats *in vivo*.

While each research group uniquely used their G4C2 fly model(s) to uncover disease mechanisms only two groups, to my knowledge, took on the task of performing unbiased, forward-screens to define disease modifiers (Freibaum et al., 2015; Goodman et al., 2019a). Of these, our screen on (G4C2)49-expressing flies was unique as we analyzed individual genes whose RNAi-mediated loss may impact G4C2-associated toxicity in *Drosophila* (see Chapter 2: Fig. 2-1e and (Goodman et al., 2019a)). (The other report utilized chromatin deficiency fly lines that targeted multiple genes simultaneously and are predicted to result in only a 50% downregulation of encompassed genes (Freibaum et al., 2015).) We identified 119 genes whose downregulation could increase or decrease (G4C2)49-induced toxicity in the fly eye (see Chapter 2: Fig. 2-1f and (Goodman et al., 2019a)). Further investigations tested G4C2-associated genes in a second fly model that expressed the toxic GR-dipeptide from a non-G4C2 transcript (see Chapter 2: Fig. 2-2a and (Goodman et al., 2019a; Mizielinska

et al., 2014). This defined pathways selective to the G4C2-RNA (see Chapter 2: Fig. 2-2c and (Goodman et al., 2019a)) and genes whose loss impacted both the G4C2-RNA and its dipeptide product (see Appendix 2: Supplementary data and (Goodman et al., 2019a)). Last, by testing G4C2-associated genes in a fly model that overexpressed a related disease gene, TDP-43 (see Chapter 2: Fig. 2-2a and (Goodman et al., 2019a)), we also defined pathways selective for the C9orf72-mutation in C9+ ALS/FTD (see Chapter 2: Fig. 2-2d and (Goodman et al., 2019a)) and genes that could target both coexisting disease etiologies (see Appendix 2: Supplementary data and (Chew et al., 2015, 2019; DeJesus-Hernandez et al., 2011; Goodman et al., 2019a; Renton et al., 2011)). In total, our large-scale, unbiased screen highlighted genes and pathways worth further investigation to improve understanding of C9+ ALS/FTD disease mechanisms. Of these, pathways involving multiple genes identified in the screen included the following and may be worth further investigation: splicing dysfunction (Cooper-Knock et al., 2015; Prudencio et al., 2015; Yin et al., 2017), DNA damage (Farg et al., 2017; Higelin et al., 2018; Lopez-Gonzalez et al., 2016; Riemslagh et al., 2019; Walker et al., 2017), and perturbed nucleolar function (Haeusler et al., 2014; Herrmann and Parlato, 2018; Kwon et al., 2014; Mizielinska et al., 2017; Tao et al., 2015). Below I will discuss one of these, splicing dysfunction.

Splicing dysfunction

Dysregulation of RNA-metabolism is a re-occurring theme in ALS/FTD, and mutations in multiple RNA-binding proteins are linked to disease (Coyne et al., 2017; Ito et al., 2017; Zhao et al., 2018). Interestingly, 17 of 119 genes whose downregulation impacted (G4C2)49-toxicity are involved in mRNA-processing, the majority of which increased toxicity and similarly enhanced (GR)36-toxicity when depleted. In particular, GO-term

analyses revealed that reduced expression of precatalytic spliceosome components using RNAi increased (G4C2)49-toxicity (see Chapter 2. Fig. 2-1h and (Goodman et al., 2019a)). This included fly orthologues to *snRNP-U1-70K*, *SAP30BP*, *SF3A1*, *SF3B5*, *HSPA8*, *RACK1*, and *HNRNPUL1*. These same RNAi lines similarly enhanced (GR)36-toxicity in the fly eye, suggesting that perturbations to the spliceosome may be the result of toxic GR-dipeptide expressed from the (G4C2)49-transgene. Of these, SF3A1, HSPA8, RACK1, and HNRNPUL1 did not similarly alter toxicity in TDP-43 expressing flies.

Currently, multiple studies have reported that splicing errors occur in C9+ ALS/FTD compared to C9- ALS/FTD (Cooper-Knock et al., 2015; Prudencio et al., 2015; Yin et al., 2017). Of these, Cooper-Knock and colleagues suggested that splicing dysfunction correlated with disease progression. The majority of papers in the current literature associate changes in RNA metabolism to sequestration of RNA-binding proteins by the G4C2-RNA in C9+ disease (Conlon et al., 2016; Cooper-Knock et al., 2014; Lee et al., 2013; Mori et al., 2013; Sareen et al., 2013). However, the GR- (and PR-) dipeptide can also interact with relevant RNA binding proteins (RBPs) (Davidson et al., 2017; Kwon et al., 2014; Lee et al., 2016). As C9+ ALS/FTD is an progressive disorder and splicing dysfunction may be correlated with disease progression (Cooper-Knock et al., 2015), it is reasonable to hypothesize that initial splicing errors may be induced by G4C2-RNA while the accumulation of toxic GR-dipeptides within cells with age may further perturb this process, resulting in a rapid decline in neuron health and disease.

In support of this, a recent study presented a compelling argument that GR-dipeptides can directly interfere with splicing (Yin et al., 2017). In an *in vitro* assay, the authors found that flag-tagged GR can interact with 5 of 7 components of the precatalytic

spliceosome that we had identified as enhancers of G4C2/GR-toxicity in the fly: snRNP-U1-70K, SAP30BP, SF3A1, HSPA8, HNRNPUL1. Their focused studies revealed that SF3A1 was mis-localized to the cytoplasm of cells exposed to GR-dipeptides and in C9+-derived iPS neurons, suggesting a potential mechanism underlying SF3A1 RNAi's ability to increase toxicity in our G4C2/GR animals. Notably, among the genes identified in our screen, snRNP-U1-70K is mis-localized to the cytoplasm, forms insoluble tangles, and contributes to splicing defects in Alzheimer's disease (Bai et al., 2013, 2014; Hales et al., 2014; Johnson et al., 2018). Suggesting a parallel mechanism may occur in ALS, snRNP-U1-70K mis-localization has also been associated with FUS mutations found in ALS (Yu et al., 2015a). In C9orf72-associated disease, Yin and colleagues have argued that GR could act specifically act on U2 snRNP over U1 snRNP (Yin et al., 2017). However, our data would suggest that U1 snRNP (of which snRNP-U1-70K is the primary component) may also be playing a role in C9+ disease. In fact, these researchers showed that blocks in splicing that resulted from exposure to GR-dipeptides occurred in the early steps of the process in vitro. While they argue that this is when the U2 snRNP is functioning, literature supports that both U1 and U2 snRNPs are important in early stages of splicing, with U1 acting before U2 (Wahl et al., 2009; Yan et al., 2019). Further, U1 snRNP and U2 snRNP interact while U1 recognizes the 5' splice site and U2 the 3' splice site of introns (Nik and Bowman, 2019; Plaschka et al., 2018; Shao et al., 2012; Zhan et al., 2018).

Overall, a directed study looking into the precatalytic spliceosome components identified in our screen whose loss enhances G4C2/GR toxicity may further elucidate how splicing errors occur in C9+ disease. snRNP-U1-70K may be of particular interest and it will be used as an example herein (Bai et al., 2013, 2014; Hales et al., 2014; Johnson et al., 2018). Follow-up investigations would need to confirm that altered

expression of snRNP-U1-70K can modify (G4C2)49- and (GR)36-induced toxicity specifically in the fly, using available RNAi and UAS-upregulation lines. By testing for effects of modulating snRNP-U1-70K expression on degenerative phenotypes caused by expressing (G4C2)49 or (GR)36 in the fly optic system and brain, one could determine if snRNP-U1-70K was a dose-dependent modifier of G4C2/GR toxicity in vivo. Follow-up RNA-sequencing studies in the fly would define genes that may be mis-spliced in disease and if snRNP-U1-70K plays a role. The fly offers the strong advantage of allowing for relatively rapid age progression studies in vivo. Thus, by comparing flies expressing toxic (G4C2)49, toxic (GR)36, or inert (G4C2)8 within the fly brain (ElavGS), genes that are mis-spliced in response to the toxic repeat expansion and/or its GRdipeptide product with age would be revealed. Follow-up studies could then involve modulating snRNP-U1-70K, using RNAi and UAS lines, in G4C2/GR expressing animals. One would expect that if normal snRNP-U1-70K function was disrupted by the GR-dipeptide that increasing the expression of snRNP-U1-70K would alleviate splicing errors seen in GR-expressing animals alone. Further, downregulating snRNP-U1-70K in GR animals would likely cause an increase in splicing errors, demonstrating that the GRdipeptide was disrupting snRNP-U1-70K's normal function. Using the fly model containing a GFP-tag in the GR reading frame (see Chapter 3. Fig. 3-1 and (Goodman et al., 2019a)), one could perform a number of directed mechanistic studies to define interactions between snRNP-U1-70K and the GR-dipeptide vivo immunoprecipitation studies, co-localization immunofluorescence staining). Translating findings to C9+ mouse models (Chew et al., 2015, 2019), C9+-derived cell lines and/or post-mortem tissue would explain snRNP-U1-70K's role in disease. Additional investigations could look for potential connections with splicing deficits caused by TDP-

43 mis-localization in ALS or other factors associated with splicing and neurodegeneration (e.g. SMN) (Nik and Bowman, 2019; Nussbacher et al., 2019).

The PAF1 complex

Compellingly, among the ~4000 genes screened for effects on (G4C2)-49 toxicity in Drosophila (see Chapter 2: Fig. 2-1e-h and (Goodman et al., 2019a)), RNAi-mediated depletion of 3 of the 5 core components to the PAF1 complex (PAF1C) were found to suppress (G4C2)49-toxicity - CDC73, Ctr9, and Rtf1. (The sixth, minor component of PAF1C, WDR61, was also identified as a suppressor of G4C2-toxicity in our screen; see Appendix 2: Supplementary data and (Goodman et al., 2019a).) Ensuing investigations expanded reagents to include the 2 remaining PAF1C components - Paf1 and Leo1 – and defined PAF1C depletion for its ability to specifically suppress (G4C2)49 toxicity versus GR-induced or TDP-43-induced toxicity (see Chapter 2: Fig. 2-2, 2-3 and (Goodman et al., 2019a)). As PAF1C is a transcriptional regulator of RNAPII (Jaehning, 2010), mechanistic studies defined the importance of PAF1C components in G4C2IIG2C4-DNA expression, using multiple fly and yeast models (see Chapter 2: Fig. 2-4 and (Goodman et al., 2019a)). (RNAi to WDR61 caused similar effects on (G4C2)49-toxicity and RNA levels in the fly; data not shown.) A key finding was that loss of Paf1 and Leo1, which form a heterodimer within the PAF1C complex (Chu et al., 2013), selectively impacted expression from toxic (>30) G4C2-repeat expansions versus inert (≤ 29) G4C2-repeats in the fly (see Chapter 2: Fig. 2-4a and (Goodman et al., 2019a)). The effect was remarkably consistent between G4C2-fly models arguing that it was biological rather than technical (compare data in Chapter 2: Fig. 2-4a and 2-4c and (Goodman et al., 2019a)). In contrast, RNAi targeting Spt4 (of the DSIF complex; (Hartzog and Fu, 2013)) or the other PAF1C components - CDC73, Ctr9, Rtf1 (and

WDR61; data not shown) – similarly altered expression from all G4C2-transgenes independent of the repeat-length. Additionally, we showed that Leo1, of the Paf1/Leo1 heterodimer, was bound to *C9orf72*-chromatin in C9+ ALS/FTD patient cells (see Chapter 2: Fig. 2-6b and (Goodman et al., 2019a)). Further supporting that both Paf1 and Leo1 play a special role in disease, these components were upregulated in FTD cortical tissue only when the toxic (>30) G4C2-repeat expansion was present (see Chapter 2: Fig. 2-6c and (Goodman et al., 2019a)). This was not true for another PAF1C component, *CDC73* (see Appendix 2: Fig. S2-10 and (Goodman et al., 2019a)). Notably, the expression of *Paf1* and *Leo1* in C9+ FTD tissue positively correlated to expression of the G4C2-postive *C9orf72* gene (see Chapter 2: Fig. 2-6d and (Goodman et al., 2019a)).

In total, these investigations revealed the PAF1C as a transcriptional regulator of G4C2-repeats in C9+ ALS/FTD. Further investigations into Paf1 and Leo1 may reveal them to be effective therapeutic targets, while current data supports their loss in flies, yeast, and mice may be better tolerated than the previously proposed target, Spt4 (Gerlach et al., 2017; Jaehning, 2010; Kramer et al., 2016; Meehan et al., 2017; Van Oss et al., 2017). Here, I will describe key next steps that are needed to further define PAF1C's role in C9+ ALS/FTD.

PAF1C in C9+ FTD versus C9+ ALS

A surprising feature of PAF1C in C9+ disease that we found during our investigations was that components *Paf1* and *Leo1* were selectively upregulated in C9+ post-mortem cortical tissue derived from FTD patients versus ALS patients. We hypothesized that this difference was the result of the tissue assayed. Specifically, RNA was extracted from the frontal cortex of individuals, while only FTD and FTD/ALS cases have cognitive deficits

associated with neurodegeneration in the frontal and temporal cortices. In contrast, ALS patients have motor deficits associated degeneration of upper and lower motor neurons in the motor cortex, brain stem, and spinal cord. Fittingly, brain scans of FTD versus ALS patients show different atrophy patterns (Boeve et al., 2012; Omer et al., 2017; Schönecker et al., 2018). In total, further investigations into why we saw a change in *Paf1/Leo1* expression based on different patient diagnoses need to be explored.

Upregulation of PAF1C in frontal cortex tissue from FTD patients but not ALS patients could be the result of the type of tissue assayed and/or PAF1C gene variants. As mentioned, FTD affects neurons in the frontal and temporal cortices while ALS affects motor neurons. However, we analyzed Paf1/Leo1 levels in cortical tissue from both. Further investigations are needed to determine if PAF1C components are upregulated in tissue relevant to ALS: motor neurons in the spinal cord. Thorough investigations into PAF1 and LEO1 using patient data may also define any unique features underlying PAF1 and LEO1 that contribute to C9+ patients developing FTD versus ALS, thus defining them as disease modifiers. For example, expression of gene variants, isoforms, or other unique genetic features may underly these genes' ability to mediate RNAPII-transcription of expanded G4C2-DNA. Examples of disease modifiers in ALS/FTD are ATXN2 and TMEM106B. ATXN2 can carry an intermediate-length CAGrepeat associated with an increased risk for C9+ patients to develop ALS (van Blitterswijk et al., 2014a). TMEM106B can produce multiple mRNA variants, while homozygosity for the recessive variant rs3173615 may protect C9+ patients from developing FTD (van Blitterswijk et al., 2014b). In total, thorough clinical investigations are needed while comparing PAF1 and LEO1 in FTD versus ALS patients and considering factors such as tissue specificity, disease progression (discussed below), and disease severity.

An alternative hypothesis that could explain why Paf1 and Leo1 were upregulated in C9+ FTD cases but not C9+ ALS cases is that expression levels may change during disease progression. Interestingly, neuronal expression of (G4C2)149 compared to (G4C2)2 in mice caused no change in Leo1 levels at 3 months of transgene expression (see Chapter 2: Fig. 2-5c and (Goodman et al., 2019a)). However, Leo1 was significantly upregulated after 6 months of transgene expression. This argues that PAF1C upregulation occurred in a progressive manner as a response to the toxic, expanded G4C2-transgene expression. In our fly investigations, we saw that PAF1C components were upregulated in brains of (G4C2)49-expressing flies before degenerative phenotypes are expected (see Chapter 2: Fig. 2-5a and (Goodman et al., 2019a)). Specifically, we analyzed PAF1C expression after 16 days of transgene expression in adult fly neurons, which is before vacuole formation and animal death occurs. In total, these data argue that PAF1C expression may change over time while a more directed study is needed. A straightforward approach would be to define PAF1C expression with a time course in flies and mice. By comparing PAF1C levels to phenotypic data (e.g. lifespans, motor deficits, vacuole formation), one could define how PAF1C expression changes in response to (G4C2)30+ expression in neurons during early-, mid-, or late-stage disease progression.

While the above hypotheses focus on potential direct roles Paf1 and Leo1 may be playing in defining if C9+ patients develop FTD versus ALS, I note that these proteins may play an indirect role. Importantly, PAF1C is a transcriptional regulator that acts on multiple RNAPII-regulated genes (Jaehning, 2010). Thus, while our data show that Paf1 and Leo1 are upregulated in response to expanded (>30) G4C2-expression, its upregulation is likely to contribute to unique expression profiles in C9+ FTD patients and may affect disease relevant pathways (Cooper-Knock et al., 2015; Prudencio et al.,

2015). For example, expression of repetitive elements are increased in C9+ ALS/FTD compared to C9- ALS/FTD (Prudencio et al., 2017). PAF1C may further define differences between C9+ ALS and C9+ FTD patients in this pathway.

Overall, directed studies are needed to further define PAF1C's role in ALS/FTD while considering multiple factors such as tissue type, disease stage, and the supposition that different components of PAF1C may behave differently.

Additional mechanistic studies

In Chapter 2, we present compelling data that loss of PAF1C impacts expression from expanded G4C2-repeats using mice and yeast models. Importantly, Paf1 and Leo1 seem to be of particular importance as their depletion selectively impacted expression from toxic (>30) repeats compared to inert (≤ 29) repeats in the fly. Additional investigations are needed to further define the mechanism(s) underlying these effects in human cells and C9+ disease.

Specifically, the impact of downregulating PAF1C components on expression from an endogenous mutant *C9orf72* gene would further define its role in mediating expression of >30 G4C2-repeat expansions. Our data used overexpression G4C2-models that expressed the repeats in the absence of, or with minimal amounts of, the surrounding gene sequence in patients (see Chapter 2: Fig. 2-4 and (Goodman et al., 2019a)). Additional studies are needed to define if loss of PAF1C components can disrupt expression from the endogenous *C9orf72* gene harboring the G4C2-repeat expansion (>30). Utilizing C9+ versus control iPS cells and/or iPS neurons, one could downregulate expression of PAF1C components, particularly *Paf1* and *Leo1*, using RNAi or CRISPR/Cas9. Then established quantitative reverse-transcriptase PCR (qPCR) assays would define if the depletion of these genes impacted RNA expression from the

C9orf72 gene (Kramer et al., 2016; Niblock et al., 2016). Such investigations should also consider if multiple PAF1C subunits need to be depleted to see strong effects. If G4C2-expression is mediated by PAF1C in disease, one would expect that *C9orf72*-RNA transcripts would be reduced when these subunits are downregulated. This effect should only be seen in C9+ cells versus control cells if it were the result of the presence of the repeat expansion (>30).

Optimization of the above studies would also allow for follow-up chromatin immunoprecipitation (ChIP) investigations. Specifically, if PAF1C is important for regulating RNAPII during transcription of expanded G4C2-repeats (>30), one would expect that when PAF1C subunits are downregulated that RNAPII's ability to bind the *C9orf72* gene would decrease. This effect should only be seen in C9+ cells versus control cells if it is a response to the presence of the G4C2-repeat expansion (>30). Studies should also consider: whether effects are unique to components Paf1 and Leo1, whether PAF1C recruitment to mutant-*C9orf72* is independent of DSIF-activity, and whether full knockdown of PAF1C genes is needed to significantly impact G4C2-repeat expression. Last, in C9+-derived patient cells, we found that the PAF1C component, Leo1, is bound to the *C9orf72*-chromatin immediately downstream of the G4C2-repeat expansion (see Chapter 2: Fig. 2-6b and (Goodman et al., 2019a)). The specificity or enrichment of this binding to a *C9orf72* gene harboring the repeat needs to be determined.

Follow-up investigations could also explore the mechanism underlying PAF1C-regulation of RNAPII during transcription of the G4C2-repeat expansion. For example, as discussed in Chapter 1, PAF1C may play a role in resolving G-quadruplexes and/or R-loops that may form as RNAPII moves across the G4C2-repeat expansion (Gerlach et al., 2017; Landsverk et al., 2019; Reddy et al., 2014; Shivji et al., 2018; Wahba et al.,

2011). Note that R-loop formation by the *C9orf72*-mutant gene occurs *in vivo* and the PAF1C component, Paf1, can regulate R-loop formation in human cells (Esanov et al., 2017; Shivji et al., 2018). Further, this could explain the selectivity of Paf1 and Leo1 to expanded repeats of >30 as one would expect a positive correlation between the repeatlength and formation of these inhibitory secondary structures (Shivji et al., 2018). In total, targeted studies designed to define interactions of PAF1C to G4C2-repeat DNA *in vitro*, *ex vivo*, and/or in flies would determine if PAF1C activity on G4C2-transcription involved the secondary structures these repeats can form.

PAF1C may not be acting alone to promote RNAPII-transcription across expanded G4C2-repeats as it can recruit factors meant to promote RNAPII-driven transcription (e.g. opening up the chromatin, recruiting RNA processing complexes) (Adelman et al., 2006; Jaehning, 2010). Interestingly, in our ~4000 gene screen we tested a number of relevant factors, the majority of which did not modify (G4C2)49toxicity at all or in a manner consistent with their involvement in G4C2-transcription, including TFIIS, P-TEFb, Chd1, Set1, and components of the CCR4-NOT complex. However, this is not an extensive list and more directed studies are required to determine if PAF1C function during G4C2-transcription requires, or is impacted by, additional proteins in C9+ disease. Among potential candidates, ATXN2 may be of particular interest (van Blitterswijk et al., 2014a). Recent publications reported that this gene prevents R-loop accumulation in GC-rich ribosomal DNA and PAF1C may also regulate RNAPI-transcription, suggesting that PAF1C and ATXN2 may interact to regulated transcription of GC-rich DNA (Abraham et al., 2016; Ostrowski et al., 2018; Zhang et al., 2010, 2010). As this would be a relatively novel role of ATXN2, typically considered a cytoplasmic RNA-binding protein that mediates stress-responses (Lee et al., 2018), extensive validation of a potential role in transcription would be needed while

considering how the insertion of an intermediate polyQ within the protein mediates its role in disease.

Last, PAF1C may have effects in C9+ disease that are independent of its role as a transcriptional regulator of the G4C2-repeat expansion. As mentioned earlier, the upregulation of Paf1 and Leo1 may contribute to unique expression profiles of C9+ patients versus C9- patients (Cooper-Knock et al., 2015; Prudencio et al., 2015, 2017). In addition, if PAF1C is indeed able to resolve secondary structures formed by GC-rich DNA, then it may play a role in DNA damage reported to occur in C9+ disease (Konopka and Atkin, 2018). Accumulation of R-loops at GC-rich DNA/RNA during transcription can leave DNA vulnerable to breaks and induce cellular stress while the upregulation of Paf1/Leo1 may be a protective mechanism in C9+ tissue (Crossley et al., 2019; Esanov et al., 2017; Lin and Wilson, 2011; McKay and Cabrita, 2013). Last, instability of the G4C2-repeat expansion within patient cells is a pathological feature of C9+ disease (Vatsavayai et al., 2019). R-loop formation can stimulate expansion or contraction of disease-related repeat expansions (Nakamori et al., 2011; Reddy et al., 2014; Salinas-Rios et al., 2011; Thys and Wang, 2015). A recent study implicated PAF1C in helping to remove stalled RNAPII at R-loops during replication stress, arguing that it may also regulate genomic instability in C9+ disease (Poli et al., 2016). Overall, directed investigations into how expression of expanded G4C2IG2C4 influences these pathways and whether upregulated PAF1C is involved would further elucidate the role of PAF1C in C9+ disease.

Candidate G4C2-RAN translation factors

Herein, we developed an important, novel G4C2-fly model that includes 114bp intronic sequence found upstream of the G4C2-repeat in C9+ patients, thus putting the repeat in

a more patient-relevant context (see Chapter 3: Fig. 3-1 and (Goodman et al., 2019b)). Further, the inclusion of a GFP tag within the GR reading frame makes this unique model a valuable tool for studies on toxic GR-dipeptides produced from a G4C2-RNA in vivo. Using this model, an unbiased, targeted screen was performed to identify translation factors whose depletion caused reduced expression of the GR-GFP dipeptide from G4C2-RNA (see Chapter 3: Fig. 3-2 and (Goodman et al., 2019b)). To my knowledge, this represents the first in vivo screen for potential RAN-translation factors in disease, encompassing 48 of 56 (86%) known translation factors in Drosophila (Marygold et al., 2017). From this screen, 11 factors were identified that may mediate expression of toxic GR-dipeptides in G4C2-expressing models. As very little is currently known about the mechanisms underlying G4C2-RAN translation, the results from this screen will, undoubtedly, be of value to the scientific community as additional investigations are pursued (Nguyen et al., 2019). While we focused on two of these, eIF4B and eIF4H (discussed below), additional investigations into these other translation factors would further define them as RAN-translation factors. Aside from their role in RAN-translation, recent studies have also implicated the toxic GR-dipeptide in translation dysfunctions in C9+ disease (Hartmann et al., 2018; Zhang et al., 2018). Thus, as our screen also tested translation factors for their effects on toxicity caused by the GR-dipeptide, independently from a G4C2-RNA, we further highlighted potential factors involved in GR-associated disease mechanisms (see Appendix 3: Table S3-2 and (Goodman et al., 2019b)). Validating our data, eIF3B (also known as eIF3η) was previously shown to interact with GR-dipeptides while our screen revealed that loss of this factor could enhance GR-toxicity in the fly (Zhang et al., 2018).

Our focused investigations into eIF4B and eIF4H offers the first evidence that these two translation factors are players in G4C2-RAN translation (see Chapter 3: Fig. **3-4, 3-5 and** (Goodman et al., 2019b)). However, additional investigations are needed to fully define their role in this mechanism. Specifically, studies utilizing antibodies specific to each of the 3 sense-strand associated dipeptides – GA, GR, GP – would show that depleted eIF4B and eIF4H could impact expression of GR dipeptides, independent of the GFP tag, and whether this was specific to the GR-reading frame in G4C2-expressing flies. Ensuing investigations should use human cells, ideally C9+-derived iPS cells and/or neurons, to determine if depletion of eIF4B alone, eIF4H alone, or co-depletion of these factors (using RNAi or CRISPR/Cas9) could impact dipeptide expression from an endogenous mutant C9orf72-gene. Additional variables that should be considered are: the impact of stress on translation mechanisms, whether loss of these factors causes a global reduction in translation, the impact of age, and tissue specificity. Of these, the impact of stress is of particular importance as G4C2-RAN translation may be promoted by the integrated stress response (Cheng et al., 2018; Green et al., 2017; Tabet et al., 2018). Also, a recent manuscript reported the levels of dipeptide varies between cell types and that mechanisms specific to neurons may impact G4C2-RAN translation (Westergard et al., 2019).

In Chapter 3, we also show that *eIF4H* is downregulated in C9+-derived patient cells and in C9+ ALS/FTD post-mortem cerebellar tissue (**see Chapter 3: Fig. 3-6 and** (Goodman et al., 2019b)). The simplest hypothesis is that this was a protective response by cells as reducing expression of this translation factor may help to reduce expression of toxic GR-dipeptide. However, eIF4H's downregulation could also be the response of a more complicated process since it may be sequestered by G4C2-RNA foci (Cooper-Knock et al., 2014; Haeusler et al., 2014; Satoh et al., 2014). Thus, cells may mistakenly

sense that there is plenty of eIF4H available and thus downregulate the gene's expression. However, the eIF4H that is within the cell is, in fact, unavailable to perform its normal duties as it is sequestered by G4C2-RNA. Directed investigations are needed to define which of these pathways may be occurring in C9+ disease. While it may be difficult to differentiate these mechanisms, confirmation that eIF4H is sequestered into G4C2-RNA foci, as is predicted by *in vitro* data, would add to the possibility that the more complicated hypothesis is at play. eIF4H could also be disrupted through other mechanisms independent of direct interactions with G4C2-RNA (e.g. mis-localization). Overall, this may put eIF4H in a unique position to couple RNA dysregulation in disease to RAN-translation. Aside from this, depletion of eIF4B and eIF4H had previously been reported to induce stress granule formation *ex vivo* (Mokas et al., 2009). Thus, the depletion of eIF4H may have multiple implications in C9+ disease, such as linking G4C2-disease mechanisms to the onset of TDP-43 pathology (Chew et al., 2015; McGurk et al., 2018; Zhang et al., 2018).

Other repeat diseases

Thus far, I have focused on the role of PAF1C and identified translation factors in C9+ALS/FTD that harbor a hexanucleotide repeat expansion of >30 G4C2. However, the identified mechanisms described that mediate transcription/translation from G4C2-repeat RNA may also impact other nucleotide-repeat expansions. There are multiple examples of GC-rich repeat expansions associated with neurodegenerative disease (ND), including: CAG-repeats found in polyglutamine diseases (polyQ diseases are a heterogenous group of NDs that includes Huntington's disease (HD) and multiple spinal cerebellar ataxias (SCAs)), CTG-repeats found in myotonic dystrophy 1 (DM1), CCTG-repeats found in myotonic dystrophy 2 (DM2), and CGG-repeats found in Fragile-X-

associated tremor and ataxia syndrome (FXTAS) (Chen et al., 2018; Krzyzosiak et al., 2012; Nguyen et al., 2019; Todd Peter K. and Paulson Henry L., 2010). The location of the expanded repeat within the afflicted genes can vary amid promotors (e.g. CAGrepeat in SCA12), 5'UTR of genes (e.g. FXTAS), introns (e.g. DM2), exons (e.g. CAGrepeat multiple polyQ diseases), and 3' UTR of genes (e.g. DM1). Based on location, the repeats can cause gain-of-function toxicity, such as that described for G4C2-repeats herein, or can disrupt the normal function of the afflicted gene/gene product causing loss-of-function disease mechanisms.

Unique transcriptional machinery required to promote RNAPII-activity as it moves through GC-rich repeat expansions may be common among diseases. For example, the DSIF complex has been suggested to regulate RNAPII-transcription of multiple repetitive DNA elements, including (G4C2)8+, (CAG)99+, (CTG)105, (CAA)90 and (AAA)24+ sequences (see Chapter 2 and (Cheng et al., 2015; Goodman et al., 2019a; Kramer et al., 2016; Liu et al., 2012)). Thus, it is reasonable to expand investigations of PAF1C to additional repeat-associated diseases. In particular, fly studies described in Chapter 2 can be extended to existing fly models that harbor CAG, CTG, or CTGG-repeat expansions (Shieh and Bonini, 2011; Yu et al., 2015b). One could define whether downregulation of PAF1C components, particularly Paf1 and Leo1, using RNAi can suppress toxicity caused by the expression of these repeats in the fly. Mechanistic studies would also reveal if the RNA-transcript levels produced from the transgenes are reduced with knockdown of PAF1C components and if this knockdown disrupts RNAPIIbinding to the transgene. Notably, interactions could depend on unique secondary structures formed by these repeats as they are predicted to form G-quadruplexes, Rloops, and hairpins like G4C2-DNA, which may need to be resolved during transcription (Childs-Disney et al., 2014; Cruchten et al., 2019; Freudenreich, 2018; Krzyzosiak et al.,

2012; Reddy et al., 2014). Overall, these investigations would explore if PAF1C plays a global role in multiple repeat-associated diseases while increasing our understandings of its function in C9+ ALS/FTD.

In addition to G4C2-repeats, RNA-transcripts produced by the mentioned repeatexpansions can also undergo RAN-translation. Of note, CAG repeats can produce three peptides, depending on the reading frame (Zu et al., 2011). Interestingly, peptide production was dependent on repeat-length and the RNA's ability to form hairpin structures, like ones potentially formed by G4C2 RNA (Su et al., 2014; Wang et al., 2019). Moreover, CGG-repeats can also produce peptides through mechanisms independent of an AUG-start codon (Kearse et al., 2016; Todd et al., 2013). Recently, Todd and colleagues drew parallels between CGG- and G4C2-RAN translation mechanisms, highlighting that both require eIF4E and eIF4A (Green et al., 2017; Kearse et al., 2016). Intriguingly, our studies highlight elF4B and elF4H for playing a role in G4C2-RAN translation (see Chapter 3 and (Goodman et al., 2019b)) while these two factors act on eIF4A to promote unwinding of secondary structures formed by RNA (Rogers et al., 2001; Rozovsky et al., 2008; Nielsen et al., 2011; Sun et al., 2012; Harms et al., 2014; García-García et al., 2015; Vaysse et al., 2015; Sen et al., 2016). This activity by eIF4B and eIF4H is particularly important at highly structured, repetitive RNA sequences (Sen et al., 2016; Sun et al., 2012). Thus, it is reasonable to hypothesize that these two factors may also play a role in CGG- and/or CAG-RAN translation. The connection between G4C2-, CGG-, and CAG-RAN translation may be their ability to form unique hairpin structures (Krzyzosiak et al., 2012; Wang et al., 2019). In total, while directed studies are needed to define the role of eIF4B, eIF4H, and other potential translation factors we identified in our screen as G4C2-RAN translation factors (see Chapter 3 and (Goodman et al., 2019b)), ensuing investigations that expand findings to

other repeat-RNAs that undergo RAN-translation may help to define common mechanisms underlying this unique process.

Closing statements

The devastation of neurodegenerative diseases impacts individuals and society, pushing the need for scientists and clinicians to rapidly elucidate disease mechanisms while innately uncovering potential therapeutic targets. The aberrant expression of a hexanucleotide expansion of >30 G4C2-repeats within C9orf72 is currently the most prominent known mutation in familial ALS/FTD. Accumulating evidence suggests that this mutation confers toxicity through gain-of-function mechanisms, a finding that may prove advantageous in terms of developing an effective therapy. In fact, research is currently underway to define pharmacological reagents, such as small molecules and antisense oligonucleotides, that may be able to disrupt G4C2-associated disease mechanisms when administered to patients (Donnelly et al., 2013; Hu et al., 2016; Jiang et al., 2016; Perego et al., 2018; Simone et al., 2018; Su et al., 2014; Wang et al., 2019; Zamiri et al., 2014). While promising, there are limitations to these current approaches, such as their inability to simultaneously target both sense- and antisense- transcripts produced from the G4C2llG2C4 DNA in patients (Jiang and Cleveland, 2016). Accordingly, inhibiting the transcription or translation of mutant-C9orf72 in patients may be a more effective approach. Recent work has proposed using epigenetic modifiers to shut down the gene (Belzil et al., 2014; Liu et al., 2014; McMillan et al., 2015; Russ et al., 2015; Xi et al., 2013, 2014, 2015; Zeier et al., 2015). Alternatively, herein we define unique transcription and translation factors that may be important for the expression of the G4C2||G2C4-repeat expansion in disease. Speculatively, inhibiting Paf1 or Leo1 of PAF1C may be an acceptable approach to downregulating bidirectional transcription of

mutant-*C9orf72*. Our data shows that these components are selective to >30 G4C2-repeats, unlike previously proposed Spt4 (**see Chapter 2 and** (Goodman et al., 2019a; Kramer et al., 2016; Naguib et al., 2019)). Further, partial inhibition of these genes may impact G4C2-transcripton while being well tolerated for cell viability. Note that PAF1C only regulates expression from a subset of genes and mice that are heterozygous null for Paf1 or Leo1 are relatively normal (Porter et al., 2002; Mueller et al., 2004; Penheiter et al., 2005; Cao et al., 2015; Yang et al., 2016; Fischl et al., 2017; Meehan et al., 2017; Ringwald et al., 2011; Skarnes et al., 2011).

Overall, the included studies help to uncover gain-of-function disease mechanisms in *C9orf72*-associated ALS/FTD while highlighting machinery important for G4C2IIG2C4 DNA/RNA expression in the context of disease. These findings have the potential to elucidate mechanisms pertinent to multiple repeat-associated diseases.

Bibliography

Abraham, K.J., Chan, J.N.Y., Salvi, J.S., Ho, B., Hall, A., Vidya, E., Guo, R., Killackey, S.A., Liu, N., Lee, J.E., et al. (2016). Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA–DNA hybrids. Nucleic Acids Research *44*, 8870.

Adelman, K., Wei, W., Ardehali, M.B., Werner, J., Zhu, B., Reinberg, D., and Lis, J.T. (2006). Drosophila Paf1 Modulates Chromatin Structure at Actively Transcribed Genes. Mol Cell Biol *26*, 250–260.

Ash, P.E.A., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.-L., DeJesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646.

Bai, B., Hales, C.M., Chen, P.-C., Gozal, Y., Dammer, E.B., Fritz, J.J., Wang, X., Xia, Q., Duong, D.M., Street, C., et al. (2013). U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc Natl Acad Sci U S A *110*, 16562–16567.

Bai, B., Chen, P.-C., Hales, C.M., Wu, Z., Pagala, V., High, A.A., Levey, A.I., Lah, J.J., and Peng, J. (2014). Integrated Approaches for Analyzing U1-70K Cleavage in Alzheimer's Disease. J Proteome Res *13*, 4526–4534.

Baral, A., Kumar, P., Pathak, R., and Chowdhury, S. (2013). Emerging trends in G-quadruplex biology – role in epigenetic and evolutionary events. Mol. BioSyst. *9*, 1568–1575.

Bauer, P.O. (2016). Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neuroscience Letters *612*, 204–209.

Belzil, V.V., Bauer, P.O., Gendron, T.F., Murray, M.E., Dickson, D., and Petrucelli, L. (2014). Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res. *1584*, 15–21.

van Blitterswijk, M., DeJesus-Hernandez, M., Niemantsverdriet, E., Murray, M.E., Heckman, M.G., Diehl, N.N., Brown, P.H., Baker, M.C., Finch, N.A., Bauer, P.O., et al. (2013). Associations of repeat sizes with clinical and pathological characteristics in C9ORF72 expansion carriers (Xpansize-72): a cross-sectional cohort study. Lancet Neurol *12*.

van Blitterswijk, M., Mullen, B., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Brown, P.H., Murray, M.E., Hsiung, G.-Y.R., Stewart, H., Karydas, A.M., et al. (2014a). Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiol Aging *35*, 2421.e13-2421.e17.

van Blitterswijk, M., Mullen, B., Nicholson, A.M., Bieniek, K.F., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Finch, N.A., Brown, P.H., Murray, M.E., et al. (2014b). TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol *127*, 397–406.

Boeve, B.F., Boylan, K.B., Graff-Radford, N.R., DeJesus-Hernandez, M., Knopman, D.S., Pedraza, O., Vemuri, P., Jones, D., Lowe, V., Murray, M.E., et al. (2012). Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain *135*, 765–783.

- Brázda, V., Hároníková, L., Liao, J.C.C., and Fojta, M. (2014). DNA and RNA Quadruplex-Binding Proteins. International Journal of Molecular Sciences 15. 17493.
- Buchman, V.L., Cooper-Knock, J., Connor-Robson, N., Higginbottom, A., Kirby, J., Razinskaya, O.D., Ninkina, N., and Shaw, P.J. (2013). Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Molecular Neurodegeneration *8*, 12.
- Cao, Q.-F., Yamamoto, J., Isobe, T., Tateno, S., Murase, Y., Chen, Y., Handa, H., and Yamaguchi, Y. (2015). Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Mol Cell Biol *35*, 3459–3470.
- Chen, Z., Sequeiros, J., Tang, B., and Jiang, H. (2018). Genetic modifiers of age-at-onset in polyglutamine diseases. Ageing Research Reviews 48, 99–108.
- Cheng, H.-M., Chern, Y., Chen, I.-H., Liu, C.-R., Li, S.-H., Chun, S.J., Rigo, F., Bennett, C.F., Deng, N., Feng, Y., et al. (2015). Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown. PLoS Genet *11*.
- Cheng, W., Wang, S., Mestre, A.A., Fu, C., Makarem, A., Xian, F., Hayes, L.R., Lopez-Gonzalez, R., Drenner, K., Jiang, J., et al. (2018). C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nature Communications *9*, 51.
- Chew, J., Gendron, T.F., Prudencio, M., Sasaguri, H., Zhang, Y.-J., Castanedes-Casey, M., Lee, C.W., Jansen-West, K., Kurti, A., Murray, M.E., et al. (2015). C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science *348*, 1151–1154.
- Chew, J., Cook, C., Gendron, T.F., Jansen-West, K., del Rosso, G., Daughrity, L.M., Castanedes-Casey, M., Kurti, A., Stankowski, J.N., Disney, M.D., et al. (2019). Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Molecular Neurodegeneration *14*, 9.
- Childs-Disney, J.L., Yildirim, I., Park, H., Lohman, J.R., Guan, L., Tran, T., Sarkar, P., Schatz, G.C., and Disney, M.D. (2014). Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity. ACS Chemical Biology *9*, 538.
- Chu, X., Qin, X., Xu, H., Li, L., Wang, Z., Li, F., Xie, X., Zhou, H., Shen, Y., and Long, J. (2013). Structural insights into Paf1 complex assembly and histone binding. Nucleic Acids Res *41*, 10619–10629.
- Conlon, E.G., Lu, L., Sharma, A., Yamazaki, T., Tang, T., Shneider, N.A., and Manley, J.L. (2016). The C9ORF72 GGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. ELife Sciences *5*, e17820.
- Cooper-Knock, J., Walsh, M.J., Higginbottom, A., Robin Highley, J., Dickman, M.J., Edbauer, D., Ince, P.G., Wharton, S.B., Wilson, S.A., Kirby, J., et al. (2014). Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain *137*, 2040–2051.
- Cooper-Knock, J., Bury, J.J., Heath, P.R., Wyles, M., Higginbottom, A., Gelsthorpe, C., Highley, J.R., Hautbergue, G., Rattray, M., Kirby, J., et al. (2015). C9ORF72 GGGGCC Expanded

Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PLoS One 10.

Coyne, A.N., Zaepfel, B.L., and Zarnescu, D.C. (2017). Failure to Deliver and Translate—New Insights into RNA Dysregulation in ALS. Front. Cell. Neurosci. 11.

Crossley, M.P., Bocek, M., and Cimprich, K.A. (2019). R-Loops as Cellular Regulators and Genomic Threats. Molecular Cell *73*, 398–411.

Cruchten, R.T.P. van, Wieringa, B., and Wansink, D.G. (2019). Expanded CUG repeats in DMPK transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. RNA *25*, 481–495.

Davidson, Y.S., Flood, L., Robinson, A.C., Nihei, Y., Mori, K., Rollinson, S., Richardson, A., Benson, B.C., Jones, M., Snowden, J.S., et al. (2017). Heterogeneous ribonuclear protein A3 (hnRNP A3) is present in dipeptide repeat protein containing inclusions in Frontotemporal Lobar Degeneration and Motor Neurone disease associated with expansions in C9orf72 gene. Acta Neuropathologica Communications *5*, 31.

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Gilmer, H.F., Adamson, J., et al. (2011). Expanded GGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron *72*, 245–256.

Deshpande, S.M., Sadhale, P.P., and Vijayraghavan, U. (2014). Involvement of S. cerevisiae Rpb4 in subset of pathways related to transcription elongation. Gene *545*, 126–131.

Dobson-Stone, C., Hallupp, M., Loy, C.T., Thompson, E.M., Haan, E., Sue, C.M., Panegyres, P.K., Razquin, C., Seijo-Martínez, M., Rene, R., et al. (2013). C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients. PLOS ONE *8*. e56899.

Donnelly, C.J., Zhang, P.-W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S., Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., et al. (2013). RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron *80*, 415–428.

Duarte, A.R., Cadoni, E., Ressurreição, A.S., Moreira, R., and Paulo, A. (2018). Design of Modular G-quadruplex Ligands. ChemMedChem *13*, 869–893.

Esanov, R., Cabrera, G.T., Andrade, N.S., Gendron, T.F., Brown, R.H., Benatar, M., Wahlestedt, C., Mueller, C., and Zeier, Z. (2017). A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD. Molecular Neurodegeneration *12*, 46.

Farg, M.A., Konopka, A., Soo, K.Y., Ito, D., and Atkin, J.D. (2017). The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet *26*, 2882–2896.

Faudale, M., Cogoi, S., and Xodo, L.E. (2011). Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5'-UTR of KRAS oncogene represses translation. Chem. Commun. 48, 874–876.

Fischl, H., Howe, F.S., Furger, A., and Mellor, J. (2017). Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Mol Cell *65*, 685-698.e8.

Fratta, P., Mizielinska, S., Nicoll, A.J., Zloh, M., Fisher, E.M.C., Parkinson, G., and Isaacs, A.M. (2012). C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2.

Freibaum, B.D., Lu, Y., Lopez-Gonzalez, R., Kim, N.C., Almeida, S., Lee, K.-H., Badders, N., Valentine, M., Miller, B.L., Wong, P.C., et al. (2015). GGGGCC repeat expansion in C9ORF72 compromises nucleocytoplasmic transport. Nature *525*, 129–133.

Freudenreich, C.H. (2018). R-loops: targets for nuclease cleavage and repeat instability. Curr Genet 1–6.

García, A., Collin, A., and Calvo, O. (2012). Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. MBoC *23*, 4297–4312.

García-García, C., Frieda, K.L., Feoktistova, K., Fraser, C.S., and Block, S.M. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science *348*, 1486–1488.

Gerlach, J.M., Furrer, M., Gallant, M., Birkel, D., Baluapuri, A., Wolf, E., and Gallant, P. (2017). PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. PNAS *114*, E9224–E9232.

Goodman, L.D., Prudencio, M., Kramer, N.J., Martinez-Ramirez, L.F., Srinivasan, A.R., Lan, M., Parisi, M.J., Zhu, Y., Chew, J., Cook, C.N., et al. (2019a). Expanded GGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat Neurosci.

Goodman, L.D., Prudencio, M., Srinivasan, A.R., Rifai, O.M., Lee, V.M.-Y., Petrucelli, L., and Bonini, N.M. (2019b). elF4B and elF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun.

Green, K.M., Glineburg, M.R., Kearse, M.G., Flores, B.N., Linsalata, A.E., Fedak, S.J., Goldstrohm, A.C., Barmada, S.J., and Todd, P.K. (2017). RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 8.

Haeusler, A.R., Donnelly, C.J., Periz, G., Simko, E.A.J., Shaw, P.G., Kim, M.-S., Maragakis, N.J., Troncoso, J.C., Pandey, A., Sattler, R., et al. (2014). C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease. Nature *507*, 195–200.

Hales, C.M., Dammer, E.B., Diner, I., Yi, H., Seyfried, N.T., Gearing, M., Glass, J.D., Montine, T.J., Levey, A.I., and Lah, J.J. (2014). Aggregates of Small Nuclear Ribonucleic Acids (snRNAs) in Alzheimer's Disease. Brain Pathology *24*, 344–351.

Hall, A.C., Ostrowski, L.A., Pietrobon, V., and Mekhail, K. (2017). Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus *8*, 162–181.

Harms, U., Andreou, A.Z., Gubaev, A., and Klostermeier, D. (2014). eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res *4*2, 7911–7922.

Hartmann, H., Hornburg, D., Czuppa, M., Bader, J., Michaelsen, M., Farny, D., Arzberger, T., Mann, M., Meissner, F., and Edbauer, D. (2018). Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Science Alliance 1, e201800070.

- Hartzog, G.A., and Fu, J. (2013). The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochimica et Biophysica Acta *1829*, 105.
- Herrmann, D., and Parlato, R. (2018). C9orf72-associated neurodegeneration in ALS-FTD: breaking new ground in ribosomal RNA and nucleolar dysfunction. Cell Tissue Res 1–10.
- Higelin, J., Catanese, A., Semelink-Sedlacek, L.L., Oeztuerk, S., Lutz, A.-K., Bausinger, J., Barbi, G., Speit, G., Andersen, P.M., Ludolph, A.C., et al. (2018). NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell Research *30*, 150–162.
- Hu, J., Rigo, F., Prakash, T.P., and Corey, D.R. (2016). Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs. Nucleic Acid Therapeutics *27*, 87–94.
- Hübers, A., Marroquin, N., Schmoll, B., Vielhaber, S., Just, M., Mayer, B., Högel, J., Dorst, J., Mertens, T., Just, W., et al. (2014). Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol. Aging *35*, 1214.e1-6.
- Ishiguro, A., Kimura, N., Watanabe, Y., Watanabe, S., and Ishihama, A. (2016). TDP-43 binds and transports G-quadruplex-containing m RNAs into neurites for local translation. Genes to Cells 21, 466–481.
- Ito, D., Hatano, M., and Suzuki, N. (2017). RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Science Translational Medicine *9*, eaah5436.
- Jaehning, J.A. (2010). The Paf1 Complex: Platform or Player in RNA Polymerase II Transcription? Biochimica et Biophysica Acta *1799*, 379.
- Jiang, J., and Cleveland, D.W. (2016). Bidirectional Transcriptional Inhibition as Therapy for ALS/FTD Caused by Repeat Expansion in C9orf72. Neuron *92*, 1160–1163.
- Jiang, J., Zhu, Q., Gendron, T.F., Saberi, S., McAlonis-Downes, M., Seelman, A., Stauffer, J.E., Jafar-nejad, P., Drenner, K., Schulte, D., et al. (2016). Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron *90*, 535–550.
- Johnson, E.C.B., Dammer, E.B., Duong, D.M., Yin, L., Thambisetty, M., Troncoso, J.C., Lah, J.J., Levey, A.I., and Seyfried, N.T. (2018). Deep proteomic network analysis of Alzheimer's disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Molecular Neurodegeneration *13*, 52.
- Jung, J., and Bonini, N. (2007). CREB-Binding Protein Modulates Repeat Instability in a Drosophila Model for PolyQ Disease. Science *315*, 1857–1859.
- Jung, J., Jaarsveld, M.T.M. van, Shieh, S.-Y., Xu, K., and Bonini, N.M. (2011). Defining Genetic Factors That Modulate Intergenerational CAG Repeat Instability in Drosophila melanogaster. Genetics 187, 61–71.
- Kearse, M.G., Green, K.M., Krans, A., Rodriguez, C.M., Linsalata, A.E., Goldstrohm, A.C., and Todd, P.K. (2016). CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Molecular Cell *62*, 314–322.

- Kejnovsky, E., Tokan, V., and Lexa, M. (2015). Transposable elements and G-quadruplexes. Chromosome Res 23. 615–623.
- Konopka, A., and Atkin, J.D. (2018). The Emerging Role of DNA Damage in the Pathogenesis of the C9orf72 Repeat Expansion in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences 19, 3137.
- Kramer, N.J., Carlomagno, Y., Zhang, Y.-J., Almeida, S., Cook, C.N., Gendron, T.F., Prudencio, M., Van Blitterswijk, M., Belzil, V., Couthouis, J., et al. (2016). Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts associated with c9FTD/ALS. Science *353*, 708–712.
- Krzyzosiak, W.J., Sobczak, K., Wojciechowska, M., Fiszer, A., Mykowska, A., and Kozlowski, P. (2012). Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res *40*, 11–26.
- Kumar, V., kashav, T., Islam, A., Ahmad, F., and Hassan, M.I. (2016). Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochemistry International *100*, 11–20.
- Kwon, I., Xiang, S., Kato, M., Wu, L., Theodoropoulos, P., Wang, T., Kim, J., Yun, J., Xie, Y., and McKnight, S.L. (2014). Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science *345*, 1139–1145.
- Landsverk, H.B., Sandquist, L.E., Sridhara, S.C., Rødland, G.E., Sabino, J.C., de Almeida, S.F., Grallert, B., Trinkle-Mulcahy, L., and Syljuåsen, R.G. (2019). Regulation of ATR activity via the RNA polymerase II associated factors CDC73 and PNUTS-PP1. Nucleic Acids Res *47*, 1797–1813.
- Lee, J., Kim, M., Itoh, T.Q., and Lim, C. (2018). Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. Wiley Interdisciplinary Reviews: RNA *9*, e1488.
- Lee, K.-H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., et al. (2016). C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell *167*, 774-788.e17.
- Lee, Y.-B., Chen, H.-J., Peres, J.N., Gomez-Deza, J., Attig, J., Štalekar, M., Troakes, C., Nishimura, A.L., Scotter, E.L., Vance, C., et al. (2013). Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic. Cell Reports *5*, 1178–1186.
- Lin, Y., and Wilson, J.H. (2011). Transcription-induced DNA toxicity at trinucleotide repeats. Cell Cycle *10*, 611–618.
- Liu, C.-R., Chang, C.-R., Chern, Y., Wang, T.-H., Hsieh, W.-C., Shen, W.-C., Chang, C.-Y., Chu, I.-C., Deng, N., Cohen, S.N., et al. (2012). Spt4 Is Selectively Required for Transcription of Extended Trinucleotide Repeats. Cell *148*, 690–701.
- Liu, E.Y., Russ, J., Wu, K., Neal, D., Suh, E., McNally, A.G., Irwin, D.J., Van Deerlin, V.M., and Lee, E.B. (2014). C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol *128*, 525–541.

- Lopez-Gonzalez, R., Lu, Y., Gendron, T.F., Karydas, A., Tran, H., Yang, D., Petrucelli, L., Miller, B.L., Almeida, S., and Gao, F.-B. (2016). Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron *92*, 383–391.
- Marygold, S.J., Attrill, H., and Lasko, P. (2017). The translation factors of Drosophila melanogaster. Fly 11, 65–74.
- McGurk, L., Gomes, E., Guo, L., Mojsilovic-Petrovic, J., Tran, V., Kalb, R.G., Shorter, J., and Bonini, N.M. (2018). Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Molecular Cell *71*, 703-717.e9.
- McKay, B.C., and Cabrita, M.A. (2013). Arresting transcription and sentencing the cell: The consequences of blocked transcription. Mechanisms of Ageing and Development *134*, 243–252.
- McMillan, C.T., Russ, J., Wood, E.M., Irwin, D.J., Grossman, M., McCluskey, L., Elman, L., Van Deerlin, V., and Lee, E.B. (2015). C9orf72 promoter hypermethylation is neuroprotective: Neuroimaging and neuropathologic evidence. Neurology *84*, 1622–1630.
- Meehan, T.F., Conte, N., West, D.B., Jacobsen, J.O., Mason, J., Warren, J., Chen, C.-K., Tudose, I., Relac, M., Matthews, P., et al. (2017). Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium. Nat Genet *49*, 1231–1238.
- Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O.C., Pietrzyk, J., et al. (2014). C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science *345*, 1192–1194.
- Mizielinska, S., Ridler, C.E., Balendra, R., Thoeng, A., Woodling, N.S., Grässer, F.A., Plagnol, V., Lashley, T., Partridge, L., and Isaacs, A.M. (2017). Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration. Acta Neuropathologica Communications *5*, 29.
- Mokas, S., Mills, J.R., Garreau, C., Fournier, M.-J., Robert, F., Arya, P., Kaufman, R.J., Pelletier, J., and Mazroui, R. (2009). Uncoupling Stress Granule Assembly and Translation Initiation Inhibition. Mol Biol Cell *20*, 2673–2683.
- Mori, K., Lammich, S., Mackenzie, I.R.A., Forné, I., Zilow, S., Kretzschmar, H., Edbauer, D., Janssens, J., Kleinberger, G., Cruts, M., et al. (2013). hnRNP A3 binds to GGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with <Emphasis Type="Italic">C9orf72</Emphasis> mutations. Acta Neuropathol *125*, 413–423.
- Mueller, C.L., Porter, S.E., Hoffman, M.G., and Jaehning, J.A. (2004). The Paf1 Complex Has Functions Independent of Actively Transcribing RNA Polymerase II. Molecular Cell *14*, 447–456.
- Mukherjee, A.K., Sharma, S., and Chowdhury, S. (2019). Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends in Genetics *35*, 129–144.
- Naguib, A., Sandmann, T., Yi, F., Watts, R.J., Lewcock, J.W., and Dowdle, W.E. (2019). SUPT4H1 Depletion Leads to a Global Reduction in RNA. Cell Reports *26*, 45-53.e4.
- Nakamori, M., Pearson, C.E., and Thornton, C.A. (2011). Bidirectional transcription stimulates expansion and contraction of expanded (CTG)•(CAG) repeats. Hum Mol Genet 20, 580–588.

Nguyen, L., Cleary, J.D., and Ranum, L.P.W. (2019). Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annual Review of Neuroscience 42.

Niblock, M., Smith, B.N., Lee, Y.-B., Sardone, V., Topp, S., Troakes, C., Al-Sarraj, S., Leblond, C.S., Dion, P.A., Rouleau, G.A., et al. (2016). Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol Commun *4*.

Nielsen, K.H., Behrens, M.A., He, Y., Oliveira, C.L.P., Sottrup Jensen, L., Hoffmann, S.V., Pedersen, J.S., and Andersen, G.R. (2011). Synergistic activation of eIF4A by eIF4B and eIF4G. Nucleic Acids Research *39*, 2678–2689.

Nik, S., and Bowman, T.V. (2019). Splicing and neurodegeneration: Insights and mechanisms. Wiley Interdisciplinary Reviews: RNA *0*, e1532.

Nussbacher, J.K., Tabet, R., Yeo, G.W., and Lagier-Tourenne, C. (2019). Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron *102*, 294–320.

Omer, T., Finegan, E., Hutchinson, S., Doherty, M., Vajda, A., McLaughlin, R.L., Pender, N., Hardiman, O., and Bede, P. (2017). Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration *18*, 611–623.

Ostrowski, L.A., Hall, A.C., Szafranski, K.J., Oshidari, R., Abraham, K.J., Chan, J.N.Y., Krustev, C., Zhang, K., Wang, A., Liu, Y., et al. (2018). Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats. Communications Biology *1*.

Penheiter, K.L., Washburn, T.M., Porter, S.E., Hoffman, M.G., and Jaehning, J.A. (2005). A Posttranscriptional Role for the Yeast Paf1-RNA Polymerase II Complex Is Revealed by Identification of Primary Targets. Molecular Cell *20*, 213–223.

Perego, M.G.L., Taiana, M., Bresolin, N., Comi, G.P., and Corti, S. (2018). R-Loops in Motor Neuron Diseases. Mol Neurobiol 1–11.

Plaschka, C., Lin, P.-C., Charenton, C., and Nagai, K. (2018). Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature *559*, 419.

Poli, J., Gerhold, C.-B., Tosi, A., Hustedt, N., Seeber, A., Sack, R., Herzog, F., Pasero, P., Shimada, K., Hopfner, K.-P., et al. (2016). Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev. *30*, 337–354.

Porter, S.E., Washburn, T.M., Chang, M., and Jaehning, J.A. (2002). The Yeast Paf1-RNA Polymerase II Complex Is Required for Full Expression of a Subset of Cell Cycle-Regulated Genes. Eukaryot Cell *1*, 830–842.

Prudencio, M., Belzil, V.V., Batra, R., Ross, C.A., Gendron, T.F., Pregent, L.J., Murray, M.E., Overstreet, K.K., Piazza-Johnston, A.E., Desaro, P., et al. (2015). Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci *18*, 1175–1182.

Prudencio, M., Gonzales, P.K., Cook, C.N., Gendron, T.F., Daughrity, L.M., Song, Y., Ebbert, M.T.W., van Blitterswijk, M., Zhang, Y.-J., Jansen-West, K., et al. (2017). Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet *26*, 3421–3431.

Raiber, E.-A., Kranaster, R., Lam, E., Nikan, M., and Balasubramanian, S. (2012). A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Research *40*, 1499.

Reddy, K., Schmidt, M.H.M., Geist, J.M., Thakkar, N.P., Panigrahi, G.B., Wang, Y.-H., and Pearson, C.E. (2014). Processing of double-R-loops in (CAG)-(CTG) and C9orf72 (GGGCC)-(GGCCCC) repeats causes instability. Nucleic Acids Res *42*, 10473–10487.

Reese, J.C. (2013). The control of elongation by the yeast Ccr4-Not complex. Biochim Biophys Acta *1829*, 127–133.

Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.

Riemslagh, F.W., Lans, H., Seelaar, H., Severijnen, L.-A.W.F.M., Melhem, S., Vermeulen, W., Aronica, E., Pasterkamp, R.J., Swieten, J.C. van, and Willemsen, R. (2019). HR23B pathology preferentially co-localizes with p62, pTDP-43 and poly-GA in C9ORF72-linked frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathologica Communications 7.

Ringwald, M., Iyer, V., Mason, J.C., Stone, K.R., Tadepally, H.D., Kadin, J.A., Bult, C.J., Eppig, J.T., Oakley, D.J., Briois, S., et al. (2011). The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res *39*, D849–D855.

Rogers, G.W., Richter, N.J., Lima, W.F., and Merrick, W.C. (2001). Modulation of the Helicase Activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. *276*, 30914–30922.

Rozovsky, N., Butterworth, A.C., and Moore, M.J. (2008). Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA *14*, 2136–2148.

Russ, J., Liu, E.Y., Wu, K., Neal, D., Suh, E., Irwin, D.J., McMillan, C.T., Harms, M.B., Cairns, N.J., Wood, E.M., et al. (2015). Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol *129*, 39–52.

Salinas-Rios, V., Belotserkovskii, B.P., and Hanawalt, P.C. (2011). DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 39, 7444–7454.

Sareen, D., O'Rourke, J.G., Meera, P., Muhammad, A.K.M.G., Grant, S., Simpkinson, M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., et al. (2013). Targeting RNA foci in iPSC-derived motor neurons from ALS patients with C9ORF72 repeat expansion. Sci Transl Med *5*, 208ra149.

Satoh, J., Yamamoto, Y., Kitano, S., Takitani, M., Asahina, N., and Kino, Y. (2014). Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. J Cent Nerv Syst Dis *6*, 69–78.

- Sauer, M., and Paeschke, K. (2017). G-quadruplex unwinding helicases and their function *in vivo*. Biochemical Society Transactions *45*, 1173–1182.
- Schönecker, S., Neuhofer, C., Otto, M., Ludolph, A., Kassubek, J., Landwehrmeyer, B., Anderl-Straub, S., Semler, E., Diehl-Schmid, J., Prix, C., et al. (2018). Atrophy in the Thalamus But Not Cerebellum Is Specific for C9orf72 FTD and ALS Patients An Atlas-Based Volumetric MRI Study. Front Aging Neurosci 10.
- Selth, L.A., Sigurdsson, S., and Svejstrup, J.Q. (2010). Transcript Elongation by RNA Polymerase II. Annu. Rev. Biochem. 79, 271–293.
- Sen, N.D., Zhou, F., Harris, M.S., Ingolia, N.T., and Hinnebusch, A.G. (2016). eIF4B stimulates translation of long mRNAs with structured 5' UTRs and low closed-loop potential but weak dependence on eIF4G. Proc Natl Acad Sci U S A *113*, 10464–10472.
- Shao, W., Kim, H.-S., Cao, Y., Xu, Y.-Z., and Query, C.C. (2012). A U1-U2 snRNP Interaction Network during Intron Definition. Molecular and Cellular Biology *32*, 470–478.
- Shieh, S.-Y., and Bonini, N.M. (2011). Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila. Human Molecular Genetics *20*, 4810.
- Shivji, M.K.K., Renaudin, X., Williams, Ç.H., and Venkitaraman, A.R. (2018). BRCA2 Regulates Transcription Elongation by RNA Polymerase II to Prevent R-Loop Accumulation. Cell Reports 22, 1031–1039.
- Sikorski, T.W., Ficarro, S.B., Holik, J., Kim, T., Rando, O.J., Marto, J.A., and Buratowski, S. (2011). Sub1 and RPA associate with RNA Polymerase II at different stages of transcription. Mol Cell *44*, 397–409.
- Simone, R., Balendra, R., Moens, T.G., Preza, E., Wilson, K.M., Heslegrave, A., Woodling, N.S., Niccoli, T., Gilbert-Jaramillo, J., Abdelkarim, S., et al. (2018). G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol Med *10*, 22–31.
- Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., et al. (2011). A conditional knockout resource for the genome—wide study of mouse gene function. Nature *474*, 337–342.
- Su, Z., Zhang, Y., Gendron, T.F., Bauer, P.O., Chew, J., Yang, W.-Y., Fostvedt, E., Jansen-West, K., Belzil, V.V., Desaro, P., et al. (2014). Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron *83*, 1043–1050.
- Sun, J., Rothschild, G., Pefanis, E., and Basu, U. (2013). Transcriptional stalling in B-lymphocytes. Transcription *4*, 127–135.
- Sun, Y., Atas, E., Lindqvist, L., Sonenberg, N., Pelletier, J., and Meller, A. (2012). The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase. Nucleic Acids Res *40*, 6199–6207.
- Szlachta, K., Thys, R.G., Atkin, N.D., Pierce, L.C.T., Bekiranov, S., and Wang, Y.-H. (2018). Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biology *19*, 89.

- Tabet, R., Schaeffer, L., Freyermuth, F., Jambeau, M., Workman, M., Lee, C.-Z., Lin, C.-C., Jiang, J., Jansen-West, K., Abou-Hamdan, H., et al. (2018). CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nature Communications *9*, 152.
- Tao, Z., Wang, H., Xia, Q., Li, K., Li, K., Jiang, X., Xu, G., Wang, G., and Ying, Z. (2015). Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet *24*, 2426–2441.
- Thys, R.G., and Wang, Y.-H. (2015). DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene. J. Biol. Chem. *290*, 28953–28962.
- Todd, P.K., Oh, S.Y., Krans, A., He, F., Sellier, C., Frazer, M., Renoux, A.J., Chen, K., Scaglione, K.M., Basrur, V., et al. (2013). CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron *78*, 440–455.
- Todd Peter K., and Paulson Henry L. (2010). RNA-mediated neurodegeneration in repeat expansion disorders. Annals of Neurology *67*, 291–300.
- Van Oss, S.B., Cucinotta, C.E., and Arndt, K.M. (2017). Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation. Trends in Biochemical Sciences *42*, 788–798.
- Vatsavayai, S.C., Nana, A.L., Yokoyama, J.S., and Seeley, W.W. (2019). C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol *137*, 1–26.
- Vaysse, C., Philippe, C., Martineau, Y., Quelen, C., Hieblot, C., Renaud, C., Nicaise, Y., Desquesnes, A., Pannese, M., Filleron, T., et al. (2015). Key contribution of eIF4H-mediated translational control in tumor promotion. Oncotarget *6*, 39924–39940.
- Verma-Gaur, J., Rao, S.N., Taya, T., and Sadhale, P. (2008). Genomewide Recruitment Analysis of Rpb4, a Subunit of Polymerase II in Saccharomyces cerevisiae, Reveals Its Involvement in Transcription Elongation. Eukaryotic Cell 7, 1009–1018.
- Wahba, L., Amon, J.D., Koshland, D., and Vuica-Ross, M. (2011). RNase H and Multiple RNA Biogenesis Factors Cooperate to Prevent RNA:DNA Hybrids from Generating Genome Instability. Molecular Cell *44*, 978–988.
- Wahl, M.C., Will, C.L., and Lührmann, R. (2009). The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell *136*, 701–718.
- Walker, C., Herranz-Martin, S., Karyka, E., Liao, C., Lewis, K., Elsayed, W., Lukashchuk, V., Chiang, S.-C., Ray, S., Mulcahy, P.J., et al. (2017). C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nature Neuroscience *20*, 1225.
- Wang, Z.-F., Ursu, A., Childs-Disney, J.L., Guertler, R., Yang, W.-Y., Bernat, V., Rzuczek, S.G., Fuerst, R., Zhang, Y.-J., Gendron, T.F., et al. (2019). The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chemical Biology *26*, 179-190.e12.
- Westergard, T., McAvoy, K., Russell, K., Wen, X., Pang, Y., Morris, B., Pasinelli, P., Trotti, D., and Haeusler, A. (2019). Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress. EMBO Molecular Medicine e9423.

- Xi, Z., Zinman, L., Moreno, D., Schymick, J., Liang, Y., Sato, C., Zheng, Y., Ghani, M., Dib, S., Keith, J., et al. (2013). Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am. J. Hum. Genet. *92*, 981–989.
- Xi, Z., Rainero, I., Rubino, E., Pinessi, L., Bruni, A., Maletta, R., Nacmias, B., Sorbi, S., Galimberti, D., Surace, E., et al. (2014). Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. 23, 5630–5637.
- Xi, Z., Zhang, M., Bruni, A.C., Maletta, R.G., Colao, R., Fratta, P., Polke, J.M., Sweeney, M.G., Mudanohwo, E., Nacmias, B., et al. (2015). The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. *129*, 715–727.
- Xu, Z., Poidevin, M., Li, X., Li, Y., Shu, L., Nelson, D.L., Li, H., Hales, C.M., Gearing, M., Wingo, T.S., et al. (2013). Expanded GGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A *110*, 7778–7783.
- Yan, C., Wan, R., and Shi, Y. (2019). Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Cold Spring Harb Perspect Biol *11*, a032409.
- Yang, Y., Li, W., Hoque, M., Hou, L., Shen, S., Tian, B., and Dynlacht, B.D. (2016). PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet 12.
- Yin, S., Lopez-Gonzalez, R., Kunz, R.C., Gangopadhyay, J., Borufka, C., Gygi, S.P., Gao, F.-B., and Reed, R. (2017). Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause mis-splicing in ALS/FTD patients. Cell Rep *19*, 2244–2256.
- Yu, Y., Chi, B., Xia, W., Gangopadhyay, J., Yamazaki, T., Winkelbauer-Hurt, M.E., Yin, S., Eliasse, Y., Adams, E., Shaw, C.E., et al. (2015a). U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic Acids Res 43, 3208–3218.
- Yu, Z., Goodman, L.D., Shieh, S.-Y., Min, M., Teng, X., Zhu, Y., and Bonini, N.M. (2015b). A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Hum. Mol. Genet. *24*, 954–962.
- Zamiri, B., Reddy, K., Macgregor, R.B., and Pearson, C.E. (2014). TMPyP4 Porphyrin Distorts RNA G-quadruplex Structures of the Disease-associated r(GGGGCC)n Repeat of the C9orf72 Gene and Blocks Interaction of RNA-binding Proteins. J. Biol. Chem. 289, 4653–4659.
- Zamiri, B., Mirceta, M., Abu-Ghazalah, R., Wold, M.S., Pearson, C.E., and Macgregor, R.B. (2018). Stress-induced acidification may contribute to formation of unusual structures in C9orf72 repeats. Biochimica et Biophysica Acta (BBA) General Subjects *1862*, 1482–1491.
- Zeier, Z., Esanov, R., Belle, K.C., Volmar, C.-H., Johnstone, A.L., Halley, P., DeRosa, B.A., Khoury, N., van Blitterswijk, M., Rademakers, R., et al. (2015). Bromodomain inhibitors regulate the C9ORF72 locus in ALS. Experimental Neurology *271*, 241–250.
- Zhan, X., Yan, C., Zhang, X., Lei, J., and Shi, Y. (2018). Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Cell Research 28, 1129.

Zhang, Y., Smith, A.D., Renfrow, M.B., and Schneider, D.A. (2010). The RNA Polymerase-associated Factor 1 Complex (Paf1C) Directly Increases the Elongation Rate of RNA Polymerase I and Is Required for Efficient Regulation of rRNA Synthesis. J. Biol. Chem. 285, 14152–14159.

Zhang, Y.-J., Gendron, T.F., Ebbert, M.T.W., O'Raw, A.D., Yue, M., Jansen-West, K., Zhang, X., Prudencio, M., Chew, J., Cook, C.N., et al. (2018). Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat. Med. *24*, 1136–1142.

Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol Cells *41*, 818–829.

Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D., Margolis, J., Peterson, M., Markowski, T.W., Ingram, M.A.C., et al. (2011). Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U.S.A. *108*, 260–265.

APPENDIX 1: ABREVIATIONS

80S ribosome (subunits: 40S and 60S ribosomes)

ALS (amyotrophic lateral sclerosis)

ASO (antisense oligonucleotides)

C9- ALS/FTD (ALS/FTD cases lacking the G4C2 expansion in C9orf72)

C9+ ALS/FTD (ALS/FTD cases harboring the G4C2 expansion in C9orf72)

CAG (expanded (CAG)30+ mutation found in multiple neurological disorders)

CDC73 (component of PAF1C)

Ctr9 (component of PAF1C)

DPR (dipeptide repeats; includes GA, GR, GP, PA, PR)

DSIF (DRB-sensitivity-inducing transcription factor complex; subunits: Spt4 and Spt5)

elF (eukaryotic initiation factor)

elF4F complex (subunits: elF4E, elF4G, elF4A)

FTD (frontotemporal degeneration)

G4C2 (expanded (GGGGCC)30+ mutation found within C9orf72)

G4C2II**G2C4** (sense-G4C2 and antisense-G2C4; bidirectional gene products from the G4C2 mutation within C9orrf72)

GA (glycine-alanine dipeptide; RAN-translation product from sense-G4C2 RNA)

GC-rich (DNA or RNA enriched for guanine and cytosine bases)

GFP (green fluorescent protein)

GP (glycine-proline dipeptide; RAN-translation product from sense-G4C2 and antisense-G2C4 RNA)

GR (glycine-arginine dipeptide; RAN-translation product from sense-G4C2 RNA; highly toxic)

IRES-translation (internal ribosome entry-site translation)

ISR (integrated stress response)

Leo1 (component of PAF1C)

LDS ("leader sequence"; truncated 5' UTR derived from the 114bp sequence found upstream of G4C2 in intron 1 of *C9orf72* in C9+ ALS/FTD patients)

NELF (Negative Elongation Factor)

P-TEFb (positive elongation factor-b; also called CDK9)

PA (proline-alanine dipeptide; RAN-translation product from antisense-G2C4 RNA)

Paf1 (component of PAF1C)

PAF1C (Polymerase II Associating Factor 1 transcription elongation complex; subunits:

Paf1, Leo1, CDC73, Ctr9, Rtf1)

PIC (preinitiation complex; subunits: 40s ribosome, eIF1, eIF1A, eIF5, eIF3 complex)

poly(A) tail (3' mRNA modification of a polyadenylated tail)

PR (proline-arginine dipeptide; RAN-translation product from antisense-G2C4 RNA; highly toxic)

qPCR (quantitative reverse transcribed polymerase chain reaction; also **qRT-PCR**)

RAN-translation (Repeat Associated Non-AUG translation; also **RANT**)

RBP (RNA binding protein)

RNAPII (RNA polymerase II)

RRM (RNA recognition motif)

Rtf1 (component of PAF1C)

Spt4 (component of DSIF)

Spt5 (component of DSIF)

TDP-43 (Tar DNA-binding protein -43)

UTR (untranslated-region)

WB (western immunoblot)

WT (wild-type)

APPENDIX 2: CHAPTER 2 SUPPLEMENTARY TABLES, FIGURES, AND DATA

Chapter 2: Supplementary tables

Table S2-1: detailed sampling/ reproducibility/ statistics

Fig. 1b: (no statistics)							
Sample size (n)	30 per sar	30 per sample					
Independent Expt. Runs	2 runs						
Data point			culated from PCR-p and divided by 6 fo				
Fig. 1c: 1-way ANOVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value		
Treatment (between columns)	0.1391	3	0.04637	F (3, 46) = 0.9539	P=0.4225		
Residual (within columns)	2.236	46	0.04861				
Total	2.375	49					
Sample size (n)	30 per sample						
Independent Expt. Runs	3-5 runs w/ biological triplicates						
Data point	normalize	d band densit	y per well				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value		
(G4C2)8 vs. (G4C2)29	-0.1222	-0.3525 to 0.1080	No	ns	0.4856		
(G4C2)8 vs. (G4C2)49 (II)	0.09463	-0.3249 to 0.1356	No	ns	0.6839		
(G4C2)8 vs. (G4C2)49 (III)	0.01956	-0.2107 to 0.2498	No	ns	0.9956		
(G4C2)29 vs. (G4C2)49 (II)	0.02758	-0.2027 to 0.2578	No	ns	0.9880		
(G4C2)29 vs. (G4C2)49 (III)	0.1418	-0.08847 to 0.3720	No	ns	0.3566		

(G4C2)49 (II) vs. (G4C2)49 (III)	0.1142	-0.1160 to 0.3444	No	ns	0.5428			
GO-term analyses (Fig	g. 1g-h, Fig.	. 2c-d, and Su	ıp Fig. 1d)					
p-value cut-off	> 0.001							
Enrichment score cut-off	< 3.00							
Fig. 3b: 1-way ANOVA	\							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	15173	5	3035	F (5, 35) = 30.19	P<0.0001			
Residual (within columns)	3518	35	100.5					
Total	18691	40						
Sample sizes (n)		Control (9); Paf1 RNAi (7); Leo1 RNAi (6), CDC73 RNAi (8); Ctr9 RNAi (6); Rtf1 RNAi (5)						
Independent Expt. Runs	2 with >4 animals per genotype							
Data point	retina depth from 1 eye per animal							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. Paf1	-31.02	-46.25 to - 15.8	Yes	***	<0.0001			
Control vs. Leo1	-33.82	-49.75 to - 17.9	Yes	***	<0.0001			
Control vs. CDC73	-49.71	-64.39 to - 35.03	Yes	***	<0.0001			
Control vs. Ctr9	-55.68	-71.61 to - 39.76	Yes	***	<0.0001			
Control vs. Rtf1	-28.4	-45.25 to - 11.55	Yes	***	0.0002			
Paf1 vs. Leo1	-2.799	-19.61 to 14.01	No	ns	0.9958			
Paf1 vs. CDC73	-18.68	-34.32 to - 3.048	Yes	*	0.0115			

Paf1 vs. Ctr9	-24.66	-41.47 to - 7.851	Yes	**	0.0012	
Paf1 vs. Rtf1	2.621	-15.07 to 20.31	No	ns	0.9976	
Leo1 vs. CDC73	-15.89	-32.2 to 0.431	No	ns	0.0601	
Leo1 vs. Ctr9	-21.86	-39.3 to - 4.418	Yes	**	0.0072	
Leo1 vs. Rtf1	5.42	-12.87 to 23.71	No	ns	0.9457	
CDC73 vs. Ctr9	-5.975	-22.29 to 10.34	No	ns	0.8766	
CDC73 vs. Rtf1	21.3	4.081 to 38.53	Yes	**	0.0082	
Ctr9 vs. Rtf1	27.28	8.986 to 45.57	Yes	***	0.001	
Fig. 3d: 1-way ANOVA						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	449.3	5	89.87	F (5, 35) = 2.209	P=0.0754	
Residual (within columns)	1424	35	40.68			
Total	1873	40				
Sample sizes (n)	Control (9 (5); Rtf1 F		(5); Leo1 RNAi (9)	, CDC73 RI	NAi (9); Ctr9 F	RNAi
Independent Expt. Runs	2 with >4	animals per g	enotype			
Data point	retina dep	th from 1 eye	per animal			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. Paf1	-1.877	-12.6 to 8.843	No	ns	0.9947	
Control vs. Leo1	-9.136	-18.2 to - 0.0763	Yes	*	0.0471	

Control vs. CDC73	-5.15	-14.21 to 3.91	No	ns	0.5328		
Control vs. Ctr9	-7.211	-17.93 to 3.509	No	ns	0.3483		
Control vs. Rtf1	-4.944	-16.49 to 6.606	No	ns	0.7884		
Paf1 vs. Leo1	-7.26	-17.98 to 3.46	No	ns	0.3411		
Paf1 vs. CDC73	-3.273	-13.99 to 7.447	No	ns	0.9387		
Paf1 vs. Ctr9	-5.334	-17.49 to 6.822	No	ns	0.7709		
Paf1 vs. Rtf1	-3.067	-15.96 to 9.826	No	ns	0.9786		
Leo1 vs. CDC73	3.986	-5.074 to 13.05	No	ns	0.769		
Leo1 vs. Ctr9	1.926	-8.794 to 12.65	No	ns	0.994		
Leo1 vs. Rtf1	4.193	-7.357 to 15.74	No	ns	0.8805		
CDC73 vs. Ctr9	-2.061	-12.78 to 8.659	No	ns	0.9918		
CDC73 vs. Rtf1	0.2064	-11.34 to 11.76	No	ns	>0.9999		
Ctr9 vs. Rtf1	2.267	-10.63 to 15.16	No	ns	0.9946		
Fig. 3e: 1-way ANOVA	\						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value		
Treatment (between columns)	14205	5	2841	F (5, 29) = 107.9	P<0.0001		
Residual (within columns)	763.8	29	26.34				
Total	14969	34					
Sample sizes (n) Control (117); Paf1 RNAi (98); Leo1 RNAi (108), CDC73 RNAi (103); Ctr9 RNAi (120); Rtf1 RNAi (115)							

Independent Expt. Runs	2 with >90 animals per genotype						
Data point	mean % a genotype	mean % animals that climb per tube; 19+/-2.1 animals per tube for each genotype					
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value		
Control vs. dRtf1	-55.67	-64.7 to - 46.63	Yes	***	<0.0001		
Control vs. dCDC73	-54.83	-63.87 to - 45.8	Yes	***	<0.0001		
Control vs. dLeo1	-52.17	-61.2 to - 43.13	Yes	***	<0.0001		
Control vs. dPaf1	-51.33	-60.81 to - 41.86	Yes	***	<0.0001		
Control vs. dCtr9	-52.17	-61.2 to - 43.13	Yes	***	<0.0001		
dRtf1 vs. dCDC73	0.8333	-8.199 to 9.866	No	ns	0.9997		
dRtf1 vs. dLeo1	3.5	-5.533 to 12.53	No	ns	0.8421		
dRtf1 vs. dPaf1	4.333	-5.14 to 13.81	No	ns	0.7299		
dRtf1 vs. dCtr9	3.5	-5.533 to 12.53	No	ns	0.8421		
dCDC73 vs. dLeo1	2.667	-6.366 to 11.7	No	ns	0.9434		
dCDC73 vs. dPaf1	3.5	-5.974 to 12.97	No	ns	0.8665		
dCDC73 vs. dCtr9	2.667	-6.366 to 11.7	No	ns	0.9434		
dLeo1 vs. dPaf1	0.8333	-8.64 to 10.31	No	ns	0.9998		
dLeo1 vs. dCtr9	0	-9.033 to 9.033	No	ns	>0.9999		
dPaf1 vs. dCtr9	-0.8333	-10.31 to 8.64	No	ns	0.9998		

Fig. 3f: 1-way ANOVA						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	38.13	6	6.354	F (6, 56) = 15.66	P<0.0001	
Residual (within columns)	22.73	56	0.4059			
Total	60.86	62				
Sample sizes (n)			(10); Paf1 RNAi (8); Rtf1 RNAi (9)	10); Leo1 R	NAi (7), CDC	73
Independent Expt. Runs	2 with >5	animals per g	enotype			
Data point	vacuole s	core for 1 anii	mal			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
(G4C2)49 vs. <i>dPaf1</i>	0.4	-0.4713 to 1.271	No	ns	0.7974	
(G4C2)49 vs. dLeo1	0.4	-0.5601 to 1.36	No	ns	0.8608	
(G4C2)49 vs. dCDC73	1.3	0.4287 to 2.171	Yes	***	0.0005	
(G4C2)49 vs. dCtr9	1.025	0.1009 to 1.949	Yes	*	0.0205	
(G4C2)49 vs. dRtf1	1.622	0.7271 to 2.517	Yes	***	<0.0001	
(G4C2)49 vs. (G4C2)0	2.4	1.505 to 3.295	Yes	***	<0.0001	
dPaf1 vs. dLeo1	0	-0.9601 to 0.9601	No	ns	>0.9999	
dPaf1 vs. dCDC73	0.9	0.02871 to 1.771	Yes	*	0.0386	
dPaf1 vs. dCtr9	0.625	-0.2991 to 1.549	No	ns	0.3854	
dPaf1 vs. dRtf1	1.222	0.3271 to 2.117	Yes	**	0.0019	

dPaf1 vs. (G4C2)0	2	1.105 to 2.895	Yes	***	<0.0001			
dLeo1 vs. dCDC73	0.9	-0.06012 to 1.86	No	ns	0.08			
dLeo1 vs. dCtr9	0.625	-0.3833 to 1.633	No	ns	0.4918			
dLeo1 vs. dRtf1	1.222	0.2404 to 2.204	Yes	**	0.0061			
dLeo1 vs. (G4C2)0	2	1.018 to 2.982	Yes	***	<0.0001			
dCDC73 vs. dCtr9	-0.275	-1.199 to 0.6491	No	ns	0.9695			
dCDC73 vs. dRtf1	0.3222	-0.5729 to 1.217	No	ns	0.9253			
dCDC73 vs. (G4C2)0	1.1	0.2048 to 1.995	Yes	**	0.0071			
dCtr9 vs. dRtf1	0.5972	-0.3495 to 1.544	No	ns	0.4703			
dCtr9 vs. (G4C2)0	1.375	0.4283 to 2.322	Yes	***	0.0008			
dRtf1 vs. (G4C2)0	0.7778	-0.1406 to 1.696	No	ns	0.1489			
Fig. 3g: Log-rank (Mar	ntel-Cox) te	st and Gehan	-Breslow-Wilcoxo	n test				
Sample Sizes (n)		Control (198	3); CDC73 RNAi (1	97)				
Independent Expt Run	ıs	2 repeats wi	th >150 animals p	>150 animals per genotype				
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio		
Log-rank (Mantel- Cox)	62.43	1	<0.0001	Yes	***	0.818 5 to 1.222/		
Gehan-Breslow- Wilcoxon	49.24	1	<0.0001	Yes	***	0.818 5 to 1.222		
Fig. 4a, top: 2-way AN	OVA							
ANOVA table, Top	SS	DF	MS	F (DFn, DFd)	P value			
211								

Interaction	0.7888	12	0.06573	F (12, 126) = 2.309	P=0.0107	
Row Factor	4.781	6	0.7969	F (6, 126) = 28	P<0.0001	
Column Factor	1.222	2	0.6109	F (2, 126) = 21.46	P<0.0001	
Residual	3.586	126	0.02846			
Sample size (n)	25					
Independent Expt. Runs	2 for (G40 triplicates	C2)8 and (G40	C2)29; 3 for (G4C2	2)49; all runs	s included bio	logical
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control						
(G4C2)8 vs.	-	-0.2364 to	No	ns	0.9558	
(G4C2)29	0.02547	0.1854	140	110	0.0000	
(G4C2)8 vs. (G4C2)49	0.02856	-0.2172 to 0.1601	No	ns	0.9314	
(G4C2)29 vs. (G4C2)49	0.00308	-0.214 to 0.2078	No	ns	0.9993	
dSpt4						
(G4C2)8 vs. (G4C2)29	-0.0468	-0.2778 to 0.1842	No	ns	0.8807	
(G4C2)8 vs. (G4C2)49	0.1073	-0.1036 to 0.3182	No	ns	0.4512	
(G4C2)29 vs. (G4C2)49	0.1541	-0.05676 to 0.365	No	ns	0.1968	
dPaf1	<u>I</u>					1
(G4C2)8 vs. (G4C2)29	0.00604 8	-0.225 to 0.2371	No	ns	0.9979	
(G4C2)8 vs. (G4C2)49	0.2943	0.06331 to 0.5254	Yes	**	0.0085	

(G4C2)29 vs. (G4C2)49	0.2883	0.05727 to 0.5193	Yes	*	0.0102				
dLeo1									
(G4C2)8 vs. (G4C2)29	0.1915	-0.03957 to 0.4225	No	ns	0.1251				
(G4C2)8 vs. (G4C2)49	0.4914	0.2805 to 0.7023	Yes	***	<0.0001				
(G4C2)29 vs. (G4C2)49	0.3	0.08907 to 0.5109	Yes	**	0.0028				
dCDC73	l					l			
(G4C2)8 vs. (G4C2)29	0.06161	-0.2926 to 0.1694	No	ns	0.8025				
(G4C2)8 vs. (G4C2)49	0.1718	-0.03906 to 0.3827	No	ns	0.1338				
(G4C2)29 vs. (G4C2)49	0.2334	0.02256 to 0.4443	Yes	*	0.0261				
dCtr9						l			
(G4C2)8 vs. (G4C2)29	-0.1007	-0.3317 to 0.1303	No	ns	0.5568				
(G4C2)8 vs. (G4C2)49	0.1994	-0.01145 to 0.4103	No	ns	0.068				
(G4C2)29 vs. (G4C2)49	0.3002	0.08928 to 0.5111	Yes	**	0.0028				
dRtf1					<u> </u>				
(G4C2)8 vs. (G4C2)29	0.00819 5	-0.2392 to 0.2228	No	ns	0.9961				
(G4C2)8 vs. (G4C2)49	0.05067	-0.1602 to 0.2616	No	ns	0.8364				
(G4C2)29 vs. (G4C2)49	0.05886	-0.152 to 0.2698	No	ns	0.7859				
Fig. 4a, bottom, (G4C2	2)8: 1-way <i>i</i>	ANOVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value				
Treatment (between	1.898	6	0.3163	F (6, 38)	P<0.0001				

columns)				= 13.99		
Residual (within columns)	0.8592	38	0.02261			
Total	2.757	44				
Independent Expt. Runs	(same dat	a as 4a, top)				
Data point	(same dat	a as 4a, top)				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dSpt4	0.3869	0.1403 to 0.6335	Yes	***	0.0004	
Control vs. dPaf1	0.08589	-0.1607 to 0.3325	No	ns	0.9291	
Control vs. dLeo1	0.0158	-0.2308 to 0.2624	No	ns	>0.9999	
Control vs. dCDC73	0.3731	0.1265 to 0.6196	Yes	***	0.0006	
Control vs. dCtr9	0.3926	0.146 to 0.6391	Yes	***	0.0003	
Control vs. dRtf1	0.5456	0.299 to 0.7921	Yes	***	<0.0001	
dSpt4 vs. dPaf1	-0.301	-0.5711 to -0.03088	Yes	*	0.0206	
dSpt4 vs. dLeo1	-0.3711	-0.6412 to -0.101	Yes	**	0.0022	
dSpt4 vs. dCDC73	0.01383	-0.284 to 0.2563	No	ns	>0.9999	
dSpt4 vs. dCtr9	0.00566 7	-0.2645 to 0.2758	No	ns	>0.9999	
dSpt4 vs. dRtf1	0.1587	-0.1115 to 0.4288	No	ns	0.5385	
dPaf1 vs. dLeo1	0.07009	-0.3402 to 0.2	No	ns	0.9828	
dPaf1 vs. dCDC73	0.2872	0.01705 to 0.5573	Yes	*	0.0309	

dPaf1 vs. dCtr9	0.3067	0.03655 to 0.5768	Yes	*	0.0173	
dPaf1 vs. dRtf1	0.4597	0.1895 to 0.7298	Yes	***	0.0001	
dLeo1 vs. dCDC73	0.3573	0.08713 to 0.6274	Yes	**	0.0035	
dLeo1 vs. dCtr9	0.3768	0.1066 to 0.6469	Yes	**	0.0018	
dLeo1 vs. dRtf1	0.5298	0.2596 to 0.7999	Yes	***	<0.0001	
dCDC73 vs. dCtr9	0.0195	-0.2506 to 0.2896	No	ns	>0.9999	
dCDC73 vs. dRtf1	0.1725	-0.09762 to 0.4426	No	ns	0.4391	
dCtr9 vs. dRtf1	0.153	-0.1171 to 0.4231	No	ns	0.5803	
Fig. 4a, bottom, (G4C2	2)29: 1-way	ANOVA				
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	Indep enden t Expt. Runs
Treatment (between columns)	1.193	6	0.1989	F (6, 35) = 6.968	P<0.0001	2-3 w/ triplica tes
Residual (within columns)	0.9991	35	0.02855			
Total	2.193	41				
Independent Expt. Runs	(same dat	ta as 4a, top)				
Data point	(same dat	ta as 4a, top)				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dSpt4	0.3656	0.06063 to 0.6705	Yes	*	0.0104	
Control vs. dPaf1	0.1174	-0.1875 to 0.4223	No	ns	0.8881	

Control vs. dLeo1	0.2327	-0.0722 to 0.5377	No	ns	0.2347
Control vs. dCDC73	0.3369	0.03198 to 0.6418	Yes	*	0.0224
Control vs. dCtr9	0.3173	0.01237 to 0.6222	Yes	*	0.0369
Control vs. dRtf1	0.5628	0.2579 to 0.8678	Yes	***	<0.0001
dSpt4 vs. dPaf1	-0.2482	-0.5531 to 0.05677	No	ns	0.1751
dSpt4 vs. dLeo1	-0.1328	-0.4378 to 0.1721	No	ns	0.8177
dSpt4 vs. dCDC73	0.02865	-0.3336 to 0.2763	No	ns	>0.9999
dSpt4 vs. dCtr9	0.04826	-0.3532 to 0.2567	No	ns	0.9988
dSpt4 vs. dRtf1	0.1973	-0.1077 to 0.5022	No	ns	0.4195
dPaf1 vs. dLeo1	0.1153	-0.1896 to 0.4202	No	ns	0.8961
dPaf1 vs. dCDC73	0.2195	-0.08542 to 0.5244	No	ns	0.2962
dPaf1 vs. dCtr9	0.1999	-0.105 to 0.5048	No	ns	0.4038
dPaf1 vs. dRtf1	0.4454	0.1405 to 0.7504	Yes	**	0.0011
dLeo1 vs. dCDC73	0.1042	-0.2007 to 0.4091	No	ns	0.9333
dLeo1 vs. dCtr9	0.08457	-0.2204 to 0.3895	No	ns	0.9752
dLeo1 vs. dRtf1	0.3301	0.02517 to 0.635	Yes	*	0.0267
dCDC73 vs. dCtr9	0.01961	-0.3245 to 0.2853	No	ns	>0.9999
dCDC73 vs. dRtf1	0.2259	-0.07901 to 0.5308	No	ns	0.2652

dCtr9 vs. dRtf1	0.2455	-0.0594 to 0.5505	No	ns	0.1843	
Fig. 4a, bottom, (G4C2	2)49: 1-way	ANOVA				
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	2.59	6	0.4317	F (6, 53) = 13.24	P<0.0001	
Residual (within columns)	1.728	53	0.03261			
Total	4.318	59				
Independent Expt. Runs	(same dat	ta as 4a, top)				
Data point	(same dat	ta as 4a, top)				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dSpt4	0.5228	0.2619 to 0.7836	Yes	***	<0.0001	
Control vs. dPaf1	0.4088	0.1171 to 0.7004	Yes	**	0.0014	
Control vs. dLeo1	0.5358	0.2749 to 0.7966	Yes	***	<0.0001	
Control vs. dCDC73	0.5734	0.3126 to 0.8343	Yes	***	<0.0001	
Control vs. dCtr9	0.6206	0.3597 to 0.8814	Yes	***	<0.0001	
Control vs. dRtf1	0.6248	0.3639 to 0.8856	Yes	***	<0.0001	
dSpt4 vs. dPaf1	-0.114	-0.4056 to 0.1776	No	ns	0.8919	
dSpt4 vs. dLeo1	0.013	-0.2478 to 0.2738	No	ns	>0.9999	
dSpt4 vs. dCDC73	0.05067	-0.2102 to 0.3115	No	ns	0.9967	
dSpt4 vs. dCtr9	0.09778	-0.1631 to 0.3586	No	ns	0.9097	

dSpt4 vs. dRtf1	0.102	-0.1588 to 0.3628	No	ns	0.8917	
dPaf1 vs. dLeo1	0.127	-0.1646 to 0.4186	No	ns	0.8326	
dPaf1 vs. dCDC73	0.1647	-0.127 to 0.4563	No	ns	0.5994	
dPaf1 vs. dCtr9	0.2118	-0.07985 to 0.5034	No	ns	0.2999	
dPaf1 vs. dRtf1	0.216	-0.07563 to 0.5076	No	ns	0.2778	
dLeo1 vs. dCDC73	0.03767	-0.2232 to 0.2985	No	ns	0.9994	
dLeo1 vs. dCtr9	0.08478	-0.1761 to 0.3456	No	ns	0.9527	
dLeo1 vs. dRtf1	0.089	-0.1718 to 0.3498	No	ns	0.9407	
dCDC73 vs. dCtr9	0.04711	-0.2137 to 0.308	No	ns	0.9978	
dCDC73 vs. dRtf1	0.05133	-0.2095 to 0.3122	No	ns	0.9965	
dCtr9 vs. dRtf1	0.00422	-0.2566 to 0.2651	No	ns	>0.9999	
Fig. 4b: 1-way ANOVA	\					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.9645	6	0.1608	F (6, 53) = 4.235	P=0.0015	
Residual (within columns)	2.012	53	0.03796			
Total	2.976	59				
Sample Size (n)	25					
Independent Expt. Runs	2 runs w/	biological trip	licates			
Data point	mean fold change for 1 replicate relative to mean of controls					
Tukey's multiple	Mean	95.00% CI	Significant?	Summar	Adjusted P	

comparisons test	Diff.	of diff.		у	Value	
		-0.4933				
Controls vs. dSpt4	-0.2208	to 0.05168	No	ns	0.1863	
Controls vs. dPaf1	0.0342 7	-0.2382 to 0.3068	No	ns	0.9997	
Controls vs. dLeo1	0.2632	- 0.009266 to 0.5358	No	ns	0.0647	
Controls vs. dCDC73	-0.1495	-0.422 to 0.123	No	ns	0.6312	
Controls vs. dCtr9	-0.1402	-0.4127 to 0.1323	No	ns	0.6973	
Controls vs. dRtf1	0.0947 3	-0.3672 to 0.1778	No	ns	0.9354	
dSpt4 vs. dPaf1	0.2551	-0.0896 to 0.5998	No	ns	0.2787	
dSpt4 vs. dLeo1	0.4841	0.1394 to 0.8288	Yes	**	0.0013	
dSpt4 vs. dCDC73	0.0713 2	-0.2734 to 0.416	No	ns	0.9953	
dSpt4 vs. dCtr9	0.0806	-0.2641 to 0.4253	No	ns	0.991	
dSpt4 vs. dRtf1	0.1261	-0.2186 to 0.4708	No	ns	0.9188	
dPaf1 vs. dLeo1	0.229	-0.1157 to 0.5737	No	ns	0.4054	
dPaf1 vs. dCDC73	-0.1838	-0.5285 to 0.1609	No	ns	0.6615	
dPaf1 vs. dCtr9	-0.1745	-0.5192 to 0.1702	No	ns	0.7129	
dPaf1 vs. dRtf1	-0.129	-0.4737 to 0.2157	No	ns	0.9103	
dLeo1 vs. dCDC73	-0.4128	-0.7575	Yes	**	0.0096	

		to - 0.06805				
dLeo1 vs. dCtr9	-0.4035	-0.7482 to - 0.05877	Yes	*	0.0121	
dLeo1 vs. dRtf1	-0.358	-0.7027 to - 0.01327	Yes	*	0.037	
dCDC73 vs. dCtr9	0.0092 83	-0.3354 to 0.354	No	ns	>0.9999	
dCDC73 vs. dRtf1	0.0547 8	-0.2899 to 0.3995	No	ns	0.9989	
dCtr9 vs. dRtf1	0.0455	-0.2992 to 0.3902	No	ns	0.9996	
Fig. 4c: 1-way ANOVA	·					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	1.546	5	0.3092	F (5, 31) = 21.2	P<0.0001	
Residual (within columns)	0.4523	31	0.01459			
Total	1.998	36				
Sample sizes (n)	Control (8 (6); Rtf1 F		(7); Leo1 RNAi (4)	, CDC73 RI	NAi (6); Ctr9 F	RNAi
Independent Expt. Runs	2 w/ >4 ar	nimals per ge	notype			
Data point	total fluore	escence per a	animal relative to m	nean of cont	trols	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dPaf1	0.3824	0.1927 to 0.5722	Yes	***	<0.0001	
Control vs. dLeo1	0.4228	0.1983 to 0.6473	Yes	****	<0.0001	
Control vs. dCDC73	0.5605	0.3625 to 0.7585	Yes	***	<0.0001	

		0.6974	Yes		****	<0.0001			
Control vs. dRtf1	0.5118	0.3138 to 0.7098	Yes		***	<0.0001			
dPaf1 vs. dLeo1	0.0404	-0.1894 to 0.2702	No		ns	0.9943			
dPaf1 vs. dCDC73	0.1781	-0.02586 to 0.3821	No		ns	0.1151			
dPaf1 vs. dCtr9	0.117	-0.08694 to 0.321	No		ns	0.5163			
dPaf1 vs. dRtf1	0.1294	-0.07456 to 0.3334	No		ns	0.4064			
dLeo1 vs. dCDC73	0.1377	-0.09897 to 0.3743	No		ns	0.5013			
dLeo1 vs. dCtr9	0.0765 9	-0.16 to 0.3132	No		ns	0.9201			
dLeo1 vs. dRtf1	0.0889 7	-0.1477 to 0.3256	No		ns	0.8603			
dCDC73 vs. dCtr9	0.0610 8	-0.2727 to 0.1506	No		ns	0.9495			
dCDC73 vs. dRtf1	-0.0487	-0.2604 to 0.163	No		ns	0.9808			
dCtr9 vs. dRtf1	0.0123 8	-0.1993 to 0.224	No		ns	>0.9999			
Fig. 4d, eYFP: 1-way A	NOVA								
ANOVA table	SS	DF		MS	F (DFn, DFd)	P value			
Treatment (between columns)	0.04774	2		0.02387	F (2, 6) = 4.589	P=0.0618			
Residual (within columns)	0.03121	6		0.005202					
Total	0.07895	8							
Independent Expt. Runs									

Data point	mean fold change for 1 replicate relative to mean of controls							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
WT vs. leo1∆	0.1783	- 0.002355 to 0.359	No	ns	0.0525			
WT vs. cdc73Δ	0.085	-0.09569 to 0.2657	No	ns	0.3794			
leo1Δ vs. cdc73Δ	0.0933 3	-0.274 to 0.08735	No	ns	0.3217			
Fig. 4d, sense (G4C2)	66: 1-way <i>I</i>	ANOVA						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	0.6141	2	0.307	F (2, 13) = 51.44	P<0.0001			
Residual (within columns)	0.0776	13	0.005969					
Total	0.6917	15						
Independent Expt. Runs	2 with biol	logical duplica	ates					
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
WT vs. leo1∆	0.3993	0.2743 to 0.5242	Yes	***	<0.0001			
WT vs. cdc73Δ	0.3841	0.2592 to 0.509	Yes	***	<0.0001			
leo1∆ vs. cdc73∆	0.0151 7	-0.1594 to 0.1291	No	ns	0.9585			
Fig. 4d, antisense (G2	C4)66: 1-w	ay ANOVA						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between	1.802	2	0.9012	F (2, 13)	P<0.0001			

columns)				= 55.8				
Residual (within columns)	0.21	13	0.01615					
Total	2.012	15						
Independent Expt. Runs	2 with bio	logical duplica	ates					
Data point	mean fold	mean fold change for 1 replicate relative to mean of controls						
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
WT vs. leo1Δ	0.7723	0.5668 to 0.9778	Yes	***	<0.0001			
WT vs. cdc73Δ	0.5232	0.3177 to 0.7287	Yes	***	<0.0001			
		-0.4864 to -						
leo1Δ vs. cdc73Δ	-0.2491	0.01182	Yes	*	0.0394			
Fig. 5a, dPaf1: 1-way ANOVA								
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	1.803	2	0.9015	F (2, 15) = 38.41	P<0.0001			
Residual (within columns)	0.3521	15	0.02347					
Total	2.155	17						
Sample size (n)	25							
Independent Expt. Runs	2 w/ biolo	gical triplicate	s					
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. (G4C2)8	0.0440 3	-0.2738 to 0.1857	No	ns	0.8734			
Control vs.	-0.6923	-0.922 to	Yes	***	<0.0001			

(G4C2)49		-0.4626						
(G4C2)8 vs. (G4C2)49	-0.6483	-0.878 to -0.4185	Yes	***	<0.0001			
Fig. 5a, dLeo1: 1-way	ANOVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	1.257	2	0.6285	F (2, 15) = 15.74	P<0.0001			
Residual (within columns)	0.5989	15	0.03993					
Total	1.856	17						
Sample size (n)	25	25						
Independent Expt. Runs	2 w/ biolo	2 w/ biological triplicates						
Data point	mean fold	mean fold change for 1 replicate relative to mean of controls						
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. (G4C2)8	0.0362	-0.3359 to 0.2634	No	ns	0.9473			
Control vs. (G4C2)49	-0.5778	-0.8775 to - 0.2782	Yes	***	0.0004			
(G4C2)8 vs. (G4C2)49	-0.5416	-0.8412 to - 0.2419	Yes	***	0.0008			
Fig. 5a, dCDC73: 1-wa	ay ANOVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	2.143	2	1.071	F (2, 15) = 16.13	P=0.0002			
Residual (within columns)	0.9963	15	0.06642					
Total	3.139	17						

Sample size (n)	25							
Independent Expt. Runs	2 w/ biolog	gical triplicate	S					
Data point	mean fold	mean fold change for 1 replicate relative to mean of controls						
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. (G4C2)8	0.0467 5	-0.3397 to 0.4332	No	ns	0.9472			
Control vs. (G4C2)49	-0.7074	-1.094 to -0.3209	Yes	***	0.0007			
(G4C2)8 vs. (G4C2)49	-0.7542	-1.141 to -0.3677	Yes	***	0.0004			
Fig. 5a, dCtr9: 1-way A	AVOVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	0.7279	2	0.364	F (2, 15) = 10.35	P=0.0015			
Residual (within columns)	0.5273	15	0.03515					
Total	1.255	17						
Sample size (n)	25							
Independent Expt. Runs	2 w/ biolog	gical triplicate	S					
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. (G4C2)8	-0.2668	-0.548 to 0.01439	No	ns	0.0641			
Control vs. (G4C2)49	-0.492	-0.7732 to - 0.2108	Yes	**	0.0011			
(G4C2)8 vs. (G4C2)49	-0.2252	-0.5064 to 0.05596	No	ns	0.1277			

Fig. 5a, dRtf1: 1-way	ANOVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	1.465	2	0.7324	F (2, 15) = 56.77	P<0.0001	
Residual (within columns)	0.1935	15	0.0129			
Total	1.658	17				
Sample size (n)	25			<u> </u>	<u> </u>	
Independent Expt. Runs	2 w/ biolo	gical triplicate	s			
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. (G4C2)8	0.0646 8	-0.235 to 0.1056	No	ns	0.5963	
Control vs. (G4C2)49	-0.6349	-0.8052 to - 0.4646	Yes	***	<0.0001	
(G4C2)8 vs. (G4C2)49	-0.5702	-0.7405 to - 0.3999	Yes	***	<0.0001	
Fig. 5b: unpaired, two-	tailed stude	ent t-tests				
Sample size (n)	25					
Independent Expt. Runs	2 w/ biolo	gical triplicate	s			
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?
Control vs. Paf1 RNAi	<0.0001	Yes	***	1.043, 5, 5	0.9647	No
Control vs. Leo1 RNAi	<0.0001	Yes	***	1.925, 5, 5	0.4897	No

Control vs. CDC73 shRNA	<0.0001	Yes	****	1.035, 5, 5	0.9708	No
Control vs. Ctr9 shRNA	<0.0001	Yes	***	2.088, 5, 5	0.4382	No
Control vs. Rtf1 shRNA	<0.0001	Yes	****	2.827, 5, 5	0.2786	No
Fig. 5c: unpaired, two-	tailed stude	ent t-tests				
Independent Expt. Runs	2 w/ > 3 a	nimals per ru	n			
Sample sizes (n)	3mo: (G4	C2)2 (6), (G40	C2)149 (6); 6mo: (G4C2)2 (6)	(G4C2)149 (7)
Data point	relative ba	and density no	ormalized to mGAI	PDH		
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?
(G4C2)2 vs. (G4C2)149 (3mo)	0.1585	No	ns	3.931, 5, 5	0.1593	No
(G4C2)2 vs. (G4C2)149 (6mo)	0.0292	Yes	*	1.94, 5, 6	0.4432	No
Fig. 6a: unpaired, two-	tailed stude	ent t-tests				
Fig. 6a: unpaired, two- Independent Expt. Runs		ent t-tests	S			
Independent Expt.	2 w/ techr	nical triplicates	s ormalized to mean	of hTub an	d hGAPDH	
Independent Expt. Runs	2 w/ techr	nical triplicates		of hTub and F, DFn, Dfd	d hGAPDH F test P value	F test signifi cant?
Independent Expt. Runs	2 w/ techr	nical triplicates and density no	ormalized to mean	F, DFn,	F test P	signifi
Independent Expt. Runs Data point	2 w/ techr relative ba	and density no Significant ?	ormalized to mean Summary	F, DFn, Dfd	F test P value	signifi cant?
Independent Expt. Runs Data point hPaf1: Cntrl vs. C9+	2 w/ techr relative ba P value 0.0178	significant ? Yes	Summary	F, DFn, Dfd 2.996, 5, 5 5.62, 5,	F test P value	signifi cant?
Independent Expt. Runs Data point hPaf1: Cntrl vs. C9+ hLeo1: Cntrl vs. C9+ hCDC73: Cntrl vs.	2 w/ techronic relative bath P value 0.0178	significant ? Yes No	Summary *	F, DFn, Dfd 2.996, 5, 5 5.62, 5, 5 4.455, 5,	F test P value 0.2537 0.0812	signifi cant? No
Independent Expt. Runs Data point hPaf1: Cntrl vs. C9+ hLeo1: Cntrl vs. C9+ hCDC73: Cntrl vs. C9+	2 w/ techrical relative bath P value 0.0178 0.4751 0.5874	significant ? Yes No	Summary * ns	F, DFn, Dfd 2.996, 5, 5 5.62, 5, 5 4.455, 5, 5 1.808, 5,	F test P value 0.2537 0.0812 0.1267	signifi cant? No No No

Interaction 14.42					DFd)				
Column Factor 14.42	Interaction	14.42	1	14.42		P=0.0783			
Residual 46.73 12 3.894	Row Factor	16.24	1	16.24		P=0.0638			
Independent Expt. Runs Data point relative signal normalized to % input relative to IgG; mean for individual lines Sidak's multiple comparisons test Diff. 95.00% CI of diff. Significant? Summar Adjusted P Value NLeo1 - IgG C9orf72 Intron 1 3.914 0.351 to 7.476 Yes * 0.0316 Intergenic 0.1158 -3.447 to 3.678 No ns 0.9958 C9orf72 Intron 1 - Intergenic hLeo1 3.798 7.36 Yes * 0.0368 PigG 0 3.563 No ns >0.9999 Pig. 6c, Paf1, FTD cases: 1-way Kruskal-Wallis ANOVA (see Supplementary Fig. 10a for sample sizes and patient details) P value Exact or approx? Summary signif. (P < of Mallis groups statistic yards) of Mallis groups statistic statistic Pincependent Expt. Runs Data point mean fold change for 1 patient relative to mean of healthy controls Dunn's multiple Mean Significant Summary Adjusted	Column Factor	14.42	1	14.42		P=0.0783			
Data point relative signal normalized to % input relative to IgG; mean for individual lines Sidak's multiple comparisons test Diff. 95.00% CI of diff. Significant? Summar y Adjusted P Value hLeo1 - IgG C9orf72 Intron 1 3.914 0.351 to 7.476 Yes * 0.0316 Intergenic 0.1158 -3.447 to 3.678 No ns 0.9958 C9orf72 Intron 1 - Intergenic hLeo1 3.798 7.36 Yes * 0.0368 IgG 0 3.563 to 3.563 to 7.36 Yes * 0.0368 Fig. 6c, Paf1, FTD cases: 1-way Kruskal-Wallis ANOVA (see Supplementary Fig. 10a for sample sizes and patient details) P value Exact or approx? Summary signif. (P < of 9.05)? groups Statistic wallis statistic -0.0001 mate **** Yes 3 18.57 Independent Expt. Runs Data point mean fold change for 1 patient relative to mean of healthy controls Dunn's multiple Mean Significant Summary Adjusted	Residual	46.73	12	3.894					
Sidak's multiple comparisons test	·	2 per line	w/ technical o	quadruplicates					
Diff. Of diff. Significant? y Value	Data point								
C9orf72 Intron 1 3.914 0.351 to 7.476 Yes * 0.0316 Intergenic 0.1158 -3.447 to 3.678 No ns 0.9958 C9orf72 Intron 1 - Intergenic hLeo1 3.798 7.36 Yes * 0.0368 IgG 0 -3.563 to 7.36 No ns >0.9999 Fig. 6c, Paf1, FTD cases: 1-way Kruskal-Wallis ANOVA (see Supplementary Fig. 10a for sample sizes and patient details) P value Exact or approx? Summary Summary Signif. (P <				Significant?					
Intergenic 0.1158 -3.447 to 3.678 No ns 0.9958	hLeo1 - IgG				<u> </u>		<u> </u>		
C9orf72 Intron 1 - Intergenic hLeo1 3.798 7.36 Yes * 0.0368	C9orf72 Intron 1	3.914		Yes	*	0.0316			
hLeo1 3.798 7.36 Yes * 0.0368 IgG 0 3.563 to 3.563 No ns >0.9999 Fig. 6c, Paf1, FTD cases: 1-way Kruskal-Wallis ANOVA (see Supplementary Fig. 10a for sample sizes and patient details) P value Exact or approx? Summary signif. (P < of groups statistic sta	Intergenic	0.1158		No	ns	0.9958			
hLeo1 3.798 7.36 Yes * 0.0368 IgG 0 3.563 to 3.563 No ns >0.9999 Fig. 6c, Paf1, FTD cases: 1-way Kruskal-Wallis ANOVA (see Supplementary Fig. 10a for sample sizes and patient details) P value Exact or approx? Summary Signif. (P < of groups statistic statistic statistic statistic statistic	C9orf72 Intron 1 - In	tergenic							
Fig. 6c, Paf1, FTD cases: 1-way Kruskal-Wallis ANOVA (see Supplementary Fig. 10a for sample sizes and patient details) P value	hLeo1	3.798		Yes	*	0.0368			
P value Exact or approx? Summary Signif. (P < 0.05)? Summary Signif. (P < 0.05)? Signif. (P < 0.05)? Statistic Stati	IgG	0		No	ns	>0.9999			
P value			Kruskal-Wallis	s ANOVA (see Sur	plementary	Fig. 10a for s	sample		
<0.0001 mate **** Yes 3 18.57 Independent Expt. Runs 2 for individual patients w/ technical duplicates Data point mean fold change for 1 patient relative to mean of healthy controls Dunn's multiple Mean Significant Summary Adjusted	P value		Summary	signif. (P <	of	Wallis			
Pata point mean fold change for 1 patient relative to mean of healthy controls Dunn's multiple Mean Significant Summary Adjusted	<0.0001		***	Yes	3	18.57			
Dunn's multiple Mean Significant Summary Adjusted		2 for indiv	idual patients	w/ technical duplic	cates				
Durin's multiple weart Significant Adjusted	Data point	mean fold	change for 1	patient relative to	mean of he	althy controls			
	Dunn's multiple	Mean	Significant	Summary	Adjusted				

comparisons test	rank diff.	?		P Value		
Healthy vs. C9-	-7.029	No	ns	0.7859		
Healthy vs. C9+	-25.45	Yes	***	<0.000		
C9- vs. C9+	-18.42	Yes	*	0.0107		
Fig. 6c, Paf1, FTD/ALS sample sizes and patie		way Kruskal-\	Vallis ANOVA (see	e Suppleme	ntary Fig. 10a	for
P value	Exact or approx?	Summary	medians vary signif. (P < 0.05)?	Number of groups	Kruskal- Wallis statistic	
0.0074	Approxi mate	**	Yes	3	9.823	
Independent Expt. Runs	2 for indiv	idual patients	w/ technical duplic	cates		
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
Dunn's multiple comparisons test	Mean rank diff.	Significant ?	Summary	Adjusted P Value		
Healthy vs. C9-	-13.99	No	ns	0.0682		
Healthy vs. C9+	-14.11	Yes	*	0.0143		
C9- vs. C9+	-0.1126	No	ns	>0.999 9		
Fig. 6c, Paf1, ALS cas sizes and patient deta		Kruskal-Wallis	ANOVA (see Sup	plementary	Fig. 10a for s	ample
P value	Exact or approx?	Summary	medians vary signif. (P < 0.05)?	Number of groups	Kruskal- Wallis statistic	
0.0285	Approxi mate	*	Yes	3	7.119	
Independent Expt. Runs	2 for indiv	idual patients	w/ technical duplic	cates		
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
Dunn's multiple comparisons test	Mean rank	Significant ?	Summary	Adjusted P Value		

	diff.					
Healthy vs. C9-	13.26	No	ns	0.064		
Healthy vs. C9+	13.14	No	ns	0.0794		
C9- vs. C9+	-0.1273	No	ns	>0.999 9		
Fig. 6c, Leo1, FTD cas sizes and patient deta		Kruskal-Walli:	s ANOVA (see Sup	oplementary	/ Fig. 10a for s	sample
P value	Exact or approx?	Summary	medians vary signif. (P < 0.05)?	Number of groups	Kruskal- Wallis statistic	
0.0077	Approxi mate	**	Yes	3	9.74	
Independent Expt. Runs	2 for indiv	idual patients	w/ technical duplic	cates		
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
Dunn's multiple comparisons test	Mean rank diff.	Significant ?	Summary	Adjusted P Value		
Healthy vs. C9-	4.317	No	ns	>0.999 9		
Healthy vs. C9+	-14.27	No	ns	0.0561		
C9- vs. C9+	-18.58	Yes	**	0.0099		
Fig. 6c, Leo1, FTD/AL sample sizes and patie		way Kruskal-	Wallis ANOVA (se	e Suppleme	entary Fig. 10a	a for
P value	Exact or approx?	Summary	medians vary signif. (P < 0.05)?	Number of groups	Kruskal- Wallis statistic	
0.0588	Approxi mate	ns	No	3	5.668	
Independent Expt. Runs	1-2 for inc	lividual patien	ts w/ replicates			
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
Dunn's multiple comparisons test	Mean rank diff.	Significant ?	Summary	Adjusted P Value		

				>0.999		
Healthy vs. C9-	-4.529	No	ns	9		
Healthy vs. C9+	-11.88	No	ns	0.0522		
C9- vs. C9+	-7.355	No	ns	0.7498		
Fig. 6c, Leo1, ALS cas sizes and patient deta		Kruskal-Walli	s ANOVA (see Sur	oplementary	/ Fig. 10a for s	ample
Sizes and patient deta						
P value	Exact or approx?	Summary	medians vary signif. (P < 0.05)?	Number of groups	Kruskal- Wallis statistic	
0.0534	Approxi mate	ns	No	3	5.859	
Independent Expt. Runs	2 for indiv	idual patients	w/ technical duplic	cates		
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
Dunn's multiple comparisons test	Mean rank diff.	Significant ?	Summary	Adjusted P Value		
Healthy vs. C9-	13.5	No	ns	0.0574		
Healthy vs. C9+	9.3	No	ns	0.3484		
C9- vs. C9+	-4.2	No	ns	>0.999 9		
Fig. 6d: Spearman r co	orrelations ((see Supplem	entary Fig. 10a for	r sample siz	es and patien	t
details)						
Independent Expt. Runs		72-intron 1: 2 1: same data	for individual patie as Fig. 6c.	ents w/ tech	nical duplicate	s; For
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
	Spearm an r	P value (two- tailed)	Summary	Exact or Approx?	Significant ? (α = 0.05)	95% CI
C9+ FTD only: C9orf72 Intron 1 vs PAF1	0.7374	<0.0001	****	Approx.	Yes	0.480 8 to 0.877 7
C9- FTD only: C9orf72 Intron 1 vs PAF1	0.2787	0.1979	ns	Approx.	No	0.163 5 to 0.627

						6
Healthy Cntrls: C9orf72 Intron 1 vs PAF1	0.07937	0.6939	ns	Approx.	No	0.320 6 to 0.455 4
C9+ FTD only: C9orf72 Intron 1 vs LEO1	0.6321	0.0005	***	Approx.	Yes	0.313 3 to 0.822 9
C9- FTD only: C9orf72 Intron 1 vs LEO1	0.3538	0.0977	ns	Approx.	No	0.081 31 to 0.675 6
Healthy Cntrls: C9orf72 Intron 1 vs LEO1	0.03114	0.8775	ns	Approx.	No	0.363 4 to 0.416 2
Sup. Fig 2b: 1-way AN	IOVA					
RNAi lines						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	1118	6	186.3	F (6, 53) = 5.729	P=0.0001	
Residual (within columns)	1724	53	32.52			
Total	2842	59				
Sample sizes (n)			af1 RNAi (10), Leo Ai (6), Spt4 RNAi (CDC73 RNAi	(4),
Independent Expt. Runs	>3					
Data point	retina dep	th from 1 eye	per animal			
Dunnett's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w+ Control vs. dCDC73	9.77	0.6823 to 18.86	Yes	*	0.0305	

w+ Control vs. dRtf1	5.473	-2.498 to 13.44	No	ns	0.2854	
w+ Control vs. dCtr9	-3.253	-10.6 to 4.096	No	ns	0.705	
w+ Control vs. dLeo1	2.247	-4.883 to 9.376	No	ns	0.9073	
w+ Control vs. dPaf1	5.883	-1.066 to 12.83	No	ns	0.1259	
w+ Control vs. dSpt4	-3.536	-9.998 to 2.925	No	ns	0.5073	
RNAi-2 lines						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	251.2	5	50.24	F (5, 18) = 2.616	P=0.0602	
Residual (within columns)	345.7	18	19.2			
Total	596.9	23				
Sample sizes (n)		(4), Paf1 RN), Rtf1 RNAi-2	Ai-2 (4), Leo1 RNA 2 (4)	Ai-2 (4), CD	C73 RNAi-2 (4	4), Ctr9
Independent Expt. Runs	>2					
Data point	retina dep	oth from 1 eye	per animal			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w- Control vs. dPaf1	9.036	-0.8125 to 18.88	No	ns	0.0831	
w- Control vs. dLeo1	3.161	-6.687 to 13.01	No	ns	0.9051	
w- Control vs. dCDC73	0.5823	-9.266 to 10.43	No	ns	>0.9999	
w- Control vs. dCtr9	6.508	-3.341 to 16.36	No	ns	0.3302	
w- Control vs.	5.715	-4.134 to	No	ns	0.4645	

dRtf1		15.56				
dPaf1 vs. dLeo1	-5.875	-15.72 to 3.974	No	ns	0.4356	
dPaf1 vs. dCDC73	-8.453	-18.3 to 1.395	No	ns	0.1177	
dPaf1 vs. dCtr9	-2.528	-12.38 to 7.32	No	ns	0.9608	
dPaf1 vs. dRtf1	-3.321	-13.17 to 6.527	No	ns	0.8862	
dLeo1 vs. dCDC73	-2.579	-12.43 to 7.269	No	ns	0.9574	
dLeo1 vs. dCtr9	3.347	-6.502 to 13.19	No	ns	0.883	
dLeo1 vs. dRtf1	2.554	-7.295 to 12.4	No	ns	0.9591	
dCDC73 vs. dCtr9	5.925	-3.923 to 15.77	No	ns	0.4266	
dCDC73 vs. dRtf1	5.132	-4.716 to 14.98	No	ns	0.575	
dCtr9 vs. dRtf1	-0.793	-10.64 to 9.055	No	ns	0.9998	
Sup. Fig 3b: 1-way AN	IOVA					
RNAi lines						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	3259	6	543.1	F (6, 41) = 11.29	P<0.0001	
Residual (within columns)	1973	41	48.12			
Total	5231	47				
Sample sizes (n)			Paf1 RNAi (9), Leo Ai (4), Spt4 RNAi (CDC73 RNAi	(5),
Independent Expt. Runs	>3					

Data point	retina dep	th from 1 eye	per animal		
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value
w+ Control vs. dPaf1	-0.3164	-9.639 to 9.006	No	ns	>0.9999
w+ Control vs. dLeo1	-7.64	-19.93 to 4.652	No	ns	0.4754
w+ Control vs. dCDC73	-26.81	-38.12 to -15.5	Yes	***	<0.0001
w+ Control vs. dCtr9	-2.375	-14.67 to 9.917	No	ns	0.9965
w+ Control vs. dRtf1	3.072	-9.22 to 15.36	No	ns	0.9862
w+ Control vs. dSpt4	-1.241	-10.56 to 8.081	No	ns	0.9996
dPaf1 vs. dLeo1	-7.324	-20.24 to 5.595	No	ns	0.5833
dPaf1 vs. dCDC73	-26.5	-38.49 to -14.5	Yes	***	<0.0001
dPaf1 vs. dCtr9	-2.059	-14.98 to 10.86	No	ns	0.9988
dPaf1 vs. dRtf1	3.388	-9.531 to 16.31	No	ns	0.9823
dPaf1 vs. dSpt4	-0.9246	-11.06 to 9.21	No	ns	>0.9999
dLeo1 vs. dCDC73	-19.17	-33.59 to -4.75	Yes	**	0.0031
dLeo1 vs. dCtr9	5.265	-9.936 to 20.47	No	ns	0.9323
dLeo1 vs. dRtf1	10.71	-4.49 to 25.91	No	ns	0.3261
dLeo1 vs. dSpt4	6.399	-6.52 to 19.32	No	ns	0.7225
dCDC73 vs. dCtr9	24.44	10.01 to	Yes	***	<0.0001

		38.86				
dCDC73 vs. dRtf1	29.88	15.46 to 44.3	Yes	***	<0.0001	
dCDC73 vs. dSpt4	25.57	13.58 to 37.56	Yes	***	<0.0001	
dCtr9 vs. dRtf1	5.447	-9.755 to 20.65	No	ns	0.9213	
dCtr9 vs. dSpt4	1.134	-11.78 to 14.05	No	ns	>0.9999	
dRtf1 vs. dSpt4	-4.313	-17.23 to 8.606	No	ns	0.9428	
RNAi-2 lines						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	234.6	5	46.91	F (5, 28) = 2.695	P=0.0414	
Residual (within columns)	487.4	28	17.41			
Total	722	33				
Sample sizes (n)		(6), Paf1 RN), Rtf1 RNAi-2	Ai-2 (4), Leo1 RNA 2 (6)	Ai-2 (6), CD	C73 RNAi-2 (6	6), Ctr9
Independent Expt. Runs	>2					
Data point	retina dep	th from 1 eye	per animal			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w- Control vs. dPaf1	-1.265	-9.495 to 6.965	No	ns	0.9968	
w- Control vs. dLeo1	1.952	-5.409 to 9.313	No	ns	0.9632	
w- Control vs. dCDC73	2.304	-5.057 to 9.665	No	ns	0.9276	
w- Control vs. dCtr9	1.869	-5.492 to 9.23	No	ns	0.9694	

w- Control vs. dRtf1	-5.042	-12.4 to 2.319	No	ns	0.3194
dPaf1 vs. dLeo1	3.217	-5.013 to 11.45	No	ns	0.8357
dPaf1 vs. dCDC73	3.57	-4.66 to 11.8	No	ns	0.7688
dPaf1 vs. dCtr9	3.134	-5.096 to 11.36	No	ns	0.8499
dPaf1 vs. dRtf1	-3.777	-12.01 to 4.453	No	ns	0.7252
dLeo1 vs. dCDC73	0.3523	-7.009 to 7.713	No	ns	>0.9999
dLeo1 vs. dCtr9	0.0833	-7.444 to 7.278	No	ns	>0.9999
dLeo1 vs. dRtf1	-6.994	-14.36 to 0.3668	No	ns	0.0698
dCDC73 vs. dCtr9	-0.4357	-7.797 to 6.925	No	ns	>0.9999
dCDC73 vs. dRtf1	-7.347	-14.71 to 0.01449	No	ns	0.0507
dCtr9 vs. dRtf1	-6.911	-14.27 to 0.4502	No	ns	0.0752
Sup. Fig 3c: 1-way AN	IOVA				
RNAi lines					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Treatment (between columns)	1.398	5	0.2796	F (5, 12) = 1.647	P=0.2217
Residual (within columns)	2.038	12	0.1698		
Total	3.436	17			
Sample size (n)	10			ı	
Independent Expt.	2 w/ biolo	gical triplicate	S		

Runs						
Data point	normalize	d band densi	ty per lane			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w+ Control vs. dPaf1	0.0001 803	-1.13 to 1.13	No	ns	>0.9999	
w+ Control vs. dLeo1	0.0647 4	-1.065 to 1.195	No	ns	>0.9999	
w+ Control vs. dCDC73	0.5331	-0.5971 to 1.663	No	ns	0.6224	
w+ Control vs. dCtr9	0.6254	-0.5048 to 1.756	No	ns	0.4682	
w+ Control vs. dRtf1	0.5654	-0.5647 to 1.696	No	ns	0.5672	
dPaf1 vs. dLeo1	0.0649 2	-1.065 to 1.195	No	ns	>0.9999	
dPaf1 vs. dCDC73	0.5333	-0.5969 to 1.663	No	ns	0.6221	
dPaf1 vs. dCtr9	0.6255	-0.5046 to 1.756	No	ns	0.4679	
dPaf1 vs. dRtf1	0.5656	-0.5645 to 1.696	No	ns	0.5669	
dLeo1 vs. dCDC73	0.4683	-0.6618 to 1.598	No	ns	0.7311	
dLeo1 vs. dCtr9	0.5606	-0.5695 to 1.691	No	ns	0.5754	
dLeo1 vs. dRtf1	0.5007	-0.6294 to 1.631	No	ns	0.6775	
dCDC73 vs. dCtr9	0.0922 9	-1.038 to 1.222	No	ns	0.9997	
dCDC73 vs. dRtf1	0.0323 7	-1.098 to 1.163	No	ns	>0.9999	
dCtr9 vs. dRtf1	0.0599	-1.19 to	No	ns	>0.9999	

	2	1.07				
RNAi-2 lines						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	1.241	5	0.2483	F (5, 12) = 0.9149	P=0.5035	
Residual (within columns)	3.256	12	0.2714			
Total	4.498	17				
Sample size (n)	10					
Independent Expt. Runs	2 w/ biolo	gical triplicate	s			
Data point	normalize	d band densit	y per lane			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w- Control vs. dPaf1	0.1544	-1.274 to 1.583	No	ns	0.9989	
w- Control vs. dLeo1	0.2261	-1.203 to 1.655	No	ns	0.9937	
w- Control vs. dCDC73	-0.2988	-1.727 to 1.13	No	ns	0.9781	
w- Control vs. dCtr9	-0.2684	-1.697 to 1.16	No	ns	0.9863	
w- Control vs. dRtf1	-0.5079	-1.936 to 0.9208	No	ns	0.8316	
dPaf1 vs. dLeo1	0.0716 2	-1.357 to 1.5	No	ns	>0.9999	
dPaf1 vs. dCDC73	-0.4532	-1.882 to 0.9754	No	ns	0.8858	
dPaf1 vs. dCtr9	-0.4228	-1.851 to 1.006	No	ns	0.9112	
dPaf1 vs. dRtf1	-0.6623	-2.091 to 0.7663	No	ns	0.6381	

dLeo1 vs. dCDC73	-0.5249	-1.953 to 0.9038	No	ns	0.8128	
dLeo1 vs. dCtr9	-0.4944	-1.923 to 0.9342	No	ns	0.8459	
dLeo1 vs. dRtf1	-0.7339	-2.163 to 0.6947	No	ns	0.5417	
dCDC73 vs. dCtr9	0.0304	-1.398 to 1.459	No	ns	>0.9999	
dCDC73 vs. dRtf1	-0.2091	-1.638 to 1.22	No	ns	0.9956	
dCtr9 vs. dRtf1	-0.2395	-1.668 to 1.189	No	ns	0.9917	
Sup. Fig 4a, Paf1: 1-w	ay ANOVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	3.236	2	1.618	F (2, 21) = 175.6	P<0.0001	
Residual (within columns)	0.1935	21	0.009215			
Total	3.43	23				
Independent Expt. Runs	2 w/ biolog	gical triplicate	S			
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summa ry	Adjusted P Value	
w- Control vs. w- RNAi	0.8853	0.7644 to 1.006	Yes	***	<0.0001	
w- Control vs. w- RNAi-2	0.445	0.324 to 0.566	Yes	***	<0.0001	
w- RNAi vs. w- RNAi-2	-0.4403	-0.58 to - 0.3006	Yes	***	<0.0001	
Sup. Fig 4a, Leo1: 1-w	vay ANOVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	

Treatment (between columns)	3.867	2	1.933	F (2, 18) = 115.1	P<0.0001	
Residual (within columns)	0.3023	18	0.0168			
Total	4.169	20				
Independent Expt. Runs	2 w/ triplic	ates				
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summa ry	Adjusted P Value	
w- Control vs. w- RNAi	0.9047	0.7303 to 1.079	Yes	***	<0.0001	
w- Control vs. w- RNAi-2	0.8253	0.651 to 0.9997	Yes	***	<0.0001	
w- RNAi vs. w- RNAi-2	0.0793 3	-0.2703 to 0.1116	No	ns	0.5499	
Sup. Fig 4a, CDC73: ι	inpaired, tw	o-tailed stude	ent t-test			
Independent Expt. Runs	2 w/ triplic					
	2 w/ triplic	ates	replicate relative t	o mean of c	controls	
Runs	2 w/ triplic	ates		o mean of o	controls F test P value	F test signifi cant?
Runs	2 w/ triplic	change for 1 Significant	replicate relative t	F, DFn,	F test P	signifi
Runs Data point w+ Control vs. w+	2 w/ triplicomean foldo P value	change for 1 Significant	replicate relative t	F, DFn, Dfd 15.18,	F test P value	signifi cant?
Puns Data point w+ Control vs. w+ RNAi w- Control vs. w-	2 w/ triplion mean fold P value <0.000 1 <0.000 1	change for 1 Significant ? Yes Yes	replicate relative t Summary ****	F, DFn, Dfd 15.18, 2, 2 2.525,	F test P value	signifi cant?
Runs Data point w+ Control vs. w+ RNAi w- Control vs. w- RNAi	2 w/ triplion mean fold P value <0.000 1 <0.000 1	cates change for 1 Significant ? Yes Yes ailed student	replicate relative t Summary ****	F, DFn, Dfd 15.18, 2, 2 2.525,	F test P value	signifi cant?
Runs Data point W+ Control vs. w+ RNAi W- Control vs. w- RNAi Sup. Fig 4a, Ctr9: unp Independent Expt.	2 w/ triplion mean fold P value <0.000 1 <0.000 1 aired, two-to-to-to-to-to-to-to-to-to-to-to-to-to	change for 1 Significant ? Yes Yes ailed student	replicate relative t Summary ****	F, DFn, Dfd 15.18, 2, 2 2.525, 5, 5	F test P value 0.1236 0.3324	signifi cant?
W+ Control vs. w+ RNAi W- Control vs. w- RNAi Sup. Fig 4a, Ctr9: unp Independent Expt. Runs	2 w/ triplion mean fold P value <0.000 1 <0.000 1 aired, two-to-to-to-to-to-to-to-to-to-to-to-to-to	change for 1 Significant ? Yes Yes ailed student	replicate relative t Summary **** **** t-test	F, DFn, Dfd 15.18, 2, 2 2.525, 5, 5	F test P value 0.1236 0.3324	signifi cant?

w+ Control vs. w+ RNAi	0.0002	Yes	***	27.15, 2, 2	0.0711	No				
w- Control vs. w- RNAi	0.0459	Yes	*	34.8, 8, 5	0.0011	Yes				
Sup. Fig 4a, Rtf1: unpaired, two-tailed student t-test										
Independent Expt. Runs	2 w/ triplic	2 w/ triplicates								
Data point	mean fold	change for 1	replicate relative	to mean of o	controls					
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?				
w+ Control vs. w+ RNAi	0.0005	Yes	***	5.439, 2, 2	0.3106	No				
w- Control vs. w- RNAi	0.023	Yes	*	2.27, 2,	0.6116	No				
Sup. Fig 4b: unpaired,	, two-tailed student t-test									
Independent Expt. Runs	2 w/ triplio	2 w/ triplicates								
Data point	normalize	d band densit	ty per lane relative	to mean of	controls					
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?				
w+ Control vs. w+ RNAi	0.0285	Yes	*	4.041, 2, 2	0.3967	No				
w- Control vs. w- RNAi	0.0281	Yes	*	2.861, 5, 5	0.2734	No				
Sup. Fig 4c: unpaired,	two-tailed	student t-test								
Independent Expt. Runs	2 w/ triplic	ates								
Data point	normalize	d band densit	ty per lane relative	to mean of	controls					
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?				
w+ Control vs. w+ RNAi	0.0026	Yes	**	2.027, 2, 2	0.6608	No				

w- Control vs. w- RNAi	0.0026	Yes	**	2.235, 5, 5	0.398	No		
Sup. Fig 5a: 1-way ANOVA								
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	10728	5	2146	F (5, 32) = 32.34	P<0.0001			
Residual (within columns)	2123	32	66.35					
Total	12851	37						
Sample sizes (n)		l (12); Paf1 R i-2 (6); Rtf1 R	NAi-2 (5); Leo1 RN NAi-2 (3)	NAi-2 (6), C	DC73 RNAi-2	(6);		
Independent Expt. Runs	2 with > 4	2 with > 4 animals per genotype						
Data point	retina dep	th from 1 eye	per animal					
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
w- Control vs. dPaf1	-18.42	-31.55 to - 5.284	Yes	**	0.0022			
w- Control vs. dLeo1	-42.18	-54.52 to - 29.84	Yes	***	<0.0001			
w- Control vs. dCDC73	-39.4	-51.73 to - 27.06	Yes	***	<0.0001			
w- Control vs. dCtr9	-26.82	-39.16 to - 14.48	Yes	***	<0.0001			
w- Control vs. dRtf1	-34.38	-50.31 to - 18.46	Yes	***	<0.0001			
dPaf1 vs. dLeo1	-23.76	-38.7 to - 8.818	Yes	***	0.0004			
dPaf1 vs. dCDC73	-20.98	-35.92 to - 6.036	Yes	**	0.0022			
dPaf1 vs. dCtr9	-8.404	-23.35 to 6.538	No	ns	0.5394			
dPaf1 vs. dRtf1	-15.96	-33.98 to 2.056	No	ns	0.1067			

dLeo1 vs. dCDC73	2.782	-11.46 to 17.03	No	ns	0.9909	
dLeo1 vs. dCtr9	15.36	1.109 to 29.6	Yes	*	0.0286	
dLeo1 vs. dRtf1	7.795	-9.653 to 25.24	No	ns	0.7535	
dCDC73 vs. dCtr9	12.57	-1.672 to 26.82	No	ns	0.1089	
dCDC73 vs. dRtf1	5.013	-12.43 to 22.46	No	ns	0.9509	
dCtr9 vs. dRtf1	-7.561	-25.01 to 9.887	No	ns	0.776	
Sup. Fig 5b: 1-way AN	AVO					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	203.3	5	40.65	F (5, 17) = 1.997	P=0.1307	
Residual (within columns)	346.1	17	20.36			
Total	549.3	22				
Sample sizes (n)		I (4); Paf1 RN); Rtf1 RNAi-2	Ai-2 (3); Leo1 RN 2 (5)	Ai-2 (4), CD	C73 RNAi-2 (4); Ctr9
Independent Expt. Runs	2 with > 4	animals per	genotype			
Data point	retina dep	th from 1 eye	per animal			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w- Control vs. dPaf1	-0.3168	-11.34 to 10.71	No	ns	>0.9999	
w- Control vs. dLeo1	-2.17	-12.37 to 8.035	No	ns	0.9818	
w- Control vs. dCDC73	-1.276	-11.48 to 8.929	No	ns	0.9984	
w- Control vs. dCtr9	1.859	-9.164 to 12.88	No	ns	0.9936	

w- Control vs. dRtf1	-7.137	-16.82 to 2.544	No	ns	0.2252			
dPaf1 vs. dLeo1	-1.853	-12.88 to 9.169	No	ns	0.9937			
dPaf1 vs. dCDC73	-0.9592	-11.98 to 10.06	No	ns	0.9997			
dPaf1 vs. dCtr9	2.176	-9.608 to 13.96	No	ns	0.9903			
dPaf1 vs. dRtf1	-6.82	-17.36 to 3.719	No	ns	0.3469			
dLeo1 vs. dCDC73	0.894	-9.311 to 11.1	No	ns	0.9997			
dLeo1 vs. dCtr9	4.029	-6.994 to 15.05	No	ns	0.8451			
dLeo1 vs. dRtf1	-4.967	-14.65 to 4.714	No	ns	0.5848			
dCDC73 vs. dCtr9	3.135	-7.888 to 14.16	No	ns	0.9387			
dCDC73 vs. dRtf1	-5.861	-15.54 to 3.82	No	ns	0.4151			
dCtr9 vs. dRtf1	-8.996	-19.54 to 1.544	No	ns	0.1199			
Sup. Fig 5c: 1-way AN	OVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	2096	5	419.2	F (5, 27) = 32.81	P<0.0001			
Residual (within columns)	345	27	12.78					
Total	2441	32						
Sample sizes (n)		l (6); Paf1 RN); Rtf1 RNAi-2	IAi-2 (5); Leo1 RN 2 (6)	Ai-2 (5), CD	C73 RNAi-2 ((5); Ctr9		
Independent Expt. Runs	2 with > 4	animals per (genotype					
Data point	ta point retina depth from 1 eye per animal							

Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dPaf1	-19.16	-25.79 to - 12.53	Yes	***	<0.0001	
Control vs. dLeo1	-12.03	-18.66 to - 5.394	Yes	***	<0.0001	
Control vs. dCDC73	-24.63	-31.26 to - 18	Yes	***	<0.0001	
Control vs. dCtr9	-19.74	-26.07 to - 13.42	Yes	***	<0.0001	
Control vs. dRtf1	-12.78	-19.11 to - 6.461	Yes	***	<0.0001	
dPaf1 vs. dLeo1	7.137	0.2107 to 14.06	Yes	*	0.0406	
dPaf1 vs. dCDC73	-5.467	-12.39 to 1.46	No	ns	0.1856	
dPaf1 vs. dCtr9	-0.5815	-7.213 to 6.05	No	ns	0.9998	
dPaf1 vs. dRtf1	6.378	-0.2533 to 13.01	No	ns	0.0646	
dLeo1 vs. dCDC73	-12.6	-19.53 to - 5.678	Yes	***	<0.0001	
dLeo1 vs. dCtr9	-7.719	-14.35 to - 1.087	Yes	*	0.0156	
dLeo1 vs. dRtf1	-0.7589	-7.391 to 5.873	No	ns	0.9992	
dCDC73 vs. dCtr9	4.885	-1.747 to 11.52	No	ns	0.2461	
dCDC73 vs. dRtf1	11.85	5.213 to 18.48	Yes	***	0.0001	
dCtr9 vs. dRtf1	6.96	0.6368 to 13.28	Yes	*	0.0247	
Sup. Fig 5d: 1-way AN	OVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between	2290	5	457.9	F (5, 19)	P<0.0001	

columns)				= 10.68		
Residual (within columns)	815	19	42.89			
Total	3105	24				
Sample sizes (n)		1); Paf1 RNA i-2 (87); Rtf1	i-2 (85); Leo1 RNA RNAi-2 (31)	Ai-2 (73), CI	DC73 RNAi-2	(67);
Independent Expt. Runs	2 with > 3	0 animals per	genotype			
Data point	mean % a genotype	nimals that cl	imb per tube; 10-2	:0 animals p	er tube for ea	ıch
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w- Control vs. dPaf1	-28.5	-43.13 to - 13.87	Yes	***	<0.0001	
w- Control vs. dLeo1	-23.5	-39.3 to - 7.695	Yes	**	0.0019	
w- Control vs. dCDC73	-30.5	-46.3 to - 14.7	Yes	***	<0.0001	
w- Control vs. dCtr9	-29.8	-44.91 to - 14.69	Yes	***	<0.0001	
w- Control vs. dRtf1	-30.67	-47.56 to - 13.77	Yes	***	0.0002	
dPaf1 vs. dLeo1	5	-8.358 to 18.36	No	ns	0.8395	
dPaf1 vs. dCDC73	-2	-15.36 to 11.36	No	ns	0.9966	
dPaf1 vs. dCtr9	-1.3	-13.83 to 11.23	No	ns	0.9994	
dPaf1 vs. dRtf1	-2.167	-16.8 to 12.47	No	ns	0.9968	
dLeo1 vs. dCDC73	-7	-21.63 to 7.633	No	ns	0.6615	
dLeo1 vs. dCtr9	-6.3	-20.18 to 7.582	No	ns	0.7071	
dLeo1 vs. dRtf1	-7.167	-22.97 to 8.638	No	ns	0.7078	

dCDC73 vs. dCtr9	0.7	-13.18 to 14.58	No	ns	>0.9999	
dCDC73 vs. dRtf1	-0.1667	-15.97 to 15.64	No	ns	>0.9999	
dCtr9 vs. dRtf1	-0.8667	-15.98 to 14.25	No	ns	>0.9999	
Sup. Fig 7b, Paf1: 1-w	ay ANOVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.2299	2	0.115	F (2, 18) = 1.864	P=0.1837	
Residual (within columns)	1.11	18	0.06167			
Total	1.34	20				
Sample size (n)	10			L		
Independent Expt. Runs	2 w/ biolog	2 w/ biological triplicates				
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Controls vs. dLeo1	0.0903 4	-0.2437 to 0.4244	No	ns	0.7721	
Controls vs. dCDC73	0.2525	-0.08157 to 0.5865	No	ns	0.1594	
dLeo1 vs. dCDC73	0.1621	-0.2038 to 0.528	No	ns	0.5082	
Sup. Fig 7b, Leo1: 1-w	vay ANOVA	\				
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.5062	2	0.2531	F (2, 15) = 9.4	P=0.0023	
Residual (within columns)	0.4039	15	0.02693			
Total	0.9101	17				

Sample size (n)	10							
Independent Expt. Runs	2 w/ biolo	2 w/ biological triplicates						
Data point	mean fold	mean fold change for 1 replicate relative to mean of controls						
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. dPaf1	-0.2364	-0.4825 to 0.009665	No	ns	0.0606			
Control vs. dCDC73	0.1727	-0.07338 to 0.4188	No	ns	0.1959			
dPaf1 vs. dCDC73	0.4091	0.163 to 0.6552	Yes	**	0.0017			
Sup. Fig 7b, Cdc73: 1-	way ANO	'A						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	0.3349	2	0.1675	F (2, 15) = 1.59	P=0.2365			
Residual (within columns)	1.58	15	0.1053					
Total	1.915	17						
Sample size (n)	10							
Independent Expt. Runs	2 w/ biolo	gical triplicate	es.					
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls			
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. dPaf1	-0.1228	-0.6095 to 0.3639	No	ns	0.7921			
Control vs. dLeo1	0.2077	-0.279 to 0.6944	No	ns	0.5237			
dPaf1 vs. dLeo1	0.3305	-0.1562 to 0.8172	No	ns	0.2151			
Sup. Fig 7b, Ctr9: 1-w	ay ANOVA							

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.671	3	0.2237	F (3, 20) = 6.055	P=0.0042	
Residual (within columns)	0.7388	20	0.03694			
Total	1.41	23				
Sample size (n)	10					
Independent Expt. Runs	2 w/ biolo	gical triplicate	es			
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dPaf1	0.0530 3	-0.3636 to 0.2576	No	ns	0.9631	
Control vs. dLeo1	0.1977	-0.1129 to 0.5083	No	ns	0.3107	
Control vs. dCDC73	0.3685	0.05788 to 0.6791	Yes	*	0.0165	
dPaf1 vs. dLeo1	0.2508	-0.05983 to 0.5613	No	ns	0.1415	
dPaf1 vs. dCDC73	0.4215	0.1109 to 0.7321	Yes	**	0.0057	
dLeo1 vs. dCDC73	0.1708	-0.1398 to 0.4813	No	ns	0.4343	
Sup. Fig 7b, Rtf1: 1-wa	ay ANOVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.9819	3	0.3273	F (3, 20) = 4.88	P=0.0105	
Residual (within columns)	1.341	20	0.06706			
Total	2.323	23				

						10						
Independent Expt. Runs	2 w/ biolog	2 w/ biological triplicates										
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value							
Controls vs. dPaf1	-0.2141	-0.6326 to 0.2044	No	ns	0.495							
Controls vs. dLeo1	0.0440 7	-0.3744 to 0.4625	No	ns	0.9908							
Controls vs. dCDC73	0.3524	-0.06609 to 0.7709	No	ns	0.1185							
dPaf1 vs. dLeo1	0.2582	-0.1603 to 0.6766	No	ns	0.3366							
dPaf1 vs. dCDC73	0.5665	0.148 to 0.985	Yes	**	0.0058							
dLeo1 vs. dCDC73	0.3083	-0.1102 to 0.7268	No	ns	0.1995							
Sup. Fig 7b, Spt4: 1-w	ay ANOVA											
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value							
Treatment (between columns)	0.5222	3	0.1741	F (3, 23) = 2.823	P=0.0612							
Residual (within columns)	1.418	23	0.06165									
Total	1.94	26										
Sample size (n)	10											
Independent Expt. Runs	2 w/ biolog	gical triplicate	s									
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value							
Control vs. dPaf1	-0.1918	-0.5539 to 0.1703	No	ns	0.4735							

Ī	_			İ	l	I
Control vs. dLeo1	0.0461 7	-0.4083 to 0.316	No	ns	0.9846	
Control vs. dCDC73	0.2195	-0.1426 to 0.5817	No	ns	0.3578	
dPaf1 vs. dLeo1	0.1456	-0.2511 to 0.5423	No	ns	0.7419	
dPaf1 vs. dCDC73	0.4113	0.01462 to 0.808	Yes	*	0.0402	
dLeo1 vs. dCDC73	0.2657	-0.131 to 0.6624	No	ns	0.2752	
Sup Fig 7a, Control vs	. Paf1 RNA	i: Log-rank (N	Mantel-Cox) test ar	nd Gehan-B	reslow-Wilcox	kon test
Sample Sizes (n)		Control (301); Paf1 RNAi (200)		
Independent Expt Run	S	2 with > 150	animals per geno	type		
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio
Log-rank (Mantel- Cox)	133	1	<0.0001	Yes	***	1.119 to 1.653/
Gehan-Breslow- Wilcoxon	72.23	1	<0.0001	Yes	****	0.605 to 0.893 6
Sup Fig 7a, Control vs	. Leo1 RNA	Ai: Log-rank (I	Mantel-Cox) test a	nd Gehan-E	Breslow-Wilco	xon test
Sample Sizes (n)		Control (301); Leo1 RNAi (275	5)		
Independent Expt Run	s	2 with > 150	animals per geno	type		
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio
Log-rank (Mantel- Cox)	86.2	1	<0.0001	Yes	***	1.081 to 1.582/
Gehan-Breslow- Wilcoxon	59.88	1	<0.0001	Yes	***	0.632 2 to 0.924 9
Sup Fig 7a, Control vs	. CDC73 R	NAi: Log-rank	(Mantel-Cox) test	t and Gehar	n-Breslow-Wil	coxon

test							
Sample Sizes (n)		Control (301); CDC73 RNAi (2	00)			
Independent Expt Run	ıs	2 with > 150	animals per geno	type			
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio	
Log-rank (Mantel- Cox)	2.125	1	0.1449	No	ns	0.796 6 to 1.185/	
Gehan-Breslow- Wilcoxon	2.474	1	0.1158	No	ns	0.844 2 to 1.255	
Sup Fig 7a, Control vs	. Ctr9 RNA	i: Log-rank (N	lantel-Cox) test an	d Gehan-B	reslow-Wilcox	on test	
Sample Sizes (n)		Control (301); Ctr9 RNAi (210)				
Independent Expt Runs		2 with > 150	2 with > 150 animals per genotype				
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio	
Log-rank (Mantel- Cox)	207.8	1	<0.0001	Yes	***	1.272 to 1.878/	
Gehan-Breslow- Wilcoxon	163.8	1	<0.0001	Yes	***	0.532 4 to 0.786 4	
Sup Fig 7a, Control vs	. Rtf1 RNA	i: Log-rank (M	lantel-Cox) test an	d Gehan-Bı	reslow-Wilcox	on test	
Sample Sizes (n)		Control (301); Rtf1 RNAi (200)				
Independent Expt Run	IS	2 with > 150	animals per geno	type			
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio	
Log-rank (Mantel- Cox)	48.15	1	<0.0001	Yes	***	0.905 5 to 1.328/	
Gehan-Breslow- Wilcoxon	19.29	1	<0.0001	Yes	***	0.752 8 to 1.104	
Sup. Fig 8a: unpaired,	two-tailed	student t-test					

Sample sizes (n)	w+ Control (9); w- Control (12)						
Independent Expt. Runs	>3 with >	4 animals per	genotype				
Data point	retina dep	th from 1 eye	per animal				
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?	
w+ control vs. w- control	0.8479	No	ns	1.465, 8, 11	0.5451	No	
Sup Fig 8b: Log-rank (Mantel-Co	x) test and Ge	han-Breslow-Wilc	oxon test			
Sample	Sizes (n)	w- Control (188); w+ control (1	06)			
Independent I	Expt Runs	pt Runs 2 with >100 animals per genotype					
Test	Chi square	df	P value	Significa nt?	Summary	95% CI of ratio	
Log-rank (Mantel- Cox)	0.5859	1	0.444	No	ns	0.882 2 to 1.435/	
Gehan-Breslow- Wilcoxon	0.04529	1	0.8315	No	ns	0.697 to 1.134	
Sup. Fig 8c: unpaired,	two-tailed	student t-test					
Sample sizes (n)	w+ Contro	ol (72); w- Cor	ntrol (51)				
Independent Expt. Runs	2 with >50) animals per	genotype				
Data point	mean % a genotype	nimals that cl	imb per tube; 10-2	0 animals p	er tube for ea	ch	
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?	
w+ control vs. w- control	0.3479	No	ns	4.687, 6, 5	0.1111	No	
Sup. Fig 8d: 1-way AN	IOVA						
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value		
Treatment (between	0.6252	3	0.2084	F (3, 20)	P=0.1584		

columns)				= 1.923		
Residual (within columns)	2.167	20	0.1084			
Total	2.792	23				
Sample size (n)	25					
Independent Expt. Runs	2 w/ biolog	gical triplicate	s			
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
w- Control 1 vs. w- Control 2	-0.3957	-0.9276 to 0.1363	No	ns	0.193	
w- Control 1 vs. w+ Control 1	0.0628 3	-0.5948 to 0.4691	No	ns	0.9872	
w- Control 1 vs. w+ Control 2	0.0173	-0.5493 to 0.5146	No	ns	0.9997	
w- Control 2 vs. w+ Control 1	0.3328	-0.1991 to 0.8648	No	ns	0.3249	
w- Control 2 vs. w+ Control 2	0.3783	-0.1536 to 0.9103	No	ns	0.2245	
w+ Control 1 vs. w+ Control 2	0.0455	-0.4864 to 0.5774	No	ns	0.995	
Sup. Fig 8e: unpaired,	two-tailed	student t-test				
Sample sizes (n)	w+ Contro	ol (8); w- Cont	rol (8)			
Independent Expt. Runs	2 with >4	animals per g	enotype			
Data point	total fluore	escence per a	nimal relative to m	nean of w- c	ontrol	
	P value	Significant ?	Summary	F, DFn, Dfd	F test P value	F test signifi cant?
w+ control vs. w- control	0.0688	No	ns	8.09, 7, 7	0.0132	Yes

Sup. Fig 9a: 1-way AN	IOVA								
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value				
Treatment (between columns)	2.065	5	0.4131	F (5, 30) = 11.67	P<0.0001				
Residual (within columns)	1.062	30	0.03539						
Total	3.127	35							
Sample size (n)	25								
Independent Expt. Runs	2 w/ biolo	w/ biological triplicates for all except Rtf1 which was run once							
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value				
Control vs. dPaf1	0.4965	0.1949 to 0.7981	Yes	***	0.0003				
Control vs. dLeo1	0.3727	0.07111 to 0.6742	Yes	**	0.0087				
Control vs. dCDC73	0.4903	0.1888 to 0.7919	Yes	***	0.0004				
Control vs. dCtr9	0.4308	0.1293 to 0.7324	Yes	**	0.0019				
Control vs. dRtf1	0.8277	0.4462 to 1.209	Yes	***	<0.0001				
dPaf1 vs. dLeo1	-0.1238	-0.4542 to 0.2065	No	ns	0.8606				
dPaf1 vs. dCDC73	0.0061 67	-0.3365 to 0.3242	No	ns	>0.9999				
dPaf1 vs. dCtr9	0.0656 7	-0.396 to 0.2647	No	ns	0.9899				
dPaf1 vs. dRtf1	0.3312	-0.07342 to 0.7358	No	ns	0.1593				

dLeo1 vs. dCDC73	0.1177	-0.2127 to 0.448	No	ns	0.8841	
dLeo1 vs. dCtr9	0.0581 7	-0.2722 to 0.3885	No	ns	0.9942	
dLeo1 vs. dRtf1	0.455	0.05041 to 0.8596	Yes	*	0.0204	
dCDC73 vs. dCtr9	-0.0595	-0.3898 to 0.2708	No	ns	0.9936	
dCDC73 vs. dRtf1	0.3373	-0.06725 to 0.7419	No	ns	0.1457	
dCtr9 vs. dRtf1	0.3968	- 0.007752 to 0.8014	No	ns	0.057	
Sup. Fig 9b, Tub: 1-wa	ay ANOVA					
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.278	6	0.04633	F (6, 14) = 0.8653	P=0.5433	
Residual (within columns)	0.7496	14	0.05354			
Total	1.028	20				
Sample size (n)	10					
Independent Expt. Runs	2 w/ biolo	gical triplicate	s			
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls	
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value	
Control vs. dSpt4	0.0787	-0.5664 to 0.7238	No	ns	0.9994	
Control vs. dCDC73	0.2742	-0.3709 to 0.9194	No	ns	0.7668	
Control vs. dRtf1	-0.0189	-0.664 to 0.6262	No	ns	>0.9999	
Control vs. dCtr9	0.0877	-0.7329	No	ns	0.999	

	3	to 0.5574			
Control vs. dPaf1	-0.0849	-0.73 to 0.5602	No	ns	0.9991
Control vs. dLeo1	0.0471	-0.598 to 0.6923	No	ns	>0.9999
dSpt4 vs. dCDC73	0.1955	-0.4496 to 0.8407	No	ns	0.9369
dSpt4 vs. dRtf1	-0.0976	-0.7427 to 0.5475	No	ns	0.9981
dSpt4 vs. dCtr9	-0.1664	-0.8116 to 0.4787	No	ns	0.9698
dSpt4 vs. dPaf1	-0.1636	-0.8087 to 0.4815	No	ns	0.9722
dSpt4 vs. dLeo1	0.0315 7	-0.6767 to 0.6136	No	ns	>0.9999
dCDC73 vs. dRtf1	-0.2931	-0.9383 to 0.352	No	ns	0.7122
dCDC73 vs. dCtr9	-0.362	-1.007 to 0.2832	No	ns	0.5018
dCDC73 vs. dPaf1	-0.3591	-1.004 to 0.286	No	ns	0.5103
dCDC73 vs. dLeo1	-0.2271	-0.8722 to 0.418	No	ns	0.8822
dRtf1 vs. dCtr9	0.0688 3	-0.714 to 0.5763	No	ns	0.9997
dRtf1 vs. dPaf1	-0.066	-0.7111 to 0.5791	No	ns	0.9998
dRtf1 vs. dLeo1	0.0660 3	-0.5791 to 0.7112	No	ns	0.9998
dCtr9 vs. dPaf1	0.0028 33	-0.6423 to 0.648	No	ns	>0.9999
dCtr9 vs. dLeo1	0.1349	-0.5103	No	ns	0.9894

		to 0.78						
dPaf1 vs. dLeo1	0.132	-0.5131 to 0.7772	No	ns	0.9905			
Sup. Fig 9b, Actin: 1-w	ay ANOVA							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
Treatment (between columns)	0.1481	6	0.02469	F (6, 17) = 0.484	P=0.8112			
Residual (within columns)	0.8672	17	0.05101					
Total	1.015	23						
Sample size (n)	10							
Independent Expt. Runs	2 w/ biolog	2 w/ biological triplicates						
Data point	mean fold	mean fold change for 1 replicate relative to mean of controls						
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value			
Control vs. dSpt4	0.1449	-0.3864 to 0.6762	No	ns	0.9663			
Control vs. dCDC73	0.0481 8	-0.4831 to 0.5795	No	ns	>0.9999			
Control vs. dRtf1	0.1723	-0.359 to 0.7035	No	ns	0.9261			
Control vs. dCtr9	0.1424	-0.3889 to 0.6737	No	ns	0.969			
Control vs. dPaf1	0.0659 8	-0.4653 to 0.5973	No	ns	0.9995			
Control vs. dLeo1	0.2285	-0.3028 to 0.7598	No	ns	0.7787			
dSpt4 vs. dCDC73	-0.0967	-0.7102 to 0.5168	No	ns	0.9981			
dSpt4 vs. dRtf1	0.0273 7	-0.5861 to 0.6408	No	ns	>0.9999			

dSpt4 vs. dCtr9	-0.0025	-0.616 to 0.611	No		ns	>0.9999	
dSpt4 vs. dPaf1	-0.0789	-0.6924 to 0.5346	No		ns	0.9994	
dSpt4 vs. dLeo1	0.0836	-0.5299 to 0.6971	No		ns	0.9991	
dCDC73 vs. dRtf1	0.1241	-0.4894 to 0.7375	No		ns	0.9925	
dCDC73 vs. dCtr9	0.0942	-0.5193 to 0.7077	No		ns	0.9983	
dCDC73 vs. dPaf1	0.0178	-0.5957 to 0.6313	No		ns	>0.9999	
dCDC73 vs. dLeo1	0.1803	-0.4332 to 0.7938	No		ns	0.9523	
dRtf1 vs. dCtr9	0.0298 7	-0.6433 to 0.5836	No		ns	>0.9999	
dRtf1 vs. dPaf1	-0.1063	-0.7197 to 0.5072	No		ns	0.9967	
dRtf1 vs. dLeo1	0.0562 3	-0.5572 to 0.6697	No		ns	>0.9999	
dCtr9 vs. dPaf1	-0.0764	-0.6899 to 0.5371	No		ns	0.9995	
dCtr9 vs. dLeo1	0.0861	-0.5274 to 0.6996	No		ns	0.999	
dPaf1 vs. dLeo1	0.1625	-0.451 to 0.776	No		ns	0.9707	
Sup. Fig 9c, TDH3: 1-	way ANOV	A					
ANOVA table	SS	DF		MS	F (DFn, DFd)	P value	
Treatment (between columns)	0.00264 5	2		0.001323	F (2, 9) = 0.2174	P=0.8087	
Residual (within columns)	0.05475	9		0.006083			

Total	0.05739	11							
Independent Expt. Runs	1 w/ biolog	1 w/ biological triplicates							
Data point	mean fold	mean fold change for 1 replicate relative to mean of controls							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value				
WT vs. leo1Δ	0.0039 41	-0.15 to 0.1579	No	ns	0.9972				
WT vs. cdc73Δ	0.0293 4	-0.1833 to 0.1246	No	ns	0.8579				
leo1Δ vs. cdc73Δ	0.0332 8	-0.1873 to 0.1207	No	ns	0.8218				
Sup. Fig 9c, FBA1: 1-\	way ANOV	A							
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value				
Treatment (between columns)	0.1229	2	0.06147	F (2, 9) = 2.248	P=0.1615				
Residual (within columns)	0.2461	9	0.02734						
Total	0.369	11							
Independent Expt. Runs	2 w/ biolog	gical triplicate	S						
Data point	mean fold	change for 1	replicate relative t	o mean of o	controls				
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summar y	Adjusted P Value				
WT vs. leo1∆	0.0686 5	-0.3951 to 0.2578	No	ns	0.8303				
WT vs. cdc73Δ	-0.2406	-0.5671 to 0.0858	No	ns	0.154				
leo1Δ vs. cdc73Δ Sup. Fig 10c: 1-way K	-0.172	-0.4984 to 0.1544	No Supplementary	ns	0.3485	and			

patient details)								
P value	Exact or approx?	Summary	medians vary signif. (P < 0.05)?	Number of groups	Kruskal- Wallis statistic			
0.0167	Approxi mate	ns	Yes	3	8.186			
Independent Expt. Runs	1-2 for ind	1-2 for individual patients w/ technical replicates						
Data point	mean fold	mean fold change for 1 patient relative to mean of healthy controls						
Dunn's multiple comparisons test	Mean rank diff.	Significant ?	Summary	Adjusted P Value				
Healthy vs. C9-	-17.78	Yes	*	0.0152				
Healthy vs. C9+	-11	No	ns	0.2017				
C9- vs. C9+	6.783	No	ns	0.8547				
Sup. Fig. 10d-e: Spear patient details)	rman r corr	elations (see	Supplementary Fig	g. 10a for sa	mple sizes ar	nd		
Independent Expt. Runs	1-2 for ind	lividual patien	ts w/ technical rep	licates				

Independent Expt. Runs	1-2 for individual patients w/ technical replicates					
Data point	mean fold	change for 1	patient relative to	mean of he	althy controls	
	Spearm an r	P value (two- tailed)	Summary	Exact or Approx?	Significant ? (a = 0.05)	95% CI
C9+ FTD only: C9orf72 Intron 1 vs CDC73	0.1338	0.5527	ns	Approx.	No	-0.317 to 0.535 3
C9- FTD only: C9orf72 Intron 1 vs CDC73	0.09289	0.6734	ns	Approx.	No	0.343 5 to 0.496 3
C9+ ALS only: C9orf72 Intron 1 vs Paf1	-0.2857	0.9048	ns	Approx.	No	0.476 1 to 0.430 8

C9+ ALS only: C9orf72 Intron 1 vs Leo1	0.3293	0.1562	ns	Approx.	No	0.146 3 to 0.681 3
C9- ALS only: C9orf72 Intron 1 vs Paf1	0.6183	0.0022	Yes	Approx.	**	0.253 6 to 0.829 1
C9- ALS only: C9orf72 Intron 1 vs Leo1	0.4952	0.0191	Yes	Approx.	*	0.079 82 to 0.764
Sup. Fig. 12: linear reg	gression					
Independent Expt. Runs	2					
	Slope	95% CI of slope	F (DFn, DFd)	Significa nt?	P-value	
G4C2 primers	-3.622 ± 0.1514	-5.546 to -1.699	572.4 (1, 1)	Yes	0.0266	
RP49 primers	-3.487 ± 0.1511	-5.407 to -1.568	532.8 (1, 1)	Yes	0.0276	

Table S2-2: Fly lines

Name	Collection	ID#	Full genotype	References
Gmr-GAL4	n/a	n/a	w*;; Gmr-GAL4 ^{YH3}	1
			,	
ElavGS	BDSC	43642	y[1] w[*];; P{w[+mC]=elav- Switch.O}GSG301	2
DaGS	n/a	n/a	w*; Da-GAL4[Geneswitch];	2
Da-GAL4	n/a	n/a	w*;; Da-GAL4	3
HS-GAL4	BDSC	2077	w[*]; P{w[+mC]=GAL4-Hsp70.PB}2;	4
Control	n/a	n/a	w[1118]; UAS-DSRED;	5
(G4C2)8	n/a	n/a	w[1118];; UAS-(G4C2)8	this paper
(G4C2)29	n/a	n/a	w[1118]; UAS-(G4C2)29;	6
(G4C2)49 (II)	n/a	n/a	w[1118]; UAS-(G4C2)49;	this paper
(G4C2)49	n/a	n/a	w[1118];; UAS-(G4C2)49	6
LDS- (G4C2)44 ^{GR-} GFP	n/a	n/a	w[1118];; UAS-LDS-(G4C2) _{4,42,44} [GR-GFP]	this paper
TDP43 ^{52S}	n/a	n/a	w[1118];; UAS-TDP43	7
TDP43 ^{37M}	n/a	n/a	w[1118]; UAS-TDP43;	7
w- Control	BDSC	5905	w[1118];;	
Control RNAi/w+ control 1	BDSC	31603	y[1] v[1];; P{y[+t7.7] v[+t1.8]=TRiP.JF01355}attP2	previously used in ^{8,9}
w+ control 2	BDSC	35788	y[1] v[1]; P{y[+t7.7] v[+t1.8]=UAS- LUC.VALIUM10}attP2	
(GR)36	BDSC	58692	w[1118]; P{{y[+t7.7] w[+mC]=UAS-poly-GR.PO-36}attP40;	10
Paf1 RNAi	VDRC	20876	w[1118]; P{GD9782}v20876;	previously used in ¹¹
Paf1 RNAi-2	VDRC	108826	w[1118]; P{KK100080}VIE-260B;	
Leo1 RNAi	VDRC	17490	w[1118];; P{GD8296}v17490	previously used in ¹¹

Leo1 RNAi-2	VDRC	106074	w[1118]; P{KK104959}VIE-260B;	
CDC73 RNAi	BDSC	53278	y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMC03494}attP40;	
CDC73 RNAi-2	VDRC	28318	w[1118];; P{GD12640}v28318	
Ctr9 RNAi	BDSC	33736	y[1] sc[*] v[1];; P{y[+t7.7] v[+t1.8]=TRiP.HMS00619}attP2	
Ctr9 RNAi-2	VDRC	108874	w[1118]; P{KK101412}VIE-260B;	
Rtf1 RNAi	BDSC	34850	y[1] sc[*] v[1];; P{y[+t7.7] v[+t1.8]=TRiP.HMS00168}attP2	
Rtf1 RNAi-2	VDRC	110392	w[1118]; P{KK101209}VIE-260B;	
Spt4 RNAi	BDSC	32896	y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMS00685}attP2	previously used in ⁶

References

- 1. Kim, H.-J. *et al.* Therapeutic modulation of eIF2α-phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. *Nat Genet* **46**, 152–160 (2014).
- 2. Tricoire, H. *et al.* The steroid hormone receptor EcR finely modulates Drosophila lifespan during adulthood in a sex-specific manner. *Mechanisms of Ageing and Development* **130**, 547–552 (2009).
- 3. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of drosophila. *Cell* **82**, 67–76 (1995).
- 4. Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. *EMBO J* **14**, 2857–2865 (1995).
- 5. Yu, Z. *et al.* A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. *Hum. Mol. Genet.* **24**, 954–962 (2015).
- 6. Kramer, N. J. *et al.* Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. *Science* **353**, 708–712 (2016).
- 7. Elden, A. C. *et al.* Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. *Nature* **466**, 1069–1075 (2010).
- 8. Berson, A. *et al.* TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. *Current Biology* **27**, 3579-3590.e6 (2017).
- 9. Chung, C.-Y. *et al.* Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. *Nat Commun* **9**, (2018).
- 10. Mizielinska, S. *et al.* C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. *Science* **345**, 1192–1194 (2014).
- 11. Gerlach, J. M. *et al.* PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. *PNAS* **114**, E9224–E9232 (2017).

Table S2-3: Full Genotypes

Fig. 1c	Genotype (driver: HS-GAL4, BL2077)	Includes	Temp
Control	w ¹¹¹⁸ /w [*] ; HS-GAL4/+;	n/a	25°C
UAS-G4C2 (II)	w ¹¹¹⁸ /w [*] ; HS-GAL4/UAS-(G4C2)n;	(G4C2)29 and (G4C2)49 (II)	25°C
UAS-G4C2 (III)	w ¹¹¹⁸ /w [*] ; HS-GAL4/+; UAS- (G4C2)n/+	(G4C2)8 and (G4C2)49 (III)	25°C
Fig. 1d	Genotype (driver: Gmr-GAL4YH3)	Includes	Temp
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4/+	n/a	25°C
UAS-G4C2 (II)	w ¹¹¹⁸ /Y; UAS-(G4C2)n/+; Gmr- GAL4/+	(G4C2)29 and (G4C2)49 (II)	25°C
UAS-G4C2 (III)	w ¹¹¹⁸ /Y;; UAS-(G4C2)n/Gmr- GAL4	(G4C2)8 and (G4C2)49 (III)	25°C
Fig. 1e	Genotype (driver: Gmr-GAL4 ^{YH3})	Shown RNAi lines	Temp
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)n/UAS-RNAi	Luc (BL31603)	25°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4, UAS-(G4C2)n/+	CNOT7 (BL52947)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)n/UAS-RNAi	Ctr9 (BL33736)	25°C
Fig. 2a	Genotype (driver: Gmr-GAL4 ^{YH3})	Shown RNAi lines	Temp
(GR)36			
Control	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-(GR)36/+; Gmr- GAL4/UAS-RNAi	Luc (BL31603)	25°C
UAS-RNAi (II)	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-(GR)36/UAS- RNAi; Gmr-GAL4/+	Fib (BL42553)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-(GR)36/+; Gmr- GAL4/UAS-RNAi	ELL (BL33399)	25°C
TDP43			
Control	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-TDP43 ^{37M} /+; Gmr-GAL4/UAS-RNAi	Luc (BL31603)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-TDP43 ^{37M} /+; Gmr-GAL4/UAS-RNAi	MPI (BL34379), CPSF6 (BL34804)	25°C

Figure 3a-b	Genotype (driver: Gmr-GAL4YH3)	Line	Temp
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)49/UAS-RNAi	Luc RNAi (BL31603)	24°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4, UAS-(G4C2)49/+	Paf1 RNAi (v20876), CDC73 RNAi (BL53278)	24°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)49/UAS-RNAi	Leo1 RNAi (v17490), Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C
Figure 3c-d	Genotype (driver: Gmr-GAL4YH3)	Line	Temp
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4/UAS-RNAi	Luc RNAi (BL31603)	24°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4/+	Paf1 RNAi (v20876), CDC73 RNAi (BL53278)	24°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4/UAS-RNAi	Leo1 RNAi (v17490), Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C
Figure 3e	Genotype (driver: Elav-GS)	Line	Temp
Control	w ¹¹¹⁸ ; UAS-DSRED/+; Elav-GS, UAS-(G4C2)49/+	UAS-DSRED	24°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/+; Elav-GS, UAS-(G4C2)49/+	v20876	24°C
dLeo1 RNAi	w ¹¹¹⁸ ;; Elav-GS, UAS- (G4C2)49/UAS-RNAi	v17490	24°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/+; Elav- GS, UAS-(G4C2)49/+	BL53278	24°C
UAS-TRIP (III)	w ¹¹¹⁸ /y ¹ sc [*] v ¹ ;; Elav-GS, UAS- (G4C2)49/UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C
Figure 3f and Supplemental Fig 6	Genotype (driver: Elav-GS)	Line	Temp
(G4C2)0 Control	w ¹¹¹⁸ ; UAS-DSRED/+; Elav-GS/+	UAS-DSRED	24°C
(G4C2)49 Control	w ¹¹¹⁸ ; UAS-DSRED/+; Elav-GS, UAS-(G4C2)49/+	UAS-DSRED	24°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/+; Elav-GS, UAS-(G4C2)49/+	v20876	24°C
dLeo1 RNAi	w ¹¹¹⁸ ;; Elav-GS, UAS- (G4C2)49/UAS-RNAi	v17490	24°C

dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/+; Elav- GS, UAS-(G4C2)49/+	BL53278	24°C
UAS-TRIP	w ¹¹¹⁸ /y ¹ sc [*] v ¹ ;; Elav-GS, UAS-	Ctr9 RNAi (BL33736), Rtf1 RNAi	
(III)	(G4C2)49/UAS-RNAi	(BL34850)	24°C
Figure 3g	Genotype (driver: Da-GS)	Line	Temp
Control	w ¹¹¹⁸ /Y; Da-GS, UAS- (G4C2)49/UAS-DSRED;	UAS-DSRED	24°C
dCDC73 RNAi	w ¹¹¹⁸ /Y; Da-GS, UAS- (G4C2)49/UAS-RNAi;	BL53278	24°C
Figure 4a	Genotype (driver: Elav-GS)	Line	Temp
(G4C2)8 and (G	34C2)49		
Control	w ¹¹¹⁸ ; UAS-DSRED/+; Elav-GS, UAS-(G4C2)n/+	UAS-DSRED	24°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/+; Elav-GS, UAS-(G4C2)n/+	v20876	24°C
dLeo1 RNAi	w ¹¹¹⁸ ;; Elav-GS, UAS- (G4C2)n/UAS-RNAi	v17490	24°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/+; Elav- GS, UAS-(G4C2)n/+	BL53278	24°C
UAS-TRIP (III)	w ¹¹¹⁸ /y ¹ sc*v ¹ ;; Elav-GS, UAS- (G4C2)n/UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C
(G4C2)29			
Control	w ¹¹¹⁸ ; UAS-DSRED/UAS- (G4C2)29; Elav-GS/+	UAS-DSRED	24°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/UAS- (G4C2)29; Elav-GS/+	v20876	24°C
dLeo1 RNAi	w ¹¹¹⁸ ; UAS-(G4C2)29/+; Elav- GS/UAS-RNAi	v17490	24°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/UAS- (G4C2)29; Elav-GS/+	BL53278	24°C
UAS-TRIP (III)	w ¹¹¹⁸ /y ¹ sc [*] v ¹ ; UAS-(G4C2)29/+; Elav-GS/UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C
Figure 4b	Genotype (driver: Elav-GS)	Line	Temp
Control 1*	w ¹¹¹⁸ ;; Elav-GS, UAS- TDP43 ^{52S} /+	(n/a)	24°C

Control 2*	w ¹¹¹⁸ ; UAS-DSRED/+; Elav-GS, UAS-TDP43 ^{52S} /+	UAS-DSRED	24°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/+; Elav-GS, UAS-TDP43 ^{52S} /+	v20876	24°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/+; Elav- GS, UAS-TDP43 ^{52S} /+	BL53278	24°C
dLeo1 RNAi	w ¹¹¹⁸ ;; Elav-GS, UAS- TDP43 ^{52S} /UAS-RNAi	v17490	24°C
UAS-TRIP RNAi (III)	w ¹¹¹⁸ /y ¹ sc*v ¹ ;; Elav-GS, UAS- TDP43 ^{52S} /UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C

^{*} all controls merged to compensate for technical variability; results further validated (Sup Fig 3c)

Figure 4c	Genotype (driver: Gmr-GAL4 ^{YH3})	Line	Temp
Control	y¹sc*v¹/Y;; Gmr-GAL4, UAS- (G4C2) _{4,42,44} ^{GR-GFP} /+	(n/a)	26°C
UAS-RNAi (II)	y¹sc*v¹/Y; UAS-RNAi/+; Gmr- GAL4, UAS-(G4C2) _{4,42,44} ^{GR-GFP} /+	Paf1 RNAi (v20876), CDC73 RNAi (BL53278)	26°C
UAS-RNAi (III)	y¹sc*v¹/Y;; Gmr-GAL4, UAS- (G4C2) _{4,42,44} ^{GR-GFP} /UAS-RNAi	Leo1 RNAi (v17490), Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	26°C
Figure 4d	Genotype	Strain	
WT	MATa his3∆1 leu2∆0 met15∆0 ura3∆0	BY4741	
leo1∆	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 leo1Δ::KanMX	BY4741	
cdc73∆	MATa his3∆1 leu2∆0 met15∆0 ura3∆0 cdc73∆::KanMX	BY4741	
Figure 5a	Genotype (driver: Elav-GS)	Line	Temp
Control	w ¹¹¹⁸ ;; Elav-GS/+	(n/a)	24°C
(G4C2)8 and (G4C2)49	w ¹¹¹⁸ ;; Elav-GS/UAS-(G4C2)n	(n/a)	24°C
Figure 5b	Genotype (driver: Elav-GS)	Line	Temp
Control	w ¹¹¹⁸ ;; Elav-GS/+	(n/a)	24°C
TDP43	w ¹¹¹⁸ ; UAS-TDP43 ^{37m} /+; Elav- GS/+	(n/a)	24°C
Supplemental	Genotype (driver: Gmr-GAL4 ^{YH3})	Shown RNAi lines	Temp

Figure 1a			
rigule la			
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4, UAS-(G4C2)n/+	Trs33 (BL51393), NXF1 (BL42013), His2Av (BL44056)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)n/UAS-RNAi	Med17 (BL34664), Med6 (BL33743), Hel25E (BL33666), SMC2 (BL32369), RagC-D (BL32342), CG3829 (BL55245), Cdk12 (BL34838), Brd8 (BL42658), Hrg (BL33378), Atg3 (BL34359), Dom (BL38385), Not3 (BL33002)	25°C
Supplemental Figure 1b	Genotype (driver: Gmr-GAL4 ^{YH3})	Shown RNAi lines	Temp
(G4C2)8 and (G	,		
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)n/UAS-RNAi	Luc RNAi (BL31603)	25°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4, UAS-(G4C2)n/+	Fib (BL42553)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)n/UAS-RNAi	Ct (BL33967)	25°C
Control			
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4/UAS-RNAi	Luc RNAi (BL31603)	25°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4/+	Fib (BL42553)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4/UAS-RNAi	Ct (BL33967)	25°C
Supplemental Figure 1c	Genotype (driver: Gmr-GAL4, BL1104)	Shown RNAi lines	Temp
Control	w ¹¹¹⁸ /Y; Gmr-GAL4, UAS- LacZ/+; UAS-RNAi/+	Luc RNAi (BL31603)	25°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/Gmr-GAL4, UAS-LacZ;	(n/a)	25°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y; Gmr-GAL4, UAS- LacZ/+; UAS-RNAi/+	AFF1-4 (BL34592), MRTO4 (BL33730)	25°C
Supplemental Figure 2a-b	Genotype (driver: Gmr-GAL4YH3)	Line	Temp
w ⁻ control	w ¹¹¹⁸ ; UAS-DSRED/UAS-	UAS-DSRED	24°C

	(GR)36; Gmr-GAL4/+		
w+ control	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-(GR)36/+; Gmr- GAL4/UAS-RNAi	Luc RNAi (BL31603)	24°C
UAS-GD/KK RNAi (II)	w ¹¹¹⁸ ; UAS-RNAi/UAS-(GR)36; Gmr-GAL4/+	Paf1 RNAi (v20876), Paf1 RNAi-2 (v108826), Leo1 RNAi-2 (v106074), Ctr9 RNAi-2 (v108874), Rtf1 RNAi-2 (v110932)	24°C
UAS-RNAi (III)	w ¹¹¹⁸ ; UAS-(GR)36/+; Gmr- GAL4/UAS-RNAi	Leo1 RNAi (v17490), Cdc73 RNAi- 2 (v28318)	24°C
UAS-TRIP RNAi (II)	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/UAS- (GR)36; Gmr-GAL4/+	Cdc73 RNAi (BL53278)	24°C
UAS-TRIP RNAi (III)	w ¹¹¹⁸ /y ¹ sc [*] v ¹ ;UAS-(GR)36/+; Gmr-GAL4/UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850), Spt4 RNAi (BL32896)	24°C
Supplemental Figure 3	Genotype (driver: Gmr-GAL4 ^{YH3})	Line	Temp
w ⁻ control	w ¹¹¹⁸ ; UAS-TDP43 ^{37M} /+; Gmr- GAL4/+	(n/a)	26°C
w+ control	w ¹¹¹⁸ /y ¹ v ¹ ;UAS-TDP43 ^{37M} /+; Gmr-GAL4/UAS-RNAi	Luc RNAi (BL31603)	26°C
UAS-GD/KK RNAi (II)	w ¹¹¹⁸ ; UAS-RNAi/UAS- TDP43 ^{37M} ; Gmr-GAL4/+	Paf1 RNAi (v20876), Paf1 RNAi-2 (v108826), Leo1 RNAi-2 (v106074), Ctr9 RNAi-2 (v108874), Rtf1 RNAi-2 (v110932)	26°C
UAS-GD RNAi (III)	w ¹¹¹⁸ ; UAS-TDP43 ^{37M} /+; Gmr- GAL4/UAS-RNAi	Leo1 RNAi (v17490), Cdc73 RNAi- 2 (v28318)	26°C
UAS-TRIP RNAi (II)	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/UAS- TDP43 ^{37M} ; Gmr-GAL4/+	Cdc73 RNAi (BL53278)	26°C
UAS-TRIP RNAi (III)	w ¹¹¹⁸ /y ¹ sc*v ¹ ;UAS-TDP43 ^{37M} /+; Gmr-GAL4/UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850), Spt4 RNAi (BL32896)	26°C
Supplemental Figure 4a	Genotype	Line	Temp
Da-GAL4			
w- control	w ¹¹¹⁸ ;; Da-GAL4/+	(n/a)	26°C
w- RNAi (II)	w ¹¹¹⁸ ; UAS-RNAi/+; Da-GAL4/+	Paf1 RNAi (v20876), Paf1 RNAi-2 (v108826), Ctr9 RNAi-2 (v108874), Leo1 RNAi-2 (v106074)	26°C
w- RNAi (III)	w ¹¹¹⁸ ;; Da-GAL4/UAS-RNAi	Leo1 RNAi (v17490)	26°C

Da-GS			
w- control	w ¹¹¹⁸ ; Da-GS/+;	(n/a)	26°C
w- RNAi (II)	w ¹¹¹⁸ ; UAS-RNAi/Da-GS;	Rtf1 RNAi-2 (v110932)	26°C
w- RNAi (III)	w ¹¹¹⁸ ; Da-GS/+; UAS-RNAi/+	Cdc73 RNAi-2 (v28318)	26°C
w+ control	w ¹¹¹⁸ /y ¹ v ¹ ; Da-GS/+; UAS- RNAi/+	Luc RNAi (BL31603)	26°C
w+ RNAi (II)	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/Da-GS;	Cdc73 RNAi (BL53278)	26°C
w+ RNAi (III)	w ¹¹¹⁸ /y ¹ sc*v ¹ ; Da-GS/+; UAS- RNAi/+	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850), Spt4 RNAi (BL32896)	26°C
Supplemental Figure 4b	Genotype (driver: Da-GS)	Line	Temp
w- control	w ¹¹¹⁸ /Y; Da-GS/+;	(n/a)	26°C
w ⁺ control	w ¹¹¹⁸ /Y; Da-GS/+; UAS-RNAi/+	Luc RNAi (BL31603)	26°C
w- RNAi	w ¹¹¹⁸ /Y; Da-GS/+; UAS-RNAi/+	v28318	26°C
w+ RNAi	w ¹¹¹⁸ /Y; UAS-RNAi/Da-GS;	BL53278	26°C
Supplemental Figure 4c	Genotype (driver: Da-GS)	Line	Temp
w- control	w ¹¹¹⁸ /Y; Da-GS/+;	(n/a)	26°C
w ⁺ control	w ¹¹¹⁸ /Y; Da-GS/+; UAS-RNAi/+	Luc RNAi (BL31603)	26°C
w- RNAi	w ¹¹¹⁸ /Y; UAS-RNAi/Da-GS;	v110392	26°C
w+ RNAi	w ¹¹¹⁸ /Y; Da-GS/+; UAS-RNAi/+	BL34850	26°C
Supplemental Figure 5a	Genotype (driver: Gmr-GAL4YH3)	Line	Temp
w- control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)49/+	(n/a)	25°C
UAS-GD/KK RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr-GAL4, UAS-(G4C2)49/+	Paf1 RNAi-2 (v108826), Leo1 RNAi-2 (v106074), Ctr9 RNAi-2 (v108874), Rtf1 RNAi-2 (v110932)	25°C
UAS-GD RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)49/UAS-RNAi	Cdc73 RNAi-2 (v28318)	25°C
Supplemental Figure 5b	Genotype (driver: Gmr-GAL4 ^{YH3})	Line	Temp

w- control	w ¹¹¹⁸ /Y;; Gmr-GAL4/+	(n/a)	25°C
UAS-GD/KK RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4/+	Paf1 RNAi-2 (v108826), Leo1 RNAi-2 (v106074), Ctr9 RNAi-2 (v108874), Rtf1 RNAi-2 (v110932)	25°C
UAS-GD RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4/UAS-RNAi	Cdc73 RNAi-2 (v28318)	25°C
Supplemental Figure 5c	Genotype (driver: Gmr-GAL4 ^{YH3})	Line	Temp
Control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2) _{4,42,44} ^{GR-GFP} /UAS-RNAi	Luc RNAi (BL31603)	26°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Gmr- GAL4, UAS-(G4C2) _{4,42,44} ^{GR-GFP} /+	Paf1 RNAi (v20876), CDC73 RNAi (BL53278)	26°C
UAS-RNAi (III)	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2) _{4,42,44} ^{GR-GFP} /UAS-RNAi	Leo1 RNAi (v17490), Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	26°C
Supplemental Figure 5d	Genotype (driver: Elav-GS)	Line	Temp
Control	w ¹¹¹⁸ /Y; UAS-DSRED/+; Elav- GS, UAS-(G4C2)49/+	UAS-DSRED	24°C
RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Elav-GS, UAS-(G4C2)49/+	Paf1 RNAi-2 (v108826), Leo1 RNAi-2 (v106074), Ctr9 RNAi-2 (v108874), Rtf1 RNAi-2 (v110932)	24°C
RNAi (III)	w ¹¹¹⁸ /Y;; Elav-GS, UAS- (G4C2)49/UAS-RNAi	Cdc73 RNAi-2 (v28318)	24°C
Supplemental Figure 7a	Genotype (driver: Da-GS)	Line	Temp
Control	w ¹¹¹⁸ ; UAS-DSRED/Da-GS;	UAS-DSRED	25°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/Da-GS;	v20876	25°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/Da-GS;	BL53278	25°C
dLeo1 RNAi	w ¹¹¹⁸ ; Da-GS/+; UAS-RNAi/+	v17490	25°C
Supplemental Figure 7b	Genotype (driver: Elav-GS)	Line	Temp
Control	w ¹¹¹⁸ /Y;; Elav-GS/+	(n/a)	24°C
UAS-RNAi (II)	w ¹¹¹⁸ /Y; UAS-RNAi/+; Elav-GS/+	Paf1 RNAi (v20876), CDC73 RNAi (BL53278)	24°C
UAS-RNAi	w ¹¹¹⁸ /Y;; Elav-GS/UAS-RNAi	Leo1 RNAi (v17490), Ctr9 RNAi	24°C

(III)		(BL33736), Rtf1 RNAi (BL34850)	
Supplemental Figure 8a	Genotype (driver: Gmr-GAL4 ^{YH3})	Line	Temp
w- control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)49/+	(n/a)	25°C
w+ control	w ¹¹¹⁸ /Y;; Gmr-GAL4, UAS- (G4C2)49/UAS-RNAi	Luc RNAi (BL31603)	25°C
Supplemental Figure 8b	Genotype (driver: Da-GS)	Line	Temp
w- control	w ¹¹¹⁸ /Y; Da-GS, UAS- (G4C2)49/UAS-DSRED;	UAS-DSRED	24°C
w+ control	w ¹¹¹⁸ /Y; Da-GS, UAS- (G4C2)49/+; UAS-RNAi/+	Luc RNAi (BL31603)	24°C
Supplemental Figure 8c	Genotype (driver: Elav-GS)	Line	Temp
w- control	w ¹¹¹⁸ /Y; UAS-DSRED/+; Elav- GS, UAS-(G4C2)49/+	UAS-DSRED	24°C
w+ control	w ¹¹¹⁸ /Y;; Elav-GS, UAS- (G4C2)49/UAS-Luc	Luc (BL35788)	24°C
Supplemental Figure 8d	Genotype (driver: Elav-GS)	Line	Temp
w- control 1	w ¹¹¹⁸ ;; Elav-GS, UAS- (G4C2)49/+	(n/a)	24°C
w- control 2	w ¹¹¹⁸ ; UAS-DSRED/+; Elav-GS, UAS-(G4C2)49/+	UAS-DSRED	24°C
w+ control 1	w ¹¹¹⁸ /y ¹ v ¹ ;; Elav-GS, UAS- (G4C2)49/UAS-RNAi	Luc RNAi (BL31603)	24°C
w+ control 2	w ¹¹¹⁸ /y ¹ v ¹ ;; Elav-GS, UAS- (G4C2)49/UAS-Luc	Luc (BL35788)	24°C
Supplemental Figure 8e	Genotype (driver: Gmr-GAL4 ^{YH3})	Line	Temp
w- control	y¹sc*v¹/Y;; Gmr-GAL4, UAS- (G4C2) _{4,42,44} ^{GR-GFP} /+	(n/a)	26°C
w+ control	y¹sc*v¹/Y;; Gmr-GAL4, UAS- (G4C2) _{4,42,44} ^{GR-GFP} /UAS-RNAi	Luc RNAi (BL31603)	26°C
Supplemental	Genotype (driver: ElavGS)	Line	Temp

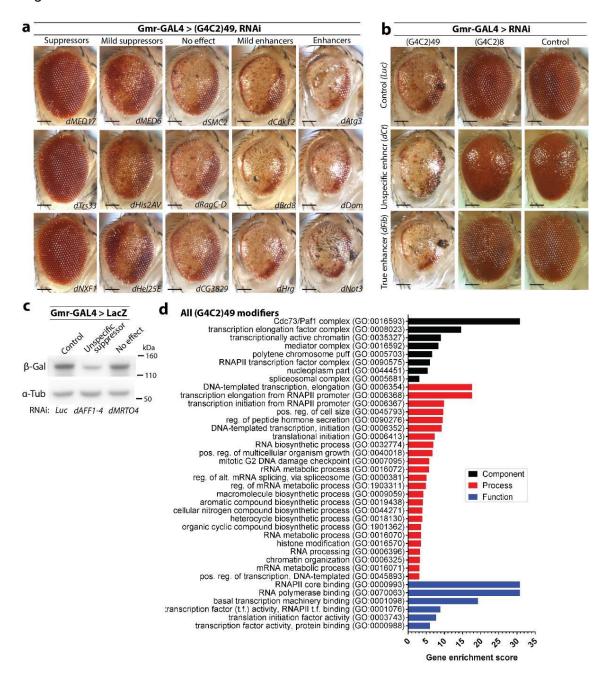
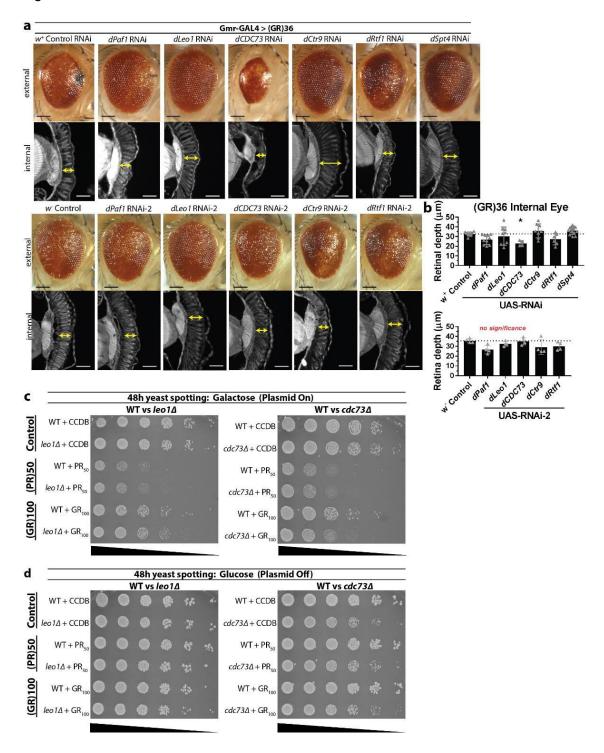

Figure 9a			
Control	w ¹¹¹⁸ ; UAS-DSRED/UAS- (G4C2)49; Elav-GS/+	UAS-DSRED	24°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/UAS- (G4C2)49; Elav-GS/+	v20876	24°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/UAS- (G4C2)49; Elav-GS/+	BL53278	24°C
dLeo1 RNAi	w ¹¹¹⁸ ; UAS-(G4C2)49/+; Elav- GS/UAS-RNAi	v17490	24°C
UAS-TRIP RNAi (III)	w ¹¹¹⁸ /y ¹ sc [*] v ¹ ; UAS-(G4C2)49/+; Elav-GS/UAS-RNAi	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	24°C
Supplemental Figure 9b	Genotype (driver: Da-GS)	Line	Temp
Control	w ¹¹¹⁸ ; UAS-DSRED/Da-GS;	UAS-DSRED	25°C
dPaf1 RNAi	w ¹¹¹⁸ ; UAS-RNAi/Da-GS;	v20876	25°C
dCDC73 RNAi	w ¹¹¹⁸ /y ¹ v ¹ ; UAS-RNAi/Da-GS;	BL53278	25°C
dLeo1 RNAi	w ¹¹¹⁸ ; Da-GS/+; UAS-RNAi/+	v17490	25°C
UAS-TRIP RNAi (III)	w ¹¹¹⁸ /y ¹ sc*v ¹ ; Da-GS/+; UAS- RNAi/+	Ctr9 RNAi (BL33736), Rtf1 RNAi (BL34850)	25°C

Table S2-4: Primers

Target	Species	Assay	Forward Primer (5' to 3')	Reverse Primer (5' to 3')
UAS- G4C2	n/a	PCR	GAATTCGAGCTCAGATCTCCC G	TCTAGAGGATCCGGTACCGA GTCTCGAG
UAS- LDS-	n/a	PCR	CTCGCTGAGGGTGAACAAGA	ACTTGTGGCCGTTTACGTCG
Actin5C	Dmel.	qPCR	CGAAGAAGTTGCTGCTCTGGT TGT	GGACGTCCCACAATCGATGG GAAG
dCDC73	Dmel.	qPCR	AGCGTGAAGACCAACTATCTC A	CGCACGTAGACCGAGTGTT
dCtr9	Dmel.	qPCR	ATTGCGCACGTTTATGTCGA	GACGGCCTTAAGTAGCACT
dLeo1	Dmel.	qPCR	ACGGCTGATCGACACTGATA	TGGCTCTCGACTTTATCCCG
dPaf1	Dmel.	qPCR	CCAAAGCTTCCAAGGGCTAC	CGATAGCGCTGCATACGATG
dRP49	Dmel.	qPCR	TGTCCTTCCAGCTTCAAGATG ACCATC	CTTGGGCTTGCGCCATTTGT G
dRtf1	Dmel.	qPCR	CGGACGCAATCCCTGATCG	CCGTTTGGGGCTTCTTTCG
βTub56D	Dmel.	qPCR	CATCCAAGCTGGTCAGTG	GCCATGCTCATCGGAGAT
UAS- G4C2	n/a	qPCR	AGACTCGGTACCGGATCCTC	GCTCCCATTCATCAGTTCCA
UAS- TDP43	n/a	qPCR	TGTCTTCATCCCCAAGCCAT	TGTGCTTAGGTTCGGCATTG
hRPLP0	Hsap	qPCR	TCTACAACCCTGAAGTGCTTG AT	CAATCTGCAGACAGACACTG G
hGAPDH	Hsap	qPCR	GTTCGACAGTCAGCCGCATC	GGAATTTGCCATGGGTGGA
C9orf72 3'-repeat	Hsap.	qPCR & ChIP	CCTGATAGGAGATAACAGGAT TCCAC	CGACATCACTGCATTCCAAC TGTC
hPAF1	Hsap.	qPCR	CCACTGAGTTCAACCGTTATG G	TCCTCGGTAAACTGCTGCTT C
hLEO1	Hsap	qPCR	CAAGTGGTCAGATGGAAGCA	TGGGGCTTTGTACACATCAA
hCDC73	Hsap.	qPCR	GGGGCACTGCAATTAGTGTT	CTGCACAAAAACGGCTACAA
Intergenic	Hsap.	ChIP	CCAACTGGGTGCTGCCTAGA	AGGGTGCCCATCACAGATGG
scACT1	Sce.	qPCR	ATTCTGAGGTTGCTGCTTTGG	TGTCTTGGTCTACCGACGAT AG
scTDH3	Sce.	qPCR	TTGCCATGGGGTTCTTCCAA	CACCAGCGTCAATGTGCTTT
scFBA1	Sce.	qPCR	AACCTCTAACGGTGGTGCTG	ATCTGATGTAGTGGGCAGCG
eYFP	Sce.	qPCR	GAGCTGAAGGGCATCGACTT	TTCTTCTGCTTGTCGGCCAT
C9 repeat	Sce.	qPCR	AGCTTAGTACTCGCTGAGGGT G	GACTCCTGAGTTCCAGAGCT TG
scLEO1	Sce.	qPCR	AGGGAGGATCAACTGGACGA	ATGTACCGTCTGACCACTGC
scCDC73	Sce.	qPCR	ATCTGAAAGCACCCGGTCAG	CCACCACAACTGGATCGGAA

Chapter 2: Supplementary figures and legends

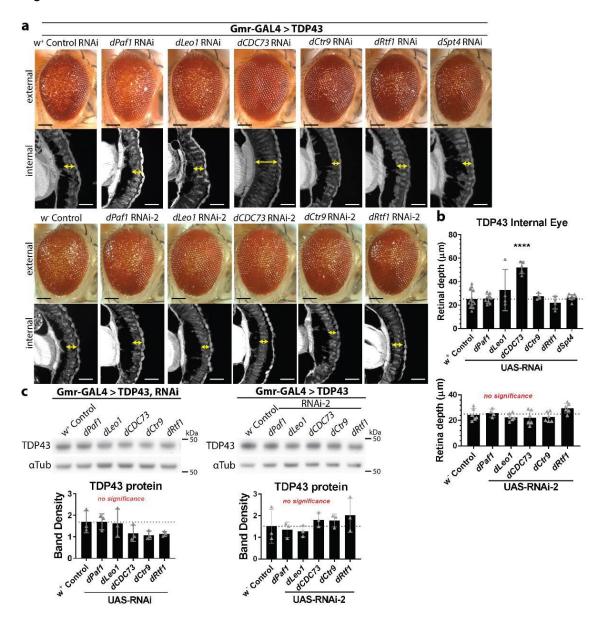
Figure S2-1



Supplementary Figure S2-1: Screen extended data.

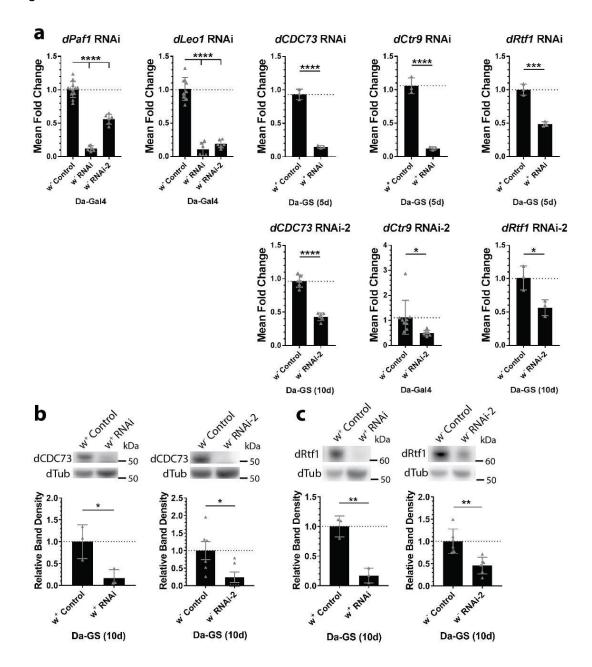
(a) Representative images for the categories identified during the RNAi-based screen in Gmr-GAL4 > (G4C2)49 expressing animals: "suppressors" (strong recovery of ommatidial organization, eye color, and eye size), "mild suppressors" (recovery of ommatidial organization, eye color, and eye size while degenerative effects were still present), "no effect" (indistinguishable from controls), "mild enhancers" (increased disruptions in ommatidial organization and pigment loss), "enhancers" (strongly increased disruptions in ommatidial organization, pigment loss, and eye size), and "lethal enhancers" (lethality in the late pupal stage; rare (n<2) escapers' eyes looked like "enhancers"). All hits were independently tested 2+ times to confirm reproducibility (n>5 flies/cross). (b) Mild enhancers, enhancers, and lethal enhancers were expressed alone or in control (G4C2)8 expressing animals to define those that were toxic in control scenarios. Shown are representative images for an "unspecific enhancer" (RNAi line that caused toxicity in controls) and a "true enhancer" (RNAi line that had no effect in controls while enhancing (G4C2)49-toxicity). Unspecific enhancers were excluded. (a-b) Scale bars: 100µm (c) To identify RNAi lines that altered (G4C2)49-toxicity indirectly by effecting the GAL4/UAS expression system, RNAi lines were co-expressed with a control LacZ transgene. B-Galactosidase protein levels were quantified by western immunoblot. RNAi lines that significantly increased or decreased LacZ expression in a manner consistent with its effect on (G4C2)49-toxicity were reclassified as either "LacZsuppressors" or "LacZ-enhancers" and excluded. Shown is a representative western immunoblot. All lines with potential effects were independently tested twice with biological duplicates to confirm reproducibility. (d) Gene ontology analyses revealed GO terms enriched in the panel of modifiers identified in the screen that alter (G4C2)49toxicity (119/3582 genes). To compensate for any biases introduced in the RNAi library,

the genes screened were used as the background. RNAi lines that failed control scenarios (b-c) were excluded. Plotted: significant (p-value ≤ 10^-3) enrichment scores of >3.00. Additional details for this and subsequent figures: Supplemental Data (all screen data and significant GO-terms), Supplemental Table S2-1 (detailed sampling, reproducibility and statistics), methods (sampling methods).


Figure S2-2

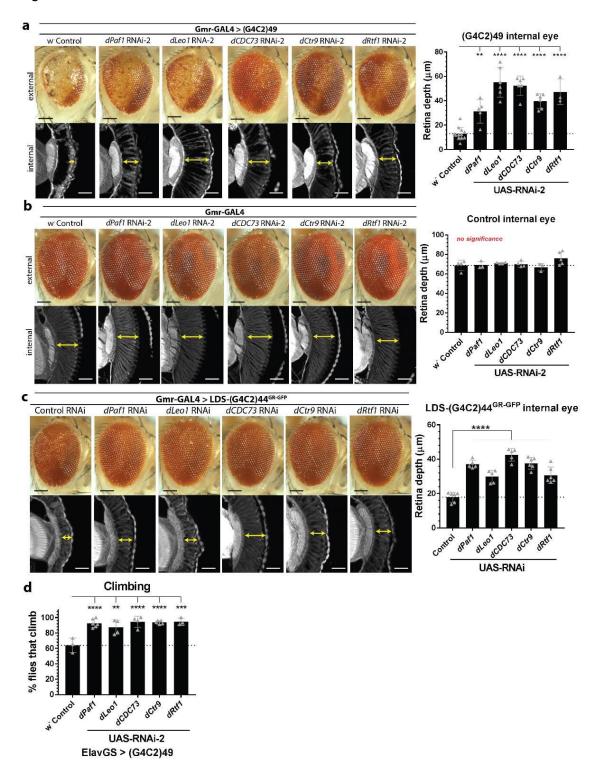
Supplementary Figure S2-2: Downregulation of PAF1C and dSpt4 does not suppress toxicity caused by expression of (GR)30+ or (PR)50.

(a-b) dPAF1C components and dSpt4 were examined for modification of (GR)36-toxicity in the fly optic system (Gmr-GAL4). Internally, there was no significant recovery in retinal tissue loss with multiple RNAi lines targeting dPaf1, dLeo1, dCtr9, and dRtf1. dCDC73 RNAi enhanced toxicity both externally and internally while this effect was not reproducible with dCDC73 RNAi-2. Internal retina depth (arrows) was quantified for individual animals. N flies for RNAi: control=9, dPaf1=10, dLeo1=9, dCDC73=4, dCtr9=8, dRtf1=6, dSpt4=14. N flies for RNAi-2 = 4 for all genotypes. Shown: individual data points (each representing 1 animal) with mean±SD. Statistics: ANOVAs with Dunnett's correction (RNAi), ANOVA with Tukey's correction (RNAi-2), p-values: *=0.03, no significance (n.s.) >0.05. Scale bars: external eye = 100µm, internal eye = 35µm. (c-d) To further assess the specificity of PAF1C to (G4C2)30+ RNA models, yeast spotting assays were used. Control (CCDB), (PR)50 or (GR)100 were expressed in yeast using galactose-inducible transgenes (see methods). Expression of (PR)50 and (GR)100 reduced colony formation in WT cells. This effect was unaltered in *leo1*Δ yeast. Interestingly, cdc73∆ caused further reduced growth in (GR)100 expressing yeast but had no effect on yeast expressing (PR)50. This is consistent with dCDC73 RNAi data in (GR)36-expressing flies where loss of this component, in one RNAi line, increased GRassociated toxicity. Note that any mild effects observed with individual PAF1C components and dSpt4 can be explained by the fact that a GR-producing mRNA transcript, despite being G4C2-independent, will still be GC-rich based on the standard codon table. PAF1C and Spt4 are important for transcription of GC-rich DNA (Rondón, A. G. et al, 2004; Rondón, A. G. et al, 2003). Shown: data from one experiment; all experiments were independently repeated with similar results.


Figure S2-3

Supplementary Figure S2-3: Downregulation of dPAF1C and dSpt4 does not suppress toxicity caused by expression of TDP43 in the fly eye.

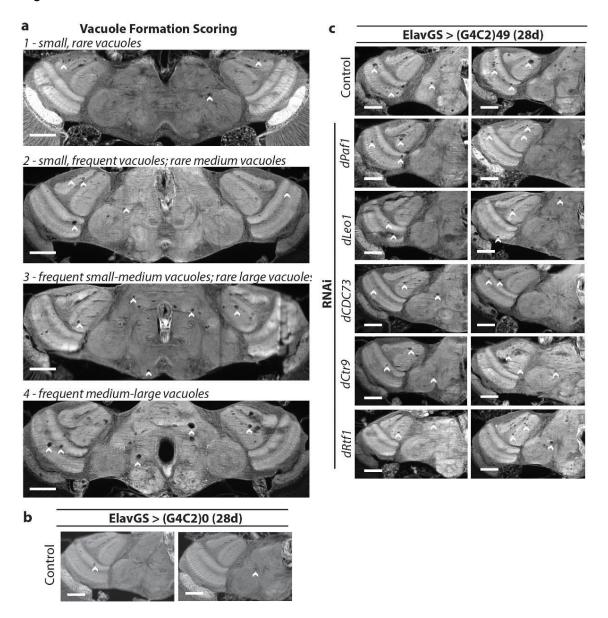
(a-b) dPAF1C and *Spt4* RNAi were tested as modifiers of TDP43-toxicity in the fly optic system (Gmr-GAL4). Only *dCDC73* RNAi caused significant suppression of the external and internal eye in these animals. This effect was not reproduced with a second, independent RNAi lines targeting *dCDC73*. Internal retina depth (arrows) was quantified for individual animals. N flies for RNAi: control=13, *dPaf1*=9, *dLeo1*=4, *dCDC73*=5, *dCtr9*=4, *dRtf1*=4, *dSpt4*=9. N flies for RNAi-2: control=6, *dPaf1*=4, *dLeo1*=6, *dCDC73*=6, *dCtr9*=6, *dRtf1*=6. Shown: individual data points (each representing 1 animal) with mean±SD. Scale bars: external eye = 100μm, internal eye = 35μm. (c) Expression from the TDP43 transgene was analyzed by western immunoblot when dPAF1C was downregulated revealing no change in TDP43 protein levels. Shown: individual data points with mean±SD; mean value of biological triplicates (n=10 flies/replicate). Statistics: ANOVAs with Tukey's correction, p-values: ****< 0.0001, no significance (n.s.) >0.05. Shown: data from one experiment while all experiments were independently repeated with similar results. See Supplemental Figure S2-11 for uncropped western images for this and subsequent figures.


Figure S2-4

Supplementary Figure S2-4: Characterization of dPAF1C RNAi fly lines.

(a) RNA levels of dPAF1C components were assessed by qPCR to define RNAi efficacy in flies. UAS-RNAi fly lines were ubiquitously expressed and compared to background-matched controls. For samples analyzed with Da-GAL4, expression was measured in larvae. For samples analyzed with Da-GS, expression was measured in adult animals (n=10) after 5d or 10d of drug-induced expression. Shown: individual data points with mean±SD; mean value of 3-6 biological replicates. (b-c) RNAi lines targeting dCDC73 or dRtf1 were analyzed for level of protein knockdown by western immunoblot. Shown: individual data points with mean±SD; mean value of 3 biological replicates (n=10 flies/replicate). Statistics: ANOVAs with Tukey's correction (dPaf1 and dLeo1 RNAi only), unpaired 2-tailed student t-test; p-values: ****<0.0001, ***<0.001, **<0.01, *<0.05. Shown: data from one experiment while all experiments were independently repeated with similar results.

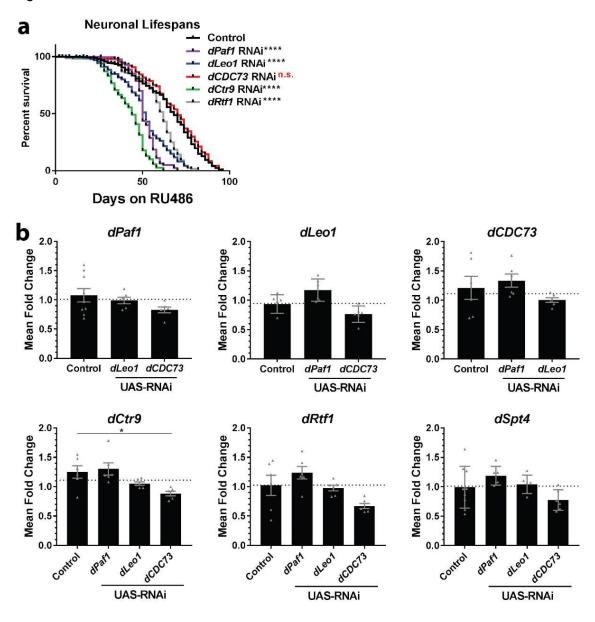
Figure S2-5



Supplementary Figure S2-5: Extended data showing dPAF1C RNAi lines suppress (G4C2)30+ toxicity in the fly.

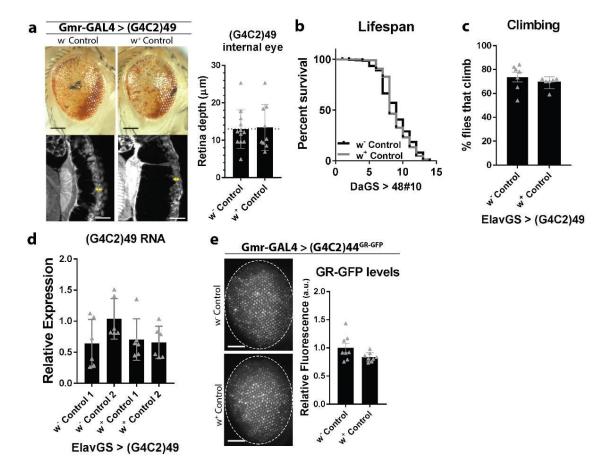
(a) Downregulation of each of the components of dPAF1C with a second set of RNAi lines mitigates toxicity associated with (G4C2)49 expression in the fly eye, seen externally by reduced pigment loss and reduced disruption in ommatidial organization and internally by increased integrity of the retinal tissue. All RNAi-2 lines are in a w genetic background. Internal retina depth (arrows) was quantified for individual animals. N flies: control=12, dPaf1=5, dLeo1=6, dCDC73=6, dCtr9=6, dRtf1=3. Downregulation of components of dPAF1C with a second set of RNAi lines has no effect on control fly eyes. Internal retina depth (arrows) was quantified for individual animals. N flies: control=4, dPaf1=3, dLeo1=4, dCDC73=4, dCtr9=3, dRtf1=5. (c) dPAF1C RNAi were tested in a second, independent fly model expressing expanded (G4C2)30+ in the fly eye. This model contains a sequence 5' of the repeat (leader sequence, LDS; 114bp of intronic sequence found upstream of the repeat in C9orf72) and a 3' GFP tag in the GR reading frame. Toxicity in this model is also suppressed by dPAF1C RNAi coexpression, seen externally by reduced pigment loss and reduced disruption in ommatidial organization and internally by increased integrity of the retinal tissue. Internal retina depth (arrows) was quantified for individual animals. N flies: control=6, dPaf1=5, dLeo1=5, dCDC73=5, dCtr9=6, dRtf1=6. (a-c) each data point represents one animal. Scale bars: external eye = 100µm, internal eye = 35µm. (d) At 20d, climbing deficits caused by (G4C2)49 expression in the adult male nervous system are rescued when dPAF1C RNAi-2 lines are co-expressed. N flies: control=51, dPaf1=85, dLeo1=73, dCDC73=67, dCtr9=87, dRtf1=31. Individual data points are the mean % of animals that could climb per tube. Average of 16±3.6 animals per tube. Statistics: ANOVAs with Tukey's correction, p-values: ****<0.0001, ***<0.001, **<0.05. Shown: individual

data points with mean±SD; data from one experiment; all experiments were independently repeated twice with similar results.


Figure S2-6

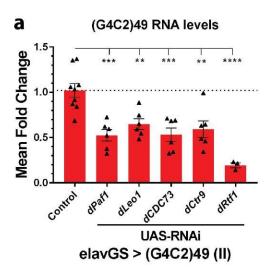
Supplementary Figure S2-6: Vacuole formation scoring schematic and additional examples of genotypes reported.

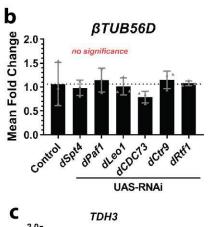
(a) Scoring of vacuole formation (arrowheads) in the adult fly brain. A scale was developed from 0-4 where 0 = no vacuoles and 4 = frequent medium-large vacuoles. "rare" means ≤5 vacuoles and "frequent" means >5 vacuoles. Sections through the entire brain of each animal were assessed in scoring. (G4C2)49 expression in 8d animals typically receives a score of 1. (G4C2)49 expression in 28d animals typically receives a score of 3-4. Expression is driven by the drug-inducible neuronal driver, ElavGS. (b) Additional representative images of non-G4C2, age matched controls at 28d. (c) Additional representative images of vacuoles observed in (G4C2)49 brains at 28d (see Fig 3f). dPAF1C components are targeted by RNAi and result in suppression of vacuole formation in (G4C2)49 expressing animals. Shown: data from one experiment; experiment was repeated twice with similar results. Scale bars: 50µm

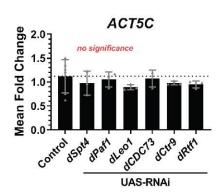

Figure S2-7

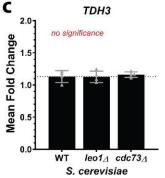
Supplementary Figure S2-7: Characterization of the dPAF1C in the fly.

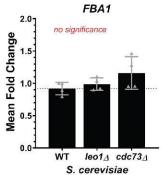
(a) RNAi for dPAF1C components were expressed in the adult fly nervous system using the drug-inducible neuronal driver, ElavGS. Survival of animals with age was evaluated. All RNAi but *dCDC73* RNAi results in reduced lifespan compared to control animals. N flies: control=301, *dPaf1*=200, *dLeo1*=275, *dCDC73*=200, *dCtr9*=210, *dRtf1*=200. (b) Co-regulation of dPAF1C components and dSpt4 were determined by looking for reduced expression of components when *dPaf1*, *dLeo1*, or *dCDC73* were downregulated by RNAi ubiquitously in adult animals (DaGS, 6d). No significance was detected except for *dCtr9* showing downregulation with *dCDC73* RNAi. Shown: individual data points with mean±SD; mean value of biological triplicates (n=10 flies/replicate). Statistics: (a) log-rank tests, (b) ANOVA with Tukey's correction; p-values: ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance (n.s.) >0.05. Shown: data from one experiment; all experiments were independently repeated with similar results.


Figure S2-8




Supplementary Figure S2-1: Comparisons of w vs w genetic background controls in (G4C2)30+ expressing flies shows no significant differences.


To address potential concerns of different RNAi genetic backgrounds of the lines used in this study, multiple controls with different genetic backgrounds were examined. Here we show representative data. (a) Toxicity associated with (G4C2)49 expression looks similar both externally and internally in the fly eye when the transgene is expressed in the optic system (Gmr-GAL4) in w vs w^+ genetic backgrounds. Internal retina depth (arrows) was quantified for individual animals. N flies: w=12, w=9. Shown: individual data points (each representing 1 animal) with mean±SD. Scale bars: external eye = 100µm, internal eye = 35µm. **(b)** Ubiquitous expression of (G4C2)49 in adult flies results in similar lifespans in w vs w^+ genetic backgrounds. N flies: w=188, $w^+=106$. (c) Climbing deficits develop with age in animals expressing (G4C2)49 in the adult fly nervous system, ElavGS. The % flies that can climb is comparable in w and w controls (20d, males). N flies: w=51, $w^{\dagger}=72$. Shown: Individual data points are mean % of animals that could climb per tube; individual data points with mean±SD. (d) qPCR analysis of (G4C2)49 RNA levels in the adult fly nervous system is statistically similar in multiple genetic backgrounds. Shown: individual data points with mean±SD; mean value of biological triplicates (n=25 flies/replicate) from 2 independent experiments. (e) External eye imaging of GR-GFP in Gmr-GAL4 > LDS-(G4C2)44^{GR-GFP} animals results in similar GFP fluorescence independent of genetic background. N flies: w=8, $w^{\dagger}=8$. Shown: individual data points (each representing 1 animal) with mean±SD. Scale bars: 100µm. Statistics: (a,c,e) unpaired 2-tailed student t-tests, (b) log-rank test, (d) ANOVA with Tukey's correction; p-value: no significance >0.05. See Supplemental Figure 12 for optimization of fly G4C2 qPCR reactions for this and subsequent figures.


Figure S2-9

Supplementary Figure S2-9: Extended qPCR fly and yeast data.

(a) A second, independent (G4C2)49 transgene was co-expressed with dPAF1C RNAi lines in the adult brain using a drug inducible, neuronal driver (ElavGS, 16d). Downregulation of all dPAF1C components caused significantly less RNA to be produced from the (G4C2)49 transgene by qPCR, consistent with data in Fig. 4a. Shown: individual data points with mean±SEM; mean value of biological triplicates (n=25 flies/replicate) from 2 independent experiments. (b) RNA levels for endogenous dRNAPII driven genes βTUB56D (β-Tubulin) and ACT5C (β-Actin) are unchanged upon knockdown of dPAF1C by qPCR. The ubiquitous, drug-inducible driver, DaGS, was used to drive RNAi expression in whole animals (6d). Shown: individual data points with mean±SD; mean value of biological triplicates (n=10 flies/replicate); data from 1 experiment while data reproduced in a second, independent experiment. (c) leo1Δ or cdc73Δ yeast strains do not alter RNA levels produced from endogenous scRNAPII genes, TDH3 and FBA1. RNA levels were measured by qPCR. Shown: individual data points with mean±SD; mean value of biological triplicates from 1 experiment. Statistics: ANOVAs with Tukey's correction, p-values: ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance >0.05.

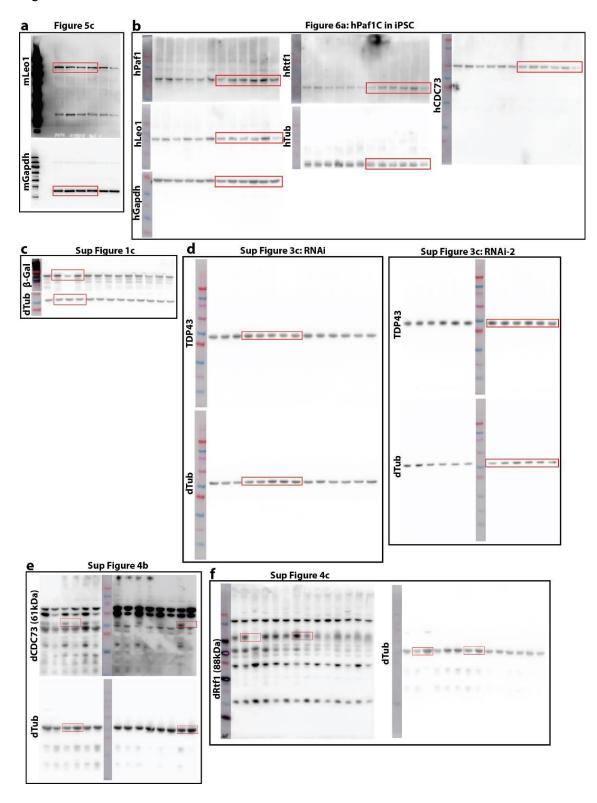
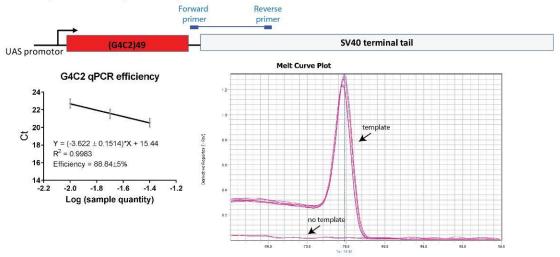

Figure S2-10

			Fig	NINDS/Coriell Code	Rutgers ID	Target AL	Age at onset	Age at sampling	Gender	Source			
	iPSC, Line	I #011	6a		FA0000011	TALSCTRL	15.12	n/a	Healthy	n/a	49	F	Gitler Lab
-	iPSC, Line		_					n/a	Healthy	n/a			Gitler Lab
-	iPSC, Line	_	_					n/a	Healthy	n/a			Gitler Lab
-	iPSC, Line		6a		150000002	TAL S9-9 3		C9orf72	ALS	60	64	F	Gitler Lab
	iPSC, Line		6a					C9orf72	(spinal)	61			Gitler Lab
	iPSC, Line		6a			0		C9orf72	(bulbar)	48			Gitler Lab
- 1		blast #1	6b	ND42504	1			C9orf72	FTD	At Risk	53	F	Rutgers
		blast #2		ND42506				C9orf72	FTD	At Risk	46	F	Rutgers
-		blast #3		ND42496		8		C9orf72	FTD	At Risk	57	М	Rutgers
		blast #4		ND40069				C9orf72: Intermediate	Parkinsonism	71	75	F	Rutgers
b						C9orf72	positi						
				All	FTI	_D	-	ALS/FTLD	ALS	ř.			
	Number of	cases		67	20	3		21	20				
	Gender (m	ale)		36 (53.73%)	18 (69	.23%)	1	1 (52.38%)	7 (35.00	0%)			
	Age at ons	et	61	(41,54,67,79)	66 (44,50	3,70,79)	58 ((50,53,65,74)	57 (41,49,	62,76)			
	Age at dea	th		(43,59,72,90)	72 (52,60			(51,60,68,80)	60 (43,52,				
	and the second s	365000		1.0,2.2,6.7,14.5		COLUMN TO THE REAL PROPERTY.					W.		
			C9orf72-negative										
												thy	
	Number of			AII 56	FTLD ALS/FTLD 23 11					Ľ.	conti		
					10 (43		,		22 12 (54.5	E0/ \			
	Gender (m			25 (44.64%)	· · · · · · · · · · · · · · · · · · ·	, ,		(36.36%)			15 (55.	.56%)	
	Age at onset 66 (45,57,73,86) Age at death 73 (47,66,83,100)				73 (57,60			(46,56,70,78)	59 (45,49,		04 /57 05	- 00 00	
	Age at dea Disease du			(47,66,83,100)	83 (66,78			(49,65,78,85)	66 (47,59,		81 (57,65	0,88,99)	
	Disease ut	ration	4.5 (0.6,2.9,6.4,21.9	0.5 (5.9,6.2	, 10. 1,20.5)	2.9 (0	.0, 1.0, 7.4, 21.9	3.5 (0.9,2.5,	4.7,21.0	-		
C			ETC	cases	d		CO	+ FTD case			C9- FT		6
	_ 2.5 7			Cases	•	E, 8 ₇			-3	0_		Cases	N//
	18 -		*			ر ما <u>5</u>	r = 0		-	. 87	r = 0.134		
	(y 2.0-				7	E 6-	p = r	1.S.	2	6-	p = n.s.		
2	0 0 1				. 3	ו בוע			#				
hCDC73						5 S 4			2.	4-			
5	E 1.01	-				2 2		0 0		2-		00	
					5	リニュー	,		•	-		Bh60	les:
4	드					10 1)	200	Who sa	
þ	당 B _{0.5} -	***			į	રોહ્ર ₀⊢	· ·	.4.80 25 0 0 0		} ₀—		Moo St	
þ	B _{0.5} -	•:•			_	C9orf72 intron	0.8		0.50	8		.0 1.5	2.0
þ	D PO 0.5	Health	y	C9- C9		දි ් ₂	0.8	5 1.0 1.5 hCDC73	2.0	0		.0 1.5 C73	2.0
e	P _{0.5} -			300,000		20 50005		hCDC73	2.0	8			2.0
e		C9 +	AL	c9- c9		C9- A	LS C	hCDC73	2.0	8			2.0
e		C9 +	AL 28	300,000	81	C9- A r = 0.618	LS C	hCDC73	2.0	8			2.0
e		C9 +	AL 28	300,000	81	C9- A	LS C	hCDC73	2.0	8			2.0
e		C9 +	AL 28	300,000	81	C9- A r = 0.618	LS C	hCDC73	2.0	8			2.0
e		C9 + = -0.0 = n.s.	AL 28	300,000	81	C9- A r = 0.618	LS C	hCDC73	2.0	8			2.0
e		C9 + = -0.0 = n.s.	AL 28	300,000	81	C9- A r = 0.618	LS C	hCDC73	2.0	8			2.0
e		C9 + = -0.0 = n.s.	AL 28	300,000	81	C9- A r = 0.618	LS C	hCDC73	2.0	8			2.0
WF1 Correlation ®	90rf72 intron 1	= -0.0 = n.s.	28	S Cases	901772 intron 1	C9- A r = 0.618 p = 0.002	LS C	ases	2.0	8			2.0
WF1 Correlation ®	C9orf72 intron 1	C9 + = -0.0 = n.s.	28	S Cases	C9orf72 intron 1	C9- A r = 0.618 p = 0.002	LS C	hCDC73	2.0	8			2.0
e	90rf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	901772 intron 1	C9- A r = 0.618 p = 0.002	LS C	ases	2.0	8			2.0
hPAF1 Correlation ®	C9orf72 intron 1	C9+ = -0.0 = n.s.	28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S Cases	C9orf72 intron 1	C9- A r = 0.618 p = 0.002	LS C	ases	2.0	8			2.0
hPAF1 Correlation ®	C9orf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495	LS C	ases	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002	LS C	ases	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495	LS C	ases	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495	LS C	ases 1.5 2.0	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495	LS C	ases	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	C9+ = -0.0 = n.s.	AL 28	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495	LS C	ases 1.5 2.0	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5	28 28 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	S Cases	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495 p = 0.02	LS C	ases 2.0	2.0	8			2.0
WF1 Correlation ®	C9orf72 intron 1 C9orf72 intron 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	28 28 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	S Cases 1.0 1.5 1.0 1.5	C9orf72 intron 1 C9orf72 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495 p = 0.02	LS C	ases 2.0	2.0	8			2.0
hPAF1 Correlation ®	C90rf72 intron 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	28 28 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	S Cases 1.0 1.5 1.0 1.5	C90r772 intron 1	C9- A r = 0.618 p = 0.002 0.5 1 hP r = 0.495 p = 0.02	LS C	ases 2.0	2.0	8			2.0

Supplementary Figure S2-10: Extended patient data.

(a) Summary of iPS and fibroblast cell lines used in Fig 6a-b, respectively. (b) Summary of patient cohort used in this study. Total number, cases that were male (%) and average age at onset/death/duration: median (minimum, 25th percentile, 75th percentile, and maximum). (c) In frontal cortex tissue from FTD cases qPCR analysis of endogenous expression of hCDC73 revealed no significant change in expression in C9+ versus C9- cases. C9- cases did show a significant upregulation of hCDC73 compared to healthy controls. Shown: individual data points (each representing 1 individual) with mean±SEM. (d) Spearman correlation coefficients for C9+ or C9- FTD cases show no correlation in hCDC73 expression and C9orf72 expression in the frontal cortex of patients. (e) Spearman correlation coefficients for C9+ or C9- ALS cases showed no correlation in expression of hPAF1 and hLEO1 and expression of C9orf72 in the frontal cortex of C9+ patients. In C9- ALS patients, there were weak correlations that were markedly lower than those in C9+ FTD patients (see Fig. 6d). C9orf72 intron 1: the intronic gene region immediately 3' of the G4C2 repeat in the C9orf72 pre-mRNA transcript. (d,e) Shown: individual data points (each representing 1 individual) with linear regression±SE. Statistics: (c) ANOVA with Tukey's correction, (d,e) Spearman R correlations; p-values: ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance (n.s.) >0.05.

Figure S2-11



Supplementary Figure S2-11: Full, uncropped western immunoblot images with protein standards.

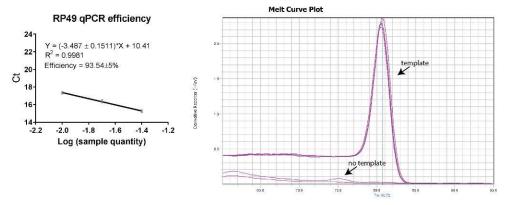

Uncropped western immunoblot images for all relevant figures. **(a)** protein ladder shown is SuperSignal Enhanced Molecular Weight Protein Ladder (Fisher Sci #84786). **(b-f)** protein ladder shown is Novex Sharp Pre-stained Protein Standard (Invitrogen #LC5800).

Figure S2-12

a G4C2 primer design and optimization

b RP49 (housekeeping gene) primer optimization

Supplementary Figure S2-12. G4C2 and RP49 primer optimization for qPCR.

During optimization of primers for qPCR reactions used in this study, primer efficiencies and melt curves were closely examined to ensure validity of all reactions. (a) For measuring (G4C2)n mRNA levels in flies, qPCR primers were designed that utilized unique restriction enzyme sequences located 3' of the repeat. (b) RP49, a common housekeeping gene, shows a similar primer efficiency to the G4C2 primers, both ~90%, and was used as the main reference gene. Primer efficiencies were calculated using serial dilutions of cDNA made from control samples expressing (G4C2)49 in the fly nervous system (using ElavGS). Shown: mean value of biological triplicates from 2 independent experiments and the resulting trendline is shown±SD. Representative melt curves from one of the biological triplicates is shown. Further, qPCR products were run on an agarose gel to confirm that there was one product and that it was the expected size (data not shown).

Chapter 2: Supplementary data

KEY _

NE = no effect

MS = mild suppression

S = suppression

ME = mild enhancer

E = enhancer

E-L = lethal enhancer

A = additive enhancer

LacZ-E = enhancer of Gal4/UAS system

LacZ-S = suppressor of Gal4/UAS system

shRNA target			shRNA fly line		Final call as a	ı	Effects on the	external e	ye phenoty	pe .	
CG#	FBgn	Gene Symbol	stock #	RNAi	potentia I modifier of (G4C2)4 9	UAS- (G4C2)4 9	UAS- (G4C2)6- 8	UAS- TDP43	UAS- (GR)36	alone (gmr- gal4)	Affect on UAS- LacZ protein
CG1433	FBgn00 19637	atu/Leo1	v17490	GD829 6	S	S		NE	S	NE	NE
CG2503	FBgn00 10750	atms/Paf1	v20876	GD978 2	S	MS		NE	NE	NE	NE
CG1199 0	FBgn00 37657	hyx/Cdc73	BL53278	HMC0 3494	S	S		S	E	NE	NE
CG2469	FBgn00 35205	CG2469/Ctr9	BL33736	HMS0 0619	S	S		NE	S	NE	NE
CG1095 5	FBgn00 34722	Rtf1	BL34850	HMS0 0168	MS	MS		NE	NE	NE	NE
CG3909	FBgn00 27524	Wdr61/Ski8	BL57377	HMC0 4664	MS	MS		NE	E	NE	NE
CG1237 2	FBgn00 28683	spt4	BL32896	HMS0 0685	MS	MS		NE	NE	NE	NE
CG7626	FBgn00 40273	Spt5	BL34837	HMS0 0153	LacZ-S	S		S	MS	ME	MS
CG1222 5	FBgn00 28982	Spt6	BL32373	HMS0 0364	LacZ-S	S	ME	s	S	E	S
CG1139 7	FBgn00 15391	glu	BL32350	HMS0 0341		NE					
CG7578	FBgn00 28538	sec71	BL32366	HMS0 0357		NE					
CG5001	FBgn00 31322	CG5001	BL32392	HMS0 0386		NE					
CG1069 1	FBgn00 02031	I(2)37Cc	BL32404	HMS0 0399		NE					
CG1052 8	FBgn00 04811	fs(2)ltoPP43	BL32452	HMS0 0451		NE					
CG5229	FBgn00 28387	chm	BL32484	HMS0 0487	Α	E	E			E	
CG7420	FBgn00 31344	CG7420	BL32510	HMS0 0514	E-L	E-L	NE	NE	ME		(ME POSSIBL E)
CG1756 6	FBgn00 10097	gammaTub37C	BL32513	HMS0 0517		NE					
CG9078	FBgn00 01941	ifc	BL32514	HMS0 0518		NE					
CG4184	FBgn00 27592	MED15	BL32517	HMS0 0522	(MS POSSIBL E)	NE		S	MS	ME	

CG4389	FBgn00 28479	Mtpalpha	BL32873	HMS0 0660		NE					
CG3131	FBgn00	Duox	BL328/3	HMS0		INE		1	1		
	31464		BL32903	0692		NE					
CG3399	FBgn00 00256	capu	BL32922	HMS0 0712		NE					
CG1447	FBgn00	poe		HMS0 0739							
2 CG1004	11230 FBgn00	rtGEF	BL32945	HMS0		NE					
3	15803		BL32947	0741		NE					
CG1794 1	FBgn00 00497	ds	BL32964	HMS0 0759		NE					
CG2720	FBgn00 24352	Нор		HMS0							
CG4889	FBgn00	wg	BL32979	0779 HMS0		NE					
CG4965	04009	twe	BL32994	0794 HMS0		NE					
CG4965	FBgn00 02673	twe	BL33044	0642		NE					
CG1369 2	FBgn00 31254	CG13692	BL33341	HMS0 0207		NE					
CG4785	FBgn00	CG4785		HMS0							
CG3423	31314 FBgn00	SA	BL33358	0230 HMS0		NE		1			
	20616		BL33395	0272		NE					
CG8749	FBgn00 16978	snRNP-U1-70K	BL33396	HMS0 0274	E	E	NE	E	NE		(not viable)
CG1849	FBgn00	spen		HMS0						-	-,
7 CG8409	16977 FBgn00	Su(var)205	BL33398	0276 HMS0	Α	ME	ME			E	
00.400.4	03607	6 11 15	BL33400	0278		NE					
CG4894	FBgn00 01991	Ca-alpha1D	BL33413	HMS0 0294		NE					
CG1768	FBgn00 11202	dia	BL33424	HMS0 0308		NE					
CG9885	FBgn00	dpp		HMS0							
CG7254	00490 FBgn00	GlyP	BL33618	0011 HMS0		NE					
	04507		BL33634	0032		NE					
CG5671	FBgn00 26379	Pten	BL33643	HMS0 0044	А	ME	ME			ME	
CG2807	FBgn00 31266	CG2807	BL33650	HMS0 0055	А	E-L	E-L			E	
CG3605	FBgn00	CG3605	BE33030	HMS0		L-L	L-L				
CG3938	31493 FBgn00	CycE	BL33651	0056 HMS0	Α	E	E	1	1	E	
	10382		BL33654	0060		NE					
CG1817 4	FBgn00 28694	Rpn11	BL33662	HMS0 0071	А	E-L	E			E	
CG7269	FBgn00	Hel25E		HMS0							
CG4916	14189 FBgn00	me31B	BL33666	0076 HMS0	MS	MS		S	S	1	NE
	04419		BL33675	0539	LacZ-E	ME	NE	ME	NE		E
CG3736	FBgn00 02989	okr	BL33707	HMS0 0585		NE					
CG3542	FBgn00	CG3542		HMS0							
CG1037	31492 FBgn00	Hrb27C	BL33711	0589 HMS0		NE					
7 CG3395	04838		BL33716	0597 JF027	E-L	E-L	NE	E	E-L		NE
5	FBgn00 31414	eys	BL33766	08		NE					
CG1402 8	FBgn00 15031	суре	BL33878	HMS0 0815		NE					
CG5366	FBgn00	Cand1		HMS0							
CG1038	27568 FBgn00	tos	BL33920	0864 HMS0		NE				1	
7	15553		BL33937	0887		NE				1	
CG5203	FBgn00 27052	CHIP	BL33938	HMS0 0889		NE					
CG5092	FBgn00	mTor		HMS0		NE					
	21796	<u> </u>	BL33951	0904	<u> </u>	NE	1	1	1	1	

GOSPOIL FBSR00 COSPOIL BL33590 POSTE NE												
CG6716 FBg000 prd	CG9961		CG9961	DI 22050			NE					
CG0975 Fign CG0975 CG0	CG6716		prd	BL33959			NE					
CG1543 Figure CG1543 Figure CG1543 Figure CG1543 Figure CG1328 Figure CG1328 Figure CG1328 Figure CG1328 Figure CG1521 F	000710	-	p. 0	BL33965			NE					
Section Sect	CG9075		eIF-4a	BL33970		А	E-L	E-L			E-L	
Total			MFS18	BL33998			NE					
CG1944 F8gr00			emb	BL34021			NE					
CG1521 F8gn00 Sept	CG9244	FBgn00	Acon		HMS0							
GS1072 F8gn00 barr B134068 0049 NE		FBgn00	СусК		HMS0							
CG29303 F8gm00	CG1072	FBgn00	barr		HMS0							
CG1840	CG2903	FBgn00	Hrs		HMS0							
CG3851 Fignor F			Sema-1a	BL34086			NE					
CG9553 FBgn00 Chic BL34528 L1315 NE			Jema 1a	BL34320			NE					
CG7885			odd	BL34328			NE					
CG7885			chic									
CG1878 FBp00 FB000 FB000 FB000 FB000 FB000 FB000 FB000 FB000 FB0			RnII33	BL34523			NE					
O		26373		BL34567	1040	Α	E	E	E	ME	E	
CG1003	0	13531		BL34577	1051		NE		MS	NE		
CG3858 FBgn00 F		02543		BL34589	1063		NE					
19809	4		tj	BL34595	1069		NE					
CG1673 FBgn00 Slp1 HMS0 HMS0 NE CG2939 FBgn00 Slp2 HMS0 HMS0 NE CG3710 FBgn00 TflIS HMS0 CG3858		gcm2	BL34597			NE						
Regnot Sip2 HMS0 NE	CG4897		RpL7	BL34600		А	E-L	E			E-L	
CG2939			slp1	BL34633			NE					
CG3710		FBgn00	slp2		HMS0							
CG1033 FBgn00 o 5672 spi o 5672 BL34645 1120 o A E E E NE NE <td< td=""><td></td><td>FBgn00</td><td>TfIIS</td><td></td><td>HMS0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		FBgn00	TfIIS		HMS0							
CG1071 FBgn00 10300 brat 10300 BL34646 1121 E E NE NE NE CG3242 FBgn00 04892 Sob 04892 BL34648 1123 NE		FBgn00	spi		HMS0	٨		F			-	
CG3242 FBgn00 O4892 Sob BL34648 HMS0 I123 NE NE CG4212 FBgn00 Rab14 BL34654 HMS0 NE NE NE CG3469 FBgn00 betaggt-I BL34654 HMS0 NE NE NE CG7111 FBgn00 Rack1 HMS0 NE NE NE NE CG7111 FBgn00 Rack1 HMS0 NE <	CG1071	FBgn00	brat		HMS0				NE	NE	-	NE
CG4212 FBgn00 15791 Rab14 BL34654 HMS0 NE NE NE CG3469 FBgn00 betaggt-I BL34687 HMS0 NE	CG3242	FBgn00	sob		HMS0	E		INE.	INE	INE		NE
CG3469 FBgn00 15000 betaggt-I BL34687 HMS0 1165 NE NE CG7111 FBgn00 20618 Rack1 HMS0 1173 HMS0 1173 NE NE NE ME CG4579 FBgn00 21761 Nup154 BL34710 HMS0 BL34710 NE NE NE ME CG5848 FBgn00 00250 cact BL34775 HMS0 0044 NE NE E E E E E E E E E E NE			Rab14	BL34648								1
CG7111			betaggt-I									1
CG4579				BL34687			NE			+		(ME
CG4579 FBgn00 21761 Nup154 HMS0 BL34710 NE CG5848 FBgn00 00250 cact BL34775 0084 NE CG1338 FBgn00 RpS13 HMS0 HMS0 SPS13 HMS0 SPS13 HMS0 SPS13 HMS0 SPS13 FBgn00 SPS13 FBgn00 SPS13 HMS0 SPS13 FBgn00 SPS13 FB			NGCKI	B134604		E	F	NE	NE	ME		POSSIBL E)
CG5848 FBgn00 00250 cact BL34775 HMS0 0084 NE CG1338 FBgn00 PRS13 PBgn00 SOS PBL34820 HMS0 PBgn00 PRS13			Nup154					IVL	INL	IVIL		-1
CG1338 FBgn00 RpS13 HMS0 E E E E CG7793 FBgn00 Sos HMS0 NE NE E	CG5848	FBgn00	cact		HMS0						1	1
CG7793 FBgn00 01965 Sos BL34833 HMS0 0149 NE CG1149 FBgn00 0 31233 CG11490 HMS0 0177 NE CG1324 FBgn00 0 2G13243 BL34859 0177 NE CG1324 FBgn00 0 2G93243 HMS0 0 0179 NE 3 28903 BL34861 0179 NE	CG1338	FBgn00	RpS13		HMS0	_		+_		+	1_	1
CG1149 FBgn00 CG11490 HMS0 0 31233 BL34859 0177 NE CG1324 FBgn00 CG13243 HMS0 3 28903 BL34861 0179 NE	CG7793	FBgn00	Sos		HMS0	A		E			E	1
CG1324 FBgn00 CG13243 HMS0 3 28903 BL34861 0179 NE			CG11490	BL34833			NE					1
3 28903 BL34861 0179 NE			CG13243	BL34859			NE			1		1
L CG6122 L ERØn00 L niwi L L L L L L L L L L L L L L L L L L	3	28903		BL34861	0179		NE			1		
CG6122 F5B100 DIWI	CG6122	FBgn00 04872	piwi	BL34866	HMS0 0185	А	E	ME			E	

0010	5D 5-	I 1.	1		ı	1	1	1	ı	ı	ı
CG1802 8	FBgn00 02566	lt	BL34871	HMS0 0190		NE					
CG1137 2	FBgn00 31213	galectin	BL34880	HMS0 1225		NE					
CG9242	FBgn00	bur	BL34880	HMS0		NE					
CG1862	00239	hotaggt !!	BL34889	1234 HMS0		NE					
7	FBgn00 28970	betaggt-II	BL34902	1247		NE					
CG3956	FBgn00 03448	sna	BL34906	HMS0 1252		NE					
CG3166	FBgn00 00097	аор	BL34909	HMS0 1256	А	E-L	Е			Е	
CG7082	FBgn00	papi		HMS0							
CG1069	31401 FBgn00	Lim3	BL34932	1282 HMS0		NE					
9 CG4114	02023 FBgn00	ex	BL34962	0596 HMS0		NE					
CG3352	04583 FBgn00	ft	BL34968	0874 HMS0		NE					
	01075		BL34970	0932		NE					
CG3752	FBgn00 12036	Aldh	BL34989	HMS0 1399		NE					
CG1725 9	FBgn00 31497	CG17259	BL34992	HMS0 1402		NE					
CG1278	FBgn00	santa-maria		HMS0	(ME						
9	25697		BL34995	1405	POSSIBL E)	NE	NE		ME		
CG4824	FBgn00 00182	BicC	BL34997	HMS0 1407		NE					
CG6521	FBgn00 27363	Stam	BL35016	HMS0 1429		NE					
CG4952	FBgn00 05677	dac	BL35022	HMS0 1435		NE					
CG1374	FBgn00	tsh		HMS0							
CG1850	03866 FBgn00	CG18507	BL35030	1443 HMS0		NE					
7 CG3779	28527 FBgn00	numb	BL35033	1447 HMS0		NE					
	02973		BL35045	1459		NE					
CG4428	FBgn00 31298	Atg4	BL35740	HMS0 1482		NE					
CG6601	FBgn00 15797	Rab6	BL35744	HMS0 1486		NE					
CG3523	FBgn00 27571	CG3523	BL35775	HMS0 1524		NE					
CG1263	FBgn00	tio		HMS0							
0 CG1036	28979 FBgn00	ref(2)P	BL35812	1527 HMS0		NE					
0 CG6699	03231 FBgn00	beta'Cop	BL36111	0551 HMS0		NE					
	25724		BL36113	1038		NE	NE	NE	NE	NE	NE
CG5363	FBgn00 04106	cdc2	BL36117	HMS0 1531	Α	E	ME	MS	E	ME	
CG5686	FBgn00 24248	chico	BL36665	HMS0 1553	E-L	E-L	NE	NE	ME		NE
CG1071	FBgn00 24371	E2f2	BL36674	HMS0 1562		NE					
CG9127	FBgn00 00052	ade2	BL36686	HMS0 1574		NE					
CG1726	FBgn00	CG17265		HMS0							
5 CG3309	31488 FBgn00	CG33090	BL36687	1575 HMS0		NE					
0 CG3214	28916 FBgn00	CG3214	BL36688	1576 HMS0		NE					
	31436		BL36695	1584		NE					
CG6382	FBgn00 20443	Elf	BL36703	HMS0 1592		NE					
CG5304	FBgn00 10497	dmGlut	BL36724	HMS0 1615		NE					
	10437	l .	0130724	1013	l	INL	1	L	<u> </u>	I	i

		1	1		1				1		1
CG8827	FBgn00 12037	Ance	BL36749	HMS0 3009	А	E-L	E-L			E-L	
CG9261	FBgn00	nrv2		HMS0							
665733	15777		BL37495	1637		NE		-	-		
CG5722	FBgn00 24320	Npc1a	BL37504	HMS0 1646		NE					
CG3018	FBgn00 10602	lwr	BL37506	HMS0 1648		NE					
CG1069 2	FBgn00 28707	Mt2	BL38224	HMS0 1667		NE					
CG7291	FBgn00	Npc2a		HMS0							
CG1267	31381 FBgn00	ed	BL38237	1681 HMS0		NE		S	E		
6	00547		BL38243	1687		NE					
CG2855	FBgn00 31458	aph-1	BL38249	HMS0 1693		NE					
CG3326	FBgn00 31519	CG3326	BL38266	HMS0 1711		NE					
CG9258	FBgn00 15776	nrv1	BL38275	HMS0 1725		NE					
CG3903	FBgn00 01987	Gli	BL38284	HMS0 1737		NE					
CG2774	FBgn00	Snx1		HMS0							
CG1535	31534 FBgn00	CG15358	BL38301	1763 HMS0		NE					
8	31373		BL38313	1777		NE					
CG1063 7	FBgn00 15772	Nak	BL38326	HMS0 1793		NE					
CG7109	FBgn00 04177	mts	BL38337	HMS0 1804	E-L	E-L	ME	MS	E-L	ME	NE
CG9115	FBgn00 25742	mtm	BL38339	HMS0 1806		NE					
CG4993	FBgn00	PRL-1		HMS0							
CG5102	24734 FBgn00	da	BL38358	1826 HMS0		NE					
CG1809	00413 FBgn00	CG18095	BL38382	1851 HMS0		NE					
5	28872		BL38521	1705		NE					
CG8667	FBgn00 23091	dimm	BL38530	HMS0 1742		NE					
CG3365	FBgn00 20304	drongo	BL38960	HMS0 1874		NE					
CG4764	FBgn00 31310	CG4764	BL38963	HMS0 1877		NE					
CG3176 2	FBgn00 00114	aret	BL38983	HMS0 1899		NE					
CG2671	FBgn00	l(2)gl		HMS0							
CG2699	02121 FBgn00	Pi3K21B	BL38989	1905 HMS0		NE					
	20622	1.5.1215	BL38991	1907		NE					
CG3766	FBgn00 11232	scat	BL38994	HMS0 1910		NE					
CG1734 8	FBgn00 15380	drl	BL39002	HMS0 1918		NE					
CG1038	FBgn00 05617	msl-1		HMS0				1	1		
5 CG6137	FBgn00	aub	BL39012	1930 HMS0		NE			1	<u> </u>	
CG1692	00146 FBgn00	mre11	BL39026	1945 HMS0		NE		+	+		
8 CG3994	20270 FBgn00	ZnT35C	BL39028	1947 HMS0		NE		1	1		
	28516		BL39049	1969		NE			1		
CG7115	FBgn00 27515	CG7115	BL39065	HMS0 1985	А	ME	ME			E	
CG2914	FBgn00 05660	Ets21C	BL39069	HMS0 1989		NE					
CG4280	FBgn00 15924	crq	BL40831	HMS0 1997		NE					
CG3159	FBgn00	Eaat2	BL40832	HMS0		NE					
	26438	<u> </u>	BL4U832	1998	l	INE		1	1	1	1

CG2718	FBgn00 01142	Gs1	BL40836	HMS0 2002		NE					
CG1402	FBgn00	vri		HMS0							
9 CG3234	16076 FBgn00	tim	BL40862	2029 HMS0		NE		-			
	14396		BL40864	2031		NE					
CG2843	FBgn00 31452	Cwc25	BL40887	HMS0 2135		NE					
CG1733 2	FBgn00 27779	VhaSFD	BL40896	HMS0 2144		NE					
CG9884	FBgn00	oaf		HMS0							
CG9887	11818 FBgn00	VGlut	BL40926	2174 HMS0		NE					
CG4274	31424 FBgn00	fzy	BL40927	2175 HMS0		NE					
	01086		BL40933	2181		NE					
CG1402 6	FBgn00 03716	tkv	BL40937	HMS0 2185		NE					
CG1044 3	FBgn00 00464	Lar	BL40938	HMS0 2186		NE					
CG1493	FBgn00	crol		HMS0							
8 CG7595	20309 FBgn00	ck	BL41669	2202 HMS0		NE					
	00317		BL41690	2254		NE					
CG1231 7	FBgn00 28425	Jhl-21	BL41706	HMS0 2271	Α	E-L	E			E	
CG9019	FBgn00 15381	dsf	BL41707	HMS0 2272	MS	MS		NE	E		NE
CG1183	FBgn00	CG11835		HMS0							112
5 CG1132	31264 FBgn00	homer	BL41725	2291 HMS0		NE					
4 CG1159	25777 FBgn00	CG11592	BL41908	2301 HMS0		NE					
2	25686		BL41956	2353		NE					
CG4220	FBgn00 04858	elB	BL41960	HMS0 2357		NE					
CG5655	FBgn00 11305	Rsf1	BL41971	HMS0 2368		NE					
CG7100	FBgn00	CadN		HMS0							
CG1172	15609 FBgn00	CG11723	BL41982	2380 HMJ0		NE					
3 CG1161	31391 FBgn00	CG11617	BL42514	2079 HMJ0		NE					
7	31232		BL42525	2091		NE					
CG1338 8	FBgn00 27932	Akap200	BL42539	HMJ0 2109		NE					
CG1001 6	FBgn00 24244	drm	BL42548	HMJ0 2120		NE					
CG1866	FBgn00	Nckx30C	BL42346	HMS0		INE					
0 CG5556	28704 FBgn00	CG5556	BL42581	1955 HMS0		NE					
	31332		BL42594	2426		NE					
CG1065 5	FBgn00 02021	I(2)37Bb	BL42608	HMS0 2443		NE					
CG3758	FBgn00 01981	esg	BL42846	HMS0 2538		NE					
CG1240	FBgn00	Vha68-1		HMS0							
3 CG1224	20368 FBgn00	gcm	BL42888	2581 HMS0		NE					
5 CG5353	14179 FBgn00	Aats-thr	BL42889	2582 HMS0		NE					
	27081		BL42902	2595		NE					
CG9092	FBgn00 01089	Gal	BL42922	HMS0 2615		NE					
CG6605	FBgn00 00183	BicD	BL42929	HMS0 2622		NE]
CG9564	FBgn00	Try29F		HMS0							
CG3747	15316 FBgn00	Eaat1	BL42949	2642 HMS0		NE					
	26439		BL43287	2659		NE					

CG2975	FBgn00 31468	CG2975	BL43290	HMS0 2662	NE					
CG1060	FBgn00	bsh	BL43290	HMS0	INE					
4	00529	Donal	BL43994	2708	NE					
CG5371	FBgn00 11703	RnrL	BL44022	HMS0 2737	NE					
CG8867	FBgn00 20906	Jon25Bi	BL44025	HMS0 2740	NE					
CG2762	FBgn00 03963	ush	BL44041	HMS0 2757	NE					
CG3647	FBgn00	stc		HMS0						
CG3763	01978 FBgn00	Fbp2	BL44051	2768 HMS0	NE					
	00640		BL44052	2769	NE			E		
CG6176	FBgn00 26431	Grip75	BL44072	HMS0 2789	NE					
CG1724 0	FBgn00 11832	Ser12	BL44086	HMS0 2803	NE					
CG3179	FBgn00	IA-2		HMS0						
5 CG9643	31294 FBgn00	CG9643	BL44099	2819 HMS0	NE					
661964	31485	CC10C11	BL44110	2831	NE					
CG1864 1	FBgn00 31426	CG18641	BL44492	HMC0 2414	NE					
CG1073 9	FBgn00 10309	pigeon	BL44507	HMC0 2897	NE					
CG4341	FBgn00	CG4341		HMC0						
CG4145	28481 FBgn00	Cg25C	BL44509	2899 HMC0	NE					
	00299	_	BL44520	2910	NE					
CG4180	FBgn00 01977	I(2)35Bg	BL44644	HMC0 2348	NE					
CG4892	FBgn00 28884	CG4892	BL44648	HMC0 2356	NE					
CG3178	FBgn00	ninaD		HMC0						
3 CG3022	02939 FBgn00	GABA-B-R3	BL44652	2392 HMC0	NE					
CG4491	31275 FBgn00	noc	BL50622	2989 HMC0	NE					
	05771	noc	BL50659	3060	NE					
CG3167 0	FBgn00 31375	erm	BL50661	HMC0 3062	NE					
CG1228	FBgn00	pdm2		HMC0						
7 CG1689	04394 FBgn00	CG16890	BL50665	3066 HMC0	NE					
0 CG6713	28932 FBgn00	Nos	BL50671	3072 HMC0	NE					
CG0713	11676	NOS	BL50675	3076	NE					
CG1878 3	FBgn00 28420	Kr-h1	BL50685	HMC0 3086	NE					
CG1160	FBgn00	H2.0		НМС0						
7 CG1439	01170 FBgn00	Ret	BL50690	3091 HMC0	NE					
6 CG7400	11829 FBgn00	Eatn	BL50700	3102 HMC0	NE					
	21953	Fatp	BL50709	3111	NE					
CG2851	FBgn00 10323	Gsc	BL50894	HMC0 2397	NE					
CG1685 8	FBgn00 16075	vkg	BL50895	HMC0 2400	NE					
CG1698	FBgn00	daw		HMJ0						
7 CG1538	31461 FBgn00	CG15387	BL50911	3135 HMJ2	NE	-			-	
7	31403		BL50952	1053	NE					
CG1715 8	FBgn00 11570	cpb	BL50954	HMJ2 1056	NE	<u> </u>	<u> </u>			
CG5813	FBgn00 00307	chif	BL51016	HMJ2 1138	NE					
CG1190	FBgn00	Ent1		HMJ2		1				
7	31250		BL51055	1190	NE		<u> </u>			

004507	ED 00	I . nr	1	110.000	1	1		ı	1	1	ı
CG1687 3	FBgn00 28936	nimB5	BL51162	HMC0 2406		NE					
CG3047	FBgn00 03372	Sgs1	BL51421	HMC0 2393		NE					
CG1133	FBgn00	Spn27A	BL51421	HMC0		INE					
1 CG1080	28990 ERap00	Pca1	BL51445	3159 HMC0		NE	-				
0	FBgn00 17551	Rca1	BL51450	3180		NE					
CG5869	FBgn00 28894	CG5869	BL51452	HMC0 3184		NE					
CG1069	FBgn00	Ddc		HMC0							
7 CG1020	00422 FBgn00	x16	BL51462	3200 HMC0		NE					
3 CG9042	28554		BL51468	3209		NE					
CG9042	FBgn00 01128	Gpdh	BL51474	HMC0 3218		NE					
CG4162	FBgn00 02524	lace	BL51475	HMC0 3219		NE					
CG1732	FBgn00	ScpX		HMC0							
0 CG3210	15808 FBgn00	Drp1	BL51479	3224 HMC0		NE					
	26479	·	BL51483	3230		NE					
CG1526 9	FBgn00 28878	CG15269	BL51506	HMC0 3273		NE	<u> </u>				
CG4426	FBgn00 15905	ast	BL51700	HMC0 3173		NE					
CG1132	FBgn00	GRHR		HMC0							
5 CG4163	25595 FBgn00	Cyp303a1	BL51710	3228 HMC0		NE					
	01992		BL51716	3249		NE					
CG1102 0	FBgn00 16920	nompC	BL51722	HMC0 3261		NE					
CG5526	FBgn00 13810	Dhc36C		HMC0 3270	(ME POSSIBL						
			BL51726		E)	NE	NE				
CG1061 9	FBgn00 03896	tup	BL51763	HMC0 3317		NE					
CG4488	FBgn00 11737	wee	BL51776	HMC0 3331		NE					
CG5876	FBgn00	heix		НМС0		INE					
CG3057	28375 FBgn00	colt	BL51780	3335 HMC0		NE					
	19830		BL51798	3354		NE					
CG1339 7	FBgn00 14417	CG13397	BL51808	HMC0 3368		NE					
CG1156 7	FBgn00 15623	Cpr	BL51809	HMC0 3369		NE					
CG3664	FBgn00	Rab5		HMC0							
CG1767	14010 FBgn00	cta	BL51847	3420 HMC0		NE	1				
8	00384		BL51848	3421		NE	1				
CG7144	FBgn00 25687	LKR	BL51850	HMC0 3424		NE					
CG9886	FBgn00 31428	CG9886	BL51857	HMC0 3431	Α	ME	ME		E	ME	
CG1544	FBgn00	ine		HMS0							
4 CG4271	11603 FBgn00	CG4271	BL51919	3378 HMC0	A	E	E			E	
	31409		BL52873	3611		NE					
CG1191 1	FBgn00 31249	CG11911	BL52894	HMC0 3633		NE					
CG1008 4	FBgn00 02044	swm	BL52935	HMC0 3677	MS	MS		S	ME		NE
	FBgn00	aru		HMJ2	1413			,	1412		112
CG4276			DIE2076	1663		NE	1	1	1	1	l
	29095	CG6206	BL52976								
CG4276 CG6206 CG3639		CG6206	BL53294	HMC0 3510 HMC0	E	E-L	NE	S	E	ME	NE
	29095 FBgn00	CG6206		HMC0	E		NF	s	F	ME	NF

CG5680	FBgn00 00229	bsk	BL53310	HMC0 3539		NE					
CG5920	FBgn00	RpS2	BL33310	HMC0		INE					
CG1369	04867	CG13690	BL53319	3548 HMC0	Α	E-L	E			E	
0	FBgn00 31252	CG13090	BL53326	3555		NE					
CG1678 4	FBgn00 03141	pr	BL53346	HMC0 3575	MS	MS	ME	E	E-L	ME	NE
CG1156 1	FBgn00 03444	smo	BL53348	HMC0 3577		NE					
CG8674	FBgn00 21856	l(2)k14505	BL53352	HMC0 3581		NE					
CG1701 2	FBgn00 31406	Send1	BL53369	HMC0 3598		NE					
CG1855	FBgn00 31470	CG18557		НМС0							
7 CG3117	FBgn00	CG3117	BL53373	3602 HMC0		NE					
CG5216	31471 FBgn00	Sir2	BL53673	3606 HMJ2	(ME	NE					
	24291		BL53697	1708	POSSIBL E)	NE	NE				
CG1536 2	FBgn00 31378	CG15362	BL53919	HMJ2 1254	MS	MS		S	E		NE
CG1137	FBgn00 31216	Zir	BL53919	HMJ2 1308		ME	ME	,		ME	INL
CG3625	FBgn00	CG3625		HMJ2	A		IVIE			IVIE	
CG7364	31245 FBgn00	TM9SF4	BL53962	1344 HMJ2		NE					
CG4164	28541 FBgn00	CG4164	BL54019	1445 HMJ2		NE					
CG4846	31256 FBgn00	beat-la	BL54797	1390 HMJ2		NE					
CG3557	13433 FBgn00	CG3557	BL54820	1539 HMJ2		NE	1				
	31423		BL54829	1548		NE					
CG1542 7	FBgn00 10473	tutl	BL54850	HMJ2 1587		NE					
CG1191 2	FBgn00 31248	CG11912	BL55141	HMC0 3737		NE					
CG1145 5	FBgn00 31228	CG11455	BL55180	HMC0 3861		NE					
CG6582	FBgn00 27885	Aac11	BL55187	HMC0 3881		NE					
CG3436	FBgn00	CG3436		HMC0							
CG4602	31229 FBgn00	Srp54	BL55207	3922 HMC0		NE					
CG1020	24285 FBgn00	nop5	BL55254	3941 HMC0		NE					
6 CG1765	26196 FBgn00	CG17652	BL55262	3949 HMC0		NE	-	+			
2	31361		BL55287	3974		NE					
CG3433	FBgn00 21944	Coprox	BL55318	HMC0 4005		NE					
CG7061	FBgn00 27505	rab3-GAP	BL55328	HMC0 4015		NE					
CG5125	FBgn00 02938	ninaC	BL55335	HMC0 4022		NE					
CG3151	FBgn00 10263	Rbp9	BL55360	HMC0 4047		NE					
CG1044 9	FBgn00 02022	Catsup	BL55396	HMC0 4084		NE					
CG7210	FBgn00 01301	kel	BL55612	HMC0 3751		NE					
CG4793	FBgn00	CG4793		HMC0							
CR3287	28514 FBgn00	snRNA:U4:38AB	BL55621	3765 HMC0		NE					
9 CG4629	03931 FBgn00	CG4629	BL55689	3903 HMC0		NE					
	31299		BL55889	4163		NE					1

004501	FD 00	L	1	110.400	1	1	1	1		1	1
CG4501	FBgn00 27348	bgm	BL55918	HMC0 4204	А	ME	ME	S	NE	ME	
CG1761	FBgn00	grk		НМС0							
0 CG9280	01137 FBgn00	Glt	BL55926	4213 HMC0		NE	1		-		
CG9200	01114	GIL	BL55929	4217		NE	<u> </u>		<u> </u>		
CG5430	FBgn00 11294	a5	BL55932	HMC0 4220		NE					
CG4475	FBgn00 20415	ldgf2	BL55935	HMC0 4223		NE					
CG3311	FBgn00	nimB1		HMC0							
9 CG7644	27929 FBgn00	beat-Ib	BL55937	4225 HMC0		NE	1				
	28645	Deat-ID	BL55938	4226		NE					
CG1699 5	FBgn00 31412	CG16995	BL55942	HMC0 4230		NE					
CG3311	FBgn00	nimB4		HMC0							
5 CG4099	28542 FBgn00	Sr-Cl	BL55963	4257 HMC0		NE	1				
	14033		BL56012	4308		NE					
CG5619	FBgn00 03751	trk	BL56040	HMC0 4348		NE					
CG4267	FBgn02 64979	CG4267	BL32332	HMS0 0323		NE					
CG5337	FBgn00	CG5337	DL32332	HMS0		INL	1				
66767	32249	007027	BL32333	0324		NE					
CG7627	FBgn00 32026	CG7627	BL32337	HMS0 0328	А	ME	ME			ME	
CG9548	FBgn00	CG9548		HMS0							
CG6181	31822 FBgn00	Ge-1	BL32344	0335 HMS0		NE					
	32340		BL32349	0340		NE					
CG1162 8	FBgn00 86779	step	BL32374	HMS0 0365	Α	E	E			E	
CG9252	FBgn00	del	DI 22275	HMS0		NE					
CG4276	86251 FBgn02	Msp-300	BL32375	0366 HMS0		NE	+		-		
8	61836	·	BL32377	0368		NE					
CG4386 0	FBgn02 64442	ab	BL32378	HMS0 0369		NE					
CG7840	FBgn00	CG7840	DI 22270	HMS0		NE					
CG1494	32014 FBgn00	CG14945	BL32379	0370 HMS0		NE					
5	32402		BL32384	0376		NE					
CG1733 1	FBgn00 32596	CG17331	BL32390	HMS0 0384		NE					
CG4738	FBgn02	Nup160	DI 22201	HMS0		NE					
CG3175	62647 FBgn00	ham	BL32391	0385 HMS0		NE	+	 	-		
3	45852	0.1	BL32470	0470		NE	ļ				
CG1697 5	FBgn00 32475	Sfmbt	BL32473	HMS0 0473		NE					
CG1749	FBgn00	CG17494	DI 22500	HMS0		NE					
4 CG7787	40011 FBgn00	CG7787	BL32509	0513 HMS0		NE					
	32020		BL32843	0625		NE					
CG1809 6	FBgn00 41183	Tep1	BL32856	HMS0 0641		NE					
CG4260	FBgn02 64855	alpha-Adaptin	BL32866	HMS0 0653		NE					
CG1310 9	FBgn00 41092	tai	BL32885	HMS0 0673		NE					
CG5181	FBgn00	CG5181		HMS0	(ME		1		1		
	31909		BL32888	0676	POSSIBL E)	NE	NE	ME	NE	NE	
CG1729 3	FBgn00 32030	Wdr82	BL32926	HMS0 0718		NE					
CG3397	FBgn02	capt		HMS0							
9	61458		BL33010	0810		NE	<u> </u>		<u> </u>		

CG3187	FBgn02 60750	Mulk	BL33046	HMS0 0699		NE					
CG1710	FBgn00	CG17107		HMS0							
7 CG5022	32281 FBgn00	CG5022	BL33057	0717 HMS0		NE					
	32225		BL33359	0231		NE					
CG9226	FBgn00 31782	WDR79	BL33363	HMS0 0235		NE					
CG4252 2	FBgn02 61437	CSN8	BL33370	HMS0 0243		NE					
CG1278	FBgn00 41150	hoe1	BL33377	HMS0 0251		NE					
CG1030	FBgn02	RpS26		HMS0			_			_	
5 CG1239	61597 FBgn00	CG12393	BL33393	0270 HMS0	Α	E	E			E	
3 CG8676	31768 FBgn02	Hr39	BL33428	0312 HMS0		NE					
	61239		BL33624	0018		NE					
CG3127	FBgn02 50906	Pgk	BL33632	HMS0 0030	ME	ME	NE	ME	NE		NE
CG3166 6	FBgn00 86758	chinmo	BL33638	HMS0 0036		NE					
CG1859	FBgn02 61790	SmE	BL33664	HMS0 0074		NE					
CG9188	FBgn00	sip2		HMS0							
CG3753	31878 FBgn00	Marcal1	BL33691	0559 HMS0		NE					
CG6464	31655 FBgn02	salm	BL33709	0587 HMS0		NE					
CG3188	61648		BL33714	0594 HMS0		NE					
4	FBgn00 40070	Trx-2	BL33721	0603		NE					
CG1403 4	FBgn02 50847	CG14034	BL33732	HMS0 0615		NE					
CG5034	FBgn00 32223	GATAd	BL33747	HMS0 1086		NE					
CG3312 9	FBgn00 53129	CG33129	BL33751	HMS0 1091		NE					
CG4284	FBgn02	d		HMS0							
0 CG1067	62029 FBgn00	Nedd8	BL33754	1096 HMS0		NE					
9 CG1839	32725 FBgn00	Tango6	BL33881	0818 HMS0		NE					
8	32728	_	BL33883	0820		NE					
CG5899	FBgn00 32157	Etl1	BL33891	HMS0 0829		NE					
CG9493	FBgn00 31799	Pez	BL33918	HMS0 0861		NE					
CG1229	FBgn00	CG12299		HMS0							
9 CG7438	32295 FBgn00	Myo31DF	BL33957	0912 HMS0		NE					
CG7830	86347 FBgn00	CG7830	BL33971	0928 HMS0		NE					
	32015 FBgn00		BL33979	0939		NE					
CG1493 9	32378	CycY	BL34009	HMS0 0974		NE					
CG1541 4	FBgn00 31542	CG15414	BL34010	HMS0 0975		NE					
CG7851	FBgn00 32013	Scgalpha	BL34027	HMS0 0997		NE					
CG9270	FBgn00 32908	CG9270		HMS0 0999							
CG5640	FBgn02	Utx	BL34029	HMS0		NE					
CG7870	60749 FBgn02	wol	BL34076	0575 HMS0		NE					
CG6116	61020 FBgn00	Uvrag	BL34365	1354 HMS0		NE					
	32499	_	BL34368	1357		NE					
CG3312 3	FBgn00 53123	CG33123	BL34483	HMS0 1335		NE					

	1	1			1		_		_	1	1
CG7392	FBgn00 44323	Cka	BL34522	HMS0 0081		NE					
CG1030	FBgn00	bsf		HMS0							
2 CG1562	32679 FBgn00	CG15628	BL34550	1022 HMS0		NE			+		
8	31632		BL34555	1027		NE					
CG4264 1	FBgn02 61396	Rpn3	BL34561	HMS0 1033		NE					
CG9282	FBgn00 32518	RpL24	BL34569	HMS0 1043		NE					
CG3762	FBgn02 63598	Vha68-2	BL34582	HMS0 1056		NE					
CG9273	FBgn00	RPA2		HMS0							
CG8817	32906 FBgn00	lilli	BL34587	1061 HMS0		NE					
CG1399	41111 FBgn00	CG13998	BL34592	1066 HMS0	LacZ-S	S		S	S		S
8	40949		BL34599	1073		NE					
CG3434 1	FBgn00 85370	Pde11	BL34611	HMS0 1286		NE					
CG3733	FBgn02 50786	Chd1	BL34665	HMS0 1142	E-L	E-L	NE	ME	E-L		NE
CG4000 6	FBgn00 58006	CG40006	BL34691	HMS0 1170		NE					
CG2615	FBgn00	ik2		HMS0							
CG8678	86657 FBgn00	Atg18b	BL34709	1188 HMS0		NE					
CG7138	32935 FBgn00	r2d2	BL34715	1194 HMS0		NE					(ME
	31951		BL34784	0093	ME	ME	NE	NE	NE		POSSIBL E)
CG9267	FBgn00 32524	CG9267	BL34800	HMS0 0109		NE		112	112		-/
CG6866	FBgn00	loqs		HMS0				1			
CG1033	32515 FBgn00	CG10333	BL34851	0169 HMS0		NE					
3 CG3185	32690 FBgn00	CG31855	BL34857	0175 HMS0		NE		+			
5	51855		BL34903	1248		NE					
CG8475	FBgn00 31995	CG8475	BL34904	HMS0 1249		NE					
CG1541 5	FBgn00 31549	Spindly	BL34933	HMS0 1283		NE					
CG6724	FBgn00 32298	CG6724	BL34934	HMS0 1284		NE					
CG6667	FBgn02 60632	dl	BL34938	HMS0 0028		NE					
CG3179	FBgn00	CG31792		HMS0							
2 CG4308	51792 FBgn02	vas	BL34942	0219 HMS0		NE		+			
1 CG1402	62526 FBgn00	Ncoa6	BL34950	0373 HMS0		NE		+			
3	31698		BL34964	0664	Α	ME	ME	MS	NE	E	
CG4063	FBgn02 63933	ebi	BL34981	HMS0 1390		NE					
CG3163 2	FBgn00 51632	sens-2	BL34984	HMS0 1394		NE					
CG1512	FBgn00 32956	Cul-2	BL34988	HMS0 1398		NE					
CG4268	FBgn02	CG42685		HMS0				1			
5 CG6453	61571 FBgn00	CG6453	BL35005	1415 HMS0		NE		+			
CG1072	32643 FBgn00	nesd	BL35008	1418 HMS0		NE		+		+	
2	32848		BL35009	1419		NE					
CG1515 4	FBgn00 41184	Socs36E	BL35036	HMS0 1450		NE					
CG3167	FBgn00 51676	CG31676	BL35727	HMS0 1469		NE					
	320,0	1	2233727	1.33	1		1	_1		1	1

							1	1			1
CG1792 7	FBgn02 64695	Mhc	BL35729	HMS0 1471		NE					
CG9539	FBgn00	Sec61alpha		HMS0	_					1	
CG4644	86357 FBgn02	mtRNApol	BL35730	1472 HMS0	Α	E-L	E-L			E-L	
	61938	·	BL35732	1474		NE					
CG1790 6	FBgn00 32086	CG17906	BL35767	HMS0 1516		NE					
CG6055	FBgn00 31918	CG6055	BL35778	HMS0 1528		NE					
CG7380	FBgn00	baf	BL33776	HMS0		INE					
CG4236	31977 FBgn02	CG42366	BL36108	0195 HMS0		NE				1	
6	59712		BL36112	0987	Α	ME	ME			E	
CG4494	FBgn02 64922	smt3	BL36125	HMS0 1540	А	E	ME			E	
CG8846	FBgn02	Thor/4E-BP		HMS0							
CG1401	61560 FBgn00	tomb	BL36667	1555 HMS0		NE					
6 CG3319	31715	do	BL36669	1557 HMS0		NE					
6	FBgn00 53196	dp	BL36673	1561		NE					
CG9573	FBgn00 32089	Rcd-1r	BL36683	HMS0 1571		NE					
CG4261	FBgn02	Cul-3		HMS0						1	
6 CG1716	61268 FBgn02	grp/Chk1	BL36684	1572 HMS0	А	ME	ME		NE	ME	
1	61278		BL36685	1573	S	S		S	MS		NE
CG1866 2	FBgn00 40963	CG18662	BL36710	HMS0 1600		NE					
CG8902	FBgn00 31886	Nuf2	BL36725	HMS0		NE					
CG1231	FBgn02	zuc	BL30725	1616 HMS0		INE					
4 CG1396	61266 FBgn00	bwa	BL36742	3002 HMS0		NE				1	
9	45064		BL36765	3026		NE					
CG3188 6	FBgn00 32079	CG31886	BL36769	HMS0 3030		NE					
CG1229	FBgn00	spict	DI 27505	HMS0		NE					
2 CG8222	32451 FBgn00	Pvr	BL37505	1647 HMS0		NE					
CG3170	32006 FBgn00	CG31708	BL37520	1662 HMS0		NE					
8	51708	CG31708	BL38227	1671		NE					
CG3169 4	FBgn00 51694	CG31694	BL38228	HMS0 1672		NE					
CG1401	FBgn00	CG14010		HMS0							
0 CG1132	31725 FBgn00	CG11320	BL38229	1673 HMS0		NE				+	
0	31837		BL38231	1675		NE				1	
CG3193 0	FBgn00 45498	Gr22d	BL38248	HMS0 1692		NE					
CG3305	FBgn00 32949	Lamp1	BL38254	HMS0 1698		NE					
CG3338	FBgn00	CG3338		HMS0							
CG7371	31598 FBgn00	CG7371	BL38267	1712 HMS0		NE					
	31710		BL38268	1713		NE					
CG4427	FBgn00 43364	cbt	BL38276	HMS0 1726		NE					
CG8282	FBgn00 32005	Snx6	BL38278	HMS0 1729		NE					
CG1053	FBgn00	CdGAPr		HMS0							
8 CG1784	32821 FBgn00	CG17840	BL38279	1730 HMS0		NE		1			
0	31611		BL38291	1749		NE]	
CG9298	FBgn02 60861	Trs23	BL38303	HMS0 1765		NE					
CG3186	FBgn00	CG31860		HMS0							
0	51860		BL38312	1776		NE			<u> </u>		

CG6214	FBgn00 32456	MRP	BL38316	HMS0 1780		NE				
CG3179	FBgn00	CG31793		HMS0						
3 CG8679	51793 FBgn00	CG8679	BL38319	1783 HMS0		NE				
	32934	CG0073	BL38348	1816		NE				
CG9138	FBgn00 31879	uif	BL38354	HMS0 1822	Α	E	ME		E	
CG1041 3	FBgn00 32689	CG10413	BL38364	HMS0 1833		NE				
CG4236 8	FBgn02 59714	CG42368	BL38936	HMS0 1718		NE				
CG7102	FBgn00 31961	CG7102	BL38939	HMS0 1789		NE				
CG1018 8	FBgn00 32796	CG10188	BL38942	HMS0 1856		NE				
CG9426	FBgn00	CG9426		HMS0			1			
CG3437	32485 FBgn00	Pvf3	BL38946	1860 HMS0		NE				
8 CG5198	85407 FBgn00	holn1	BL38962	1876 HMS0		NE	1			
CG7806	32250 FBgn00	CG7806	BL38968	1882 HMS0		NE	+			
660406	32018	Tan20Fh	BL38997	1913 HMS0		NE				
CG9496	FBgn00 32075	Tsp29Fb	BL39042	1962		NE				
CG1493 6	FBgn00 32376	Tsp33B	BL39043	HMS0 1963		NE				
CG5446	FBgn00 32429	CG5446	BL40824	HMS0 0624		NE				
CG9494	FBgn00 32074	Tsp29Fa	BL40829	HMS0 1995		NE				
CG5603	FBgn00 32210	CYLD	BL40840	HMS0 2006		NE				
CG4282 9	FBgn02 62018	CadN2		HMS0 2137		NE				
CG5261	FBgn00	CG5261	BL40889	HMS0						
CG3434	31912 FBgn00	CG34345	BL40922	2170 HMS0		NE				
5 CG5300	85374 FBgn00	Klp31E	BL40941	2189 HMS0		NE				
CG9093	32243 FBgn00	Tsp26A	BL40943	2191 HMS0		NE				
CG6750	31760 FBgn00	CG6750	BL40946	2194 HMS0		NE				
CG4747	32292 FBgn00	CG4747	BL41678	2242 HMS0		NE				
	43456		BL41698	2263		NE				
CG1338 4	FBgn00 32036	CG13384	BL41703	HMS0 2268		NE				
CG6976	FBgn00 40299	Myo28B1	BL41717	HMS0 2282		NE				
CG1037 6	FBgn00 32702	CG10376	BL41907	HMS0 2300		NE				
CG4495	FBgn00 31893	CG4495	BL41907	HMS0 2302		NE				
CG3513	FBgn00 31559	CG3513	BL41909	HMS0 2315		NE				
CG1399	FBgn00	CG13996		HMS0						
6 CG6444	31763 FBgn00	Dpy-30L1	BL41921	2318 HMS0		NE				
CG1754	32293 FBgn00	Spf45	BL41946	2343 HMS0		NE				
0 CG1309	86683 FBgn00	Dh31	BL41954	2351 HMS0		NE				
4	32048		BL41957	2354		NE	1			
CG8671	FBgn00 32938	CG8671	BL41965	HMS0 2362		NE				
CG1856 3	FBgn00 32639	CG18563	BL41974	HMS0 2372		NE				
		•	•			•	•	•	•	•

CG1240 4	FBgn00 32465	CG12404	BL41989	HMS0 2388	NE					
CG1062	FBgn00	CG10621	DL41989	HMS0	IVL					
1	32726		BL42011	2412	NE					
CG3171 6	FBgn00 51716	Cnot4	BL42513	HMJ0 2078	NE					
CG3172	FBgn00	mthl15		HMJ0						
0 CG1400	51720 FBgn00	bchs	BL42515	2080 HMJ0	NE					
1	43362	20113	BL42517	2083	NE					
CG5545	FBgn00 32651	Oli	BL42560	HMJ0 2216	NE					
CG9257	FBgn00	CG9257	BL42300	HMS0	IVL					
661563	32916	CC15620	BL42582	2123	NE					
CG1563 0	FBgn00 31627	CG15630	BL42589	HMS0 2421	NE					
CG1697	FBgn00	CG16974		HMS0						
4 CG9029	32479 FBgn00	CG9029	BL42590	2422 HMS0	NE					
	31746		BL42593	2425	NE					
CG3179 4	FBgn00 41789	Pax	BL42614	HMS0 2449	NE					
CG7123	FBgn02	LanB1		HMS0						
CG3177	61800 FBgn00	fred	BL42616	2451 HMS0	NE				1	1
4	51774	ireu	BL42621	2456	 NE					
CG4282 0	FBgn02 62002	CG42820	BL42623	HMS0	NE					
CG1080	FBgn00	Nha1	BL42023	2458 HMS0	INE					
6	31865		BL42648	2484	NE					
CG7094	FBgn00 32650	CG7094	BL42653	HMS0 2489	NE					
CG1017	FBgn00	CG10178		HMS0						
8 CG1070	32684 FBgn00	CG10702	BL42657	2493 HMS0	NE					
2	32752		BL42663	2499	NE					
CG3364 3	FBgn00 53643	CG33643	BL42823	HMS0 2505	NE					
CG3604	FBgn00	CG3604		HMS0						
CG4584	31562 FBgn02	dUTPase	BL42829	2513 HMS0	NE					
CG4384	50837	uorrase	BL42835	2527	NE					
CG3173 0	FBgn00 51730	CG31730	BL42848	HMS0 2540	NE					
CG1812	FBgn02	Send2	DL42040	HMS0	INE					
5	64253	0045443	BL42850	2542	NE					
CG1544 3	FBgn00 31609	CG15443	BL42864	HMS0 2557	NE					
CG4482	FBgn00	mol		HMS0						
CG5972	86711 FBgn00	Arpc4	BL42867	2560 HMS0	NE				1	
	31781		BL42875	2568	NE					
CG1065 1	FBgn00 32853	CG10651	BL42885	HMS0 2578	NE					
CG1047	FBgn00	CG10470		HMS0					İ	
0 CG3177	32746 FBgn00	CG31776	BL42896	2589 HMS0	NE					
6	51776		BL42897	2590	NE					
CG3190 1	FBgn00 51901	Mur29B	BL42918	HMS0 2611	NE]	
CG6766	FBgn00	CG6766	DL-72310	HMS0	IVL					
001710	32398	CC17104	BL42924	2617	NE				1	
CG1710 4	FBgn00 40496	CG17104	BL42925	HMS0 2618	NE					
CG3312	FBgn00	CG33120		HMS0	NE					
0 CG9994	53120 FBgn00	Rab9	BL42934	2627 HMS0	NE					
	32782		BL42942	2635	NE					
CG5075	FBgn00 32464	Vha68-3	BL42954	HMS0 2647	NE					
	32404	1	DL74334	207/	 INL	l	L	L	I	I

		1			•					•	
CG1729 1	FBgn02 60439	Pp2A-29B	BL43283	HMS0 1921		NE					
CG4240	FBgn02	Ca-beta		HMS0							
3 CG5776	59822 FBgn00	CG5776	BL43292	2664 HMS0		NE					
CG4988	32450 FBgn00	CG4988	BL43299	2672 HMS0		NE					
	32372		BL43303	2676		NE					
CG1710 8	FBgn00 32285	CG17108	BL43313	HMS0 2697		NE					
CG9107	FBgn00 31764	CG9107	BL43547	HMS0 2555	S	s		s	E		NE
CG1562	FBgn00	Ir25a		HMC0				1			112
7 CG1062	31634 FBgn00	CG10623	BL43985	2682 HMC0		NE					
3 CG1396	32727 FBgn00	CG13965	BL43986	2683 HMS0		NE					
5	32834		BL44015	2729		NE					
CG6153	FBgn00 32445	CG6153	BL44017	HMS0 2732		NE					
CG3184 9	FBgn00 51849	CG31849	BL44020	HMS0 2735		NE					
CG1547 9	FBgn00 32493	CG15479	BL44024	HMS0 2739		NE					
CG4229	FBgn02	CG42296		HMS0							
6 CG2976	59192 FBgn00	CG2976	BL44028	2744 HMS0		NE					
CG1226	31633 FBgn00	CG12264	BL44032	2748 HMS0		NE	1				
4	32393		BL44037	2753		NE					
CG1677 1	FBgn00 32779	CG16771	BL44042	HMS0 2758		NE					
CG3351 0	FBgn00 53510	CG33510	BL44069	HMS0 2786		NE					
CG3438	FBgn00 85409	CG34380	BL44089	HMS0 2806		NE					
CG1034	FBgn00	CG10348		HMS0							
8 CG1132	32707 FBgn00	Tsp	BL44091	2808 HMS0		NE					
6 CG1043	31850 FBgn00	CG10431	BL44116	2838 HMC0		NE	1				
1	32730		BL44470	2345		NE					
CG5322	FBgn00 32253	Lysosomal α- mannosidase I	BL44473	HMC0 2357	E	E	NE	S	NE		NE
CG4322 7	FBgn02 62872	milt	BL44477	HMC0 2365		NE					
CG8869	FBgn00 31654	Jon25Bii	BL44504	HMC0 2890		NE					
CG3174	FBgn00	CG31741		НМС0							
1 CG3169	51741 FBgn00	CG31690	BL44518	2908 HMC0		NE					
0 CG5423	51690 FBgn00	robo3	BL44525	2919 HMC0		NE	1				
	41097		BL44539	2934		NE	1				
CG3696	FBgn00 86902	kis	BL44542	HMC0 2937		NE					
CG5352	FBgn02 62601	SmB	BL44544	HMC0 2939	А	ME	ME			ME	
CG4140	FBgn02 61881	I(2)35Be	BL44545	HMC0 2941		NE					
CG7221	FBgn00	Wwox		НМС0							
CG1394	31972 FBgn00	Gr21a	BL44546	2942 HMS0		NE	+				
8 CG9547	41250 FBgn00	CG9547	BL44554	2850 HMS0		NE	1				
	31824		BL44556	2852		NE					
CG7299	FBgn00 32282	CG7299	BL44557	HMS0 2853		NE					
CG1163 0	FBgn00 32964	CG11630	BL44566	HMS0 2862		NE					
	3_30-7	1	2244300		1		1	1	1	1	1

	I ==	- (2)11	_		1			_	1	1	_
CG2637	FBgn02	Fs(2)Ket		HMS0							
	62743			2872							
			BL44576		Α	E-L	ME	E	ME	ME	
CG3380 1	FBgn00 53801	His1:CG33801	BL44582	HMS0 2879		NE					
CG7309	FBgn00	CG7309	5211562	HMC0		112					1
	32314	55.555	BL44653	2417	S	S		S	MS		NE
CG7228	FBgn00	pes		HMC0							
667337	31969	667337	BL50612	2979		NE					
CG7227	FBgn00 31970	CG7227	BL50613	HMC0 2980		NE					
CG4306	FBgn02	bru-2		HMC0							
5	62475		BL50627	2994		NE					
CG1861	FBgn00	Reptor-BP	DIFOCEO	HMC0	.45	145	NE	.45	2.45		NE
9 CG7219	32202 FBgn00	Spn28D	BL50658	3059 HMC0	ME	ME	NE	ME	ME		NE
CG7219	31973	3p1120D	BL50670	3071		NE					
CG6634	FBgn02	mid		HMC0							
	61963		BL50681	3082		NE					
CG1686	FBgn00	Ance-2	DI 50001	HMC0 3092		NE					
9 CG5325	32535 FBgn00	Pex19	BL50691	HMC0		NE					
CG3323	32407	rex13	BL50702	3104		NE					
CG1016	FBgn00	CG10166		HMS0		1					
6	32799		BL50713	2947		NE					
CG1428	FBgn00	CG1428		HMS0							
CG1403	32967	CG14036	BL50715	2949 HMS0		NE					
6	FBgn00 31677	CG14036	BL50717	2951		NE					
CG8663	FBgn00	nrv3		HMS0							
	32946		BL50725	2961		NE					
CG5427	FBgn00	Oatp33Ea		HMS0							
666860	32433	Luck	BL50736	2972		NE					
CG6860	FBgn00 32633	Lrch	BL50901	HMJ0 3119		NE					
CG9246	FBgn00	CG9246	5250501	HMJ0							
	32925		BL50907	3129		NE					
CG3413	FBgn00	CG34136		HMJ2							
6 CG3539	83972	Slh	BL50936	1031 HMJ2		NE					
CG3539	FBgn02 64978	2111	BL50940	1035		NE					
CG1513	FBgn00	beat-IIIc		HMJ2							
8	32629		BL50941	1036		NE					
CG1709	FBgn00	CG17098		HMJ2					_		
8 CG1026	32276 FBgn00	CG10268	BL50950	1051 HMJ2	Α	ME	ME	MS	E	E	
8	32811	CG10208	BL50955	1057	Α	Е	Е			Е	
CG5439	FBgn00	CG5439		HMJ2							
	32476		BL50957	1059		NE					
CG3319	FBgn00	CheA29a	DI FOOTS	HMJ2							
4 CG6717	53194 EBgp00	Snn 29B	BL50978	1084 HMJ2		NE					+
CG0/1/	FBgn00 83141	Spn28B	BL50996	1109		NE					
CG4223	FBgn02	CG42238		HMJ2		† · · · ·					1
8	50867		BL51023	1149		NE					
CG9568	FBgn00	CG9568		HMJ2	(MS						
	32087		BL51025	1151	POSSIBL E)	NE		S	E		
CG1378	FBgn00	CG13784	DLJ1023	HMJ2	E)	INE		3	-		+
4	31897		BL51027	1154		NE					
CG4247	FBgn02	Sfp33A3		HMJ2							
4	59964	664466	BL51052	1186		NE					-
CG4496	FBgn00 31894	CG4496	BL51428	HMC0 3034	ME	ME	NE	ME	NE		NE
CG1435	FBgn02	haf	DLJ1420	HMC0	IVIL	IVIL	INL	IVIL	INL		INL
1	61509		BL51438	3152		NE					
CG9256	FBgn00	Nhe2		НМС0							
	40297	21.12	BL51491	3243		NE					
CG6504	FBgn00 41195	Pkd2	BL51502	HMC0 3263		NE					
	41195	<u> </u>	DE31302	3203	<u> </u>	INC					

Sicion Sicion California Bistray Bis							1			
Carlot Figurio Carlot Figurio	CG3166	FBgn00	pog	BI 51705	HMC0	NE				
Content			CG14014	BL31703		INL				
41781 8151803 3861 NE			COAD	BL51737		NE				
60446 80456 815127 3388 NE	CG4636	_	SCAR	BL51803		NE				
CG31172 FREMOD CG31729 BL51819 3390 NE			GABA-B-R1	DI F1017		NE				
CG3176 FRENDO CG31760 BL51838 3410 NE			CG31729	BL51817		INE				
S1760				BL51819		NE				
8 32120		_	CG31760	BL51838		NE				
CG14043 F8gm00 CG14043 SIS18SS MACC NE SIS18SS SIS			CG33298	DI 54044		NE		NE		
3 31659			CG14043	BL51841		NE		INE		
31663		31659		BL51858		NE				
31694 BISTARO SASTAN BISTARO SASTAN BISTARO SASTAN	CG8891	_	CG8891	BL51859		NE				
George Fige George Geo	CG8680	_	CG8680	B154060		NE				
CG1976 FBp00 CG4908 BL51862 3436 NE	CG1039		CG10399	BL51860		NE				
Section Sect	_	31877		BL51861		NE				
S2195			Mnn1	BL51862		NE				
Mode		FBgn00	CG4908		HMC0					
S2222	CG5037		CG5037	BL51863		NE				
S2234		32222		BL51864	3438	NE				
C6615 F8pn00 C66415 S2287 S151867 S1441 NE	CG5091		gny	BL51865		NE				
CG1703 F8gm00 CG17036 BL51868 3442 NE	CG6415	FBgn00	CG6415							
CG5287 FBgn00 CG5287 BL51869 S443 NE	CG1703		CG17036	BL31807		INE				
CG1063 FBgn00 CG10639 BL51870 BL51870 BL51870 BL51870 BL51870 BL51870 BL51870 BL51870 BL51871 S4444 NE			605207	BL51868		NE				
9 32729 BL51870 3444 NE	CG5287	_	CG5287	BL51869		NE				
CG3169 FBgn00 fbp BL51871 3445 NE CG9342 FBgn00 MMp HMC0 NE 32904 BL51872 3446 NE CG3262 FBgn00 GC3262 HMC0 32986 BL51873 3447 NE CG8349 FBgn00 GC8349 BL51914 3372 NE CG8353 FBgn00 GC8353 HMS0 NE NE CG3260 FBgn00 GC8353 HMS0 NE NE CG3261 FBgn00 GC8360 HMS0 NE NE CG3262 BL51915 3373 NE NE NE CG3263 FBgn00 GC8360 HMS0 NE NE NE CG1453 FBgn00 CG14535 BL51916 3374 NE NE NE CG1582 BL51936 3228 NE NE NE NE CG15820 FBgn00 CG65390 BL5281			CG10639	DI 54.070		NE				
CG9342 FBgn00 32904 Mtp BL51872 3446 NE GG3262 FBgn00 32986 CG3262 BL51873 3447 NE CG8349 FBgn00 232003 CG8349 HMS0 3347 NE SESTITE STATE			fbp	BL518/U		NE				
CG3262 FBgn00 CG3262 C			N.A.	BL51871		NE				
CG8349 FBgn00 CG8349 BL51873 3447 NE HMS0 CG8349 HMS0 CG8349 HMS0 CG8353 HMS0 CG8353 HMS0 CG8353 HMS0 CG8353 HMS0 CG8353 NE CG8360 HMS0 CG8360 HMS0 CG8360 NE CG8360 HMS0 CG8360<	CG9342	_	IVITP	BL51872		NE				
CG8349 FBgn00 32003 CG8349 BL51914 3372 NE STB900 32002 CG8353 FBgn00 32002 CG8353 HMS0 3373 NE STB900 32002 CG8360 32002 BL51915 3373 NE STB900 32002 CG8360 32002 BL51916 3374 NE STB900 32002 CG14535 HMC0 3285 NE STB900 32002 CG14535 HMC0 3285 NE STB900 3285 NE STB900 32032 STB900 3285 NE STB900 32032 STB900 3294 NE STB900 32032 STB900 3294 NE STB900 3294 NE <td< td=""><td>CG3262</td><td></td><td>CG3262</td><td>DI F1072</td><td></td><td>NE</td><td></td><td></td><td></td><td></td></td<>	CG3262		CG3262	DI F1072		NE				
CG8353 FBgn00 32002 CG8353 HMS0 3373 NE NE SESSE STATE	CG8349		CG8349	BL318/3		INE				
Section Sect	CC0252		600353	BL51914		NE				
CG8360 FBgn00 32001 CG8360 BL51916 3374 3374 NE CG1453 FBgn00 5 31955 CG14535 HMC0 5 5 31955 NE SERION 5 3285 NE CG1582 FBgn00 6 FBgn00 5 G1822 CG15828 HMC0 7 S124 NE SERION 5 S124 NE CG3160 FBgn00 6 G1822 BSg HMC0 7 S124 NE SERION 5 S124 NE	CG8353		CG8353	BL51915		NE				
CG1453 FBgn00 CG14535 BL51936 3285 NE CG1582 FBgn00 CG15828 HMC0 NE 8 32136 BL51937 3294 NE CG3160 FBgn02 BSg HMC0 NE 5 61822 BL52110 3195 NE CG5390 FBgn00 CG5390 HMC0 NE 32213 BL52875 3613 NE NE CG4128 FBgn00 nAcRalpha-30D HMC0 NE NE CG1759 FBgn00 cad HMC0 NE NE CG3759 FBgn00 CG3355 BL52886 3624 NE NE CG31739 BL52897 3636 NE NE NE CG1543 FBgn00 CG31739 BL52909 3649 NE NE CG1543 FBgn00 CG15434 HMC0 NE NE NE CG6287 FBgn00 CG6287 HMC0	CG8360		CG8360	DI 51010	HMS0	NE				
5 31955 BL51936 3285 NE	CG1453		CG14535	BF21A1P		INE				
8 32136 BL51937 3294 NE CG3160 FBgn02 5 61822 BSg BL52110 HMC0 S195 NE CG5390 FBgn00 32213 CG5390 BL5285 HMC0 S122 NE CG4128 FBgn00 32151 nAcRalpha-30D BL52885 HMC0 S1215 NE CG1759 FBgn00 7 32715 Cad S15286 HMC0 S1215 NE CG3355 FBgn00 31619 CG3355 BL52897 HMC0 S1619 NE CG3173 FBgn00 9 51739 CG31739 BL52897 HMC0 S1619 NE CG1543 FBgn00 CG15434 HMC0 S1619 NE CG6287 FBgn00 CG6287 HMC0 HMC0 S1653 NE	5			BL51936	3285	NE				
5 61822 BL52110 3195 NE CG5390 HMC0 NE CG5390 HMC0 NE CG5390 HMC0 NE CG1759 FBgn00 nAcRalpha-30D HMC0 NE CG1759 FBgn00 cad HMC0 NE CG1759 FBgn00 cad HMC0 NE CG3355 NE CG3355 FBgn00 CG3355 HMC0 NE CG3173 FBgn00 CG31739 BL52897 3636 NE CG15434 NE CG15434 NE CG15434 NE CG6287 FBgn00 CG6287 HMC0 NE NE CG6287 CG6287 HMC0 NE NE CG6287 CG6287 HMC0 NE CG15434 NE CG6287 CG6287 HMC0 NE CG6287 CG6287 HMC0 NE CG6287 CG6287 HMC0 NE CG6287 CG6287 CG6287 HMC0 NE CG6287 CG6287 CG6287 CG6287 CG6287 CG6287 CG6287 CG6287 <td></td> <td></td> <td>CG12828</td> <td>BL51937</td> <td></td> <td> NE</td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td>			CG12828	BL51937		 NE			<u> </u>	<u> </u>
CG5390 FBgn00 32213 CG5390 HMC0 8L52875 NE NE SG3213 NE SG32151 NE SG32151 NE SG323 NE SG323 <t< td=""><td></td><td></td><td>Bsg</td><td>BI 52110</td><td></td><td>NE</td><td></td><td></td><td></td><td></td></t<>			Bsg	BI 52110		NE				
CG4128 FBgn00 32151 nAcRalpha-30D BL52885 HMC0 32151 NE NE SECTION SECTIO			CG5390	BL3Z11U		INE				1
32151	CC4139		nAcPalnha 200	BL52875		NE				
7 32715 BL52886 3624 NE CG3355 FBgn00 31619 BL52897 3636 NE CG3173 FBgn00 CG31739 HMC0 9 9 51739 BL52909 3649 NE CG1543 FBgn00 CG15434 HMC0 4 4 40705 BL52913 3653 NE CG6287 FBgn00 CG6287 HMC0	CG4128		паскарпа-зор	BL52885		NE				
CG3355 FBgn00 31619 CG3355 BL52897 3636 NE NE CG3173 FBgn00 9 51739 CG31739 BL52909 3649 NE NE CG1543 FBgn00 4 40705 CG15434 BL52913 3653 NE NE CG6287 FBgn00 CG6287 CG6287 HMC0 NE NE			cad	DI 52006		NE				
CG3173 FBgn00 CG31739 HMC0 NE 9 51739 BL52909 3649 NE CG1543 FBgn00 CG15434 HMC0 HMC0 4 40705 BL52913 3653 NE CG6287 FBgn00 CG6287 HMC0 CG527		FBgn00	CG3355	DL32680		INC				
9 51 ⁷ 39 BL52909 3649 NE SC515434 HMC0 40705 BL52913 3653 NE SC5294 HMC0 CG6287 FBgn00 CG6287 HMC0 SC5294 HMC0 SC	CG2172		CC21720	BL52897		NE				
4 40 ⁷ 05 BL52913 3653 NE CG6287 HMC0			CG31/39	BL52909		NE				
CG6287 FBgn00 CG6287 HMC0			CG15434	DI 52012		NE				
32350			CG6287	DL32913		INE				<u> </u>
DEDESED 3007 NL		32350		BL52928	3669	NE				

CG1327 7	FBgn02 61068	LSm7	BL52932	HMC0 3674		NE					
CG9140	FBgn00	CG9140	DL32932	3674 HMJ2		INE					1
662447	31771	6634474	BL52939	1591		NE					
CG3417 4	FBgn00 85203	CG34174	BL52943	HMJ2 1610		NE					
CG1105	FBgn00	CG11050		HMJ2							
0 CG1279	31836 FBgn00	CG12795	BL52970	1655 HMJ2		NE					
5	31535		BL52988	1680		NE					
CG1713 4	FBgn00 32304	CG17134	BL53023	HMJ2 1746		NE					
CG3651	FBgn00	CG3651	DI 52020	HMJ2		NE					
CG1516	32974 FBgn00	CG15167	BL53028	1753 HMJ2		NE					
7	32709	CC17110	BL53031	1757		NE					
CG1711 8	FBgn00 32291	CG17118	BL53304	HMC0 3531		NE					
CG5996	FBgn00 32593	trpgamma	BL53313	HMC0 3542		NE					
CG3180	FBgn00	CG31803		НМС0							
3 CG3195	51803 FBgn00	CG31954	BL53338	3567 HMC0		NE					
4	51954		BL53674	3607		NE					
CG1047 3	FBgn02 63198	Acn	BL53676	HMC0 3673		NE					
CG7456	FBgn00	CG7456		HMJ2							
CG1119	32258 FBgn00	Liprin-alpha	BL53679	1592 HMC0		NE					
9	46704		BL53868	3183		NE					
CG1083 3	FBgn00 31689	Cyp28d1	BL53892	HMJ2 1210		NE					
CG3180	FBgn00	CG31802	DJ 52002	HMJ2		NE					
2 CG8890	51802 FBgn00	Gmd	BL53893	1211 HMJ2		NE					
CC1022	31661	CC10339	BL53912	1245	Α	E-L	E			E	
CG1033 8	FBgn00 32700	CG10338	BL53913	HMJ2 1246		NE					
CG9305	FBgn00 32512	CG9305	BL53915	HMJ2 1248		NE					
CG1041	FBgn00	Atac2	BE33913	HMJ2		INL					
4 CG3164	32691 FBgn00	stai	BL53918	1253 HMJ2		NE					
1	51641	Stal	BL53925	1270		NE					
CG1327 0	FBgn00 40262	Ugt36Ba	BL53931	HMJ2 1279		NE					
CG1682	FBgn00	CG16825	מבכבום	HMJ2		INL					
5	32503 EBgp03	Droc2E	BL53973	1358		NE					
CG4904	FBgn02 50843	Pros35	BL53974	HMJ2 1359	Α	ME	ME	MS	E	ME	
CG1401 1	FBgn00 31722	CG14011	BL53993	HMJ2 1397	MS	MS		NE	E		NE
CG6392	FBgn00	cmet		HMJ2	CIVI			INL	-		IVL
CG5727	40232 FBgn00	CG5727	BL54004	1427 HMJ2	Α	ME	E			E	
	32193		BL54021	1447		NE					
CG1403 1	FBgn00 31695	Cyp4ac3	BL54023	HMJ2 1449		NE					
CG4372	FBgn02	sick		HMJ2							
0 CG1017	63873 FBgn00	Ntf-2r	BL54037	1480 HMS0		NE					
4	32680		BL54462	3723		NE					
CG1699 7	FBgn02 63235	Phae2	BL54805	HMJ2 1499		NE					
CG4253	FBgn02	CG42533		HMJ2							
3 CG1514	60486 FBgn00	CG15145	BL54817	1536 HMJ2		NE					1
5	32649	CO13143	BL54837	1556		NE					
CG5381	FBgn00	CG5381	BL54847	HMJ2		NE					
	32218	<u> </u>	BL3484/	1584		INE		<u> </u>	l	1	I

CG3195 0	FBgn00 51950	CG31950	BL55161	HMC0 3836		NE					
CG3058	FBgn00	Dim1	BE33101	HMC0		INL					
	31601		BL55171	3851		NE					
CG1399 9	FBgn00 31753	CG13999	BL55177	HMC0 3858		NE					
CG8885	FBgn02	Scox	BL331//	HMC0		INE					
	62467		BL55179	3860		NE					
CG9232	FBgn02 63200	Galt	BL55191	HMC0 3885		NE					
CG6488	FBgn00	CG6488	BE33191	HMC0		INL					
	32361		BL55192	3886		NE					
CG1724 2	FBgn02 50841	CG17242	BL55198	HMC0 3896	А	ME	ME			E	
CG6686	FBgn00 32388	CG6686	BL55202	HMC0 3913	Α	ME	ME		E	ME	
CG5648	FBgn00	Prosalpha6T	BESSEUZ	HMC0	A	IVIL	IVIL		_	IVIL	
	32492		BL55243	2418		NE					
CG5343	FBgn00 32248	CG5343	BL55258	HMC0 3945		NE					
CG1046	FBgn00	CG10466		НМС0							
6	32822	CC12F12	BL55263	3950		NE					
CG1251 2	FBgn00 31703	CG12512	BL55269	HMC0 3956		NE					
CG3161	FBgn00	CG31619		НМС0							
9 CG1798	51619 FBgn00	Ance-3	BL55296	3983 HMC0		NE					
8	32536	Alice-3	BL55298	3985		NE					
CG3439	FBgn00	nub		HMC0							
5 CG4132	85424 FBgn00	pkaap	BL55305	3992 HMC0		NE					
	40079		BL55333	4020		NE					
CG1723 9	FBgn00 42186	CG17239	BL55336	HMC0 4023		NE					
CG8871	FBgn00	Jon25Biii		HMC0							
CG1493	31653	Mal-B1	BL55344	4031 HMC0		NE					
4	FBgn00 32381	IVIdI-B1	BL55346	4033		NE					
CR3288	FBgn00 43022	snRNA:U5:38AB a	BL55361	HMC0 4048		NE					
CG3225	FBgn00	CG3225	5255501	HMC0							
004070	31631	6640707	BL55365	4053		NE					
CG1878 7	FBgn00 42125	CG18787	BL55375	HMC0 4063		NE					
CG1757	FBgn02	CG17571		НМС0							
1 CG1723	59998 FBgn00	CG17234	BL55408	4096 HMC0		NE		1		-	
4	42187	CU1/234	BL55611	3750		NE					
CG9377	FBgn00	CG9377		HMC0							
CG3185	32507 FBgn00	Tap42	BL55623	3767 HMC0		NE	-	-		-	
2	51852	. 49-72	BL55625	3769		NE					
CG3172	FBgn00	CG31728	DIECCO	HMC0		NE					
8 CG4779	51728 FBgn00	hgo	BL55628	3773 HMC0		NE		-			
	40211	-	BL55629	3775		NE		ļ			
CG1765 7	FBgn00 86698	frtz	BL55649	HMC0 3798		NE					
CG3181	FBgn00	CG31812	DL33049	HMC0		INL		 		<u> </u>	
2	51812		BL55659	3813		NE					
CR3298 9	FBgn00 41717	snRNA:U6atac:2 9B	BL55666	HMC0 3821		NE					
CG3294	FBgn00	CG3294		HMC0							
001130	31628	Canar	BL55691	3905	/h4C	NE					
CG1126	FBgn00 31883	Caper		HMC0 3924	(MS POSSIBL						
			BL55742		E)	NE			E		
CG6639	FBgn00 32638	CG6639	BL55853	HMC0 3740		NE					
	J4U30	<u>I</u>	DE33633	3/40	<u> </u>	INE	1	1	I	I.	1

CG9333	FBgn00 32891	Oseg5	BL55856	HMC0 3888		NE					
CG4375	FBgn02	Slob		HMC0							
6 CG9222	64087 FBgn00	CG9222	BL55879	4152 HMC0		NE					
CG4839	31784 FBgn00	CG4839	BL55890	4165 HMC0		NE			1		
CG3353	32187 FBgn00	Ddr	BL55891	4168 HMC0		NE			-		
1	53531		BL55906	4190		NE					
CG1528 4	FBgn02 64810	pburs	BL55924	HMC0 4211		NE					
CG4400 7	FBgn02 64815	Pde1c	BL55925	HMC0 4212		NE					
CG6431	FBgn00 32289	CG6431	BL55943	HMC0 4231		NE					
CG1790	FBgn00	ChLD3		HMC0							
5 CG1440	32598 FBgn00	CheB38c	BL55944	4232 HMC0		NE					
5 CG3311	32888 FBgn00	Victoria	BL55945	4233 HMC0	Α	ME	ME	MS		ME	
7	53117		BL55953	4242		NE					
CG1399 0	FBgn00 40950	Muc26B	BL55986	HMC0 4282		NE					
CG1781 4	FBgn00 40959	Peritrophin-15a	BL55987	HMC0 4283		NE					
CG3168	FBgn00 51681	CG31681	BL55994	HMC0 4290		NE					
CG3170	FBgn00	CG31704		нмс0					1		
4 CG3197	51704 FBgn00	Cda5	BL55995	4291 HMC0		NE					
3 CG3410	51973 FBgn00	BG642163	BL55996	4292 HMC0		NE			-		-
2	83938		BL56001	4297		NE					
CG3444 7	FBgn00 85476	CG34447	BL56002	HMC0 4298		NE					
CG3444 8	FBgn00 85477	CG34448	BL56003	HMC0 4299	А	E	E		<u> </u>	E	
CG3189	FBgn00 40958	Peritrophin-15b	BL56019	HMC0 4315		NE					
CG7068	FBgn00 41181	Tep3	BL56020	HMC0 4316		NE					
CG7532	FBgn02	I(2)34Fc		HMC0					† <u> </u>		
CG1682	61534 FBgn00	CG16820	BL56023	4319 HMC0		NE			E		
0 CG1073	32495 FBgn00	CG10730	BL56027	4323 HMC0		NE					
0	32843 FBgn00		BL56028	4324		NE			 		
CG3175 1	86909	CG31751	BL56030	HMC0 4338		NE					
CG1228 8	FBgn00 32620	CG12288	BL56037	HMC0 4345		NE					
CG1671 2	FBgn00 31561	CG16712	BL56047	HMS0 4250		NE					
CG5726	FBgn00 34313	CG5726	BL32335	HMS0 0326		NE					
CG8707	FBgn00 33272	RagC-D	BL32342	HMS0 0333		NE					
CG3845	FBgn00	NAT1		HMS0	_				1.45		
CG2173	10488 FBgn00	Rs1	BL32357	0348 HMS0	S	S		NE	ME		NE
CG8815	21995 FBgn00	Sin3A	BL32363	0354 HMS0		NE			-		
CG1021	22764 FBgn00	SMC2	BL32368	0359 HMS0		NE			 		
2	27783		BL32369	0360		NE					
CG6805	FBgn00 34179	CG6805	BL32380	HMS0 0371		NE					
CG8416	FBgn00 14020	Rho1	BL32383	HMS0 0375	А	E	Е			E	
	1.020	I	2232303			<u> </u>		1	1		

		1		1	1	1	1	1	1	1	
CG3288 5	FBgn00 16053	pgc	BL32386	HMS0 0378		NE					
CG3420	FBgn00 85236	CG34207	BL32387	HMS0 0379		NE					
CG5820	FBgn00	Gp150		HMS0							
CG3879	13272 FBgn00	Mdr49	BL32400	0395 HMS0		NE					
CG1770	04512 FBgn00	Nipped-B	BL32405	0400 HMS0		NE					
4 CG2917	26401 FBgn00	Orc4	BL32406	0401 HMS0	ME	ME	NE	NE	NE		NE
CG1108	23181 FBgn00	pk	BL32409	0404 HMS0		NE					
4 CG8804	03090 FBgn00	wun	BL32413	0408 HMS0		NE					
	16078		BL32429	0424		NE					
CG1008 2	FBgn00 34644	CG10082	BL32431	HMS0 0427		NE					
CG3439 9	FBgn00 85428	Nox	BL32433	HMS0 0429		NE					
CG2044	FBgn00 02535	Lcp4	BL32455	HMS0 0454		NE					
CG1825	FBgn00 10342	Map60	BL32458	HMS0 0457		NE					
CG6061	FBgn00 33846	mip120	BL32461	HMS0 0461		NE					
CG7200	FBgn00	CG7200		HMS0							
CG8411	32671 FBgn00	gcl	BL32485	0488 HMS0		NE					
CG3035	05695 FBgn00	CG30356	BL32492	0495 HMS0		NE					
6 CG8905	50356 FBgn00	Sod2	BL32493	0496 HMS0		NE					
CG1240	10213 FBgn00	Prx2540-1	BL32496	0499 HMS0		NE					
5 CG1511	33520 FBgn00	mip40	BL32497	0500 HMS0		NE					
9	34430		BL32834	0524		NE					
CG3440 7	FBgn00 85436	Not1	BL32836	HMS0 0526	А	E	ME	ME		E	
CG1211 0	FBgn00 33075	Pld	BL32839	HMS0 0529		NE					
CG7843	FBgn00 33062	Ars2	BL32844	HMS0 0626		NE					
CG8625	FBgn00 11604	Iswi	BL32845	HMS0 0628		NE					
CG1015 5	FBgn00 20767	Spred	BL32852	HMS0 0637		NE					
CG8975	FBgn00	RnrS		HMS0							
CG6050	11704 FBgn00	EfTuM	BL32864	0651 HMS0		NE					
CG5170	24556 FBgn00	Dp1	BL32868	0655 HMS0		NE					
CG8266	27835 FBgn00	sec31	BL32872	0659 HMS0		NE					
CG8309	33339 FBgn00	Tango7/eIF3m	BL32878	0666 HMS0		NE					
CG4878	33902 FBgn00	eIF3-S9	BL32879	0667 HMS0	Α	ME	ME			ME	
	34237		BL32880	0668	Е	Е	NE	E-L	E-L		NE
CG5174	FBgn00 34345	CG5174	BL32881	HMS0 0669		NE					
CG9862	FBgn00 34646	Rae1	BL32882	HMS0 0670		NE					
CG1057 8	FBgn02 63106	DnaJ-1	BL32899	HMS0 0688		NE					
CG3722	FBgn00 03391	shg	BL32904	HMS0 0693	А	E	E			Е	
CG1225	FBgn00	Fcp1	BL32925	HMS0		NE	_				
2	35026	<u> </u>	BL32925	0716	<u> </u>	INE	1	1	1	1	<u> </u>

CG8529	FBgn00	Dyb		HMS0							
CG1148	33739 FBgn00	Mlh1	BL32935	0728 HMS0		NE					
2	11659	MINT	BL32940	0734		NE					
CG8274	FBgn00	Mtor		HMS0							
	13756	0 / 10 10	BL32941	0735		NE		-	-		
CG8068	FBgn00 03612	Su(var)2-10	BL32956	HMS0 0750	Α	ME	ME			ME	
CG1335	FBgn00	Ctf4		HMS0							
0	33890		BL32968	0764		NE					
CG1374 5	FBgn00 33354	FANCI	BL32972	HMS0 0769	ME	ME	NE	NE	E-L		NE
CG1242	FBgn00	Hsp83	5252572	HMS0			1				
	01233		BL32996	0796		NE					
CG8426	FBgn00 33029	I(2)NC136/Not3	BL33002	HMS0 0802	LacZ-E	E	NE	ME	E-L		E
CG4466	FBgn00	Hsp27	BE55002	HMS0	EGCZ E		1112	IVIL			
	01226		BL33007	0807		NE					
CG3825	FBgn00 34948	Gadd34/PPP1R1 5	BL33011	HMS0 0811		NE					
CG9193	FBgn00	mus209	DESSOIT	HMS0		142					
	05655		BL33043	0634		NE					
CG5859	FBgn00 25830	IntS8	DI 22040	HMS0 0721	_	E	NE	NE	ME	NE	NE
CG1234	FBgn00	wde	BL33048	HMS0	E	E	NE	NE	IVIE	NE	NE
0	27499		BL33339	0205		NE					
CG1309	FBgn00	CG13096		HMS0							
6 CG4415	32050 FBgn02	CG44153	BL33340	0206 HMS0		NE			-		
3	65002	CG44155	BL33350	0218		NE					
CG3253	FBgn00	CG3253		HMS0							
660005	41706	660005	BL33351	0220		NE			1		
CG9005	FBgn00 33638	CG9005	BL33362	HMS0 0234		NE					
CG6556	FBgn00	cnk		HMS0							
	21818		BL33366	0238		NE					
CG8710	FBgn00 33265	coil	BL33368	HMS0 0240		NE					
CG4654	FBgn00	Dp	BE33300	HMS0		IVL					
	11763		BL33372	0245		NE					
CG9854	FBgn00 15949	hrg		HMS0 0252							(MS POSSIBL
	13949		BL33378	0232	ME	ME	NE	E	ME		E)
CG5373	FBgn00	Pi3K59F		HMS0							,
201200	15277		BL33384	0261		NE					
CG1236 7	FBgn00 33686	Hen1	BL33385	HMS0 0262		NE					
CG8991	FBgn00	Sobp	BE33303	HMS0		142					
	33654		BL33397	0275		NE		1	1		
CG3905	FBgn00 08654	Su(z)2	BL33403	HMS0 0281		NE		1			
CG3038	FBgn00	Magi	5133403	HMS0		145		1	1		
8	34590		BL33411	0291		NE		1	<u> </u>		
CG1024 9	FBgn00 27596	CG10249	BL33432	HMS0 0319		NE		1			
CG1389	FBgn00	tor	5133432	HMS0		145		1	†		
	03733		BL33627	0021		NE					
CG6493	FBgn00 34246	Dcr-2	BL33656	HMS0 0062		NE		1			
CG8730	54246 FBgn00	drosha	DL33030	HMS0		INE	+	+	+		
	26722		BL33657	0064		NE					
CG1519	FBgn00	Prosalpha7	DISSEC	HMS0		_	-	1	1	_	
CG2038	23175 FBgn00	CSN7	BL33660	0068 HMS0	Α	E	E	+	+	E	
	28836	33.17	BL33663	0073	<u> </u>	NE		<u> </u>			
CG4254	FBgn00	tsr	B1 05	HMS0							
CG1406	11726 FBgn00	U2A	BL33670	0534 HMS0		NE	-	+	+		-
CG1400	33210	024	BL33671	0535		NE		1			
		•						-	•		1

664711	FD 00	0045445	1	110.400	1	1	1	1	1	ı	ı
CG1511 7	FBgn00 34417	CG15117	BL33693	HMS0 0562		NE					
CG9015	FBgn00 00577	en	BL33715	HMS0 0595		NE					
CG1381	FBgn00	RpLP0-like		HMS0	F		NE	NE	NAF		NE
CG1738	33485 FBgn00	CG17385	BL33730	0613 HMS0	E	E	NE	NE	ME		NE
5 CG1844	33934 FBgn00	CG18446	BL33734	0617 HMS0		NE					
6 CG6370	33458 FBgn00	CG6370	BL33735	0618 HMS0		NE					
CG8166	34277 FBgn00	unc-5	BL33752	1092 HMS0		NE					
CG4921	34013 FBgn00	Rab4	BL33756	1099 HMS0		NE					
	16701		BL33757	1100		NE					
CG6518	FBgn00 04784	inaC	BL33768	JF029 58		NE					
CG8397	FBgn00 34066	CG8397	BL33877	HMS0 0814		NE					
CG1672 0	FBgn00 04168	5-HT1A	BL33885	HMS0 0823		NE					
CG1024	FBgn00 15714	Cyp6a17	BL33887	HMS0 0825		NE					
CG3820	FBgn00 10660	Nup214	BL33897	HMS0 0837		NE					
CG8243	FBgn00	CG8243		HMS0							
CG1706	33349 FBgn00	mars	BL33927	0876 HMS0		NE					
4 CG1341	33845 FBgn00	Rpt1	BL33929	0878 HMS0		NE	1				
CG8983	28687 FBgn00	ERp60	BL33930	0879 HMS0	Α	E	E			E	
CG1693	33663 FBgn00	Eps-15	BL33935	0885 HMS0		NE					
2	35060		BL33942	0893		NE					
CG5109	FBgn00 03044	Pcl	BL33946	HMS0 0897		NE					
CG8280	FBgn00 00556	Ef1alpha48D	BL33960	HMS0 0917		NE					
CG1219 0	FBgn00 34763	RYBP	BL33974	HMS0 0931		NE					
CG3034 5	FBgn00 50345	CG30345	BL33994	HMS0 0957		NE					
CG1212	FBgn00 33473	CG12128		HMS0 0960							
8 CG1509	FBgn00	l(2)08717	BL33997	HMS0		NE					
5 CG3351	10651 FBgn00	Unc-89	BL33999	0962 HMS0		NE					
9 CG1020	53519 FBgn00	NaPi-T	BL34000	0963 HMS0		NE					
7 CG1232	16684 FBgn00	RpS15Ab	BL34003	0966 HMS0		NE					
4	33555 FBgn00	,	BL34008	0973		NE					
CG5465	34707	MED16	BL34012	HMS0 0978	40	NE					
CG4038	FBgn00 11824	CG4038	BL34013	HMS0 0979	(ME POSSIBL E)	NE					
CG3006 7	FBgn00 50067	Obp50a	BL34023	HMS0 0993		NE					
CG4005	FBgn00 34970	yki	BL34067	HMS0 0041	А	ME	ME	NE	NE	ME	
CG1068	FBgn00 04400	rhi	BL34071	HMS0 0069		NE	2				
CG8728	FBgn00	CG8728		HMS0							
CG4049	33235 FBgn00	CG4049	BL34074	0561 HMS0		NE	+				
	34976		BL34077	0584		NE					

CG0205 Tegorio CG0205 BL34078 Tegorio CG0205 BL34078 Tegorio CG0205 CG020											
CG2005 Fegr00 CG206S BL34008 MAS0 NE	CG3334		CheB42a	BI 3/1078			NE				
CGC0202 Figer00 Figer0			CG2065	BL34078			INL				
27	664004		6	BL34098			NE	1			
CG2325 F8gn00 eve			TJ	BL34323			NE				
34618	CG2328	FBgn00	eve		HMS0						
GG4002 F8gr00 Pfk	CG9485		CG9485	BI 3/1333			NE				
GG002 Fign00	CG4001		Pfk	BE34333			INL				
CG10255 Figure	CG4062		Aats-val	BL34336			NE			1	
3 33983		27079		BL34338	1326		NE				
15838 BL4954 1343 NE			CG10253	BL34350			NE				
GGS498 Fign00 A147 A156 BL34569 1358 NE	CG8075		Vang	BI 34354			NF				
GSSE01 F8gn00 Ggamma1 Bl34372 3361 NE	CG5489	FBgn00	Atg7		HMS0						
CG5552 F8gn00 Syr)	CG8261		Ggamma1	BL34369			NE			1	
G3045 FBgn00 G30456 B134378 1368 NE	000000		aumi .	BL34372			NE				
CG1319 FBgn00 CG13192 BL34380 1370 NE	CG0502		Syrij	BL34378			NE				
CG1319			CG30456	BI 34380			NE				
CG8298 F8gn00 CG8298 BL34524 OB13 NE		FBgn00	CG13192		HMS0						
CG4581 FBgn00 CG13551 BL34524 O813 NE			CG8298	BL34390			NE		1	1	
CG1355 FBgn00 CG13551 BL34566 1017 NE	CG6296	33673	CG8298	BL34524			NE				
CG2158 FBgn00	CG4581		Thiolase	BL34546			NE				
CG2158			CG13551	BI 34554			NF				
CG6459		FBgn00	Nup50		HMS0						
CG2163 FBgn00 05648 Pabp2 Bl34602 Bl34602 0553 NE CG8472 FBgn00 PBgn00 00253 Cam Bl34609 HMS0 1318 NE CG4029 FBgn00 3 46692 Stlk Bl34620 HMS0 1297 NE CG8877 FBgn00 33688 Bl34622 1295 NE CG1583 FBgn00 33688 Kdm4A HMS0 Bl34629 NE CG1583 FBgn00 33233 Kdm4A HMS0 Bl34629 NE CG3400 FBgn00 70325 Kr HMS0 Bl34632 NE CG9635 FBgn00 703172 Rh34632 1118 NE CG1677 FBgn00 703173 Rh34631 1118 NE CG1677 FBgn00 8 GG16778 HMS0 Bl34651 NE NE CG3819 FBgn00 8 achi 33749 Bl34652 1126 NE NE CG7576 FBgn00 001122 Rab3 HMS0 Bl34653 NE NE NE CG7576 FBgn00 00289 Rb34668 HMS0 Bl34668 NE NE NE	CG6459	FBgn00	P32		HMS0						
C68472 FBgn00 00253 BL34609 HMS0 1318 NE CG4029 FBgn00 3 46692 Stlk BL34620 1295 NE CG8877 FBgn00 33688 BL34622 1297 NE CG1583 FBgn00 Kdm4A BL34622 HMS0 NE NE CG3404 FBgn00 Kr HMS0 NE NE CG3404 FBgn00 Kr HMS0 NE NE CG9635 FBgn00 RhoGEF2 SL34632 HMS0 NE NE 23172 BL34631 1118 NE NE CG1677 FBgn00 RBgn00 RBgn00 RB RBJ34651 HMS0 RBJ34651 NE CG3204 FBgn00 RBgn00 RBB RBJ34653 HMS0 RBJ34653 NE CG7576 FBgn00 RBB RBJ34653 HMS0 RBJ34653 NE CG7576 FBgn00 RBB RBJ34655 HMS0 RBJ34655 NE CG7576 FBgn00 RBB RBJ34651 HMS0 RBJ34653 NE CG7576 FBgn00 RBB RBJ34655 HMS0 RBJ34655 NE CG7576 FBgn00 RBB RBJ34665 HMS0 RBJ34655 NE CG7576 FBgn00 RBBJ34667	CG2163		Pabp2	BL34585			NE				
CG4029	CG8472	05648	·	BL34602			NE		1		
3		00253		BL34609	1318		NE				
CG8877 FBgn00 33688 Prp8 BL34622 1297 NE CG1583 FBgn00 5 Kdm4A HMS0 5 NE NE CG3340 FBgn00 01325 Kr BL34632 HMS0 BL34632 NE NE CG9635 FBgn00 23172 RhoGEF2 BL34643 HMS0 BL34643 NE NE CG1677 FBgn00 8 33715 BL34651 1126 BL34651 NE NE CG2819 FBgn00 33749 achi BL34652 HMS0 BL34652 NE NE NE CG2204 FBgn00 01122 G-oalpha47A BL34653 HMS0 BL34655 NE NE NE CG7576 FBgn00 00289 Rab3 BL34668 HMS0 BL34668 NE NE NE CG1510 FBgn00 00289 Cg BL34668 HMS0 BL34671 NE NE NE CG1476 FBgn00 4 A34410 BL34671 HMS0 BL34679 NE NE NE CG8980 FBgn00 03396 Shn BL34689 HMS0 BL34689 NE NE NE			Stlk	BL34620			NE				
CG1583		FBgn00	Prp8		HMS0						
CG3340 FBgn00 01325 Kr BL34632 1106 NE CG9635 FBgn00 23172 RhoGEF2 BL34643 1118 NE CG1677 FBgn00 03715 BL34643 1118 NE CG8819 FBgn00 33749 achi BL34651 1126 NE CG2204 FBgn00 01122 G-oalpha47A BL34652 HMS0 HMS0 BL34652 NE CG7576 FBgn00 05586 BL34655 1131 IHS0 BL34655 NE CG8367 FBgn00 00289 BL34668 1145 NE NE CG1510 FBgn00 Topors BL34668 HMS0 HMS0 AJ4410 NE NE CG1476 FBgn00 Topors BL34679 HMS0 HMS0 AJ4410 NE NE CG734 FBgn00 Shn BL34679 HMS0 HMS0 AJ469 NE NE CG8980 FBgn00 NiPp1 HMS0 HMS0 HMS0 AJ469 NE NE		FBgn00	Kdm4A		HMS0						
O1325			. Kr	BL34629			NE		1	1	
CG1677 FBgn00 CG16778 BL34643 1118 NE		01325		BL34632			NE				
CG1677 FBgn00 CG16778 BL34651 1126 NE NE CG8819 FBgn00 achi BL34652 1127 NE NE CG204 FBgn00 G-oalpha47A HMS0 NE NE CG7576 FBgn00 Rab3 HMS0 NE NE CG7576 FBgn00 Cg HMS0 NE NE CG8367 FBgn00 Cg HMS0 NE NE CG1510 FBgn00 Topors HMS0 NE NE NE CG14767 FBgn00 CG14767 HMS0 NE NE NE CG7734 FBgn00 shn HMS0 NE NE NE NE CG8980 FBgn00 NiPp1 HMS0 NE NE NE NE	CG9635		RhoGEF2	BL34643			NE				
CG8819 FBgn00 33749 achi BL34652 HMS0 1127 NE CG2204 FBgn00 01122 G-oalpha47A BL34653 HMS0 BL34653 NE CG7576 FBgn00 05586 Rab3 BL34655 NE NE CG8367 FBgn00 00289 cg BL34668 HMS0 BL34668 NE NE CG1510 FBgn00 4 Topors 34410 HMS0 BL34671 MS MS NE NE CG14767 7 FBgn00 40777 CG7734 FBgn00 7 Shn 8L34689 HMS0 1167 NE NE NE CG8980 FBgn00 03396 NiPp1 HMS0 HMS0 NE NE NE		FBgn00	CG16778		HMS0						
CG2204 FBgn00 01122 G-oalpha47A HMS0 1129 NE NE NE CG7576 FBgn00 Rab3 BL34655 HMS0 NE NE NE NE NE CG8367 FBgn00 Cg NO289 NE			achi	BL34651			NE		+		
01122 BL34653 1129 NE CG7576 FBgn00	CG2204		G-galpha47A	BL34652			NE		-		
O5586		01122	'	BL34653	1129		NE				
CG8367 FBgn00 00289 Cg BL34668 1145 NE NE CG1510 FBgn00 1 Topors 2 4 34410 HMS0 2 5 1149 MS MS MS NE NE NE CG14767 FBgn00 1 Topors 2 5 1157 HMS0 1 Topors 2 5 1157 NE NE NE CG74746 FBgn00 1 Topors 2 5 1157 HMS0 1 Topors 2 5 1157 NE NE NE CG7734 FBgn00 1 Shn 1 Topors 2 5 1157 HMS0 1 Topors 2 5 1157 NE NE NE CG8980 FBgn00 NiPp1 HMS0 1 Topors 2 5 1157 NE NE NE	CG7576		Kab3	BL34655			NE				
CG1510 FBgn00 Topors HMS0 MS NE NE NE 4 34410 BL34671 1149 MS MS NE NE NE CG1476 FBgn00 CG14767 HMS0 NE NE NE NE CG7734 FBgn00 shn HMS0 NE NE NE NE CG8980 FBgn00 NiPp1 HMS0 NE NE NE NE	CG8367	FBgn00	cg	BL34668	HMS0		NE				
CG1476 FBgn00 CG14767 HMS0 NE 7 40777 BL34679 1157 NE CG7734 FBgn00 shn HMS0 NE 03396 BL34689 1167 NE CG8980 FBgn00 NiPp1 HMS0		FBgn00	Topors		HMS0	MS		NE	NE		NE
CG7734 FBgn00 o3396 shn o3396 BL34689 1167 o167 NE NE CG8980 FBgn00 o176 NiPp1 o176 HMS0 o176 NE NE<	CG1476	FBgn00	CG14767		HMS0	1413			1		1
03396 BL34689 1167 NE CG8980 FBgn00 NiPp1 HMS0			shn	BL34679			NE		+		
		03396		BL34689	1167		NE		1		
	CG8980		NiPp1	BL34696			NE				

CG6622	FBgn00	Pkc53E		HMS0				I	I		1
COUUZZ	03091	I NUJSL	BL34716	1195		NE					
CG1832	FBgn00	CG18324		HMS0			1				
4	33905		BL34720	1199		NE			<u> </u>		
CG8791	FBgn00	CG8791	D124720	HMS0		N.E					
CG8920	33234 FBgn00	CG8920	BL34728	1207 HMS0		NE					
CG0320	27529	200520	BL34738	1218		NE					
CG5575	FBgn00	ken		HMS0							
	11236		BL34739	1219	E	E	NE	ME	ME		NE
CG8293	FBgn00 15247	lap2	BL34776	HMS0 0085		NE					
CG1093	FBgn00	Prosalpha5	BL34770	HMS0		INL					
8	16697		BL34786	0095	Α	E	E			E	
CG3644	FBgn00	bic		HMS0							
663000	00181	C1.4	BL34790	0099		NE					
CG3090	FBgn00 05612	Sox14	BL34794	HMS0 0103		NE					
CG1232	FBgn00	Prosbeta5	BE34734	HMS0		INL					
3	29134		BL34810	0119	Α	E-L	Е			E	
CG9291	FBgn00	Elongin-C		HMS0							
CCOCAC	23211 EBgp00	CG0646	BL34818	0128		NE	1				-
CG9646	FBgn00 34184	CG9646	BL34819	HMS0 0134		NE					
CG8639	FBgn00	Cirl	DE3+013	HMS0		INL	†				
	33313		BL34821	0136		NE					
CG8392	FBgn00	Prosbeta1		HMS0							
000013	10590	D-:	BL34824	0139	Α	E	E			E-L	
CG8912	FBgn00 14870	Psi	BL34825	HMS0 0140		NE					
CG2910	FBgn00	nito	DL3+023	HMS0		INL	1				
	27548		BL34848	0166		NE					
CG3355	FBgn00	Nipped-A		HMS0							
601141	53554	Anc10	BL34849	0167		NE	1				
CG1141 9	FBgn00 34231	Apc10	BL34858	HMS0 0176		NE					
CG1168	FBgn00	mle/nap		HMS0	(MS		†				
0	02774	·		0182	POSSIBL						
004001	FD 00	664004-	BL34864	110.400	E)	NE	NE	MS	ļ		
CG1091 5	FBgn00 34308	CG10915	BL34879	HMS0 0199		NE					
CG1119	FBgn00	ACC	5254075	HMS0		142	1				
8	33246		BL34885	1230		NE					
CG1566	FBgn00	Sara		HMS0							
7 CG1825	26369	Da	BL34894	1239 HMS0		NE	1				-
0	FBgn00 34072	Dg	BL34895	1240		NE					
CG4816	FBgn00	qkr54B		HMS0			†				
	22987		BL34896	1241		NE		ļ	ļ		
CG5562	FBgn00	gbb	D124000	HMS0		N.E					
CG3615	24234 FBgn00	Atg9	BL34898	1243 HMS0		NE	+				-
CO3013	34110	URS	BL34901	1246		NE					
CG1008	FBgn00	mahj	-	HMS0			İ	Ì	Ì		İ
0	34641		BL34912	1260		NE	NE	NE	NE		
CG8996	FBgn00 10516	wal	DI 2401F	HMS0		NE					
CG3269	10516 FBgn00	Rab2	BL34915	1263 HMS0		NE	+				
003203	14009		BL34922	1271		NE					
CG1386	FBgn00	MED8		HMS0							
7	34503		BL34926	1275	MS	MS		S	MS		NE
CG9834	FBgn00	endoB	DI 24025	HMS0		NE					
CG4696	34433 FBgn00	Mp20	BL34935	1285 HMS0		NE	+	1	1		
20-050	02789		BL34963	0630		NE					
CG8858	FBgn00	CG8858		HMS0							
	33698		BL34975	1128	Е	E	NE	NE	NE		NE
CG1334	FBgn00	tum	DISCOS	HMS0		NE					
5	86356	<u> </u>	BL35007	1417		NE	1	1	1	1	<u> </u>

							1				
CG1108 6	FBgn00 33153	Gadd45	BL35023	HMS0 1436		NE					
CG1112	FBgn00	so		HMS0							
1 CG1318	03460 FBgn00	CG13183	BL35028	1441 HMS0	E-L	E-L	NE	E	E-L		NE
3	33667	CG13103	BL35031	1444		NE					
CG1318 8	FBgn00 33668	CG13188	BL35032	HMS0 1445		NE					
CG8523	FBgn00 10241	Mdr50	BL35034	HMS0 1448		NE					
CG8440	FBgn00 15754	Lis-1	BL35043	HMS0 1457		NE					
CG1189 5	FBgn00 24836	stan	BL35050	HMS0 1464		NE					
CG3017	FBgn00	HSPC300		HMS0 1465		NE					
3 CG8821	61198 FBgn00	vis	BL35051	HMS0							
CG8238	33748 FBgn00	Buffy	BL35738	1480 HMS0		NE					
CG3017	40491 FBgn00	wibg	BL35742	1484 HMS0		NE					
6 CG9397	34918 ERgp00	iing	BL35746	1488 HMS0		NE					
	FBgn00 86655	jing	BL35750	1493	Α	E	ME			Е	
CG8988	FBgn00 33656	S2P	BL35760	HMS0 1508		NE					
CG4832	FBgn00 13765	cnn	BL35761	HMS0 1509		NE					
CG8648	FBgn00 25832	Fen1	BL35764	HMS0 1512		NE					
CG1344 2	FBgn00 34546	CG13442	BL35769	HMS0 1518		NE					
CG7765	FBgn00 01308	Khc	BL35770	HMS0 1519		NE					
CG9083	FBgn00 35077	CG9083	BL35791	HMS0 1505	E-L	E-L	ME	E	ME	ME	NE
CG2078	FBgn00 33402	Myd88	BL36107	HMS0 0183		NE	IVIE	-	IVIE	· · ·	IVE
CG3044 3	FBgn00 50443	Opbp	BL36120	HMS0 1535		NE					
CG1840	FBgn00	CAP		HMS0							
8 CG1693	33504 FBgn00	CG16935	BL36663	1551 HMS0		NE					
5 CG1010	33883 FBgn00	Sin1	BL36671	1559 HMS0		NE					
5 CG3037	33935 FBgn00	CG30379	BL36677	1565 HMS0		NE					
9 CG8200	50379	Flo-1	BL36679	1567 HMS0		NE					
	FBgn00 24754		BL36700	1589		NE					
CG1772	FBgn00 10316	dap	BL36720	HMS0 1610		NE					
CG3318	FBgn00 19643	Dat	BL36726	HMS0 1617		NE					
CG3624	FBgn00 34724	babos	BL36728	HMS0 1619		NE					
CG8183	FBgn00 19968	Khc-73	BL36733	HMS0 1624		NE					
CG1344 1	FBgn00 41240	Gr57a	BL36738	HMS0 1629		NE					
CG3032	FBgn00	CG30324		HMS0							
4 CG3398	50324 FBgn00	CG33988	BL36751	3011 HMS0		NE					
8 CG9415	53988 FBgn00	Xbp1	BL36754	3014 HMS0		NE					
CG3376	21872 FBgn00	CG3376	BL36755	3015 HMS0		NE					
CG5345	34997 FBgn00	Eip55E	BL36760	3021 HMS0		NE					
110010	00566		BL36766	3027		NE					

CG8430	FBgn00 01124	Got1	BL36768	HMS0 3029		NE					
CG1007	FBgn00	Egfr		JF023 84			-			_	
CG1775	03731 FBgn00	Galpha49B	BL36773	JF023	A	E	E			E	
9 CG1092	04435 FBgn00	CG10924	BL36775	90 HMS0		NE					
4	34356		BL36915	0200		NE					
CG6542	FBgn00 27506	EDTP	BL36917	HMS0 1577		NE					
CG4589	FBgn00 19886	Letm1	BL37502	HMS0 1644	А	ME	ME			E	
CG3691	FBgn00	Pof		HMS0			IVIL			_	
CG1570	35047 FBgn00	krimp	BL37508	1650 HMS0		NE					
7 CG1567	34098 FBgn00	cv-2	BL37511	1653 HMS0		NE					
1	00395		BL37514	1656		NE					
CG5473	FBgn00 34371	SP2637	BL37522	HMS0 1664		NE					
CG1846 8	FBgn00 34217	Lhr	BL38240	HMS0 1684		NE					
CG3355	FBgn00	mim		HMS0							
8 CG1429	53558 FBgn00	Mef2	BL38246	1690 HMS0		NE					
CG1286	11656 FBgn00	Su(var)2-HP2	BL38247	1691 HMS0		NE					1
4	26427		BL38255	1699		NE					
CG5330	FBgn00 15268	Nap1	BL38257	HMS0 1701		NE					
CG1579 2	FBgn00 05634	zip	BL38259	HMS0 1703	А	E	E			E	
CG3886	FBgn00 05624	Psc	BL38261	HMS0 1706		NE					
CG1093	FBgn00	CG10933		HMS0							
3 CG2093	34264 FBgn00	Vps13	BL38263	1708 HMS0		NE					
CG1080	33194 FBgn00	synaptogyrin	BL38270	1715 HMS0		NE		S	E-L		
8	33876		BL38274	1724		NE					
CG1508 7	FBgn00 34380	CG15087	BL38280	HMS0 1731		NE					
CG1298	FBgn00 33032	kune	BL38295	HMS0 1755		NE					
CG1599	FBgn00 33452	CG1599		HMS0 1762		NE					
CG8055	FBgn00	shrb	BL38300	HMS0							
CG5370	86656 FBgn00	Dcp-1	BL38305	1767 HMS0		NE					
	10501	·	BL38315	1779		NE					1
CG1050 5	FBgn00 34612	CG10505	BL38317	HMS0 1781		NE					
CG3346 5	FBgn00 53465	CG33465	BL38323	HMS0 1787		NE					
CG3530	FBgn00 28497	CG3530	BL38340	HMS0 1807		NE					
CG1131	FBgn00 11674	insc	BL38351	HMS0 1819		NE					
CG8722	FBgn00	Nup44A		HMS0							
CG3419	33247 FBgn00	CG3419	BL38357	1825 HMS0		NE	1				
CG1357	35002 FBgn00		BL38360	1828 HMS0		NE					
0	15544	spag	BL38371	1840		NE					
CG9696	FBgn00 20306	dom	BL38385	HMS0 1854	E	E	NE	E	ME		NE
CG3121	FBgn00 34957	CG3121	BL38524	HMS0 1721		NE					
CG9236	FBgn00	CG9236		HMS0							
	34558		BL38532	1745		NE		1			<u> </u>

CC122C	ED as OO	Las	T	LINACO	F				1		1
CG1236 9	FBgn00 10238	Lac	BL38536	HMS0 1756	ME	ME	NE	NE	E		NE
CG1509	FBgn00 34396	CG15097	BL38538	HMS0 1790		NE					
CG5576	FBgn00 13983	imd	BL38933	HMS0 0253		NE					
CG5625	FBgn00 34708	Vps35	BL38944	HMS0 1858		NE					
CG1780 0	FBgn00 33159	Dscam	BL38945	HMS0 1859		NE					
CG1227	FBgn00	angel		HMS0							
3 CG8024	16762 FBgn00	ltd	BL38947	1861 HMS0		NE		-			
	02567		BL38956	1870		NE					
CG8095	FBgn00 03328	scb	BL38959	HMS0 1873		NE					
CG1121 7	FBgn00 15614	CanB2	BL38971	HMS0 1886		NE					
CG8964	FBgn00 33674	CG8964	BL38973	HMS0 1889		NE					
CG6410	FBgn00 34265	Snx16	BL38992	HMS0 1908		NE					
CG3039 0	FBgn00 50390	Sgf29	BL39000	HMS0 1916		NE					
0 CG5581	FBgn00	Ote		HMS0			†	 			
CG1032	03022 FBgn00	ТВРН	BL39009	1926 HMS0		NE	 				
7	25790		BL39014	1932		NE			E		
CG8604	FBgn00 27356	Amph	BL39015	HMS0 1933		NE	<u>L</u> _	L	L	<u>L</u> _	
CG1352 1	FBgn00 05631	robo	BL39027	HMS0 1946		NE					
CG1680	FBgn00 34012	Hr51	BL39032	HMS0 1951		NE					
CG1511	FBgn00	ena		HMS0							
2 CG1881	00578 FBgn00	Tsp42Ea	BL39034	1953 HMS0		NE		 			
7 CG1130	29508 FBgn00	TM4SF	BL39044	1964 HMS0		NE		ļ			
3	20372		BL39048	1968		NE	<u> </u>				
CG1041 7	FBgn00 33021	CG10417	BL39051	HMS0 1971	L	NE	L	L		L	
CG1319 7	FBgn00 62449	CG13197	BL39052	HMS0 1972		NE					
CG3419	FBgn00 85220	CG34191	BL39054	HMS0 1974		NE					
CG1221	FBgn00	Syb	223034	HMS0	(ME						
0	03660		BL39067	1987	POSSIBL E)	NE	NE	MS	E		NE
CG3009	FBgn00 28371	jbug		HMS0	,						
2 CG8581	28371 FBgn00 11592	fra	BL39070	1990 HMS0		NE NE					
CG1508	FBgn00	I(2)03709	BL40826	1147 HMS0		NE NE	<u> </u>				
1 CG9446	10551 FBgn00	coro	BL40835	2001 HMS0	MC	NE			-		NE
CG1239	33109 FBgn00	CG12391	BL40841	2007 HMS0	MS	MS		S	E		NE
1 CG9954	33581 FBgn00	maf-S	BL40847	2014 HMS0		NE	1	-			
	34534		BL40853	2020		NE					
CG3060	FBgn00 02791	mr	BL40856	HMS0 2023		NE					
CG1282 1	FBgn00 40780	CG12821	BL40859	HMS0 2026		NE					
CG3313	FBgn00	CG33138		HMS0							
8 CG8224	53138 FBgn00	babo	BL40860	2027 HMS0		NE	 				
	11300		BL40866	2033		NE	1	<u> </u>]		

			,					,	,		
CG1359 4	FBgn00 35041	CG13594	BL40891	HMS0 2139		NE					
CG4071	FBgn00	Vps20	BL40691	HMS0		INE					
	34744		BL40894	2142	Α	ME	ME			ME	
CG1446 8	FBgn00 33042	Tsp42A	BL40900	HMS0 2148		NE	NE	MS	E		
CG4943	FBgn00	lack	BL40300	HMS0	(MS	INL	INL	IVIS	L		
	29006			2153	POSSIBL						
CG3048	FBgn00	Prosap	BL40905	HMS0	E)	NE		NE	E		
3	40752	РГОЅАР	BL40909	2157		NE					
CG1332	FBgn00	cid		HMS0							
9 CG3510	40477 FBgn00	СусВ	BL40912	2160 HMS0		NE		1			
CG3310	00405	Сусь	BL40915	2163		NE					
CG3001	FBgn00	gem		HMS0							
1 CG1177	50011 FBgn00	lin	BL40934	2182 HMS0		NE		1			
0	02552	"""	BL40939	2187		NE					
CG3437	FBgn00	Shroom		HMS0							
9 CG2727	85408 FBgn00	emp	BL40942	2190 HMS0		NE					
CG2/2/	10435	emp	BL40947	2195		NE					
CG8376	FBgn00	ар		HMS0							
CG1783	00099 FBgn00	inv	BL41673	2207 HMS0		NE		1			
5	01269	IIIV	BL41675	2209		NE					
CG9422	FBgn00	CG9422		HMS0							
CC10F4	33092	ano.	BL41679	2243	MS	MS		NE	NE		NE
CG1054 0	FBgn00 34577	сра	BL41685	HMS0 2249		NE					
CG1399	FBgn00	CG1399		HMS0							
CC210F	33212	Corin	BL41686	2250		NE					
CG2105	FBgn00 33192	Corin	BL41721	HMS0 2287		NE					
CG9453	FBgn00	Spn4		HMS0							
CCCE30	28985	mthl2	BL41722	2288		NE					
CG6530	FBgn00 28956	mthl3	BL41887	HMS0 2309		NE					
CG4812	FBgn00	Ser8		HMS0							
CG7229	19928 FBgn00	CG7229	BL41920	2317 HMS0		NE		1			
CG7229	34423	CG7229	BL41922	2319		NE					
CG8589	FBgn00	tej		HMS0							
CG5179	33921 FBgn00	Cdk0/p TEEb	BL41929	2326 HMS0		NE		1			
CG31/9	19949	Cdk9/p-TEFb	BL41932	2329		NE					
CG6692	FBgn00	Cp1		HMS0							
CG3313	13770 FBgn00	grau	BL41939	2336 HMS0		NE	-	 	-		
3	01133	grau	BL41940	2337		NE					
CG3436	FBgn00	Dgk		HMS0							
1 CG8190	85390 FBgn00	elF2B-gamma	BL41944	2341 HMS0		NE		+			
200130	34029	Cii 2D Baililla	BL41948	2345		NE		<u> </u>			
CG8856	FBgn00	Sr-CII	DI 41015	HMS0		NE					
CG3405	20377 FBgn00	CG34054	BL41949	2346 HMS0		NE	1	+			
4	54054	303.004	BL41951	2348		NE		<u> </u>			
CG4302	FBgn00	CG4302	DI 4465=	HMS0		NE					
CG1217	27073 FBgn00	Spn43Aa	BL41967	2364 HMS0		NE	1	1			
2	24294	-p	BL41972	2370		NE		<u> </u>			
CG3016	FBgn00	CG30161	DI 44077	HMS0		NE					
1 CG1110	50161 FBgn00	CG11107	BL41977	2375 HMS0		NE	1	1			
7	33160	, , , , , , , , , , , , , , , , , , ,	BL41992	2393		NE					
CG3572	FBgn00	vimar	DI 41000	HMS0		NE					
	22960	<u> </u>	BL41996	2397]	NE	1	1	1	l	<u> </u>

CG9441	FBgn00 03162	Pu	BL41998	HMS0 2399		NE				
CG2040	FBgn00	hig		HMS0						
CG8453	10114 FBgn00	Cyp6g1	BL42000	2401 HMS0		NE				
CG8834	25454 FBgn00	CG8834	BL42006	2407 HMS0		NE				
CG1845	33733 FBgn00	Br140	BL42010	2411 HMJ0		NE				
CG1034	33155 FBgn00	CG10344	BL42502	2067 HMJ0		NE				
4	34729		BL42505	2070		NE				
CG8090	FBgn00 33995	CG8090	BL42507	HMJ0 2072		NE				
CG1349 3	FBgn00 34667	comr	BL42522	HMJ0 2088		NE				
CG3260	FBgn00 21875	Zfrp8	BL42528	HMJ0 2095		NE				
CG9418	FBgn00 26582	CG9418	BL42542	HMJ0 2112		NE				
CG9304	FBgn00	CG9304		HMJ0						
CG1891	34674 FBgn00	sax	BL42544	2115 HMJ0		NE				
CG9888	03317 FBgn00	Fib	BL42546	2118 HMJ0		NE				
CG1824	03062 FBgn00	shark	BL42553	2126 HMJ0	E-L	E-L	NE	NE	E	NE
7 CG9480	15295 FBgn00	Glycogenin	BL42555	2128 HMJ0		NE				
	34603		BL42565	2222		NE				
CG2049	FBgn00 20621	Pkn	BL42567	HMJ0 2226		NE				
CG1560 5	FBgn00 34196	CG15605	BL42586	HMS0 2418		NE				
CG9896	FBgn00 34808	CG9896	BL42587	HMS0 2419		NE				
CG1142 3	FBgn00 34251	CG11423	BL42591	HMS0 2423		NE				
CG7865	FBgn00 33050	Pngl	BL42592	HMS0 2424		NE				
CG1810	FBgn00	IM1		HMS0						
8 CG4905	34329 FBgn00	Syn2	BL42599	2431 HMS0		NE				
CG3821	34135 FBgn00	Aats-asp	BL42601	2433 HMS0		NE				
CG3894	02069 FBgn00	CG3894	BL42606	2439 HMS0		NE				
CG5825	35059 FBgn00	His3.3A	BL42618	2453 HMS0		NE				
	14857		BL42620	2455		NE				
CG4294	FBgn00 34742	CG4294	BL42624	HMS0 2459		NE				
CG1847 1	FBgn00 24232	gprs	BL42630	HMS0 2465		NE				
CG8427	FBgn00 23167	SmD3	BL42633	HMS0 2469		NE				
CG4847	FBgn00 34229	CG4847	BL42655	HMS0 2491		NE				
CG1362	FBgn00	cdc2rk		HMS0						
CG1510	13435 FBgn00	abba	BL42661	2497 HMS0		NE				
5 CG2160	34412 FBgn00	Socs44A	BL42826	2508 HMS0		NE				
CG3502	33266 FBgn00	CG3502	BL42830	2515 HMS0		NE				
CG3608	46253 FBgn00	CG3608	BL42839	2531 HMS0		NE				
	35039		BL42841	2533		NE				
CG3814	FBgn00 25692	CG3814	BL42852	HMS0 2544		NE				
						-	-			 -

CG6033	FBgn00 04638	drk	BL42855	HMS0 2547		NE					
CG3025	FBgn00	CG30259		HMS0							
9 CG3209	50259 FBgn00	CG3209	BL42856	2548 HMS0		NE					
CG3003	34971 FBgn00	Tret1-1	BL42863	2556 HMS0		NE					
5	50035		BL42880	2573		NE					
CG8315	FBgn00 34058	Pex11	BL42883	HMS0 2576		NE					
CG3495	FBgn00 34794	Gmer	BL42884	HMS0 2577		NE					
CG1318 9	FBgn00 33665	CG13189	BL42894	HMS0 2587		NE					
CG8399	FBgn00	CG8399		HMS0							
CG5033	34067 FBgn00	CG5033	BL42910	2603 HMS0		NE					
CG8929	28744 FBgn00	CG8929	BL42930	2623 HMS0		NE					
	34504		BL42936	2629		NE					
CG3633	FBgn00 34727	mRpS29	BL42938	HMS0 2631		NE					
CG1560 9	FBgn00 34180	Ehbp1	BL42939	HMS0 2632		NE					
CG1138	FBgn00	CG11388		HMS0							
8 CG1129	34959 FBgn00	enok	BL42940	2633 HMS0		NE					
0 CG3803	34975 FBgn00	CG3803	BL42941	2634 HMS0		NE					
	34938		BL42948	2641		NE					
CG1882	FBgn00 33226	CG1882	BL42957	HMS0 2650		NE					
CG1508 4	FBgn00 34402	CG15084	BL42958	HMS0 2651		NE					
CG1285	FBgn00 33958	CG12858	BL43284	HMS0 2655	^	Е	ME			E	
CG1825	FBgn00	Strn-Mlck		HMS0	A		IVIE			E.	
5 CG3001	13988 FBgn00	CG30010	BL43291	2663 HMS0		NE					
0 CG1026	50010 FBgn00	CG10265	BL43293	2665 HMS0		NE					
5	33990		BL43294	2667		NE					
CG8946	FBgn00 10591	Sply	BL43304	HMS0 2684		NE					
CG3037	FBgn00 50371	CG30371	BL43307	HMS0 2691		NE					
CG1091	FBgn00	Spn6		HMS0							
3 CG1213	28983 FBgn00	CG12133	BL43309	2693 HMS0		NE					
3 CG9456	33469 FBgn00	Spn1	BL43312	2696 HMS0		NE					
	28988	·	BL43991	2704		NE					
CG1342 4	FBgn00 34520	lms	BL43995	HMS0 2709		NE					
CG1809	FBgn00 33423	CG1809	BL44016	HMS0 2731		NE		NE	E		
CG8400	FBgn00 34068	casp	BL44027	HMS0 2742		NE					
CG1373	FBgn00	CG13739		HMS0							
9 CG1865	33403 FBgn00	Spn43Ab	BL44030	2746 HMS0		NE					
CG6155	24293 FBgn00	Roe1	BL44043	2759 HMS0		NE					
	14877		BL44060	2777		NE					
CG1002 3	FBgn00 20440	Fak56D	BL44075	HMS0 2792		NE					
CG3036	FBgn00 50361	mtt	BL44076	HMS0 2793	А	ME	ME			Е	
CG3049	FBgn00	CG30496		HMS0	,		12				
6	50496	<u> </u>	BL44078	2795		NE	1	1		<u> </u>	J

CG1269 9	FBgn00 46294	CG12699	BL44111	HMS0 2833		NE			
CG9428	FBgn00 33096	ZIP1	BL44120	HMS0 2842		NE			
CG3027	FBgn00	Oatp58Da		HMS0					
7 CG1916	50277 FBgn00	Wnt2	BL44122	2844 HMS0		NE			
CG4356	04360 FBgn00	mAcR-60C	BL44271	2826 HMC0		NE			
CG1708	00037 FBgn00	cos	BL44469	2343 HMC0		NE			
CG8325	00352		BL44472	2347 HMC0		NE			
	FBgn00 21847	l(2)k14710	BL44482	2372		NE			
CG8579	FBgn00 01285	Jon44E	BL44486	HMC0 2391		NE			
CG1030 6	FBgn00 34654	CG10306	BL44493	HMC0 2415	MS	MS	NE	NE	NE
CG5190	FBgn00 34351	CG5190	BL44494	HMC0 2423		NE			
CG9090	FBgn00 34497	CG9090	BL44495	HMC0 2425		NE			
CG3412	FBgn00	trpm		HMC0			1		
3 CG7881	83959 FBgn00	CG7881	BL44503	2889 HMC0		NE	1		
CG1860	33048 FBgn00	CG18609	BL44505	2891 HMC0		NE			
9 CG1249	34382 FBgn00	CG12490	BL44510	2900 HMC0		NE	-		
0 CG1781	34782 FBgn00	rdgBbeta	BL44511	2901 HMC0		NE			
8	27872	_	BL44523	2916		NE	1		
CG4871	FBgn00 35050	ST6Gal	BL44528	HMC0 2922		NE			
CG3049 5	FBgn00 50495	CG30495	BL44531	HMC0 2925		NE			<u> </u>
CG2070	FBgn00 33203	CG2070	BL44532	HMC0 2926		NE			
CG8520	FBgn00 33734	CG8520	BL44533	HMC0 2927		NE			
CG1682 7	FBgn00 34005	alphaPS4	BL44534	HMC0 2928		NE	1		
CG3388	FBgn00	gsb		нмс0			1		
CG3649	01148 FBgn00	CG3649	BL44548	2944 HMC0		NE	 		
CG1810	34785 FBgn00	CG18107	BL44549	2946 HMS0		NE	1		
7 CG1118	34330 FBgn00	Upf3	BL44562	2858 HMS0		NE	-		
4	34923	CG8746	BL44565	2861		NE	NE	E	
CG8746	FBgn00 33330		BL44567	HMS0 2863		NE			
CG7861	FBgn00 33055	tbce	BL44569	HMS0 2865		NE			
CG3308 7	FBgn00 53087	LRP1	BL44579	HMS0 2875	<u> </u>	NE			
CG5409	FBgn00 11743	Arp53D	BL44580	HMS0 2876		NE			
CG3380	FBgn00 34716	Oatp58Dc	BL44583	HMS0 2880		NE			
CG5036	FBgn00	CG5036		HMC0			1		
CG5709	28743 FBgn00	ari-2	BL44632	2405 HMC0		NE	1		
CG1821	25186 FBgn00	RpL31	BL44646	2353 HMC0		NE			
CG1290	25286 FBgn00	CG12909	BL44647	2354 HMC0		NE	1		
9 CG2736	33507 FBgn00	CG2736	BL44654	2419 HMC0		NE	1		
CU2/30	35090	CG2/30	BL44655	2427	S	S	MS	NE	NE

CC2010	FD an OO	CC443E3	ı	LINACO	I	1	1			1	1
CG3019 4	FBgn00 50194	CG44252	BL44658	HMC0 2440	Α	ME	ME	MS	NE	ME	
CG9023	FBgn00	Drip		HMC0				1			
	15872		BL44661	2945		NE					
CG8711	FBgn00 33260	Cul-4	BL50614	HMC0 2981		NE					
CG3046	FBgn00	CG30463	BESOUT	HMC0		1112					
3	50463		BL50617	2984		NE					
CG8380	FBgn00	DAT	DI 50640	HMC0		NE					
CG1205	34136 FBgn00	Act42A	BL50619	2986 HMC0		NE		1			
1	00043	71004271	BL50625	2992		NE					
CG1013	FBgn00	Sec61beta		HMC0							
0 CG6953	10638	fat-spondin	BL50626	2993 HMC0	Α	E-L	E			E	
CG0933	FBgn00 26721	rat-spondin	BL50629	2996		NE					
CG3049	FBgn00	CG30491		HMC0							
1	50491		BL50630	2997		NE		1			
CG5436	FBgn00 01230	Hsp68	BL50637	HMC0 3036		NE					
CG9825	FBgn00	CG9825		HMC0							
	34783		BL50639	3039		NE					
CG9876	FBgn00 34821	CG9876	BL50655	HMC0 3056		NE					
CG1510	FBgn00	Jheh1	BE30033	HMC0		INL					
1	10053		BL50676	3077		NE					
CG7230	FBgn00	rib		HMC0							
CG9858	03254 FBgn00	clt	BL50682	3083 HMC0		NE					
CG3636	00326	Cit	BL50683	3084		NE					
CG7777	FBgn00	CG7777		HMC0							
664663	33635	D-::42	BL50695	3097		NE					
CG4663	FBgn00 33812	Pex13	BL50697	HMC0 3099		NE					
CG1014	FBgn00	Ance-5		HMC0							
2	35076		BL50703	3105		NE					
CG2835	FBgn00 01123	G-salpha60A	BL50704	HMC0 3106		NE					
CG1765	FBgn00	EcR	BL30704	HMC0		1112					
	00546		BL50712	3114	Α	E-L	E			E	
CG5770	FBgn00 34291	CG5770	BL50719	HMS0 2953		NE					
CG3183	FBgn00	geminin	BL30719	HMS0		INE					
	33081	0-	BL50720	2954		NE					
CG1322	FBgn00	VhI		HMS0							
1 CG3026	41174 FBgn00	CG30265	BL50727	2963 HMS0		NE					
5	50265	CG30203	BL50731	2967		NE					
CG8950	FBgn00	CG8950		HMC0							
CG1782	34186 ERgp00	CG17821	BL50897	2421 HMC0		NE		1			
1	FBgn00 34383	CG1/021	BL50898	2424		NE					
CG1801	FBgn00	CG18011		HMJ0							
1	33491	sto 2.45	BL50900	3118		NE	1	1		1	<u> </u>
CG9001	FBgn00 34175	ste24b	BL50913	HMJ2 1002		NE					
CG1006	FBgn00	CG10062		HMJ2		1		1			
2	34439		BL50970	1076		NE		1			
CG1256 7	FBgn00 39958	CG12567	BL50973	HMJ2 1079		NE					
CG1663	FBgn00	CG1663	5250575	HMJ2		† · · ·		<u> </u>			
	33449		BL50974	1080		NE					
CG8457	FBgn00 33697	Cyp6t3	BL50976	HMJ2 1082		NE					
CG1356	FBgn00	CG13561	DE303/0	HMJ2		INE	+	1	-		
1	34906		BL50995	1108		NE					
CG8735	FBgn00	CG8735	DIFCCCC	HMJ2		NE		1			
CG2121	33309 FBgn00	CG2121	BL50998	1111 HMJ2		NE		+			
	33289		BL51014	1133		NE					

CG1850	FBgn00 33154	CG1850	BL51046	HMJ2 1179		NE					
CG3008	FBgn00	Rif1		HMJ2							
5 CG1357	50085 FBgn00	CG13579	BL51051	1185 HMJ2		NE					
9	35010		BL51053	1188		NE					
CG2956	FBgn00 03900	twi	BL51164	HMJ0 3122		NE					
CG3010 6	FBgn00 50106	CCHa1r	BL51168	HMJ2 1029		NE					
CR4245	FBgn00	Uhg5		HMJ2							
2 CG6646	83123 FBgn00	DJ-1alpha	BL51176	1153 HMJ2		NE					
	33885		BL51177	1180		NE					
CG8704	FBgn00 10109	dpn	BL51440	HMC0 3154		NE					
CG3668	FBgn00 04896	fd59A	BL51441	HMC0 3155		NE					
CG3318	FBgn00	Hr46		НМС0							
3 CG1047	00448 FBgn00	CG10474	BL51442	3156 HMC0		NE					
4	34427	T475	BL51444	3158		NE					
CG9033	FBgn00 33629	Tsp47F	BL51458	HMC0 3194		NE					
CG1011 7	FBgn00 20245	ttv	BL51480	HMC0 3225		NE					
CG8766	FBgn00	Taz		НМС0							
CG3027	26619 FBgn00	CG30272	BL51484	3231 HMC0		NE					
2 CG1225	50272 FBgn00	AQP	BL51493	3245 HMC0		NE					
1	33807	-	BL51504	3266		NE					
CG1129 5	FBgn00 13548	l(2)dtl	BL51510	HMC0 3280		NE					
CG4817	FBgn00	Ssrp		HMS0							
CG2064	10278 FBgn00	CG2064	BL51519	3169 HMC0		NE					
CG2827	33205 FBgn00	Tal	BL51693	3137 HMC0		NE					
	23477		BL51709	3227		NE					
CG3006 0	FBgn00 50060	CG30060	BL51712	HMC0 3235		NE					
CG1049 7	FBgn00 10415	Sdc	BL51723	HMC0 3265		NE	NE	NE	E		
CG9826	FBgn00	CG9826		НМС0			INL	INL	-		
CG8403	34784 FBgn00	SP2353	BL51728	3274 HMC0		NE					
	34070		BL51732	3287		NE	1				
CG3499	FBgn00 34792	CG3499	BL51752	HMC0 3303	MS	MS	<u> </u>	NE	NE	<u></u>	NE
CG1109 9	FBgn00 34485	CG11099	BL51766	HMC0 3321		NE					
CG9450	FBgn00	tud		HMC0							
CG3298	03891 FBgn00	Jhl-1	BL51771	3326 HMC0		NE					
CG3043	28426 FBgn00	CG30438	BL51781	3336 HMC0		NE					
8	50438		BL51790	3346		NE					
CG8251	FBgn00 03074	Pgi/gpi	BL51804	HMC0 3362		NE					
CG9364	FBgn00	Treh		НМС0							
CG4533	03748 FBgn00	l(2)efl	BL51810	3381 HMC0		NE	1				
CG1114	11296 FBgn00	Aldh-III	BL51816	3387 HMC0		NE					-
0	10548		BL51820	3391		NE					
CG3005 4	FBgn00 50054	CG30054	BL51823	HMC0 3395		NE					
CG1844	FBgn00	alphaTry		HMC0							
4	03863		BL51824	3396		NE	1	1	<u> </u>	1	I

			1		•	,					1
CG1118 2	FBgn00 25334	PHDP	BL51832	HMC0 3404		NE					
CG1586	FBgn00	pain		НМС0							
0 CG3204	60296 FBgn00	Rap2l	BL51835	3407 HMC0		NE					
	25806	·	BL51840	3412		NE					
CG9183	FBgn00 03114	plu	BL51844	HMC0 3417		NE					
CG1194 9	FBgn00 10434	cora	BL51845	HMC0 3418		NE					
CG8432	FBgn00	Rep		HMC0							
CG8235	26378 FBgn00	CG8235	BL51851	3425 HMC0		NE					
CG2292	33351 FBgn00	CG2292	BL51874	3448 HMC0		NE					
	33479		BL51875	3449		NE					
CG1289 5	FBgn00 33523	CG12895	BL51876	HMC0 3450		NE					
CG8594	FBgn00 33755	CIC-b	BL51877	HMC0 3451		NE					
CG1827	FBgn00	CG18278		НМС0							
8 CG8067	33836 FBgn00	CG8067	BL51878	3452 HMC0		NE					
CG9000	33891 FBgn00	ste24a	BL51879	3453 HMC0		NE					
	34176		BL51880	3454		NE					
CG6550	FBgn00 34214	CG6550	BL51881	HMC0 3455		NE					
CG6401	FBgn00 34270	CG6401	BL51882	HMC0 3456		NE					
CG6385	FBgn00	CG6385		HMC0							
CG1511	34276 FBgn00	CG15111	BL51883	3457 HMC0		NE					
1 CG7735	34419 FBgn00	CG7735	BL51885	3459 HMC0		NE					
	34446		BL51886	3460		NE					
CG1123 7	FBgn00 34452	Oseg6	BL51887	HMC0 3461		NE					
CG9313	FBgn00 34566	CG9313	BL51888	HMC0 3462		NE					
CG1565	FBgn00	CG15651		HMC0							
1 CG1031	34567 FBgn00	eIF2B-delta	BL51889	3463 HMC0		NE					
5 CG5411	34858 FBgn00	Pde8	BL51891	3465 HMC0	Α	E	ME	ME	E-L	E	
	34886		BL51892	3466		NE					
CG1117 3	FBgn00 34913	usnp	BL51893	HMC0 3467		NE					
CG5569	FBgn00	CG5569		НМС0							
CG1691	34919 FBgn00	CG16912	BL51894	3468 HMC0		NE					
2 CG3290	35064 FBgn00	seq	BL51895	3469 HMC0		NE					
4	28991	·	BL51923	3316	Α	ME	ME			ME	
CG3613	FBgn00 22986	qkr58E-1	BL51934	HMC0 3215		NE					
CG3504	FBgn00 01263	inaD	BL52313	HMC0 3170	А	E	E			E	
CG3009	FBgn00	CG30090		НМС0							
0 CG5009	50090 FBgn00	CG5009	BL52878	3616 HMC0		NE					
CG3270	27572 FBgn00	CG3270	BL52882	3620 HMC0		NE					1
	33093		BL52887	3625		NE					
CG1474 9	FBgn00 33316	CG14749	BL52888	HMC0 3626		NE					<u> </u>
CG1212 9	FBgn00 33475	CG12129	BL52889	HMC0 3627		NE					
CG1332	FBgn00	Sans		HMC0							
0	33785	<u> </u>	BL52890	3628	<u> </u>	NE		1	1		<u> </u>

CG1119 2	FBgn00 34507	CG11192	BL52893	HMC0 3631		NE				
CG4386	FBgn00	CG4386		НМС0						
CG3346	34661 FBgn00	CG33460	BL52898	3637 HMC0		NE				
0	53460	6611665	BL52900	3639		NE				
CG1166 5	FBgn00 33028	CG11665	BL52902	HMC0 3642		NE				
CG3319 8	FBgn00 53198	pen-2	BL52908	HMC0 3648		NE				
CG3035 9	FBgn00 50359	Mal-A5	BL52910	HMC0 3650		NE				
CG3267	FBgn00	CG3267		HMC0						
CG8311	42083 FBgn00	CG8311	BL52912	3652 HMC0		NE				
CG6251	34141 FBgn00	Nup62	BL52926	3667 HMC0		NE				
	34118		BL52927	3668		NE				
CG1021 5	FBgn00 28434	Ercc1	BL52929	HMC0 3670		NE				
CG2072	FBgn00 26326	Mad1	BL52930	HMC0 3671		NE				
CG3045	FBgn00	CG30457		HMJ2						
7 CG2921	50457 FBgn00	CG2921	BL52964	1647 HMJ2		NE				
CG1342	34689 FBgn00	CG13427	BL52965	1649 HMJ2		NE				
7	34514		BL52967	1652		NE				
CG9235	FBgn00 34560	CG9235	BL52971	HMJ2 1656		NE				
CG1342 3	FBgn00 34513	CG13423	BL52972	HMJ2 1657		NE				
CG1343	FBgn00	Nnf1a		HMJ2						
4 CG1322	34523 FBgn00	CG13220	BL52973	1658 HMJ2		NE				
0 CG9993	33608 FBgn00	CG9993	BL52984	1671 HMJ2		NE				
	34553		BL52985	1675		NE				
CG8824	FBgn00 45063	fdl	BL52987	HMJ2 1679		NE				
CG3012 8	FBgn00 46879	Obp56c	BL53001	HMJ2 1717		NE				
CG1120	FBgn00	ppk6		HMJ2						
9 CR3288	34489 FBgn00	Uhg1	BL53010	1728 HMJ2		NE				
6 CG8694	45800 FBgn00	Mal-A2	BL53014	1736 HMJ2		NE				
	02569		BL53017	1740		NE				
CG6967	FBgn00 34187	CG6967	BL53030	HMJ2 1756		NE				
CG1795 2	FBgn00 34657	LBR	BL53269	HMC0 2426		NE				
CG4554	FBgn00 34734	CG4554		HMC0						
CG8800	FBgn00	CG8800	BL53270	3176 HMC0		NE				
CG8566	33408 FBgn00	unc-104	BL53295	3511 HMC0		NE				
CG3661	34155 FBgn00	RpL23	BL53296	3512 HMC0		NE				
	10078	,	BL53300	3527	А	E-L	E		Е	
CG1323 2	FBgn00 33578	BBS4	BL53305	HMC0 3532		NE				
CG4354	FBgn00 05638	slbo	BL53309	HMC0 3538		NE				
CG9856	FBgn00	PTP-ER		HMC0						
CG1143	16641 FBgn00	olf186-F	BL53311	3540 HMC0		NE				1
0	41585		BL53333	3562		NE				
CG3002 2	FBgn00 50022	CG30022	BL53334	HMC0 3563		NE				
								•		

CG3049 3	FBgn00 50493	CG30493	BL53336	HMC0 3565		NE				
CG5912	FBgn00	arr		НМС0						
CG1154	00119 FBgn00	kermit	BL53342	3571 HMC0		NE				
6	10504	Kermit	BL53349	3578		NE				
CG4084	FBgn00 11297	I(2)not	BL53350	HMC0 3579		NE				
CG1238 5	FBgn00 11555	thetaTry	BL53362	HMC0 3591		NE				
CG1352	FBgn00	CG13527	BL33302	HMC0		INE				
7 CG1476	34776	CG14760	BL53364	3593		NE				
0	FBgn00 33277		BL53366	HMC0 3595		NE				
CG1773	FBgn00 33439	CG1773	BL53371	HMC0 3600		NE				
CG1868 1	FBgn00 10425	epsilonTry	BL53374	HMC0 3603		NE				
CG1873 5	FBgn00 42098	CG18735	BL53375	HMC0 3604		NE				
CG9640	FBgn00	CG9640		HMJ2						
CG3028	34182 FBgn00	CG30280	BL53681	1594 HMJ2		NE				
0	50280		BL53693	1678		NE				
CG1592 0	FBgn00 34157	resilin	BL53702	HMJ2 1733		NE				
CG1548	FBgn00 29093	cathD	BL53882	HMJ2 1197		NE				
CG1276	FBgn00	Dpt	BE33002	HMJ2						
3 CG7137	04240 FBgn00	CG7137	BL53923	1267 HMJ2		NE				
	34422		BL53924	1269		NE				
CG1586 2	FBgn00 22382	Pka	BL53930	HMJ2 1276	А	ME	E		E	
CG1358 5	FBgn00 35020	CG13585	BL53933	HMJ2 1281		NE				
CG5721	FBgn00	CG5721		HMJ2						
CG1853	34315 FBgn00	CG18537	BL53949	1313 HMJ2		NE				
7	34323		BL53960	1342		NE				
CG1024 0	FBgn00 13773	Cyp6a22	BL53963	HMJ2 1345		NE				
CG1106 1	FBgn00 34697	GM130	BL53966	HMJ2 1349		NE				
CG1358	FBgn00	CG13589		HMJ2						
9 CG6262	35011 FBgn00	CG6262	BL53978	1367 HMJ2		NE				
	34121		BL53987	1391		NE				
CG1246 4	FBgn00 33861	CG12464	BL53988	HMJ2 1392		NE				
CG3570	FBgn00 35035	CG3570	BL54010	HMJ2 1433		NE				
CG3074	FBgn00	Swim		HMJ2						
CG4329	34709 FBgn00	CG4329	BL54015	1440 HMJ2		NE		-		
CG1447	34745 FBgn00	CG14478	BL54035	1478 HMJ2	-	NE				
8	28953		BL54040	1483		NE				
CG1178 8	FBgn00 34495	CG11788	BL54043	HMJ2 1486		NE				
CG1092 7	FBgn00 34360	CG10927	BL54050	HMS0 3521		NE				
CG6477	FBgn00 34249	RhoGAP54D	BL54051	HMS0 3522		NE				
CG3403	FBgn00	CG34033		HMS0						
3 CG7863	54033 FBgn00	dream	BL54055	3716 HMJ2		NE				
	33051		BL54059	1268		NE				
CG1475 7	FBgn00 33274	CG14757	BL54465	HMC0 3733		NE				

664000	ED 00	C 1 5	ı	118.410	ı	1	1	1			ı
CG1836 9	FBgn00 33860	S-Lap5	BL54796	HMJ2 1193		NE					
CG9344	FBgn00 34564	CG9344	BL54798	HMJ2 1492		NE					
CG3033	FBgn00	CG30338	BL54/98	HMJ2		INE					
8 CG7759	50338 FBgn00	CG7759	BL54809	1503 HMJ2		NE		-		-	
	33633		BL54811	1530		NE					
CG3017	FBgn00 20764	Alas	BL54815	HMJ2 1534		NE					
CG1054	FBgn00	CG10543		HMJ2							
3 CG3004	34570 FBgn00	Cpr49Ab	BL54816	1535 HMJ2		NE			 		
2	50042	,	BL54825	1544		NE					
CG1475 0	FBgn00 22027	Vps25	BL54831	HMJ2 1550		NE					
CG3162	FBgn00 34834	LS2	BL54832	HMJ2 1551		NE					
CG4688	FBgn00	GstE14	BL54832	HMJ2		INE					
CG9460	33817 FBgn00	Spn42De	BL54836	1555 HMJ2		NE					
	33115	·	BL54840	1559		NE					
CG3018 7	FBgn00 50187	CG30187	BL54841	HMJ2 1560		NE					
CG3313	FBgn00	Ranbp11		HMC0							
9 CG1238	53139 FBgn00	kappaTry	BL55142	3738 HMC0		NE					
8	43471		BL55148	3772		NE					
CG2063	FBgn00 33400	CG2063/SAP30B P	BL55173	HMC0 3853	E	E	NE	E	E		NE
CG3041 4	FBgn00 50414	CG30414	BL55176	HMC0 3857		NE					
CG3850	FBgn00	sug		HMC0							
CG4007	33782 FBgn00	Nrk	BL55182	3866 HMC0		NE					
	20391		BL55184	3875		NE					
CG8690	FBgn00 33297	Mal-A8	BL55193	HMC0 3889		NE					
CG7637	FBgn00 33548	CG7637	BL55194	HMC0 3890		NE					
CG4827	FBgn00	veil		HMC0							
CG2852	34225 FBgn00	CG2852	BL55195	3891 HMC0		NE					
	34753		BL55196	3892		NE					
CG6209	FBgn00 33862	CG6209	BL55203	HMC0 3916		NE					
CG2980	FBgn00	thoc5		НМС0							
CG3012	34939 FBgn00	CG30122	BL55206	3921 HMC0		NE					(ME
2	50122		B155200	3927	E	E	NE	NE	E		POSSIBL
CG6536	FBgn00	mthl4	BL55209	НМС0	E		NE	NE			E)
CG3829	34219 FBgn00	CG3829	BL55244	2422 HMC0		NE					
	35091		BL55245	2428		NE					
CG1275 9	FBgn00 10220	Dbp45A	BL55253	HMC0 3940		NE					
CG9401	FBgn00	mago	DIEESEO	HMC0 3947		NE					
CG1291	02736 FBgn00	egr	BL55260	3947 HMC0		NE					
9 CG5821	33483 FBgn00	gkr58E-2	BL55276	3963 HMC0		NE		-		-	
	22985		BL55279	3966		NE					
CG1316 8	FBgn00 33705	CG13168	BL55288	HMC0 3975		NE					
CG1845	FBgn00	Optix		HMC0	-						NE
5 CG8643	25360 FBgn00	rgr	BL55306	3993 HMC0	S	S		MS	NE		NE
	33310		BL55307	3994		NE]		

	1	1	1				1	1	1		
CG1005 2	FBgn00 20617	Rx	BL55308	HMC0 3995		NE					
CG8256	FBgn00	Gpo-1		НМС0							
CG3140	22160 FBgn00	Adk2	BL55319	4006 HMC0		NE					
CG8230	22708 FBgn00	CG8230	BL55320	4007 HMC0		NE					
	27607		BL55329	4016		NE					
CG7461	FBgn00 34432	CG7461	BL55347	HMC0 4034		NE					
CG8213	FBgn00 33359	CG8213	BL55350	HMC0 4037		NE					
CG8738	FBgn00	CG8738		НМС0							
CG4266	33321 FBgn00	CG4266	BL55351	4038 HMC0		NE					
CG5002	34598 FBgn00	CG5002	BL55354	4041 HMC0		NE					
CG8781	34275	tsu	BL55359	4046 HMC0		NE					
	FBgn00 33378		BL55367	4055	MS	MS		MS	Е		NE
CG1806 7	FBgn00 34512	CG18067	BL55383	HMC0 4071		NE					
CG2668	FBgn00 04181	Peb	BL55390	HMC0 4078		NE					
CG3832	FBgn00	Phm		НМС0							
CG1238	19948 FBgn00	zetaTry	BL55392	4080 HMC0		NE					
7 CG4927	11556 FBgn00	CG4927	BL55407	4095 HMC0	Α	ME	ME			E	
	34139		BL55409	4097		NE					
CG8172	FBgn00 33362	CG8172	BL55608	HMC0 3746		NE					
CG8169	FBgn00 11660	Pms2	BL55614	HMC0 3753		NE					
CG9294	FBgn00 34666	CG9294	BL55618	HMC0 3761		NE					
CG4527	FBgn00	slik		НМС0							
CG1837	35001 FBgn00	ASPP	BL55626	3770 HMC0		NE					
5 CG8079	34606 FBgn00	CG8079	BL55639	3787 HMC0	E	E	NE	MS	E		NE
	34002		BL55654	3804		NE					
CG6315	FBgn00 00662	fl(2)d	BL55674	HMC0 3833		NE					
CG3594	FBgn00 35063	Eap	BL55678	HMC0 3845		NE					
CG3010	FBgn00	NT5E-2		HMC0							
4 CG4016	50104 FBgn00	Spt-I	BL55684	3869 HMC0		NE					
CG2411	86532 FBgn00	ptc	BL55685	3870 HMC0		NE					
CG3496	03892 FBgn00	vir	BL55686	3872 HMC0		NE					
	03977		BL55694	3908		NE					
CG1106 6	FBgn00 33033	scaf	BL55695	HMC0 3909		NE					
CG1234 3	FBgn00 33556	CG12343	BL55697	HMC0 3911		NE					
CG1011	FBgn00	Cpsf160		НМС0							
0 CG1842	24698 FBgn00	ytr	BL55698	3912 HMC0		NE					
6 CG1238	21895 FBgn00	etaTry	BL55704	3929 HMC0		NE					
6 CG6701	11554	·	BL55731	3744 HMC0		NE					
	FBgn00 33889	CG6701	BL55854	3849		NE					
CG8967	FBgn00 04839	otk	BL55869	HMC0 4139		NE					
CG3915	FBgn00	Drl-2		HMC0		NE					
	33791	l .	BL55893	4172		NE	1	1			<u> </u>

CG4945	FBgn00 34137	CG4945	BL55894	HMC0 4173		NE					
CG3216	FBgn00	CG3216		HMC0							
CG3346	34568 FBgn00	CG33467	BL55895	4174 HMC0		NE					
7 CG9874	53467	Tbp	BL55905	4189 HMC0		NE					
	FBgn00 03687	·	BL55911	4197		NE					
CG8205	FBgn00 23441	fus	BL55921	HMC0 4208		NE					
CG3584	FBgn00 22984	qkr58E-3	BL55922	HMC0 4209		NE					
CG1139	FBgn00	PebIII		HMC0							
0 CG7754	11695 FBgn00	iotaTry	BL55933	4221 HMC0		NE					
CG8642	15001	,	BL55934	4222		NE					
CG8642	FBgn00 33312	CG8642	BL55946	HMC0 4234	Α	E-L	E-L			E-L	
CG1014 3	FBgn00 33952	Adgf-E	BL55947	HMC0 4236		NE					
CG9849	FBgn00 34803	CG9849		HMC0		NE					
CG5756	FBgn00	CG5756	BL55948	4237 HMC0		INE					
CG3029	34301 FBgn00	Cht12	BL55964	4259 HMC0		NE					
3	50293		BL55989	4285		NE					
CG3048 6	FBgn00 50486	CG30486	BL55990	HMC0 4286		NE					
CG9070	FBgn00 86519	Cpr47Eg	BL56004	HMC0 4300		NE					
CG1510	FBgn00	CG15100		HMC0							
0 CG4802	34401 FBgn00	CG4802	BL56007	4303 HMC0		NE					
CG3666	34215 FBgn00	Tsf3	BL56010	4306 HMC0		NE					
	34094		BL56015	4311		NE					
CG1656	FBgn00 40093	lectin-46Ca	BL56016	HMC0 4312		NE					
CG1523 1	FBgn00 40653	IM4	BL56018	HMC0 4314		NE					
CG3046	FBgn00	CG30467		HMC0							
7 CG3004	50467 FBgn00	jeb	BL56021	4317 HMC0		NE					
0 CG3394	86677 FBgn00	CG3394	BL56022	4318 HMC0		NE					
	34999		BL56032	4340		NE					
CG5589	FBgn00 36754	CG5589	BL32334	HMS0 0325		NE					
CG6914	FBgn00 37172	CG6914	BL32336	HMS0 0327		NE					
CG7692	FBgn00	CG7692		HMS0							
CG8765	36714 FBgn00	CG8765	BL32338	0329 HMS0		NE	1				
CG8479	36900 FBgn02	opa1-like	BL32343	0334 HMS0		NE	1				
	61276	·	BL32358	0349		NE					
CG1007 7	FBgn00 35720	CG10077	BL32388	HMS0 0380		NE					
CG1010	FBgn00	velo		HMS0							
7 CG5144	35713 FBgn00	CG5144	BL32389	0383 HMS0		NE					
CG3217	35957 FBgn00	noe	BL32393	0387 HMS0		NE					
2	26197		BL32407	0402		NE	1				
CG8201	FBgn02 60934	par-1	BL32410	HMS0 0405	А	E	E			E	
CG1022 8	FBgn02 64962	Inr-a/Pcf11	BL32411	HMS0 0406	А	E-L	E-L			E-L	
CG9750	FBgn00	rept		HMS0	,,		1				
	40075	<u> </u>	BL32415	0410		NE		1	1		

					1		1			1	
CG3214 9	FBgn00 36518	RhoGAP71E	BL32417	HMS0 0412		NE					
CG1411	FBgn00	SNCF		HMS0							
2 CG9181	36349 FBgn00	Ptp61F	BL32420	0415 HMS0		NE					
CG3101	03138	Τιροτί	BL32426	0421		NE					
CG1226 2	FBgn00 35811	CG12262	BL32436	HMS0 0434		NE					
CG6418	FBgn00	CG6418		HMS0							
CG3213	36104 FBgn00	CG32138	BL32441	0439 HMS0		NE					
8	52138		BL32447	0445		NE					
CG1110 0	FBgn00 37207	Mes2	BL32460	HMS0 0460		NE					
CG2103	FBgn00 35375	pgant6	BL32463	HMS0 0463		NE					
CG4879	FBgn00 27375	RecQ5	BL32466	HMS0 0466		NE					
CG8167	FBgn00	Ilp2		HMS0							
CG3206	36046 FBgn00	A2bp1	BL32475	0476 HMS0		NE	+				
2	52062	·	BL32476	0478		NE					
CG8567	FBgn00 13799	Deaf1	BL32512	HMS0 0516		NE					
CG1144	FBgn00	laza		HMS0							
0 CG3215	37163 FBgn00	Mbs	BL32515	0519 HMS0	<u> </u>	NE	+				
6 CG5994	05536 FBgn00	Nelf-E	BL32516	0521 HMS0	-	NE	1		-		
CG3994	17430	Nell-E	BL32835	0525		NE					
CG8241	FBgn00 86895	pea	BL32838	HMS0 0528	А	E	ME			ME	
CG6586	FBgn00 28980	tan	BL32855	HMS0 0640		NE					
CG1417	FBgn00	Ilp1		HMS0							
3 CG5519	44051 FBgn02	Prp19	BL32861	0648 HMS0		NE					
CG4978	61119 FBgn00	Mcm7	BL32865	0652 HMS0	Α	ME	ME	ME		ME	
	20633		BL32867	0654		NE					
CG2331	FBgn02 61014	TER94	BL32869	HMS0 0656		NE					
CG3689	FBgn00	CG3689		HMS0							
CG1179	35987 FBgn00	Sod	BL32883	0671 HMS0		NE	1				
3 CG9311	03462 FBgn00	mop	BL32909	0698 HMS0		NE	1				
CG3311	36448	шор	BL32916	0706		NE					
CG1388 7	FBgn00 35165	CG13887	BL32917	HMS0 0707		NE					
CG1159	FBgn00	CG11593		HMS0	1		1				
3 CG1817	35488 FBgn00	CG18178	BL32924	0715 HMS0	1	NE	1				
8	36035		BL32927	0719		NE	1				
CG7324	FBgn00 37074	CG7324	BL32929	HMS0 0722		NE					
CG8108	FBgn00 27567	CG8108	BL32930	HMS0 0723		NE					
CG6143	FBgn00 04401	Рер	BL32944	HMS0 0738		NE					
CG1796	FBgn00	Z600		HMS0	1		1				
2 CG1067	04052 FBgn00	CG10672	BL32953	0747 HMS0	-	NE	1				
2	35588		BL32958	0753		NE					
CG1016 3	FBgn00 35697	CG10163	BL32959	HMS0 0754		NE					
CG6964	FBgn00	Gug		HMS0 0756	^	ME	ME			E	
CG1275	10825 FBgn00	l(3)mbn	BL32961	HMS0	A	IVIE	ME			E	
5	02440		BL32962	0757		NE	1	1			<u> </u>

CG8091	FBgn00	NI-									
	26404	Nc	BL32963	HMS0 0758		NE					
CG3210	FBgn00	CG32109		HMS0							
9 CG6292	52109 FBgn00	СусТ	BL32970	0767 HMS0		NE					
	25455		BL32976	0776	Α	E	E			E	
CG1456 3	FBgn00 37139	CG14563	BL33045	HMS0 0643		NE					
CG1372 0	FBgn00 35555	CG13720	BL33342	HMS0 0208		NE					
CG1774	FBgn00	CG17746		HMS0							
6 CG3919	35425 FBgn00	CG3919	BL33347	0214 HMS0		NE					
CG1833	36423 FBgn00	CSN3	BL33355	0226 HMS0		NE					
2	27055		BL33369	0242		NE					
CG1026 9	FBgn00 22935	D19A	BL33371	HMS0 0244		NE					
CG4432	FBgn00 35976	PGRP-LC	BL33383	HMS0 0259		NE					
CG8865	FBgn00 26376	Rgl	BL33389	HMS0 0266		NE					
CG3395	FBgn00	RpS9		HMS0							
CG3221	10408 FBgn00	ELL	BL33394	0271 HMS0		NE					
7	14037		BL33399	0277	S	S		S	S		NE
CG8013	FBgn00 20887	Su(z)12	BL33402	HMS0 0280		NE					
CG1162 4	FBgn00 03943	Ubi-p63E	BL33405	HMS0 0284	А	E-L	E-L			E-L	
CG6539	FBgn00 11802	Gem3	BL33408	HMS0 0287	,,	NE					
CG7143	FBgn00	DNApol-eta		HMS0							
CG9594	37141 FBgn00	Chd3	BL33410	0290 HMS0		NE					
CG8057	23395 FBgn02	alc	BL33420	0302 HMS0		NE					
	60972		BL33429	0316		NE					
CG4225 7	FBgn02 59142	Snp	BL33434	HMS0 0321		NE					
CG1122 8	FBgn02 61456	hpo	BL33614	HMS0 0006		NE					
CG3244	FBgn00	Pc		HMS0							
3 CG4059	03042 FBgn00	ftz-f1	BL33622	0016 HMS0		NE					
CG7935	01078 FBgn00	msk	BL33625	0019 HMS0	Α	ME	ME			ME	
	26252		BL33626	0020		NE					
CG1016 0	FBgn00 01258	ImpL3	BL33640	HMS0 0039		NE					
CG6272	FBgn00 36126	CG6272	BL33652	HMS0 0057		NE					
CG3234	FBgn00	E(bx)		HMS0							
6 CG6502	00541 FBgn00	E(z)	BL33658	0065 HMS0		NE					
CG1063	00629 FBgn00	blanks	BL33659	0066 HMS0		NE			MS		
0	35608		BL33667	0078		NE					
CG1416 7	FBgn00 44050	Ilp3	BL33681	HMS0 0546		NE					
CG3327 3	FBgn00 44048	Ilp5	BL33683	HMS0 0548		NE					
CG9191	FBgn00 04378	Klp61F	BL33685	HMS0 0552	А	ME	ME			ME	
CG1166	FBgn00	Nc73EF		HMS0							
1 CG4609	10352 FBgn00	fax	BL33686	0554 HMS0		NE					
CG7421	14163 FBgn00	Nopp140	BL33687	0555 HMS0		NE					
557421	37137	.1000110	BL33694	0564	E-L	E-L	NE	E	E-L		NE

		1	1		1	1	1	1		1	
CG1013	FBgn00 36366	CG10133	BL33701	HMS0 0578		NE					
CG1390	FBgn00	CG13902		HMS0							
2 CG8887	35166 FBgn00	ash1	BL33702	0579 HMS0		NE	+	1			
	05386		BL33705	0582		NE					
CG5546	FBgn00 36761	MED19	BL33710	HMS0 0588	S	S		S	MS		NE
CG1502 2	FBgn00 35547	CG15022	BL33713	HMS0 0593		NE					
CG1390 0	FBgn00 35162	CG13900	BL33731	HMS0 0614		NE					
CG6603	FBgn00	Hsc70Cb		HMS0							
CG7999	26418 FBgn00	MED24	BL33742	1080 HMS0		NE					
CG8048	35851 FBgn02	Vha44	BL33755	1097 HMS0		NE					
CG1275	62511 FBgn00	Eaf6	BL33884	0821 HMS0		NE					
6	35624		BL33904	0846		NE					
CG6829	FBgn02 63864	Ark	BL33924	HMS0 0870		NE					
CG4108	FBgn00 36805	Chmp1	BL33928	HMS0 0877		NE					
CG1200	FBgn00	kst		HMS0							
8 CG1201	04167 FBgn00	PHGPx	BL33933	0882 HMS0		NE					
3 CG1499	35438 FBgn00	Ack	BL33939	0890 HMS0		NE					
2 CG1703	28484	GXIVsPLA2	BL33941	0892 HMS0		NE					
5	FBgn00 36545		BL33961	0918		NE					
CG4107	FBgn00 20388	Pcaf	BL33981	HMS0 0941		NE					
CG4118	FBgn00 36640	nxf2	BL33985	HMS0 0945		NE					
CG3316 2	FBgn00 11509	SrpRbeta	BL34011	HMS0 0977		NE					
CG1201	FBgn00	CG12012		HMS0							
2 CG6871	35444 FBgn00	Cat	BL34015	0982 HMS0		NE					
CG1496	00261 FBgn00	CG14966	BL34020	0990 HMS0		NE					
6 CG6497	35415	CG6497	BL34022	0992 HMS0		NE					
	FBgn00 36704		BL34026	0996		NE					
CG5057	FBgn00 36581	MED10	BL34031	HMS0 1001		NE					
CG7497	FBgn00 36742	CG7497	BL34035	HMS0 1008		NE					
CG1289	FBgn02	whd		HMS0							
1 CG1057	61862 FBgn00	Eip63E	BL34066	0040 HMS0		NE					
9 CG5830	05640 FBgn00	CG5830	BL34075	0569 HMS0		NE					
CG7809	36556 FBgn00	Grasp65	BL34079	1077 HMS0		NE					
	36919	·	BL34082	1093		NE					
CG6884	FBgn00 36811	MED11	BL34083	HMS0 1094		NE					
CG3214 6	FBgn00 41604	dlp	BL34089	HMS0 0875		NE					
CG4035	FBgn00 15218	eIF-4E	BL34096	HMS0 0969		NE					
CG9425	FBgn00	CG9425		HMS0							
CG1769	36451 FBgn00	fz	BL34099	1002 HMS0		NE	1				
7 CG6494	01085 FBgn00	h	BL34321	1308 HMS0		NE					
	01168		BL34326	1313		NE					

CG9148	FBgn00 25682	scf	BL34331	HMS0 1319		NE					
CG5660	FBgn00	CG5660		HMS0							
CG6512	35942 FBgn00	CG6512	BL34339	1327 HMS0	A	E	E			E	
	36702	CG0512	BL34343	1331		NE					
CG5165	FBgn00 03076	Pgm	BL34345	HMS0 1333		NE					
CG7762	FBgn00 28695	Rpn1	BL34348	HMS0 1337	А	E-L	E			E	
CG1751 4	FBgn00 39959	CG17514	BL34355	HMS0 1344		NE					
CG6877	FBgn00 36813	Aut1/Atg3	BL34359	HMS0 1348	E	Е	NE	s	ME		NE
CG1041 9	FBgn00 36850	Gem2	BL34366	HMS0 1355		NE					
CG4372	FBgn02	esn		HMS0							
2 CG5186	63934 FBgn02	slim	BL34371	1360 HMS0		NE					
CG4045	61477 FBgn00	Snap25	BL34376	1366 HMS0		NE					
2	11288		BL34377	1367		NE					
CG1153 4	FBgn00 46296	CG11534	BL34384	HMS0 1374		NE					
CG1057	FBgn00	CG10576		HMS0							
6 CG1074	35630 FBgn00	CG10741	BL34388	1382 HMS0		NE					
1 CG4877	36373 FBgn00	RAF2	BL34394	0981 HMS0		NE					
	36624	IVAI 2	BL34395	1012		NE					
CG5942	FBgn00 00212	brm	BL34520	HMS0 0050		NE					
CG8937	FBgn00 01216	Hsc70-1	BL34527	HMS0 0888		NE					
CG9451	FBgn00 36876	CG9451	BL34545	HMS0 1016	А	Е	E			E	
CG1048 3	FBgn00 35649	CG10483	BL34551	HMS0 1023		NE					
CG1085 0	FBgn00 41147	ida	BL34552	HMS0 1024		NE					
CG1208	FBgn00	CG12084		HMS0							
4 CG4098	43458 FBgn00	CG4098	BL34553	1025 HMS0		NE					
CG4157	36648 FBgn00	Rpn12	BL34559	1031 HMS0		NE					
	28693	,	BL34560	1032	Α	E	ME	MS	E-L	ME	
CG7619	FBgn00 15283	Pros54	BL34566	HMS0 1039		NE					
CG8268	FBgn00 35827	Srp9	BL34568	HMS0 1041		NE					
CG1203	FBgn00	MED14		HMS0					MC		NE
1 CG1028	35145 FBgn00	CG10289	BL34575	1049 HMS0	S	S		S	MS		NE
9 CG4769	35688 FBgn00	CG4769	BL34579	1053 HMS0		NE		+			
CG5594	35600 FBgn02	kcc	BL34583	1057 HMS0		NE	-	+			
CG8491	61794 FBgn00	kto/MED12	BL34584	1058 HMS0		NE					
	01324	·	BL34588	1062		NE		1			
CG1096 0	FBgn00 36316	CG10960	BL34598	HMS0 1072		NE					
CG8339	FBgn00 20251	sfl	BL34601	HMS0 0543		NE					
CG1100 9	FBgn00 36318	Wbp2	BL34603	HMS0 0563		NE					
CG7062	FBgn00 15793	Rab19	BL34607	HMS0 0592		NE					
CG9614	FBgn00	pip		HMS0			1	1			
	03089		BL34613	1288	L	NE					

				•	•	•					1
CG1162 1	FBgn00 15278	Pi3K68D	BL34621	HMS0 1296		NE					
CG1207	FBgn00	YT521-B	BL34021	HMS0		INL					
6	27616		BL34627	1302		NE					
CG5069	FBgn00 14143	croc	BL34647	HMS0 1122		NE					
CG1152	FBgn00	CG11526	BL34047	HMS0		INL					
6	35437		BL34657	1134		NE					
CG7162	FBgn00 37109	MED1	BL34662	HMS0 1139		NE					
CG3243	FBgn00	chb	BL34002	HMS0		INL					
5	21760		BL34669	1146		NE					
CG5893	FBgn00 00411	D	BL34672	HMS0 1150		NE					
CG1086	FBgn00	Atg12	DL34072	HMS0		INL					
1	36255		BL34675	1153		NE					
CG3207	FBgn00 52076	Alg10	BL34681	HMS0 1159		NE					
CG7504	FBgn00	CG7504	DL34001	HMS0		INL					
	35842		BL34683	1161		NE					
CG3014 9	FBgn02 50850	rig	BL34684	HMS0 1162		NE					
CG6896	FBgn00	MYPT-75D	5251001	HMS0							
	36801		BL34688	1166		NE					
CG7283	FBgn00 36213	RpL10Ab	BL34695	HMS0 1174	А	E-L	E			E	
CG8609	FBgn00	MED4	525 1055	HMS0	, ,						
	35754		BL34697	1176		NE					
CG4717	FBgn00 01320	kni	BL34705	HMS0 1184	А	E	ME			E	
CG7986	FBgn00	Atg18	5251765	HMS0	, ,						
664864	35850	1.	BL34714	1193		NE					
CG1864 7	FBgn00 45759	bin	BL34718	HMS0 1197		NE					
CG1241	FBgn00	Atg2		HMS0							
000000	44452	0.104	BL34719	1198		NE					
CG6662	FBgn00 35907	GstO1	BL34727	HMS0 1206		NE					
CG7405	FBgn00	СусН		HMS0							
000075	22936		BL34732	1212		NE					
CG6975	FBgn00 05198	gig	BL34737	HMS0 1217		NE					
CG1208	FBgn00	pUf68		HMS0	(ME						
5	28577		BL34785	0094	POSSIBL	NE	NE				
CG1151	FBgn00	armi	BL34785	HMS0	E)	INE	INE				
3	41164		BL34789	0098		NE					
CG1125 4	FBgn00 16034	mael	BL34793	HMS0 0102		NE					
CG4097	FBgn00	Pros26	DE34/93	HMS0		INE					<u> </u>
	02284		BL34801	0110	Α	E	E			E	
CG1501 0	FBgn00 41171	ago	BL34802	HMS0 0111		NE					
CG1219	FBgn00	egg	DEJ7002	HMS0		111					
6	86908		BL34803	0112		NE	1				
CG7185	FBgn00 35872	CPSF6	BL34804	HMS0 0113	E	E	NE	E	E		NE
CG6169	FBgn00	Dcp2	525 100 7	HMS0	-		1	† <u>- </u>	-		
00====	36534	0.11.40	BL34806	0115		NE	1				1
CG7597	FBgn00 37093	Cdk12	BL34838	HMS0 0155	ME	ME	NE	ME	ME		MS
CG7471	FBgn00	Rpd3		HMS0			1	1			
005-00	15805	7 11 0	BL34846	0164		NE	1				
CG5528	FBgn00 36978	Toll-9	BL34853	HMS0 0171	А	ME	ME			E	
CG1255	FBgn00	rl		HMS0			1				
9	03256	Tudor CN	BL34855	0173		NE					
CG7008	FBgn00 35121	Tudor-SN	BL34865	HMS0 0184		NE					
	JJ141	l	DE3-7003	0104	1	1112	1	1	1		

										,
CG1086 3	FBgn00 27552	CG10863	BL34878	HMS0 0198		NE				
CG5103	FBgn00 36784	CG5103	BL34882	HMS0 1227		NE				
CG2248	FBgn00	Rac1		HMS0						
CG6199	10333 FBgn00	Plod	BL34910	1258 HMS0		NE				
CG7961	36147 FBgn00	alphaCop	BL34911	1259 HMS0		NE				
CG1210	25725 FBgn00	Pdk1	BL34923	1272 HMS0	A	E-L	E-L		E-L	
CG6311	20386 FBgn00	Edc3	BL34936	1250 HMS0		NE				
CG4086	36735 FBgn00	Su(P)	BL34953	0392 HMS0		NE				
	04465		BL34955	0430		NE				
CG1171	FBgn00 04552	Akh	BL34960	HMS0 0477		NE				
CG8993	FBgn00 35334	CG8993	BL34973	HMS0 1042		NE				
CG7112	FBgn00 35879	CG7112	BL34976	HMS0 1132		NE				
CG1010 3	FBgn00 35715	CG10103	BL34979	HMS0 1388		NE				
CG7659	FBgn00 15550	tap	BL34985	HMS0 1395		NE				
CG8487	FBgn02	garz		HMS0			F.		F.1	
CG1201	64560 FBgn00	Cdc37	BL34987	1397 HMS0	A	E-L	E-L		E-L	
9 CG1126	11573 FBgn00	ste14	BL34991	1401 HMS0		NE				
8 CG3202	36336 FBgn00	Cpr66D	BL34996	1406 HMS0		NE				
9 CG3422	52029 FBgn02	CG34229	BL35011	1421 HMS0		NE	-			
9 CG1018	59832	Mdr65	BL35019	1432 HMS0		NE				
1	FBgn00 04513		BL35035	1449		NE				
CG1234 2	FBgn00 86898	dgo	BL35040	HMS0 1454		NE				
CG1956	FBgn00 04636	R	BL35047	HMS0 1461		NE				
CG1769 8	FBgn00 40056	CG17698	BL35733	HMS0 1475		NE				
CG5582	FBgn00 36756	cln3	BL35734	HMS0 1476		NE				
CG7003	FBgn00	Msh6		HMS0						
CG3348	36486 FBgn00	asparagine-	BL35737	1479 HMS0		NE				
6 CG6776	41607 FBgn00	synthetase GstO3	BL35739	1481 HMS0		NE	+			
CG3371	35904 FBgn00	ebd1	BL35762	1510 HMS0		NE				
CG4012	35153 FBgn02	CG40127	BL35765	1513 HMS0		NE	1			
7 CG8127	62116 FBgn00	Eip75B	BL35779	1529 HMS0		NE				
	00568	·	BL35780	1530	Α	E-L	E-L		E-L	
CG4259 5	FBgn02 62124	uex	BL36116	HMS0 1492		NE				
CG1347 4	FBgn00 36439	CG13474	BL36124	HMS0 1539		NE				<u> </u>
CG5119	FBgn02 61619	pAbp	BL36127	HMS0 1542		NE				
CG6718	FBgn00 36053	iPLA2-VIA	BL36129	HMS0 1544		NE				
CG6114	FBgn00 36544	sff	BL36656	HMS0		NE				
CG3313	FBgn02	Patronin		1280 HMS0						
0	63197	<u> </u>	BL36659	1547		NE				<u> </u>

								,			
CG1145	FBgn00 37025	Spc105R	BL36660	HMS0 1548		NE					
CG4761	FBgn00	knrl	BESCOOL	HMS0		INL					
66.4000	01323	T 665	BL36664	1552		NE					
CG4999	FBgn00 35936	Tsp66E	BL36696	HMS0 1585		NE					
CG1230 6	FBgn00 03124	polo	BL36702	HMS0 1591		NE					
CG1350	FBgn02	Vrp1	BL30702	HMS0		INE					
3	43516		BL36704	1593		NE					
CG1921	FBgn00 14388	sty	BL36709	HMS0 1599	Α	E	Е	E	NE	E	
CG1718	FBgn00	MED30		HMS0							
3 CG1704	35149 FBgn00	klar	BL36711	1601 HMS0		NE					
6	01316		BL36721	1612		NE					
CG2075	FBgn00 04372	aly	BL36723	HMS0 1614		NE					
CG1130	FBgn00	sa		HMS0							
8 CG2086	02842 FBgn00	drpr	BL36730	1621 HMS0		NE					
CG2000	27594	αιρι	BL36732	1623		NE					
CG9006	FBgn00 86712	Egm	BL36739	HMS0 1630		NE					
CG1203	FBgn00	CG12034	DE30/33	HMS0		INC					
4 CG3205	35421	CC220F2	BL36759	3020		NE					
2	FBgn00 44328	CG32052	BL36763	HMS0 3024		NE					
CG5962	FBgn00	Arr2	D126772	JF022		NE					
CG5751	00121 FBgn00	TrpA1	BL36772	90 JF024		NE					
667470	35934		BL36780	61		NE					
CG7478	FBgn00 00045	Act79B	BL36857	HMS0 0303		NE					
CG9160	FBgn00	mtacp1		HMS0							
CG7314	11361 FBgn00	Bmcp	BL37492	1634 HMS0		NE					
	36199		BL37498	1640		NE					
CG4267 8	FBgn02 61564	CG42678	BL37500	HMS0 1642		NE					
CG7540	FBgn00	M6		HMS0							
CG1052	37092 FBgn00	park	BL37503	1645 HMS0	MS	MS		MS	E		NE
3	41100		BL37509	1651		NE					
CG5665	FBgn00 36977	CG5665	BL37517	HMS0 1659		NE					
CG9186	FBgn00	CG9186		HMS0							
CG1030	35206 EBan00	Ovel	BL37518	1660 HMS0		NE					
8	FBgn00 10317	CycJ	BL37521	1663		NE					
CG3243	FBgn00 45474	Gr77a	BL38236	HMS0 1680		NE					
CG4257	45474 FBgn02	MCPH1	DL30230	HMS0		INE					
2	60959	ankc	BL38244	1688		NE					
CG4278 3	FBgn02 61854	aPKC	BL38245	HMS0 1689		NE					
CG5654	FBgn00	yps	DI 20250	HMS0		NE					
CG1062	22959 FBgn00	sinu	BL38250	1694 HMS0		NE					
4	10894		BL38258	1702		NE			1		
CG1501 4	FBgn00 35532	CG15014	BL38273	HMS0 1722		NE					
CG1008	FBgn00	CG10083		HMS0							
3 CG4344	36372 FBgn02	hts	BL38282	1735 HMS0		NE					1
3	63391		BL38283	1736		NE					
CG4893	FBgn00 36616	CG4893	BL38287	HMS0 1740		NE					
CG9712	FBgn00	TSG101		HMS0							
	36666		BL38306	1768		NE					<u> </u>

					ı	1	1	1	1	1	1
CG7565	FBgn00 35833	CG7565	BL38307	HMS0 1770		NE					
CG5026	FBgn00 35945	CG5026	BL38309	HMS0 1773		NE					
CG3211	FBgn00	CG32113	BL36309	HMS0		INE					
3 CG8194	52113 FBgn00	RNaseX25	BL38320	1784 HMS0		NE					
	10406	MNaseA23	BL38322	1786		NE					
CG3705	FBgn00 23129	aay	BL38338	HMS0 1805		NE					
CG1073 8	FBgn00 36368	CG10738	BL38346	HMS0 1814		NE					
CG7804	FBgn00	CG7804	BL38340	HMS0	(MS	INL					
	36496		BL38355	1823	POSSIBL E)	NE			E		
CG1200	FBgn00	CG12006		HMS0	,	NE					
6 CG1097	35464 FBgn00	Ptp69D	BL38359	1827 HMS0		NE					
5 CG1880	14007 FBgn00	Psn	BL38370	1839 HMS0		NE					
3	19947		BL38374	1843		NE					
CG4618	FBgn00 35589	CHMP2B	BL38375	HMS0 1844		NE					
CG1367 6	FBgn00 35844	CG13676	BL38376	HMS0 1845		NE					
CG1097	FBgn00	Hip1		HMS0							
1 CG1329	36309 FBgn00	CG13293	BL38377	1846 HMS0		NE					
3 CG7446	35677	Cad	BL38380	1849		NE					
	FBgn00 01134	Grd	BL38384	HMS0 1853		NE					
CG8029	FBgn02 62515	VhaAC45	BL38522	HMS0 1717		NE					
CG1127	FBgn00	Syx13		HMS0							
8 CG1815	36341 FBgn00	Mis12	BL38525	1723 HMS0		NE					
6 CG6224	35725 FBgn00	dbo	BL38535	1753 HMS0		NE					
	40230		BL38940	1791		NE					
CG8104	FBgn00 36059	nudE	BL38954	HMS0 1868	А	ME	ME			ME	
CG7067	FBgn00 24945	NitFhit	BL38961	HMS0 1875		NE					
CG3230	FBgn00	oxt		HMS0							
0 CG6851	15360 FBgn00	Mtch	BL38985	1901 HMS0		NE					
	27786		BL38986	1902		NE					
CG1794 7	FBgn00 10215	alpha-Cat	BL38987	HMS0 1903		NE					
CG4285 6	FBgn02 62103	Sik3	BL39005	HMS0 1922		NE					
CG1232	FBgn00	Best3		HMS0							
7 CG3213	36492 FBgn00	Tsp68C	BL39040	1960 HMS0		NE					
6 CG5492	43550 FBgn00	Tsp74F	BL39045	1965 HMS0		NE					
	36769	·	BL39046	1966		NE					
CG6117	FBgn00 00489	Pka-C3	BL39050	HMS0 1970		NE					
CG3243 4	FBgn00 26179	Siz	BL39060	HMS0 1980		NE					
CG8739	FBgn00	stmA		HMS0							
CG6827	86784 FBgn00	Nrx-IV	BL39062	1982 HMS0		NE					
	13997		BL39071	1991		NE					
CG8798	FBgn00 36892	Lon	BL40162	HMS0 1940		NE					
CG9949	FBgn00 03410	sina	BL40842	HMS0 2008		NE					
	03410	L	DL4004Z	2000	l	INL	I.	<u> </u>	<u> </u>	l	l

Oscing			1	1				1		1	1
CASSIDER FBg002 CASSIDER BLABBAS MASS ME ME ME ME ME ME ME	CG8442	FBgn00 04619	Glu-RI	BI 40844	HMS0 2010		NF				
CGS950 F8gr00 CFF RL408S0 Miss M		FBgn02	Camta		HMS0						
C-904-06 F-9600			CTCF	BL40849			INE				
17578	CG9648		Max	BL40850			NE				
Section Sect		17578		BL40851	2018		NE				
Bell	CG3654	_	Jarid2	BL40855			NE				
CGS106 Fig.00 CGS786 BLA0982 2130 NE		_	Pdp1	BI 40863			NF				
Getting		FBgn00	CG8786		HMS0						
GG7272 F8gn00 Seat4	CG1006		G-ialpha65A	BL40882			NE				
Section Sect			Rest4	BL40890			NE				
September Sept		36491		BL40897	2145		NE				
Septimizer Sep	CG7823		RhoGDI	BL40902			NE				
CG1016 FBgn02 CG12091 SL40925 2173 NE SL40925 2173 NE SL40926 SL40926 SL40926 SL40926 SL40926 SL40926 SL40926 SL40926 SL40926 SL40926 SL40926 SL40927 SL40926 SL40927 SL	CG8005		CG8005	BI 40921			NF				
March Marc	CG3161	FBgn02	Vha16-1		HMS0						
Missistry Miss	CG4415		koi	BL40923			NE				
S9978			vlc	BL40924			NE				
1 33228		59978		BL40925	2173		NE				
CG1074 FBgn00 CIprin-beta Bl41672 2206 NE			CG12091	BL40936			NE				
CG1074 F8gr00			Klp64D	BL40945			NE				
CG5714 FBgn00 CG6456 FBgn00 F	CG1074	FBgn00	Liprin-beta		HMS0						
CG6456 FBg00 A6713			ecd	BL41672			NE				
CG7018	CG6456		Mip	BL41676			NE				
CG5837		36713	,	BL41680	2244		NE				
CG9155	CG/018		ETS65A	BL41682			NE				
CG9155 FBgn00 10246 Myo61F Bla1689 HMS0 2253 NE NE CG3233 FBgn00 CG33232 CG33232 Bla1696 PRE CG3203 FBgn00 CG3232 Argk HMS0 Bla1696 NE NE CG3203 FBgn00 CG10426 Argk HMS0 Bla1697 CZ66 NE NE NE CG1004 FBgn00 CG10426 SG10426 NE NE CG1042 FBgn00 CG10426 SG10426 NE NE NE CG7176 FBgn00 CG10426 SG10426 SG10426 SG10426 SG10426 SG10426 SG1042 SG10426 SG10426 SG1042 SG10426 SG104	CG5837	_	Hem	BL41688			NE				
CG3323	CG9155	FBgn00	Myo61F		HMS0						
CG3203		FBgn00	CG33232		HMS0						
1 00116 BL41697 2262 NE Image: Control of the co			Argk	BL41696			NE				
CG1042 FBgn00 CG10426 BL41701 2266 NE	1	00116		BL41697	2262		NE				
6 36273 BL41701 2266 NE SE	CG1004		mo	BL41699			NE				
CG7176 FBgn00 01248 Idh 01248 BL41708 2273 NE NE CG8732 FBgn02 FBgn02 G3120 Acsl BL41885 HMS0 2307 A E-L E-L E-L E E CG1077 FBgn00 C24179 Wit HMS0 BL41906 NE NE HMS0 NE CG9390 FBgn00 C24179 AcCoAS HMS0 BL41906 NE NE CG9390 FBgn00 C24179 AcCoAS HMS0 BL41917 NE NE CG9391 NE CG9392 NE E E E E E CG9392 E CG9392 NE CG9392			CG10426	BL41701			NE				
CG8732 FBgn02 63120 Acsl BL41885 2307 A E-L E-L E CG1077 FBgn00 24179 wit HMS0 2298 NE NE HMS0 NE STANDARD STANDA		FBgn00	Idh		HMS0						
CG1077 FBgn00 24179 wit BL41906 2298 NE SECTION NE SECTI	CG8732	FBgn02	Acsl		HMS0					<u> </u>	
6 24179 BL41906 2298 NE Image: Common state of the common st	CG1077		wit	BL41885		A	E-L	E-L		E	
12034	6	24179	ΔεζοΔς	BL41906	2298		NE			-	-
5 35612 BL41923 2320 NE SECTION OF THE PROPERTY OF THE PROPE		12034		BL41917	2314		NE				
0 63077 BL41926 2323 A E			CG10625	BL41923			NE				
CG4374 FBgn02 PR2 HMS0 1 63998 BL41931 2328 NE CG7729 FBgn00 Fit2 HMS0 36688 BL41941 2338 NE CG7272 FBgn00 CG7272 HMS0			CG43340	BL41926		Α	E	E		E	
CG7729 FBgn00 36688 FIt2 HMS0 NE CG7272 FBgn00 CG7272 HMS0	CG4374	FBgn02	PR2		HMS0					_	
CG7272 FBgn00 CG7272 HMS0			Fit2	BL41931			NE			1	
	CG7272		CG7272	BL41941		-	NE				-
1 1 1	55,2,2	36501	337272	BL41950	2347		NE				

CG1200	
CG1216 FBgn00 Ppm1 HMS0 9 35143 BL41987 2386 NE CG6811 FBgn00 RhoGAP68F HMS0	
CG6811 FBgn00 RhoGAP68F HMS0	
CG6642 FBgn00 a10 HMS0 11293 BL41993 2394 NE	
CG1148 FBgn00 CG11486 HMJ0 BL42492 2056 NE	
CG5059 FBgn00 CG5059 HMJ0	
37007 BL42494 2058 NE	
36615 BL42496 2060 NE	
CG9238 FBgn00 CG9238 HMJ0	
CG6049 FBgn00 barc HMJ0 37081 BL42504 2069 NE	
CG1697 FBgn00 msn HMJ0	
3 10909 BL42518 2084 NE CG7177 FBgn00 Wnk HMJ0	
37098 BL42521 2087 NE	
CG5408	
CG8606 FBgn00 RhoGEF4 HMJ0	
35761 BL42550 2122 NE	-
36862 BL42551 2124 NE	
36746 BL42561 2217 NE	
CG7450	
CG8727 FBgn00 cyc HMJ0 23094 BL42563 2219 NE	
CG7391 FBgn00 Clk HMJ0	
23076	
11817 BL42570 2229 NE	
CG6297 FBgn00 JIL-1 HMJ0 20412 BL42571 2230 NE	
CG1053 FBgn00 S6k HMJ0 9 15806 BL42572 2231 NE	
CG1258 FBgn00 pav HMJ0	
11692 BL42573 2232 NE CG1752 FBgn02 CG17528 HMJ0 CG1752 CG17528 HMJ0 CG17528	
8 61387 BL42575 2234 NE	
CG1876 FBgn00 CG18769 HMS0	
CG9205 FBgn00 CG9205 HMS0 NE	
CG5433 FBgn00 Klc HMS0	
10235 BL42597 2429 NE CG7020 FBgn00 DIP2 HMS0	
24806 BL42598 2430 NE	
CG9018 FBgn00 CG9018 HMS0 35318 BL42603 2436 NE	
CG4190 FBgn00 Hsp67Bc HMS0 01229 BL42607 2440 NE	
CG4183 FBgn00 Hsp26 HMS0	
01225 BL42610 2445 NE	
1 59211 BL42611 2446 NE	
CG4320 FBgn02 CG43202 HMS0 2 62838 BL42617 2452 NE	
CG8368 FBgn00 CG8368 HMS0 35707 BL42635 2471 NE	
CG8620 FBgn00 CG8620 HMS0	
40837	
62560 BL42642 2478 A E ME E E	

CG9695	FBgn00 00414	Dab	BL42646	HMS0 2482		NE					
CG4821	FBgn00	Tequila		HMS0							
CG1017	23479 FBgn00	Best2	BL42650	2486 HMS0		NE					
3 CG3922	35696 FBgn00	RpS17	BL42654	2490 HMS0		NE					
CG1135	05533 FBgn00	jim	BL42656	2492 HMS0	Α	Е	E			E	
2	27339	,	BL42662	2498		NE					
CG5585	FBgn00 36973	Rbbp5	BL42819	HMJ0 2113		NE					
CG7133	FBgn00 37150	CG7133	BL42820	HMS0 2502		NE					
CG7460	FBgn00 36749	CG7460	BL42827	HMS0 2509		NE					
CG1123 8	FBgn00 10830	I(3)04053	BL42859	HMS0 2551		NE					
CG3231	FBgn00	dlt		HMS0							
5 CG1329	24510 FBgn00	CG13298	BL42866	2559 HMS0		NE					
8	35692		BL42873	2566	Α	Е	ME	MS	E	E	
CG1416 8	FBgn00 36044	CG14168	BL42874	HMS0 2567	Α	E	ME	ME	E	ME	
CG7266	FBgn00 00565	Eip71CD	BL42877	HMS0 2570		NE					
CG1373	FBgn00 36382	CG13737	BL42886	HMS0 2579		NE					
CG1371	FBgn00	CG13716		HMS0							
6 CG1391	35563 FBgn00	CG13917	BL42895	2588 HMS0		NE					
7 CG4216	35237 FBgn00	term	BL42903	2596 HMS0	Α	E	ME	S	E	ME	
CG1699	03683		BL42921	2614 HMS0		NE					
8	FBgn00 35795	CG16998	BL42923	2616		NE					
CG1413 7	FBgn00 36178	CG14137	BL42937	HMS0 2630		NE					
CG1068 8	FBgn00 36300	CG10688	BL42956	HMS0 2649		NE					
CG6736	FBgn00 44049	Ilp4	BL43288	HMS0 2660		NE					
CG1165 8	FBgn00 36196	CG11658	BL43298	HMS0 2671		NE					
CG1058	FBgn00 37044	CG10585	BL43301	HMS0 2674		NE					
CG3223	FBgn00	CG32236		HMS0							
6 CG3213	46793 FBgn00	btl	BL43305	2685 HMS0		NE					
4	05592		BL43544	2656		NE				<u> </u>	
CG1047 2	FBgn00 35670	CG10472	BL43548	HMS0 2654		NE					
CG1821 4	FBgn00 24277	trio	BL43549	HMS0 2690		NE					
CG1060 5	FBgn00 15919	caup	BL44002	HMS0 2716		NE					
CG7139	FBgn00 27532	CG7139	BL44007	HMS0 2721		NE					
CG4195	FBgn00 02283	l(3)73Ah	BL44011	HMS0 2725		NE					
CG4463	FBgn00 01224	Hsp23	BL44029	HMS0 2745		NE					
CG4026	FBgn00 58263	MFS17	BL44033	HMS0 2749		NE					
CG3399	FBgn00	nuf		HMS0						<u> </u>	
1 CG4412	13718 FBgn02	Src42A	BL44035	2751 HMS0		NE					
8 CG1262	64959 FBgn00	Acp62F	BL44039	2755 HMS0		NE					
CO1202	20509	ACPUZE	BL44047	2763		NE					

CG1057 4	FBgn00 28429	I-2	BL44050	HMS0 2767		NE				
CG5187	FBgn00 35956	Doc2	BL44087	HMS0 2804		NE				
CG6451	FBgn00	blue		HMS0						
CG1072	41161 FBgn00	Awh	BL44094	2814 HMS0		NE				
CG1672	13751 FBgn00	tra	BL44097	2817 HMS0		NE				
4 CG3352	03741 FBgn02	Vmat	BL44109	2830 HMC0		NE				
8 CG1061	60964 FBgn00	CG10616	BL44471	2346 HMC0		NE				
6 CG5701	36286	RhoBTB	BL44474	2359 HMC0		NE				
	FBgn00 36980		BL44478	2368		NE				
CG1203 0	FBgn00 35147	Gale	BL44496	HMC0 2429		NE				
CG1699 2	FBgn00 35789	mthl6	BL44497	HMC0 2432		NE				
CG7476	FBgn00 35847	mthl7	BL44498	HMC0 2433		NE				
CG1833	FBgn00 36181	Muc68Ca	BL44499	HMC0 2435		NE				
CG4994	FBgn00 26409	Мрср	BL44508	HMC0 2898		NE				
CG1036	FBgn00 36208	CG10361	BL44512	HMC0 2902		NE				
CG1435	FBgn00	CG14353		HMC0						
3 CG6905	36771 FBgn00	CG6905	BL44513	2903 HMC0		NE				
CG3208	35136 FBgn00	CG32082	BL44524	2918 HMC0	A	ME	ME		E	
2 CG1207	52082 FBgn00	CG12079	BL44526	2920 HMC0		NE				
9 CG1499	35404 FBgn00	Fit1	BL44535	2929 HMC0		NE				
1 CG6498	35498 FBgn00	CG6498	BL44536	2930 HMC0		NE				
	36511		BL44547	2943		NE				
CG1068 1	FBgn00 36291	CG10681	BL44558	HMS0 2854		NE				
CG6289	FBgn00 36970	Spn77Bc	BL44563	HMS0 2859		NE				
CG3725	FBgn02 63006	Ca-P60A	BL44581	HMS0 2878		NE				
CG5486	FBgn00 16756	Ubp64E	BL44645	HMC0 2352		NE				
CG1047 5	FBgn00 35667	Jon65Ai	BL44656	HMC0 2430		NE				
CG6449	FBgn00 36101	NijA	BL50632	HMC0 2999		NE				
CG8474	FBgn00 25874	Meics	BL50636	HMC0 3035		NE				
CG1059	FBgn00 35622	CG10590		HMC0 3038						
0 CG7002	FBgn00	Hml	BL50638	HMC0		NE				
CG6592	29167 FBgn00	CG6592	BL50640	3040 HMC0		NE				
CG1180	35669 FBgn00	Elo68beta	BL50645	3045 HMC0		NE				
1 CG7414	36128 FBgn00	CG7414	BL50646	3046 HMC0		NE				
CG6391	37135 FBgn00	Aps	BL50649	3050 HMC0		NE				
CG1070	36111 FBgn00		BL50651	3052 HMC0		NE				
4	36285	toe	BL50660	3061		NE				
CG7499	FBgn00 28699	Rh50	BL50666	HMC0 3067		NE				

CG7140	FBgn00 37147	CG7140	BL50677	HMC0 3078		NE]	
CG1733	FBgn00 35626	lin-28	BL50677	HMC0 3080		NE NE				
CG7404	FBgn00	ERR		HMC0						
CG7960	35849 FBgn00 13755	Bro	BL50686 BL50689	3087 HMC0 3090		NE NE				
CG3205	FBgn00	CG32055		HMC0						
5 CG6859	52055 FBgn00	Pex3	BL50692	3093 HMC0		NE				
CG6749	36484 FBgn00	CG6749	BL50694	3096 HMC0		NE				
CG5485	36040 FBgn00	Prestin	BL50696	3098 HMC0	A	ME	ME		ME	
CG3210	36770 FBgn00	CG32105	BL50706	3108 HMC0		NE				
5 CG5690	52105 FBgn00	Cnb	BL50711	3113 HMS0		NE				
CG1059	35295 FBgn00	CG10591	BL50714	2948 HMS0		NE				
1 CG4416	35621 FBgn02	St3	BL50722	2956 HMS0		NE				
7 CG7398	65052 FBgn00	Trn	BL50728	2964 HMS0		NE				
CG4347	24921 FBgn00	UGP	BL50732	2968 HMJ0		NE				
CG7260	35978		BL50902	3120 HMJ0		NE				
	FBgn00 11723	byn	BL50906	3127		NE				
CG1039 2	FBgn02 61403	SXC	BL50909	HMJ0 3131		NE				
CG9279	FBgn00 36882	CG9279	BL50914	HMJ2 1003		NE				
CG1062 2	FBgn00 29118	Sucb	BL50939	HMJ2 1034		NE				
CG5290	FBgn00 36772	CG5290	BL50949	HMJ2 1050		NE				
CG1012 4	FBgn00 35709	eIF4E-4	BL50951	HMJ2 1052		NE				
CG5642	FBgn00 36258	elF3l	BL50959	HMJ2 1061		NE				
CG1417 7	FBgn00 36013	CG14177	BL50984	HMJ2 1094		NE				
CG5444	FBgn00 10280	Taf4	BL50985	HMJ2 1095	А	E	E		E	
CG6527	FBgn00 36085	CG6527	BL50994	HMJ2 1107		NE				
CG1496 2	FBgn00 35407	CG14962	BL51002	HMJ2 1116		NE				
CG1291 8	FBgn02 63260	sel	BL51002	HMJ2 1136		NE				
CG1059	FBgn00 15766	Msr-110	BL51015	HMJ2 1161						
6 CG9670	FBgn00 28380	fal		HMJ2		NE				
CG1457	FBgn00	CG14572	BL51048	1182 HMJ2		NE				
2 CG1163	37128 FBgn00	CG11637	BL51050	1184 HMC0		NE				
7 CG4457	36822 FBgn00	Srp19	BL51156	2367 HMC0		NE				
CG6298	15298 FBgn00	Jon74E	BL51160	2399 HMC0	A	E	E		E	
CG1111	23197 FBgn00	Ssl1	BL51161	2401 HMJ0		NE				
5 CG1027	37202 FBgn00	D19B	BL51165	3124 HMJ0		NE				
0	22699 FBgn02	magu	BL51166	3125 HMJ2		NE				
CU22U4	62169	шави	BL51169	1055		NE				

CG1483 8	FBgn00 35799	CG14838	BL51175	HMJ2 1140		NE					
CG7580	FBgn00	CG7580		HMC0							
CG8276	36728 FBgn02	bin3	BL51357	3242 HMC0		NE					
	63144		BL51427	2940		NE					
CG7542	FBgn00 36738	CG7542	BL51429	HMC0 3048		NE					
CG7422	FBgn00 35815	Snmp2	BL51432	HMC0 3144		NE					
CG7409	FBgn00	CG7409		HMC0							
CG9007	35817 FBgn00	CG9007	BL51433	3145 HMC0		NE					
	36398		BL51447	3177		NE					
CG1817 9	FBgn00 36023	CG18179	BL51451	HMC0 3181		NE					
CG1683 8	FBgn00 36574	CG16838	BL51453	HMC0 3187		NE					
CG7510	FBgn00 36741	CG7510	BL51463	HMC0 3201		NE					
CG1152	FBgn00	CG11529		HMC0							
9 CG4379	36264 FBgn02	CG43795	BL51469	3210 HMC0		NE					
5	64339		BL51472	3214		NE					
CG8782	FBgn00 22774	Oat	BL51481	HMC0 3226		NE					
CG1007 8	FBgn00 41194	Prat2	BL51492	HMC0 3244		NE					
CG1059	FBgn00	spo		HMC0							
4 CG6760	03486 FBgn00	Pex1	BL51496	3251 HMC0		NE					
	13563		BL51497	3252		NE					
CG6765	FBgn00 35903	CG6765	BL51500	HMC0 3258		NE					
CG1718 1	FBgn00 35144	CG17181	BL51517	HMS0 3165		NE					
CG6483	FBgn00 35665	Jon65Aiii	BL51692	HMC0 2917		NE					
CG1708	FBgn00 35131	mthl9	BL51695	HMC0 3141		NE					
CG7955	FBgn00	ABCB7		HMC0							
CG1047	35244 FBgn00	CG10477	BL51696	3142 HMC0		NE					
7	35661		BL51697	3143		NE					
CG8329	FBgn00 36022	CG8329	BL51698	HMC0 3146		NE					
CG1702 7	FBgn00 36553	CG17027	BL51701	HMC0 3174		NE					
CG5272	FBgn00	gnu		НМС0							
CG6869	01120 FBgn00	FucTA	BL51703	3185 HMC0		NE	1	1			
CG1748	36485 FBgn02	p120ctn	BL51715	3247 HMC0		NE					
4	60799		BL51729	3276		NE					
CG9701	FBgn00 36659	CG9701	BL51733	HMC0 3293		NE					
CG1706 1	FBgn00 35132	mthl10	BL51753	HMC0 3304		NE					
CG7118	FBgn00 35886	Jon66Ci	BL51754	HMC0 3305		NE					
CG5262	FBgn00	CG5262		HMC0							
CG8585	36988 FBgn02	Ih	BL51755	3306 HMC0		NE	-				
	63397		BL51765	3319		NE					
CG5747	FBgn00 35935	mfr	BL51769	HMC0 3324		NE		<u> </u>			
CG7758	FBgn00 27945	ppl	BL51778	HMC0 3333		NE			-		
CG9943	FBgn00 29117	Surf1	BL51783	HMC0 3338		NE					
L	2711/	l	DEJ1/03	3330	l	INL	1	L		1	1

					•						
CG5258	FBgn00 29148	NHP2	BL51784	HMC0 3339		NE					
CG1499	FBgn00	Gad1		HMC0							
4 CG1499	04516 FBgn00	Faa	BL51794	3350 HMC0		NE					
3	16013		BL51796	3352		NE					
CG1714 6	FBgn00 22709	Adk1	BL51799	HMC0 3355		NE					
CG6097	FBgn00 03292	rt	BL51805	HMC0 3363		NE					
CG8615	FBgn00 35753	RpL18	BL51812	HMC0 3383	А	E	Е				
CG7977	FBgn00 26372	RpL23A	BL51818	HMC0 3389		NE					
CG9384	FBgn00 36446	CG9384	BL51821	HMC0 3393		NE					
CG7864	FBgn00	Pex10		HMC0							
CG8177	35233 FBgn00	CG8177	BL51826	3398 HMC0		NE					
CG1714	36043 FBgn00	рух	BL51827	3399 HMC0		NE					
2 CG4319	35113 FBgn00	rpr	BL51836	3408 HMC0		NE					
	11706		BL51846	3419		NE					
CG1837 4	FBgn00 25592	Gyk	BL51849	HMC0 3423		NE					
CG7049	FBgn00 35102	CG7049	BL51896	HMC0 3470		NE					
CG1392 7	FBgn00 35245	GC	BL51897	HMC0 3471		NE					
CG2069	FBgn00 35264	Oseg4	BL51898	HMC0 3472		NE					
CG1140	FBgn00 35298	CG1140	BL51899	HMC0 3473		NE					
CG2107	FBgn00	CG2107		HMC0							
CG1201	35383 FBgn00	CG12014	BL51900	3474 HMC0		NE					
4 CG1084	35445 FBgn00	Sc2	BL51901	3475 HMC0		NE					
9 CG4623	35471 FBgn00	CG4623	BL51902	3476 HMC0		NE					
CG7161	35587 FBgn00	Oseg1	BL51903	3477 HMC0		NE					
CG1227	35891	_	BL51904	3478		NE					
2	FBgn00 36571	CG12272	BL51906	HMC0 3481		NE					
CG9706	FBgn00 36662	CG9706	BL51908	HMC0 3483		NE					
CG6841	FBgn00 36828	CG6841	BL51909	HMC0 3484		NE					
CG7470	FBgn00 37146	CG7470	BL51911	HMC0 3487		NE					
CG6951	FBgn00 36959	CG6951		HMS0							
CG1581	FBgn00	Rop	BL51913	3371 HMC0		NE	F.			-	
1 CG7757	04574 FBgn00	CG7757	BL51925	3422 HMC0	A	E-L	E-L			E-L	
CG1058	36915 FBgn00	Sems	BL51940	3485 HMC0	A	E	ME	ME		ME	
6 CG1053	37036 FBgn00	Rdl	BL52892	3630 HMC0		NE					
7	04244		BL52903	3643		NE					
CG6020	FBgn00 37001	CG6020	BL52922	HMC0 3662		NE					
CG1179 6	FBgn00 36992	CG11796	BL52923	HMC0 3663		NE					
CG4300	FBgn00 36272	CG4300	BL52924	HMC0 3665		NE					
CG8583	FBgn00	sec63	BL52925	HMC0 3666		NE					
	35771	<u> </u>	BL32925	3000	l	INE	<u> </u>	1	L	<u> </u>	<u> </u>

CG7971	FBgn00 35253	CG7971	BL52936	HMC0 3678	А	E-L	E			E-L	
CG5684	FBgn00	Pop2/CNOT7		HMJ2							
CG1389	36239 FBgn00	CG13891	BL52947	1614 HMJ2	E	E	NE	NE	E		NE
1	35139		BL52950	1619		NE					
CG5602	FBgn02 62619	DNA-ligI	BL52951	HMJ2 1620		NE					
CG4260 0	FBgn02 61016	clos	BL52966	HMJ2 1651		NE					
CG3208	FBgn00	CG32088	BL32900	HMJ2		INE					
8 CG3210	52088 FBgn00	CG32102	BL52969	1654 HMJ2		NE					
2	52102		BL52975	1661		NE					
CG1058 8	FBgn00 37037	CG10588	BL52977	HMJ2 1664		NE					
CG9710	FBgn00 21768	nudC	BL52980	HMJ2 1667		NE					
CG3743	FBgn00	MTF-1		HMJ2							
CG9129	40305 FBgn00	CG9129	BL52986	1677 HMJ2		NE					
	35196		BL52995	1707		NE					
CG4372 9	FBgn02 63980	CG43729	BL52999	HMJ2 1714		NE					
CG4167	FBgn00 01227	Hsp67Ba	BL53007	HMJ2 1725		NE					
CG3529	FBgn00	CG3529	BL33007	HMJ2							
CG1392	35995 FBgn00	CG13924	BL53008	1726 HMJ2		NE					
4	35286		BL53013	1735		NE					
CG8001	FBgn00 35268	CG8001	BL53021	HMJ2 1744		NE					
CG7327	FBgn00 14849	Eig71Ei	BL53022	HMJ2 1745		NE					
CG6215	FBgn00	CkIIalpha-i1		HMJ2							
CG6850	15025 FBgn00	Ugt	BL53025	1750 HMJ2		NE					
CG4153	14075		BL53027	1752		NE					
CG4153	FBgn00 04926	eIF-2beta	BL53268	HMC0 2396		NE					
CG4365	FBgn00 37024	CG4365	BL53290	HMC0 3506	А	E	E			E	
CG6671	FBgn02	AGO1		HMC0							
CG7506	62739 FBgn00	CG7506	BL53293	3509 HMC0	A	E	E			E	
CG4461	35805 FBgn00	CG4461	BL53297	3513 HMC0	Α	ME	ME			E	
CG4461	35982	CG4461	BL53298	3517		NE					
CG1407 7	FBgn00 36830	CG14077	BL53303	HMC0 3530		NE					
CG3207	FBgn00	Elo68alpha		HMC0							
2 CG5842	52072 FBgn00	nan	BL53307	3535 HMC0		NE			+		
CG1035	36414 FBgn00	CG10359	BL53312	3541 HMC0		NE		+	+		1
9	35452		BL53316	3545		NE					
CG1702 8	FBgn00 36552	CG17028	BL53320	HMC0 3549		NE					
CG1501	FBgn00	Cip4		HMC0							
5 CG8019	35533 FBgn00	hay	BL53321	3550 HMC0		NE		+	+		+
CG1052	01179 FBgn00	sti	BL53345	3574 HMC0		NE		1	+		
2	02466		BL53357	3586		NE					
CG2092	FBgn02 61385	scra	BL53358	HMC0 3587		NE					
CG1058	FBgn00	CG10587		HMC0	Α.		ME			ME	
7 CG1103	37039 FBgn00	CG11037	BL53359	3588 HMC0	A	ME	ME	+	+	ME	
7	37038		BL53360	3589		NE					

004 :00	ED 00	0044000	1	110.400	1		1	1	1	ı	
CG1499 0	FBgn00 35496	CG14990	BL53367	HMC0 3596		NE					
CG3028	FBgn02	CG30283		НМС0							
3 CG7328	60477 FBgn00	CG7328	BL53376	3605 HMC0		NE					
	36942		BL53675	3664		NE					
CG1328 5	FBgn00 35611	CG13285	BL53680	HMJ2 1593		NE					
CG1412 2	FBgn00 36282	Smyd4	BL53682	HMJ2 1595		NE					
CG1482	FBgn00	tow		HMJ2							
1 CG4818	35719 FBgn00	Cpr72Ea	BL53704	1747 HMJ2		NE					
	36617		BL53878	1191		NE					
CG1142 6	FBgn00 37166	CG11426	BL53879	HMJ2 1194		NE					
CG7097	FBgn02	hppy	DI F3004	HMJ2		NE					
CG4269	63395 FBgn02	pdm3	BL53884	1199 HMJ2		NE					
8	61588		BL53887	1205		NE					
CG7202	FBgn00 37086	CG7202	BL53895	HMJ2 1214		NE					
CG3244 4	FBgn00 43783	CG32444	BL53929	HMJ2 1275		NE					
CG2140	FBgn02	Cyt-b5		HMJ2							
CG3202	64294 FBgn00	CG32026	BL53950	1314 HMJ2		NE	1		-		
6	52026		BL53953	1319		NE					
CG1068 6	FBgn00 41775	tral	BL53961	HMJ2 1343	А	E	E-L			E-L	
CG1105	FBgn00	Nplp2		HMJ2							
1 CG1693	40813 FBgn00	Eig71Ea	BL53967	1350 HMJ2		NE					
1	04588	_	BL53984	1384		NE					
CG7345	FBgn00 36411	Sox21a	BL53991	HMJ2 1395		NE					
CG9433	FBgn02 61850	Xpd	BL53992	HMJ2 1396	ME	ME	NE	NE	E		NE
CG7525	FBgn00 14073	Tie	BL54005	HMJ2 1428		NE					
CG1511	FBgn02	5-HT1B		HMJ2							
3 CG2021	63116 FBgn00	CG2021	BL54006	1429 HMJ2	А	E	E			E	
	35271		BL54007	1430		NE					
CG4750	FBgn02 59795	loopin-1	BL54012	HMJ2 1436		NE					
CG3217	FBgn00	Ndfip		HMJ2		NE					
7 CG1388	52177 FBgn00	Gr61a	BL54018	1444 HMJ2		NE					
8	35167	CG14147	BL54030	1473		NE					
CG1414 7	FBgn00 36112	CG14147	BL54046	HMJ2 1489		NE					
CG8549	FBgn00 35714	CG8549	BL54466	HMC0 3734		NE					
CG1500	FBgn00	mas	DL34400	HMC0		INE					(ME
2	11653		BL54475	3732	MS	MS		S	S		POSSIBL E)
CG1381	FBgn00	CG13810		HMJ2	1412			,			-,
0 CG4266	35313 FBgn02	CG42663	BL54802	1496 HMJ2		NE					
3	61545		BL54808	1502		NE					
CG1014	FBgn00 28567	robl62A	BL54813	HMJ2 1532		NE					
CG7641	FBgn00	Nca		HMJ2							
CG3203	13303 FBgn00	CG32036	BL54814	1533 HMJ2		NE					
6	52036		BL54818	1537		NE					
CG8833	FBgn00 36386	CG8833	BL54824	HMJ2 1543		NE					
·	55550	1	525 102-7	1 20 70			1	1	1		l

CG6757	FBgn00 40475	SH3PX1	BL54833	HMJ2 1552		NE					
CG6933	FBgn00	CG6933		HMJ2							
CG7385	36952 FBgn00	Ir76b	BL54842	1579 HMJ2		NE					
CG1919	36937 FBgn00	Cpr62Bc	BL54846	1583 HMJ2		NE					
CG3396	35281 FBgn00	Ocho	BL54849	1586 HMJ2		NE					
CG1828	40296 FBgn00	dre4	BL54851	1588 HMS0	A	E	E			E	
CG7433	02183 FBgn00	CG7433	BL54855	2240 HMC0		NE					
CG3088	36927	CG3088	BL54993	3730 HMC0		NE					
	FBgn00 36015		BL55145	3755		NE					
CG8610	FBgn00 12058	Cdc27	BL55155	HMC0 3814	А	ME	E			E	
CG1672 5	FBgn00 36641	Smn	BL55158	HMC0 3832		NE					
CR3216 2	FBgn00 41721	snRNA:U12:73B	BL55164	HMC0 3841		NE					
CG1090 7	FBgn00 36207	CG10907	BL55204	HMC0 3919		NE					
CG1127	FBgn00 36340	SRm160		HMC0							
4 CG6322	FBgn00	U4-U6-60K	BL55205	3920 HMC0		NE		†			
CG9383	36733 FBgn00	asf1	BL55210	3931 HMC0		NE					
CG7564	29094 FBgn00	CG7564	BL55250	3937 HMC0		NE					
CG1858	36734 FBgn00	CG18586	BL55252	3939 HMC0		NE	+				
6 CG4425	35642 FBgn02	CG44252	BL55270	3957 HMC0		NE	1				
2 CG1094	65187 FBgn00	CG10948	BL55271	3958 HMC0		NE	1				
8	36317		BL55280	3967		NE					
CG6817	FBgn00 24236	foi	BL55281	HMC0 3968		NE					
CG1046 9	FBgn00 35678	CG10469	BL55291	HMC0 3978		NE					
CG6457	FBgn00 40060	yip7	BL55293	HMC0 3980	ME	ME	NE	ME	NE		NE
CG1130	FBgn00 04880	scrt	BL55309	HMC0 3996		NE					
CG3212 0	FBgn00 02573	sens	BL55310	HMC0 3997		NE					
CG1056	FBgn00 24150	Ac78C	BL55310	HMC0 3999		NE		1			
CG4561	FBgn00	Aats-tyr		HMC0				1			
CG6778	27080 FBgn00	Aats-gly	BL55326	4013 HMC0		NE		†			
CG6580	27088 FBgn00	Jon65Aii	BL55327	4014 HMC0		NE					
CG6865	35666 FBgn00	CG6865	BL55343	4030 HMC0	Α	ME	E	+		E	
CG4911	36817 FBgn00	CG4911	BL55349	4036 HMC0		NE		1			
CG6876	35959 FBgn00	Prp31	BL55353	4040 HMC0		NE		1			
CG3322	36487 FBgn02	CG33228	BL55364	4052 HMC0		NE		ļ			
8	61373		BL55372	4060		NE					
CG1000 6	FBgn00 36461	CG10006	BL55376	HMC0 4064		NE					
CG1307 6	FBgn00 44028	Notum	BL55379	HMC0 4067		NE					
CG1934	FBgn00 01254	ImpE2	BL55380	HMC0 4068		NE					
L		1			1	1	1	1	1	1	1

			•		•	,				1	
CG8783	FBgn00 36397	CG8783	BL55384	HMC0 4072		NE					
CG1071	FBgn00	ImpL1		НМС0							
7 CG3322	01256 FBgn00	LanB2	BL55387	4075 HMC0		NE					
	02528		BL55388	4076		NE					
CG6821	FBgn00 02564	Lsp1gamma	BL55389	HMC0 4077		NE					
CG1081 0	FBgn00 10381	Drs	BL55391	HMC0 4079		NE					
CG1832	FBgn00	miple2		НМС0							
1 CG1390	29002 FBgn00	nerfin-1	BL55393	4081 HMC0		NE					
6 CG1887	28999 FBgn00	CG1887	BL55395	4083 HMC0		NE					
	35290		BL55401	4089		NE					
CG9116	FBgn00 04429	LysP	BL55606	HMC0 3743		NE					
CG7028	FBgn00 27587	CG7028	BL55640	HMC0 3788		NE					
CG6664	FBgn00	CG6664		НМС0							
CG1075	36685 FBgn00	CG10754	BL55643	3792 HMC0		NE					
4 CG4238	36314 FBgn02	CG42382	BL55650	3799 HMC0		NE					
2	59728	CG42382	BL55652	3801		NE					
CG1058 2	FBgn00 28402	Sin	BL55656	HMC0 3807		NE					
CG6822	FBgn00	ergic53	BL55657	НМС0							
CG7942	35909 FBgn00	ldbr		3809 HMC0		NE					
CG8596	35838 FBgn00	CG8596	BL55661	3816 HMC0		NE					
CG1148	35767 FBgn00	srpk79D	BL55664	3819 HMC0		NE					
9	25702	·	BL55667	3822		NE					
CG1291	FBgn00 35401	CG1291	BL55671	HMC0 3827		NE					
CR3290 8	FBgn00 03938	snRNA:U5:63BC	BL55676	HMC0 3840		NE					
CG1818	FBgn00	CG18180		HMC0							
0 CG4083	36024 FBgn00	Mo25	BL55680	3862 HMC0		NE					
CG5649	17572 FBgn00	kin17	BL55681	3865 HMC0		NE					
	24887		BL55692	3906	Α	E	ME			Е	
CG5971	FBgn00 35918	Cdc6	BL55734	HMC0 3802	А	ME	ME			ME	
CG1066 3	FBgn00 36287	CG10663	BL55737	HMC0 3876		NE					
CG2146	FBgn02	didum		НМС0							
CG9054	61397 FBgn00	Ddx1	BL55740	3900 HMC0		NE				1	
CG1041	15075 FBgn00	CG10418	BL55744	3930 HMC0		NE					
8	36277		BL55746	3933		NE					
CG1500 9	FBgn00 01257	ImpL2	BL55855	HMC0 3863		NE					
CG4279	FBgn02 61067	LSm1	BL55912	HMC0 4198		NE					
CG3217	FBgn00	CG32176		НМС0							
6 CG6917	52176 FBgn00	Est-6	BL55923	4210 HMC0		NE					
	00592		BL55927	4215		NE					
CG1714 8	FBgn00 00594	Est-P	BL55928	HMC0 4216		NE				<u> </u>	
CG7599	FBgn00 04593	Eig71Ef	BL55930	HMC0 4218	MS	MS		s	E		Е
CG1331	FBgn00	CG13312		HMC0	.,,,,						
2	35931		BL55949	4238		NE			1		<u> </u>

CG6628	FBgn00 36072	CG6628	DIEEDED	HMC0		NE					
CG1782	FBgn00	CG17826	BL55950	4239 HMC0							
6 CG1011	36227 FBgn00	CG10116	BL55951	4240 HMC0		NE					
6	36367	6610110	BL55952	4241		NE					
CG4073 3	FBgn00 85512	RYamide	BL55957	HMC0 4246		NE					
CG1757 5	FBgn02 50842	CG17575	BL55958	HMC0 4247		NE					
CG8614	FBgn00 24542	Neos	BL55960	HMC0 4254		NE					
CG1380 6	FBgn00 35325	CG13806	BL55965	HMC0 4260		NE					
CG1495 7	FBgn00 35412	CG14957	BL55966	HMC0 4261		NE					
CG1495	FBgn00	ckd	BL33900	HMC0		INE					
9 CG8072	35427 FBgn00	CG8072	BL55967	4262 HMC0		NE					
	36070		BL55968	4263		NE					
CG5897	FBgn00 36220	CG5897	BL55969	HMC0 4264		NE					
CG5883	FBgn00 36225	CG5883	BL55970	HMC0 4265		NE					
CG1015 4	FBgn00 36361	CG10154	BL55971	HMC0 4266	А	E	E			E	
CG6996	FBgn00 36950	CG6996	BL55972	HMC0 4267		NE					
CG1714	FBgn00	CG17145		HMC0							
5 CG5008	36953 FBgn00	GNBP3	BL55974	4269 HMC0		NE					
CG3202	40321 FBgn00	CG32024	BL55984	4280 HMC0		NE			1		
4 CG3206	52024 FBgn00	CG32068	BL55997	4293 HMC0		NE					
8 CG9128	52068		BL56008	4304 HMC0	Α	ME	ME			ME	
	FBgn00 35195	Sac1	BL56013	4309		NE					
CG1059 2	FBgn00 35619	CG10592	BL56014	HMC0 4310		NE					
CG1274	FBgn00 40308	Jafrac2	BL56043	HMC0 4351		NE					
CG3217 8	FBgn00 43025	Msi	BL56044	HMC0 4352		NE					
CG7250	FBgn00 36494	Toll-6	BL56048	HMS0 4251		NE					
CG8021	FBgn00	CG8021		HMS0							
CG6226	37602 FBgn00	FK506-bp1	BL32339	0330 HMS0		NE			1		
CG9983	13269 FBgn00	Hrb98DE	BL32348	0339 HMS0		NE			+		
CG9484	01215 FBgn00	hyd	BL32351	0342 HMS0	E	E	NE	E	ME		NE
CG1224	02431 FBgn00	mira	BL32352	0343 HMS0	ME	ME	NE	E	E		NE
9	21776		BL32356	0347		NE			1		
CG1064	FBgn00 11715	Snr1	BL32372	HMS0 0363		NE					
CG6791	FBgn00 37918	CG6791	BL32395	HMS0 0389		NE					
CG9775	FBgn00 37261	CG9775	BL32396	HMS0 0390		NE					
CG4279 9	FBgn02 61934	dikar	BL32397	HMS0 0391		NE					
CG3355	FBgn00	form3		HMS0			-			-	
6 CG7788	53556 FBgn00	Ice	BL32398	0393 HMS0	A	E	E		1	E	
CG5650	19972 FBgn00	Pp1-87B	BL32403	0398 HMS0	Α	E	E		+	E	
	04103	r ·	BL32414	0409	Α	E-L	E			E	

CG1760	FBgn00	Taf1	1	HMS0							
3	10355	I all	BL32421	0416	ME	ME	NE	Е	ME		NE
CG3143	FBgn00 38197	foxo	BL32427	HMS0 0422		NE					
CG7483	FBgn00	eIF4AIII	BL32427	HMS0	(MS	INC					
557,405	37573			0442	POSSIBL						
			BL32444		E)	NE					
CG6923	FBgn00	CG6923		HMS0							
005340	37944		BL32448	0447		NE					
CG5248	FBgn00 20278	loco	BL32456	HMS0 0455		NE					
CG4720	FBgn00	Pk92B	5-52-450	HMS0		146		<u> </u>			
	14006		BL32464	0464		NE					
CG6773	FBgn00	sec13		HMS0							
CC1207	24509 FB cm 00	E 1177	BL32468	0468		NE					
CG1207 3	FBgn00 04573	5-HT7	BL32471	HMS0 0471		NE					
CG5422	FBgn00	Rox8	DL324/1	HMS0		INL		<u> </u>			
	05649		BL32472	0472		NE					
CG7771	FBgn00	sim		HMS0							
664637	04666	hh	BL32488	0491		NE					
CG4637	FBgn00 04644	hh	BL32489	HMS0 0492		NE					
CG3113	FBgn00	twin	DL32403	HMS0		INL		<u> </u>			
7	11725		BL32490	0493		NE		<u> </u>			
CG7015	FBgn02	Unr		HMS0							
	63352		BL32491	0494		NE					
CG8308	FBgn00 87040	alphaTub67C	BL32502	HMS0 0506		NE					
CG1193	FBgn00 37375	kat-60L1	BL32506	HMS0 0510		NE					
CG1198	FBgn00	CG11984	1	HMS0				1			
4	37655		BL32507	0511		NE					
CG9366	FBgn00 14380	RhoL	BL32841	HMS0 0532		NE					
CG3354	FBgn00	Mst77F		HMS0							
005051	86915	T1	BL32849	0633		NE					
CG5374	FBgn00 03676	T-cp1	BL32854	HMS0 0639		NE					
CG3637	FBgn00	Cortactin	DL32034	HMS0		INL		<u> </u>			
	25865		BL32871	0658	<u> </u>	NE		<u> </u>			
CG8036	FBgn00	CG8036		HMS0							
CC7502	37607	C+DD	BL32884	0672		NE		-			
CG7583	FBgn00 20496	CtBP	BL32889	HMS0 0677		NE					
CG4565	FBgn00	CG4565	5252003	HMS0		142		<u> </u>			
	37841		BL32893	0682		NE					
CG4261	FBgn00	Hel89B		HMS0							
CCSEOO	22787 EBan00	CC3E09	BL32895	0684		NE		 			
CG3508	FBgn00 38251	CG3508	BL32898	HMS0 0687		NE					
CG4800	FBgn00	Tctp		HMS0							
	37874	·	BL32911	0701	Α	E-L	E-L			E-L	
CG2899	FBgn00 15402	ksr	BL32937	HMS0 0730		NE					
CG1483	FBgn00	Map205	0.02001	HMS0		142		<u> </u>			
	02645		BL32939	0733	<u></u>	NE	<u> </u>	<u> </u>			<u></u>
CG1281	FBgn00	sle		HMS0							
9	37810	6633354	BL32969	0766		NE					
CG3225 1	FBgn00 52251	CG32251	BL32974	HMS0 0772		NE					
CG8165	FBgn00	JHDM2	5252574	HMS0							
	37703		BL32975	0775		NE					
CG5637	FBgn00	nos		HMS0							
CC2240	02962 ERap00	mod(md~4)	BL32985	0785		NE		-			
CG3249 1	FBgn00 02781	mod(mdg4)	BL32995	HMS0 0795		NE					
CG6343	FBgn00	ND42	5252555	HMS0							
	19957		BL32998	0798		NE					
Į.							•		•	•	

CG6831	FBgn02 60442	rhea	BL32999	HMS0 0799		NE					
CG5252	FBgn00	Ranbp9		HMS0							
CG1281	37894 FBgn00	Fancl	BL33004	0804 HMS0		NE					
2 CG1220	37781 FBgn00	CG12201	BL33050	0771 HMS0		NE					
1	37970		BL33338	0204		NE					
CG1437 7	FBgn00 38148	CG14377	BL33344	HMS0 0210		NE					
CG9386	FBgn00 37708	CG9386	BL33364	HMS0 0236		NE					
CG4266	FBgn02	Exn		HMS0							
5 CG9351	61547 FBgn00	flfl	BL33373	0246 HMS0		NE					
CG8874	24555 FBgn00	Fps85D	BL33374	0247 HMS0		NE					
	00723		BL33375	0249		NE					
CG9434	FBgn00 37724	Fst	BL33376	HMS0 0250		NE					
CG3395 6	FBgn00 01297	kay	BL33379	HMS0 0254		NE					
CG9412	FBgn00	rin		HMS0							
CG4273	15778 FBgn02	Ank2	BL33392	0269 HMS0		NE					
4	61788		BL33414	0295		NE					
CG6993	FBgn00 03513	SS	BL33415	HMS0 0296		NE					
CG2198	FBgn00 00071	Ama	BL33416	HMS0 0297	А	ME	ME			E	
CG3113	FBgn00 11785	BRWD3	BL33421	HMS0 0304		NE					
CG1228	FBgn02	th		HMS0							
4 CG4286	60635 FBgn02	trh	BL33597	0752 HMS0		NE					
5 CG4006	62139 FBgn00	Akt1	BL33612	0002 HMS0		NE					
	10379	AKLI	BL33615	0007	E-L	E-L	ME	MS	E-L	ME	NE
CG1042 2	FBgn00 00158	bam	BL33631	HMS0 0029		NE					
CG4257	FBgn00 16917	Stat92E	BL33637	HMS0 0035		NE					
CG3220	FBgn00	CG32206		HMS0							
6 CG5670	52206 FBgn00	Atpalpha	BL33645	0046 HMS0	E-L	NE E-L					
CG9745	02921	D1	BL33646	0047 HMS0			NE	NE	E-L		NE
	FBgn00 00412	DI	BL33655	0061	Α	E	E			E	
CG1199 2	FBgn00 14018	Rel	BL33661	HMS0 0070		NE					
CG1462	FBgn00	Aph-4	BL33673	HMS0 0537		NE					
CG7917	16123 FBgn00	NIp		HMS0				†	1		
CG6148	16685 FBgn00	Past1	BL33688	0556 HMS0		NE		1			1
CG3978	16693 FBgn00	pnr	BL33689	0557 HMS0		NE		1	1		
	03117		BL33697	0570		NE					
CG1103 3	FBgn00 37659	Kdm2	BL33699	HMS0 0574		NE					
CG8651	FBgn00 03862	trx	BL33703	HMS0 0580		NE					
CG1714	FBgn02	Su(var)3-3		HMS0				†	†		
9 CG6030	60397 FBgn00	ATPsyn-d	BL33726	0608 HMS0	-	NE		+	+		-
CG9473	16120		BL33740	1078 HMS0	1	NE		-	ļ		
	FBgn00 24330	MED6	BL33743	1081	MS	MS		S	MS		NE
CG7281	FBgn00 04597	CycC	BL33753	HMS0 1095		NE					
L	0.557	1	5255755	1000	ı	,	1	1	1	1	1

		T = .	1				1	1			1
CG5201	FBgn00 20493	Dad	BL33759	HMS0 1102		NE					
CG1000 2	FBgn00 00659	fkh	BL33760	HMS0 1103		NE					
CG2047	FBgn00	ftz	BL33760	HMS0		NE					
CG1034	01077 FBgn00	bcd	BL33761	1104 HMS0		NE					
	00166		BL33886	0824		NE					
CG1759 4	FBgn00 28993	scro	BL33890	HMS0 0828		NE					
CG7951	FBgn00	sima		HMS0							
CG3412	15542 FBgn00	slmb	BL33894	0832 HMS0		NE					
CG8573	23423	and that	BL33898	0838 HMS0		NE					
	FBgn00 03567	su(Hw)	BL33906	0848		NE					
CG9809	FBgn00 37248	Spargel	BL33914	HMS0 0857		NE					
CG9809	FBgn00	Spargel		HMS0							
CG4974	37248 FBgn02	dally	BL33915	0858 HMS0		NE					
000700	63930		BL33952	0905		NE					
CG9769	FBgn00 37270	elF3f1	BL33980	HMS0 0940		NE					
CG1112	FBgn00 15575	alpha-Est7	BL33992	HMS0 0955		NE					
CG1727	FBgn00	CG17273		HMS0							
3 CG9656	27493 FBgn00	grn	BL33993	0956 HMS0		NE					
CG4266	01138		BL34014	0980		NE					
CG4266 9	FBgn02 61551	CG42669	BL34016	HMS0 0985		NE					
CG1023 0	FBgn00 28691	Rpn9	BL34034	HMS0 1007		NE					
CG8580	FBgn00	akirin		HMS0							
CG3348	82598 FBgn00	zormin	BL34036	1010 HMS0		NE					
4 CG1207	52311 FBgn00	wts	BL34039	1014 HMS0		NE					
2	11739	wts	BL34064	0026		NE					
CG8522	FBgn02 61283	HLH106	BL34073	HMS0 0080		NE					
CG6625	FBgn02	Snap		HMS0							
CG2017	50791 FBgn00	CG2017	BL34088	0872 HMS0		NE					
CG3619	37391 FBgn00	DI	BL34097	0976 HMS0		NE					
CG3619	00463	Ы	BL34322	1309	А	E-L	E-L			E-L	
CG1378	FBgn00 03720	tll	BL34329	HMS0 1316		NE					
CG1236	FBgn00	CG12360		HMS0							
0 CG9805	38111 FBgn00	elF3-S10	BL34341	1329 HMS0	(MS	NE	<u> </u>				
	37249		BL34353	1342	POSSIBL E)	NE	ME	MS	ME	E	
CG5232	FBgn00	Sas		HMS0	-,		1412	1415	1412	_	
CG9374	38045 FBgn00	lkb1	BL34357	1346 HMS0		NE	-				
	38167		BL34362	1351		NE	1				
CG3222 6	FBgn00 52226	Pex23	BL34370	HMS0 1359		NE					
CG8287	FBgn02 62518	Rab8	BL34373	HMS0 1363		NE					
CG8417	FBgn00	MPI		HMS0							
CG1852	37744 FBgn00	Spn5	BL34379	1369 HMS0	Е	E	NE	S	NE		NE
5	28984		BL34381	1371		NE	1				
CG1218	FBgn00 37377	CG1218	BL34389	HMS0 1383		NE					
	3/3//		BL34389	1383		INE			L	I	

CG1854 9	FBgn00 38053	CG18549	BL34391	HMS0 1385		NE					
CG6284	FBgn00 37802	Sirt6	BL34391 BL34530	HMS0 1009		NE NE					
CG1100	FBgn00	Rpn5		HMS0							
CG4257	28690 FBgn02	CG42575	BL34532	0971 HMS0		NE					
5 CG1982	60795 FBgn00	Sodh-1	BL34549	1021 HMS0		NE					
CG3027	24289 FBgn00	pyd3	BL34556	1028 HMS0		NE					
CG9773	37513 FBgn00	CG9773	BL34557	1029 HMS0		NE					
CG4608	37609 FBgn00	bnl	BL34570	1044 HMS0		NE					
CG1057	14135 FBgn00	MED31	BL34572	1046 HMS0		NE					
	37262		BL34574	1048		NE					
CG1245	FBgn00 37359	MED27	BL34576	HMS0 1050		NE					
CG2943	FBgn00 37530	CG2943	BL34581	HMS0 1055		NE					
CG1196 8	FBgn00 37647	RagA	BL34590	HMS0 1064		NE					
CG1199 9	FBgn00 37312	CG11999	BL34604	HMS0 0565		NE					
CG9375	FBgn00 03205	Ras85D	BL34619	HMS0 1294		NE					
CG1101	FBgn00 10774	Ref1		HMS0							
CG1046	FBgn00	zen	BL34626	1301 HMS0		NE					
CG1711	04053 FBgn00	hth	BL34635	1109 HMS0		NE					
7 CG1048	01235 FBgn00	zen2	BL34637	1112 HMS0		NE					
CG4674	04054 FBgn00	CG4674	BL34649	1124 HMS0		NE					
CG5208	37856 FBgn00	Patr-1	BL34660	1137 HMS0		NE					
CG3320	28470 FBgn00	Rab1	BL34667	1144 HMS0		NE					
	16700		BL34670	1148		NE					
CG3397 6	FBgn00 38063	Octbeta2R	BL34673	HMS0 1151		NE					
CG1009	FBgn02 61243	Psa	BL34674	HMS0 1152		NE					
CG4258 4	FBgn02 60874	Ir76a	BL34678	HMS0 1156		NE					
CG8412	FBgn00 37743	CG8412	BL34680	HMS0 1158		NE					
CG1702	FBgn00 24804	Dbp80	BL34682	HMS0 1160		NE					
CG2023	FBgn00	CG2023		HMS0							
CG6134	37383 FBgn00	spz	BL34693	1172 HMS0		NE					
CG6127	03495 FBgn00	Ser	BL34699	1178 HMS0		NE					
CG2102	04197 FBgn00	cas	BL34700	1179 HMS0		NE					
CG5460	04878 FBgn00	Н	BL34701	1180 HMS0		NE					
CG9786	01169 FBgn00	hb	BL34703	1182 HMS0	А	ME	ME			ME	
CG1133	01180		BL34704	1183 HMS0		NE					
	FBgn00 03002	opa	BL34706	1185		NE					
CG9475	FBgn00 37742	Rpt3R	BL34713	HMS0 1192		NE					
CG1739 7	FBgn00 40020	MED21	BL34731	HMS0 1211	S	S		S	MS		NE
•			•	•	•		•		•		

		•		•	•		,				
CG4227 9	FBgn02 59174	Nedd4	BL34741	HMS0 1221		NE					
CG5475	FBgn00	Mpk2		HMS0							
CG2128	15765 FBgn00	Hdac3	BL34744	1224 HMS0		NE					
CG5378	25825 FBgn00	Rpn7	BL34778	0087 HMS0		NE					
CG5289	28688 FBgn00	Pros26.4	BL34787	0096 HMS0	A	E-L	E			E	
CG4913	15282 FBgn00	ear	BL34795	0104 HMS0	A	E-L	E			E	
CG7439	26441 FBgn00	AGO2	BL34798	0107 HMS0	MS	MS		MS	MS		NE
CG8273	87035		BL34799	0108 HMS0		NE					
	FBgn00 37716	CG8273	BL34805	0114		NE					
CG9772	FBgn00 37236	Skp2	BL34807	HMS0 0116		NE					
CG3158	FBgn00 03483	spn-E	BL34808	HMS0 0117		NE					
CG1027 9	FBgn00 03261	Rm62	BL34829	HMS0 0144		NE					
CG1395	FBgn00 03525	stg	BL34831	HMS0 0146	А	E	E			E	
CG1075	FBgn02 61933	SmD1	BL34834	HMS0 0150		NE	-				
3 CG2925	FBgn00	noi		HMS0							
CG1735	14366 FBgn00	Taf12	BL34845	0163 HMS0		NE					
8 CG4377	11290 FBgn02	mwh	BL34852	0170 HMS0		NE					
2 CG8120	64272 FBgn00	HP1e	BL34862	0180 HMS0		NE					
CG1084	37675 FBgn00	Cont	BL34863	0181 HMS0		NE					
CG1198	37240 FBgn00	Prosbeta3	BL34867	0186 HMS0	E-L	E-L	NE	MS	MS		NE
1	26380		BL34868	0187	Α	E-L	ME	S	E-L	E	
CG1451	FBgn00 15589	Apc	BL34869	HMS0 0188		NE					
CG7437	FBgn02 62737	mub	BL34870	HMS0 0189		NE					
CG3119 6	FBgn00 20238	14-3-3epsilon	BL34884	HMS0 1229		NE					
CG2244	FBgn00 27951	MTA1-like	BL34905	HMS0 1251		NE					
CG3310 1	FBgn00 13998	Nsf2	BL34914	HMS0 1262		NE					
CG1874	FBgn00	mor		HMS0							
0 CG3321	02783 FBgn02	Glg1	BL34919	1267 HMS0		NE					
4 CG7508	64561 FBgn00	ato	BL34921	1270 HMS0		NE					
CG8351	10433 FBgn00	Tcp-1eta	BL34929	1278 HMS0		NE					
CG6598	37632 FBgn00	Fdh	BL34931	1281 HMS0		NE					
CG2926	11768 FBgn00	CG2926	BL34937	1268 HMS0		NE					
	37344		BL34941	0216 HMS0		NE					
CG4267 4	FBgn02 61556	CG42674	BL34943	0228		NE					
CG6203	FBgn00 28734	Fmr1	BL34944	HMS0 0248		NE					
					1	1	1		1	1	1
CG1827	FBgn00 37263	slx1	BL34949	HMS0 0313		NE		<u>L</u>			
	FBgn00	slx1 Rpn2	BL34949 BL34961	0313 HMS0		NE NE					
1 CG1188	FBgn00 37263 FBgn00			0313							

Care Care												
CG1038 FR900 Dist	CG2684		lds	BI 3/1980			NE					
CG9317 Fign00 Fign02 Fign02 Fign02 Fign02 Fign02 Fign02 Fign03 F		FBgn00	Ubx		HMS0				1			
CGB012 Fign02 Fign02 Fign03 Fign03 Fign04 Fign04 Fign05 F			ninaB	BL34993			NE					
59824	CG6017		Hin1/I	BL34994		Α	ME	ME			E	
7 0.0087 BLSO15 1428 NE		59824		BL35012	1422		NE					
0.486.3			Dhfr	BL35015			NE					
CG1120 F8gn00 NI	CG7937	-	C15	BI 35018			NE					
CG1102 F6gr002 RcdS BL35026 1439 NE	CG7223	FBgn00	htl		HMS0							
CG1000	CG1135		Rcd5	BL35024			NE					
The color of the	CG1707		nnt	BL35026			NE					
11020	7	03118		BL35038	1452	Α	E	E			Е	
G1945 F8pn00 F8			Sas-4	BL35049			NE					
CG1945 Egn00 OS532 BL35728 L470 NE	CG5954		I(3)mbt	BI 35052			NF					
MASO MASO	CG1945	FBgn00	faf		HMS0							
MMSO	CG8279	FBgn00	Pde6	BL35728			NE					
1	CG1202		Pati	BL35743			NE					
CG1588 FBgn00 CG15887 BL35751 L494 NE	1	67864		BL35747	1489		NE					
Total	CG6338		Ets97D	BL35749			NE					
CG3937 F8gn00 Cher BL35755 ISO1			CG15887	BL35751			NE					
CG8384 FBgn00		FBgn00	cher		HMS0							
CG7538	CG8384		gro	BL35755			NE					
CG5844 FBgn00 CG5844 BL35771 1520 NE NE	CG7538		Mcm2	BL35759			NE					
CG9925 FBgn00 CG9925 BL35871 1525 NE Image: CG9925 SB1391 Image: CG9926 SB1391 I		14861		BL35771	1520		NE					
CG3992 FBgn00 o 3507 Srp			CG5844	BL35776	1525		NE					
CG3992 FBgn00 03507 srp	CG9925		CG9925	BL35811			NE					
CG4115 FBgn00 38017 CG4115 BL35814 1446 A E-L E E E CG9764 FBgn00 04049 yrt 04049 BL36118 1532 NE NE 1 <	CG3992	FBgn00	srp		HMS0							
CG9764 FBgn00 04049 yrt 04049 BL36118 1532 1532 NE Section 1541 NE NE Section 1542 NE NE Section 1542 NE NE NE Section 1542 NE	CG4115	FBgn00	CG4115		HMS0							
CG6376	CG9764		vrt	BL35814		Α	E-L	E			E	
11766		04049		BL36118	1532		NE					
8 04107 BL36128 1543 NE Image: CG7643 bigs of the property of the		11766		BL36126	1541		NE					
CG7643 FBgn00 00063 ald BL36658 1546 NE Image: NE State of State o			cdc2c	BL36128			NE					
CG9734 FBgn00 27657 glob1 BL36668 1556 NE NE Image: CG1467 September 15 Septemb		FBgn00	ald		HMS0							
CG1467 FBgn00 glob3 HMS0 NE Image: CG6008 street of the control	CG9734	FBgn00	glob1		HMS0				1			
5 37385 BL36670 1558 NE Image: Control of the co	CG1467		glob3	BL36668			NE		1			
27785				BL36670			NE		-			
27066		27785		BL36672	1560		NE					
04889 BL36689 1578 NE Image: CG2184 price of the control of the c	CG3265	27066	Eb1	BL36680			NE		\perp			
CG2184 FBgn00 02773 MIc2 BL36694 1583 S S MS NE NE NE CG7507 FBgn02 61797 Dhc64C BL36698 1587 NE NE NE CG3246 FBgn00 mtd/OXR1 HMS0 NE NE NE	CG6235		tws	BL36689			NE					
CG7507 FBgn02 Dhc64C HMS0 BL36698 1587 NE CG3246 FBgn00 mtd/OXR1 HMS0	CG2184	FBgn00	Mlc2		HMS0							NE
CG3246 FBgn00 mtd/OXR1 HMS0	CG7507		Dhc64C	BL36694		\$	5		MS	NE		NE
	CG3246		mtd/OXR1	BL36698			NE		-			-
			a, OANI	BL36718			NE					

				•	•						•
CG3248 4	FBgn00 52484	Sk2	BL36741	HMS0 3001		NE					
CG1856	FBgn00	ttk		HMS0							
CG1466	03870 FBgn00	CG14669	BL36748	3008 HMS0		NE					
9	37326	6022264	BL36750	3010		NE					
CG3236 4	FBgn00 52364	CG32364	BL36752	HMS0 3012	А	Е	ME			E	
CG1199 7	FBgn00 37662	CG11997	BL36753	HMS0 3013		NE					
CG1347	FBgn00 37363	CG1347	BL36918	HMS0 1611		NE					
CG5518	FBgn00	sda		HMS0							
CG1200	15541 FBgn00	CG12001	BL37494	1636 HMS0		NE					
1 CG5206	37265 FBgn00	bon	BL37499	1641 HMS0		NE					
	23097		BL37515	1657		NE					
CG1085 1	FBgn00 04587	B52	BL37519	HMS0 1661		NE					
CG1173 9	FBgn00 37239	CG11739	BL38230	HMS0 1674		NE					
CG6213	FBgn00 26753	Vha13	BL38233	HMS0 1677		NE					
CG3153	FBgn00	Npc2b		HMS0							
CG8208	38198 FBgn00	MBD-like	BL38238	1682 HMS0		NE					
CG9755	27950 FBgn00	pum	BL38239	1683 HMS0		NE					
	03165		BL38241	1685		NE					
CG1012 0	FBgn00 02719	Men	BL38256	HMS0 1700		NE					
CG9779	FBgn00 37231	vps24	BL38281	HMS0 1733		NE					
CG1071 1	FBgn00 86785	Vps36	BL38286	HMS0 1739		NE					
CG9379	FBgn00	by		HMS0							
CG3911	00244 FBgn02	Bet3	BL38288	1743 HMS0		NE					
CG9424	60859 FBgn00	bocksbeutel	BL38302	1764 HMS0		NE					
CG3571	37719 FBgn00	KLHL18	BL38349	1817 HMS0		NE					
	37978		BL38352	1820		NE					
CG5730	FBgn00 00083	AnnIX	BL38523	HMS0 1719		NE					
CG3279	FBgn02 60862	Vti1	BL38526	HMS0 1727		NE					
CG4848	FBgn00	CG4848		HMS0							
CG6238	37998 FBgn00	ssh	BL38943	1857 HMS0		NE					
CG5643	29157 FBgn00	wdb	BL38948	1862 HMS0	Α	E	E			E	
	27492 FBgn02		BL38950	1864		NE					
CG4224 7	59099	DCX-EMAP	BL38964	HMS0 1878		NE					
CG3101 2	FBgn00 27598	cindr	BL38976	HMS0 1892		NE					
CG1715	FBgn00 10808	I(3)03670	BL38984	HMS0 1900		NE					
CG5000	FBgn00	msps		HMS0							
CG1088	27948 FBgn00	Vha26	BL38990	1906 HMS0		NE					
CG9601	15324 FBgn00	CG9601	BL38996	1912 HMS0		NE					
	37578		BL39003	1919		NE					
CG1151 6	FBgn00 04369	Ptp99A	BL39006	HMS0 1923	MS	MS		S	NE		NE
CG1228	FBgn02 61985	Ptpmeg	BL39007	HMS0 1924		NE					
L	01303	<u> </u>	DE33007	1727	<u> </u>	1112		1	1	1	1

CG5720	FBgn00 28471	Nab2	BL39008	HMS0 1925		NE					
CG1004	FBgn00	Syt4		HMS0							
7 CG1471	28400 FBgn00	CG14718	BL39016	1934 HMS0		NE					
8 CG7904	37939 FBgn00	put	BL39018	1936 HMS0		NE					
	03169	•	BL39025	1944		NE					
CG8478	FBgn00 37746	CG8478	BL39033	HMS0 1952		NE					
CG5658	FBgn00 04387	Klp98A	BL39037	HMS0 1957		NE					
CG2097	FBgn00	Sym		HMS0							
CG1058	37371 FBgn00	rpk	BL39041	1961 HMS0		NE					
CG1499	22981 FBgn02	ens	BL39053	1973 HMS0	MS	MS	ME	S	E	ME	NE
8	64693		BL40825	0933		NE					
CG2185	FBgn00 37358	elm	BL40843	HMS0 2009		NE					
CG5505	FBgn02 60936	scny	BL40865	HMS0 2032		NE					
CG1217	FBgn00	CG12170		HMS0							
0 CG1736	37356 FBgn00	Vha55	BL40867	2034 HMS0		NE					
9 CG6378	05671 FBgn00	BM-40-SPARC	BL40884	2132 HMS0		NE					
	26562	DIVI-40-3PARC	BL40885	2133		NE					
CG7749	FBgn02 61574	kug	BL40888	HMS0 2136		NE					
CG5608	FBgn00 38058	CG5608	BL40892	HMS0 2140		NE					
CG6120	FBgn00	Tsp96F		HMS0							
CG2330	27865 FBgn00	Neurochondrin	BL40901	2149 HMS0		NE					
CG4394	37447 FBgn02	Glut1	BL40903	2151 HMS0		NE					
6	64574		BL40904	2152		NE					
CG6593	FBgn00 03134	Pp1alpha-96A	BL40906	HMS0 2154		NE					
CG4374 3	FBgn02 64000	Glu-RIB	BL40908	HMS0 2156		NE					
CG7581	FBgn00	Bub3		HMS0							
CG7807	25457 FBgn02	AP-2	BL40910	2158 HMS0		NE					
CG8136	61953 FBgn00	CG8136	BL40911	2159 HMS0		NE					
	37616		BL40918	2166		NE					
CG1128 6	FBgn00 37516	CG11286	BL40919	HMS0 2167		NE					
CG4035	FBgn00 40022	Set1	BL40931	HMS0 2179		NE					
CG2902	FBgn00	Nmdar1		HMS0							
CG5507	10399 FBgn00	T48	BL41667	2200 HMS0		NE					
CG4843	04359 FBgn00	Tm2	BL41684	2248 HMS0		NE					
	04117		BL41695	2260		NE					
CG4409 9	FBgn02 64908	pHCl	BL41700	HMS0 2265		NE					
CG1106	FBgn00 10225	Gel	BL41704	HMS0 2269		NE					
CG1029	FBgn00	Pak		HMS0							
5 CG7996	14001 FBgn00	snk	BL41714	2279 HMS0		NE					
CG8342	03450 FBgn00	m1	BL41723	2289 HMS0		NE				-	
	02578		BL41886	2308		NE					
CG3068	FBgn00 00147	aur	BL41889	HMS0 2205		NE					
<u> </u>		l			1	1	1	1		1	1

CG1195 8	FBgn00 15622	Cnx99A	BL41911	HMS0 2304		NE					
CG3218	FBgn00	Ccn		HMS0			1				
3 CG1077	52183 FBgn00	Fur1	BL41913	2310 HMS0		NE					
2	04509	Heave	BL41914	2311		NE					
CG3373	FBgn00 15737	Hmu	BL41915	HMS0 2312		NE					
CG1408 4	FBgn02 60857	Bet1	BL41927	HMS0 2324		NE					
CG5974	FBgn00 10441	pll	BL41935	HMS0 2332		NE					
CG9797	FBgn00	CG9797		HMS0							
CG6359	37621 FBgn00	Snx3	BL41937	2334 HMS0		NE					
CG5814	38065	C:-P3	BL41947	2344		NE					
CG5814	FBgn00 15625	CycB3	BL41979	HMS0 2377		NE					
CG6932	FBgn00 28837	CSN6	BL41991	HMS0 2392		NE					
CG4312 8	FBgn02 62593	Shab	BL41999	HMS0 2400		NE					
CG7756	FBgn00	Hsc70-2		HMS0							
CG2051	01217 FBgn00	CG2051	BL42014	2415 HMJ0		NE	1				
CG9727	37376 FBgn00	CG9727	BL42488	2050 HMJ0		NE	-				
	37445		BL42495	2059		NE					
CG2087	FBgn00 37327	PERK/PEK	BL42499	HMJ0 2063		NE					
CG4245 8	FBgn02 59935	CG42458	BL42506	HMJ0 2071		NE					
CG4397	FBgn02 64707	RhoGEF3	BL42526	HMJ0 2092		NE					
CG1098	FBgn00	Madm		HMJ0							
CG5264	27497 FBgn00	btn	BL42529	2096 HMJ0		NE					
CG1176	14949 FBgn00	CG11762	BL42530	2097 HMJ0		NE	1				
2	37618		BL42531	2098		NE					
CG2210	FBgn00 00150	awd	BL42532	HMJ0 2099		NE					
CG6384	FBgn00 00283	Cp190	BL42536	HMJ0 2105		NE					
CG3229	FBgn00	Mrtf		HMJ0	MC			NAC	-		NE
6 CG1722	52296 FBgn00	pros	BL42537	2106 HMJ0	MS	MS		MS	E		NE
8 CG3213	04595 FBgn00	stv	BL42538	2107 HMJ0	A	ME	E	S		E-L	
0	86708		BL42564	2221		NE	ļ				
CG6027	FBgn00 04876	cdi	BL42568	HMJ0 2227		NE					
CG7693	FBgn00 23083	fray	BL42569	HMJ0 2228		NE					
CG4317	FBgn02 62792	CG43173		HMS0							
3 CG4389	FBgn02	CG43896	BL42584	2369 HMS0		NE	1				
6 CG1235	64488 FBgn00	Cbp20	BL42585	2417 HMS0		NE	-				
7	22943	·	BL42596	2428		NE	1				
CG1214 7	FBgn00 37325	CG12147	BL42612	HMS0 2447		NE					
CG1736 7	FBgn00 28717	Lnk	BL42613	HMS0 2448		NE					
CG6014	FBgn02 61258	rgn	BL42619	HMS0 2454		NE					
CG6489	FBgn00	Hsp70Bc		HMS0			†				
CG2530	13279 FBgn00	corto	BL42626	2461 HMS0		NE	1				
	10313		BL42629	2464		NE	1		<u> </u>		

CG2013	FBgn00 04436	UbcD6	BL42631	HMS0 2466	А	E-L	E			E	
CG6188	FBgn00 38074	CG6188	BL42637	HMS0 2473		NE	-				
CG4316	FBgn00 03319	Sb	BL42647	HMS0 2483		NE					
CG1829 0	FBgn00 00046	Act87E	BL42652	HMS0 2488		NE					
CG9738	FBgn00 24326	Mkk4	BL42832	HMS0 2524		NE					
CG1224	FBgn00	GstD5		HMS0							
2 CG1435	10041 FBgn00	CG14355	BL42842	2534 HMS0		NE					
5 CG8793	38208 FBgn02	I(3)76BDm	BL42857	2549 HMS0		NE					
CG1897	60655 FBgn00	Dr	BL42870	2563 HMS0		NE					
CG9476	00492 FBgn00	alphaTub85E	BL42891	2584 HMS0		NE					
CG1239	03886 FBgn00	CG1239	BL42905	2598 HMS0		NE					
CG1167	37368 FBgn00	CG11672	BL42912	2605 HMS0		NE					
2 CG9345	37563 FBgn00	Adgf-C	BL42913	2606 HMS0		NE					
CG4067	38173 FBgn00	pug	BL42915	2608 HMS0	E-L	E-L	ME	ME	E	NE	NE
CG8489	20385 FBgn00	soti	BL42950	2643 HMS0		NE					
CG3144	38225 FBgn00	Hsp70Ba	BL42955	2648 HMS0		NE					
9 CG2867	13277 FBgn00	Prat	BL43289	2661 HMS0		NE					
CG1169	04901 FBgn00	Osi18	BL43296	2669 HMS0		NE					
CG6467	37428 FBgn02	Jon65Aiv	BL43302	2675 HMS0		NE					
CG3321	50815 FBgn00	CG33217	BL43306	2689 HMS0		NE					
7 CG1467	53217 FBgn00	CG14676	BL43315	2699 HMS0		NE					
6 CG4374	37388 FBgn02	bru-3	BL43316	2700 HMS0		NE					
4 CG3242	64001 FBgn00	shep	BL43318	2702 HMS0		NE					
3 CG3916	52423 FBgn00	CG3916	BL43545	2666 HMS0		NE					
CG6438	38003 FBgn00	amon	BL43992	2705 HMS0		NE					
	23179		BL44001	2715		NE					
CG1167 1	FBgn00 37562	CG11671 Sbf	BL44003	2717		NE					
CG6939	FBgn00 25802		BL44004	HMS0 2718		NE					
CG1115	FBgn00 37299	CG1115	BL44010	HMS0 2724		NE					
CG3219 0	FBgn00 52190	NUCB1	BL44019	HMS0 2734		NE					
CG1096 7	FBgn02 60945	Atg1	BL44034	HMS0 2750		NE					
CG3245 1	FBgn00 52451	SPoCk	BL44040	HMS0 2756		NE					
CG1196 6	FBgn00 37645	CG11966	BL44046	HMS0 2762	А	ME	ME			E	
CG5499	FBgn00 01197	His2Av	BL44056	HMS0 2773	MS	MS		NE	E		NE
CG3129 3	FBgn00 03227	rec	BL44057	HMS0 2774		NE					
CG8362	FBgn00 28997	nmdyn-D7	BL44058	HMS0 2775		NE					
			_	_	_	_	_	_	_	_	_

CG1484 1	FBgn00 38218	CG14841	BL44059	HMS0 2776		NE					
CG1142	FBgn00	Obp83b		HMS0							
2 CG1469	10403 FBgn00	Fer2LCH	BL44065	2782 HMS0		NE					_
CG1409	15221	Terzien	BL44067	2784		NE					
CG1954	FBgn00 03093	Pkc98E	BL44074	HMS0 2791		NE					
CG1910	FBgn00 22349	CG1910	BL44082	HMS0 2799		NE					
CG1674 9	FBgn00 37678	CG16749	BL44096	HMS0 2816		NE					1
CG3971	FBgn02	Baldspot		HMS0							†
CG3066	60960 FBgn00	Sp7	BL44101	2821 HMS0		NE					
CG3397	37515 FBgn00	CG3397	BL44108	2829 HMS0		NE				+	-
CG4029	37975 FBgn00		BL44115	2837 HMS0		NE					
	15396	jumu	BL44117	2839		NE					
CG4016 0	FBgn00 58160	CG40160	BL44268	HMS0 2730		NE					
CG3103 9	FBgn00 03358	Jon99Ci	BL44269	HMS0 2766		NE					
CG6567	FBgn00	CG6567		HMC0							1
CG1003	37842 FBgn00	CG10032	BL44479	2369 HMC0		NE					
2 CG1005	37493 FBgn00	MAGE	BL44501	2437 HMC0	MS	MS		NE	NE		NE
9	37481		BL44514	2904	Α	ME	ME			E	
CG1281 7	FBgn00 37798	CG12817	BL44529	HMC0 2923		NE					
CG4030 0	FBgn02 50816	AGO3	BL44543	HMC0 2938		NE					
CG9995	FBgn00 27655	htt	BL44550	HMS0 2845		NE					
CG1558	FBgn00	Osi24		HMS0							†
9 CG1468	37409 FBgn00	CG14683	BL44564	2860 HMS0		NE					+
3 CG1119	37822 FBgn00	Gnf1	BL44571	2867 HMS0		NE					+
CG3237	04913	ltl	BL44572	2868		NE					
2	FBgn00 52372		BL44577	HMS0 2873		NE					
CG4017 8	FBgn00 58178	CG40178	BL44578	HMS0 2874		NE					
CG5553	FBgn02 59676	DNApol-alpha60	BL44584	HMS0 2881		NE					
CG6672	FBgn00	CG6672		HMS0		INE	1		1		+
CG2019	37875 FBgn00	disp	BL44586	2884 HMS0		NE					+
CG9920	29088 FBgn00	CG9920	BL44633	2877 HMC0		NE					
	38200		BL44657	2438		NE					
CG2747	FBgn00 37541	CG2747	BL44662	HMS0 2848		NE					
CG1025 0	FBgn00 02922	nau	BL50607	HMC0 2974		NE					
CG6706	FBgn00 27575	GABA-B-R2	BL50608	HMC0 2975		NE					
CG1263	FBgn02	RpL8		HMC0			1.			-	+
CG3326	61602 FBgn00	Muc68E	BL50610	2977 HMC0	A	E	E		1	E	+
5 CG3106	53265 FBgn00	side	BL50618	2985 HMC0		NE					-
2 CG9459	16061		BL50642	3042 HMC0		NE		1			
	FBgn00 37764	CG9459	BL50647	3047		NE					
CG5214	FBgn00 37891	CG5214	BL50650	HMC0 3051		NE					
		1				-		-1		_1	

CG1003	EPan00	vvl		HMC0	1				1	
7	FBgn00 86680	VVI	BL50657	3058	Α	ME	ME		ME	
CG1030	FBgn00	Scr		HMC0						
	03339		BL50662	3063		NE				
CG7895	FBgn00	tin		HMC0						
CG3332	04110	Fer1	BL50663	3064 HMC0		NE				
3	FBgn00 37475	reri	BL50672	3073		NE				
CG2988	FBgn00	ems		HMC0						
	00576		BL50673	3074		NE				
CG1454	FBgn00	HLHmbeta		HMC0						
8	02733	0022254	BL50674	3075		NE				
CG3235	FBgn00 52354	CG32354	BL50693	HMC0 3095		NE				
CG1295	FBgn00	CG12951	BE30033	HMC0		IVL				
1	37677		BL50698	3100		NE				
CG3103	FBgn00	Jon99Cii		HMC0						
4	03356		BL50705	3107		NE				
CG2781	FBgn00 37534	CG2781	DI 50710	HMC0		NE				
CG5931	FBgn02	I(3)72Ab	BL50710	3112 HMS0		NE				
003331	63599	.(3), 2, (3)	BL50716	2950	Α	ME	ME		E	
CG4389	FBgn02	CG43894		HMS0						
4	64486		BL50718	2952		NE				
CG3124	FBgn00	repo	DI FOZOF	HMS0		NE				
0 CG2189	11701 FBgn00	Dfd	BL50735	2971 HMC0		NE		-		-
CO2103	00439	Did	BL50792	3094		NE				
CG1957	FBgn00	Cpsf100		HMC0						
	27873	·	BL50893	2355		NE				
CG3435	FBgn00	CG34356		HMJ0						
6	85385	6633300	BL50912	3136		NE				
CG3329 0	FBgn00 53290	CG33290	BL50916	HMJ2 1005		NE				
CG3326	FBgn00	CG33267	BE30310	HMJ2		142				
7	53267		BL50929	1023		NE				
CG4316	FBgn02	CG43163		HMJ2						
3	62719	0042472	BL50958	1060		NE				
CG1217 3	FBgn00 37305	CG12173	BL50977	HMJ2 1083		NE				
CG1159	FBgn00	CG11598	BE30377	HMJ2		IVL				
8	38067		BL51000	1113		NE				
CG3397	FBgn00	Ir62a		HMJ2						
1	53971		BL51026	1152		NE				
CG3328 6	FBgn00 53286	CG33286	BL51029	HMJ2 1156		NE				
CG1465	FBgn00	CG14655	BL31023	HMJ2		INL				
5	37275	001.000	BL51031	1158		NE				
CG3772	FBgn00	cry		HMJ2						
	25680	1/0/0505	BL51033	1160		NE		1		1
CG7129	FBgn00 10877	I(3)05822	BL51159	HMC0		NE				
CG5807	FBgn00	CG5807	מרסדונס	2398 HMJ0		INC		-		-
223007	27539		BL51163	3117		NE				
CG1164	FBgn00	Abd-B		HMJ0						
8	00015		BL51167	3133		NE	1			
CG3379	FBgn00 13981	His4r	DIE1172	HMJ2		NE				
CG1823	13981 FBgn02	CG18234	BL51172	1134 HMJ2	1	INC		1		
4	65268	5515254	BL51173	1135		NE				
CG1000	FBgn00	CG10005		HMJ2						
5	37972		BL51174	1137		NE				
CG4706	FBgn00	CG4706	DI E4350	HMC0		NE				
CG4261	37862 FBgn02	Fhos	BL51359	3203 HMJ2		NE		-		-
0	61259	11103	BL51391	1037		NE				
CG1439	FBgn00	CG14394		HMC0						
4	38079		BL51420	2385		NE				
CG1874	FBgn00	DopR2	DIEC : CC	HMC0						
1	15129	l	BL51423	2893		NE	1			

CG2222 SPROD CG2225 SPROT SP						•						
Section Fegro Section Sectio	CG6225		CG6225	DI 51/125			NE					
CG0710 Fign00 Abl		FBgn00	Spn75F		НМС0							
CG3104 F8gn00 Section Sectio			Abi	BL51437			NE					
Second Colorado	663104		Mad	BL51455			NE					
S. S. S. S. S. S. S. S.	5	26059		BL51456	3191		NE					
G6796 F8gm00 Ref. BIS1465 3205 NE			CG32425	BL51457			NE					
G6590		FBgn00	Lgr1		HMC0							
Got Figen Got Go	CG6096		HLHm5	BL51405	HMC0		INE					
0.1098	CG5320		Gdh	BL51466			NE					
9		01098		BL51473	3217		NE					
3			CG11899	BL51476			NE					
CG-910 Figure F			sba	BL51488			NE					
GASTA Fight GASTA GAST		FBgn00	tld		HMC0							
Marco Marc	CG4233	FBgn02	Dscam4		HMC0							
10768			sgz	BL51508			NE	1				
CG1216 F8gn00 CG12162 BL51514 3281 ME		10768		BL51509	3279		NE	1				
CG1840 FBgn00 InR/IR	CG3723	0	Dhc93AB	BL51511			NE					
GG1840 F8gr00 InR/IR			CG12162	BI 51514			NF					
CG7910 FBgn00 CG7910 BL51702 3182 NE	CG1840	FBgn00	InR/IR		HMS0	-		NE	NE	_		NE
CG5663 FBgn00		FBgn00	CG7910		HMC0	L		INL	INL			INL
CG4412 FBgn00 16119 ATPsyn-Cf6 BL51714 BL51714 NE	CG5663		Dip-C	BL51702			NE					
16119	CG4412		ΔTPsvn-Cf6	BL51708			NE	1				
CG9492 FBgn00 CG9492 BL51721 3260 NE		16119	,	BL51714	3238		NE					
CG4312	CG6703	-	CASK	BL51721			NE					
CG4312 FBgn00 02869 MtnB BL51731 HMC0 3286 NE NE SE	CG9492		CG9492	BL51725			NE					
CG7939	CG4312	FBgn00	MtnB		HMC0							
CG1034	CG7939	FBgn00	RpL32		HMC0							
5 27562 BL51751 3302 NE Image: color of the color of	CG1034		CG10345	BL51746		Α	E-L	E			E	
9 37698	5	27562		BL51751	3302		NE	1				
ST765			CG16//9	BL51756			NE					
CG8333 FBgn00 02735 HLHmgamma BL51762 3315 NE STEP NE NE	CG9458		CG9458	BL51757			NE					
CG3228 FBgn00 1 S2281 CG32281 BL51764 3318 NE ME ME <td>CG8333</td> <td>FBgn00</td> <td>HLHmgamma</td> <td></td> <td>HMC0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CG8333	FBgn00	HLHmgamma		HMC0							
CG7524 FBgn02 62733 Src64B BL51772 3327 NE NE ME		FBgn00	CG32281		HMC0							
62733 BL51772 3327 NE ME			Src64B	BL51764			NE	+				
62519 BL51774 3329 A ME ME ME CG5796 FBgn00 20018 Ppox BL51777 HMC0 3332 NE NE </td <td></td> <td>62733</td> <td></td> <td>BL51772</td> <td>3327</td> <td></td> <td>NE</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		62733		BL51772	3327		NE	1				
20018		62519		BL51774	3329	Α	ME	ME			ME	
10051 BL51795 3351 NE Image: Comparison of the comp	CG5796		Ppox	BL51777			NE					
CG3944 FBgn00 ND23 HMC0 ND23 NE NE CG9741 FBgn00 Dhod ND47 NE NE NE NE CG1520 FBgn00 WASp HMC0	CG1063		Itp-r83A	BL51795			NE					
CG9741 FBgn00 Dhod BL51801 3359 NE CG1520 FBgn00 WASp HMC0	CG3944	FBgn00	ND23		HMC0			1				
CG1520 FBgn00 WASp HMC0	CG9741		Dhod	BL51797			NE	+				
	CG1520		WASn	BL51801			NE	1				
	CG1320		wasp	BL51802		А	ME	ME			Е	

CG6303	FBgn00 37808	Bruce	BL51814	HMC0 3385		NE				
CG4225	FBgn02	Dscam2		HMC0						
6 CG5018	63218 FBgn02	l(3)72Dn	BL51839	3411 HMC0		NE				
	63605		BL51907	3482		NE				
CG1092	FBgn00 37228	CG1092	BL51912	HMS0 3370		NE				
CG7948	FBgn00 03479	spn-A	BL51926	HMC0 3364		NE				
CG1764	FBgn00	Pglym87		НМС0						
5 CG3237	11270 FBgn00	CG32374	BL51939	3367 HMC0		NE				
4 CG4234	52374 FBgn02	Pka-R1	BL52870	3608 HMC0		NE				
1	59243		BL52906	3646		NE				
CG5276	FBgn00 37900	CG5276	BL52918	HMC0 3658		NE				
CG6584	FBgn00 37847	SelR	BL52919	HMC0 3659		NE				
CG1172	FBgn00	CG11722		НМС0						
2 CG1041	37777 FBgn00	CG1041	BL52920	3660 HMC0		NE				
CG6147	37440 FBgn00	Tsc1	BL52921	3661 HMC0		NE				
	26317		BL52931	3672		NE				
CG1032 8	FBgn00 15520	nonA-l	BL52934	HMC0 3676		NE				
CG1274	FBgn00	Hrb87F		HMC0						
9 CG5836	04237 FBgn00	SF1	BL52937	3679 HMC0		NE				
CG1471	25571 FBgn00	CG14715	BL52938	3680 HMJ2		NE				
5	37930		BL52940	1596		NE				
CG4307 9	FBgn02 62509	nrm	BL52945	HMJ2 1612		NE				
CG3248 8	FBgn00 52488	CG32488	BL52949	HMJ2 1618		NE				
CG4254	FBgn02	mp		HMJ2						
3 CG2911	60660 FBgn00	CG2911	BL52981	1668 HMJ2		NE				
CG1451	37350 FBgn00	yemalpha	BL52998	1713 HMJ2		NE				
3	05596		BL53000	1716		NE				
CG4257 6	FBgn02 61526	NT1	BL53003	HMJ2 1720		NE				
CG1469 4	FBgn00 37845	CG14694	BL53012	HMJ2 1734		NE				
CG1470	FBgn00	CG14708		HMJ2						
8 CG3442	37910 FBgn00	CG34420	BL53020	1743 HMJ2		NE				
0 CG1258	85449	CG12582	BL53032	1758 HMC0		NE				
2	FBgn00 37215		BL53272	3488		NE				
CG1738 7	FBgn00 37276	CG17387	BL53273	HMC0 3489		NE				
CG1236	FBgn00 37370	CG1236	BL53274	HMC0 3490	^	ME	ME		ME	
CG1009	FBgn00	CG10092		HMC0	A		IVIL		IVIL	
2 CG9613	37526 FBgn00	Coq2	BL53275	3491 HMC0		NE				
	37574	·	BL53276	3492		NE				
CG9836	FBgn00 37637	CG9836	BL53277	HMC0 3493		NE				
CG9361	FBgn00 37690	Task7	BL53279	HMC0 3495		NE				
CG9362	FBgn00	GstZ1		HMC0						
CG6666	37696 FBgn00	SdhC	BL53280	3496 HMC0		NE				
	37873		BL53281	3497		NE				

			1		ı — —	1	1	1	1	1	1
CG8534	FBgn00 37761	CG8534	BL53299	HMC0 3518		NE					
CG1800	FBgn00	beag		НМС0							
5 CG8318	37660 FBgn00	Nf1	BL53306	3533 HMC0		NE					
	15269		BL53322	3551		NE					
CG1315	FBgn00 26565	CG1315	BL53323	HMC0 3552		NE					
CG5161	FBgn02 63604	l(3)72Dh	BL53328	HMC0 3557		NE					
CG4649	FBgn00 22359	Sodh-2	BL53353	HMC0 3582		NE					
CG1411	FBgn00 23023	CRMP	BL53354	HMC0 3583		NE					
CG7535	FBgn00	GluClalpha		НМС0							
CG1464	24963 FBgn00	CG14642	BL53356	3585 HMC0	(ME	NE					
2	37222		BL53365	3594	POSSIBL E)	NE					
CG1740	FBgn00	CG17404		НМС0	-,						
4 CG1794	38001 ERan00	CG17944	BL53370	3599 HMJ2		NE					
4	FBgn00 37500		BL53690	1673		NE					
CG8023	FBgn02 65089	eIF4E-3	BL53880	HMJ2 1195		NE					
CG1037	FBgn00 28684	Tbp-1	BL53886	HMJ2 1204	^	E	E			E	
0 CG3103	FBgn00	ca	DL33880	HMJ2	A	_ E	E			E	
7 CG1472	00247	HisCl1	BL53888	1206 HMJ2	А	ME	ME			E	
3	FBgn00 37950		BL53932	1280		NE					
CG1690 5	FBgn00 37762	eloF	BL53947	HMJ2 1310		NE					
CG3215 9	FBgn02 61799	dsx-c73A	BL53964	HMJ2 1346		NE					
CG7558	FBgn02 62716	Arp3	BL53972	HMJ2 1357		NE					
CG1242	FBgn00	CG12420		HMJ2							
0 CG1128	37797 FBgn00	snky	BL53976	1365 HMJ2		NE					
1	86916	·	BL53986	1388		NE					
CG4233 3	FBgn02 61090	Sytbeta	BL53996	HMJ2 1400		NE					
CG9636	FBgn00 37556	CG9636	BL54009	HMJ2 1432		NE					
CG3223	FBgn00	CG32238		HMJ2							
8 CG5245	52238 FBgn00	CG5245	BL54016	1441 HMJ2		NE					
	38047		BL54036	1479		NE					
CG1003 8	FBgn00 38013	CG10038	BL54039	HMJ2 1482		NE					
CG9285	FBgn00 00454	Dip-B	BL54045	HMJ2 1488		NE					
CG3370 3	FBgn00 53703	CG33703	BL54054	HMS0 3715		NE					
CG3925	FBgn00 37780	CG3925	BL54467	HMC0 3735		NE					
CG3238	FBgn00	sphinx2		HMS0							
2 CG4264	52382 FBgn00	Hsc70-4	BL54468	3736 HMJ2		NE					
	01219		BL54810	1529	ME	ME	NE	S	E-L		NE
CG1331	FBgn00 04778	Ccp84Af	BL54821	HMJ2 1540		NE					
CG1559 6	FBgn00 37418	Osi11	BL54839	HMJ2 1558		NE					
CG3222	FBgn00	Csas		HMJ2							
0 CG7642	52220 FBgn00	ry	BL54843	1580 HMJ2		NE					
	03308		BL54845	1582		NE					

						,	1				
CG1331 8	FBgn00 37627	CG13318	BL55143	HMC0 3739		NE					
CG2098	FBgn00 24891	ferrochelatase	BL55146	HMC0 3757		NE					
CG5099	FBgn00 11666	msi	BL55152	HMC0 3808		NE					
CG8464	FBgn00 38233	HtrA2	BL55165	HMC0 3843		NE					
CG1196 3	FBgn00 37643	skap	BL55168	HMC0 3847		NE					
CG7878	FBgn00 37549	CG7878	BL55170	HMC0 3850		NE					
CG3593	FBgn00 03257	r-l	BL55183	HMC0 3871		NE					
CG9631	FBgn00 27563	CG9631	BL55185	HMC0 3879		NE					
CG9649	FBgn00 38211	CG9649	BL55200	HMC0 3899		NE					
CG5808	FBgn00 27617	CG5808	BL55208	HMC0 3925		NE					
CG9652	FBgn00 11582	DopR	BL55239	HMC0 2344		NE NE					
CG9684	FBgn00 37583	CG9684	BL55259	HMC0 3946		NE					
CG9495	FBgn00 03334	Scm	BL55278	HMC0 3965		NE					
CG6913	FBgn00 37937	Fer3	BL55300	HMC0 3987		NE					
CG7672	FBgn00 04618	gl	BL55301	HMC0 3988	LacZ-S	MS		S	MS		S
CG8346	FBgn00 02609	HLHm3	BL55301	HMC0 3989	Lucz 3	NE			1015		,
CG6054	FBgn00 05355	Su(fu)	BL55315	HMC0 4002		NE					
CG3671	FBgn00 11672	MvI	BL55316	HMC0 4003		NE					
CG6386	FBgn00 27889	ball	BL55330	HMC0 4017		NE					
CG3316 0	FBgn00 53160	CG33160	BL55341	HMC0 4028		NE					
CG3505	FBgn00 38250	CG3505	BL55342	HMC0 4029		NE					
CG2108	FBgn00 37364	Rab23	BL55352	HMC0 4039		NE					
CG3243 8	FBgn00 52438	Smc5	BL55371	HMC0 4059		NE					
CG3150 9	FBgn00 28396	TotA	BL55378	HMC0 4066		NE					
CG1361	FBgn00 00094	Anp	BL55385	HMC0 4073		NE					
CG3325	FBgn00 03480	spn-B	BL55403	HMC0 4091		NE					
CG1069 3	FBgn00 03429	slo	BL55405	HMC0 4093		NE					
CG3238	FBgn00 52383	sphinx1	BL55601	HMC0 3898		NE					
CG3305 2	FBgn00 53052	CG33052	BL55610	HMC0 3748	А	E	ME			E	
CG9363	FBgn00 37697	CG9363	BL55634	HMC0 3781		NE					
CG5215	FBgn02 63603	Zn72D	BL55635	HMC0 3782		NE					
CG3352 2	FBgn02 61872	scaf6	BL55644	HMC0 3793		NE					
CG1109 4	FBgn00 00504	dsx	BL55646	HMC0 3795		NE					
CG3100 0	FBgn00 11224	heph	BL55655	HMC0 3805		NE					
CG6354	FBgn00 04903	Rb97D	BL55662	HMC0 3817		NE					
L	07303	ı	DE33002	3017	l	INC	1	1	1	ı	I.

			1	•	•			•		,	,
CG9776	FBgn00 27866	CG9776	BL55673	HMC0 3831		NE					
CG1438	FBgn00	Cyp4c3		HMC0							
CG3305	15032 FBgn00	CG33057	BL55687	3873 HMC0		NE					
7	53057		BL55699	3914		NE					
CG1718 7	FBgn00 37882	CG17187	BL55702	HMC0 3923		NE					
CG7887	FBgn00 04622	Takr99D	BL55732	HMC0 3749		NE					
CG1166	FBgn00	CG11668		нмс0							
8 CG1167	38113 FBgn00	CG11670	BL55733	3756 HMC0		NE					
0 CG3315	38114 FBgn00	CG33159	BL55738	3877 HMC0		NE					
9	53159		BL55739	3893	Α	ME	ME			Е	
CG8383	FBgn00 37737	Pnn	BL55743	HMC0 3928		NE					
CG3227 7	FBgn00 52277	CG32277	BL55857	HMC0 3895		NE					
CG3104	FBgn00	gukh		HMC0							
3 CG1206	26239 FBgn00	Pka-C2	BL55858	3681 HMC0		NE					
6 CG1024	00274 FBgn00	Cad96Ca	BL55859	4129 HMC0		NE		1			
4	22800		BL55877	4150		NE					
CG6011	FBgn00 27784	Prp18	BL55915	HMC0 4201		NE					
CG3326	FBgn00	CG33263		HMC0							
3 CG3327	53263 FBgn00	CG33276	BL55954	4243 HMC0		NE					
6 CG1464	53276 FBgn00	TwdlG	BL55955	4244 HMC0		NE					
3	37225		BL55975	4271		NE					
CG5207	FBgn00 37889	scpr-A	BL55976	HMC0 4272		NE					
CG3230 4	FBgn00 52304	obst-I	BL55998	HMC0 4294		NE					
CG3231	FBgn00	CG32313	BL55999	HMC0 4295		NE					
3 CG3132	52313 FBgn00	Aats-met	BL55999	HMC0		NE					
2 CG8956	27083 FBgn00	Ahcy89E	BL56005	4301 HMC0		NE					
	15011	·	BL56009	4305		NE					
CG8327	FBgn00 37723	SpdS	BL56011	HMC0 4307		NE					
CG5192	FBgn00 19940	Rh6	BL56029	HMC0 4325		NE					
CG6474	FBgn00	e(y)1		HMS0							
CG3923	00617 FBgn00	Exp6	BL32345	0336 HMS0		NE		+			
CG7073	01337 FBgn00	sar1	BL32347	0338 HMS0		NE					1
	38947		BL32364	0355	Α	E-L	E-L			E-L	
CG1250	FBgn02 62125	sec23	BL32365	HMS0 0356		NE					
CG6987	FBgn00 40284	SF2	BL32367	HMS0 0358	MS	MS		S	S		NE
CG7660	FBgn02	Pxt		HMS0				1	-		
CG5745	61987 FBgn00	CG5745	BL32382	0374 HMS0		NE				 	
CG3354	38855 FBgn02	gfzf	BL32394	0388 HMS0		NE					-
6	50732		BL32399	0394		NE				<u> </u>	
CG4147	FBgn00 01218	Hsc70-3	BL32402	HMS0 0397	А	E	E			E	
CG7050	FBgn00 38975	Nrx-1	BL32408	HMS0 0403		NE					
CG4574	FBgn00	Plc21C		HMS0				†			
	04611		BL32438	0436		NE					

	1	1	1		1		_	1	1	_	
CG4235 8	FBgn02 59704	CG42358	BL32440	HMS0 0438		NE					
CG1710	FBgn00 39904	Hcf	BL32453	HMS0 0452	E	E	NE	NE	ME		NE
CG5121	FBgn00	MED28		HMS0	E		INE	INE	IVIE		INE
CG4448	39337 FBgn00	wda	BL32459	0458 HMS0		NE					
CG3111	39067 FBgn00	HdacX	BL32469	0469 HMS0		NE					
9 CG5085	51119 FBgn00	Sirt2	BL32480	0483 HMS0		NE					
	38788		BL32482	0485		NE					
CG1130 5	FBgn00 39631	Sirt7	BL32483	HMS0 0486		NE					
CG1464	FBgn00 05558	ey	BL32486	HMS0 0489		NE					
CG3115 6	FBgn00 51156	CG31156	BL32495	HMS0 0498		NE					
CG1137 5	FBgn00 39227	polybromo	BL32840	HMS0 0531		NE					
CG4562	FBgn00 38740	CG4562	BL32842	HMS0 0623		NE					
CG1569	FBgn00	RpS30		HMS0							
7 CG4548	38834 FBgn00	XNP	BL32851	0636 HMS0	Α	E	E	1		E	
CG5874	39338 FBgn00	Nelf-A	BL32894	0683 HMS0		NE					
CG1976	38872 FBgn00	RhoGAP100F	BL32897	0686 HMS0		NE					
	39883		BL32946	0740		NE					
CG6898	FBgn00 38412	Zip3	BL32954	HMS0 0748		NE					
CG1861 6	FBgn02 60444	CG18616	BL32957	HMS0 0751		NE					
CG3319 3	FBgn00 53193	sav	BL32965	HMS0 0760		NE					
CG2152	FBgn00 86768	Pcmt	BL32971	HMS0 0768		NE					
CG5834	FBgn00 51354	Hsp70Bbb	BL33000	HMS0 0800		NE					
CG1185	FBgn00	Nup358		HMS0							
6 CG7940	39302 FBgn00	Arp5	BL33003	0803 HMS0		NE					
CG1081	38576 FBgn00	elF4G	BL33009	0809 HMS0		NE					
1 CG1450	23213 FBgn00	CG14507	BL33049	0762 HMS0	ME	ME	NE	ME	MS	NE	NE
7 CG3309	39655 FBgn00	CG33095	BL33345	0211 HMS0		NE		1			
5	53095		BL33352	0223		NE					
CG5646	FBgn00 39525	CG5646	BL33360	HMS0 0232		NE					
CG4231 2	FBgn02 59212	cno	BL33367	HMS0 0239	А	E	E			E	
CG1639	FBgn00 01491	l(1)10Bb	BL33380	HMS0 0255		NE					
CG4314 0	FBgn02 62614	pyd	BL33386	HMS0 0263		NE					
CG1106	FBgn00	Rfabg		HMS0							
4 CG4755	87002 FBgn00	RhoGAP92B	BL33388	0265 HMS0		NE		1			
CG3348	38747 FBgn00	dpr9	BL33391	0268 HMS0		NE	1	+			
5 CG4231	38282 FBgn02	RhoGAP102A	BL33409	0288 HMS0		NE	1	1			
6 CG4267	59216 FBgn02		BL33425	0309 HMS0		NE		<u> </u>			
0	61552	ps	BL33426	0310		NE					
CG3954	FBgn00 00382	CSW	BL33619	HMS0 0012	А	ME	ME			E	
		•	•		•	•	•	•	•	•	•

CG3218	FBgn00 00810	fs(1)K10	BL33630	HMS0 0027		NE				
CG6946	FBgn02 59139	glo	BL33668	HMS0 0079		NE				
CG3435	FBgn00	CG34354		HMS0						
4 CG1118	85383 FBgn00	toy	BL33674	0538 HMS0		NE				
6	19650	•	BL33679	0544		NE				
CG5383	FBgn00 38948	PSR	BL33700	HMS0 0576		NE				
CG3121 2	FBgn00 86613	Ino80	BL33708	HMS0 0586		NE				
CG1224	FBgn00	CG12241		HMS0						
1 CG5451	38304 FBgn00	Smu1	BL33729	0612 HMS0		NE				
CG1458	38666 FBgn00	CG1458	BL33739	1075 HMS0		NE				
	62442		BL33749	1088		NE				
CG1487	FBgn00 40206	krz	BL33880	HMS0 0817		NE				
CG7922	FBgn00 38889	CG7922	BL33889	HMS0 0827		NE				
CG3102	FBgn00	PH4alphaEFB		HMS0						
2 CG1670	39776 FBgn00	SPE	BL33896	0835 HMS0		NE				
5 CG1216	39102 FBgn02	CG12163	BL33926	0873 HMS0	Α	E	E		Е	
3	60462		BL33955	0910		NE				
CG1184 8	FBgn00 39282	Bili	BL33956	HMS0 0911		NE				
CG6990	FBgn00 39019	HP1c	BL33962	HMS0 0919		NE				
CG1081	FBgn00	Rheb		HMS0						
CG1042	41191 FBgn00	CG10420	BL33966	0923 HMS0		NE				
0 CG3122	39296 FBgn00	CG31224	BL33968	0925 HMS0		NE				
4	51224		BL33969	0926		NE				
CG1800	FBgn00 39861	pasha	BL33972	HMS0 0929		NE				
CG3142 6	FBgn00 41588	ligatin/eIF2D	BL33995	HMS0 0958		NE				
CG1152	FBgn00	RpL6	BL34004	HMS0 0967			F.,		-	
2 CG1223	39857 FBgn00	car		HMS0	A	E-L	E-L		E	
0 CG4976	00257 FBgn00	Mes-4	BL34007	0972 HMS0		NE				
	39559		BL34033	1004		NE				
CG4963	FBgn00 39561	mfrn	BL34038	HMS0 1013		NE				
CG4236	FBgn02 63979	Caf1	BL34069	HMS0 0051		NE				
CG3665	FBgn00 00635	Fas2		HMS0 1098						
CG9746	FBgn02	ird1	BL34084	HMS0		NE				
CG1973	60935 FBgn02	yata	BL34092	0908 HMS0		NE		-		
CG4572	60990	CG4572	BL34100	1005 HMS0		NE				
	FBgn00 38738		BL34337	1325		NE				
CG2241	FBgn00 39788	Rpt6R	BL34342	HMS0 1330		NE				
CG5520	FBgn00 39562	Gp93	BL34346	HMS0 1334		NE				
CG3590	FBgn00	CG3590		HMS0						
CG6057	38467 FBgn00	SMC1	BL34347	1336 HMS0		NE				-
	40283 FBgn00		BL34351	1340		NE				
CG5706	FBgn00 39175	CG5706	BL34356	HMS0 1345		NE				
			-				-		 	-

CG3103	FBgn00 39705	CG31033	BL34358	HMS0 1347		NE					
CG1000	FBgn02	Tango9	BL34338	HMS0		INL					
7 CG3104	60744 FBgn02	ana	BL34364	1353 HMS0		NE					
8 8	64324	spg	BL34367	1356		NE					
CG6560	FBgn00 38916	dnd	BL34383	HMS0 1373		NE					
CG7719	FBgn02 60399	gwl	BL34525	HMS0 0834		NE					
CG5527	FBgn00	CG5527		HMS0							
CG3509	39564 FBgn00	CG3509	BL34531	1076 HMS0		NE					
CG4510	38252 FBgn00	Surf6	BL34548	1020 HMS0		NE					
CG6015	38746 FBgn00	CG6015	BL34563	1035 HMS0		NE					
	38927		BL34565	1037	А	E	E			E	
CG3310 6	FBgn00 43884	mask	BL34571	HMS0 1045		NE					
CG4278 8	FBgn02 61859	CG42788	BL34594	HMS0 1068		NE					
CG9617	FBgn02	Sgt1		HMS0							
CG4332	60939 FBgn02	CG43320	BL34605	0566 HMS0		NE					
0 CG1862	63025 FBgn00	Ephrin	BL34606	0577 HMS0		NE					
	40324		BL34614	1289		NE					
CG7952	FBgn00 01150	gt	BL34631	HMS0 1105		NE					
CG1027 8	FBgn00 38391	GATAe	BL34641	HMS0 1116		NE					
CG1901	FBgn00 39914	mav	BL34650	HMS0 1125		NE					
CG3139	FBgn00	MED7		HMS0							NE
0 CG7957	51390 FBgn00	MED17	BL34663	1140 HMS0	S	S		S	S		NE
CG6921	38578 FBgn02	bond	BL34664	1141 HMS0	S	S		S	MS		NE
CG4401	60942 FBgn02	Hph	BL34676	1154 HMS0		NE					
5	64785		BL34717	1196		NE					
CG3125 1	FBgn00 51251	CG31251	BL34721	HMS0 1200		NE					
CG7700	FBgn00 44871	Gos28	BL34724	HMS0 1203		NE					
CG1729	FBgn02	SNF4Agamma		HMS0							
9 CG9768	64357 FBgn02	hkb	BL34726	1205 HMS0		NE					
	61434		BL34736	1216		NE					
CG1345	FBgn00 39580	Gfat2	BL34740	HMS0 1220		NE	<u></u> _				
CG9012	FBgn00 00319	Chc	BL34742	HMS0 1222		NE					
CG4266	FBgn02	CG42668		HMS0							
8 CG6892	61550 FBgn00	Ets96B	BL34743	1223 HMS0		NE					
CG1198	39225 FBgn00	CG11985	BL34783	0092 HMS0		NE					
5 CG5441	40534 FBgn02	tx	BL34788	0097 HMS0	E	E	NE	ME	ME		NE
	63118 FBgn00		BL34792	0101		NE					
CG3199 2	51992	gw	BL34796	HMS0 0105	Α	Е	E			E	
CG1200 0	FBgn02 50746	Prosbeta7	BL34812	HMS0 0122	А	E-L	E			E	
CG1229	FBgn00 38928	BG4	BL34813	HMS0 0123		NE					
CG5454	FBgn02	snRNP-U1-C		HMS0							
	61792		BL34822	0137		NE					

						,	,	,			
CG1694 1	FBgn00 38464	CG16941	BL34840	HMS0 0157	E	E	NE	NE	ME		NE
CG1192 0	FBgn00 39274	CG11920	BL34860	HMS0 0178		NE	INC.	145	IVIE		IVE.
CG4376	FBgn00 00667	Actn	BL34874	HMS0 0193		NE					
CG4109	FBgn00 39955	CG41099	BL34883	HMS0 1228		NE					
CG1834	FBgn02	CG18347		HMS0 1235							
7 CG8933	60743 FBgn00	exd	BL34890	HMS0		NE					
CG1233	00611 FBgn00	Atg8b	BL34897	1242 HMS0		NE					
4 CG1618	38539 FBgn00	comt/NSF	BL34900	1245 HMS0		NE					
CG1450	00346 FBgn00	CG14508	BL34913	1261 HMS0		NE					
8 CG1894	39651 FBgn00	CG1894	BL34916	1264 HMS0		NE					
CG1385	39585 FBgn00	mats	BL34925	1274 HMS0		NE					
2 CG4223	38965 FBgn02	CG42233	BL34959	0475 HMS0		NE					
3 CG1157	50755 FBgn00	arm	BL34986	1396 HMS0		NE					
9 CG3247	00117 FBgn00	dys	BL35004	1414 HMS0	Α	E	E			E	
4 CG4225	39411 FBgn02	lqfR	BL35010	1420 HMS0		NE					
0 CG6688	61279 FBgn00	CG6688	BL35013	1423 HMS0		NE					
CG1922	39038 FBgn00	onecut	BL35021	1434 HMS0		NE					
CG3421	28996 FBgn00	RhoGAP93B	BL35025	1438 HMS0		NE					
CG3100	38853 FBgn00	Cad99C	BL35027	1440 HMS0		NE					
9 CG2919	39709 FBgn02	asl	BL35037	1451 HMS0		NE					
CG1054	61004 FBgn00	Gbeta13F	BL35039	1453 HMS0		NE					
5 CG1666	01105 FBgn00	Hlc	BL35041	1455 HMS0		NE					
	01565		BL35308	1424		NE					
CG4254 2	FBgn02 60659	CG42542	BL35736	HMS0 1478		NE					
CG5429	FBgn02 64325	Atg6	BL35741	HMS0 1483		NE					
CG5466	FBgn00 38815	CG5466	BL35758	HMS0 1504		NE					
CG1489 2	FBgn00 38447	CG14892	BL35766	HMS0 1515		NE					
CG9743	FBgn00 39756	CG9743	BL36675	HMS0 1563		NE					
CG7929	FBgn00 41102	ocn	BL36681	HMS0 1569	А	E	ME			E	
CG1042 3	FBgn00 39300	RpS27	BL36692	HMS0 1581		NE					
CG1518 0	FBgn02 50846	glob2	BL36693	HMS0 1582		NE					
CG5083	FBgn00 38390	Rbf2	BL36697	HMS0 1586		NE					
CG1486 6	FBgn00 38315	CG14866	BL36706	HMS0 1596		NE					
CG3201 8	FBgn00 11642	Zyx	BL36716	HMS0 1606		NE					
CG6963	FBgn02 50823	gish	BL36719	HMS0 1609		NE					
CG3106 0	FBgn00 46886	Gr98c	BL36735	HMS0 1626		NE					
	70000	1	0130733	1020	l	146	1	1	1	1	ı

CG6968 Fig. 100 A												
CG5518 Fign02 Feb Fign03 Feb Fign03 Feb Fign04 Fign05 Fign05 Fign06 Fign06 Fign06 Fign07 F	CG6668		atl	D126726			NE					
61384	CG4583		Ire1	BL36/36			NE					
S 15 40	00 1505			BL36743			NE					
CG1512 Fign02 CG1533 BLB576 3016 NE		-	CG31140									
S998 B.18.6765 3016 NE			CWO	BL36746			NE					
3 39768 B.18.761 3022 NE			CWO	BL36756			NE					
CG1512 FBgr00 CG15334 B136762 3023 NE			CG15533									
A 39769			CC15534	BL36761			NE					
GG1472 Fign00 CDsse BL36764 MMS0 NE			CG15534	BL36762			NE					
GG955 F88900 EloA BL37017 1255 LacZ-5 S S S MS		FBgn00	CDase									
Section			51.4	BL36764			NE					
GGSB87 FBBR000 Sesat1 BL37512 MMS0 SB 688 S	CG6/55		EloA	BI 37017		Lac7-S	S		S	s		MS
GGS2412 FBpr00 GG34127 FBpr00 GG34127 FBpr00 GG34127 FBpr00 GG34127 FBpr00 GG34139 BL38264 1709 NE FBpr00 GG34139 BL38265 1710 NE FBpr00 GG34139 GG34127 FBpr00 GG34139 GG34127 FBpr00 GG34139 GG34127 FBpr00 GG34139 GG34127 FBpr00 GG34139 G	CG5887		desat1	DL37017		Lucz 3						1413
G3142 G34127 B138252 1966 NE				BL37512			NE					
GG3412 F8gn00 CG34127 R18960 R18975 R18970 R18975 R18970	CG8228	-	Vps45	DISOSES			NE					
Total	CG3412		CG34127	DL30232			IVL					
Section Sect		83963		BL38264	1709		NE					
CG8454 F8gn02 Vps16A			CG34139	DI 202CE			NE					
G1241			Vns16A	BL38265			NE					
CG7467 F8gn02 Osa	600134		VP310/1	BL38271		Α	ME	E			E	
G7467 F8gn02 G1885 B138285 1738 NE	CG9579		AnnX									
G1885	CG7467		063	BL38272			NE					
CG4931 FBgn00 Sra-1 BL38289 1747 NE	CG7407		USa	BL38285			NE					
CG4931 F8gn00 Sra-1 BL8294 1754 NE	CG6637	FBgn02	Isn		HMS0							
CG7670 FBgn00 WRNex0 BL38294 1754 NE	664024		C 1	BL38289			NE					
CG7670	CG4931		Sra-1	BL38294			NE					
CG1189	CG7670		WRNexo									
7 39644 BL38318 1782 NE CG2096 FBgn00 00701 ffW BL38336 1803 NE CG1363 FBgn00 59685 CG13636 HMS0 HMS0 BL38373 NE NE CG6383 FBgn00 59685 Crb HMS0 BL38373 NE NE CG3149 FBgn00 39802 dj-1beta HMS0 BL38378 NE NE CG3114 FBgn00 8 CG31148 BL38379 1848 NE CG5114 FBgn00 339052 CG6733 BL38520 HMS0 BL38527 NE NE CG1811 FBgn00 39702 Vps16B NE NE NE CG525 FBgn00 82831 BL38527 1732 NE NE CG5525 FBgn00 82831 BL38528 1734 NE NE CG5802 FBgn00 50820 BL38938 1771 NE NE CG41490 FBgn00 50820 CG14903 BL38938 HMS0 1866 NE NE CG9623 FBgn00 01250 GB38952 HM				BL38297			NE					
CG2096 FBgn00 00711 flw 00711 BL38336 HMS0 1803 NE CG1363 FBgn00 cG13636 HMS0 NE NE G633 FBgn02 crb HMS0 NE NE CG5349 FBgn00 dJ-1beta BL38373 1842 NE NE CG3144 FBgn00 cG31148 BL38378 1847 NE NE S1148 BL38379 1848 NE NE NE CG5731 FBgn00 CG6733 NG393052 NG68 NE NE NE CG1811 FBgn00 PSG2 NG68 NE NE NE CG3525 FBgn00 NG68 NG68 NE NE NE CG3525 FBgn00 PSG2 NG68 NE NE NE CG5525 FBgn00 PSG2 NG68 NE NE NE CG5802 FBG00 NG69 NG69 NG69 NG69 NG69 NG69 NG69 NG69			CG11897	BI 38318			NF					
CG1363 FBgn00 CG13636 BL38362 1831 NE CG6383 FBgn02 crb HMS0 NE 59685 BL38373 1842 NE CG1349 FBgn00 dj-1beta BL38378 1847 NE CG3114 FBgn00 CG31148 HMS0 NE NE CG6733 FBgn00 CG6733 HMS0 NE NE CG6731 FBgn00 CG6733 HMS0 NE NE CG1811 FBgn00 CG6733 HMS0 NE NE CG1811 FBgn00 Vps16B HMS0 NE NE CG3525 FBgn00 eas HMS0 NE NE NE CG6525 FBgn00 pps HMS0 NE NE <t< td=""><td></td><td></td><td>flw</td><td>DE30310</td><td></td><td></td><td>142</td><td></td><td></td><td></td><td></td><td></td></t<>			flw	DE30310			142					
6 39232 BL38362 1831 NE CG6383 FBgn02 S9685 Crb HMS0 NE S9685 BL38373 1842 NE CG1349 FBgn00 39802 BL38378 1847 NE CG3114 FBgn00 CG31148 BL38379 1848 NE S 51148 BL38379 1848 NE CG6733 FBgn00 CG6733 BL38520 1668 NE CG1811 FBgn00 Vps16B HMS0 NE NE NE CG1811 FBgn00 Vps16B HMS0 NE NE NE CG3525 FBgn00 Ras HMS0 NE NE NE CG5525 FBgn00 Ras HMS0 NE NE NE CG5502 FBgn00 Ras HMS0 NE NE NE CG5802 FBgn00 Ras HMS0 NE NE NE CG5490 FBgn00 Ras HMS0 NE NE NE CG3152 FBgn00 Ras HMS0 NE NE NE CG3152 <t< td=""><td></td><td></td><td></td><td>BL38336</td><td></td><td></td><td>NE</td><td></td><td></td><td></td><td></td><td></td></t<>				BL38336			NE					
CG6383 FBgn02 59685 crb BL38373 1842 NE NE CG1349 FBgn00 dj-1beta 39802 HMS0 HMS0 NE NE NE CG3114 FBgn00 CG31148 BL38378 1847 NE NE NE CG6731 FBgn00 CG6733 HMS0 NE NE NE CG6733 FBgn00 CG6733 HMS0 NE NE NE CG1811 FBgn00 Ng00 CG6733 HMS0 NE NE NE CG1811 FBgn00 Ng00 CG6733 HMS0 NE NE NE CG3525 FBgn00 Ng00 CG1880 HMS0 NE NE NE CG3525 FBgn00 Pps HMS0 Ng0 Ng00 Ng0 Ng0 Ng0 Ng0 Ng0 Ng0 Ng0 N			CG13636	DI 20262			NE					
CG1349 FBgn00 39802 dj-1beta 39802 BL38378 1847 NE CG3114 FBgn00 5 51148 BL38379 1848 NE S CG6733 FBgn00 2 7 51148 BL38520 1668 NE S CG6733 FBgn00 39052 BL38520 1668 NE S CG1811 FBgn00 2 7 732 BL38527 1732 NE S CG3525 FBgn00 6 82831 BL38528 1734 NE S CG6525 FBgn00 7 82831 BL38529 1741 NE S CG5802 FBgn00 820 BL38938 1771 NE S CG1490 FBgn00 7 50820 BL38938 1771 NE S CG3152 FBgn00 7 50820 BL38949 1863 NE S CG3152 BL38952 1866 NE S S CG3152 BL38952 1866 NE S S CG3150 FBgn00 7 7 88 FBgn00 7 88 FBgn00 7 88 <			crb	DL36302			IVL					
CG3114 FBgn00 CG31148 BL38378 1847 NE				BL38373			NE					
CG3114 FBgn00 CG31148 BL38379 1848 NE CG6733 FBgn00 CG6733 HMS0 NE 39052 BL38520 1668 NE CG1811 FBgn00 Vps16B HMS0 NE CG3525 FBgn00 eas HMS0 NE CG525 FBgn00 pps HMS0 NE CG6525 FBgn00 pps HMS0 NE CG5802 FBgn00 GG5802 HMS0 NE CG1490 FBgn00 CG14903 HMS0 NE 3 38446 BL38949 1863 NE CG9152 FBgn00 CG31522 BL38952 1866 CG9623 FBgn00 If HMS0 NE CG9623 FBgn00 If HMS0 NE CG1500 FBgn00 If HMS0 NE CG31414 BL38975 1891 NE CG5798 FBgn00 Ubpy HMS0	CG1349	-	dj-1beta	DI 20270			NE					
8 51148 BL38379 1848 NE CG6733 FBgn00 CG6733 BL38520 1668 NE CG1811 FBgn00 Vps16B HMS0 NE 2 39702 BL38527 1732 NE CG3525 FBgn00 eas HMS0 NE CG6525 FBgn00 pps HMS0 NE CG5802 FBgn00 BL38529 1741 NE CG5802 FBgn00 CG5802 HMS0 NE CG1490 FBgn00 CG14903 HMS0 NE CG3152 FBgn00 CG31522 HMS0 NE CG3152 FBgn00 CG31522 HMS0 NE CG9623 FBgn00 If HMS0 NE CG3150 FBgn00 FW HMS0 NE CG31414 HMS0 NE NE CG3798 FBgn00 Ubpy HMS0 NE	CG3114		CG31148	BL38378			INE					
Section Sect	8			BL38379			NE					
CG1811 FBgn00 2 39702 Vps16B BL38527 1732 NE CG3525 FBgn00 00536 eas BL38528 1734 NE CG6525 FBgn00 pps 82831 HMS0 BL38528 1741 NE CG5802 FBgn02 50820 HMS0 BL38938 1771 NE CG1490 FBgn00 CG14903 HMS0 BL38949 1863 NE CG3152 FBgn00 CG31522 HMS0 BL38949 1866 NE CG9623 FBgn00 FBgn00 of D1250 If HMS0 BL38958 1872 NE CG1500 FBgn00 of D1083 HMS0 BL38975 1891 NE CG3141 FBgn00 cG31414 HMS0 HMS0 HMS0 HMS0 HMS0 HMS0 HMS0 NE CG5798 FBgn00 Ubpy HMS0 HMS0 HMS0 HMS0 HMS0 HMS0 HMS0 NE	CG6733	-	CG6733	D120520		_	NE					
2 39702 BL38527 1732 NE CG3525 FBgn00 o0536 BL38528 1734 NE CG6525 FBgn00 pps sex sex sex sex sex sex sex sex sex se	CG1811		Vps16B	BL38520		1	NE					
00536 BL38528 1734 NE CG6525 FBgn00 82831 pps BL38529 HMS0 1741 NE CG5802 FBgn02 50820 CG5802 BL38938 HMS0 1771 NE CG1490 FBgn00 3 38446 CG14903 BL38949 NE CG3152 FBgn00 2 51522 HMS0 BL38952 NE CG9623 FBgn00 01250 If BL38958 HMS0 BL38958 NE CG3141 FBgn00 01083 FW BL38977 NE CG3141 FBgn00 51414 HMS0 BL38977 NE CG5798 FBgn00 FBgn00 Ubpy HMS0 HMS0 NE NE NE	2	39702	P	BL38527	1732		NE					
CG6525 FBgn00 82831 pps BL38529 HMS0 1741 NE CG5802 FBgn02 50820 CG5802 BL38938 HMS0 1771 NE CG1490 FBgn00 3 3 38446 CG14903 BL38949 HMS0 1863 NE CG3152 FBgn00 2 51522 CG31522 BL38952 HMS0 1866 NE CG9623 FBgn00 01250 If BL38958 HMS0 1872 NE CG1500 FBgn00 01083 FW BL38975 HMS0 1891 NE CG3141 FBgn00 4 51414 CG31414 BL38977 HMS0 1893 NE CG5798 FBgn00 Ubpy Ubpy HMS0 HMS0 NE	CG3525		eas	D126=25								
82831 BL38529 1741 NE CG5802 FBgn02 S0820 BL38938 1771 NE CG1490 FBgn00 CG14903 BL38949 1863 NE 3 38446 BL38949 1863 NE CG3152 FBgn00 CG31522 HMS0 NE 2 51522 BL38952 1866 NE CG9623 FBgn00 FBgn00 FW HMS0 FW NE CG1500 FBgn00 FW HMS0 FW NE CG3141 FBgn00 FW HMS0 FW NE CG3141 FBgn00 FW HMS0 FW NE CG5798 FBgn00 Ubpy HMS0 NE	CG6525		nns	BL38528		-	NE	1	1	1	1	
50820 BL38938 1771 NE CG1490 FBgn00 CG14903 HMS0 3 38446 BL38949 1863 NE CG3152 FBgn00 CG31522 HMS0 NE CG9623 FBgn00 if HMS0 NE CG1500 FBgn00 fw HMS0 NE CG1500 FBgn00 fw HMS0 NE CG3141 FBgn00 CG31414 HMS0 NE CG5798 FBgn00 Ubpy HMS0 NE	CG0323		pps	BL38529			NE					
CG1490 FBgn00 CG14903 HMS0 3 38446 BL38949 1863 NE CG3152 FBgn00 CG31522 HMS0 NE 2 51522 BL38952 1866 NE CG9623 FBgn00 if HMS0 NE CG1500 FBgn00 fw HMS0 NE CG1500 FBgn00 fw HMS0 NE CG3141 FBgn00 CG31414 HMS0 NE 4 51414 BL38977 1893 NE CG5798 FBgn00 Ubpy HMS0 NE	CG5802		CG5802									
3 38446 BL38949 1863 NE CG3152 FBgn00 CG31522 HMS0 2 51522 BL38952 1866 NE CG9623 FBgn00 if HMS0 01250 BL38958 1872 NE CG1500 FBgn00 fw HMS0 01083 BL38975 1891 NE CG3141 FBgn00 CG31414 HMS0 4 51414 BL38977 1893 NE CG5798 FBgn00 Ubpy HMS0	CG1400		CG14903	BL38938		1	NE	1			1	
CG3152 FBgn00 CG31522 BL38952 1866 NE CG9623 FBgn00 if HMS0 NE CG1500 FBgn00 fw NE CG1500 FBgn00 fw NE CG3141 FBgn00 CG31414 NE 4 51414 BL38977 1893 NE CG5798 FBgn00 Ubpy HMS0 NE			CG14303	BL38949			NE					
CG9623 FBgn00 olif HMS0 olight NE CG1500 FBgn00 olight FW olight HMS0 olight CG1500 FBgn00 olight FW olight HMS0 olight CG3141 FBgn00 olight FBgn00 olight FBgn00 olight 4 51414 BL38977 1893 CG5798 FBgn00 olight Ubpy HMS0 olight	CG3152	FBgn00	CG31522		HMS0							
01250 BL38958 1872 NE CG1500 FBgn00 oloss fw HMS0 oloss 01083 BL38975 1891 NE CG3141 FBgn00 oloss CG31414 oloss HMS0 oloss 4 51414 oloss BL38977 1893 oloss CG5798 FBgn00 oloss Ubpy HMS0 oloss			:4	BL38952			NE			1	-	
CG1500 FBgn00 01083 fw BL38975 HMS0 1891 NE CG3141 FBgn00 4 CG31414 51414 HMS0 BL38977 NE CG5798 FBgn00 Ubpy HMS0 HMS0 NE	CG9623		II.	BL38958			NE					
CG3141 FBgn00 CG31414 HMS0 4 51414 BL38977 1893 NE CG5798 FBgn00 Ubpy HMS0	CG1500	FBgn00	fw				1					
4 51414 BL38977 1893 NE CG5798 FBgn00 Ubpy HMS0				BL38975			NE	1			-	
CG5798 FBgn00 Ubpy HMS0			CG31414	BI 38977			NF					
			Ubpy	523377			146					
				BL38982	1898	Α	ME	ME	S	E	E	

CG1359	FBgn02 60860	Bet5	BL38993	HMS0 1909		NE				
CG1454	FBgn00	vps2		HMS0						
2 CG1907	39402 FBgn00	CG1907	BL38995	1911 HMS0		NE				
	39674		BL38998	1914		NE				
CG4322 6	FBgn02 62871	lute	BL39011	HMS0 1929		NE				
CG7727	FBgn00 00108	Appl	BL39013	HMS0 1931		NE				
CG5483	FBgn00	Lrrk		HMS0						
CG6738	38816 FBgn00	CG6738	BL39019	1937 HMS0		NE				
CG2520	39053 FBgn00	lap	BL39020	1938 HMS0		NE				
	86372		BL39021	1939		NE				
CG1725	FBgn00 01624	dlg1	BL39035	HMS0 1954		NE				
CG1778 5	FBgn00 39188	Golgin84	BL39039	HMS0 1959		NE				
CG6323	FBgn00	Tsp97E		HMS0						
CG1070	39465 FBgn02	Alh	BL39047	1967 HMS0		NE				
CG7156	61238 FBgn00	CG7156	BL39057	1977 HMS0		NE				
	38588		BL39063	1983		NE				
CG1511	FBgn00 25936	Eph	BL39066	HMS0 1986		NE				
CG5055	FBgn00 00163	baz	BL39072	HMS0 1992		NE				
CG4339	FBgn02	scrib		HMS0						
8 CG1711	63289 FBgn00	CG17119	BL39073	1993 HMS0		NE				
9 CG4849	39045 FBgn00	CG4849	BL40823	0213 HMS0		NE				
	39566	CG4849	BL40828	1994		NE				
CG3440 3	FBgn00 85432	pan	BL40848	HMS0 2015		NE				
CG4328 6	FBgn02 62975	cnc	BL40854	HMS0 2021		NE				
CG1187	FBgn00	CG11877		HMS0						
7 CG7331	39636 FBgn02	Atg13	BL40858	2025 HMS0		NE				
CG1906	61108	_	BL40861	2028 HMS0		NE				
	FBgn00 86361	alph	BL40873	2040		NE				
CG2118	FBgn00 39877	CG2118	BL40874	HMS0 2041		NE				
CG3105	FBgn00	tau		HMS0						
7 CG4108	51057 FBgn00	CG41087	BL40875	2042 HMS0		NE				
7 CG4413	69947 FBgn00	trem	BL40876	2043 HMS0		NE				
	38767		BL40881	2049		NE				
CG3114 6	FBgn00 51146	Nlg1	BL40883	HMS0 2131		NE				
CG1746 1	FBgn00 39925	Kif3C	BL40886	HMS0 2134		NE				
CG1425	FBgn00	TwdlQ		HMS0						
0 CG5864	39448 FBgn00	AP-1sigma	BL40893	2141 HMS0		NE				
CG4401	39132 FBgn02	btsz	BL40895	2143 HMS0		NE	1			
2	64754		BL40898	2146		NE				
CG1037 1	FBgn00 39111	Plip	BL40913	HMS0 2161		NE				
CG3678	FBgn00	CG3678		HMS0						
CG3962	38461 FBgn00	Keap1	BL40920	2168 HMS0		NE				
	38475		BL40932	2180	А	E-L	E-L		E	

				•							
CG1022 5	FBgn00 39110	RanBP3	BL40948	HMS0 2196		NE					
CG1743	FBgn00	Gs2		HMS0							
CG1114	01145 FBgn00	mGluRA	BL40949	2197 HMS0		NE					
4	19985	moraru	BL41668	2201		NE					
CG2246	FBgn00 39790	CG2246	BL41694	HMS0 2259		NE					
CG4231 7	FBgn02 62081	Csk	BL41712	HMS0 2277		NE					
CG1341	FBgn00	Rpl12		HMS0							
8 CG5148	38903 FBgn00	cal1	BL41715	2280 HMS0		NE					
	38478		BL41716	2281		NE					
CG1539	FBgn00 82582	tmod	BL41718	HMS0 2283		NE					
CG3333 6	FBgn00 39044	p53	BL41720	HMS0 2286		NE					
CG5407	FBgn00	Sur-8	BL41720	HMS0		INL					
CG6189	38504 FBgn00	l(1)1Bi	BL41883	2299 HMS0		NE					
	01341		BL41916	2313		NE					
CG4815	FBgn00 39568	CG4815	BL41919	HMS0 2316		NE					
CG1359	FBgn00	CG13597		HMS0							
7 CG3134	39124 FBgn00	CG31343	BL41924	2321 HMS0	1	NE					
3	51343		BL41925	2322		NE					
CG1799 8	FBgn02 61988	Gprk2	BL41933	HMS0 2330		NE					
CG3122 1	FBgn00 51221	CG31221	BL41953	HMS0 2350		NE					
CG7794	FBgn00	CG7794		HMS0							
CG1738	38565 FBgn00	CG17380	BL41970	2367 HMS0		NE			1		
0	39077		BL41973	2371	E-L	E-L	NE	MS	E-L		NE
0 CG4203	FBgn00 38300	CG4203	BL41973 BL41976	2371 HMS0 2374	E-L	E-L NE	NE	MS	E-L		NE
0	FBgn00			2371 HMS0	E-L		NE	MS	E-L		NE
0 CG4203 CG4037	FBgn00 38300 FBgn00 58378 FBgn00	CG4203	BL41976 BL41980	2371 HMS0 2374 HMS0 2378 HMS0	E-L	NE NE	NE	MS	E-L		NE
0 CG4203 CG4037 8	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00	CG4203 CG40378	BL41976	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0	E-L	NE	NE	MS	E-L		NE
0 CG4203 CG4037 8 CG4370	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907	CG4203 CG40378 Irk2	BL41976 BL41980	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381	E-L	NE NE	NE	MS	E-L		NE
0 CG4203 CG4037 8 CG4370 CG2041	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890	CG4203 CG40378 Irk2 Igs CG2316	BL41976 BL41980 BL41981	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0 2382	E-L	NE NE NE	NE	MS	E-L		NE
0 CG4203 CG4037 8 CG4370	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00	CG4203 CG40378 Irk2	BL41976 BL41980 BL41981 BL41983	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0	E-L	NE NE NE	NE	MS	E-L		NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00	CG4203 CG40378 Irk2 Igs CG2316	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2398 HMS0		NE NE NE NE NE		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00	CG4203 CG40378 Irk2 Igs CG2316 pic	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2398 HMS0 2442 HMJ0	E-L	NE NE NE NE	NE ME	MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 24913	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2398 HMS0 2442 HMJ0 2057		NE NE NE NE NE		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 24913 FBgn00 38760	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017	2371 HMS0 2374 HMS0 2378 HMS0 2378 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2398 HMS0 2442 HMJ0 2057 HMJ0 2066		NE NE NE NE NE NE E		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 24913 FBgn00	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2398 HMS0 2442 HMJ0 2057		NE NE NE NE NE NE NE NE		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4 CG1150 4 CG1229	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn00 41605 FBgn00 24913 FBgn00 38760 FBgn00 39733 FBgn00	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509	2371 HMS0 2374 HMS0 2374 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0		NE NE NE NE NE NE NE NE NE NE NE NE		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4 CG1150 4 CG1229 0	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 24913 FBgn00 38760 FBgn00 39733 FBgn00 39419 FBgn00	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25 CG11504	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509	2371 HMS0 2374 HMS0 2377 HMS0 2378 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2086 HMJ0		NE NE NE NE NE NE NE NE NE NE NE NE NE N		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4 CG1150 4 CG1229 0	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 24913 FBgn00 38760 FBgn00 39733 FBgn00 39419	CG4203 CG40378 Irk2 Igs CG2316 pic Cpx Actbeta MED25 CG11504 CG12290	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509	2371 HMS0 2374 HMS0 2377 HMS0 2378 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0 2086		NE NE NE NE NE NE NE NE NE NE NE NE		MS	E-L	ME	NE
O CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 O CG1106 2 CG1225 4 CG1229 O CG1519 1 CG4656	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 38760 FBgn00 38760 FBgn00 39733 FBgn00 39419 FBgn00 39419 FBgn00 39055	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25 CG11504 CG12290 e(y)2 Rassf	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509	2371 HMS0 2374 HMS0 2374 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0 2086 HMJ0 2090 HMJ0 2102		NE NE NE NE NE NE NE NE NE NE NE NE NE N		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4 CG1150 4 CG1229 0 CG1519 1 CG4656	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 24913 FBgn00 38760 FBgn00 39733 FBgn00 39419 FBgn00 00618 FBgn00 39055 FBgn00 00826	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25 CG11504 CG12290 e(y)2 Rassf png	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509 BL42520 BL42524	2371 HMS0 2374 HMS0 2374 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0 2086 HMJ0 2090 HMJ0 2102		NE NE NE NE NE NE NE NE NE NE NE NE NE N		MS	E-L	ME	NE
O CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 O CG1106 2 CG1225 4 CG1229 O CG1519 1 CG4656 CG1142	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 24913 FBgn00 38760 FBgn00 39733 FBgn00 39419 FBgn00 39419 FBgn00 39055 FBgn00 00826 FBgn00	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25 CG11504 CG12290 e(y)2 Rassf	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509 BL42520 BL42524	2371 HMS0 2374 HMS0 2374 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0 2074 HMJ0 2086 HMJ0 2090 HMJ0 2102 HMJ0 2104 HMJ0 2104		NE NE NE NE NE NE NE NE NE NE NE NE NE N		MS	E-L	ME	NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4 CG1225 4 CG1229 0 CG1519 1 CG4656 CG142 0	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 41605 FBgn00 38760 FBgn00 38760 FBgn00 39733 FBgn00 39419 FBgn00 39419 FBgn00 39055 FBgn00 00826 FBgn00 45980 FBgn00	CG4203 CG40378 Irk2 Igs CG2316 pic cpx Actbeta MED25 CG11504 CG12290 e(y)2 Rassf png	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509 BL42520 BL42524 BL42534 BL42535	2371 HMS0 2374 HMS0 2378 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2398 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0 2086 HMJ0 2090 HMJ0 2102 HMJ0 2114 HMJ0 2114	A	NE NE NE NE NE NE NE NE NE NE NE NE NE N	ME	MS	E-L		NE
0 CG4203 CG4037 8 CG4370 CG2041 CG2316 CG7769 CG3249 0 CG1106 2 CG1225 4 CG1225 4 CG1229 0 CG1519 1 CG4656 CG142 0	FBgn00 38300 FBgn00 58378 FBgn00 39081 FBgn00 39907 FBgn00 39907 FBgn00 39890 FBgn02 60962 FBgn00 24913 FBgn00 38760 FBgn00 38760 FBgn00 39419 FBgn00 39419 FBgn00 39419 FBgn00 39419 FBgn00 3955 FBgn00 45980	CG4203 CG4203 CG40378 Irk2 Igs CG2316 pic Cpx Actbeta MED25 CG11504 CG12290 e(y)2 Rassf png niki	BL41976 BL41980 BL41981 BL41983 BL41984 BL41997 BL42017 BL42493 BL42501 BL42509 BL42524 BL42534 BL42535	2371 HMS0 2374 HMS0 2374 HMS0 2379 HMS0 2381 HMS0 2382 HMS0 2382 HMS0 2442 HMJ0 2057 HMJ0 2066 HMJ0 2074 HMJ0 2086 HMJ0 2090 HMJ0 2104 HMJ0 2104 HMJ0 2104 HMJ0 2114		NE NE NE NE NE NE NE NE NE NE NE NE NE N		MS	E-L	ME	NE

CG1385 0	FBgn00 38961	CG13850	BL42574	HMJ0 2233		NE					
CG4255	FBgn02	larp		HMJ0							
1 CG4907	61618 FBgn00	CG4907	BL42578	2239 HMS0		NE		1			
	39010		BL42602	2435		NE					
CG7292	FBgn00 38269	Rrp6	BL42604	HMS0 2437		NE					
CG7146	FBgn00 38593	CG7146	BL42605	HMS0 2438		NE					
CG3837	FBgn00 38279	CG3837	BL42609	HMS0 2444		NE					
CG3112	FBgn00 46685	Wsck	BL42628	HMS0 2463		NE					
CG3119	FBgn00 51195	CG31195	BL42632	HMS0 2468	E-L	E-L	NE	MS	E		NE
CG1040 7	FBgn00 38395	CG10407	BL42636	HMS0 2472		NE		5			112
CG4415	FBgn02	Irk1/ir		HMS0							
9 CG4027	65042 FBgn00	Act5C	BL42644	2480 HMS0		NE	_			_	
CG1451	00042 FBgn00	Brd8	BL42651	2487 HMS0	A	E	E			E	
4 CG3144	39654 FBgn00	CG31445	BL42658	2494 HMS0	ME	ME	NE	NE	E-L		NE
5	51445		BL42660	2496		NE					
CG1489 5	FBgn00 44826	Pak3	BL42664	HMS0 2500		NE					
CG9373	FBgn02 60010	rump	BL42665	HMS0 2501		NE					
CG1747 7	FBgn00 38479	CG17477	BL42821	HMS0 2503		NE					
CG5934	FBgn00 39505	CG5934	BL42822	HMS0 2504		NE					
CG1397 7	FBgn00 39519	Cyp6a18	BL42824	HMS0 2506		NE					
CG4854	FBgn00 38766	CG4854	BL42833	HMS0 2525		NE					
CG4390	FBgn00	CG4390		HMS0							
CG7715	38771 FBgn00	CG7715	BL42836	2528 HMS0		NE					
CG3140	38646 FBgn00	CG31407	BL42837	2529 HMS0		NE					
7 CG1067	51407 FBgn00	CHKov2	BL42840	2532 HMS0	Α	E	E			E	
5 CG1558	39328 FBgn00	Obp83cd	BL42843	2535 HMS0		NE					
2	46878	Образси	BL42844	2536		NE					
CG1187	FBgn00 39633	CG11873	BL42847	HMS0 2539		NE					
CG6353	FBgn00 38893	CG6353	BL42851	HMS0 2543		NE					
CG3332	FBgn00	Sp212		HMS0							
9 CG4677	53329 FBgn00	lmd	BL42858	2550 HMS0		NE					
CG1221	39039 FBgn02	CG12213	BL42871	2564 HMS0		NE	1				
3 CG4282	60742 FBgn02	CG42827	BL42872	2565 HMS0		NE	+				
7 CG6588	62009 FBgn02	Fas1	BL42878	2571 HMS0		NE					
	62742		BL42887	2580		NE					
CG1244 9	FBgn00 27341	Gfat1	BL42892	HMS0 2585		NE					
CG1019 2	FBgn02 60634	elF4G2	BL42893	HMS0 2586		NE					
CG1383 8	FBgn00 39041	CG13838	BL42898	HMS0 2591		NE					
CG4792	FBgn00 39016	Dcr-1	BL42901	HMS0 2594		NE					
<u> </u>	22010	<u> </u>	DL42901	2394	l	INE		1	<u> </u>	I .	

CG7832	FBgn00 86686	I(3)L1231	BL42907	HMS0 2600		NE					
CG6265	FBgn00 39478	Nep5	BL42907 BL42909	HMS0 2602		NE		1			
CG3101	FBgn00	CG31016		HMS0							
6 CG3773	51016 FBgn00	CG3773	BL42911	2604 HMS0		NE					
CG6420	38692 FBgn00	CG6420	BL42917	2610 HMS0	Α	ME	ME	MS		ME	
	39451		BL42920	2613		NE					
CG1774 3	FBgn00 02521	pho	BL42926	HMS0 2619		NE					
CG1183 7	FBgn00 39627	CG11837	BL42932	HMS0 2625		NE					
CG7993	FBgn00 38585	CG7993	BL42935	HMS0 2628		NE					
CG1522 4	FBgn00 00259	CkIlbeta	BL42943	HMS0 2636		NE					
CG1451 6	FBgn00 39640	CG14516	BL42947	HMS0 2640		NE					
CG3796	FBgn00	ac		HMS0							
CG3180	00022 FBgn02	RpII140	BL42953	2646 HMC0		NE					
CG1183	62955 FBgn00	CG11836	BL43282	2681 HMS0		NE					
6	39272		BL43308	2692		NE					
CG1544	FBgn00 39827	CG1544	BL43310	HMS0 2694		NE					
CG8147	FBgn00 43791	CG8147	BL43314	HMS0 2698		NE					
CG3310 0	FBgn00 53100	eIF4EHP	BL43990	HMS0 2703		NE					
CG4282 8	FBgn02 62010	CG42828	BL43996	HMS0 2710		NE					
CG1195	FBgn02	SP1029		HMS0							
6 CG3200	63236 FBgn00	CG32000	BL43997	2711 HMS0		NE					
0 CG5127	52000 FBgn00	Vps33B	BL44005	2719 HMS0		NE					
CG1397	39335 FBgn00	CG13978	BL44006	2720 HMS0		NE					
8	39518		BL44008	2722 HMS0		NE					
CG5166	FBgn00 41188	Atx2	BL44012	2726	А	ME	ME	E		ME	
CG3106 5	FBgn00 51065	CG31065	BL44013	HMS0 2727		NE					
CG1836	FBgn00 26777	Rad23	BL44031	HMS0 2747		NE					
CG1115	FBgn00	fd102C		HMS0							
2 CG3121	39937 FBgn00	Naam	BL44045	2761 HMS0		NE					
6 CG5432	51216 FBgn00	CG5432	BL44053	2770 HMS0		NE		+			
CG1983	39425 FBgn00	CG1983	BL44062	2779 HMS0	E	E	NE	MS	E		NE
CG7265	39751 FBgn00	CG7265	BL44064	2781 HMS0		NE	1				
	38272		BL44066	2783		NE	1				
CG1082 3	FBgn00 38880	SIFR	BL44068	HMS0 2785		NE					
CG3111 8	FBgn00 51118	RabX4	BL44070	HMS0 2787		NE					
CG3144 6	FBgn00 51446	CG31446	BL44071	HMS0 2788		NE					
CG6535	FBgn00 45035	tefu	BL44073	HMS0		NE					
CG4367	FBgn00	CG4367		2790 HMS0							
CG5510	38783 FBgn00	CG5510	BL44077	2794 HMS0		NE					
	39160		BL44080	2797	MS	MS	ME	S	E	ME	NE

CG1385 7	FBgn00 38958	CG13857	BL44083	HMS0 2800		NE					
CG1109	FBgn00	CG11093		HMS0							
3 CG3320	39932 FBgn00	CG33203	BL44085	2802 HMS0		NE					
3	53203		BL44088	2805		NE					
CG1184 3	FBgn00 39630	CG11843	BL44092	HMS0 2809		NE					
CG3578	FBgn00 00179	bi	BL44095	HMS0 2815		NE					
CG3114	FBgn00	CG31141		HMS0							
1 CG7829	51141 FBgn00	CG7829	BL44107	2828 HMS0		NE					
CG1188	39703 FBgn00	CG11880	BL44112	2834 HMS0		NE					
0	39637		BL44113	2835	Α	ME	ME			ME	
CG1488 3	FBgn00 38432	CG14883	BL44114	HMS0 2836		NE					
CG1778 0	FBgn00 39197	CG17780	BL44119	HMS0 2841		NE					
CG5791	FBgn00 40582	CG5791	BL44121	HMS0 2843		NE					
CG6439	FBgn00	CG6439		НМС0							
CG3121	38922 FBgn00	modSP	BL44475	2361 HMC0		NE					
7	51217		BL44476	2363		NE					
CG1727 1	FBgn00 38829	CG17271	BL44480	HMC0 2370		NE					
CG4257	FBgn02 60794	ctrip	BL44481	HMC0 2371		NE					
CG1172	FBgn02	CG1172		HMC0							
CG5278	64712 FBgn00	CG5278	BL44500	2436 HMC0		NE					
CG3285	38986 FBgn00	mthl12	BL44515	2905 HMC0		NE					
3 CG3311	45442	CG33110	BL44516	2906 HMC0		NE					
0	FBgn00 53110		BL44519	2909		NE					
CG1383 0	FBgn00 39054	CG13830	BL44530	HMC0 2924		NE					
CG1360 4	FBgn00 39137	CG13604	BL44537	HMC0 2932		NE					
CG1909	FBgn00	CG1909		НМС0							
CG3354	39911 FBgn00	Rim	BL44538	2933 HMC0		NE					
7	53547	- 4	BL44541	2936		NE					
CG7212	FBgn02 61532	cdm	BL44551	HMS0 2846		NE					
CG3258	FBgn00 00137	ase	BL44552	HMS0 2847		NE					
CG3281	FBgn02	CG3281		HMS0							
CG3309	60741 FBgn00	CG33099	BL44555	2851 HMS0		NE					
9 CG5266	53099 FBgn00	Pros25	BL44559	2855 HMS0		NE					
	86134		BL44560	2856		NE					
CG4336 9	FBgn02 63112	Mitf	BL44561	HMS0 2857		NE					
CG7695	FBgn00 38631	CG7695	BL44568	HMS0 2864		NE					
CG3285 0	FBgn00 52850	CG32850	BL44570	HMS0 2866		NE					
CG3429	FBgn00	CG34290		HMS0							
0 CG1555	85319 FBgn00	CG15556	BL44573	2869 HMS0	 	NE				 	
6 CG6432	39821 FBgn00	CG6432	BL44574	2870 HMS0		NE					
	39184		BL44575	2871		NE					
CG5326	FBgn00 38983	CG5326	BL44659	HMC0 2892		NE					
L	·	•		•	•		•	•	•		

CG1937	FBgn00 39875	sip3	BL50609	HMC0 2976		NE					
CG4210	FBgn00	CG4210		нмс0							
CG1969	38302 FBgn00	CG1969	BL50615	2982 HMC0		NE					
CG7816	39690	CG7816	BL50616	2983 HMC0		NE					
	FBgn00 39714		BL50635	3033		NE					
CG1449	FBgn00 04607	zfh2	BL50643	HMC0 3043		NE					
CG2229	FBgn00	Jon99Fii		HMC0							
CG1036	39777 FBgn02	Hmgcr	BL50648	3049 HMC0		NE					
7 CG3107	63782 FBgn00	CG31075	BL50652	3053 HMC0	Α	E-L	E-L			E-L	
5	51075		BL50654	3055		NE					
CG5737	FBgn00 38851	dmrt93B	BL50656	HMC0 3057		NE					
CG3148 1	FBgn00 51481	pb	BL50664	HMC0 3065		NE					
CG1820	FBgn00	CG18208		HMC0							
8 CG1550	38653 FBgn00	dmrt99B	BL50678	3079 HMC0		NE	1				
4	39683		BL50687	3088		NE					
CG6919	FBgn00 38980	oa2	BL50701	HMC0 3103		NE					
CG1401	FBgn00 39632	Cul-5	BL50707	HMC0 3109		NE					
CG1552	FBgn00	CG15525		HMC0							
5 CG4223	39732 FBgn02	CG42235	BL50708	3110 HMS0		NE					
5 CG3109	50757 FBgn00	LpR1	BL50724	2960 HMS0		NE	-				
4	66101		BL50737	2973		NE					
CG4232 0	FBgn02 59220	Doa	BL50903	HMJ0 3121		NE					
CG1205 4	FBgn00 39831	CG12054	BL50910	HMJ0 3134		NE					
CG1431	FBgn00	CG14313		HMJ2							
3 CG1015	38579 FBgn00	CG10157	BL50915	1004 HMJ2		NE					
7 CG6904	39099 FBgn00	CG6904	BL50938	1033 HMJ2		NE					
	38293		BL50956	1058		NE					
CG5952	FBgn00 38402	Fer2	BL50971	HMJ2 1077		NE					
CG4003	FBgn00 40078	pont		HMJ2							
CG1055	FBgn00	CG10559	BL50972	1078 HMJ2		NE					
9 CG3631	39323 FBgn00	CG3631	BL50975	1081 HMJ2		NE	1				
	38268		BL50997	1110		NE	1				
CG3369 8	FBgn02 61291	CheA86a	BL51001	HMJ2 1115		NE					
CG7911	FBgn00 39735	CG7911	BL51021	HMJ2 1147		NE					
CG1363	FBgn00	CG13634		HMJ2							
4 CG7789	39224 FBgn00	CG7789	BL51024	1150 HMJ2		NE					
CG6277	39698 FBgn00	CG6277	BL51028	1155 HMJ2	-	NE	1				
	39475		BL51030	1157		NE					
CR3464 9	FBgn00 85056	tre-1	BL51032	HMJ2 1159		NE					
CG1783 6	FBgn02 61113	Xrp1	BL51054	HMJ2 1189	E-L	E-L	NE	E	E		NE
CG1188	FBgn00	Slbp		HMJ2	L-L		IAT	-			IVL
6 CG6196	41186 FBgn00	Trs33	BL51171	1114 HMJ2		NE	1				
	38323		BL51393	1139	S	S	1	S	MS		NE

F		T	1			T	1	1	1		
CG2126	FBgn00 39876	CG2126	BL51424	HMC0 2894		NE					
CG1275	FBgn00	ema	BL51426	НМС0							
3 CG1069	38427 FBgn00	CG10694	BL51426	2913 HMC0		NE					
4 CG6271	39147 FBgn00	CG6271	BL51434	3147 HMC0		NE		-			-
	39476		BL51436	3150	MS	MS		S	S		NE
CG3437 6	FBgn00 85405	CG34376	BL51439	HMC0 3153		NE					
CG3839	FBgn00	l(1)sc		HMC0							
CG1580	02561 FBgn00	CG15803	BL51443	3157 HMC0		NE					
3 CG7834	38606	CG7834	BL51449	3179 HMC0		NE					
	FBgn00 39697	CG7834	BL51464	3204	А	ME	ME			E	
CG5237	FBgn00 38693	unc79	BL51471	HMC0 3213		NE					
CG6657	FBgn00	veg		НМС0							
CG3106	15562 FBgn00	CG31064	BL51478	3223 HMC0		NE					
4	51064		BL51494	3246		NE					
CG3152 3	FBgn00 51523	CG31523	BL51495	HMC0 3248		NE					
CG6283	FBgn00 39474	CG6283	BL51498	HMC0 3253		NE					
CG3396	FBgn02	kibra		НМС0							
7 CG1184	62127 FBgn00	dan	BL51499	3256 HMC0		NE					1
9	39286		BL51501	3259		NE					
CG3128 4	FBgn02 60005	wtrw	BL51503	HMC0 3264		NE					
CG4322 4	FBgn02 62869	mun	BL51505	HMC0 3267		NE					
CG6930	FBgn02	I(3)neo38		НМС0							
CG7242	65276 FBgn00	Spc25	BL51515	3292 HMS0		NE					
	87021	·	BL51516	3161		NE					
CG2003	FBgn00 39886	CG2003	BL51699	HMC0 3148		NE					
CG6660	FBgn00 39030	CG6660	BL51707	HMC0 3202		NE					
CG4162	FBgn00	spok	BL31707	НМС0							
4 CG1783	86917 FBgn00	Slip1	BL51718	3254 HMC0		NE					
	24728	·	BL51724	3268	(2.17	NE					
CG1195 1	FBgn00 39656	CG11951		HMS0 3163	(MS POSSIBL						
CG7262		CG7262	BL51735		E)	NE		NE			
CG7262	FBgn00 38274	CG7262	BL51758	HMC0 3310	А	ME	ME	E		ME	
CG6995	FBgn00 39229	Saf-B	BL51759	HMC0 3311		NE					
CG6295	FBgn00	CG6295		HMC0							
CG1131	39471 FBgn00	CG11318	BL51760	3312 HMC0		NE					
8 CG1065	39818 FBgn00	Scsalpha	BL51792	3348 HMC0		NE					
	04888	-	BL51807	3366		NE					
CG4360	FBgn00 38787	CG4360	BL51813	HMC0 3384		NE					
CG3731	FBgn00	CG3731		HMC0							
CG5911	38271 FBgn00	ETHR	BL51822	3394 HMC0		NE					
	38874		BL51828	3400		NE					
CG2171	FBgn00 86355	Tpi	BL51829	HMC0 3401		NE					
CG1226 5	FBgn02 64291	Det	BL51837	HMC0 3409		NE					
J	U4231	l	DE31037	2403	<u> </u>	INC	I	<u> </u>	<u> </u>	1	<u> </u>

CG3438	FBgn00 85412	CG34383	BL51917	HMS0 3376		NE				
CG1183	FBgn00	CG11839	BL31917	HMS0		INL				
9	39271		BL51924	3375		NE				
CG5588	FBgn00 39532	Mtl	BL51932	HMC0 3186		NE				
CG4053	FBgn00	CG4053	DESTISSE	HMC0		IVL				
	38482		BL52872	3610		NE				
CG5255	FBgn00 38485	CG5255	BL52874	HMC0 3612		NE				
CG5909	FBgn00	CG5909	BESEG74	HMC0		IVE				
	39495		BL52876	3614		NE				
CG1023 2	FBgn00 39108	CG10232	BL52891	HMC0 3629		NE				
CG1747	FBgn00	CG17475		НМС0						
5 CG7142	38481	CG7142	BL52895	3634 HMC0		NE				
CG/142	FBgn00 38595	CG/142	BL52899	3638		NE				
CG3359	FBgn02	mfas		HMC0						
CG4625	60745 FBgn00	Dhap-at	BL52905	3645 HMC0		NE				
CG+023	40212	Shap at	BL52914	3654		NE				
CG1552	FBgn00	CG15523	DIFCCIT	HMC0		N.E				
3 CG1487	39727 FBgn00	CG14870	BL52915	3655 HMC0		NE				
0	38342		BL52916	3656		NE				
CG5044	FBgn00 38326	CG5044	BL52917	HMC0 3657		NE				
CG5896	FBgn00	grass	BL52917	HMJ2		INE				
	39494		BL52946	1613		NE				
CG3430 7	FBgn00 85336	CG34307	BL52953	HMJ2 1622		NE				
CG4342	FBgn02	CG43427	BL32333	HMJ2		IVE				
7	63346	664520	BL52982	1669		NE				
CG4538	FBgn00 38745	CG4538	BL52989	HMJ2 1681		NE				
CG5514	FBgn00	CG5514		HMJ2						
CG4232	39560 FBgn02	CG42327	BL52994	1706 HMJ2		NE				
7	59227	CG42327	BL52997	1710		NE				
CG7582	FBgn00 39681	CG7582	D1 E3003	HMJ2		NE				
CG4673	FBgn00	Npl4	BL53002	1718 HMJ2		INE				
	39348	·	BL53004	1721		NE				
CG1489 4	FBgn00 38428	CG14894	BL53005	HMJ2 1722		NE				
CG3125	FBgn00	CG31259	5255005	HMJ2		112				
9	51259	6622626	BL53009	1727		NE			ļ	ļ
CG3363 0	FBgn00 53630	CG33630	BL53015	HMJ2 1738		NE				1
CG6768	FBgn02	DNApol-epsilon		HMJ2			1	1	1	1
CG7709	64326 FBgn00	Muc91C	BL53016	1739 HMJ2		NE	 	 	-	-
CG//09	38642	MINICATO	BL53018	1741		NE	<u>L</u>	<u>L</u>		
CG7850	FBgn02	puc		HMJ2	(MS					
	43512		BL53019	1742	POSSIBL E)	NE			ME	1
CG3117	FBgn00	CG31178		HMJ2	-/		1	1		
8	64912	0017565	BL53024	1748		NE				1
CG1756 5	FBgn00 38424	CG17565	BL53029	HMJ2 1755		NE				
CG5073	FBgn00	CG5073		HMC0						
CG4225	38331 FBgn00	Hmt-1	BL53283	3499 HMC0		NE	 	 	1	
CU4223	38376	I IIIIC-T	BL53284	3500		NE				1
CG5220	FBgn00	CG5220	DIFOCO	HMC0		NE				
CG1801	38471 FBgn00	CG18012	BL53285	3501 HMC0		NE	 	 	1	
2	38552		BL53286	3502		NE				
		-					 			

CG4703	FBgn00 38742	Arc42	BL53287	HMC0 3503		NE				
CG4159	FBgn00	CG4159		HMC0						
CG1592	38811 FBgn00	CG15923	BL53288	3504 HMC0		NE				
3	38814	Maric	BL53289	3505		NE				
CG5097	FBgn00 38790	MtnC	BL53292	HMC0 3508		NE				
CG7622	FBgn00 02579	RpL36	BL53302	HMC0 3529	А	E	E		E	
CG4260 1	FBgn02 61053	Cad86C	BL53314	HMC0 3543		NE				
CG5634	FBgn00 39528	dsd	BL53318	HMC0 3547		NE				
CG1726 9	FBgn00 38827	Fancd2	BL53329	HMC0 3558		NE				
CG4917	FBgn00 39003	wfs1	BL53330	HMC0 3559		NE				
CG5977	FBgn00 39141	spas	BL53331	HMC0 3560		NE				
CG3111	FBgn00	CIC-a		HMC0						
6 CG6349	51116 FBgn02	DNApol-	BL53337	3566 HMC0		NE				
CG3249	59113 FBgn00	alpha180 dnc	BL53341	3570 HMC0	-	NE	-			-
8	00479	unc	BL53344	3573		NE				
CG1198 7	FBgn02 64075	tgo	BL53351	HMC0 3580		NE				
CG1890	FBgn00 39869	CG1890	BL53677	HMJ2 1731		NE				
CG3105 0	FBgn00 51050	CG31050	BL53691	HMJ2 1674		NE				
CG1426 0	FBgn00 39504	CG14260	BL53698	HMJ2 1719	А	ME	ME		E	
CG1364	FBgn00	CG13646		HMJ2			IVIE		_	
6 CG3116	39255 FBgn00	Ir94a	BL53701	1732 HMJ2		NE				
4 CG1690	51164 FBgn02	sqd	BL53703	1737 HMJ2		NE				
1 CG3143	63396 FBgn00	CheB93b	BL53891	1209 HMJ2		NE				
8 CG3141	51438 FBgn00	CG31418	BL53911	1244 HMJ2		NE				
8	51418		BL53914	1247		NE				
CG3294 4	FBgn00 52944	CG32944	BL53916	HMJ2 1251		NE				
CG1432 6	FBgn00 38528	CG14326	BL53952	HMJ2 1318		NE				
CG7362	FBgn00	CG7362		HMJ2						
CG5913	38258 FBgn00	CG5913	BL53954	1320 HMJ2		NE				
CG5692	39385 FBgn00	raps	BL53965	1347 HMJ2		NE				
CG3126	40080 FBgn00	CG31262	BL53968	1351 HMJ2		NE				
2 CG1738	51262 FBgn00	Ir94h	BL53970	1355 HMJ2		NE				
2	39080		BL53975	1363		NE				
CG5377	FBgn00 38974	CG5377	BL53977	HMJ2 1366		NE				
CG4803	FBgn00 39015	Takl2	BL53985	HMJ2 1386		NE				
CG6066	FBgn00 39488	CG6066	BL53997	HMJ2 1401		NE				
CG3124 4	FBgn00 51244	CG31244	BL54011	HMJ2 1435		NE				
CG3247	FBgn00	CG32473		HMJ2						
3 CG2219	52473 FBgn00	CG2219	BL54013	1437 HMJ2		NE				
	39889		BL54014	1438	<u> </u>	NE	<u> </u>	<u> </u>		<u> </u>

	•	1	•	•	•	,			-		
CG3145 3	FBgn00 51453	pch2	BL54022	HMJ2 1448	MS	MS		S	E		NE
CG1366	FBgn00 39294	Cad96Cb	BL54029	HMJ2 1472	IVIS	NE NE		3			INL
CG1710	FBgn00	CG17109		HMJ2							
9 CG1454	39051 FBgn00	Sld5	BL54033	1476 HMJ2		NE					
9 CG5292	39403 FBgn00	CG5292	BL54047	1490 HMS0		NE		+			
	38491		BL54052	3523		NE					
CG3093	FBgn00 00482	dor	BL54460	HMS0 3720		NE					
CG3109 2	FBgn00 51092	LpR2	BL54461	HMS0 3722		NE					
CG1433 2	FBgn00 38509	CG14332	BL54800	HMJ2 1494		NE					
CG5677	FBgn00 39172	Spase22-23	BL54801	HMJ2 1495		NE					
CG6447	FBgn00 39437	TwdlL	BL54804	HMJ2 1498							
CG3125	FBgn00	Cenp-C		HMJ2		NE	145			145	
8 CG1429	86697 FBgn00	CG14298	BL54806	1500 HMJ2	A	ME	ME			ME	
8 CG8495	38654 FBgn02	RpS29	BL54807	1501 HMJ2		NE		1		1	
CG1712	61599 FBgn00	CG17121	BL54822	1541 HMJ2	А	ME	ME	1		E	
1 CG6073	39043 FBgn00	CG6073	BL54830	1549 HMJ2		NE				1	
	39417		BL54844	1581		NE					
CG4334 3	FBgn02 63048	CG43343	BL54848	HMJ2 1585		NE					
CG1182 0	FBgn00 39270	PQBP1	BL54852	HMJ2 1589		NE					
CG3104 0	FBgn00 51040	Cog7	BL55147	HMC0 3758		NE					
CG9733	FBgn00 39759	CG9733	BL55149	HMC0 3774		NE					
CG6422	FBgn00 39261	CG6422 (dYTHDF1)	BL55151	HMC0 3791	А	ME	ME			E	
CG1087	FBgn00	CG10877		HMC0			IVIL				
7 CG2177	38804 FBgn00	Zip102B	BL55160	3835 HMC0		NE		1			
CG1249	39902 FBgn02	SmD2	BL55162	3837 HMC0	MS	MS		S	ME		NE
CG6178	61789 FBgn00	CG6178	BL55163	3839 HMC0		NE	+	+			
CG4334	39156 FBgn00	CG4334	BL55166	3844 HMC0		NE	1	+		1	
	38312		BL55167	3846		NE				ļ	
CG3136 8	FBgn00 51368	CG31368	BL55172	HMC0 3852		NE				1	
CG1131 3	FBgn00 39798	CG11313	BL55197	HMC0 3894		NE		\perp			
CG1464 8	FBgn02 63594	lost	BL55201	HMC0 3901		NE					
CG1109	FBgn00 46222	CG1109	BL55249	HMC0 3936		NE				1	
CG6300	FBgn00	CG6300		HMC0				1			
CG1139	38730 FBgn00	CG11391	BL55264	3951 HMC0		NE		+		1	
1 CG1145	38732 FBgn00	CG11453	BL55266	3953 HMC0		NE		+		1	
3 CG1165	38734 FBgn00	CG11659	BL55267	3954 HMC0		NE		1		1	
9	38731		BL55268	3955		NE				1	
CG7946	FBgn00 39743	CG7946	BL55274	HMC0 3961		NE				1	
CG1587	FBgn00 24811	Crk	BL55277	HMC0 3964		NE		\perp		<u> </u>	
	•	•	•		•	•				•	•

666006	FD00	cccooc	1	118460	1	1		1	1	1	1
CG6006	FBgn00 63649	CG6006	BL55282	HMC0 3969	Е	E	NE	S	E		NE
CG1647	FBgn00	CG1647		HMC0							
CG3407	39602 FBgn00	mt:ATPase6	BL55292	3979 HMC0		NE		-	-		
3	13672	IIIC.ATF aseo	BL55297	3984		NE					
CG3119 9	FBgn00 51199	CG31199	BL55339	HMC0 4026		NE					
CG3120	FBgn00	CG31200	DI 55240	HMC0		-	_			-	
0 CG1875	51200 FBgn00	CG18754	BL55340	4027 HMC0	Α	E	E			E	
4	42106		BL55348	4035		NE					
CG1225 0	FBgn02 61287	ymp	BL55356	HMC0 4043		NE					
CG4272 4	FBgn02 61641	CG42724	BL55357	HMC0 4044		NE					
CG1420	FBgn00 39626	Slu7	BL55366	HMC0 4054		NE					
CG7907	FBgn00 38887	CG7907	BL55370	HMC0 4058		NE					
CG4934	FBgn00 00221	brn	BL55386	HMC0 4074		NE					
CG5555	FBgn00	CG5555	BL35380	HMC0		INE					
	38686		BL55402	4090		NE		1	1		
CG5246	FBgn00 38484	CG5246	BL55410	HMC0 4098		NE					
CG3339	FBgn00 39510	CG3339	BL55605	HMC0 3741		NE					
CG5938	FBgn00	CG5938	BL33003	HMC0		INE					
	46247		BL55613	3752		NE		1			
CG1255 8	FBgn00 39599	CG12558	BL55615	HMC0 3754		NE					
CG1184 2	FBgn00 39629	CG11842	BL55617	HMC0 3760		NE					
CG1187 6	FBgn00 39635	CG11876	BL55619	HMC0 3762		NE					
CG7883	FBgn00 39726	eIF2B-alpha	BL55624	HMC0 3768		NE					
CG3132 6	FBgn00 51326	CG31326	BL55630	HMC0 3777		NE					
CG1785	FBgn00	CG17856		HMC0							
6 CG3415	39576 FBgn02	Dys	BL55631	3778 HMC0		NE		1			
7	60003	Dy3	BL55641	3789		NE					
CG1021 0	FBgn00 39117	tst	BL55647	HMC0 3796		NE					
CG7903	FBgn00	CG7903		HMC0	_						
CG1964	39730 FBgn00	Kul	BL55651	3800 HMC0	Α	ME	ME	+	1	ME	
	39688		BL55653	3803		NE					
CG7598	FBgn00 39689	CG7598	BL55660	HMC0 3815		NE					
CG1029 3	FBgn02 64491	how	BL55665	HMC0 3820		NE					
CG5338	FBgn00	RpS19b	BL55670	HMC0					†		
CG4685	39129 FBgn00	Ssadh		3825 HMC0		NE					
CG1713	39349 FBgn02	Rbp1	BL55683	3868 HMC0		NE	1		†		
6 CG7698	60944 FBgn02	Cpsf73	BL55688	3902 HMC0		NE			+		
	61065 FBgn00	·	BL55696	3910		NE			1		
CG4047 8	27101	Dyrk3	BL55882	HMC0 4155		NE					
CG7125	FBgn00 38603	PKD	BL55898	HMC0 4179		NE			\perp		
CG1017 7	FBgn00 39083	CG10177	BL55900	HMC0 4182		NE					
CG1206 9	FBgn00 39796	CG12069	BL55901	HMC0 4183		NE					
9	33130	I	DE33301	4100	<u> </u>	INL	_1			1	L

CG1153 3	FBgn00 39908	Asator	BL55902	HMC0 4184		NE					
CG3142	FBgn00	Takl1		HMC0							
1 CG3109	46689 FBgn00	Lgr3	BL55903	4186 HMC0		NE					
6	39354	_	BL55910	4196		NE					
CG5728	FBgn00 39182	CG5728	BL55916	HMC0 4202		NE					
CG3403	FBgn00 54034	CG34034	BL55956	HMC0 4245		NE					
CG3412	FBgn00	CG34129		HMC0							
9 CG4546	83965 FBgn00	CG4546	BL55959	4253 HMC0		NE					
CG1488	38373 FBgn00	CG14880	BL55977	4273 HMC0		NE					
0	38422		BL55978	4274		NE					
CG7629	FBgn00 38530	AttD	BL55979	HMC0 4275	А	E	E			E	
CG1383 7	FBgn00 39042	CG13837	BL55980	HMC0 4276		NE					
CG6173	FBgn00 39155	Kal1	BL55981	HMC0 4277		NE					
CG1185	FBgn00	to		HMC0							
3 CG6403	39298 FBgn00	CG6403	BL55982	4278 HMC0		NE					
CG3348	39453 FBgn00	CG3348	BL55983	4279 HMC0		NE					
	40609		BL55985	4281		NE					
CG1855 0	FBgn00 41710	yellow-f	BL55988	HMC0 4284		NE					
CG3107	FBgn00 51077	CG31077	BL55991	HMC0 4287		NE					
CG3128	FBgn00 51286	CG31286	BL55992	HMC0 4288		NE					
CG3129	FBgn00	CG31296		HMC0							
6 CG1488	51296 FBgn00	CG14882	BL55993	4289 HMC0		NE					
2 CG1364	38429 FBgn00	CG13643	BL56006	4302 HMC0		NE					
3	40601		BL56017	4313		NE					
CG4743	FBgn00 39357	CG4743	BL56025	HMC0 4321		NE					
CG6126	FBgn00 38407	CG6126	BL56038	HMC0 4346	MS	MS		NE	E		NE
CG2559	FBgn00 02562	Lsp1alpha	BL56039	HMC0 4347		NE					
CG4090	FBgn00	Mur89F		HMC0							
CG1719	38492 FBgn00	CG17192	BL56041	4349 HMC0		NE					
2 CG4281	39472 FBgn02	CG42813	BL56042	4350 HMS0		NE	1				-
3	61995		BL56045	4248		NE					
CG6194	FBgn00 38325	CG6194	BL56046	HMS0 4249		NE					
CG8433	FBgn00 29175	Ext2	BL52883	HMC0 3621		NE					
CG3350 2	FBgn00 53502	CG33502	BL52907	HMC0 3647		NE					
CG4030	FBgn00	CG4030		HMJ2							
CG7300	34585 FBgn00	CG7300	BL52996	1709 HMJ2		NE	+				
CG1332	32286 FBgn00	CG13323	BL53927	1272 HMJ2		NE	1			-	
3	33788		BL53969	1352		NE					
CG9249	FBgn00 32922	CG9249	BL54042	HMJ2 1485		NE					
CG1317	FBgn00 35333	CG1317	BL54802	HMJ2 1301	-	NE					
CG4307 3	FBgn02 62483	Rbp	BL54828	HMJ2 1547		NE					
	02703	1	DLJ4020	1547		LINE	I	<u> </u>	L	I	1

CG1414 5	FBgn00 36118	blos2	BL54835	HMJ2 1554		NE					
CG5953	FBgn00	CG5953		HMJ2							
CG5336	32587 FBgn00	Ced-12	BL57287	1225 HMJ2		NE					
CG3312	32409 FBgn00	Rnp4F	BL58153	2104 HMJ2		NE					
	14024		BL58168	2145		NE					
CG1403 0	FBgn00 31696	Bub1	BL58185	HMJ2 2162		NE					
CG1472 4	FBgn00 19624	CoVa	DIFOSOS	HMJ2 2367		NE					
CG3041	FBgn00	CG30411	BL58282	HMJ2		NE					
1 CG8628	50411 FBgn02	CG8628	BL58318	2443 HMJ2		NE					
	50836		BL58343	2474		NE					
CG8034	FBgn00 31011	CG8034	BL32340	HMS0 0331		NE					
CG4365 8	FBgn02 63706	CG43658	BL32341	HMS0 0332		NE					
CG1223	FBgn00	e(y)3		HMS0							
8 CG1279	87008 FBgn00	lcs	BL32346	0337 HMS0		NE					
4 CG1412	28583 FBgn00	RhoGAP19D	BL32353	0344 HMS0		NE					
	31118		BL32361	0352		NE					
CG1698 2	FBgn00 25638	Roc1a	BL32362	HMS0 0353		NE					
CG3051	FBgn00 23169	SNF1A	BL32371	HMS0							
CG8805	FBgn00	wun2		0362 HMS0		NE					
CG4200	41087 FBgn00	sl	BL32381	0372 HMS0		NE					
	03416		BL32385	0377		NE					
CG7041	FBgn00 30082	HP1b	BL32401	HMS0 0396		NE					
CG4227 6	FBgn02 59171	Pde9	BL32412	HMS0 0407		NE					
CG1094	FBgn02	RpS6		HMS0	_			_			
4 CG3595	61592 FBgn00	sqh	BL32418	0413 HMS0	E	E	NE	S	MS		NE
CG1212	03514 FBgn02	mxc	BL32439	0437 HMS0		NE					
4	60789		BL32446	0444		NE					
CG7065	FBgn00 30091	CG7065	BL32449	HMS0 0448		NE					
CG7098	FBgn00 30891	dik	BL32451	HMS0 0450		NE					
CG3480	FBgn00	mip130	BL32451	HMS0		INE					
CG9156	23509 FBgn00	Pp1-13C	BL32462	0462 HMS0		NE				-	
	03132		BL32465	0465		NE			<u> </u>	<u> </u>	
CG4336	FBgn00 03302	rux	BL32467	HMS0 0467		NE					
CG1142 7	FBgn00 03210	rb	BL32477	HMS0 0479		NE					
CG1210	FBgn00	Caf1-180		HMS0							
9 CG1444	30054 FBgn02	CG14446	BL32478	0480 HMS0	 	NE	-			 	
6 CG1633	62730 FBgn00	Jafrac1	BL32487	0490 HMS0		NE		 	 	1	
	40309		BL32498	0501		NE					
CG4303	FBgn00 25463	Bap60	BL32503	HMS0 0507		NE					
CG1636	FBgn00 30030	CG1636	BL32508	HMS0 0512		NE					
CG7556	FBgn00	CG7556		HMS0							
CG4453	30990 FBgn00	Nup153	BL32511	0515 HMS0		NE	-	 	 	-	
CU4433	I DELICO										

CG9057	FBgn00 30608	Lsd-2	BL32846	HMS0 0629		NE					
CG1810	FBgn00 30556	mRNA-cap	BL32847	HMS0 0631	LacZ-S	MS	ME	MS	MS	E	MS
CG2998	FBgn00 30136	RpS28b	BL32850	HMS0 0635	Lacz 3	NE	IVIE	IVIS	1413		IVIS
CG3354 2	FBgn00 53542	upd3	BL32859	HMS0 0646		NE					
CG1331 7	FBgn00 44046	Ilp7	BL32862	HMS0 0649		NE					
CG1698 3	FBgn00 25637	skpA	BL32870	HMS0 0657		NE					
CG3455	FBgn00 28685	Rpt4	BL32874	HMS0 0661	А	ME	ME			E	
CG3226	FBgn00 29882	CG3226	BL32875	HMS0 0662		NE					
CG5599	FBgn00 30612	CG5599	BL32876	HMS0 0663		NE					
CG1336 3	FBgn00 25639	Hmt4-20	BL32892	HMS0 0681		NE					
CG8915	FBgn00 30833	CG8915	BL32908	HMS0 0697		NE					
CG1337 4	FBgn00 11822	pcl	BL32943	HMS0 0737		NE					
CG2272	FBgn00 30018	slpr	BL32948	HMS0 0742		NE					
CG7107	FBgn00 04169	up	BL32949	HMS0 0743		NE					
CG1743 7	FBgn00 40066	wds	BL32952	HMS0 0746		NE					
CG4313	FBgn00 25632	CG4313	BL32960	HMS0 0755		NE					
CG1594	FBgn00 04864	hop	BL32966	HMS0 0761		NE					
CG1214 1	FBgn00 27084	Aats-lys	BL32967	HMS0 0763		NE					
CG4078	FBgn00 29798	CG4078	BL32973	HMS0 0770		NE					
CG8128	FBgn00 30668	CG8128	BL33012	HMS0 0812		NE					
CG1158 5	FBgn00 30543	CG11585	BL33337	HMS0 0203		NE					
CG1481 6	FBgn00 23517	Pgam5	BL33346	HMS0 0212		NE					
CG1826 2	FBgn00 30012	CG18262	BL33348	HMS0 0215		NE					
CG3414 5	FBgn00 83981	RunxA	BL33353	HMS0 0224		NE					
CG8289	FBgn00 30854	CG8289	BL33361	HMS0 0233		NE					
CG1099 8	FBgn00 31142	r-cup	BL33387	HMS0 0264		NE					
CG4049 4	FBgn00 25836	RhoGAP1A	BL33390	HMS0 0267		NE					
CG1849 2	FBgn00 26323	Tak1	BL33404	HMS0 0282		NE		1			
CG5227	FBgn00 21764	sdk	BL33412	HMS0 0292		NE					
CG3711	FBgn00 40344	CG3711	BL33422	0306		NE					
CG6903	FBgn00 29737	CG6903	BL33423	HMS0 0307		NE		1			
CG3917	FBgn00 26430	Grip84	BL33548	0627		NE		1			
CG1273 7	FBgn00 25864	Crag	BL33594	0241		NE	1	1			
CG3936	FBgn00 04647	N	BL33611	0001	А	E-L	E-L			E-L	
CG2759	FBgn00 03996	W	BL33613	HMS0 0004	Α	E-L	E-L			E-L	

CG1579 3	FBgn00 10269	Dsor1	BL33639	HMS0 0037		NE				
CG1560	FBgn00	mys		HMS0						
CG7035	04657 FBgn00	Cbp80	BL33642	0043 HMS0		NE				
	22942		BL33648	0052		NE				
CG2577	FBgn00 30384	CG2577	BL33649	HMS0 0054		NE				
CG9096	FBgn00 10315	CycD	BL33653	HMS0 0059		NE				
CG4266 6	FBgn02 61548	CG42666	BL33665	HMS0 0075		NE				
CG1841	FBgn00	ph-p		HMS0						
2 CG5993	04861 FBgn00	os	BL33669	0082 HMS0		NE				
	04956	Hac	BL33680	0545 HMS0		NE				
CG1404 9	FBgn00 44047	Ilp6	BL33684	0549		NE				
CG2221	FBgn00 28331	l(1)G0289	BL33690	HMS0 0558		NE				
CG3025	FBgn00 14340	mof	BL33698	HMS0 0573		NE				
CG3171	FBgn00 46687	Tre1	BL33718	HMS0 0599		NE				
CG1637	FBgn00	CG1637		HMS0						
CG3410	30245 FBgn00	CG34104	BL33733	0616 HMS0		NE				
4 CG6223	83940 FBgn00	betaCop	BL33738	0622 HMS0		NE	1			
	08635	·	BL33741	1079	Α	E-L	E-L		E-L	
CG2186	FBgn00 30243	CG2186	BL33750	HMS0 1090		NE				
CG2655	FBgn00 11276	HLH3B	BL33758	HMS0 1101		NE				
CG4399	FBgn02 61954	east	BL33879	HMS0 0816		NE				
CG4044 0	FBgn00 46697	Ppr-Y	BL33882	HMS0 0819		NE				
CG1109 2	FBgn00 27537	CG11092	BL33908	HMS0 0850		NE				
CG2286	FBgn00	ND75		HMS0						
CG1422	17566 FBgn00	Ubqn	BL33910	0853 HMS0		NE				
4 CG9907	31057 FBgn02	para	BL33917	0860 HMS0		NE	1			
	64255		BL33923	0868		NE				
CG1194 1	FBgn00 26175	skpC	BL33925	HMS0 0871		NE				
CG1096 1	FBgn00 26318	Traf6	BL33931	HMS0 0880		NE				
CG1070	FBgn00	Moe		HMS0						
1 CG4261	11661 FBgn02	mgl	BL33936	0886 HMS0		NE				
1 CG1221	61260 FBgn00	peb	BL33940	0891 HMS0		NE				
2	03053		BL33943	0894		NE	1			
CG5988	FBgn00 30904	upd2	BL33949	HMS0 0901		NE				
CG1099 2	FBgn00 30521	CtsB1	BL33953	HMS0 0906		NE				
CG1453	FBgn00 30268	Klp10A	BL33963	HMS0 0920		NE				
CG1138 7	FBgn00 04198	ct	BL33967	HMS0 0924	А	Е	E		E	
CG8649	FBgn00 24238	Fim	BL33977	HMS0 0937		NE				
CG6222	FBgn00 03575	su(s)	BL33982	HMS0 0942		NE				
CG3441	FBgn00	tlk		HMS0	_		-		_	
2	86899		BL33983	0943	Α	E	E	<u> </u>	E	

		I a	1			ı	1	1	1	1	1
CG3187	FBgn00 29783	Sirt4	BL33984	HMS0 0944		NE					
CG2033	FBgn00 10198	RpS15Aa	BL34005	HMS0 0968	А	E-L	E			E	
CG2947	FBgn00 29676	HIP-R	BL34018	HMS0 0988		NE				_	
CG9609	FBgn00 30787	CG9609	BL34018	HMS0 1000		NE NE					
CG1274 3	FBgn00 03023	otu	BL34030	HMS0 0038		NE NE					
CG7486	FBgn00	Dredd		HMS0							
CG6170	20381 FBgn00	HDAC6	BL34070	0063 HMS0		NE					
CG1825	26428 FBgn00	CG18259	BL34072	0077 HMS0		NE					
9 CG4013	30956 FBgn02	Smr	BL34081	1089 HMS0		NE					
CG9774	63865 FBgn00	rok	BL34087	0842 HMS0	A	E	E			E	
CG1215	26181 FBgn00	ос	BL34324	1311 HMS0		NE	1				
4 CG1447	04102 FBgn00	CG14476	BL34327	1314 HMS0		NE					
6 CG3267	27588		BL34334	1322		NE					
2	FBgn00 52672	Atg8a	BL34340	HMS0 1328		NE					
CG1270 3	FBgn00 31069	Pmp70	BL34349	HMS0 1338		NE					
CG4332	FBgn00 30456	CG4332	BL34352	HMS0 1341		NE					
CG7053	FBgn00 30960	CG7053	BL34360	HMS0 1349	Α	ME	ME			E	
CG3004	FBgn02 64691	Lst8	BL34361	HMS0 1350	MS	MS	ME	S	S	ME	NE
CG1749	FBgn00 30305	CG1749	BL34363	HMS0 1352		NE					
CG3267 0	FBgn00 52670	Rab9Fb	BL34374	HMS0 1364		NE					
CG2849	FBgn00 15286	Rala	BL34375	HMS0 1365	А	ME	E	E	E-L	E	
CG9355	FBgn00 04511	dy	BL34382	HMS0 1372		NE					
CG4377 0	FBgn02 64270	Sxl	BL34393	HMS0 0609		NE					
CG1578	FBgn00 29766	CG15784	BL34529	HMS0 0983		NE					
CG9581	FBgn00 31093	CG9581	BL34547	HMS0 1018		NE					
CG3239	FBgn00 29769	CG3239	BL34547 BL34558	HMS0 1030		NE NE					
CG4330	FBgn00	MFS10		HMS0							
CG3034	30452 FBgn00	MED22	BL34562	1034 HMS0		NE					
CG4269	40339 FBgn02	CG42699	BL34573	1047 HMS0		NE					
9 CG4528	61610 FBgn00	snf	BL34591	1065 HMS0	(ME	NE					
	03449		BL34593	1067	POSSIBL E)	NE	NE	NE	NE	NE	
CG3585	FBgn00 23458	Rbcn-3A	BL34612	HMS0 1287		NE					
CG9022	FBgn00 14868	Ost48	BL34628	HMS0 1303		NE					
CG1206 5	FBgn00 30052	CG12065	BL34636	HMS0 1111		NE					
CG6407	FBgn00 10194	Wnt5	BL34644	HMS0 1119		NE					
CG1336 6	FBgn00 25633	CG13366	BL34656	HMS0 1133		NE					
U	43033	<u> </u>	DL34050	1133	l	INC	1	<u> </u>	l	1	I

CG1573 5	FBgn00 30364	CG15735	BL34666	HMS0 1143		NE					
CG4206	FBgn00	Mcm3		HMS0							
CG3291	24332 FBgn00	pcm	BL34686	1164 HMS0		NE					
CG3231	20261	pem	BL34690	1169		NE					
CG1052 1	FBgn00 15774	NetB	BL34698	HMS0 1177		NE					
CG1849	FBgn00 03300	run	BL34707	HMS0 1186		NE					
CG1490	FBgn00 30366	Usp7	BL34708	HMS0 1187		NE					
CG7033	FBgn00	CG7033		HMS0							
CG1489	30086 FBgn00	Pros45	BL34711	1190 HMS0		NE			1		
CG3573	20369 FBgn00	Ocrl	BL34712	1191 HMS0		NE					
CG9784	23508 FBgn00	CG9784	BL34722	1201 HMS0		NE					
	30761		BL34723	1202		NE					
CG1210 1	FBgn00 15245	Hsp60	BL34729	HMS0 1209		NE					
CG3129	FBgn00 15794	Rab18	BL34734	HMS0 1214		NE					
CG1770	FBgn00 41210	HDAC4	BL34774	HMS0 0083		NE					
CG8264	FBgn00 04856	Bx42	BL34777	HMS0 0086	А	E-L	E			Е	
CG2995	FBgn00 40372	G9a		HMS0 0127							
CG7434	FBgn00	RpL22	BL34817	HMS0		NE	-		+	_	
CG3606	15288 FBgn00	caz	BL34828	0143 HMS0	A	E	E			E	
CG9177	11571 FBgn00	eIF5	BL34839	0156 HMS0		NE			1		
CG1430	30719 FBgn00	bys	BL34841	0159 HMS0	S	S		MS	NE		NE (ME
CG9212	10292 FBgn00	Nipsnap	BL34876	0196 HMS0	E	E	NE	NE	NE		possible)
	30724		BL34887	1232		NE					
CG7359	FBgn02 60855	Sec22	BL34893	HMS0 1238		NE					
CG1643	FBgn00 29943	Atg5	BL34899	HMS0 1244		NE			<u> </u>		
CG1691 6	FBgn00 28686	Rpt3	BL34917	HMS0 1265		NE					
CG1269 0	FBgn00 29504	CHES-1-like	BL34928	HMS0 1277		NE					
CG8989	FBgn00	His3.3B		HMS0							
CG3277	04828 FBgn00	GlcAT-I	BL34940	0148 HMS0		NE			+		
5										1	1
CG1784	66114 FBgn00	CG17841	BL34946	0289 HMS0		NE				1	
1	FBgn00 28480		BL34946 BL34948	0289 HMS0 0305		NE NE					
1 CG1213 5	FBgn00 28480 FBgn00 40235	c12.1		0289 HMS0 0305 HMS0 0382	A		ME			ME	
1 CG1213 5 CG1422 8	FBgn00 28480 FBgn00 40235 FBgn00 86384		BL34948	0289 HMS0 0305 HMS0 0382 HMS0 0459	А	NE	ME			ME	
1 CG1213 5 CG1422	FBgn00 28480 FBgn00 40235 FBgn00	c12.1	BL34948 BL34952	0289 HMS0 0305 HMS0 0382 HMS0	A	NE ME	ME			ME	
1 CG1213 5 CG1422 8 CG1691	FBgn00 28480 FBgn00 40235 FBgn00 86384 FBgn02 62735 FBgn00	c12.1 Mer	BL34948 BL34952 BL34958 BL34977	0289 HMS0 0305 HMS0 0382 HMS0 0459 HMS0 1168 HMS0	A	NE ME NE NE	ME			ME	
1 CG1213 5 CG1422 8 CG1691 CG1220 2 CG4259	FBgn00 28480 FBgn00 40235 FBgn00 86384 FBgn02 62735 FBgn00 31020 FBgn02	c12.1 Mer	BL34948 BL34952 BL34958 BL34977 BL34990	0289 HMS0 0305 HMS0 0382 HMS0 0459 HMS0 1168 HMS0 1400 HMS0	A	NE ME NE NE	ME			ME	
1 CG1213 5 CG1422 8 CG1691 CG1220 2	FBgn00 28480 FBgn00 40235 FBgn00 86384 FBgn02 62735 FBgn00 31020 FBgn02 60971 FBgn00	c12.1 Mer Imp Nat1	BL34948 BL34952 BL34958 BL34977 BL34990 BL35006	0289 HMS0 0305 HMS0 0382 HMS0 0459 HMS0 1168 HMS0 1400 HMS0 1416 HMS0		NE NE NE NE					
1 CG1213 5 CG1422 8 CG1691 CG1220 2 CG4259 4	FBgn00 28480 FBgn00 40235 FBgn00 86384 FBgn02 62735 FBgn00 31020 FBgn02 60971	c12.1 Mer Imp Nat1 CG42594	BL34948 BL34952 BL34958 BL34977 BL34990	0289 HMS0 0305 HMS0 0382 HMS0 0459 HMS0 1168 HMS0 1400 HMS0 1416	A	NE ME NE NE	ME			ME E	
1 CG1213 5 CG1422 8 CG1691 CG1220 2 CG4259 4 CG2934 CG1204 7	FBgn00 28480 FBgn00 40235 FBgn00 86384 FBgn02 62735 FBgn00 31020 FBgn02 60971 FBgn00 28665 FBgn00 02873	c12.1 Mer Imp Nat1 CG42594 VhaAC39-1 mud	BL34948 BL34952 BL34958 BL34977 BL34990 BL35006	0289 HMS0 0305 HMS0 0382 HMS0 0459 HMS0 1168 HMS0 1400 HMS0 1416 HMS0 1416 HMS0 1416 HMS0 1442 HMS0 1458		NE NE NE NE					
1 CG1213 5 CG1422 8 CG1691 CG1220 2 CG4259 4 CG2934	FBgn00 28480 FBgn00 40235 FBgn00 86384 FBgn02 62735 FBgn00 31020 FBgn02 60971 FBgn00 28665 FBgn00	c12.1 Mer Imp Nat1 CG42594 VhaAC39-1	BL34948 BL34952 BL34958 BL34977 BL34990 BL35006 BL35029	0289 HMS0 0305 HMS0 0382 HMS0 0459 HMS0 1168 HMS0 1400 HMS0 14416 HMS0 14416 HMS0 1442 HMS0		NE NE NE NE NE NE NE ME					

		1	1		•	•			1	1
CG9045	FBgn00 02914	Myb	BL35053	HMS0 1467		NE				
CG9038	FBgn00	UBL3		HMS0						
CG1545	26076 FBgn00	CG15459	BL35745	1487 HMS0		NE				
9	31108		BL35757	1503		NE				
CG1479 1	FBgn00 25382	Rab27	BL35774	HMS0 1523		NE				
CG1343	FBgn00 20378	Sp1	BL35777	HMS0 1526		NE				
CG3325	FBgn00 30992	CG33253		HMS0 0158		NE				
3 CG1139	FBgn00	CG11398	BL36106	HMS0		NE				
8 CG3270	40366 FBgn00	Erk7	BL36109	0201 HMS0		NE				
3	52703		BL36110	0222		NE				
CG4227 3	FBgn02 59168	mnb	BL36657	HMS0 1545	А	E	ME		E	
CG1694 4	FBgn00 03360	sesB	BL36661	HMS0 1549		NE				
CG6352	FBgn00 26058	OdsH	BL36666	HMS0		NE				
CG1531	FBgn02	nej		1554 HMS0						
9 CG8002	61617 FBgn00	rictor	BL36682	1570 HMS0	Α	Е	ME		E	
	31006		BL36699	1588		NE				
CG1803	FBgn00 30362	regucalcin	BL36708	HMS0 1598		NE				
CG1592 9	FBgn00 29800	lin-52	BL36712	HMS0 1602		NE				
CG6269	FBgn00 24184	unc-4	BL36713	HMS0 1603		NE				
CG8184	FBgn00	CG8184		HMS0						
CG1681	30674 FBgn00	GstT4	BL36714	1604 HMS0		NE				
CG4380	30484 FBgn00	usp	BL36717	1607 HMS0		NE				
	03964		BL36729	1620		NE				
CG3972	FBgn00 10019	Cyp4g1	BL36737	HMS0 1628		NE				
CG3861	FBgn02 61955	kdn	BL36740	HMS0 1631		NE				
CG7413	FBgn00	Rbf		HMS0 3004		NE				
CG1747	15799 FBgn00	Sk1	BL36744	HMS0						
CG1583	30300 FBgn00	GIIIspla2	BL36747	3007 HMS0		NE				
	30013		BL36757	3017		NE				
CG4262 8	FBgn02 61379	rad	BL36758	HMS0 3018		NE				
CG1753	FBgn00 31148	Cbs	BL36767	HMS0 3028		NE				
CG1376	FBgn00 40333	brv3		JF023						
2 CG1808	FBgn00	sev	BL36774	89 JF023		NE				
5 CG1536	03366 FBgn00	CG15365	BL36778	93 HMS0		NE				
5 CG3848	30077 FBgn00	trr	BL36856	0293 HMS0		NE			1	
	23518		BL36916	1019		NE				
CG1810 2	FBgn00 03392	shi	BL36921	HMS0 0154		NE				
CG1634	FBgn02 64975	Nrg	BL37496	HMS0 1638		NE				
CG9904	FBgn00	Seipin		HMS0						
CG3275	40336 FBgn00	CG32758	BL37501	1643 HMS0		NE				
8 CG6873	52758 FBgn00	CG6873	BL38225	1669 HMS0		NE				
CG08/3	30951	CG00/3	BL38226	1670		NE				

Control Figure Control Contr												
CG1925 F8pr02 PMCRISIPHA BL38242 1866 NE	CG4898		Tm1	BI 38737			NE					
CG9926 F8gr00 No.	CG1026	FBgn02	PI4KIIIalpha		HMS0							
C63938 F9g00 Miss			tko	BL38242			NE					
CG4523 Figs-00 Pink1 B188262 1707 NE		03714		BL38251	1695		NE					
29891 81,8262 1707	CG9938		Ndc80	BL38260			NE					
CG01925 F8pp.00 Scamp B188277 1728 NE	CG4523		Pink1	BI 38262			NE					
CG1625	CG9195	FBgn00	Scamp		HMS0							
15527	CG1685		pen	BL38277			NE					
Coll Coll		15527		BL38290	1748		NE					
C3395 Fign/0 Fi	CG2621		Sgg	BL38293		Α	E	E			E	
CG3395 Fign CG2 Trol			Npc1b	BL38296			NE					
CG9214 FBgn00 Tob BL3829 1760 NE	CG3395	FBgn02	trol		HMS0							
CG1728			Tob	BL38298			NE					
Section Sect	CG1782		mod(r)	BL38299			NE					
S S S S S S S S S S	8	16038		BL38304	1766		NE					
CG1826 FBgn00 CG1826 BL38311 1775 NE			CG42343	BL38310			NE					
CG1826	CG9968		Anxb11	BI 38311			NE					
CG6606 FBgn00 CG3632 BL3831 1808 NE	CG1826	FBgn00	CG1826		HMS0							
CG3632	CG6606		Rip11	BL38324			NE					
CG1421	063633			BL38325			NE					
1 31044		30735		BL38341	1808		NE					
CG1759 FBgn00 CG17598 BL38344 1811 NE			MKP-4	BL38342			NE					
CG1759			Ssu72	DI 20244			NE					
CG1375		FBgn00	CG17598		HMS0							
8 60753 BL38347 1815 NE Section of the control o			Pdfr	BL38345			NE					
The content of the	8	60753		BL38347	1815		NE					
CG3412 FBgn00 CG34120 BL38353 1821 NE			CG11/2/	BL38350			NE					
CG3412 0 FBgn00 83956 CG34120 BL38356 BL38356 HMS0 HMS0 BL38363 E-L E-L E-L ME E-L ME NE CG1673 30482 FBgn00 04368 CG1673 BL38369 BL38363 1832 HMS0 BL38369 NE SE-L ME SE-L ME NE CG3250 5 23177 FBgn00 BL38372 HMS0 BL38372 NE NE SE-L NE SE-L NE SE-L NE SE-L ME NE SE-L NE SE	CG1718		CG1718	BI 38353			NF					
CG1673 FBgn00 30482 CG1673 BL38363 HMS0 HMS0 30482 NE NE CG6899 FBgn00 04368 Ptp4E BL38369 HMS0 HMS0 30482 NE NE NE NE CG3250 FBgn00 Pp4-19C HMS0 30482 NE		FBgn00	CG34120		HMS0				_			
CG6899 FBgn00 04368 Ptp4E BL38369 HMS0 1838 NE CG3250 FBgn00 23177 Pp4-19C BL38372 HMS0 1841 NE CG3281 FBgn00 4 52814 CG32814 BL38383 HMS0 1852 NE CG9198 FBgn00 04391 Shtd BL38531 HMS0 HMS0 1744 A E E CG5870 FBgn02 50788 BL38531 1744 A E E CG1554 FBgn00 03277 RDI1215 BL38537 HMS0 1761 NE NE CG1775 FBgn00 03277 CG17754 BL38539 HMS0 1838934 NE NE CG9984 FBgn00 10416 TH1 BL38934 HMS0 0283 NE NE CG3269 FBgn00 7 28341 I(1)G0232 BL38935 HMS0 0731 NE NE CG1480 FBgn00 Vps26 Vps26 HMS0 HMS0 NE			CG1673	BL38356		E-L	E-L	ME	E	E-L	ME	NE
CG3250 FBgn00 Pp4-19C HMS0 NE S 23177 BL38372 1841 NE S S 23177 BL38372 1841 NE S <td< td=""><td>CG6899</td><td></td><td>Ptn4F</td><td>BL38363</td><td></td><td>-</td><td>NE</td><td></td><td></td><td></td><td></td><td></td></td<>	CG6899		Ptn4F	BL38363		-	NE					
5 23177 BL38372 1841 NE CG3281 FBgn00 CG32814 HMS0 NE CG32814 HMS0 NE CG32814 HMS0 NE CG5870 FBgn00 Shtd HMS0 HMS0 E		04368	•	BL38369	1838	ļ	NE					
CG3281			Pp4-19C	BL38372			NE					
CG9198 FBgn00 04391 shtd HMS0 BL38531 HMS0 1744 A E E E CG5870 FBgn02 50788 beta-Spec BL38533 HMS0 BL38533 NE NE D E<	CG3281	FBgn00	CG32814		HMS0							
CG5870 FBgn02 50788 beta-Spec BL38533 HMS0 NE NE CG1554 FBgn00 03277 Rpll215 BL38537 HMS0 NE NE CG1775 FBgn00 CG17754 HMS0 HMS0 NE NE 4 30114 BL38539 1830 NE CG9984 FBgn00 TH1 FBgn00 D10416 HMS0 HMS0 NE CG3269 FBgn00 TH1 BL38934 DRE D138934 CG3269 FBgn00 TH2 TH3 TH3 TH3 TH3 TH3 TH3 TH3 TH3 TH3 TH3		FBgn00	shtd		HMS0							
S0788	CG5870		beta-Spec	BL38531		A	E	E			E	
O3277		50788		BL38533	1746	ļ	NE					
4 30114 BL38539 1830 NE CG9984 FBgn00 10416 TH1 HMS0 BL38934 0283 NE CG3269 FBgn00 1(1)G0232 HMS0 HMS0 TMS0 TMS0 TMS0 TMS0 TMS0 TMS0 TMS0 T		03277	,	BL38537	1761		NE					
CG9984 FBgn00 10416 TH1 BL38934 HMS0 0283 NE CG3269 FBgn00 7 I(1)G0232 28341 HMS0 BL38935 NE CG1480 FBgn00 FBgn00 Vps26 HMS0			CG17754	BL38539			NE					
CG3269 FBgn00 I(1)G0232 HMS0 7 28341 BL38935 0731 NE CG1480 FBgn00 Vps26 HMS0		FBgn00	TH1		HMS0							
CG1480 FBgn00 Vps26 HMS0	CG3269		l(1)G0232	BL38934		 	INE					
			Vns26	BL38935		-	NE					
			1,0020	BL38937			NE					

CG3262 6	FBgn00 52626	CG32626	BL38953	HMS0 1867		NE			
CG4224	FBgn02	CG42249		HMS0					
9 CG3279	59101 FBgn00	CG32791	BL38955	1869 HMS0		NE			
1	52791		BL38965	1879		NE			
CG9819	FBgn00 30758	CanA-14F	BL38966	HMS0 1880		NE			
CG3274 4	FBgn00 86558	Ubi-p5E	BL38967	HMS0 1881		NE			
CG1215	FBgn00 29958	Pdp	BL38972	HMS0 1888		NE			
CG1812	FBgn00	CG1812		HMS0					
CG1061	31119 FBgn02	Syt12	BL38974	1890 HMS0		NE			
7 CG3271	61085 FBgn02	sdt	BL38978	1894 HMS0		NE			
7 CG1817	61873 FBgn00	Ptp10D	BL38988	1904 HMS0		NE			
	04370		BL39001	1917		NE			
CG5884	FBgn00 26192	par-6	BL39010	HMS0 1928		NE			
CG1107	FBgn00 37218	aux	BL39017	HMS0 1935		NE			
CG1589	FBgn02	Ca-alpha1T		HMS0					
9 CG3842	64386 FBgn00	CG3842	BL39029	1948 HMS0		NE			
CG8916	29866 FBgn00	CG8916	BL39030	1949 HMS0		NE			
CG1514	30707 FBgn00	snz	BL39031	1950 HMS0		NE			
	29976		BL39036	1956		NE			
CG3318 1	FBgn00 53181	CG33181	BL39056	HMS0 1976		NE			
CG1462 2	FBgn00 25641	DAAM	BL39058	HMS0 1978		NE			
CG7893	FBgn00 40068	vav	BL39059	HMS0 1979		NE			
CG1092 0	FBgn00 29963	CG10920	BL39068	HMS0 1988		NE			
CG2984	FBgn00	Pp2C1		HMS0					
CG1219	22768 FBgn00	kek5	BL40827	1887 HMS0		NE			
9	31016	Flo-2	BL40830	1996		NE			
CG3259	FBgn02 64078		BL40833	HMS0 1999		NE			
CG3438 7	FBgn02 59108	futsch	BL40834	HMS0 2000		NE			
CG7192	FBgn00 30894	CG7192	BL40838	HMS0 2004		NE			
CG9650	FBgn00	CG9650		HMS0					
CG2124	29939 FBgn00	CG2124	BL40852	2019 HMS0		NE			
CG9842	30217 FBgn00	Pp2B-14D	BL40868	2035 HMS0	1	NE		1	
CG2647	11826 FBgn00	per	BL40872	2039 HMS0		NE			
CG1141	03068 FBgn00	Tsp2A	BL40878	2045 HMS0		NE			
5	24361		BL40899	2147		NE			
CG3351 3	FBgn00 53513	Nmdar2	BL40928	HMS0 2176		NE			
CG1444 7	FBgn00 29830	Grip	BL40930	HMS0 2178		NE			
CG1441 1	FBgn00 30582	CG14411	BL40935	HMS0 2183		NE			
CG8590	FBgn00	Klp3A		HMS0					
CG2262	11606 FBgn00	Smox	BL40944	2192 HMS0		NE			
	25800		BL41670	2203		NE	<u> </u>		

CG4690	FBgn00 29837	Tsp5D	BL41681	HMS0 2245		NE					
CG3257	FBgn00	disco-r		HMS0							
7 CG4286	42650 FBgn02	f	BL41683	2247 HMS0		NE					
4	62111		BL41687	2251		NE					
CG4365 7	FBgn02 63705	Myo10A	BL41691	HMS0 2255	А	E	NE	NE	NE	E	NE
CG2252	FBgn00 04656	fs(1)h	BL41693	HMS0 2257	А	E	E			E	
CG4532	FBgn00 29903	pod1	BL41705	HMS0 2270		NE					
CG2028	FBgn00 15024	Cklalpha	BL41711	HMS0 2276	А	ME	ME			E	
CG1858 2	FBgn00 25743	mbt	BL41713	HMS0 2278		NE					
CG7113	FBgn00 21765	scu	BL41884	HMS0 2305		NE					
CG1442 6	FBgn00 04143	nullo	BL41905	HMS0 2297		NE					
CG4320	FBgn00 29840	raptor	BL41912	HMS0 2306		NE					
CG4521	FBgn00 30766	mthl1	BL41930	HMS0 2327		NE		1			
CG4252	FBgn00 04367	mei-41	BL41934	HMS0 2331		NE					
CG1421 7	FBgn00 31030	Tao	BL41936	HMS0 2333		NE					
CG1106	FBgn00	jub		HMS0							
3 CG3274	30530 FBgn02	nonC	BL41938	2335 HMS0		NE				1	
3 CG8394	63968 FBgn00	VGAT	BL41945	2342 HMS0		NE					
CG3299	33911 FBgn00	Vinc	BL41958	2355 HMS0		NE					
CG1126	04397 FBgn00	Trf4-1	BL41959	2356 HMS0		NE				1	
5 CG2111	30049 FBgn00	CG2111	BL41966	2363 HMS0		NE				1	
	30223		BL41969	2366		NE					
CG3269 4	FBgn00 52694	CG32694	BL41975	HMS0 2373		NE					
CG9806	FBgn00 30222	CG9806	BL41994	HMS0 2395		NE					
CG1442 4	FBgn00 25644	CG14424	BL41995	HMS0 2396		NE					
CG6927	FBgn00 29733	CG6927	BL42001	HMS0 2402		NE					
CG1573	FBgn00	CG15730		HMS0							
0 CG1211	30395 FBgn00	CG12115	BL42002	2403 HMS0		NE					
5 CG7206	30097 FBgn00	CG7206	BL42003	2404 HMS0		NE		1			
CG1591	30892 FBgn00	CG15916	BL42004	2405 HMS0	A	E	ME	+		ME	
6 CG1535	30704 FBgn00	Cp7Fb	BL42008	2409 HMS0		NE				1	
0 CG4653	14465 FBgn00	CG4653	BL42009	2410 HMS0		NE				1	
CG1664	30776 FBgn00	sbr/NXF1	BL42012	2413 HMS0		NE				1	
CG2890	03321 FBgn00	PPP4R2r	BL42013	2414 HMS0	S	S		S	MS	1	NE
CG1270	30208 FBgn02	vfl	BL42015	2416 HMS0		NE				1	
1	59789		BL42016	2441		NE					
CG8142	FBgn00 30871	CG8142	BL42489	HMJ0 2051		NE					
CG1657	FBgn00 30286	CG1657	BL42490	HMJ0 2054		NE					
		•	•		•	•	•		•		

CG8924	FBgn00 30710	CG8924	BL42491	HMJ0 2055		NE					
CG1574	FBgn00	CG15744		HMJ0							
4 CG1830	30466 FBgn00	PhKgamma	BL42497	2061 HMJ0		NE					
CG1630	11754	FIINGAIIIIII	BL42500	2065		NE					
CG1716	FBgn00 30486	Set2	BL42511	HMJ0 2076		NE					
CG2116	FBgn00 30003	CG2116	BL42512	HMJ0 2077		NE					
CG1108 5	FBgn00 30408	CG11085	BL42516	HMJ0 2082		NE					
CG2061	FBgn00 27498	CG2061	BL42519	HMJ0 2085		NE					
CG4937	FBgn00 30808	RhoGAP15B	BL42527	HMJ0 2093		NE					
CG4400	FBgn00	CG4400		HMJ0							
CG7122	30434 FBgn00	RhoGAP16F	BL42533	2100 HMJ0		NE					
CG3011	30893 FBgn00	GEFmeso	BL42541	2111 HMJ0		NE					
5 CG3272	50115 FBgn00	NELF-B	BL42545	2116 HMJ0		NE					
1	27553		BL42547	2119		NE					
CG4394	FBgn00 30748	Traf-like	BL42549	HMJ0 2121		NE					
CG6506	FBgn00 30874	CG6506	BL42552	HMJ0 2125		NE					
CG3308	FBgn00	CG33080	DI 43554	HMJ0		NE					
0 CG1422	53080 FBgn00	et	BL42554	2127 HMJ0		NE					
5 CG1331	31055 FBgn00	Mnt	BL42557	2213 HMJ0		NE					
6 CG1848	23215 FBgn00	LIMK1	BL42558	2214 HMJ0		NE					
CG1873	41203 FBgn00	Fur2	BL42576	2235 HMJ0		NE					
4 CG9065	04598 FBgn00	CG9065	BL42577	2236 HMS0		NE					
	30610		BL42595	2427		NE					
CG3466	FBgn00 11576	Cyp4d2	BL42600	HMS0 2432		NE					
CG3285 8	FBgn00 03447	sn	BL42615	HMS0 2450		NE					
CG6824	FBgn00 03028	ovo	BL42627	HMS0 2462		NE					
CG1480	FBgn00	MED18		HMS0							
2 CG9900	26873 FBgn00	mit(1)15	BL42634	2470 HMS0		NE					
CG4590	04643 FBgn00	inx2	BL42643	2479 HMS0		NE					
	27108		BL42645	2481		NE					
CG2045	FBgn00 19929	Ser7	BL42649	HMS0 2485		NE					
CG1857 2	FBgn00 03189	r	BL42828	HMS0 2510		NE					
CG3252 8	FBgn00 52528	CG32528	BL42831	HMS0 2523		NE					
CG1217 5	FBgn00 30502	tth	BL42849	HMS0 2541		NE					
CG1481	FBgn00	Pex5		HMS0							
5 CG1253	23516 FBgn00	Cdc42	BL42854	2546 HMS0		NE					
0 CG1442	10341 FBgn00	CG14421	BL42861	2553 HMS0		NE					
1 CG5966	29644	CG5966	BL42865	2558 HMS0	E	Е	NE	NE	E		NE
	FBgn00 29831		BL42869	2562		NE					
CG1299 3	FBgn00 30840	p-cup	BL42876	HMS0 2569		NE				<u></u>	
		•	•	•	•		•	•	•		

CG3056	FBgn00 24987	SSX	BL42881	HMS0 2574		NE				
CG2056	FBgn00	spirit		HMS0						
CG7766	30051 FBgn00	CG7766	BL42882	2575 HMS0		NE				
CG9164	30087 FBgn00	CG9164	BL42890	2583 HMS0		NE				
CG1532	30634 FBgn00	CG1532	BL42899	2592 HMS0		NE				
	31143		BL42900	2593		NE				
CG1786	FBgn00 30369	Cyp318a1	BL42904	HMS0 2597		NE				
CG6847	FBgn00 30884	CG6847	BL42908	HMS0 2601		NE				
CG3044	FBgn00 29913	Cht11	BL42927	HMS0 2620		NE				
CG1733	FBgn00 30239	CG17333	BL42933	HMS0 2626		NE				
CG1529	FBgn00	CG15296		HMS0						
6 CG1336	30215 FBgn00	CG13365	BL42946	2639 HMS0		NE				
5 CG1207	29529 FBgn00	CG12075	BL42951	2644 HMS0	Α	E-L	E-L		E-L	
5	30065	CG3446	BL42952	2645		NE				
CG3446	FBgn00 29868		BL43279	HMC0 2678		NE				
CG9053	FBgn02 64389	opm	BL43280	HMC0 2679		NE				
CG1474	FBgn00 23506	Es2	BL43285	HMS0 2657		NE				
CG9675	FBgn00 30774	spheroide	BL43295	HMS0 2668		NE				
CG3325 0	FBgn00 65035	AlkB	BL43300	HMS0 2673		NE				
CG1211	FBgn00	CG12111		HMS0						
1 CG3268	30050 FBgn00	ZAP3	BL43311	2695 HMS0		NE				
5 CG3977	52685 FBgn00	Ctr1A	BL43317	2701 HMS0		NE				
CG1300	62413 FBgn00	CG13005	BL44000	2714 HMS0		NE				
5 CG2071	30794 FBgn00	Ser6	BL44018	2733 HMS0		NE				
	11834		BL44026	2741		NE				
CG6998	FBgn00 11760	ctp	BL44044	HMS0 2760		NE				
CG3039	FBgn00 04646	ogre	BL44048	HMS0 2764	А	ME	ME		E	
CG1504 2	FBgn00 30937	CG15042	BL44049	HMS0 2765		NE				
CG2715	FBgn00	Syx4		HMS0						
CG4407	24980 FBgn00	CG4407	BL44054	2771 HMS0		NE				
CG4394	30431 FBgn02	PsGEF	BL44055	2772 HMS0		NE				
7 CG3268	64598 FBgn00	CG32683	BL44061	2778 HMS0		NE				
3 CG1440	52683 FBgn00	CG14406	BL44079	2796 HMS0		NE				
6	30595		BL44081	2798		NE				
CG1987	FBgn00 30479	Rbp1-like	BL44100	HMS0 2820		NE				
CG3266 6	FBgn00 52666	Drak	BL44102	HMS0 2822		NE				
CG4413 2	FBgn02 64981	mamo	BL44103	HMS0 2823		NE				
CG1782 9	FBgn00 25635	CG17829	BL44104	HMS0 2824		NE				
CG3280	FBgn00	CG32808		HMS0						
8	52808	<u> </u>	BL44270	2812		NE	1		<u>i</u>	<u>i</u>

CG4122	FBgn00 04648	svr	DI 44407	HMC0		NE					
CG2675	FBgn00	Csat	BL44487	2395 HMC0		NE					
CG1479	24994 FBgn00	Mur2B	BL44488	2402 HMC0		NE					
6	25390	WidizB	BL44489	2403		NE					
CG1847	FBgn00 30345	CG1847	BL44490	HMC0 2409		NE					
CG4678	FBgn00 30778	CG4678	BL44491	HMC0 2413		NE					
CG1440	FBgn00 30038	CG1440	BL44521	HMC0 2912		NE					
CG4096	FBgn00 29791	CG4096	BL44522	HMC0 2914	MS	MS		S	MS		NE
CG4030	FBgn00 44872	FucTC	BL44540	НМС0	1015	NE		3	IVIS		IVE
5 CG1771	FBgn00	mew		2935 HMS0							
CG1404	04456 FBgn00	ran	BL44553	2849 HMS0		NE	1				
CG1706	20255 FBgn00	inx6	BL44587	2885 HMS0	A	ME	E			E	
3 CG4766	27107 FBgn00	CG4766	BL44663	2883 HMC0		NE					
	27546		BL50605	2404		NE					
CG1055 5	FBgn00 30034	CG10555	BL50606	HMC0 2408		NE					
CG3024	FBgn00 25615	Torsin	BL50620	HMC0 2987		NE					
CG3351 7	FBgn00 53517	D2R	BL50621	HMC0 2988		NE					
CG2263	FBgn00 30007	CG2263	BL50624	HMC0 2991		NE					
CG2155	FBgn00 03965	v	BL50641	HMC0 3041		NE					
CG4746	FBgn00	mab-21		НМС0							
CG3275	29003 FBgn00	CG32751	BL50644	3044 HMC0		NE					
1 CG1252	52751 FBgn00	Zw	BL50653	3054 HMC0		NE					
9 CG1733	04057 FBgn00	Lcch3	BL50667	3068 HMC0	А	ME	ME			ME	
6 CG4136	10240 FBgn02	Vsx1	BL50668	3069 HMC0		NE					
	63511		BL50684	3085		NE					
CG1597	FBgn00 30289	CG1597	BL50699	HMC0 3101		NE					
CG1129 3	FBgn00 34889	CG11293	BL50728	HMS0 2964		NE					
CG6157	FBgn00 15926	dah	BL50733	HMS0 2969		NE					
CG9802	FBgn00 15615	Сар	BL50899	HMJ0 3116		NE					
CG1272	FBgn00 30459	CG12723	BL50917	HMJ2 1006		NE					
CR3265	FBgn00 40859	CR32658	BL50917	HMJ2 1022		NE					
CG9565	FBgn00	Nep3		HMJ2							
CG2861	31081 FBgn00	CG2861	BL50930	1024 HMJ2		NE					
CG3258	29728 FBgn00	CG32588	BL50931	1025 HMJ2		NE					
8 CG1515	52588 FBgn02	Ykt6	BL50935	1030 HMJ2		NE					
CG4557	60858 FBgn00	CG4557	BL50937	1032 HMJ2		NE					
CG2254	29912 FBgn00	CG2254	BL50953	1054 HMJ2		NE					
	29994		BL50999	1112		NE					
CG1698 9	FBgn00 25621	CG16989	BL51017	HMJ2 1141		NE					
			·			·	·			·	·

CG6961 FBgn00 CG6961 HMJ2 NE CG1441 FBgn00 CG14416 HMJ2 NE 6 40352 BL51047 1181 NE CG3253 FBgn00 gfA HMJ2 NE 8 86778 BL51049 1183 NE CG1573 FBgn00 Chrac-16 HMC0 NE 6 43001 BL51155 2362 NE CG3002 FBgn00 Gga HMJ2 NE 30141 BL51170 1093 NE	
CG1441 FBgn00 CG14416 HMJ2 NE 6 40352 BL51047 1181 NE CG3253 FBgn00 gfA HMJ2 NE 8 86778 BL51049 1183 NE CG1573 FBgn00 Chrac-16 HMC0 NE 6 43001 BL51155 2362 NE CG3002 FBgn00 Gga HMJ2 NE	
CG3253 FBgn00 gfA HMJ2 8 86778 BL51049 1183 NE CG1573 FBgn00 Chrac-16 HMC0 Chrac-16 HMC0 NE 6 43001 BL51155 2362 NE NE CG3002 FBgn00 Gga HMJ2 NE	
8 86778 BL51049 1183 NE CG1573 FBgn00 Chrac-16 HMC0 6 43001 BL51155 2362 NE CG3002 FBgn00 Gga HMJ2	
6 43001 BL51155 2362 NE CG3002 FBgn00 Gga HMJ2	
CG1478 FBgn00 O-fut2 HMJ2 9 27791 BL51392 1038 NE	
CG1117 FBgn00 NFAT HMC0 (ME	
2 30505 2411 POSSIBL E) NE	
CG3262 FBgn00 NnaD HMC0 7 52627 BL51430 3138 NE	
CG4315 FBgn02 CG43154 HMC0	
4 62684 BL51431 3139 NE CG1037 FBgn00 mbc HMC0	
9 15513 BL51446 3172 NE	
CG3276 FBgn00 I(1)G0045 HMC0 3 26702 BL51448 3178 NE	
CG1079 FBgn02 dm	NE
CG3260 FBgn00 Muc12Ea HMC0	
CG1461 FBgn00 CG1461 HMC0	
30558 BL51470 3212 NE	
4 14455 BL51477 3222 NE CG4317 FBgn00 Mipp2 HMC0	
26060 BL51482 3229 NE	
CG1574 FBgn00 CG15743 HMC0 3 30465 BL51486 3233 NE	
CG3973 FBgn00 pigs HMC0 29881 BL51490 3241 NE	
CG1889 FBgn00 CG1889 HMC0 BL51512 3288 NE	
CG4368 FBgn02 CG43689 HMC0 9 63772 BL51513 3290 NE	
CG1759 FBgn02 S6kII HMC0	
6 62866 BL51694 3140 NE CG1074 FBgn00 Tsp3A HMC0	
2 40334 BL51706 3196 NE	
CG1799 FBgn00 ras HMC0	
CG4234 FBgn02 CG42346 HMC0 6 59677 BL51719 3255 NE	
CG4318 FBgn00 CG4318 HMC0	
30455 BL51720 3257 NE CG1791 FBgn00 CG1791 HMC0	
30163 BL51727 3271 NE CG3270 FBgn00 CG32702 HMS0	
2 52702 BL51736 3167 NE CG2685 FBgn00 CG2685 HMC0 Image: CG2685 FBgn00 FB	
24998 BL51750 3301 NE CG42797 HMC0	
7 61931 BL51767 3322 NE	
CG3277 FBgn00 CG32772 HMC0 2 52772 BL51768 3323 NE	
CG1173 FBgn00 HERC2 HMC0 4 31107 BL51773 3328 NE	
CG4094 FBgn00 I(1)G0255 HMC0	
28336 BL51779 3334 NE CG1093 FBgn00 CG10932 HMC0	
2 29969 BL51785 3340 NE	
CG1885 FBgn00 CG1885 HMC0 NE	

CG9220	FBgn00 30662	CG9220	BL51787	HMC0 3343		NE				
CG8909	FBgn00	CG8909		НМС0						
CG9653	30706 FBgn00	brk	BL51788	3344 HMC0		NE				
CG9033	24250	DIK	BL51789	3345		NE				
CG9413	FBgn00 30574	CG9413	BL51791	HMC0 3347		NE				
CG9209	FBgn00 03969	vap	BL51793	HMC0 3349		NE				
CG1140	FBgn00	CG11403		HMC0						
3 CG6358	26876 FBgn00	Храс	BL51800	3357 HMC0		NE				
CG1417	04832		BL51806	3365		NE				
	FBgn00 03423	slgA	BL51811	HMC0 3382		NE				
CG1077 8	FBgn00 29980	CG10778	BL51815	HMC0 3386		NE				
CG4349	FBgn00 30449	Fer3HCH	BL51825	HMC0 3397		NE				
CG1135 4	FBgn00 26411	Lim1	BL51831	HMC0 3403		NE				
CG6172	FBgn02	vnd	BE51051	HMC0		IVE				
CG1744	61930 FBgn00	CG17440	BL51833	3405 HMC0		NE	1			
0	30120	CG17440	BL51843	3416		NE				
CG1795	FBgn00 27864	Ogg1	BL51852	HMC0 3426		NE				
CG8948	FBgn00	Graf		HMC0						
CG3415	30685 FBgn00	Mfe2	BL51853	3427 HMC0		NE				
CG5703	30731 FBgn00	CG5703	BL51854	3428 HMC0	Α	ME	ME		E	
	30853		BL51855	3429		NE				
CG1467	FBgn00 31106	Syx16	BL51856	HMC0 3430		NE				
CG1217 6	FBgn00 30506	Lig4	BL51933	HMC0 3211		NE				
CG3926	FBgn00 14031	Spat	BL51935	HMC0 3220		NE				
CG1689	FBgn00	CG16892		НМС0						
2 CG4039	30122 FBgn00	Mcm6	BL51938	3342 HMC0		NE				
	25815		BL52111	3356		NE				
CG6367	FBgn00 30926	psh	BL52877	HMC0 3615		NE				
CG1141	FBgn00	CG11418	DI 53004	HMC0		NE				
8 CG1815	24360 FBgn00	CG18155	BL52881	3619 HMC0		NE				
5	29945		BL52884	3622		NE	1			
CG9676	FBgn00 30773	CG9676	BL52901	HMC0 3641		NE	1			
CG3125	FBgn02 61383	IntS6	BL52904	HMC0 3644	А	E	E		E	
CG9126	FBgn00 45073	Stim	BL52911	HMC0 3651	,,	NE			_	
CG4211	FBgn00 04227	nonA	BL52933	HMC0		NE NE				
CG1059	FBgn00	CG10598	DL32933	3675 HMJ2		INE	1			
8 CG1264	03057 FBgn00	CG12640	BL52948	1617 HMJ2		NE	1			
0	30202		BL52952	1621	Α	E	E		Е	
CG5529	FBgn00 11758	B-H1	BL52954	HMJ2 1623		NE				
CG1263 7	FBgn00 30224	CG12637	BL52978	HMJ2 1665		NE				
CG3656	FBgn00	Cyp4d1		HMJ2						
CG5254	05670 FBgn00	CG5254	BL52979	1666 HMJ2		NE	+			-
	40383		BL52990	1682		NE				

GG3256 F8gr00 Muc14A St.5011 1730 NF												
CG1797 Fagmon F			Muc14A	DI 53011			NE					
B			ng3	BL53011			NE					
11586		0		BL53026			NE					
CG1224 F8gn00 Li-3 BL5337 3546 NE	CG1871	_	e(r)	DI F2201			NE					
9 0.1314 8.15317 3546 NE	CG1762		kl-3	BL53301			INE					
27564 8153324 3558 NE	9	01314		BL53317			NE					
Gold Figer Gold	CG3149	_	CG3149	DIESSA			NE					
GG2194 Fign: 00 Sulf S	CG1220		CG12203	BL33324			IVL					
Section				BL53325			NE					
GG4324 F8pr00 F	CG2194	0	su(r)	BI 53339			NF					
GS1224 Fegn00 Sh	CG4396		fne	5255555								
S	664334		CI	BL53340			NE					
GG8325 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1304 F8pn00 GG1305 F8pn00 GG1632 F8pn00 GG1633 GG1633 GG1633 G		_	Sn	BL53347			NE					
GG1304 F8gn00 CG1604 BL53363 3592 NE		FBgn00	CG3835		HMC0							
STITE STIT	CG1204		CC1204	BL53355			NE					
SOCIETY STATE ST	CG1304	_	CG1304	BL53363			NE					
MAID MAID	CG1632		CG1632									
G2707	CG6854		CTPsvn	BL53368			NE					
Total	CG0034		CITSYII	BL53378			NE					
G31269 F8gm00 CG32695 BL53687 India			CG12057	DI FOCOC			_	NE		_		
S S2695 B B B B B B B B B			CG32695	BL53686		E	E	NE	NE	E		NE
G 30296	5			BL53687			NE					
CG1520			CG15196	D1 E2 600			NE					
CG9034 FBgn00 CG9034 BL53700 1729 NE			CG15201	BL33066			INE					
CG8023				BL53689			NE					
CG8023 FBgn00 EIF4E-3 BL53880 1195 NE	CG9034	_	CG9034	BI 53700			NF					
CG1070	CG8023		eIF4E-3	B233700			142					
CG CG CG CG CG CG CG CG	221272			BL53880			NE					
CG2151			SK	BL53881		А	ME	ME	s	E	ME	
CG3457			Trxr-1							_		
CG8944 FBgn00 CG8944 HMJ2 NE	CC2457		CC2457	BL53883			NE					
CG1422 FBgn00 CG9916 FBgn00 Cyp1 CG1432 BL53894 1213 NE	CG3437	_	CG3437	BL53885			NE					
CG1422	CG8944		CG8944									
CG9916	CG1/122		dome	BL53889			NE					
O4432		_	donic	BL53890			NE					
CG8198 FBgn00 26666 I(1)G0136 BL53909 1239 NE CG3265 FBgn00 52654 Sec16 54 5254 BL53917 1252 A E-L E-L E-L E-L E-L E-L E-L E-L E-L E-L	CG9916	_	Cyp1	DIESCOA			NE					
26666 BL53909 1239 NE ECG3265 FBgn00 Sec16 FBgn00 Sec16 E-L	CG8198		l(1)G0136	BL53894			INE		+		1	
4 52654 BL53917 1252 A E-L E-L E-L CG1788 FBgn00 29521 BL53926 1271 NE		26666		BL53909	1239		NE		1		1	
CG1788 FBgn00 Or1a BL53926 1271 NE CG2885 FBgn00 RabX2 HMI2 NE NE CG2941 FBgn00 CG2941 HMI2 NE NE CG4331 FBgn02 CG43313 NE NE NE CG1615 FBgn00 Ork1 HMI2 NE NE NE CG1215 FBgn00 Rab39 HMI2 NE NE NE CG3263 FBgn00 Rab39 HMI2 NE NE NE CG3263 FBgn00 CG32633 BL53995 1399 A E ME S E E CG1989 FBgn00 Yippee HMI2 NE NE NE NE NE			Sec16	BI 53917		Δ	F-I	F-I			F-I	
CG2885 FBgn00 30200 RabX2 BL53928 HMJ2 1273 NE CG2941 FBgn00 29686 BL53989 1393 NE CG4331 FBgn02 CG43313 BL53989 HMJ2 NE NE 3 63005 BL53990 1394 NE CG1615 FBgn00 Ork1 FBgn00 Dr561 BL53994 1398 NE NE CG1215 FBgn00 Rab39 BL53995 HMJ2 BL53994 NE NE CG3263 FBgn00 CG32633 BL54008 HMJ2 NE NE NE CG1989 FBgn00 Yippee HMJ2 NE NE		FBgn00	Or1a	5:33311					1			
30200			D-LV2	BL53926			NE		1		1	
CG2941 FBgn00 29686 CG2941 HMJ2 393 NE CG4331 FBgn02 3 63005 CG43313 BL53990 1394 NE NE CG1615 FBgn00 017561 HMJ2 BL53994 1398 NE NE CG1215 FBgn00 Rab39 HMJ2 BL53994 1398 NE NE CG3263 FBgn00 CG32633 BL53995 1399 A E ME S E E CG1989 FBgn00 Vippee HMJ2 NE NE NE NE	CG2885		KabxZ	BL53928			NE		1			
CG4331 FBgn02 CG43313 BL53990 1394 NE SESSENTIAL SE	CG2941	FBgn00	CG2941		HMJ2							
3 63005 BL53990 1394 NE Image: CG1615 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FBgn00 FFBgn00 FFFBGn00 FFFBGn00 FFFBGn00 FFFBGn00 FFFBGn00 FFFBGn00 FFFBGn00 FFFFFFFFBGn00 FFFFFFFFFF	CC4221		CG43212	BL53989			NE		1		1	1
CG1615 FBgn00 17561 Ork1 BL53994 HMJ2 1398 NE NE CG1215 FBgn00 29959 Rab39 BL53995 HMJ2 BL53995 BL53995 HMJ2 BL53995 BL53995<			CG45515	BL53990			NE		1			
CG1215 FBgn00 Rab39 HMJ2 A E ME S E E CG3263 FBgn00 CG32633 HMJ2 NE NE S E E CG1989 FBgn00 Yippee HMJ2 NE NE S S F		FBgn00	Ork1		HMJ2							
6 29959 BL53995 1399 A E ME S E E CG3263 FBgn00 CG32633 HMJ2 S S E E E 3 52633 BL54008 1431 NE S E E E CG1989 FBgn00 Yippee HMJ2 S E E E	CG1215		Rah39	BL53994			NE		1		1	
3 52633 BL54008 1431 NE CG1989 FBgn00 Yippee HMJ2				BL53995	1399	Α	E	ME	S	E	Е	
CG1989 FBgn00 Yippee HMJ2			CG32633	DI 54000			NE					
			Yippee	BL34008			INE	-	1		+	
20/77 DL340ZU 1440 NE		26749		BL54020	1446		NE					

	Bgn00			110 212						
5 5	4015	CG34015	BL54031	HMJ2 1474		NE				
CG1461 F	Bgn00	CG14615		HMJ2						
	1184 Bgn00	RpL17	BL54044	1487 HMS0		NE				
	9897	NPL17	BL54048	3519		NE				
	Bgn02 1570	CG42684	BL54056	HMS0 3717		NE				
I I	Bgn00 5381	rush	BL54057	HMJ2 1364		NE				
	Bgn00	Pig1		HMJ2						
	3086 Bgn02	HIP	BL54058	1201 HMS0		NE				
9 6	0484		BL54458	3718		NE				
	Bgn00 0218	CG1628	BL54464	HMC0 3731		NE				
	Bgn00	CG8952	DI E 4 4 C O	HMS0		NE				
	0688 Bgn00	Rhp	BL54469	3737 HMS0		NE				
2	6374	·	BL54474	3725		NE				
1 3	Bgn00 1060	CG14231	BL54799	HMJ2 1493		NE				
I I	Bgn02 4562	Hr4	BL54803	HMJ2 1497		NE				
	Bgn02	Cht6	BL34803	HMJ2		IVL				
4 6	3132	0012404	BL54823	1542		NE				
	Bgn00 0542	CG12481	BL54826	HMJ2 1545		NE			<u></u>	
	Bgn00	CG2930		HMJ2						
	8491 Bgn00	be	BL54827	1546 HMJ2	A	ME	ME	S	ME	
4 5	2594		BL54834	1553		NE				
	Bgn00 0361	CG1492	BL54838	HMJ2 1557		NE				
	Bgn00	CG3021	DIEE144	HMC0		NE				
CG9998 F	0337 Bgn00	U2af50	BL55144	3742 HMC0		NE				
	5411 Bgn00	CG17764	BL55153	3810 HMC0	А	ME	ME		Е	
4 2	9751		BL55156	3829		NE				
	Bgn00 0085	CG6999	BL55157	HMC0 3830		NE				
	Bgn00	CG6361	DE33137	HMC0		IVL				
	0925	s((a1)	BL55174	3855	///	NE				
	Bgn00 3638	su(w[a])	DI EE 17E	HMC0 3856	(ME POSSIBL	NE				
I I	Bgn00	sisA	BL55175	HMC0 3864	E)	NE NE				
	Bgn00	Marf	BL55181	HMC0		INE				
	9870	664543	BL55189	3883		NE				
2	Bgn00 9906	CG4542	BL55190	HMC0 3884		NE				
9 8	Bgn00 5388	IP3K2	BL55240	HMC0 2364		NE				
	Bgn00 9133	REG	BL55248	HMC0 3935		NE				
CG3253 F	Bgn00	CG32533		нмс0						
	2533 Bgn00	pdgy	BL55255	3942 HMC0		NE				
2	7601		BL55272	3959		NE				
3	Bgn00 0941	wgn	BL55275	HMC0 3962		NE				
	Bgn00 0346	CG3704	BL55294	HMC0 3981		NE				
CG4315 F	Bgn02	CG43155		HMC0						
	2685 Bgn00	mei-9	BL55299	3986 HMC0		NE				
	2707	IIICI-3	BL55313	4000		NE				

CG6146 FBgn00 04924 Top1 BL55314 HMC0 4001 NE CG1211 FBgn00 7 Sptr 14032 HMC0 BL55317 NE CG3806 FBgn00 23512 eIF2B-epsilon BL55321 HMC0 4008 NE CG1789 FBgn00 6 CG17896 HMC0 HMC0 BL55323 NE NE NE NE		
CG1211 FBgn00 Sptr HMC0 7 14032 BL55317 4004 NE CG3806 FBgn00 eIF2B-epsilon HMC0 23512 BL55321 4008 NE CG1789 FBgn00 CG17896 HMC0		
CG3806 FBgn00 eIF2B-epsilon HMC0 23512 BL55321 4008 NE CG1789 FBgn00 CG17896 HMC0		
CG1789 FBgn00 CG17896 HMC0		
CG2658 FBgn00 CG2658 HMC0 24992 BL55324 4011 NE		
CG1480	E	
CG1210 FBgn00 Ppt1 HMC0	_	
8 30057 BL55331 4018 NE CG1573 FBgn00 CG15738 HMC0		
8 30352 BL55332 4019 NE CG7010 FBgn00 I(1)G0334 HMC0		
28325 BL55345 4032 NE		
CG1677 FBgn00 CG1677 HMC0 29941 BL55355 4042 S S S E		NE
CG8565 FBgn00 CG8565 HMC0		
CG1582 FBgn00 CG1582 HMC0		
CG1780 FBgn00 Idgf4 HMC0		
26415 BL55381 4069 NE		
6 30099 BL55382 4070 NE		
CG7876 FBgn00 Muc18B HMC0 31000 BL55394 4082 NE		
CG1880		
CG8544 FBgn00 sd		NE
CG2212 FBgn00 sws HMC0		142
03656 BL55406 4094 NE		
25549 BL55604 3736 NE CG3252 FBgn00 CG32523 HMC0		
3 52523 BL55607 3745 NE		
CG4044 FBgn00 kl-5 HMC0		
CG1478 FBgn00 CG14780 HMC0 0 25383 BL55616 3759 NE		
CG1504 FBgn00 CG15046 HMC0		
6 30927 BL55620 3764 NE CG7288 FBgn00 CG7288 HMC0		
30969 BL55632 3779 NE CG6227 FBgn00 CG6227 HMC0		
30631 BL55638 3786 NE		
CG1622 FBgn00 CG1622 HMC0 30468 BL55648 3797 NE		
CG4119 FBgn00 CG4119 HMC0 BL55668 3823 A E-L E-L	E-L	
CG2677 FBgn00 eIF2B-beta HMC0		
CG6340 FBgn00 CG6340 HMC0		
30648 BL55677 3842 NE		
03079 BL55679 3854 NE		
30625 BL55690 3904 NE		
CG1717 FBgn00 su(f) HMC0		
CG1716 FBgn00 CG17168 HMC0 8 39943 BL55703 3926 NE		
CG1231 FBgn00 tw HMC0		
1 86368 BL55735 3806 NE CG15747 HMC0		
	ME	NE

CG3135	FBgn00	shf	DI FEOGR	HMC0	NE			
CG4290	03390 FBgn00	Sik2	BL55867	4137 HMC0	NE			
CG 4230	25625	SIKE	BL55880	4153	NE			
CG3274	FBgn00	l(1)G0148	DI 55004	HMC0	NE			
2 CG5941	28360 FBgn00	MCTS1	BL55884	4157 HMC0	NE			
	29833		BL55920	4207	NE			
CG2979	FBgn00 05391	Yp2	BL55931	HMC0 4219	NE			
CG6186	FBgn00	Tsf1	BL55931	HMC0	INE			
	22355		BL55936	4224	NE			
CG4666	FBgn00 29838	CG4666	BL55939	HMC0 4227	NE			
CG1564	FBgn00	CG15641	BE33333	HMC0	IVL			
1	30643	205700	BL55940	4228	NE			
CG6788	FBgn00 30880	CG6788	BL55941	HMC0 4229	NE			
CG2918	FBgn00	CG2918		НМС0				
CG3269	23529 FBgn00	CG32698	BL55962	4256 HMC0	NE			
8	52698	CG32098	BL56000	4296	NE			
CG1519	FBgn00	CG15199		HMC0				
9 CG1520	30270 FBgn00	CG15202	BL56024	4320 HMC0	NE			
2	30271	0013202	BL56026	4322	NE			
CG6190	FBgn00	Ube3a	DI 57454	HMC0	NE			
CG5387	61469 FBgn00	Cdk5alpha	BL57151	4528 HMJ2	NE			
	27491	, .	BL57290	1283	NE			
CG1214	FBgn00 03295	ru	BL58065	HMJ2 1921	NE			
CG1792	FBgn00	CG17922	DESCOOS	HMJ2	IVL			
2	34656		BL58072	1964	NE			
CG1241 3	FBgn00 39588	CG12413	BL58096	HMJ2 2011	NE			
CG3002	FBgn00	CG30020		HMJ2				
0 CG7962	50020	CdsA	BL58110	2046 HMJ2	NE			
CG7902	FBgn00 10350	CusA	BL58118	2055	NE			
CG1377	FBgn00	neuroligin		HMJ2				
2 CG8532	31866 FBgn00	lqf	BL58128	2077 HMJ2	NE			
000002	28582	.4.	BL58130	2079	NE			
CG1488	FBgn00 38436	Gyc-89Db	BL58139	HMJ2 2088	NE			
6 CG3940	FBgn00	CG3940	BL30139	HMJ2	INE			
	37788		BL58160	2111	NE			
CG3167	FBgn00 51673	CG31673	BL58161	HMJ2 2112	NE			
CG1112	FBgn00	CG11125		HMJ2				
5 CG1738	33174 FBgn00	jigr1	BL58164	2141 HMJ2	NE		1	
3	39350	יו אינ ד	BL58173	2150	NE			
CG9913	FBgn00	Kif19A		HMJ2				
CG2346	38205 FBgn00		BL58193	1855 HMJ2	NE		1	
	00715		BL58197	2167	NE			
CG1828 7	FBgn00 39679	ppk19	BL58203	HMJ2 2173	NE			
CG9793	FBgn00	ranshi	DLJ0203	HMJ2	INL		1	
	37620		BL58206	2176	NE			
CG8598	FBgn00 35766	eco	BL58221	HMJ2 2229	NE			
CG3118	FBgn00	CG31183		HMJ2				
3	51183	ord	BL58224	2232	NE		-	ļ
CG3134	FBgn00 03009	ord	BL58228	HMJ2 2248	NE			1
CG6620	FBgn00	ial		HMJ2				
	24227		BL58308	2415	NE	<u> </u>	<u> </u>	<u> </u>

CG5656	FBgn00	CG5656		HMJ2						
	37083		BL58334	2464		NE				
CG9634	FBgn00	CG9634		HMJ2						
	27528		BL58344	2475		NE				
CG3281	FBgn00	inc		HMJ2						
0	25394		BL58346	2477		NE				
CG9272	FBgn00	CG9272		HMJ2						
	32907		BL58348	2479		NE				
CG8994	FBgn00			HMS0						
	00615		BL58351	4331		NE				
CG1287	FBgn00	btz		HMS0						
8	45862		BL58353	4337		NE				
CG8947	FBgn02	26-29-p		HMS0						
	50848		BL32887	0675		NE				
CG1287	FBgn00	ALiX		HMS0						
6	86346		BL33417	0298		NE				
CG2982	FBgn00	CG2982		HMS0						
	29704		BL33596	0680		NE				
CG1149	FBgn00	br		HMS0						
1	00210		BL33641	0042	Α	E-L	E-L		E-L	
CG5488	FBgn00	B-H2		HMS0						
	04854		BL33647	0048		NE				
CG4739	FBgn00	Ugt86Dc		HMS0						
	40257		BL34095	0954		NE				
CG1223	FBgn00	CG12237		HMS0						
7	31048		BL38343	1810		NE				
CG7103	FBgn00	Pvf1		HMS0						
	30964		BL39038	1958		NE				
CG3262	FBgn00	CG32628		HMS0						
8	52628		BL44036	2752		NE				
CG9737	FBgn00	CG9737		HMC0						
	39758		BL52880	3618		NE				

APPENDIX 3: CHAPTER 3 SUPPLEMENTARY TABLES AND FIGURES

Chapter 3: Supplementary tables

Table S3-1: Full genotypes

Fig. 1C	Genotype (driver: HS-GAL4, BL2077)	Includes	
LDS-(G4C2) _{CTRL} GR-	w ¹¹¹⁸ , UAS-LDS-(G4C2) _{4,9,12} ^{GR-GFP} /w*; GAL4-		
GFP	Hsp70/+;		
LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ /w*; GAL4-Hsp70/+; UAS-LDS-(G4C2) _{4,42,44} ^{GR-}		
Fig. 1D and Sup. Fig. 1	Genotype (driver: GMR-GAL4 ^{YH3})	Includes	Temp
LDS-(G4C2) _{CTRL} GR-	w ¹¹¹⁸ , UAS-LDS-(G4C2) _{4,9,12} ^{GR-GFP} /w ¹¹¹⁸ ;; GMR-GAL4 ^{YH3} /+	UAS- DSRED	26°C
LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ ;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} /GMR-GAL4 ^{YH3}	DOMED	26°C
GFP CTRL	w ¹¹¹⁸ ;; UAS-GFP.NLS/GMR-GAL4 ^{YH3}	BDSC #4776	26°C
Neg CTRL	w ¹¹¹⁸ ;; GMR-GAL4 ^{YH3} /+	" 1170	26°C
Fig. 1E	Genotype (driver: GMR-GAL4YH3)	Includes	Temp
Positive Control	w ¹¹¹⁸ /Y; UAS-DSRED/+; GMR-GAL4 ^{YH3} /+	UAS- DSRED	26°C
LDS-(G4C2)cTRLGR-	w ¹¹¹⁸ , UAS-LDS-(G4C2) _{4,9,12} ^{GR-GFP} /Y;; GMR-GAL4 ^{YH3} /+		26°C
LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} /GMR-GAL4 ^{YH3}		26°C
Fig. 1F	Genotype (driver: GMR-GAL4 ^{YH3})	Includes	Temp
DSRED	w ¹¹¹⁸ /Y; UAS-DSRED/+; GMR-GAL4 ^{YH3} /+	UAS- DSRED	26°C
LDS-(G4C2) _{CTRL} GR-	w ¹¹¹⁸ , UAS-LDS-(G4C2) _{4,9,12} ^{GR-GFP} /Y;; GMR- GAL4 ^{YH3} /+	-	26°C
LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} /GMR- GAL4 ^{YH3}		26°C
Fig. 2A - external eye toxicity	Genotype (driver: GMR-GAL4YH3)	Includes	Temp
LDS-(G4C2) _{EXP} GR- GFP w/ eIF4B RNAi	w ¹¹¹⁸ /Y; UAS-eIF4B RNAi ^{HMS04503} /+; UAS-LDS- (G4C2) _{4.42.44} ^{GR-GFP} , GMR-GAL4 ^{YH3} /+	BDSC #57305	26°C
LDS-(G4C2) _{EXP} GR- GFP w/ Control RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR- GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	BDSC #31603	26°C
LDS-(G4C2) _{EXP} GR- GFP w/ eIF3B RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR- GAL4 ^{YH3} /UAS-eIF3B RNAi ^{HMS00668}	BDSC #32880	26°C
(GR) ₃₆ w/ eIF4G1 RNAi	w ¹¹¹⁸ /y ¹ , sc*, v ¹ ; UAS-(GR) ₃₆ /+; GMR-GAL4 ^{YH3} /UAS- eIF4G1 RNAi ^{HMS00762}	BDSC #33049	24°C
(GR) ₃₆ w/ Control RNAi	w ¹¹¹⁸ /y¹, v¹; UAS-(GR) ₃₆ /+; GMR-GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	BDSC #31603	24°C
(GR) ₃₆ w/ eIF4B RNAi	w ¹¹¹⁸ /y ¹ , sc*, v ¹ ; UAS-(GR) ₃₆ /UAS-eIF4B RNAi ^{HMS04503} ; GMR-GAL4 ^{YH3} /+	BDSC #57305	24°C
Fig. 2A - external	Genotype (driver: GMR-GAL4***)	Includes	Temp
eye GR-GFP	,		

LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ /y ¹ , sc*, v ¹ ; UAS-eIF4B RNAi ^{HMS04503} /+; UAS-	BDSC	26°C
GFP w/ eIF4B RNAi	LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-GAL4 ^{YH3} /+ w ¹¹¹⁸ /y ¹ , v ¹ ;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	#57305	
LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ /y ¹ , v ¹ ;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
GFP w/ Control RNAi	GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	#31603	
LDS-(G4C2) _{EXP} GR-	w ¹¹¹⁸ /y ¹ , sc*, v ¹ ;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} ,	BDSC	26°C
GFP w/ eIF3B RNAi	GMR-GAL4 ^{YH3} /UAS-eIF3B RNAi ^{HMS00668}	#32880	
Fig. 3A	Genotype (driver: Da-GAL4, III)	Includes	Temp
Control RNAi	w ¹¹¹⁸ /Y;; UAS-Luc RNAi ^{JF01355} /Da-GAL4	BDSC	26°C
		#31603	
eIF4B RNAi	w ¹¹¹⁸ /Y; UAS-eIF4B RNAi ^{HMS04503} /+; Da-GAL4/+	BDSC	26°C
	4440.04	#57305	
elF4H1 RNAi	w ¹¹¹⁸ /Y; UAS-eIF4H1 RNAi ^{HMS04504} /+; Da-GAL4/+	BDSC	26°C
Fig. 2D	Construe (driver De CALA III)	#57306	T a rea re
Fig. 3B	Genotype (driver: Da-GAL4, III)	Includes	Temp
progeny with eIF4B	UAS-eIF4B RNAi ^{HMS04503} /+; Da-GAL4/+	BDSC	26°C
RNAi	0.07 5 0.07 1/	#57305	2000
progeny without	CyO/+; Da-GAL4/+		26°C
elF4B RNAi	LIAC - IEAD DNIA:HMS04504/ D- CALA/-	DDCC	0000
progeny with	UAS-eIF4B RNAi ^{HMS04504} /+; Da-GAL4/+	BDSC	26°C
eIF4H1 RNAi	CyO/+; Da-GAL4/+	#57306	26°C
progeny without eIF4H1 RNAi	CyO/+, Da-GAL4/+		20 C
Fig. 4A-B and 5A-B	Genotype (driver: GMR-GAL4 ^{YH3})	Includes	Temp
3			
LDS-(G4C2) _{EXP} GR-	W ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
GFP w/ Control RNAi	GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	#31603	0000
LDS-(G4C2) _{EXP} GR- GFP w/ eIF4B RNAi	w ¹¹¹⁸ /Y; UAS-eIF4B RNAi ^{HMS04503} /+; UAS-LDS-	BDSC	26°C
LDS-(G4C2) _{EXP} GR-	(G4C2) _{4,42,44} ^{GR-GFP} , GMR-GAL4 ^{YH3} /+ w ¹¹¹⁸ /Y; UAS-eIF4H1 RNAi ^{HMS04504} /+; UAS-LDS-	#57305 BDSC	26°C
GFP w/ eIF4H1 RNAi	(G4C2) _{4,42,44} ^{GR-GFP} , GMR-GAL4 ^{YH3} /+	#57306	20 C
Fig. 4C-D	Genotype (driver: GMR-GAL4 774	Includes	Temp
		,	
(GR) ₃₆ w/ Control	w ¹¹¹⁸ /y ¹ , v ¹ ; UAS-(GR) ₃₆ /+; GMR-GAL4 ^{YH3} /UAS-Luc	BDSC	24°C
RNAi	RNA JF01355	#31603	2400
(GR) ₃₆ w/ eIF4B RNAi	w ¹¹¹⁸ /y ¹ , sc*, v ¹ ; UAS-(GR) ₃₆ /UAS-eIF4B RNAi ^{HMS04503} ; GMR-GAL4 ^{YH3} /+	BDSC #57205	24°C
(GR) ₃₆ w/ eIF4B	w ¹¹¹⁸ /y¹, sc*, v¹; UAS-(GR) ₃₆ /UAS-eIF4B	#57305 BDSC	24°C
RNAi	RNAi ^{HMS04504} ; GMR-GAL4 ^{YH3} /+	#57306	24 0
Fig. 4E-F	Genotype (driver: GMR-GAL4 ^{YH3})	Includes	Temp
Control RNAi	w ¹¹¹⁸ /Y;; GMR-GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	BDSC	26°C
-IEAD DNA:	w ¹¹¹⁸ /Y: UAS-eIF4B RNAi ^{HMS04503} /+: GMR-	#31603	0000
elF4B RNAi	W116/Y; UAS-eIF4B RNAF GAL4 ^{YH3} /+	BDSC #57205	26°C
elF4H1 RNAi	GAL4****/+ W ¹¹¹⁸ /Y; UAS-eIF4H1 RNAi ^{HMS04504} /+; GMR-	#57305 BDSC	26°C
EIF4HT KINAI	GAL4 ^{YH3} /+	#57306	20 C
Fig. 5C-D	Genotype (driver: GMR-GAL4 ¹¹⁰⁴)	Includes	Temp
_	,		
DsRed w/ Control	w ¹¹¹⁸ /Y; UAS-DsRed, GMR-GAL4/+; UAS-Luc	BDSC	26°C
RNAi	RNAi ^{JF01355} /+ w ¹¹¹⁸ /Y, v ¹ ; UAS-DsRed, GMR-GAL4/UAS-eIF4B	#31603	26°C
DsRed w/ eIF4B RNAi	RNAi ^{HMS04503} ;	BDSC #57305	26°C
DsRed w/ eIF4B	w ¹¹¹⁸ /Y; UAS-DsRed, GMR-GAL4/UAS-eIF4B	#57305 BDSC	26°C
RNAi	RNAi ^{HMS04504} ;	#57306	200
LYINA	INIVAL,	#31300	

Fig. 5E	Genotype (driver: GMR-GAL4 ¹¹⁰⁴)	Includes	Temp
LacZ w/ Control	w ¹¹¹⁸ /Y; UAS-LacZ, GMR-GAL4/+; UAS-Luc	BDSC	26°C
RNAi	RNAi ^{JF01355} /+	#31603	
LacZ w/ eIF4B	w ¹¹¹⁸ /Y, v ¹ ; UAS-LacZ, GMR-GAL4/UAS-eIF4B	BDSC	26°C
RNAi	RNAi ^{HMS04503} ;	#57305	
LacZ w/ eIF4B	w ¹¹¹⁸ /Y; UAS-LacZ, GMR-GAL4/UAS-eIF4B	BDSC	26°C
RNAi	RNAi ^{HMS04504} ;	#57306	
Sup. Fig. 2	Genotype (driver: GMR-GAL4 ^{YH3})	Includes	Temp
Control RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	#31603	
elF5B RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-eIF5B RNAi ^{GL01593}	#57305	
eIF5 RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-eIF5 RNAi ^{HMS00159}	#34841	
elF2β RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-eIF2β RNAi ^{HMC02396}	#53268	
elF2Bα RNAi	w ¹¹¹⁸ /Y; UAS-eIF2Bα RNAi ^{HMC03768} /+; UAS-LDS-	BDSC	26°C
	(G4C2) _{4,42,44} ^{GR-GFP} , GMR-GAL4 ^{YH3} /+	#55624	
elF3g1 RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-eIF3g1 RNAi ^{GLC01430}	#43243	
eEFSec RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-eIF3g1 RNAi ^{GL01178}	#42805	
Sup. Fig. 3A	Genotype (driver: Da-GAL4, III)	Includes	Temp
W ¹¹¹⁸	w ¹¹¹⁸ /Y;; Da-GAL4/+		26°C
elF4B RNAi-2	w ¹¹¹⁸ /Y; UAS-eIF4B RNAi ³³⁰⁰¹⁰ /+; Da-GAL4/+	VDRC	26°C
		#330010	
elF4H1 RNAi-2	w ¹¹¹⁸ /Y; UAS-eIF4H1 RNAi ¹⁰⁸⁸⁰⁵ /+; Da-GAL4/+	VDRC	26°C
		#100817	
Sup Fig. 3B-E	Genotype (driver: GMR-GAL4 ^{YH3})	Includes	Temp
Control RNAi	w ¹¹¹⁸ /Y;; UAS-LDS-(G4C2) _{4,42,44} ^{GR-GFP} , GMR-	BDSC	26°C
	GAL4 ^{YH3} /UAS-Luc RNAi ^{JF01355}	#31603	
eIF4B RNAi-2	w ¹¹¹⁸ /Y; UAS-eIF4B RNAi ³³⁰⁰¹⁰ /+; UAS-LDS-	VDRC	26°C
	$(G4C2)_{4,42,44}^{GR-GFP}, GMR-GAL4^{YH3}/+$	#330010	
elF4H1 RNAi-2	w ¹¹¹⁸ /Y; UAS-eIF4H1 RNAi ¹⁰⁸⁸⁰⁵ /+; UAS-LDS-	VDRC	26°C
	$(G4C2)_{4,42,44}^{GR-GFP}$, GMR-GAL4 YH3 /+	#100817	
Sup. Fig. 3F	Genotype (driver: GMR-GAL4 ¹¹⁰⁴)	Includes	Temp
LacZ w/ Control	w ¹¹¹⁸ /Y; UAS-LacZ, GMR-GAL4/UAS-DSRED;	UAS-	26°C
		DSRED	
LacZ w/ eIF4B	w ¹¹¹⁸ /Y, v ¹ ; UAS-LacZ, GMR-GAL4/UAS-eIF4B	VDRC	26°C
RNAi-2	RNAi ³³⁰⁰¹⁰ ;	#330010	
LacZ w/ eIF4B	w ¹¹¹⁸ /Y; UAS-LacZ, GMR-GAL4/UAS-eIF4B	VDRC	26°C
RNAi-2	RNAi ¹⁰⁸⁸⁰⁵⁷ ;	#100817	1

Table S3-2: Full screen

		Mild				Lethal	
Color scheme:	Suppressor	Suppressor	No Effect	Mild Enhancer	Enhancer	Enhancer	not tested

				LOF		LDS-(G	4C2) _{EXP}	(GR) ₃₆	Alone	
Fly Gene	Human orthologue	BDSC stock #	Genotype of stock	line type	Final Call	Toxicity	GR-GFP levels	Toxicity	Phenotype	Control (LacZ) expression
eIF4B	EIF4B	57305	y1 sc* v1;	RNAi	Candidate RAN-					
-15414	515411	F7206	P{TRiP.HMS04503}attP40 y1 sc* v1;	DALA:	translation factor Candidate RAN-					
eIF4H1	EIF4H	57306	P{TRiP.HMS04504}attP40	RNAi	translation factor					
eIF4E3	EIF4E	53880	y1 v1; P{TRiP.HMJ21195}attP40	RNAi	Candidate RAN- translation factor					
-15454	FIFAF	50054	y1 v1;	DALA	Candidate RAN-					
eIF4E4	EIF4E	50951	P{TRiP.HMJ21052}attP40	RNAi	translation factor					
eIF4E7	EIF4E	33471	P{EP}eIF4E7G1355 w*	mutant	Candidate RAN- translation factor					
eIF5B	EIF5B	44418	y1 sc* v1;	RNAi	Candidate RAN-					
CH 35	Elisb	44410	P{TRiP.GL01593}attP2/TM3,	11171	translation factor					
eIF5	EIF5	34841	y1 sc* v1; P{TRiP.HMS00159}attP2	RNAi	Candidate RAN- translation factor					
eIF2β	EIF2S2	53268	y1 sc* v1;	RNAi	Candidate RAN-					
-	L11 232	33200	P{TRIP.HMC02396}attP2/TM3,	MINA	translation factor					
eIF3d1 (eIF-	EIF3D	20072	y1 w67c23; P{EPgy2}eIF3d1EY05735/TM3,	mutant	Candidate RAN- translation factor					
3p66)	51545	66333	y1 sc* v1;	DNIC:	Candidate RAN-					
eIF4E5	EIF4E	66332	P{TRiP.HMC06261}attP40	RNAi	translation factor					
eIF3i (eIF3-S2)	EIF3I	34978	y1 sc* v1;	RNAi	Candidate RAN-					
			P{TRiP.HMS01387}attP2		translation factor					
eIF3K	EIF3K	44493	y1 sc* v1; P{TRiP.HMC02415}attP2	RNAi	Potential RAN- translation factor					
eIF2By	EIF2B3	41948	y1 sc* v1; P{TRiP.HMS02345}attP40	RNAi	G4C2 Suppressor					
eEF2	EEF2	21351	y1 w67c23; P{EPgy2}eEF2EY02807/CyO	mutant	G4C2 Suppressor					
eIF2Bδ	EIF2B4	15441	y1 w67c23; P{EPgy2}eIF2BδEY03558	mutant	G4C2 Suppressor					
eEF1β	EEF1B2	16371	y1 w67c23; P{EPgy2}eEF1βEY05513	mutant	G4C2 Suppressor					
eIF4G1	EIF4G3	33049	y1 sc* v1; P{TRiP.HMS00762}attP2	RNAi	GR suppressor					
eIF3b (eIF3- S9)	EIF3B	32880	y1 sc* v1; P{TRiP.HMS00668}attP2	RNAi	GR Enhancer					
eIF3I	EIF3L	50959	y1 v1; P{TRIP.HMJ21061}attP40/Cy0	RNAi	GR Enhancer					
eIF4E1	EIF4E	34096	y1 sc* v1; P{TRiP.HMS00969}attP2	RNAi	GR Enhancer					
NAT1	EIF4G2	32357	y1 sc* v1; P{TRiP.HMS00348}attP2	RNAi	GR Enhancer					
eIF5C	BZW1	27248	y1 v1; P{TRiP.JF02556}attP2	RNAi	GR Enhancer					
eIF1	EIF1B	57174	y1 sc* v1; P{TRIP.HMC04556}attP40	RNAi	No Effect					
eIF2Bα	EIF2B1	55624	y1 sc* v1; P{TRIP.HMC03768}attP40	RNAi	No Effect					
eIF2Bβ	EIF2B2	55675	y1 sc* v1; P{TRIP.HMC03838}attP40	RNAi	No Effect					
eIF2Βε	EIF2B5	55321	y1 v1; P{TRIP.HMC04008}attP40	RNAi	No Effect					
eIF2D	EIF2D	33995	y1 sc* v1; P{TRIP.HMS00958}attP2	RNAi	No Effect					
eIF3c (eIF3-S8)	EIF3CL	16857	y1 w67c23; P{EPgy2}eIF3cEY07713/CyO	mutant	No Effect					
eIF3f1 (eIF3- S5)	EIF3F	33980	y1 sc* v1; P{TRiP.HMS00940}attP2	RNAi	No Effect					
eIF3g1 (eIF3- S4)	EIF3G	43243	y1 sc* v1; P{TRiP.GLC01430}attP2	RNAi	No Effect					

eIF3h (eIF-			v1 sc* v1;					
3p40)	EIF3H	55603	P{TRiP.GL01831}attP2	RNAi	No Effect			
eIF4AIII	EIF4A3	32444	y1 sc* v1; P{TRiP.HMS00442}attP2	RNAi	No Effect			
eIF4G2	EIF4G1, EIF4G3	42893	y1 sc* v1; P{TRiP.HMS02586}attP40	RNAi	No Effect			
eIF4H2	EIF4H	v32191	w1118; P{GD8011}v32191/CyO	RNAi	No Effect			
eEF1α1	EEF1A2	33960	y1 sc* v1; P{TRiP.HMS00917}attP2	RNAi	No Effect			
eEF1α2	EEF1A2	64659	y1 sc* v1; P{TRiP.HMC05694}attP40	RNAi	No Effect			
eEF1y	EEF1G	31811	w1118; P{EP}eEF1γG16379/TM6C, Sb1	mutant	No Effect			
eEF1δ	EEF1D	29605	y1 v1; P{TRiP.JF03284}attP2	RNAi	No Effect			
eEFSec	EEFSEC	42805	y1 v1; P{TRiP.GL01178}attP2	RNAi	No Effect			
eRF1	ETF1	17265	w1118; P{EP}eRF1EP3195/TM6B, Tb1	mutant	No Effect			
eRF3	GSPT1	36703	y1 sc* v1; P{TRiP.HMS01592}attP2	RNAi	No Effect			
eIF4EHP	EIF4E2	43990	y1 sc* v1; P{TRiP.HMS02703}attP40	RNAi	No Effect			
eIF1A	EIF1AY	29316	y1 v1; P{TRiP.JF02475}attP2	RNAi	Unspecific enhancer			
eIF2α	EIF2S1	44449	y1 v1; P{TRiP.GLC01598}attP2/TM3,	RNAi	Unspecific enhancer			
eIF2γ	EIF2S3	33401	y1 sc* v1; P{TRiP.HMS00279}attP2	RNAi	Unspecific enhancer			
eIF3a (eIF3- S10)	EIF3A	34353	y1 sc* v1; P{TRiP.HMS01342}attP2	RNAi	Unspecific enhancer			
eIF3m	EIF3M	32879	y1 sc* v1; P{TRiP.HMS00667}attP2	RNAi	Unspecific enhancer			
eIF4A	EIF4A1	33970	y1 sc* v1; P{TRiP.HMS00927}attP2	RNAi	Unspecific enhancer			

Table S3-3: Fibroblast cell lines

Fibroblast cell line #	NINDS/Coriell Code	Mutation	Diagnosis	Age at onset	Age at sampling	Gender	Source
1	ND29178	n/a	healthy	n/a	66	М	Rutgers
2	ND29510	n/a	healthy	n/a	55	F	Rutgers
3	ND34769	n/a	healthy	n/a	68	F	Rutgers
4	ND36320	n/a	healthy	n/a	71	F	Rutgers
5	ND38530	n/a	healthy	n/a	55	М	Rutgers
6	ND40069	C9orf72: Intermediate	Parkinsonism	71	75	F	Rutgers
7	ND42496	C9orf72	FTD	At Risk	57	М	Rutgers
8	ND42504	C9orf72	FTD	At Risk	53	F	Rutgers
9	ND42506	C9orf72	FTD	At Risk	46	F	Rutgers

Table S3-4: Patient details

The sample median (minimum, 25th percentile, 75th percentile, and maximum) is given for age at onset, age at death and disease duration, all given in years.

,								
	C9orf72-positive							
	All	ALS	ALS/FTLD	FTLD				
Number of cases	66	19	21	26				
Gender (male)	38 (57.58%)	7 (36.84%)	12 (57.14%)	19 (73.08%)				
Age at onset	61 (41, 55, 67, 79)	56 (41, 49, 61, 69)	58 (50, 54, 65, 74)	66 (44, 57, 70, 79)				
Age at death	64 (43, 59, 72, 90)	60 (43, 51, 64, 72)	62 (51, 60, 68, 80)	72 (52, 65, 78, 90)				
Disease duration	3.9 (1.0, 2.3, 6.7, 14.5)	2.1 (1.0, 1.5, 3.1, 6.3)	4.8 (1.1, 2.7, 6.7, 10.4)	7.3 (2.4, 5.8, 9.4, 14.5)				

·	C9orf72-negative								
	All	ALS	ALS/FTLD	FTLD					
Number of cases	46	21	9	16					
Gender (male)	21 (45.65%)	10 (47.62%)	3 (33.33%)	8 (50.00%)					
Age at onset	66 (45, 57, 73, 86)	59 (45, 49, 66, 76)	70 (46, 57, 70, 78)	73 (57, 66, 80, 86)					
Age at death	72 (47, 64, 83, 100)	66 (47, 59, 71, 83)	73 (49, 63, 78, 85)	85 (66, 78, 89, 100)					
Disease duration	4.6 (0.6, 2.9, 8.6, 21.9)	3.4 (0.9, 2.0, 4.8, 21.5)	2.9 (0.6, 1.8, 7.8, 21.9)	8.5 (3.9, 8.2, 10.1, 20.5)					

	Healthy controls
Number of cases	22
Gender (male)	12 (54.54%)
Age at death	79 (57, 64, 89, 99)

Table S3-5: Fly lines

Name	Location	Source	ID#	Full genotype
Gmr-GAL4 (III)	3	Matthew Freeman	n/a	w*;; Gmr-GAL4 ^{YH3} /TM3,Sb
Gmr-GAL4 (II)	2	BDSC	1104	w*; Gmr-GAL4;
Da-GAL4	3	BDSC	55851	w*;; Da-GAL4
HS-GAL4	3	BDSC	1799	w[*];; P{w[+mC]=GAL4-Hsp70.PB}89-2-1
Control (DSRED)	2	Nancy Bonini	n/a	w[1118]; UAS-DSRED;
LDS-(G4C2)12 ^{GR-GFP}	3	Nancy Bonini	n/a	w[1118];; UAS-LDS-(G4C2) _{4,9,12} [GR-GFP]
LDS-(G4C2)44 ^{GR-GFP}	3	Nancy Bonini	n/a	w[1118];; UAS-LDS-(G4C2) _{4,42,44} [GR-GFP]
Control (w ¹¹¹⁸)	n/a	BDSC	5905	w[1118];;
Control RNAi	3	BDSC	31603	y[1] v[1];; P{y[+t7.7] v[+t1.8]=TRiP.JF01355}attP2
(GR)36	2	BDSC	58692	w[1118]; P{y[+t7.7] w[+mC]=UAS-poly-GR.PO-36}attP40;
elF4B RNAi	2	BDSC	57305	y1 sc* v1; P{TRiP.HMS04503}attP40;
elF4B RNAi-2	2	VDRC	330010	w*; P{VSH330010}attP40;
elF4H1 RNAi	2	BDSC	57306	y1 sc* v1; P{TRiP.HMS04504}attP40;
elF4H1 RNAi-2	2	VDRC	100817	w*; P{KK108805}VIE-260B;

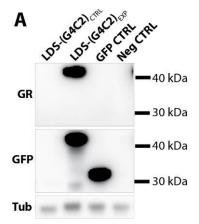
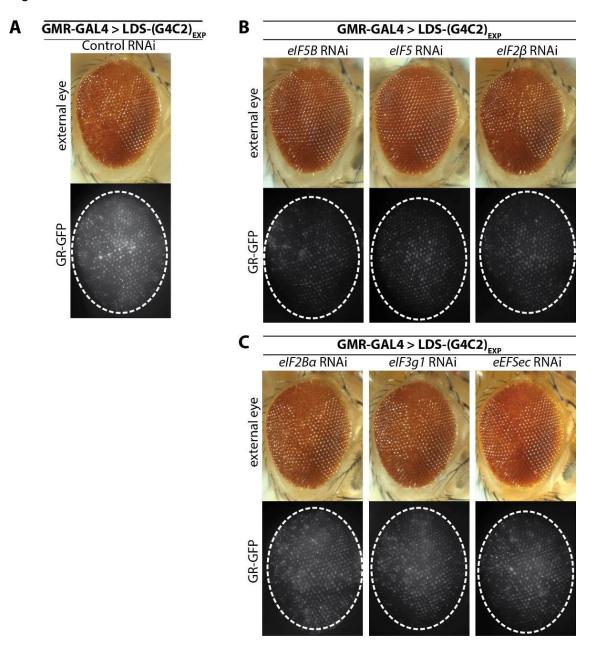

BDSC = Bloomington *Drosophila* Stock Center VDRC = Vienna *Drosophila* Resource Center

Table S3-5: Primers

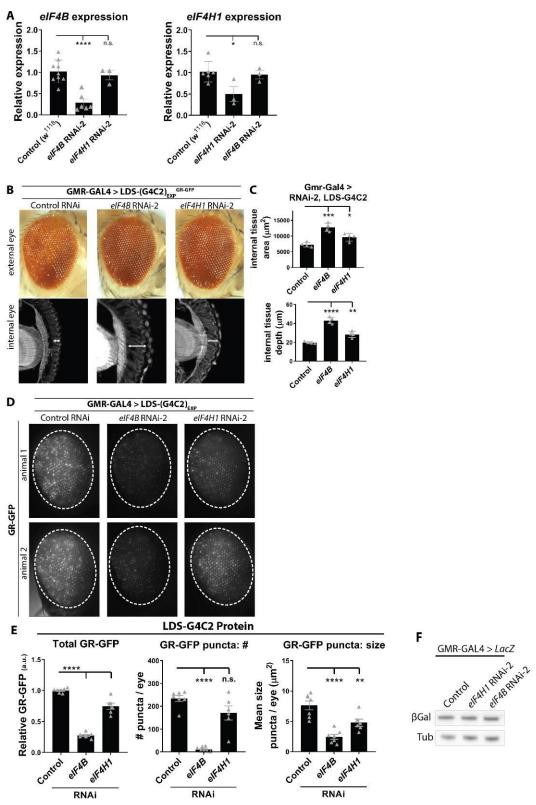
Target	Speci es	Ass ay	Forward (5'-3')	Reverse (5'-3')	Reference
LDS- G4C2	Dmel.	PCR	ACTCGCTGAGGGTGAACAAG	CGACTCCTGAGTTCCA GAGC	Goodman et al, Nat Neuro, 2019
GFP tag	Dmel.	qPC R	ACGTAAACGGCCACAAGTTC	AAGTCGTGCTGCTTCAT GTG	Goodman et al, Nat Neuro, 2019
RP49	Dmel.	qPC R	TGTCCTTCCAGCTTCAAGATG ACCATC	CTTGGGCTTGCGCCAT TTGTG	Gabler, M. et al., 2005
elF4B	Dmel.	qPC R	CGCATTGAGCTATCGAATGA	CCAATTTCCGGAATCCC TAT	this paper
elF4H1	Dmel.	qPC R	GGGAAACGGATCAGTTCAAA	CTTCTGGAAACCGTCTC TGC	this paper
EIF4H	Нѕар.	qPC R	GGTGGCTTTGGATTCAGAAA	CCCTGAAGCCAGAATT GAAG	this paper
EIF4B	Hsap.	qPC R	AGCTCAGACACAGAGCAGCA	CTTTCCTTCCTGGTCCT	this paper
RPLP0	Hsap	qPC R	TCTACAACCCTGAAGTGCTTG AT	CAATCTGCAGACAGAC ACTGG	Goodman et al, Nat Neuro, 2019
GAPDH	Hsap	qPC R	GTTCGACAGTCAGCCGCATC	GGAATTTGCCATGGGT GGA	Goodman et al, Nat Neuro, 2019

Chapter 3: Supplementary figures and legends


Figure S3-1

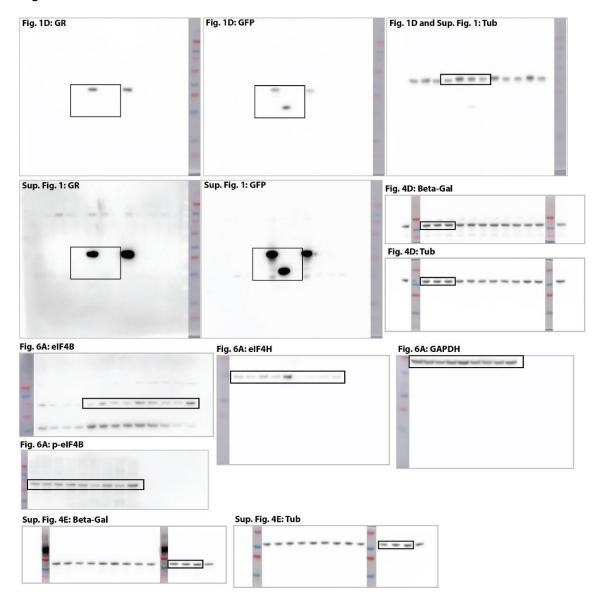
Supplementary Figure S3-1: Extended LDS-G4C2 fly line characterization.

Western immunoblots were used to confirm GR dipeptide is produced and successfully tagged with GFP in expanded G4C2 flies (Fig. 3-1D). Blots were overexposed to see if GR/GFP dipeptide could be detected in control G4C2 flies. Shown is a representative image of the original blot, imaged at > 4X the original exposure. > 10X the original exposure also showed no GR/GFP dipeptide in control G4C2 flies (data not shown). Note that the faint band at a molecular weight below GFP alone in the LDS-(G4C2)_{EXP} lane is a non-specific band that is found in multiple lanes of the complete western immunoblot (see **Supplementary Fig. S3-4** for Uncropped westerns).


Figure S3-2

Supplementary Figure S3-2: Extended translation factor screen data.

A. External eye and GR-GFP imaging in LDS-(G4C2)_{EXP} animals co-expressing control (*Luc*) RNAi. **B.** Additional examples of candidate RAN-translation factors, showing suppression of toxicity in the external eye and reduced GR-GFP levels. Note, *eIF2β* RNAi only mildly altered toxicity in the external eye. **C.** Examples of RNAi targeting translation factors that did not significantly alter LDS-(G4C2)_{EXP} toxicity nor GR-GFP levels. RNAi lines: control (JF01355), *eIF5B* (GL01593), *eIF5* (HMS00159), *eIF2β* (HMC02396), *eIF2Bα* (HMC03768), *eIF3g1* (GLC01430), *eEFSec* (GL01178). For full genotypes see **Supplementary Table S3-1**. Shown: representative images while all RNAi were tested 2+ times for effects on LDS-(G4C2)_{EXP} toxicity and GR-GFP levels.


Figure S3-3

Supplementary Figure S3-3: eIF4B and eIF4H1 RNAi-2 data.

eIF4B and eIF4H1 downregulation in LDS-(G4C2)_{EXP} flies using a second set of RNAi lines show similar results. A. RNA levels produced from eIF4B or eIF4H1 were assessed by qPCR in flies ubiquitously expressing RNAi-2 (by Daughterless-GAL4 driver). Shown: individual data points with mean±SD. B. Using GMR-GAL4, RNAi-2-mediated depletion of eIF4B or eIF4H1 in LDS-(G4C2)_{EXP} expressing flies results in reduced toxicity in both the external and internal eye: seen externally by recovered pigment and ommatidial structure, seen internally by recovered retinal tissue integrity. C. Blinded quantification of internal retina tissue was done by measuring the total surface area of tissue present and by measuring the depth of the tissue at the position of the optic chiasm. n=4 animals per genotype. Shown: individual data points each representing 1 animal, with mean±SD. D. Fluorescence imaging in LDS-(G4C2)_{EXP} expressing flies co-expressing eIF4B or eIF4H RNAi-2 results in reduced GR-GFP levels (GMR-GAL4). E. Blinded quantification of GR-GFP signal in LDS-(G4C2)_{EXP} animals relative to signal in control RNAi animals. Note that eIF4H1 RNAi-2 did not cause a significant reduction in GR-GFP puncta number, likely due to this RNAi only causing a 50% downregulation of eIF4H1; it did reduce puncta size and total GR-GFP fluorescence. n=6-7 animals per genotype. Shown: individual data points each representing 1 animal from two independent experiments with mean±SEM. F. A representative western immunoblot image for β-Galactosidase in LacZ flies co-expressing a control transgene, eIF4B RNAi-2, or eIF4H1 RNAi-2. Uncropped westerns (Sup. Fig. S3-4). Statistics: one-way ANOVAs with Tukey's multiple comparison correction, p-values ****<0.0001, ***<0.001, **<0.01, *<0.05, no significance >0.05. RNAi lines: control (JF01355), eIF4B RNAi-2 (VSH330010), eIF4H1 RNAi-2 (KK108805). For full genotypes see Supplementary Table S3-1.

Figure S3-4

Supplementary Figure S3-4: full Western immunoblot images for Fig. 3-1D, Sup. Fig. S3-1, Fig. 3-4D, Fig. 3-6A and Sup. Fig. S3-4E, including ladder, Novex sharp Protein Standard (Invitrogen #LC5800).

APPENDIX 4: DETAILED PROTOCOLS FOR SELECT EXPERIMENTS

qDNA extraction (flies)

Methods 1: High quality DNA (Puregene Kit)

REAGENTS/MATERIALS

- Gentra Puregene Tissue Kit (Qiagen #158667), prepare stock solutions according to company's instructions
- phenol: chloroform:isoamyl alcohol
- isopropanol
- 70% ethanol (200 proof ethanol + milliQ water)
- pellet/pestle disposable blue microcentrifuge tubes (Kimble # 749520-0000)
- pellet/pestle cordless motor (Kimble # 749540-0000)
- microcentrifuge tubes

PROTOCOL

- 1. Prep:
 - a. Pre-chill 500ul cell lysis buffer per sample on ice for 10 min.
 - b. set a heat block to 65°C
 - c. set a heat block to 37°C
 - d. (optional) pre-chill refrigerated microcentrifuge
- Collect 15-30 transgenic flies and transfer to a blue tube for use with the plastic disposable pestles. Immediately add 100ul of chilled lysis buffer and grind the tissue using pellet pestles. When completely homogenized, add an additional 200ul of chilled lysis buffer and vortex briefly to mix. Place the tube back on ice until next step.
- 3. Heat the lysate at 65°C for 30min to inactivate endogenous DNase.
- 4. Transfer lysates to an ice-bucket containing ice and incubate for 5min.
- 5. Add 1.5µl of RNase A soln. Mix well by inverting 25X and incubate the lysate at 37°C for 30-60 min.
- 6. Add 200µl of prechilled lysis buffer and incubate on ice for 1min.
- 7. Add 180µl of protein precipitation buffer to the RNAase A-treated lysate. Immediately vortex at max speed for 30 sec.
- 8. Incubate lysate on ice for 10 min.
- 9. Centrifuge at 20,000 x g for 10 min at 4°C.

Note: samples tend to still have chunks of stuff within the supernatant. Repeating the protein precipitation steps does not seem to help. Just move forward.

- 10. Transfer supernatant to a new 1.5ml tube by dumping the solution from 1 tube into the next. Be gentle so as to avoid accidently dislodging the pellet.
- 11. Add 650µl phenol: chloroform:isoamyl alcohol (be sure to take solution from the bottom of the container as the top is an aqueous layer). Immediately mix by inverting 50X. Incubate at RT 5min.
- 12. Centrifuge at 16000 x g for 10 min.
- 13. Transfer upper aqueous layer (~580µl) to a new 1.5ml tube.
- 14. Add 700µl isopropanol into the tube. Mix the sample by inverting gently 50X.
- 15. Centrifuge at 16000 x g for 10 min. Remove supernatant by pouring it into a waste container be sure to keep the tube inverted (!) and dab the edge on

- clean paper towel to remove the supernatant. Pellet may be loose so use caution not to lose it during pouring off supernatant.
- 16. Wash the DNA pellet once with 300µl 70% ethanol by gently adding the EtOH than immediately removing it with the same pipet tip. Pellet may be loose so use caution not to lose it during ethanol removal. Using a tabletop centrifuge, centrifuge the samples briefly to collect residual liquid. Remove it with a pipette.
- 17. Air dry pellet for 10 min. Add 3µl/animal DNA hydration solution (or TE buffer) to dissolve it. Mix by pipette if necessary to make sure that pellet is fully dissolved.
 - a. If necessary, samples can be stored overnight at 4°C to allow them to dissolve completely. Store the genomic DNA at -20°C.
 - b. Do not store your isolated DNA in water. DNA is an acid and is best stored under buffered conditions. The standard TE will work. The EDTA concentration can be reduced, however, it is usually diluted to a concentration that does not inhibit the PCR or other downstream reactions.

18. Assess DNA quality

- a. Check the quantity & quality of DNA on the Nanodrop. The A260/280 ratios should be around 1.8 for DNA. Note: A260/230 ratios maybe <2.0 due to phenol contamination. This does not typically affect PCRs.
- b. (optional) Check the quality of genomic DNA on 1.0% agarose TAE gel with a 1kb ladder.
 - i. Run for ~30-60 min on a 0.8-1% gel at 100 V. If you see a thick and well-defined band that barely migrates (is genomic DNA and it is extremely heavy to migrate), it is your DNA and it is in good shape. The blurrier it looks, the more degraded your DNA is. If the band has a thick smear it is very degraded. It does not matter if the genomic DNA is totally intact for PCR as long as the smear extends above the expected length of your amplicon and the DNA does not have any PCR inhibitors.

Method 2: Squash Buffer

NOTES

- Good for
 - Rapid genotyping of a fly line
 - Genotyping single animals (e.g. determining if a single, potential recombinant male indeed has the desired genotype)
- Does not work on LDS-G4C2 fly model w/ G4C2 PCR protocol
- May need to reduce amount of supernatant used per PCR reaction to 1µl depending on your PCR reaction

REAGENTS/MATERIALS

- 1M Tris-HCl, pH 8.0
- 0.5M EDTA, pH 8.0
- 5M NaCl

- proteinase K (Roche cat# 12445700, 20mg/ml)
- microcentrifuge tubes
- pellet/pestle disposable blue microcentrifuge tubes (Kimble # 749520-0000)
- pellet/pestle cordless motor (Kimble # 749540-0000)

PROTOCOL

- 1. Prepare:
 - a. Squash Buffer Stock (10 mM Tris-HCl, pH 8.0; 1 mM EDTA; 25 mM NaCl) can make 50mL in a conical and store long-term at room temperature
 - b. Preheat two heat-blocks: one to 37°C, one to 95°C
- 2. Prepare Working Squash Buffer by adding 5µl proteinase K to 250ul of Squash Buffer Stock (need 30µl per sample).
- 3. Place 1-2 flies in a pre-labeled, blue microcentrifuge tube. Using disposable pestle and motor, grind the fly for 5-10 sec in 30µl of Working Squash Buffer.
- 4. Incubate tubes at 37°C for 40min.
- 5. Incubate tubes at 95°C for 5min to inactivate protease K.
- 6. Pellet cuticle by centrifuging samples at 12,000xg for 5-10 min.
- 7. Transfer supernatant to a fresh, prelabeled microcentrifuge tube with a 200µL pipette, making sure to avoid pellet.
- 8. Store at -20°C.
- 9. Use 2µl of aqueous supernatant as PCR template for 10µl PCR reaction.

PCR reactions for UAS, GAL4, GS transgenes

TRANSGENE-SPECIFIC REACTIONS

- pUAS transgenes (flanking primers)
 - UAS-(GR)36 parameters
 - annealing temperature: 59 °C
 - DNA template per reaction: 100ng
 - PCR product: ~520bp by agarose gel
 - Other pUAS transgenes parameters
 - annealing temperature: Run a gradient temperature reaction from 55-52°C on a positive sample to define the best annealing temperature
 - DNA template per reaction: test 100 and 200ng
 - PCR product: ~300bp + the size of the transgene
 - Forward primer: 5'- AGCAACCAAGTAAATCAACTGC -3'
 - o Reverse primer: 5'- TTCATCAGTTCCATAGGTTGG -3'
- GAL4 transgenes
 - Parameters

- annealing temperature: 58 °C
- DNA template per reaction: 200ng
- PCR product: ~420bp by agarose gel
- o Forward primer: 5'- GTCTTCTATCGAACAAGCATGCGA -3'
- Reverse primer: 5'- TGACCTTTGTTACTACTCTCTCC -3'
- GAL4[geneswitch] transgenes
 - Parameters
 - annealing temperature: 62 °C
 - DNA template per reaction: 100ng
 - PCR product: ~520bp by agarose gel
 - Forward primer: 5'-GGGCTACGAAGTCAAACCCA-3'
 - o Reverse primer: 5'-TCTGCCCAGAAGGAAACACC-3'

REAGENTS/MATERIALS

- Fly genomic DNA (see General protocols: gDNA extraction (flies))
- FastStart PCR Master Mix (Roche # 04710436001)
- 6X Gel Loading Dye (New England biolabs #B7021S)
- MilliQ water

SUPPLEMENTARY FILE: PCR reactions for UAS-GAL4 transgenes.xlsx

PROTOCOL

- 1. Thaw the following at RT
 - a. Fly genomic DNA
 - b. FastStart PCR Master Mix (Roche # 04710436001)
- Prepare a master mix using the Supplementary file to automatically calculate the volumes of each reagent to add. Be sure to include a no-template (water only) control and a positive control.

Master Mix Component	Final concentration
2X FastStart Master Mix	1X
Forward Primer (3µM)	0.3μΜ
Reverse Primer (3µM)	0.3μΜ
Genomic DNA	Volume is based on your samples, typically 1-2µl
MilliQ water (must be room temperature)	Volume is based on your desired end volume, typically 10µl

Notes

- Make sure you have a no-template (water) control and a positive control. If using the plasmid construct as the positive control, only use 5-20ng of purified plasmid per reaction.
- 3. pipette the correct amount of master mix into desired # of PCR tubes. Typically, 8-9µl of master mix/tube.
- 4. add genomic DNA to the PCR tubes, being sure to keep track of the order. Typically, 1-2µl of 100ng/µl genomic DNA per tube.
- 5. Place tubes into a thermocycler. Press firmly down on each tube's lid to make sure they are sealed. Run the following program:

Step	Temperature	Time	Number Cycles
Initial denaturation	95 °C	6 min	1
Denaturation	95 °C	30 sec	
Primer annealing	varies	30 sec	35
Extension	72 °C	1min	
Final Extension	72 °C	7min	1
Cooling	4 °C	Hold	1

- 6. PCR samples can be stored at -20°C for future use.
- 7. Run PCR products on a 1% TAE agarose gel
 - a. Prepare a 1% TAE agarose gel
 - i. prep the agarose gel casting equipment with an appropriate size comb – includes placing the tray in the mount and adding the comb then making sure it's all level with a level
 - ii. add desired volume of 1X TAE to a Erlenmeyer flask (for mini gel this is 70ml, for a midi gel this is 200ml)
 - iii. add agarose powder to the TAE for a final concentration of 1% (w/v) (for a mini gel this is 0.7g, for a midi gel this is 2g)
 - iv. place a kimwipe or paper towel into the mouth of the flask and microwave the agarose until it has COMPLETELY melted. Usually ~3min, swirl flask every minute to mix. At the end, confirm there are no unmelted pieces within the solution – it should have no particles floating in it. microwave more as needed.
 - v. add SYBR safe DNA stain to the melted agarose to 1x volume (7µl for mini gel, 20µl for midi gel). Swirl flask gently until stain is well mixed be sure to avoid creating bubbles
 - vi. gently pour the agarose into the prepared gel casting tray making sure to avoid bubbles. If bubbles to form, try to remove them or at

- least move them to the sides using a pipette tip. Bubbles around the comb can be a particular problem.
- vii. Cover the gel *loosely* with Al foil to avoid light exposure (do not seal it! this is just to protect it from light but you want it to cool as if the foil was absent)
- viii. let agarose gel solidify for 45min-90min

b. Prepare samples

- i. Thaw an aliquot an appropriate sized DNA ladder
- ii. Dilute PCR products into 6X diluted sample buffer and mix thoroughly
 - 1. If running PCR products prepared from high-quality DNA, run ~5µl of PCR product per lane.
 - 2. If running PCR products prepared from Squash Method DNA preps, run 5-10µl of PCR product per lane

c. Run Gel

- i. Prepare gel running equipment
 - 1. Gently remove comb from the solidified gel
 - 2. Place gel into the electrophoresis tank and add 1x TAE until it covers the top of the gel
- ii. Add 5µl of each DNA ladder and 5-10µl of prepared PCR products per lane into the pre-determined lanes, being sure to keep track of which samples are in which lanes
- iii. run the gel
 - put the lid onto the electrophoresis tank paying special attention to the position of the electrodes. The black/negative electrodes at the top and the red/positive electrodes at the bottom.
 - 2. Plug the electrodes into a power-source, again paying special attention to the position of the electrodes black-to-black and red-to-red.
- iv. run the power supply at 100V for 40-75min until the blue indicator dye is ~2/3 of the way down the gel. DO NOT OVERRUN THE GELS AS THIS REDUCES TO SIGNAL STRENGTH. YOU CAN ALWAYS STOP THE GEL, CHECK IT ON THE UV IMAGER AND RUN IT MORE IF NEEDED TO GET SEPERATION OF BANDS.
- d. Image the gel using the UV imager. The Bonini lab imager is significantly better while bands from these reactions should be relatively bright. Also, be prepared to look visually at the gel and to play around with exposure if bands are faint. If needed, you can soak the gel in 1X SYBR Safe DNA stain in TAE buffer for 10min and reimage.
- e. Estimate the size of the PCR product(s) based on the DNA ladders.

Repeat-length determination

G4C2 PCR Reaction

NOTES

- Protocols for isolating genomic DNA from flies are in "General Protocols"
- Primers were designed that flank the repeat
 - UAS-G4C2 lines
 - a 350bp PCR product is expected for 49 repeats
 - Forward primer: 5'-GAATTCGAGCTCAGATCTCCCG-3'
 - Reverse primer: 5'-TCTAGAGGATCCGGTACCGAGTCTCGAG-3'
 - UAS-LDS-G4C2 lines
 - a 461bp PCR product is expected for 49 repeats
 - Forward primer: 5'-CTCGCTGAGGGTGAACAAGA-3'
 - Reverse primer: 5'-ACTTGTGGCCGTTTACGTCG-3'

REAGENTS

- Fly genomic DNA (see General protocols: gDNA extraction (flies))
- KAPA HiFi Hotstart Kit (KAPA Biosystems #KK 2501)
- DMSO
- 5M Betaine (Sigma #B0300-1VL, stored at 4°C)
- MilliQ water

SUPPLEMENTARY FILE: G4C2 PCR Reaction (KAPA HiFi Hot-start Kit).xlsx

- 1. Thaw the following at RT
 - a. From Kapa HiFi Kit
 - i. 5X GC Buffer
 - ii. KAPA dNTP mix (10mM)
 - b. Working stocks for primers (at 10µM)
 - c. Genomic DNA samples
- 2. (recommended) Update the G4C2 PCR Reaction (KAPA HiFi Hot-start Kit) supplementary file with relevant information and print the excel sheet for use at bench.
- Prepare a master mix using the Supplementary file to automatically calculate the volumes of each reagent to add. Be sure to include a no-template (water only) control and a positive control.

Master Mix Component	Final concentration
5X GC Buffer	1X

KAPA dNTP mix (10mM)	0.3mM	
Forward Primer (10uM)	0.3μΜ	
Reverse Primer (10uM)	0.3μΜ	
DMSO	5%	
Betaine (5M)	1M	
KAPA HiFi Hotstart DNA polymerase (1 U/μl)	0.02 U/1µl rxn	
Genomic DNA (200ng)	Volume is based on your samples, typically 2µl	
MilliQ water (must be room temperature)	Volume is based on your desired end volume, typically 10µl	

Notes:

- It is important that the reaction mix remain at room temperature as DMSO freezes at 4°C. Accordingly, use RT water and let the reaction mix reach RT before adding the enzyme.
- Make sure you have a no-template (water) control and a positive control. If using the plasmid construct as the positive control, only use 20ng of purified plasmid per reaction.
- 4. pipette the correct amount of master mix into desired # of PCR tubes. Typically, 8µl of master mix/tube.
- 5. add genomic DNA to the PCR tubes, being sure to keep track of the order. Typically, 2µl of 100ng/µl genomic DNA per tube.
- 6. Place tubes into a thermocycler. Press firmly down on each tube's lid to make sure they are sealed. Run the following program: in Eppendorf PCR Machine #3 under Lindsey > G4C2 PCR > Kapa hotstart.

Step	Temperature	Time	Number Cycles
Initial denaturation	95 °C	5 min	1
Denaturation	98 °C	20 sec	25
Primer annealing	61 °C	30 sec	35

Extension	72 °C	1min	
Final Extension	72 °C	5min	1
Cooling	4 °C	Hold	1

7. PCR samples can be stored at -20°C for future use.

Estimate repeat length: agarose gel

REAGENTS

- KAPA-HiFi PCR products
- 2X diluted sample buffer
 - 20µl of 6X Gel Loading Dye (New England biolabs #B7021S)
 - o 6.6µl of 1M Tris-HCL, pH=8.0 to 6.6mM
 - o 100µl of 50% glycerol to 5%
 - 873.4µl of MilliQ water to 1ml
- SYBR Safe DNA stain
- 50bp DNA ladder
- 25bp DNA ladder
- 1X TAE buffer
- Standard melting point agarose (Invitrogen #16500500)

- 1. Prepare a 1.5% TAE agarose gel
 - a. prep the agarose gel casting equipment with an appropriate size comb includes placing the tray in the mount and adding the comb then making sure it's all level with a level
 - b. add desired volume of 1X TAE to a Erlenmeyer flask (for mini gel this is 70ml, for a midi gel this is 200ml)
 - c. add agarose powder to the TAE for a final concentration of 1.5% (w/v) (for a mini gel this is ~1g, for a midi gel this is 3g)
 - d. place a kimwipe or paper towel into the mouth of the flask and microwave the agarose until it has COMPLETELY melted. Usually ~3min, swirl flask every minute to mix. At the end, confirm there are no unmelted pieces within the solution – it should have no particles floating in it. microwave more as needed.
 - e. add SYBR safe DNA stain to the melted agarose to 1x volume (7µl for mini gel, 20µl for midi gel). Swirl flask gently until stain is well mixed be sure to avoid creating bubbles
 - f. gently pour the agarose into the prepared gel casting tray making sure to avoid bubbles. If bubbles to form, try to remove them or at least move them to the sides using a pipette tip. Bubbles around the comb can be a particular problem.

- g. Cover the gel *loosely* with Al foil to avoid light exposure (do not seal it! this is just to protect it from light but you want it to cool as if the foil was absent)
- h. let agarose gel solidify for 45min-90min

2. Prepare samples

- a. Thaw an aliquot of 25bp and 50bp DNA ladder
- b. Dilute PCR products into 2X diluted sample buffer and mix thoroughly
 - i. If running PCR products prepared from high-quality DNA, run 5-10µl of PCR product per lane. Be sure to save 5µl of PCR product for Bioanalyzer analysis if desired. If you are not running a bioanalyzer, its best to use more PCR product in the gel as the bands are not always bright.
 - ii. If running PCR products prepared from Squash Method DNA preps, run 10-20µl of PCR product per lane

3. Run Gel

- a. Prepare gel running equipment
 - i. Gently remove comb from the solidified gel
 - ii. Place gel into the electrophoresis tank and add 1x TAE until it covers the top of the gel
- Add 5µI of each DNA ladder and 10-20µI of prepared PCR products per lane into the pre-determined lanes, being sure to keep track of which samples are in which lanes
- c. run the gel
 - i. put the lid onto the electrophoresis tank paying special attention to the position of the electrodes. The black/negative electrodes at the top and the red/positive electrodes at the bottom.
 - ii. Plug the electrodes into a power-source, again paying special attention to the position of the electrodes – black-to-black and redto-red.
- d. run the power supply at 100V for 40-75min until the blue indicator dye is ~2/3 of the way down the gel. DO NOT OVERRUN THE GELS AS THIS REDUCES TO SIGNAL STRENGTH. YOU CAN ALWAYS STOP THE GEL, CHECK IT ON THE UV IMAGER AND RUN IT MORE IF NEEDED TO GET SEPERATION OF BANDS.
- 4. Image the gel using the UV imager. The Bonini lab imager is significantly better for seeing these PCR products as they can be faint. Other imagers don't always work. Also, be prepared to look visually at the gel and to play around with exposure if bands are faint. If needed, you can soak the gel in 1X SYBR Safe DNA stain in TAE buffer for 10min and reimage.
- 5. Estimate the size of the PCR product(s) based on the DNA ladders. Calculate the # of repeats present
 - a. For UAS-G4C2 lines: [(PCR product length) (49bp of non-G4C2 sequence)] ÷ 6 = X
 - b. For UAS-LDS-G4C2[GA-GFP] lines: [(PCR product length) (203bp of non-G4C2 sequence)] ÷ 6 = X

c. For UAS-LDS-G4C2[GR-GFP] lines: [(PCR product length) – (205bp of non-G4C2 sequence)] ÷ 6 = X

Calculate repeat length: Bioanalyzer

- 1. add 1µl of PCR products to 4µl MilliQ water in pre-labeled PCR tubes. Samples can be stored at -20°C until you've accumulated a whole chip's worth of samples. Keep the remaining 4µl of the PCR product for future use. You may need to resubmit samples at a higher concentration.
- 2. Submit samples to the CHOP DNA core for analysis using the Agilent DNA 1000 chip/protocol.
- 3. From the PCR product lengths reported by the Bioanalyzer, calculate the # of repeats present
 - a. For UAS-G4C2 lines: [(PCR product length) (49bp of non-G4C2 sequence)] \div 6 = X
 - b. For UAS-LDS-G4C2[GA-GFP] lines: [(PCR product length) (203bp of non-G4C2 sequence)] ÷ 6 =
 - c. For UAS-LDS-G4C2[GR-GFP] lines: [(PCR product length) (205bp of non-G4C2 sequence)] \div 6 = X

RNA extraction (flies)

Total RNA extraction (Trizol)

NOTES: Typical yield for fly heads with 20min incubation at RT for step 11

Yield	
	total ng/head
mean	531
median	496
min	423
max	721

REAGENTS/MATERIALS

- Tissue
 - Use 5-10 whole larvae or flies per sample
 - Use 20-30 fly heads per sample
- Trizol
- Isopropanol
- 75% ethanol (200 proof ethanol + MilliQ water)
- DEPC-treated water
- RNaseZAP
- Ambion RNase free 1.5 mL microcentrifuge tubes (Thermo Sci # AM12400)
- RNase-free pellet/pestle disposable blue microcentrifuge tubes (Fisher Sci # 12-141-368)
 - Alternative: the standard pellet/pestle disposable blue microcentrifuge tubes (Kimble # 749520-0000) can be used if the bag is maintained for RNA work
- pellet/pestle cordless motor (Kimble # 749540-0000)
- RNaseZap (Thermo Sci # AM9780)
- Filtered pipette tips

- 1. Prepare an RNase-free work space:
 - a. Place a clean piece of plastic wrap on counter of your work station
 - b. Spray pipettes with RNaseZAP
 - c. Obtain filtered pipette tips
 - d. In general, it is good practice to spray hands with RNaseZAP after touching non-treated surfaces (like centrifuges) and to exchange gloves periodically, never grabbing them by the fingertips.
- 2. Using mortar & pestle, homogenize tissue in 100µl Trizol extraction buffer in blue microcentrifuge tubes.
 - * if using frozen tissue, keep on dry ice until adding Trizol
- 3. Add an additional 900µl Trizol and vortex.
- 4. Repeat for all samples and then incubate at RT for 5min allowing complete dissociation of the nucleoprotein complex (so some samples will have sat longer than 5min. This does not seem to effect results.)
 - * homogenate can be stored at -80 C for 1mo. To thaw, place at RT for

- 5-10min until have equilibrated fully.
- 5. Add 200µl chloroform to each tube (in the hood)
- 6. Vortex for 20sec and incubate at RT for 2-3min.
 - * With some samples, the cuticle ends up separating into the aqueous portion during this time. If this occurs, re-vortex.
- 7. Centrifuge for 15min at 15000xg, 4°C. (treat rotor with RNase-Zap before use if not using a RNA-designated centrifuge)
- 8. Prep: label RNase-free microcentrifuge tubes
- 9. Immediately, gently remove tubes from centrifuge. Remove upper aqueous phase while avoiding the organic layer or lower red phenol-chloroform phase. Put into fresh tube, pre-labeled with sample name.
 - * Usually remove ~450ul and leave ~50ul of aqueous layer so as to avoid the other layers.
- 10. Add equal volume of 100% isopropanol (or more). Turn tube upside down 40-60X to mix.
 - * Usually add ~600-650µl isopropanol
 - ** Do not vortex as this breaks RNA strands and can result in degraded sample
- 11. Incubate RNA in isopropanol
 - a. For whole animals: incubation at RT for 20min is sufficient
 - b. For fly heads: store samples overnight at -80°C to increase yield (must become frozen for a significant effect)
- 19. Centrifuge tubes at 12,000xg for 20min. Remove supernatant by pouring it into a waste container be sure to keep the tube inverted (!) and dab the edge on clean paper towel to remove excess supernatant. Pellet may be loose so use caution not to lose it during pouring off supernatant.
- 12. Wash pellet by adding 1ml 75% EtOH and turn tubes upside down a couple of times until pellet detaches from side of tube. If pellet does not detach, use a P-20 pipet to gently knock it lose.
- 13. Centrifuge at 7500xg for 5min (4°C). Remove supernatant by pouring it into a waste container be sure to keep the tube inverted (!) and dab the edge on clean paper towel to remove excess supernatant. Pellet may be loose so use caution not to lose it during pouring off supernatant.
- 14. Repeat EtOH wash and centrifugation. Remove supernatant.
- 15. Centrifuge tubes briefly to collect residual supernatant to the bottom. Carefully pipet off residual EtOH using P20 or P200 pipet. Do not touch the pellets.
- 16. Dry pellets at room temperature for ~2-3min
- 17. Add 2µl DEPC-water per whole animal or 0.5µl DEPC-water per head (total 10-50ul) and incubate at RT for 5-10min.
- 18. Resuspend pellet by pipetting and place on ice.
 - * pellets should dissolve completely. Add more DEPC water if necessary.
- (optional) perform DNase treatment (below). DNase treatment is not needed for Northerns but is good practice for qRT-PCR particularly if primers do not span exons.
- 2. Assess RNA concentration and quality by nanodrop and by gel (optional).
- 3. Store samples at -80°C.

DNase Treatment

REAGENTS/MATERIALS

- Turbo DNA free kit (Ambion AM1907)
- Microcentrifuge tubes

PROTOCOL

- 1. Prepare an RNase-free work space:
 - a. Place a clean piece of plastic wrap on counter of your work station
 - b. Spray pipettes with RNaseZAP
 - c. Obtain filtered pipette tips
 - d. In general, it is good practice to spray hands with RNaseZAP after touching non-treated surfaces (like centrifuges) and to exchange gloves periodically, never grabbing them by the fingertips
- 2. Add 0.1 volume 10X TURBO DNase Buffer and 1ul TURBO DNase to the RNA, and mix gently.

Tip: You can make a master mix of 10X TURBO DNase Buffer and TURBO DNase.

- 3. Incubate at 37°C for 20–30 min.
- 4. Add resuspended DNase Inactivation Reagent (0.1 volume) and mix well.
- 5. Incubate 2-5 min at room temp, mixing occasionally.
- 6. Centrifuge at 10,000 x g for 1.5 min and transfer the RNA to a fresh, pre-labeled microcentrifuge tubes tube.
- 7. Assess RNA concentration and quality (below)

Assessing RNA quality

- 1. If samples are frozen, thaw them on ice and mix by tapping the side of the tube. (Do not vortex as this can break RNA strands.)
- Measure concentration by Nanodrop. A260/280 ratio should be around 2.0.
 Note: A260/230 ratios maybe <2.0 due to trizol contamination. This does not seem to affect qRT-PCRs or northerns.</p>
- a. Normalize the concentration of the RNA so all samples are the same (typically $200 \text{ng}/\mu\text{I})$
- 3. (optional) run samples on a gel
 - i. When learning how to get outstanding quality RNA, run ~0.5-1µg/lane of RNA on a 1% Agarose TBE gel (use RNase free water. Ideally DEPC-treated water, but Millipore water should also work).
- 4. (optional) run samples on a Bioanalyzer to confirm outstanding quality using Agilent RNA 6000 Nano Kit. Please note that this is very sensitive.

qRT-PCR (SYBR Green)

DNA Primer design

IDEAL PRIMERS

- are 19-21bp long
- For RNA expression studies: are exon spanning (so selective for RNA/cDNA in case there's contaminating genomic DNA)
- produce 50-100bp products (can go up to 200bp if necessary)
- are specific to your target gene (are not predicted to produce < 500bp product from an off-target gene)
- are not predicted to form primer-dimers

- 1. Look up gene sequence on Flybase or NCBI. It's nice to use the CDS sequence.
- 2. Copy sequence into Primer3: http://bioinfo.ut.ee/primer3-0.4.0/.
 - a. I usually set product to 50-150bp. If this doesn't return primers than you can go up to 200bp for qPCR
 - b. I typically buy 2 exon spanning primer sets to test. And then after checking their melt curves and running them on a gel, I pick the best set for my studies.
- 3. For RNA expression studies: check if primers are exon spanning
 - a. (best approach) input primer sequences into <u>http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp</u> with the gene target.
 - b. Check primers against the total gene sequence to see which ones span an exon.
 - i. For flies, go to flybase.com and click on "Get genome region"
 - ii. For human, use NCBI's website
- 4. To confirm primer specificity, input primers into https://www.ncbi.nlm.nih.gov/tools/primer-blast/. Be sure to select the right species.
 - Alternative approaches:
 - Look up publication which have done qPCR for your target. They should publish their primer sequences in the methods section.
 - Look up the gene on Applied Biosystem's website and copy their forward and reverse primers for you target that they designed for Taqman. Taqman also uses a probe, which you don't use w/ Sybr Green but the same primers should work for both assays.
 - http://www.thermofisher.com/us/en/home/life-science/pcr/realtime-pcr/real-time-pcr-assays/taqman-gene-expression.html
 - If you need to take the reverse complement for the reverse primer -http://reverse-complement.com/

cDNA preparation

NOTES

- I find it convenient to prepare cDNA in PCR plates to keep them well organized and labeled. However, for small numbers of samples, PCR strips may be better.
- I tend to organize data so the RNA prep is the first tab of an excel worksheet. Then the cDNA prep is the following tab, then a tab for the qRT-PCR plate setup and a final tab for results. Additional qRT-PCR experiments on the same RNA/cDNA preps will be added as additional tabs so everything is together.

REAGENTS/MATERIALS

- Total RNA samples (see General Protocols: RNA extraction (flies) or Fibroblasts: RNA extraction)
 - DNase-treated RNA is recommended at all times
 - DNase-treated RNA is required if your primers are not exon spanning
- High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems # 4368814)
- RNaseZap (Thermo Sci # AM9780)
- RNase-free PCR tubes or plates
- RNase-free Microcentrifuge tubes
- Filtered pipette tips
- MilliQ water

SUPPLEMENTARY FILE: cDNA prep.xlsx

- 1. Prepare an RNase-free work space:
 - a. Place a clean piece of plastic wrap on counter of your work station
 - b. Spray pipettes with RNaseZAP
 - c. In general, it is good practice to spray hands with RNaseZAP after touching non-treated surfaces (like centrifuges) and to exchange gloves periodically, never grabbing them by the fingertips.
- 2. Thaw on ice: RNA samples, 10X RT buffer, 10X RT Random Primers, 25X dNTP mix.
- 3. (recommended) Update the cDNA prep supplementary file with relevant information: experiment purpose and sample details, # samples, plate template. Print the excel sheet for use at bench.
- 4. Prepare a master mix using filtered pipette tips
 - a. For 10ul/reaction

	Master mix (µI)
10× RT Buffer	1
10× RT Random Primers	1

25× dNTP Mix (100 mM)	0.4
Reverse Transcriptase	0.5
Total RNA (200-400ng)	(up to 7.1µI)
MilliQ water	(to 10µl final volume)

b. For 20ul/reaction

	Master mix (µI)
10× RT Buffer	2
10× RT Random Primers	2
25× dNTP Mix (100 mM)	0.8
Reverse Transcriptase	1
Total RNA (200-400ng)	(up to 14.2µl)
MilliQ water	(to 20µl final volume)

c. Notes:

- i. add the reverse transcriptase last, making sure it stays close to 20°C.
- ii. it is vital to mix thoroughly
- iii. Controls:
 - 1. No template (water) control: add water in place of template RNA, tests if there is contaminants in reagents and if primers can react together (primer dimers)
 - No Reverse Transcriptase control: add template RNA but no enzyme, tests if there is DNA contamination and if primers amplify DNA
- 5. Aliquot master mix and RNA samples into a pre-labeled PCR strip or plate using filtered pipette tips.
- 6. Run cDNA reactions on a thermocycler, making sure the lids are completely closed on samples.

Step	Temperature	Time
initiation	25 °C	10 min
cDNA reactions	37 °C	120 min
denaturation	85 °C	5min

- 7. (optional) Dilute cDNA 1:10 by adding MilliQ water. Vortex tubes to mix samples thoroughly. Centrifuge to collect samples to bottom of tubes.
 - If target gene is lowly expressed, you may not want to dilute cDNA. In this
 case, it'll likely be necessary to increase reaction volumes to 20ul so you
 have enough sample for analysis
- 8. cDNA can be stored at -20°C for future use. When thawing samples, be rigorous about making sure they are fully mixed. This is a common source of variability during qRT-PCR.

Primer optimization

NOTES

- Variables that we typically change when optimizing new primers
 - Amount of template added
 - Amount of primer added (can go as low as 0.05μM). this typically reduces the presence of primer dimers
- Useful websites for troubleshooting qRT-PCR
 - https://www.slideshare.net/idtdna/understanding-melt-curves-for-improved-sybr-green-assay-analysis-and-troubleshooting
 - https://www.sigmaaldrich.com/technical-documents/articles/biology/troubleshooting.html
 - https://toptipbio.com/calculate-primer-efficiencies/

REAGENTS/MATERIALS

- For RNA expression studies: cDNA prepared from samples expressing the target gene (typically RNA prepared from whole larvae or flies can work while this avoids any variability in tissue-specific expression)
- Forward and Reverse primers for target gene
- Forward and Reverse primers for 1-3 housekeeping gene(s)
- SYBR Green Fast Master Mix (Applied Biosystems # 4385612)
- Microcentrifuge tubes
- Fast optical qRT-PCR plates (384- or 96-well)
- MilliQ water

SUPPLEMENTARY FILE: qRT-PCR primer optimization.xlsx

- 1. If not done yet, resuspend primers in MilliQ water to 100μM and prepare a 1:10 dilution for a 10μM working stock.
 - a. Briefly centrifuge tubes containing lypholized primer to pellet.

- b. Add the appropriate amount of MilliQ water to make a 100µM Master Stock: multiply the # nmol value by 10. For example: if the nmol value is 38.2, then you will be adding 382µl MilliQ water.
- c. Replace caps on tubes and vortex on a medium speed. Vortex the top and the bottom of the tube. Briefly centrifuge to collect solution to the bottom of the tube and incubate for 5-10min to fully resuspend primer.
- d. Make a 1:10 dilution for a 10μM working stock by adding 20μl of 100μM primer to 180μl MilliQ water into a pre-labeled microcentrifuge tube. This is what you will use for qRT-PCR reactions.
- e. Store the 100 μ M master stock and the 10 μ M working stock at -20 $^{\circ}$ C for future use. Thaw on ice.
- 2. (recommended) Update the qRT-PCR primer optimization supplementary file with relevant information. Print the excel sheet for use at bench.
- 3. Prepare a master mix and serial dilutions for your samples in a qRT-PCR optical plate. When done, seal the plate with optical film.
 - a. Standard 10ul reaction

	μl	Final concentration
SYBR Fast mix (2X)	5	1X
Forw Primer (10uM)	0.5	0.5µM
Rev Primer (10uM)	0.5 0.5μΜ	
template	1-4 Varies	
MilliQ water	(to 10µl final volume)	

b. Notes:

- Typical serial dilutions are 1:2 of your template + master mix into a qRT-PCR plate. Run 3-5 dilutions so you can calculate primer efficiency accurately.
- ii. Be sure to include a no template (water) control and a housekeeping gene to make sure the template is good
- iii. Typically we run all reactions in duplicate or triplicate
- iv. Avoid wells on the edge of the qRT-PCR plate, leaving a 2-well barrier, when possible
- 4. Centrifuge gRT-PCR plate to collect sample to the bottom of the tubes.
- 5. Run qRT-PCR reactions on a real-time thermocycler
 - a. Turn on machine and lobin to ABI software. It maybe necessary to restart the computer and/or the machine.
 - b. Go to "Set up" and select "Fast 384-well block", "comparative CT", "SYBR Green", "Fast". Check the item: include melt curve. Select "standard curve" in experiment properties
 - c. Go to define
 - i. enter primer (targets) names
 - ii. Enter sample names
 - d. Go to Assign

- i. choose "define and set up standard"
- ii. Enter # of point
- iii. # replicate wells (Repeats)
- iv. Start quantity: 1
- v. Select correct serial dilution
- e. click next and change reaction volume to 10ul
- f. Put qRT-PCR plate into the machine. Be careful there's nothing will be hit by the plate and the position of the plate is correct). Save and press Run
- 6. Analyze curves within the software
 - a. Run software analysis:
 - i. Select the target for this standard curve one by one. Select wells $\hfill \Box$ Apply $\hfill \Box$ Close
 - ii. Go to "Analysis" □ Standard curve
 - iii. Select all needed samples □ analyze
 - iv. Go to "Analysis setting", "Standard curve setting" to check slopes, which should be ~-3.7.
 - b. Look closely at the melt curves for anything abnormal. You want to see 1 strong peak in samples containing template and no peaks in no template controls and no RT controls (if you ran these). Small peaks to the left of the strong peak are typically primer dimers and should be avoided if possible.
 - c. Look closely at the amplification curves for anything abnormal. You want the replicate wells to be on top of each other and the serial dilutions to be obvious as you look at the different samples. Curves should be between Ct values of 16 to 30. Typically, anything after 32 is considered noise (no template controls tend to amplify at this point).
 - d. Select the best c/DNA dilution for your primers want a Ct value around 20-22
 - e. Export the data and save it for your records

Notes:

- It is appropriate to manually adjust the threshold if the auto-threshold for a primer set is not at the best position. You want the threshold to be within the linear region of the amplification curves and high enough to avoid any noise.
- By running a couple of wells for a housekeeping gene, you can control for any technical issues not related to the specific primers. For example, if there are no curves in these wells, then there may be something wrong with your c/DNA or your SYBR green master mix.
- 7. (optional) calculate the primer efficiency in excel using the Ct values for each dilution. See supplementary file qRT-PCR primer optimization.xlsx.
- 8. (optional) run qRT-PCR products on a 1% TAE agarose gel to confirm that there is 1 PCR product and that it is at the expected size. Primer dimers will show up at the bottom of the well.

qRT-PCR Assays

NOTES

- Useful websites for understanding how to analyze gRT-PCR
 - https://dharmacon.horizondiscovery.com/uploadedfiles/resources/delt-a-cq-solaris-technote.pdf
 - https://bitesizebio.com/24894/4-easy-steps-to-analyze-your-qpcr-data-using-double-delta-ct-analysis/
 - o https://toptipbio.com/delta-delta-ct-pcr/

REAGENTS/MATERIALS

- cDNA prepared from control and experimental samples
- 10µM working stocks of DNA primers (see primer optimization)
 - Forward and Reverse primers for target gene(s)
 - Forward and Reverse primers for 1-3 housekeeping gene(s)
- SYBR Green Fast Master Mix (Applied Biosystems # 4385612)
- Microcentrifuge tubes
- Fast optical qRT-PCR plates (384- or 96-well)
- MilliQ water

SUPPLEMENTARY FILE: qRT-PCR.xlsx

PROTOCOL

- 1. Thaw: primers and cDNA samples on ice. cDNA samples need to be vigorously mixed before use as the samples tend to become heterogonous. Typically, vortex and spin samples 2-3 times before use.
- 2. (recommended) Update the qRT-PCR supplementary file with relevant information. Print the excel sheet for use at bench.
- Prepare a master mix for each of your target genes and pipette the master mix then your samples into a qRT-PCR optical plate at the correct volumes. When done, seal the plate with optical film.
 - a. Standard 10ul reaction

	μl	Final concentration
SYBR Fast mix (2X)	5	1X
Forw Primer (10uM)	0.5	0.5µM
Rev Primer (10uM)	0.5	0.5µM
cDNA template	1-4	Varies
MilliQ water	(to 10µl final volume)	

b. Notes:

- i. Be sure to include a no template (water) control for each primer set
- ii. Typically we run all reactions in duplicate or triplicate
- iii. Avoid wells on the edge of the qRT-PCR plate, leaving a 2-well barrier, when possible
- iv. Pipette master mixes then cDNA samples: Its best to pipette duplicate or triplicate wells and replicate cDNA samples at the same time to avoid unnecessary variability
- 4. Centrifuge qRT-PCR plate to collect sample to the bottom of the tubes.
- 5. While plate spins, setup the experiment on the real-time thermocycler
 - a. Turn on machine and login to ABI software. It may be necessary to restart the computer and/or the machine.
 - b. Go to "Set up" and select "Fast 384-well block", "comparative CT", "SYBR Green", "Fast". Check the item: include melt curve.
 - c. Go to define
 - i. enter primer (targets) names
 - ii. Enter sample names
 - d. Go to Assign
 - i. Assign sample names to appropriate wells
 - ii. Assign targets to appropriate wells
 - e. click next and change reaction volume to 10ul
 - f. Put qRT-PCR plate into the machine. Be careful there's nothing will be hit by the plate and the position of the plate is correct). Save and press Run
- 6. Analyze curves within the software
 - a. Look closely at the melt curves for anything abnormal. You want to see 1 strong peak in samples containing template and no peaks in no template controls and no RT controls (if you ran these). Small peaks to the left of the strong peak are typically primer dimers and should be avoided if possible.
 - b. Look closely at the amplification curves for anything abnormal. You want the replicate wells to be on top of each other. Curves should be between Ct values of 16 to 30. Typically, anything after 32 is considered noise (no template controls tend to amplify at this point).
 - c. (optional) manually adjust the threshold if the auto-threshold for a primer set is not at the best position. You want the threshold to be within the linear region of the amplification curves and high enough to avoid any noise.
 - d. Export the data and analyze in excel on your computer
- 7. Analyze data in excel using the $\Delta\Delta$ Ct method
 - a. Import the data
 - b. Take mean of replicate wells
 - c. For each sample, calculate $\Delta Ct = (Mean\ Ct)_{gene-of-interest}$ (Mean $Ct)_{housekeeping\ gene}$
 - If using multiple housekeeping genes: (Mean Ct)housekeeping gene will = average[(Mean Ct)housekeeping gene 1, (Mean Ct)housekeeping gene 2, (Mean Ct)housekeeping gene 3]
 - d. Calculate $\Delta\Delta$ Ct = $(\Delta$ Ct)_{treated} $(\Delta$ Ct)_{control}
 - Examples of "treated"

- RNAi to gene-of-interest to be compared to control sample (not expressing a RNAi or expressing a control RNAi)
- Animals expressing a disease gene to be compared to control sample (not expressing a disease gene or expressing a control gene)
- If you have technical replicate samples (3 samples collected in parallel) then (ΔCt)_{control} will = average [(ΔCt)_{control 1}, (ΔCt)_{control 2}, (ΔCt)_{control 3}]
- $(\Delta Ct)_{control}$ is the sample that everything is relevant. The $\Delta\Delta Ct$ for this sample should be 0: $\Delta\Delta Ct = (\Delta Ct)_{control} (\Delta Ct)_{control}$. If you are using technical replicate samples, then calculate $\Delta\Delta Ct$ the same way you calculate it for the treated samples. This will result in an average $\Delta\Delta Ct$ of 0 for the technical replicates while individual points can be above or below 0.
- e. Calculate the Fold Change = $2 (-\Delta \Delta Ct)$.
 - For control(s) this should equal 1.
- f. Report Fold Change as a bar graph, using the average Fold change between technical replicates when applicable.
- 8. (optional) run qRT-PCR products on a 1% TAE agarose gel to confirm that there is 1 PCR product and that it is at the expected size. Primer dimers will show up at the bottom of the well.

Optimized Primers

	Target	Specie s	Assay	Forward Primer (5'-3')	Reverse Primer (5'-3')	spans exons	μM primer s	cDNA dilution*	Ref.
	Housekeeping	g genes							
	Actin5C	Dmel.	qRT- PCR; ChIP	CGAAGAAGT TGCTGCTCT GGTTGT	GGACGTCC CACAACGAT GGGAAG	N	0.5	1:100	[1]
	PGK	Dmel.	qRT- PCR; ChIP	ATCACCAGC AACCAGAGA ATTG	TGCCAGGG TGTACTGAT GTT	N	0.5	1:100	
Main	RP49 (RpL32)	Dmel.	qRT- PCR	TGTCCTTCC AGCTTCAAG ATGACCATC	CTTGGGCTT GCGCATTTG TG	Y	0.5	1:100	[2]
	RpS20	Dmel.	qRT- PCR	CCGCATCAC CCTGACATC C	TGGTGATGC GAAGGGTCT TG	Y	0.5	1:100	[3]
	βTub56D	Dmel.	qRT- PCR	CATCCAAGC TGGTCAGTG	GCCATGCTC ATCGAGAT	Y	0.5	1:100	[4]
	βTub56D	Dmel.	ChIP	GCAGTTCAC CGCTATGTT CA	CACCAGATC GTTCATGTT GC	N	0.5	n/a	[5]

	ACTB	Нѕар.	qRT- PCR	CATGTACGT TGCTATCCA GGC	CTCCTTAAT GTCACGCAC GAT	N	0.5	1:100	
. <u>c</u>	GAPDH	Hsap.	qRT- PCR	GTTCGACAG TCAGCCGCA TC	GGAATTTGC CATGGGTG GA	Y	0.5	1:100	
Main	RPLP0	Hsap.	qRT- PCR	TCTACAACC CTGAAGTGC TTGAT	CAATCTGCA GACAGACAC TGG	Υ	0.5	1:100	[6]
	Intergenic sec	uences	•						
	II171a (2L)	Dmel.	ChIP	GTTGGAGAA ACTAAGAGC C	CCATACTCA ATCGGACC	n/a	0.5	n/a	[7]
	GenBank: AC277990.1	Hsap.	ChIP	CCAACTGG GTGCTGCCT AGA	AGGGTGCC CATCACAGA TGG	n/a	0.5	n/a	[8]
	Endogenous t	argets	•						
	Atms (dPaf1)	Dmel.	qRT- PCR	CCAAAGCTT CCAAGGGC TAC	CGATAGCG CTGCATACG ATG	Y	0.5	1:20	[5]
	Atu (dLeo1)	Dmel.	qRT- PCR	ACGGCTGAT CGACACTGA TA	TGGCTCTCG ACTTTATCC CG	Y	0.5	1:20	[5]
-1C	Ctr9	Dmel.	qRT- PCR	ATTGCGCAC GTTTATGTC GA	GACGGGCC TTAAGTAGC ACT	N	0.5	1:20	[5]
dPAF1C	CG3909 (dWdr61)	Dmel.	qRT- PCR	AGTTGCGCC ACAAACTAA AAGG	GCAATGGTC TGTCCATCG GAA	Y	0.5	1:20	[5]
	CDC73	Dmel.	qRT- PCR	AGCGTGAA GACCAACTA TCTCA	CGCACGTA GACCGAGT GTT	Y	0.5	1:20	[5]
	Rtf1	Dmel.	qRT- PCR	CGGACGCA ATCCCTGAT CG	CCGTTTGGG GCTTCTTTC G	Y	0.5	1:20	[5]
	Chord	Dmel.	qRT- PCR	TATTTCCCG AGCAGGAC AAC	TTGCATTGC TCACATTCA CA	Υ	0.5	1:40	[9]
genes	Fkbp59	Dmel.	qRT- PCR	GCTCCAAAC TACGCTTAC GG	TGGTTGGGA CTCAAATCC TC	Y	0.5	1:40	[9]
Stress	HSF	Dmel.	qRT- PCR	ATCGCTTGA TTTGCTGGA CC	GAAGCTGG CCATGTTGT TGT	Y	0.5	1:40	[9]
	HSP27	Dmel.	qRT- PCR	GGCCACCA CAATCAAAT GTCAC	CTCCTCGTG CTTCCCCTC TACC	N	0.5	1:40	[3]

	DnaJ-1 (dHSP40)	Dmel.	qRT- PCR	GAGATCATC AAGCCCACC ACAAC	CGGGAAACT TAATGTCGA AGGAGAC	N	0.5	1:40	[3]
	HSP68	Dmel.	qRT- PCR	GAAGGCACT CAAGGACG CTAAAATG	CTGAACCTT GGGAATAC GAGTG	N	0.5	1:40	[3]
	HSP70	Dmel.	qRT- PCR	GGCACCTG CTGGCAAAT T	CGGATAGTG TCGTTGCAC TTGT	N	0.5	1:40	[9]
	HSP83	Dmel.	qRT- PCR	GGACAAGG ATGCCAAGA AGAAGAAG	CAGTCGTTG GTCAGGGAT TTGTAG	N	0.5	1:40	[3]
	Stip1	Dmel.	qRT- PCR	TGGCCTAAG GGTTACTCA CG	GCATTCGTG GGATCGTAC TT	Y	0.5	1:40	[9]
	Stv	Dmel.	qRT- PCR	GTACGCCTA CCTGG CGAGA	CAACTGCAC CTGTGTCAA CC	Y	0.5	1:40	[9]
	elF2B	Dmel.	qRT- PCR	CGATGGCC AAAAAGAAG AAG	ACCAGGTTG AGCTGTTGT CC	Y	0.5	1:20	
	elF3i	Dmel.	qRT- PCR	GACCATCAT CACAG TCACG	TCCTTGCTC AACTGCATG TC	Y	0.5	1:20	
	eIF4A	Dmel.	qRT- PCR	GCAGGAGA ACTGGAAAC TGG	ACATCTCCT GGGTCAGTT GG	Y	0.5	1:100	
RANT factors	eIF4B	Dmel.	qRT- PCR	CGCATTGAG CTATCGAAT GA	CCAATTTCC GGAATCCCT AT	N	0.5	1:20	[10]
idate RANT	eIF4H1	Dmel.	qRT- PCR	GGGAAACG GATCAGTTC AAA	CTTCTGGAA ACCGTCTCT GC	Y	0.5	1:20	[10]
candid	eIF4H2	Dmel.	qRT- PCR	CCACTCGAG GTGGTTTCA AT	ATAGTTGCC GCCTCCATT TA	Y	0.5	1:20	
	eIF5: variants A-G	Dmel.	qRT- PCR	GACGCTGTT CGATCACAA GA	CTCGGGGC ATAACACAA ACT	Y	0.5	1:20	
	eIF5B	Dmel.	qRT- PCR	GTTCGTTGG AGGCTCTTC TG	CCTCGTGTT CCAACATTG TG	Y	0.5	1:20	
	eIF5C: variants A-G	Dmel.	qRT- PCR	TCAAGCAAG AGAAGGGC ATT	TTGTTCGGT GGGAAAAA GTC	Y	0.5	1:20	
	Rpb1	Dmel.	qRT- PCR	CGTCAGAC GTTCGAGAA	TGTTGACCC ACACAAGCA	Y	0.5	1:100	

				CAA	АТ				
	Rps25	Dmel.	qRT- PCR	GTCTCCGAG CGTCTGAAG AT	GCTTGATCA GACCCTTCT CG	Y	0.5	1:100	
	C9: intron 1, 3' of repeat	Hsap.	qRT- PCR, ChIP	CCTGATAGG AGATAACAG GATTCCAC	CGACATCAC TGCATTCCA ACTGTC	N	0.5	2:5	[11]
	C9: intron 1, 5' of repeat	Hsap.	qRT- PCR	GCAAGAGC AGGTGTGG GTTTAG	CCTCAGCGA GTACTGTGA GAGC	N	0.5	2:5	[11]
72	C9: Total (V1-3)	Hsap.	qRT- PCR	AACTGGAAT GGGGATCG CA	CTGATCTTC CATTCTCTC TGTGCC	Y	0.5	2:5	[6]
C9orf72	C9: variant 1	Hsap.	qRT- PCR	CCACGTAAA AGATGACGC TTGATA	TGGGCAAA GAGTCGACA TCA	Y	0.5	2:5	[6]
	C9: variant 2	Hsap.	qRT- PCR	CGGTGGCG AGTGGATAT CTC	TGGGCAAA GAGTCGACA TCA			2:5	[6]
	C9: variant 3	Нѕар.	qRT- PCR	GCAAGAGC AGGTGTGG GTTT	TGGGCAAA GAGTCGACA TCA	Y	0.5	2:5	[6]
actors	EIF4B	Hsap.	qRT- PCR	AGCTCAGAC ACAGAGCA GCA	CTTTCCTTC CTGGTCCTT CC	Y	0.5		[10]
RANT factors	EIF4H	Hsap.	qRT- PCR	GGTGGCTTT GGATTCAGA AA	CCCTGAAGC CAGAATTGA AG	Y	0.5		[10]
	CDC73	Hsap.	qRT- PCR	GGGGCACT GCAATTAGT GTT	CTGCACAAA AACGGCTAC AA	Y	0.5	1:20	[5]
10	LEO1	Hsap.	qRT- PCR	CAAGTGGTC AGATGGAAG CA	TGGGGCTTT GTACACATC AA	Y	0.5	1:20	[5]
hPAF1	PAF1	Hsap.	qRT- PCR	CCACTGAGT TCAACCGTT ATGG	TCCTCGGTA AACTGCTGC TTC	Y	0.5	1:20	[5]
	RTF1	Hsap.	qRT- PCR	GGTGTCACA TGCCCTTCT TT	GTAATCTCA GCGACCCG GTA	Y	0.5	1:20	[5]
	p21	Нѕар.	Leo1 ChIP	CCAGGAAG GGCGAGGA AA	GGGACCGA TCCTAGACG AACTT	N	0.5	n/a	[12]
	SUPT4H1	Hsap.	qRT- PCR	TTGCGATGA TGAGTCCAG AG	TGGATTTGT AGGCCACTC CT	Y	0.5	1:20	[6]
	UAS transgen	es							
	/59								

LDS-G4C2: 5' LDS	Dmel.	qRT- PCR	CGCTGAGG GTGAACAAG AA	CGACTCCTG AGTTCCAGA GC	n/a	0.5	1:100	
LDS-G4C2: 3' GFP tag	Dmel.	qRT- PCR	ACGTAAACG GCCACAAGT TC	AAGTCGTGC TGCTTCATG TG	n/a	0.5	1:100	[5]
GFP tag: mCD8	Dmel.	qRT- PCR	TATGGCTTC ATCCCACAA CA	GACTGGCA CGACAGAAC TGA	n/a	0.5	1:100	
G4C2	Dmel.	qRT- PCR; ChIP	AGACTCGGT ACCGGATCC TC	GCTCCCATT CATCAGTTC CA	n/a	0.05	1:100	[5]
TDP-43	Dmel.	qRT- PCR	TGTCTTCAT CCCCAAGC CAT	TGTGCTTAG GTTCGGCAT TG	n/a	0.5	1:100	[13]

^{*} cDNA dilution: the final concentration of cDNA added to the qRT-PCR reaction (e.g. $2:5 = 4\mu$ l of undiluted cDNA added to a 10 μ l reaction; $1:100 = 1\mu$ l of cDNA that had been diluted 1:10 and added to a 10μ l reaction)

REFERENCES

- 1. Petersen AJ, Rimkus SA, Wassarman DA. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc Natl Acad Sci. 2012;109:E656–64.
- 2. Gabler M, Volkmar M, Weinlich S, Herbst A, Dobberthien P, Sklarss S, et al. Transsplicing of the mod(mdg4) Complex Locus Is Conserved Between the Distantly Related Species Drosophila melanogaster and D. virilis. Genetics. 2005;169:723–36.
- 3. Colinet H, Lee SF, Hoffmann A. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 2010;277:174–85.
- 4. McGurk L, Bonini NM. Protein interacting with C kinase (PICK1) is a suppressor of spinocerebellar ataxia 3-associated neurodegeneration in Drosophila. Hum Mol Genet. 2012;21:76.
- 5. Goodman LD, Prudencio M, Kramer NJ, Martinez-Ramirez LF, Srinivasan AR, Lan M, et al. Expanded GGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nature Neuroscience; accepted in principle; 2019.
- 6. Kramer NJ, Carlomagno Y, Zhang Y-J, Almeida S, Cook CN, Gendron TF, et al. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts associated with c9FTD/ALS. Science. 2016;353:708–12.

- 7. Li Z, Liu M, Zhang L, Zhang W, Gao G, Zhu Z, et al. Detection of intergenic non-coding RNAs expressed in the main developmental stages in Drosophila melanogaster. Nucleic Acids Res. 2009;37:4308–14.
- 8. Kim N, Sun H-Y, Youn M-Y, Yoo J-Y. IL-1β–specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes. Nucleic Acids Res. 2013;41:4495–506.
- 9. Mordes DA, Prudencio M, Goodman LD, Klim JR, Moccia R, Limone F, et al. Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun [Internet]. 2018 [cited 2018 Nov 28];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031111/
- 10. Goodman LD, Prudencio M, Srinivasan AR, Rifai OM, Lee VM-Y, Petrucelli L, et al. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun. 2019;
- 11. Niblock M, Smith BN, Lee Y-B, Sardone V, Topp S, Troakes C, et al. Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol Commun [Internet]. 2016 [cited 2017 Dec 14];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766718/
- 12. Kim TS, Liu CL, Yassour M, Holik J, Friedman N, Buratowski S, et al. RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. Genome Biol. 2010;11:R75.
- 13. Chung C-Y, Berson A, Kennerdell JR, Sartoris A, Unger T, Porta S, et al. Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nat Commun [Internet]. 2018 [cited 2018 Nov 28];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199344/

<u>Defining transgene expression</u>

Heat-shock induced expression of UAS transgenes

HS-GAL4 FLY LINES

- BL1799/TM3 (*w[*];;GAL4-Hsp70/TM3,Sb*)
- BL2077/Cy (*w*[*];GAL4-Hsp70/Cy;) the Cy phenotype is super weak even at 26°C. I recommend used BL1799

- 1. Setup crosses at 21°C. Setup crosses in bottles or if using vials, flip parents into fresh vials after 3d and again after 2d to increase # of progeny
 - a. Controls to be run with every set of crosses: BL5905, UAS-mCD8-GFP
- 2. Collect newly eclosed progeny with the desired genotype and age to 1-2d at 21°C.
 - a. It can be convenient to collect males for protein and females for RNA
 - b. For every genotype, a minimum of 3 replicate samples are needed (5-10 animals per sample)
- 3. Heat-shock 1-2d progeny
 - a. Turn on water bath to 37°C. Be sure to check the temperature with the same thermometer and to use the same water bath for all samples and all subsequent assays.
 - b. Anesthetize animals on a CO2 pad and transfer 5-10 flies to a 1.5ml microcentrifuge tube for each sample. Be sure to label tubes with genotype, experiment date, gender, and any other pertinent information. Immediately, use a small piece of cotton to create a plug that will prevent flies from being above the waters surface during heat shock. It is vital that there are no crevasses that the flies can use to crawl above the waterline. Poke a hole in the top of the tube using a pushpin so there is an air-hole.
 - c. Let animals recover for 30-45min from CO2.
 - d. Heat shock flies at 37°C for 30 min.
 - e. Transfer flies to a 25°C incubator and incubate for *exactly* 3 hours. Any deviations from this time will effect expression of the transgene!
 - f. Immediately transfer tubes to dry ice to freeze the flies and then into a 80°C freezer. (can also flash-freeze them with LN2, but I didn't find this necessary as expression data in replicates were consistent.)
- 4. Isolate RNA and protein as needed for transgene analysis.
 - a. Analyze protein expression by western blot (antibody needed)

- b. Assays to analyze RNA expression
 - SV40 Northern blots (see General Protocols): use probes targeting the common SV40 terminal tail or probes designed to target your transgene. SV40 can be used for most pUAS transgenes.
 - ii. qRT-PCR (see General Protocols): use primers designed to target the UAS-G4C2 or UAS-LDS-G4C2 transgenes.

Note on SV40 and qRT-PCR: I have consistent data on DaGS > UAS transgenes showing that SV40 primers do not differentiate the pUAS transgene and Gal4 transgenes as both have SV40 terminal sequences. Importantly, the DaGS only sample had strong SV40 signal.

5. Compare RNA expression levels using Northern blots and SV40 probe or qRT-PCR using primers targeting the transgene

mRNA Northern blots

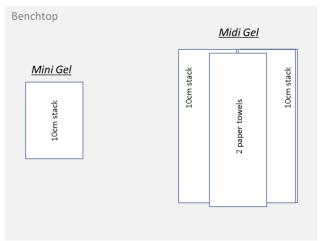
REAGENTS/MATERIALS

- Total RNA samples (see General Protocols: RNA extraction (flies))
 - DNase treated is recommended at all times
- UltraPure Agarose (Invitrogen #16500-100)
- NorthernMax 10X Denaturing Gel Buffer, stored at 4°C (Thermo Sci #AM8676)
- NorthernMax 10x Running Buffer (MOPS), stored at 4°C (Thermo Sci #AM8671)
- RNA SYBR Green II stain, stored at -20°C (ThermoSci # S7564)
- RNA ladder:
 - 50-1000bp ladder (NEB # N0364S), stored at -80°C
 - 500-9000bp ladder (NEB # N0362S), stored at -80°C
 - Note: Must use their protocol and loading buffer for an accurate ladder
- Whatman 3MM chromatography sheets, 18 x 34cm, thickness: 0.34mm (GE Whatman #3030-221)
- NorthernMax Transfer Buffer, stored at RT (Thermo Sci #AM8672)
- Hybond N+ nylon membrane (GE HealthCare#RPN303B)
- Hybridization buffer (depends on your probe), stored at 4°C
- NorthernMax Formaldehyde loading buffer, stored in -20°C (Thermo Sci # AM8552)
- RNaseZap (Thermo Sci # AM9780)
- Ambion RNase-free 1.5 mL microcentrifuge tubes (Thermo Sci # AM12400)
- 20X SSC buffer
- 20% SDS solution
- filtered pipette tips
- Paper towels
- Plastic wrap

PROTOCOL

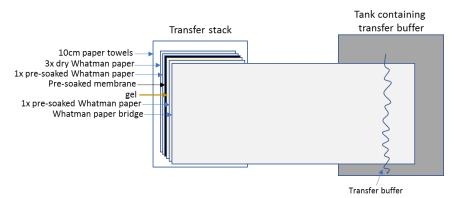
Day 1

- 1. Make RNA denaturing gel
 - a. Prep:
 - Warm to RT: RNA SYBR green (protected from light), an aliquot of NorthernMax 10X Denaturing Gel Buffer (mini gel: 7ml transferred into a 15ml conical; midi gel: 20ml transferred into a 50ml conical)
 - ii. Thaw on ice: RNA samples, Formaldehyde loading buffer, RNA ladder + NEB loading buffer
 - iii. Warm: a water bath to 58°C, a heat block to 70°C
 - iv. Prepare RNase-free workstation and equipment
 - Spray with RNaseZap: gel tray, gel comb, gel casting box, gel electrophoresis chamber, Erlenmeyer flask (mini: 250ml; midi: 500ml flask), graduated cylinder (mini: 50ml; midi: 250ml). Rinse with MilliQ water twice.
 - 2. Place plastic wrap on bench
 - 3. Spray pipettes with RNaseZap
 - 4. Obtain filtered pipette tips
 - v. Setup gel-casting station by securing gel tray between casting plates and adding the comb. This should be setup on a bench covered with plastic wrap to prevent RNase contamination.
 - b. Make 1% gel:
 - i. Add MilliQ water to the RNase-free Erlenmeyer flask and add agarose (Mini: 0.7g agarose + 68ml water; midi: 2g agarose + 190ml water). Swirl to mix.


Note: stated volumes of water account for evaporation later

- ii. Place kimwipe loosely into top of flask to prevent boiling-over during microwaving. Microwave for 1.5-3min until agarose is completely melted. There cannot be any flakes as this will cause blurry bands!
- iii. Place flask into 58°C water bath to reduce temperature (mini: 6.5-7min; midi: 8min timing is essential for sharp bands while you don't want solution to be > 60°C as formaldehyde will evaporate out at this temperature).
- c. Pour RT Denaturing Gel Buffer into flask containing 58°C, molten agarose. Add RNA SYBR green (mini: 7µl; midi: 20µl). Swirl *gently* (to prevent bubble formation) to mix and immediately pour into gel tray.
- d. Loosely cover gel with aluminum foil to protect it from light. Do not seal! You want it cool without disruptions.
- e. Allow gel to solidify at room temperature for 30-45min.
- 2. Prepare RNA
 - Add RNA into RNase-free microcentrifuge tubes. The amount of RNA to be used should be determined empirically for each target you are detecting.

- i. Most human protocols recommended 10-20 μ g total RNA or 0.5-1 μ g mRNA.
- ii. For flies, 1-2μg total RNA worked well for highly expressed targets (e.g. transgenes). Can increase to 5-10μg RNA for weaker targets.
- b. Add more than equal volume of Formaldehyde Loading dye into each tube. For example, if you have 5µl of RNA sample, you should add at least 5µl of loading dye. Mix well.
- c. Heat the samples at 70°C for 15min, cool down on ice for 1min.
- 3. Prepare RNA ladder, following NEB protocol
 - a. Combine into a RNase-free microcentrifuge tube: 2μl ssRNA ladder for 1μg, 3μl DEPC water, 5μl provided RNA loading buffer (do not use the same buffer as samples)
 - b. Heat at 70°C for 5min.
 - c. Chill on ice for 1min
- 4. Run RNA on the denaturing gel
 - a. Make 250ml of 1x Running Buffer: 225ml MilliQ water + 25ml of 10x NorthernMax 10x Running Buffer (MOPS).
 - b. Pour a small amount of running buffer onto top of solidified gel within the casting box and *gently* remove comb while gel is still locked into casting box. Remove gel/tray from casting box and transfer to the gel electrophoresis chamber.
 - c. Pour remaining running buffer over the top of the gel (effectively cleaning out the wells) until solution is ~1-2mm above gel.
 - d. Load prepared RNA samples and ladder into designated lanes.
 - e. Run at 100V for 1~1.5h until loading dye is ~1inche from the bottom of the gel.
 - f. Image gel using the Bonini lab imager. You should see bands of 18s rRNA (2kb), and RNA size ladder. Note that the top band of the RNA ladder can be very faint and some imagers don't capture it.


5. Setup transfer

a. Put a piece of plastic wrap onto bench (if not already done) and stack paper towels to ~10cm tall (mini: cut standard towels in half; midi: align 2 stacks of paper towels side-by-side along long side and place 1-2 pieces on top of the stack to traverse the crevice between the two stacks) onto the plastic wrap.

- b. Cut 5 pieces of Whatman paper and 1 piece of Hybnd+ membrane to the size of the gel, accounting for wells being removed.
- c. Center 3 Whatman papers onto the paper towels.
- d. Pour NorthernMax transferring buffer into a container (such as empty pipet tip box for mini gel or a plastic tub for a midi gel). Filling up to ~2cm from the bottom should be enough.
- e. Wet 1 piece of Whatman paper with transferring buffer, put onto the stack of paper towels/Whatman papers.
- f. Soak membrane in the transferring buffer and cut a notch in the top right corner as a reference. Place on top of the pre-soaked Whatman paper. Roll out any bubbles that may have formed between layers with a 4" blotting roller (ThermoFisher #84747).
- g. Cut wells off the top of the gel using a razor and discard. Place the gel on top of the pre-soaked membrane. Roll out any bubbles that may have formed between layers with a blotting roller. Note: it can help to add a little transfer buffer to the membrane using a transfer pipet. Then "roll" the gel over the membrane, effectively squeezing out bubbles.
- h. Add a little transfer buffer onto top of gel with a transfer pipet. Pre-soak the last piece of filter paper with transferring buffer and "roll" it onto the top of the gel. Roll out any bubbles that may have formed between layers with a 4" blotting roller.
- i. Cut a long piece of filter paper so it is the same width as the gel, this will be the Whatman paper bridge. Put one side of the paper on top of the filter paper/gel and roll our any bubbles. Soak the other end of the paper

bridge in the transfer buffer so it is submerged. *Mini Gel*

- j. Place a gel tray on top of the bridge/transfer stack. Stack glass dissection plates onto the gel tray as a weight (or a textbook or plastic bottle of buffer). Make sure the stack/weights are balanced using a bullseye level so that it won't fall over and the transfer is even.
- k. Place plastic wrap loosely over the top of the tank to help reduce evaporation. Be sure it doesn't disrupt the bridge!
- I. Transfer until the gel is completely flat. Typically overnight. You cannot over transfer (as long as you don't let it dry out).
- m. Clean all tools that came in contact with the transfer buffer thoroughly with distilled water to remove salts.

An alternative way to put the transfer stack together (f-g): (1) place the cut gel upside down onto a piece of Whatmann paper that is bigger than the gel. (2) add a little transfer buffer to the membrane using a transfer pipet. (3) "roll" the pre-soaked membrane upside-down over the gel, effectively squeezing out bubbles. (4) Roll out any bubbles that may have formed between layers with a 4" blotting roller. Then turn the membrane/gel upside-up and place this on top of the filter papers on the paper towels.

Day 2: (written for a mini-gel. Scale volumes up for a midi gel)

- 1. Crosslinking and Pre-Hybridization
 - a. While transferring is ongoing, warm the hybridization buffer to 68°C in one of the Northern incubators.
 - b. Carefully remove membrane from the transfer stack, making sure not to touch "top" (the side that was facing the gel where the RNA is located). Place it in a dry plastic tray that is larger than the membrane.
 - c. Discard gel, all paper towels, and Whatman papers, and transfer buffer. Clean container thoroughly if it will be reused.
 - d. (optional) check the membrane in the gel imager for 18s rRNA signal. Mark the edge of the membrane with a pencil at the position of 18s rRNA (2kb), if visible, and the dark blue and light blue dye indicators (these will not be visible after hybridization). This will help you to later match the gel picture and the position of the gel on the membrane for sizing with the ladder.

- e. UV crosslink the RNA onto the membrane in the UV Stratalinker 1800 (Press "AutoCrosslink" (1200u joules x100) and start). Make sure to keep the transferred side facing up. You can keep the membrane in the tray.
- f. Gently, transfer the membrane, RNA-side facing inward into a hybridization bottle. Add ~7 ml of pre-warmed hybridization buffer.
- g. Pre-hybridize membrane with rotation at 68°C for 30-60min.

Notes:

- The type of hybridization buffer is dependent on the probe.
- o It can be convenient to synthesize the probe at this time
- 2. Hybridize membrane: perform all steps in accordance with EHRS radioactivity safety protocols.
 - a. Add the probe the pre-hybridized membrane.
 - b. Incubate overnight with rotation at the specified temperature for the probe.

Day 3 (written for a mini-gel. Scale volumes up for a midi gel)

- 1. Prepare wash buffers
 - a. Make 2xSSC/0.1% SDS using MilliQ water.
 - b. Make 0.2xSSC/0.1% SDS using MilliQ water.

Notes

- Buffers should be relatively fresh. If I'm running a lot of northerns, I'll make 500mL at once and store it at RT.
- Be careful that the SDS has not precipitated out of solution. If this
 occurs, warm it in the incubator with the membrane until SDS
 dissolves.
- 2. Washing and exposure: perform all steps in accordance with EHRS radioactivity safety protocols.
 - a. Perform 3 washes with ~20ml of 2xSSC/0.1% SDS: Add buffer to the membrane/bottle. Close lid. Shake ~5 times. Remove lid and pour buffer directly into drain with warm water running.
 - b. Add ~20ml of 2xSSC/0.1% SDS to bottle and rotate for 30min at the hybridization temperature. Let water run in sink during this time.
 - c. Perform 3 washes with ~20ml of 0.2xSSC/0.1% SDS: Add buffer to the membrane/bottle. Close lid. Shake ~5 times. Remove lid and pour buffer directly into drain with warm water running.
 - d. Add ~20ml of 0.2xSSC/0.1% SDS to bottle and rotate for 60min at the hybridization temperature. Let water run in sink during this time.
- 3. Prep: blank a phosphor screen by exposing it to a UV lamp for 30min to remove any signal from previous studies.
- 4. Place membrane into cassette and expose the membrane onto phosphor screen (2h~overnight)
 - a. Carefully remove membrane from the bottle with tweezers and transfer it to a hybridization bag cut ~2cm larger than the membrane. Squeeze out any bubbles and seal the hybridization bag.

- b. Retrieve phosphor screen and place over membrane, being careful not to slide it around. Close cassette and expose screen for desired exposure time, dependent on the probe.
- 5. Scan the phosphor screen with a Typhoon imager to get image. Quantify band densities in ImageJ.
- 6. (optional) reprobe membrane for additional targets
 - a. Carefully remove membrane from the cassette and hybridization bag. Transfer it to a glass bottle.
 - b. Repeat steps Day 2: 1.g thru Day 3: 6 for the new probe
- 7. Label membranes/hybridization bag with experiment date, probes used, etc. Store membranes at RT in plastic shielded containers until P32 has fully decayed. You can reprobe membranes after long-term storage.

SV40 probe

NOTES

- It is convenient to probe a membrane with SV40 and then re-probe with 18S for loading. Because SV40 requires 42°C for hybridization, the probe loses binding at 68°C, the temperature required for 18S hybridization.

REAGENTS

- FastStart PCR Master Mix (Sigma # 4710436001)
- DNA Primers
 - o forward: 5'-TGTGGTGTGACATAATTGGACA-3'
 - o reverse: 5'-AGATGGCATTTCTTCTGAGCA-3'
- vector template: purified plasmid containing a SV40 terminal sequence. For G4C2, I used pUAST-KAN-(G4C2)12 vector.
- MinElute PCR Purification Kit (Qiagen # 28004)
- High Prime DNA Labeling Kit (Sigma # 11585584001)
- 50μCi [P32-α] labeled dCTP (from EHRS)
- UltraHyb Hybridization Buffer (Thermo Sci # AM8670)

- 1. PCR template synthesis and purification
 - a. Thaw: FastStart Master Mix, primers, and template vector
 - b. Mix the following reagents together in PCR tube

Master Mix Component	μΙ	Final concentration
2X FastStart Master Mix	25	1X
Forward Primer (3µM)	5	0.3µM

Reverse Primer (3µM)	5	0.3μΜ			
vector template	(varies)	50ng			
MilliQ water	to final volume of 50µl				

c. Run sample on Thermocycler using the following program:

Step	Temperature	Time	Number Cycles
Initial denaturation	95 °C	6 min	1
Denaturation	95 °C	30 sec	
Primer annealing	58 °C	30 sec	30
Extension	72 °C	1min	
Final Extension	72 °C	7min	1
Cooling	4 °C	Hold	1

- d. Run 5µl of PCR product on 2% TAE agarose gel using appropriate marker. Expected size = 204bp.
- e. Purify PCR product from remaining reaction volume using Qiagen's MinElute PCR Purification Kit follow the company's protocol. End volume = 10µl. This is your PCR template for probe synthesis.
- f. Measure concentration of end PCR template on Nanodrop.
- g. PCR templates can be frozen at -20°C for future use.
- 2. Probe synthesis: perform all steps in accordance with EHRS radioactivity safety protocols.
 - a. Thaw: PCR template, materials from High Prime DNA Labeling kit (Reaction mix, dATP, dTTP, dGTP)
 - b. In a 1.5ml microcentrifuge tube, mix ~35ng of PCR template in MilliQ water for end volume of 10μl. Denature at 95°C for 10min. Immediately place on ice for 2+ min. (Do not let it cool slowly as it will re-nature.)
 - c. Centrifuge sample briefly and add the following to the tube (from High Prime DNA Labeling Kit)
 - i. 8µl of High Prime Reaction Mix
 - ii. 6µl each of dATP, dTTP, dGTP
 - iii. 4μl of 50μCi [P32-α] labeled dCTP
 - iv. MilliQ water to an end volume of 40µl
 - d. Tap tube to mix thoroughly.
 - e. Incubate reaction at 37°C for 60-75min.
 - f. Increase temperature on heat block to 99°C and heat sample for 10min to stop synthesis reaction and denature. Immediately place on ice for 2+

min. Probes can be stored at 4°C for ~2wks (until the P32 signal degrades).

5. Hybridization

- a. Pre-hybridize membrane in UltraHyb Hybridization Buffer at 68°C for 30+ min.
- b. Centrifuge probe briefly and add to pre-hybridized membrane. Amount of probe depends on your target and freshness of probe. Use 5-10µl of fresh probe for UAS-G4C2 with 2µg RNA per lane. (Increase the amount of probe based on 2-wk P32 decay rate and amount of RNA.)
- c. Hybridize overnight at 42°C.
- d. Wash hybridized membrane at 42°C
- e. Exposure is usually ~4hrs.

G4C2 probe

NOTES

- It is convenient to probe a membrane with G4C2 and then re-probe with 18S for loading. Because G4C2 requires 50°C for hybridization, the probe binding reduces at 68°C, the temperature required for 18S hybridization.

REAGENTS

- T4 polynucleotide kinase (PNK) Kit, stored in -20°C (NEB # M201S)
- 50μCi [y-³²P] ATP (from EHRS #2P32GATP) (equal to 62.5pmol)
- (G2C4)4 oligo: 5'- GGCCCCGGCCCCGGCCCC -3'
- UltraHyb hybridization Oligo buffer (Thermo Sci # AM8670)

- 1. Thaw T4 PNK buffer and G4C2 probe working stock.
- 2. Synthesize P32-labeled probe
 - a. Mix the following reagents in a microcentrifuge tube:

Component	μl	Final concentration
10X T4 PNK Buffer	2.5	1X
(G2C4)4 oligo (10μM)	2.5	1µM
MilliQ water	15	
T4 PNK	1	10units
50μCi [γ- ³² P] ATP	4	50pmol

Note: add enzyme at the freezer to make sure it stays as close to - 20°C as possible

- b. Incubate at 37°C for 45-60min.
- c. Store at 4°C for 2wks. (calculate amount to add based on 2-wk half-life of P32)

3. Hybridization

- a. Pre-hybridize membrane in UltraHyb Oligo Hybridization Buffer at 68°C for 30+ min.
- b. Centrifuge probe briefly and add to pre-hybridized membrane.
 Amount of probe depends on your target and freshness of probe. Use 5µl for 1-2µg RNA per lane. (Increase the amount of probe based on P32 decay rate.)
- c. Hybridize overnight at 50°C.
- d. Wash hybridized membrane at 50°C
- e. Exposure is usually ~4hrs.

18S probe (Loading)

REAGENTS

- DNA Primers
 - T7-F Core: 5'- gataatacgactcactatagggaga -3'
 - T7 18S: 5'-AGGGAGCCTGAGAAACGGCTACCACATCTAAGGAAtctccctatagtga gtcgtattatc-3'
 - o Lower case: T7-sequence, upper case: target gene sequence
- MAXIscript T7 Transcription Kit (Ambion # AM1312)
- 50μCi [P32-α] labeled CTP (from EHRS) (not dCTP)
- UltraHyb Hybridization Buffer (Thermo Sci # AM8670)

PROTOCOL

- 1. Anneal primers
 - a. Add T7-4 core and T7-18S primers to a microcentrifuge tube with MilliQ water. Target concentration is 2μM.
 - b. Boil 400 ml of water in a large glass beaker on a hotplate.
 - c. Incubate the tube of oligonucleotides in the boiling water for 5 minutes.
 - d. Turn off the hotplate, leaving the oligonucleotides in the beaker on the hotplate to slowly cool to room temperature.
 - e. store at -20°C for future use.
- 2. Synthesize P32-labeled probe: perform all steps in accordance with EHRS radioactivity safety protocols.
 - a. Thaw: Annealed primers, components of the MAXIscript T7 Transcription Kit (Transcription Buffer, CTP, ATP, UTP, GTP)

Note: Reaction mix tends to form a precipitate. This can be fully dissolved at room temperature with strong vortexing.

b. Mix the following in a 1.5ml microcentrifuge tube:

- i. 2µl Annealed 2µM T7-18S rRNA
- ii. 2µl 10X Transcription Buffer (to 1X)
- iii. 1µl each of 10mM CTP, ATP, UTP, and GTP

Note: Still add non-P32 labeled CTP to reduce signal strength

- iv. 7µl water
- v. 2µl T7 enzyme mix

Note: add enzyme at the freezer to make sure it stays as close to -20°C as possible

- vi. 3μl of 50μCi [P32-α] labeled CTP
- c. Incubate at 37°C for 1 hour.
- d. Add 2µl TurboDNase (from kit) and incubate an additional 15min at 37°C.
- e. Raise temperature to 95°C and incubate an additional 5min (denaturing).
- f. Store at 4°C for 4wks (calculate amount to add based on 2-wk half-life of P32)

3. Hybridization

- a. Pre-hybridize membrane in UltraHyb Hybridization Buffer at 68°C for 30+ min.
- b. Centrifuge probe briefly and add to pre-hybridized membrane. Amount of probe depends on your target and freshness of probe. Use 1µl for 1-2µg RNA per lane. (Increase the amount of probe based on P32 decay rate.)
- c. Hybridize overnight at 68°C.
- d. Wash hybridized membrane at 68°C
- e. Exposure is usually ~2hrs.

Protein extraction (flies)

MATERIALS

- pellet/pestle disposable blue microcentrifuge tubes (Kimble # 749520-0000)
- pellet/pestle cordless motor (Kimble # 749540-0000)

TISSUE PREPARATION

- 1. For heads
 - a. Collect heads as described in Fly Work
 - b. Heads should be collected into blue microcentrifuge tubes to be used with the disposable pestles
 - c. Typically, I prepare 3 replicate samples from 1 cross. Target 5-10 heads per sample. Keep track of the exact # of heads per sample.
 - d. Keep frozen heads on dry ice and immediately extract protein using one of the 2 methods below.
- 2. For whole larvae or adult animals:
 - a. transfer 3-5 animals into blue microcentrifuge tubes to be used with the disposable pestles. Keep track of the exact # of animals per tube.
 - b. Typically, I prepare 3 replicate samples from 1 cross.
 - c. If you are immediately extracting protein, do not let animals sit in the tube long term. Rather, ass the lysis buffer and homogenize the tissue immediately.
 - d. Animals can be frozen on dry ice and stored for future use in at -80°C. Keep the tissue frozen until the moment you add the lysis buffer and homogenize the tissue with the disposable pellet as described below.

Method 1: LDS sample buffer

NOTES

- This is the standard protocol in the lab and works well for the majority of targets.
- This protocol works well for heads from the following genotypes
 - o Gmr-Gal4> LacZ
 - Gmr-Gal4> TDP-43(37M)

REAGENTS/MATERIALS

- fly tissue (note tissue preparation above)
- NuPAGE LDS sample buffer, 4X (Thermo # NP0008)
- β-mercaptoethanol (β-ME)

- 1. Make 1X sample buffer
 - a. 1250µl of 4X LDS sample buffer to 1X
 - b. 125µl of B-ME (add in hood) to 2.5%

- c. 3625µl of MilliQ water
- d. Store at -20°C for future use.
- 2. Prep: pre-warm heat block to 95°C
- 3. Add the calculated amount of 1X sample buffer to the first sample and immediately homogenize the tissue using a disposable pestle and motor. Transfer the tube to wet ice. Repeat for each subsequent sample. Store samples on ice until done with all samples. Samples must be kept cold from this step forward.
 - a. 7ul of 1X sample buffer per head
 - b. 10ul of 1X sample buffer per whole animal

Note: When removing the pestle from the tube it is good practice to lift it just above the solution while the tip is still in the tube and spin it with the motor. This will effectively fling any residual solution of the pestle onto the walls of the tube so it isn't lost. By briefly spinning the sample in the centrifuge, the solution will all be collected to the bottom of the tube.

- 4. Incubate samples on ice for ~5min
- 5. Boil samples for 5min at 95°C
- 6. Centrifuge at RT for 5min, 15,000xg to pellet debris. For whole animals, transfer the supernatant to a fresh pre-labeled microcentrifuge tube and discard the pellet. For heads, there is typically very little debris so this doesn't seem to be necessary.
- 7. Samples can be frozen at -20°C for future use. thaw on ice and boil them for 2min before loading them into a gel. Typically we load 5µl of sample per lane for a western blot.

Method 2: RIPA lysis

NOTES

- this protocol must be used for assessing DPR levels. Grinding tissue directly into LDS sample buffer produces variable results.
- this protocol works well for heads from the following genotypes
 - o Gmr-Gal4> LDS-(G4C2)44[GR-GFP]
 - elavGS> LDS-(G4C2)44[GR-GFP]
 - o Gmr-Gal4> (G4C2)n
 - o elavGS> (G4C2)n
- this protocol works well for whole adult animals, daGS> (G4C2)n

REAGENTS/MATERIALS

- fly tissue (note tissue preparation above)
- RIPA lysis buffer
 - 10mL of 1M Tris-HCL (pH 7.5) to 50mM
 - o 6mL of 5M NaCl to 150mM
 - o 2mL NP-40 to 1%
 - o 0.42g NaF to 50mM
 - o 2mL of 10% SDS to 0.1%
 - 1g Sodium Deoxycholate (DOC) to 0.5%

- o dH2O to 200mL
- o Filter through a 250ml filter system, 0.22µm, PES
- o store at 4°C. Check pH every 6-8mo.
- 5X cOmplete ULTRA Tablets, mini, EASYpack protease inhibitor cocktail (Sigma # 05892970001)
 - 1 tablet dissolved in 1500µl of milliQ water
 - o prepare 100µl aliquots
 - store in -20°C. After thawing, precipitate may form and need to be resuspended into solution.
- (optional) 25X PhosSTOP Phosphotase inhibitor cocktail (Sigma # 04906845001)
 - 1 tablet dissolved in 400µl of MilliQ water
 - o prepare 25µl aliquots
 - store in -20°C. After thawing, precipitate may form and need to be resuspended into solution.
- 100mM PMSF
 - o 0.1742g of PMSF
 - 10mL of isopropanol
 - Filter through a 0.22μm PES filter (Fisher Sci # 09-720-511) using a luer-lock syringe
 - o prepare 500µl aliquots
 - store in -20°C. Before use, bring to RT and vortex until precipitate goes back into solution
- 1M DTT
 - 1.5425g of DTT (Dithiothreitol)
 - o 10mL MilliQ water
 - Filter through a 0.22μm PES filter (Fisher Sci # 09-720-511) using a Luer-lock syringe
 - o prepare 500µl aliquots
 - o store in -20°C
 - before use, bring to RT and vortex until precipitate goes back into solution

- 1. Prepare working lysis Buffer: (must be made fresh!)
 - a. Calculate the total amount of lysis buffer you will need.
 - For western blot: use 4µl per head or 10µl per whole animal.
 - For dot blot: use 0.2µl per head or 3ul per whole animal.
 - b. For every 500µl of working lysis buffer needed, add the following protease and phosphatase inhibitors. Make a minimum of 500µl of working lysis buffer then prepare additional 100µl as needed.
 - 400µL 0.5% RIPA Lysis Buffer Stock
 - 100µL of 5X cOmplete ULTRA protease inhibitor Stock to ~1X
 - 20µL of 25X PhosSTOP Phosphotase inhibitor cocktail Stock to ~1X
 - 5µL of 100mM PMSF to ~1mM
 - 0.5µL of 1M DTT for ~1mM

 Add the calculated amount of lysis buffer to the first sample and immediately homogenize the tissue using a disposable pestle and motor. Transfer the tube to wet ice. Repeat for each subsequent sample. Store samples on ice until done with all samples. Samples must be kept cold from this step forward.

Notes:

- when removing the pestle from the tube it is good practice to lift it just above the solution while the tip is still in the tube and spin it with the motor. This will effectively fling any residual solution of the pestle onto the walls of the tube so it isn't lost. By briefly spinning the sample in the centrifuge, the solution will all be collected to the bottom of the tube.
- Unused working lysis buffer can be stored at 4°C for use during protein quantification.
- 3. Incubate samples at 4°C 45min with agitation. (min: 30min, max: 2hr)

 Note: Samples can be frozen at -20°C at this step if needed. Thaw samples on ice.
- 4. Prep: label new microcentrifuge tubes (standard tubes, not blue tubes).
- 5. Centrifuge the samples at 4°C for 10min, 15,000xG to pellet debris.
- 6. Keeping the samples on ice, transfer the supernatant from tubes into prelabeled microcentrifuge tubes. Discard the pellet.
- 7. follow *Protein quantification protocol* below if desired. It is best to immediately quantify protein and/or denature samples in LDS sample buffer. However, natured protein lysates can be stored at -20°C if needed. Thaw samples on ice and then perform protein quantification and/or denature samples in LDS sample buffer.

Protein quantification (Bradford)

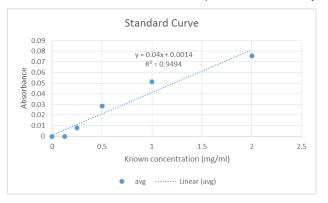
NOTE: cannot be done on denatured protein (e.g. samples prepared directly into LDS sample buffer.

REAGENTS/MATERIALS

- Bradford Ultra (Expedeon # BFU05L)
- Disposable cuvettes Semi-micro (Fisher Sci # 14-955-128)
- UltraPure BSA, 50mg/ml (Thermo # AM2616)

- 1. Prep:
 - Thaw: BSA, protein samples on ice that were prepared using RIPA lysis buffer
 - b. Pre-warm a heat-block to 95°C
- 2. Prepare 2mg/ml BSA working stock
 - a. 2.8µl of 50mg/ml

- b. 67.2µl RIPA lysis buffer
- 3. Quantify the amount of protein in each sample using Bradford kit
 - a. prepare Bradford standards into cuvettes
 - transfer 5 cuvettes into an empty cuvette tray.


Notes:

- cuvettes should only be touched on the 2 sides that are frosted!
- You cannot label the cuvettes so it is important to organize them in a way that is logical and consistent in the tray so you can keep track of which is cuvette contains what. For large numbers of samples, you can write a list of the samples 1-? on a piece of paper and then make sure the cuvettes are in the tray in that order
- prepare standards as follows, adding the Bradford reagent first then the 2mg/ml BSA working stock

μl Bradford	μl of 2mg/ml BSA	concentration	Final volume (µl)
1500	0.0	0.0	1500
1499	0.75	0.001	1500
1498	2.25	0.003	1500
1494	6.00	0.008	1500
1481	18.75	0.025	1500
1462	37.5	0.050	1500

- b. prepare protein dilutions for each of your samples to be analyzed: add 1495µl of Bradford and then 5µl of protein lysate to one cuvette (1:300 dilution)
- c. Analyze samples on the cuvette-based spectrophotometer
 - Prior to putting the cuvette into the machine, use a piece of parafilm pressed on top of the cuvette as a lid, and turn upside down and back upright 3X to effectively mix the samples. Be sure to move the parafilm to a fresh region between cuvettes. Also be careful not to touch the portion of the cuvettes where the light will shine through to read the absorbance.
 - measure the samples twice using Bradford settings.
 - Save data onto a USB
 - Steps for running the machine
 - Turn it on and pick "Coomassie/Bradford Micro"

- Edit information so have mg/ml units, 4 standards, and correct # of samples, save data to USB and internal memory (put in a USB), test name
- Click "Run standards"
 - Edit each standard so they are the correct value based on the table above (mg/ml column)
- Measure blank by placing the cuvette clear side facing vou
- Measure each of the standards
- When done with standards, click "Run Test"
- Run each of the samples
- When done running samples, save data it should safe to your USB as a txt file
- d. In excel, setup a standard curve from your standards. Average the 2 readings from the spectrophotometer per cuvette.
 - You should have an R² of > 0.90 (if not, then your standard curve is bad and you need to repeat them.) you will need the formula for the line to calculate protein levels in your samples

- e. Calculate the total mg/ml present in samples using the y = m x + b formula obtained from your standard curve (y = mean absorbance of 2 readings from the spectrophotometer, x = mg/ml). Be sure to compensate for the fact that your samples were diluted 1:300 (by multiplying x by 300)!
- 4. There are 2 approaches to preparing protein for western blot or dot blot. Follow the one that makes most sense for your experiment
 - a. Remove the desired µg of protein per sample and transfer to a fresh, prelabeled microcentrifuge tube. Bring the volumes for all samples up to the same value (≤ 20µl) using leftover RIPA lysis buffer containing inhibitors (if available) or RIPA stock to dilute samples.
 - For western blot:
 - the amount of protein will depend on your target. 10-20µg of protein is typically run on a western blot per lane. Overall, when performing an experiment for the first time it is best to start with 20µg. Also, I've seen different results when I ran 10µg vs 20µg protein.

- End volume will depend on the gel's well size. ≤ 20µl is standard.
- If you are running samples on multiple wells in a gel or on multiple gels, scale calculations up so you prepare everything at once.
- For dot-blot: it is essential to maintain protein at a high concentration, as close to 10μg of protein in 1.6μl of end volume as possible
- It can be convenient to make multiple aliquots of your protein and freeze them for future use.
- b. Normalize the $\mu g/\mu l$ of protein between each sample by diluting all of the samples to the lowest value of $\mu g/\mu l$ across your samples. Use leftover RIPA lysis buffer containing inhibitors (if available) or RIPA stock to dilute samples.
- 5. Add 4X LDS sample buffer to 1X (so 6.6µl of 4X LDS sample buffer for 20µl of sample). Mix and spin down samples briefly.
- 6. Boil at 95°C for 5min.
- 7. Samples can be frozen at -20°C for future use. thaw on ice and boil them for 2min before loading them into a gel

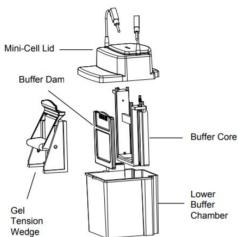
Western blot

NOTES

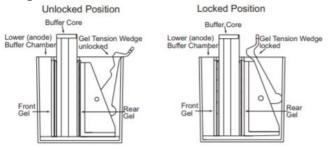
Other people in the lab use a different protein standard. However, these do not include as wide of a range of markers which may be required when cutting a membrane to probe it for 2 immunobands simultaneously. Specifically, for β-gal westerns, this ladder allows you to cut accurately at ~70kDa so you can stain the bottom half with tubulin (at 50kDa) and top half with β-gal (at 110kDa).

REAGENTS/MATERIALS

- Protein samples (see *General Protocols: Protein extraction (Flies)* or *Fibroblasts: Protein extraction*)
- If using samples prepared with RIPA lysis buffer, you must perform protein quantification (Bradford)
- 1X TBST
- Prepare 1L from packets (Sigma # T9039)
- Or make it from 10X TBS stock: 100mL 10X TBS, 900mL MilliQ water, 500μL of Tween-20
- Non-fat milk powder
- Novex Sharp PreStained Protein Standard (Invitrogen # LC5800)
- NuPAGE 4-12% Bis-Tris Protein Gels, 1.5mm, 15-well (Invitrogen #NP0336)
- NuPAGE MES SDS Running Buffer, 20X (Invitrogen #NP0002)
- XCell SureLock Mini-Cell (Invitrogen #El0001)
- Gel Knife (Invitrogen #El9010)
- (optional) Buffer Dam for XCell SureLock Mini-Cell (Invitrogen #EI0012)
- (optional) ponceau S (can be reused 10 times)


PROTOCOL

Note: standard protocol for XCell SureLock Mini-Cell can be found in the company's manual: HERE. All images are taken from this protocol.


Day 1

- 1. Prep
 - i. if samples are frozen: thaw samples for 5-10m on ice while you prewarm a heat-block set to 95°C. Re-boil samples for 2-3 minutes to make sure they are completely thawed and that the SDS is dissolved into solution. Typically I do this while I'm setting up the tank (below). After 2-3 minutes at 95°C, samples can sit at RT until loaded into gel.
 - ii. Thaw your protein standard. If a precipitate has formed, briefly boil the standard at 95°C for 1-2min until dissolved.
 - iii. Make 1X MES running buffer: 50mL of 20X stock + 950mL MilliQ water. Leftover buffer can be stored for future use. Buffer can be reused 3 times as long as loading was clean and no protein samples got into the buffer.

- 2. Run western using standard 4-12% Bis-Tris premade gels and 1X MES running buffer (for 1L: 50mL 20X MES running buffer, 950mL DI water). Usually run at 120V for ~90min.
 - i. Setup a tank ("lower buffer chamber") with a gel tension wedge and buffer core. If you are running 1 gel, a buffer dam must be positioned where the second gel would have gone.

- ii. Obtain a premade gel from the fridge. Open the package and remove the gel. REMOVE THE WHITE STICKER FROM THE BOTTOM OF THE GEL.
- iii. Place the gel along the buffer core in the tank, effectively creating an inner chamber. The comb side of the gel must face the inner chamber. Close the gel tension wedge.

- iv. Pour 1X MES running buffer into the inner chamber, allowing it to run out of the inner chamber and into the outer chamber until the outer chamber is half-way full of buffer (~500mL total).
- v. Gently remove the comb from the gel, making sure to pull it straight up and to not disrupt the gel that makes the lanes.
- vi. Clean out the wells using a P1000 pipette set to 800ul. Draw up buffer from the outer chamber and gently shoot buffer into each of the wells BE CAREFUL TO WATCH THE SIDES OF THE WELLS AS THEY WILL MOVE IN OLDER GELS AND YOU WILL GENTLY NEED TO REPOSITION THEM INTO THE CORRECT PLACE USING A P10 PIPETTE TIP.
- vii. Using a P10 or P20 load pre-boiled sample into appropriate wells. Load 8µl of protein standard last. Try to avoid the edge wells if you can.
- viii. position the top onto the tank and plug in the cathode and anode wires into a power source be sure to match red-to-red and black-to-black!

ix. Turn on power source and set to 120V. start power source and a timer for 60m. you will likely run it for closer to 90m but it's good to check the gel periodically. You are done when the blue dye in the samples is at the very bottom of the gel. You can run samples longer as needed to get better separation between larger proteins. It is okay to lose small proteins through the bottom of the gel if you are not interested in them.

3. Prep:

- i. make 5% milk (for 2 gels: 2.5g of dry milk in 50mL TBST; for >2 gels: 5g of dry milk in 100mL TBST). Place on spin plate for the entire time you are transferring the gel (Minimum of 30min).
- ii. Make 1X TBST as needed
- 4. (optional) Prep: if doing a wet transfer
 - Make 1X NuPAGE transfer buffer with 20% methanol and 1X reducing agent (for 500mL: 25mL 20X transfer buffer, 100mL Methanol, 500ul NuPAGE Antioxidant (optional), 375mL DI water)
 - ii. Soak 6 sponges per gel in transfer buffer for ~30min in a Tupperware container to remove all air bubbles
 - iii. cut 1 piece of PVDF membrane per gel
 - iv. cut 2 pieces of normal thickness Whatman paper per gel
- 5. Transfer protein from the gel to a membrane based on the optimized protocol for the target. Importantly, when testing new antibodies, a wet transfer is typically used. Only targets used regularly in the lab (e.g. β-Gal, TDP-43) have been optimized for an iBLOT transfer. I've also had success with GFP.
- 6. When transfer is done, remove membrane, noting where the protein is located on the membrane. Immediately place the membrane into blocking solution. (DO NOT LET THE MEMBRANE DRY OUT, particularly if you are using PVDF IT WANTS TO!) Cut the top left corner so we always know the proper orientation.
 - i. For 2 membranes, I will cut the top left corner for gel #1 and then cut the 2 top corners and left bottom corner for gel #2 so we can distinguish them.
 - ii. (optional) If you want to make sure the transfer was successful or for a loading control, you can stain the membrane with Ponceau S to detect protein. This must be done before the membrane is exposed to TBST. To do this:
 - a. Incubate membrane in Ponceau S for 5-20min or until bands can be easily seen (the longer the incubation the darker the bands but you will also have to do more washes to remove background).
 - b. Rinse the membrane repeatedly in ddH2O until the background is clean and bands are still visible.
 - c. Take a picture of the membrane with your camera phone or on the gel imager with the colorimetric setting.
 - d. Wash membrane 3x for 5min in TBST to remove Ponceau S. Continue to blocking step.
- 7. Incubate the membrane in 5% Non-fat milk/TBST (blocking solution) for 30+ min on a rocker at RT.
- 8. Incubate the membrane with primary antibody solution (diluted in blocking solution or 3% BSA/0.01% NaAzide/1XTBST) overnight in the cold room on a rocker.
 - i. If using % BSA/0.01% NaAzide/1XTBST, rinse milk thoroughly off of the membrane with TBST before putting into primary antibody solution.

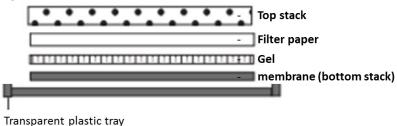
Day 2

- 1. Prep:
 - a. put blocking buffer on spinning plate! It needs to spin for a minimum of 20m prior to being used. Make more blocking buffer as needed.
 - b. Make sure you have enough TBST for washes. If not, make more.
- 2. Obtain membranes from cold room. Using a transfer pipette, remove primary antibody and put it into appropriately labeled 50mL conicals for future use.
- 3. Rinse membrane 3X in TBST and perform 3x 5min washes with TBST at RT on the rocker (higher speed).
- 4. Pour off TBST and add 16mL blocking buffer. Add HRP-conjugated secondary antibody to the tray at the desired concentration. Incubate on rocker for 2hr.
- 5. Rinse membrane 3X in TBST. Wash in TBST 4 times for 15 min each on rocker.
 - a. Membranes can be left in the last wash for long periods of time.
 - b. You can reduce the time of washes for very good antibodies (e.g. 3 x 10min).
- 6. Prep:
 - a. turn on imager so the camera has time to warm up
 - b. put blocking buffer on spinning plate if you will be reprobing the same membrane. It needs to spin for a minimum of 20m prior to being used.
- 7. Image membrane
 - a. Prepare ECL Prime reagent (2000ul per membrane total; if membranes are cut, you will use less) by adding reagent B to reagent A at 1:1 ratio and pipetting up and down repeatedly to mix.

Note: not adding enough ECL is a common factor for variability – particularly obvious when you getting faded signal in portions of the membrane

- b. Lay a piece of parafilm down on flat surface and dot ECL Prime working solution onto the parafilm.
- c. Using forceps to hold membrane, touch corner of membrane to clean tissue repeatedly to remove excess TBST. Lay membrane down flat onto ECL Prime reagent making sure to cover the entire membrane with solution. Incubate for 1.5-2 min.
- d. Quickly remove membrane from ECL Prime Reagent and touch corner to clean tissue to remove excess reagent. Image on Imager.
- I usually start with an auto exposure. If the time frame is too long, I then do incremental exposures. BE SURE TO GET A COLORIMETRIC PICTURE OF THE MEMBRANE.
- 8. Once imaged, rinse membrane 3X in TBST and perform 3x 5min washes with TBST at RT on the rocker (higher speed).
 - a. Membranes can be stored in sealed film for future use.
- 9. If reprobing the same membrane, quench the signal with H2O2 or stripping buffer (protocols below). When done, incubate the membrane in 5% Non-fat milk/TBST (blocking solution) for 30-60min on a rocker. Add desired primary on overnight and repeat Day 2 steps above.

Transfer methods


iBLOT

- iBlot Transfer, nitrocellulose, mini (Fisher Sci # IB301002)
- Blotting roller (ThermoFisher #84747)
- iBlot 1 Dry Blotting system

PROTOCOL

Note: standard protocol for iBlot can be found in the company's manual: <u>HERE</u>.

- 1. When the gel is done running, gather the materials needed for the iBlot transfer:
 - i. From the iBlot kit: Bottom stack, top stack, sponge, 1 piece of whatman paper
 - ii. a membrane-sized tray containing DI water
 - iii. forceps, gel knife, blotting roller
- 2. Setup transfer for 1 gel at a time.
 - i. Remove the bottom stack from the packaging, keeping it in the transparent plastic tray only toach the plastic tray. Place it in the iBlot box, so it is within the barriers and in the correct position. (tab should be on the right.)
 - ii. Remove the gel from western blot tank/apparatus, crack apart the plates using the gel knife, cut off the bottom portion of the gel. Optional: remove wells.
 - iii. Gently lift gel from the bottom (top is too fragile) and place the gel on top of the white nitrocellulose membrane of the bottom stack, using a rolling method to avoid bubbles. Roll out any bubbles with the blotting roller.
 - iv. Using forceps, wet the piece of Whatman paper with DI water. Using a rolling method to avoid bubbles, place it on top of the gel. Roll out any bubbles with the blotting roller.
 - v. Remove the top stack from the packaging and from the red plastic tray. Carefully place it on top of the whatman paper, using a rolling method to avoid bubbles. Roll out any bubbles with the blotting roller.

e the sponge into the lid of the iBlot box

3. Place the sponge into the lid of the iBlot box, making sure that the metal tab is aligned with the metal plate within the bottom of the lid (right side, further point when lid is open).

- 4. Carefully, yet forcefully, close the lid and secure the clasp.
- 5. Set the desired program and time on the iBlot and clisk start. Set a timer for the same amount of time so you remove the gel quickly once it is done transferring.
- 6. For 2 gels: remove the first gel and immediately place it into a tray containing blocking buffer. Then setup the second transfer.
- 7. Continue with Day 1: step 6 of the western protocol

WET

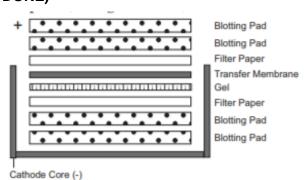
ADDITIONAL REAGENTS/MATERIALS

- XCell II Blot Module (Invitrogen #EI9051)
- Sponge pad for Blotting (Invitrogen #EI9052)
- NuPAGE Transfer Buffer, 20X (Invitrogen #NP0006)
- (optional) NuPAGE Antioxidant (Invitrogen #NP0005)
- Blotting roller (ThermoFisher #84747)
- Methanol
- PVDF membrane
- Whatman 3MM chromatography sheets, 18 x 34cm, thickness: 0.34mm (GE Whatman #3030-221)

PROTOCOL

Note: standard protocol for XCell SureLock Mini-Cell can be found in the company's manual: <u>HERE</u>. All images are taken from this protocol.

- 1. Prep: 30min before gel is done running
 - Make 1X NuPAGE transfer buffer with 20% methanol and 1X reducing agent (for 500mL: 25mL 20X transfer buffer, 100mL Methanol, 500ul NuPAGE Antioxidant (optional), 375mL DI water)
 - ii. Soak 6 sponges per gel in transfer buffer for ~30min in a Tupperware container to remove all air bubbles
 - iii. cut 1 piece of PVDF membrane per gel
 - iv. cut 2 pieces of normal thickness Whatman paper per gel
- 2. When gel is done running, setup transfer using wet transfer apparatus at 30V for 1hr
 - i. Gather the materials needed: 1 pre-cut piece of PVDF, 2 pre-cut pieces of whatman paper, forceps, gel knife, blotting roller, 1 membrane-sized tray containing methanol, 1 transfer pipet, new tank with a tension


wedge in place, a top and bottom transfer plate, a empty Tupperware large enough to hold the transfer plates; For each gel, setup a new tank with a gel tension wedge in position. If running 2 gels, you will need 2 separate tanks.

ii. Activate the PVDF membrane in the 100% methanol -- gently shake for 30-60sec in methanol, pour methanol out, do ~3 rapid rinses in dH2O, add transfer buffer. Rotate for ~2-5min until membrane no longer floats (usually the amount of time it takes to setup everything else)

YOU MUST MOVE RELATIVELY QUICKLY ONCE THE PVDF MEMBRANE IS ACTIVATED AS IT TENDS TO QUICKLY DRY OUT WHICH CAN RUIN THE EXPERIMENT.

iii. setup transfer, rolling out bubbles after each layer

FOR EACH GEL, RUN THEM IN SEPARATE TANKS! PUTTING THEM TOGETHER IN THE SAME TANK DOES NOT WORK (DESPITE INVITROGEN'S PROTOCOL SAYING IT CAN BE DONE)

- a. place the cathode plate used for transfer in an empty Tupperware container
- b. position 2 pre-soaked sponges on top of each other in the bottom of the cathode plate.
- c. Using forceps, wet a piece of Whatman paper in transfer buffer and place it on top of the sponge stack. Roll out any bubbles using a blotting roller. Pour 1-2mL of transfer buffer over the top with a transfer pipet.
- d. remove gel from apparatus, crack apart the plates using the gel knife, cut off the bottom portion of the gel. Optional: remove wells.
- e. Gently lift gel from the bottom (top is too fragile) and place the gel on top of the whatman paper using a rolling method to avoid bubbles. Roll out any bubbles with the blotting roller. Pour 1-2mL of transfer buffer over the top with the transfer pipet.
- f. Using forceps, place a piece of activated PVDF membrane on top of the gel using a rolling method to avoid bubbles. Roll out any bubbles with the blotting roller. Pour 1-2mL of transfer buffer over the top with the transfer pipet.
- g. Using forceps, wet a piece of Whatman paper with transfer buffer and place it on top of the membrane using a rolling method to

- avoid bubbles. Roll out any bubbles with the blotting roller. Pour 1-2mL of transfer buffer over the top with the transfer pipette.
- h. place 2+ pre-soaked sponges on top of the whatman paper until there is ~1mm above the top of the cathode plate. Additional sponges maybe needed so there is resistance when you put the anode plate on top of the stack. the tighter the stack the better the transfer.
- i. Put the anode plate on top (there should be resistance), lining up the edges of the 2 plates. Squeeze the stack shut (DO NOT LET GO!) and place it into the pre-prepped tank. Clasp the apparatus shut with the tension wedge effectively creating an outer and inner chamber.
- j. Repeat for a second gel.
- iv. fill the inner cavity with transfer buffer -- only until ~2mm above the stack. fill the outer tank with ~650ml of cold DI water -- ~1cm below the top.
- v. position the lid(s) onto the tank(s) and plug in the cathode and anode wires into a power source be sure to match red-to-red and black-to-black!
- vi. Turn on power source and set to 30V. start power source and a timer for 1hr. Both tanks can be plugged into the same power source as long as a constant voltage is used. Be sure to stop then restart the power current if you add a second tank to the same power source if it has already been running. Alternatively use two power sources, 1 for each gel.
- 3. Continue with Day 1: step 6 of the western protocol

Reprobing methods

NOTES:

- When reprobing a blot, it's important to consider the species of your primary antibodies. If the two antibodies are from the same species (e.g. Rabbit IgG) then they will both be stained with the Rabbit-HRP secondary antibody. Thus they must be a obviously different sizes so you can distinguish the two immunobands.
- It is best to use antibodies from a different species when reprobing. As most
 of our target use Rabbits to make the antibodies, most of the loading controls
 I use are mouse-derived antibodies (e.g. Tubulin or GAPDH mouse
 antibodies) or are directly conjugated with HRP (e.g. Tubulin-HRP).
- I find that using H2O2 over stripping buffer allows me to reprobe the same blot more times with continuing to see strong signal. This method is further preferred when reprobing the same position (e.g. modified H3 versus total H3).
- The stripping time and method may vary between antibodies. When quenching/stripping the membrane, you can re-expose it to ECL and image it again to confirm that you have successfully removed the original signal. You can increase/decrease the time as needed.

- Striping/quenching reduces the ladder strength so make sure you already have a good image of the ladder.

QUENCH HRP (preferred)

REFERENCE: Sennepin AD1, Charpentier S, Normand T, Sarré C, Legrand A, Mollet LM. Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. (Oct 2009) Anal Biochem. 1;393(1):129-31.

REAGENTS

- 30% hydrogen peroxide (H2O2) solution
- TBST

PROTOCOL

- 1. Incubate the membrane in ~5-10mL of H2O2 with rotation for 20min. It's best to do this at 37°C. I tend to use the 37°C room across the hall from the Bonini lab and place the membrane/tray on a rotator at a relatively low speed for the machine.
- 2. Obtain membranes from the 37°C room. Pour off the H2O2 and add TBST.
- 3. Rinse membrane 3X in TBST and perform 3x 5-10min washes with TBST at RT on the rocker (higher speed).
- 4. Pour off TBST and add blocking buffer. Continue with western blot protocol: Block membrane for 30min at RT. Add primary antibody and incubate overnight at 4°C. Continue with western blot Day 2, step 1.

STRIP

REAGENTS

- Restore Western Blot stripping buffer (ThermoFisher #21059)
- TBST

- Incubate the membrane in ~5-10mL of stripping buffer with rotation for 20min, RT
- 2. Pour off the stripping buffer and add TBST.
- 3. Rinse membrane 3X in TBST and perform 3x 5-10min washes with TBST at RT on the rocker (higher speed).
- 4. Pour off TBST and add blocking buffer. Continue with western blot protocol: Block membrane for 30min at RT. Add primary antibody and incubate overnight at 4°C. Continue with western blot Day 2, step 1.

Optimized antibodies

Target	Species	Catalog Number	kDa	Dilution	Protein prep	protein/ lane	Transfer method	Ref.
Primary Antibodi	ies							
CDC73/Hyx (<i>Dmel</i> .)	Rat	Lis Lab	61	1:3000	LDS	5µl lysate	Wet	[1]
CDC73 ^{D38E12} (<i>Hsap</i> .)	Rabbit	Cell Signaling #8126	61	1:1000	RIPA	20µg	Wet	[3]
eIF4B (<i>Hsap</i> .)	Rabbit	Cell Signaling #3592	80	1:1000	RIPA	20µg	Wet	[2]
elF4B Phospho- Ser422 (<i>Hsap</i> .)	Rabbit	Cell Signaling #3591	80	1:1000	RIPA	20µg	Wet	[2]
eIF4H ^{D85F2} (<i>Hsap</i> .)	Rabbit	Cell Signaling #3469	27	1:1000	RIPA	20µg	Wet	[2]
β- Galactosidase (<i>Dmel.</i>)	Rabbit	Promega #Z3781	110	1:2000	LDS	5µl lysate	iBlot: P2, 8min	
GAPDH ^{71.1} (<i>Hsap</i> .)	Ms IgM	Sigma# G8795	37	1:5000	RIPA	All work	Wet	
GFP ^{JL8} (for GR-GFP, <i>Dmel., Hsap.</i>)	Ms IgG	Takara# 632380	Varies	1:10000	RIPA	20µg	Wet	[2]
(GR)15 (<i>Dmel</i>)	Rabbit	V. Lee Lab #2316	Varies	1:1000	RIPA	20µg	Wet	[2]
Leo1 (<i>Mmus.</i> , <i>Hsap.</i>)	Rabbit	ProteinT ech #12281- 1-AP	100	1:1000	RIPA	20µg	Wet	[3]
Paf1 ^{D9G9X} (<i>Hsap.</i>)	Rabbit	Cell Signaling #12883	70	1:1000	RIPA	20µg	Wet	[3]
Rtf1 (Dmel.)	Rabbit	Lis Lab	88	1:1000	LDS	5µl lysate	Wet	[1]
Rtf1 ^{D7V3W} (<i>Hsap.</i>)	Rabbit	Cell Signaling #14737	60	1:2000	RIPA	20µg	Wet	[3]

TDP-43 (Dmel., Hsap.)	Rabbit	ProteinT ech #10782- 2-AP, Lot# 0000945 3	43	1:2000	LDS	5µl lysate	iBlot (P0, 7min)
α-Tubulin (<i>Dmel.</i> , <i>Hsap.</i>)	Ms IgG	DSHB# AA4.3	55	1:2000	All work	All work	All work
α-Tubulin ^{11H10} - HRP (<i>Dmel.</i> , <i>Hsap.</i>)	Rabbit	Cell Signaling #9099	55	1:1000	All work	All work	All work
Secondary antib	odies						
Mouse-HRP	Goat	Jackson Labs#11 5-035- 146	Varies	1:5000	All work	All work	All work
Rabbit-HRP	Goat	Jackson Labs#11 1-035- 144	Varies	1:5000	All work	All work	All work
Rat-HRP	Goat	Thermo #A10549	Varies	1:5000	All work	All work	All work

REFERENCES

- 1. Adelman K, Wei W, Ardehali MB, Werner J, Zhu B, Reinberg D, et al. Drosophila Paf1 Modulates Chromatin Structure at Actively Transcribed Genes. Mol Cell Biol. 2006;26:250–60.
- 2. Goodman LD, Prudencio M, Srinivasan AR, Rifai OM, Lee VM-Y, Petrucelli L, et al. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun. 2019;
- 3. Goodman LD, Prudencio M, Kramer NJ, Martinez-Ramirez LF, Srinivasan AR, Lan M, et al. Expanded GGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nature Neuroscience; accepted in principle; 2019.

Behavioral fly assays

RU486-infused food

DISCLAIMER: do not use RU486 if you are pregnant or trying to get pregnant. This is the drug used to induce abortions.

REAGENTS

- RU486 (Mifepristone) powder (Sigma # M8046)
- 200pf Ethanol (newly opened bottle)

PROTOCOL

- 1. Make RU486 stock and working solution
 - a. Make 40mg/ml RU486 stock solution in 100% EtOH. Store in -20°C up to 3mo, covered from light.
 - b. Dilute the stock solution to 4 mg/ml working solution in 100% EtOH. Store at 4°deg covered in aluminum to protect it from light.

NOTE: the 40mg/ml RU486 stock solution can form crystals if old EtOH was used to make it. ALWAYS USE FRESH EtOH. If this occurs, the stock can still be used, you just have to re-dissolve the crystals.

- Check it ~30min before prepping the dilute working solution. If crystals have formed, incubate the 40mg/ml RU486 stock solution at RT with agitation for ~30min or until it goes into solution.
- You may need to spin it down to collect all the crystals to the bottom. To do this, spin in a centrifuge at ~3000 x g for ~1min.

2. Make RU486-infused food

- a. Drop 100µl of 4mg/ml working stock to the top of each fly food vial. Concentration depends on how strong of expression you want while typically 50-100µl is used. Use a repeat pipettor for large numbers of vials.
- b. Cover the top of the vials with a piece of cheesecloth and a large rubber band, making sure that the cloth expands past the vials so as to prevent flies from getting into the vials. (For small numbers of vials, you can also just use a cotton plug instead of cheesecloth.)
- c. Rotate vials for 1-3d on a circular rocker
 - I find I get the most consistent results when I use a slow speed, ~2, on the rocker. When the vials are rotated rapidly, the drug precipitates out of solution and forms clumps in the vials. If this occurs, the food is still usable.
 - ii. I check the vials daily to see if the EtOH has fully evaporated. The time it takes seems to depend on the humidity. Once dry, the vials are transferred to the 18°C fly room and can be stored for up to 2wks.

EXPERIMENT DESIGN NOTES

- For controls, you may want to consider making EtOH only vials (no drug).
 However, I prefer to use control flies on RU486-infused food as the
 Gal4[GS]/UAS system seems to have low expression even in the absence of
 drug.
- 2. There has been some question in the lab as to the consistency of the RU486 drug's ability to infuse into the food. For short terms experiments, I recommend flipping the flies a minimum of every 2d to help to remove this variable with the logic that the more vials the flies are exposed to the less "noise".
- 3. For more "immediate" activation of transgene expression it may be necessary to starve the flies overnight before flipping them onto RU486-infused food. It has also been observed that using RU486-infused yeast paste can be ideal for rapid studies.
 - a. Starve flies overnight (18-24h) at 25°C in empty vials with a piece of Kimwipe paper wet by water at the bottom.
 - b. Transfer starved flies to empty vials with RU486 yeast paste on the wall. Feed flies for 48h at 25°C to induce transgene expression.
- 4. I recommend flipping the flies every 2d (3d max) onto a fresh RU486-infused vial. The older the flies are, the more vital it is to flip them frequently.

REFERENCES

- Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster. Scialo, F. et al. PLoS One. 2016 Aug 29;11(8):e0161817.
- A conditional tissue-specific transgene expression system using inducible GAL4. Osterwalder, T. et al. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12596-601.
- Mitochondrial electron transport chain dysfunction during development does not extend lifespan in Drosophila melanogaster. Rera et al. Mechanisms of Ageing and Development 131 (2010) 156–164.
- The steroid hormone receptor EcR finely modulates Drosophila lifespan during adulthood in a sex-specific manner. Tricoire et al. Mechanisms of Ageing and Development 130 (2009) 547–552.

Lifespans

REAGENTS

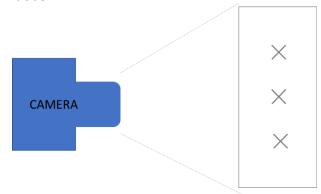
- Standard molasses fly food
- RU486-infused food

SUPPLEMENTARY FILE: Lifespan Template.xls

PROTOCOL

- 1. Setup crosses with DaGS or ElavGS drivers. Raise and maintain progeny at 24°C.
 - a. It is good practice to include a negative control of Driver > control transgene (ie. DSRED or BL31603: Luc RNAi). This is a better control than a RU-negative control due to leakiness of the Gal4[geneswitch]/UAS system.
 - b. When checking modifiers, it's important to test them for effects alone by expressing the modifier transgene using the driver in the absence of a disease gene.
- 2. Setup 10 vials of male progeny with the correct genotype/phenotype with 20 animals per vial. Age to 1-2d. It is convenient to use lab tape labeled with the vial identifier and date so you can just transfer this piece of tape to new vials every time you flip the flies.
- 3. Transfer progeny onto RU486-infused food. Be sure to update the # of animals within the vial if any were dead or lost before putting the animals onto RU so your data is accurate.
- 4. Transfer the vials to the experimental temperature. I've found that 24°C for DaGS and 29°C for ElavGS produce the most consistent lifespans between experiments.
- 5. Age flies on RU486-food, flipping every 2d and making sure they are maintained at the same temperature. With every flip, record any animals that have died from natural causes. Censor any animals that escaped or died due to unnatural events: squished during flipping; became wedged between the food and the vial wall in a manner that even a healthy fly would not have been able to survive.
 - a. For DaGS: it is essential to record the # of dead flies every day until all flies are dead as this is considered a "rapid" lifespan. You still flip every 2d.
 - b. It is important to note any dead/censored flies that get transferred into the new vial on the vial so they do not get accidently counted a 2nd time
- 6. Once all animals have died, update the information in the supplementary file and use this to produce a survival curve and the define any statistical differences between genotypes in GraphPad Prism.

Negative geotaxis


REAGENTS/MATERIALS

- Standard molasses fly food
- RU486-infused food
- Nikon D3200 Camera w/ 2 fully charged batteries
- Marked, empty vials: standard fly vials with lines marked at 1, 3, and 6cm using permanent marker. These vials can be reused so hold onto them!

PROTOCOL

- 1. Setup crosses with ElavGS. Raise and maintain progeny at 24°C.
 - a. It is good practice to include a negative control of Driver > control transgene (ie. DSRED or BL31603: Luc RNAi). This is a better control than a RU-negative control due to leakiness of the Gal4[geneswitch]/UAS system.
 - b. When checking modifiers, it's important to test them for effects alone by expressing the modifier transgene using the driver in the absence of a disease gene.
- 2. Setup 6 vials of desired progeny with the correct genotype/phenotype with 20 animals per vial. Age to 1-2d. It is convenient to use lab tape labeled with the vial identifier and date so you can just transfer this piece of tape to new vials every time you flip the flies. (It is good practice to use males to avoid issues with w+ vs w- on X when comparing multiple RNAi lines from different backgrounds. However females can have stronger climbing deficits.)
- 3. Transfer progeny onto RU486-infused food. Be sure to update the # of animals within the vial if any were dead or lost before putting the animals onto RU so your data is accurate.
- 4. Transfer the vials to the experimental temperature. I typically use 24°C.
- 5. Age flies on RU486-food, flipping every 2d and making sure they are maintained at the same temperature. With every flip, it is important to record any dead or censored animals so you know how many are in each vial.
- 6. At the desired time point(s), performing climbing assay. THIS MUST BE DONE AT THE SAME TIME EVERY DAY. It is best to perform climbing assays ~10am as this is when the flies are most active. Further, it is convenient to define your time points as days that coincide with flip-days. Last, I like to record the animals using a camera so I can accurately quantify the data later.
 - a. Transfer flies from each vial into a marked, empty vial. (I tend to keep the tape with the vial identifier on this vial and then taped above the vial when recording animals for climbing so there is no confusion.)
 - b. Let the flies recover for 30min in the incubator set to the experimental temperature. I've found with ElavGS > (G4C2)n animals that they an get hypersensitive to light. To avoid issues in regards to this, I let them recover in a white or yellow rack so they are used to reflective light. Alternatively, traditionally negative geotaxis studies are done in a dark room with a red light.
 - c. Prep: setup the camera by sitting it on the lab bench ~ 12" from where the vials will be placed during the assay. Mark a piece of paper with 3 "X"s

evenly spaced apart and tape this to the lab bench where the vials will be. Each vial will then be placed on top of a "X", ensuring that they are within the visual range of the camera and allowing data from 3 vials to be recorded simultaneously. I also setup an empty fly tray as the backdrop so the flies are against a white background making it easier to see them in the videos.

- d. Perform round 1 of the climbing assay: place 1 vial on each of the Xs and the tape with the vial identifier on the backdrop above the vial so you know which is which. Set the camera to record. Tap the flies in each vial one at a time down to the bottom of the vial (~3-5 taps). Immediately set the vial down and let the animals recover and climb. Stop recording after ~45-60s. Repeat this for all vials of flies.
- e. Let the flies recover for 30min in the incubator set to the experimental temperature.
- f. Perform round 2 of the climbing assay as described above.
- g. Let the flies recover for 30min in the incubator set to the experimental temperature
- h. Perform round 3 of the climbing assay as described above.
- Once done, anesthetize the flies in each vial one at a time onto a CO2 pad. Record the number of flies present so you have an accurate n. transfer flies into a fresh RU486-infused vial.
- j. Place the flies back into the correct incubator set to the experimental temperature until the next time point. Discard the flies when you have recorded data from the last time point.
- k. Transfer the video files to your computer for analysis.
- 7. Analyze the climbing data from the videos, carefully defining the best parameters for your experiment. Typically, I use the 3cm line and record any flies that are unable to climb to this line within 15 or 20sec. For quantification, the final value will be reported as the average % of animals that could climb per vial, using the average from the 3 rounds to compensate for natural variability.

External fly eye imaging

Eye morphology

SUPPLEMENTARY FILE: External Eye Imaging Lab Notebook.xlsx

PROTOCOL

- 1. Collect flies and age them to desired time point
 - a. Collect the progeny with the desired genotype and place them into a new vial. Typically, we image 3-5 flies of the same gender per genotype, thus it's good to collect 4-7 flies in case 1-2 of them get damaged or lost during imaging. Be sure to match the genders and ages of the controls and samples. It is best to collect the progeny at the same time each day in order to ensure they are approximately the same age. By imaging 3 animals, you can then score the samples for quantification in the future.

Notes

- It is best to separate the flies for external eye imaging into different vials than those used for other assays, such as internal sections, as you will be anesthetizing all the flies in the vial during external eye imaging.
- ii. When collecting flies, it's good to visually note any inconsistencies between phenotypes of flies with the same genotype. If there is variation in the external eyes for flies with the same genotypes, gender, and similar age then take 3 images of each different type of eye and note the frequencies of each phenotype to be compared to expected results.
- iii. Typically, we image males for UAS-(G4C2)49 and females for UAS-(GR)36 and UAS-TDP43 (37M). It can be useful to image both sexes for UAS-(G4C2)49 as the milder eye of females promotes the detection of enhancers while the more extreme eye phenotype of males promotes the detection of suppressors.
- b. Age flies for 1 day by placing them back into the incubator from which they came. If you end up imaging them after >1dy, make sure you are consistent between all genotypes, particularly the controls vs samples, for accurate comparisons. Avoid imaging flies >3dyo for typical studies. Fly Aging: the flies are 1-2dyo at when imaging as you collected flies when they were 0-1dyo and then aged them by a day making them 1-2dyo. So if you aged them for 2dys then they would be 2-3dyo (another common age to image flies).
- 2. Imaging the external eyes of Drosophila
 - a. In the fume hood, pour 1-2 splashes (about 2 mL) of ethyl ether into the bottom of a plastic bottle containing cotton balls in the fume hood. **Make sure you wear gloves during imaging ether is toxic when in direct**

- **contact with your skin!** Immediately recap the ether bottle so as to prevent evaporation.
- b. Turn the microscope on by logging into the computer (Password: drosophila) and opening the LAS program. Gently take the red cover off the microscope and, when prompted, click OK on the computer. The microscope should now move up and down by itself -- if it does not move there is something wrong and you need to contact the person in charge of the APO16! Turn the microscope light on by pressing the switch in the bottom front of the light source.

Notes

- i. Be sure to switch the light source off when you are not actively imaging to conserve the bulb. This includes if you stop imaging for 30+min with the intention of coming back.
- ii. The microscope and camera should always be on so you should never deal with anything except the computer and the light source.
- c. In the fume hood, transfer the flies to be imaged into the white chamber of the pre-prepped ether bottle by flipping them. Immediately place the plastic lid on top of the bottle. Tap the flies to the bottom of the white chamber repeatedly until they remain at the bottom otherwise they will not all be anesthetized equally. Let the flies incubate for 5-10 minutes in order to anaesthetize them.

Notes

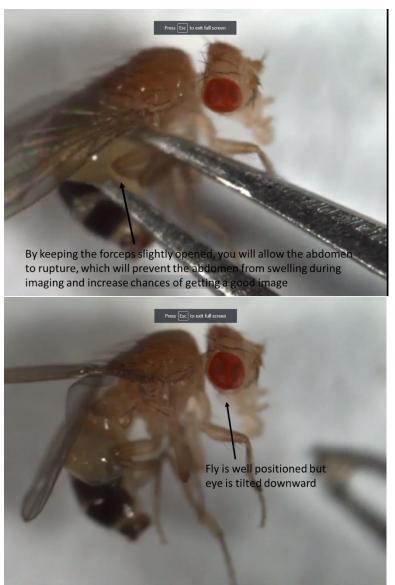
- i. It is best to turn the microscope on *before* incubating your flies with ether so you can make sure the microscope is functioning normally before anesthetizing precious animals.
- ii. You can use CO₂ to knock out the flies before transferring them to the white chamber if you are uncomfortable flipping them. This also ensures that precious flies won't escape or accidently get crushed
- iii. Do not incubate animals more than 15min this starts to dry out the eye tissue while highly degenerative eyes will collapse due to a lack of internal tissue (e.g. YH3 > UAS-(G4C2)49 flies).
- d. In the LAS software on the computer, you will need to designate the file in which you want images saved. Under the "Browse" tab, find the folder in which you would like to save your images. Click the folder, and then click "set capture location" a red dot should appear on your target folder. If you need to create a new folder, name the folder

Note: It is convenient to name the folders based on the experiment date, in the order YEAR-MONTH-DAY, and a brief description of the experiment. This way, the computer will chronologically organize the folders. Example: "151019 G4C2 TRiP screen".

- e. Prepare a slide with double sided tape if you do not already have one.
- f. Once the flies are fully anesthetized, gently pour them onto the microscope pad or a paper towel be sure to check the bottle for any flies stuck in the bottom. Using needle-nose forceps, grab one of the flies by the wings and place it onto the double-sided tape with the animal

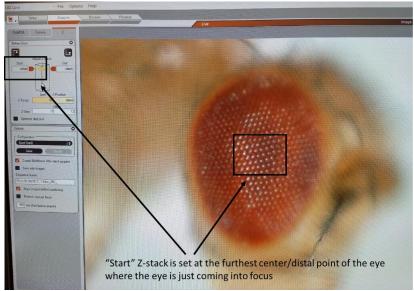
facing right (see example slide below). Setup 3-4 flies at a time (if you do more they sit too long and the eyes either move and/or collapse if they are highly degenerative). It is easier to perform this step on a separate dissecting microscope than the APO16 - this also allows you to setup a second set of flies while the first set is being imaged on the APO16, significantly speeding things up (see LARGE-SCALE, RAPID ANALYSIS, below). Reference videos for how to position flies onto double sided tape. Briefly, use a pair of needle-nose forceps to push the fly's abdomen down onto the tape. This should put the eye in a good position for imaging. Keep manipulating the abdomen until the fly's eye is parallel to the plane of the image, not tilted upward or downward. Images have been included below in order to illustrate proper and improper alignments for the fly's eye. If pushing the abdomen no longer causes movement of the head, you can carefully (without touching the eyes) use the tweezers to move fly's head into the correct position and potentially press on the thorax. Do this for each fly one at a time while placing all the flies of the same genotype in a row (see example slide below).

NOTE: there are 3 videos demonstrating this technique that are saved on the APO16 computer: M-external imaging.avi

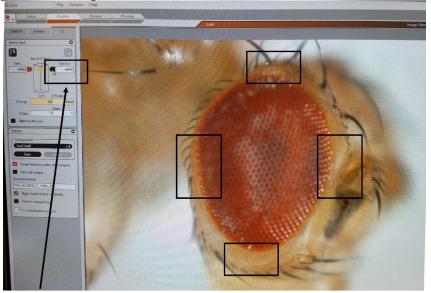

i. Step 1: position the fly on the slide by grabbing the wings with needle nose forceps and placing the animal on its side, facing right. Be careful not to disrupt the head/eyes.

ii. Step 2: Using the forceps, apply pressure onto the fly's abdomen. It's best to not close the forceps fully, so the abdomen will rupture. If you do not do this, animals may become swollen while imaging and this will cause the eye to move and blurry images.

iii. Step 3: Manipulate the abdomen, head and proboscis with the forceps to get the eye into a level position for imaging, starting with the abdomen. It may be necessary to fold the wing closes to you down over the ruptured tissue so the forceps don't get stuck. Your goal is to get the tissue surrounding the eye to be in the same visual plane. Reference images in *Troubleshooting* for examples. Be careful not to touch the eye with the forceps! Also, if there is debris on the eye (seen as white flakes), it can be gently brushed away with a paint brush or forceps.



Example Slide: Animals are organized with all of one genotype in a column to keep track of samples. Importantly, you cannot place flies to the right on the one you are imaging as this will create a shadow. Animals are organized with all of one genotype in a column to keep track of samples.



Flies are organized on a slide so all of one genotype is in a column, with 3-4 animals per column. Always image from the furthest right column, where there is empty space to the right of the animals, or you will get a shadow.

- g. Place the slide with the flies on the microscope pad of the APO16. The large/bottom wheel on the microscope is the coarse focus (zooms in and out of the image) and the small/top wheel is the fine focus (makes the image clearer). Zoom out using the coarse focus and adjust the slide so that the head of your fly is in the image on the computer.
- h. Once the fly's head is in the image, slowly zoom in using the coarse focus until it reaches maximum, 115x. You may have to periodically adjust the slide while zooming to ensure that the fly's head stays within the image. Note: When you get good at this, you may be able to put the flies in the correct position without zooming in/out. This will significantly save time, while you need to be careful that you are imaging the intended animal. Check this by waving the point of the forceps above the intended animal. You should be able to see the forcepsp in the scope.
- i. On the computer, click on the tab that says "Acquire". You will now be performing a z-stack, which takes pictures of the eye with different areas in focus, "different visual planes", and compiles them into a single image with the whole eye in focus.
- j. Under the Z-stack tab, click the orange/brown button labeled "Start" once to set the first focus image to be taken. The button should turn black. At this point, adjust the fine focus on the microscope while watching the image on the computer screen so that the center/distal of the eye is just coming into focus. Everything besides the center/distal of the eye should be blurry. Once you are happy with the focus, click the "Start" button again and it should turn orange/brown.

k. Set the "End" focus setting by the same method. Click the orange/brown button labeled "End", which should turn black, and then adjust the fine focus. This time, the center/distal of the eye should be blurry, but the tissue surrounding the external eye should just be in focus. All the tissue on all sides of the eye should be in focus in this visual plane or the eye is tilted (see *Troubleshooting*). Adjust the eye as needed. Once you are happy with the focus and eye position, click the end button and it should once again turn orange/brown.

"End" Z-stack is set at the point where the tissue surrounding the eye is just coming into focus. This is also when you can make sure the eye is not tilted as you should be able to see all the surrounding tissue in focus within the same visual plane.

Notes

i. Make sure that the z-step setting is set to 15 steps and the "optimize step size" setting is turned off.

- ii. The best images have the background as overexposed and the eye is just below being overexposed. Use the exposure button to detect over/under exposed areas. Go into Acquire and select the "Camera" tab. Click "show under/over exposure" button (which is blue and red). The background should be red indicating it is overexposed while the eye tissue should only have red speckles at bright spots where the ommatidia are reflecting the light.
- iii. Preferred settings for external eye images are as follows. The light exposure time will likely change if the light source is moved.
 The Hue and Sat are not at 0 which creates a slightly bluer image better for detecting pigment loss as the reds are less robust in the final image.

Exposure: 132ms (varies with light position)

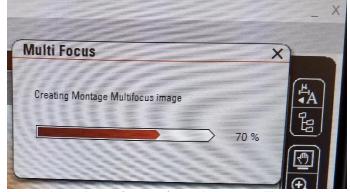
Gain: 2.0x

Saturation: 1.4

Gamma: 0.6

Hue: 180

Sat: 6

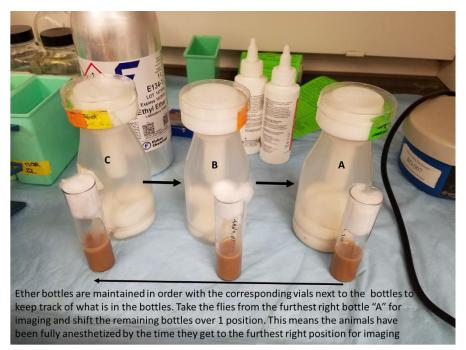

I. Under sequence name, enter image name.

Note: It is convenient to keep track of the genotype, age, and gender of the fly here. Example: "FLY LINE x MODIFIER_Sex_age_Temp_" = "49#3.1 x BL31603_M_1-2dyo_26C_". Also, by ending the image name with a "_" the software will automatically add numbers to replicate images so you don't have to change the name for each animal but rather just between genotypes.

m. Place the eyepiece cover (an old pipet tip box) over the eyepieces. Click "Acquire Multifocus" and allow the Z-stack to proceed.

Note: At 60% completion, you can move the slide without harming the image (the software is compiling the Z-stacks at this time), so to speed things up you can go ahead and start putting the next animal

into position for imaging.


n. When done, close the software (your images will automatically be saved into the selected folder during imaging). Turn of the light source. Gently, place the red cover over the miscroscope while long imaging sessions

may leave the camera (back portion) hot so it may be best not to cover this region up – only covert he eye pieces and main microscope region. You may turn off the computer. DO NOT TURN OFF ANY OTHER SWITCHED -- THE MICROSCOPE OR CAMERA! Remove your images from the computer promptly.

LARGE-SCALE, RAPID ANALYSIS

I typically have 2 slides during one imaging session, 1 slide has flies being imaged on the APO16 while I will be mounting flies onto the second slide under a normal dissection scope. Also, for large scale screens, image 2 flies per genotype, not 3, unless there are inconsistent results. Also, it may be helpful to use the gender differences, particularly for UAS-(G4C2)49, to your advantage. For example, the females of YH3 > UAS-(G4C2)49 tend to have a less severe phenotype than males. So for looking at mild enhancement, females are most useful while males are most useful for looking for suppression. You will be repeating potential hits and that is when you can increase your n.

- 1. Setup 3 bottles of ether and flip live flies from their vials into the bottles in order bottle A, bottle B, bottle C. KEEP THE EMPTY VIAL NEXT TO THE CORRESPONDING FLIES AT ALL TIMES UNTIL THE FLIES HAVE BEEN IMAGED SO YOU KEEP TRACK OF WHICH FLIES ARE WHERE.
- 2. After the flies are anesthetized (~8min), setup the first genotype of flies from bottle A onto slide 1 under a normal dissection scope. Then, start imaging these samples on the APO16. KEEP THE VIAL FOR THESE FLIES NEXT TO THE APO16 SO YOU KNOW WHAT FLIES ARE BEING IMAGED.
- 3. While they are being imaged, flip a new genotype into the empty bottle A so they will start to be anesthetized and place this bottle behind bottle C, effectively creating a conveyer belt-like system to keep track of everything. MOVE THE CORRESPONDING VIALS SO THEY REMAIN NEXT TO THEIR CORRESPONDING BOTTLE AT ALL TIMES SO YOU KNOW WHICH FLIES ARE IN THE BOTTLE.
- 4. Start to setup the next genotype of flies from bottle B onto a second slide under the dissection scope, stopping intermittently to image the next fly on slide 1 on the APO16. KEEP THE VIAL FOR THESE FLIES NEXT TO THE DISSECTION SCOPE SO YOU KNOW WHAT FLIES ARE BEING SETUP FOR IMAGING. When all the flies on slide 1 are imaged, I then start to image the flies on slide 2. BE SURE TO RENAME THE NEW SET OF FLIES CORRECTLY IN THE SOFTWARE SO YOU DON'T GET GENOTYPES MIXED UP.
- As before, I flip the next set of live flies from their vial into the empty bottle B
 and move the bottles so now bottle C is in the front and B in the back of the
 conveyer belt-like line KEEPING THE VIALS NEXT TO THE CORRECT
 BOTTLES.
- 6. Repeat this system, setting up the flies from bottle C onto slide 1 while the 2nd set of flies are being imaged on the APO16, stopping intermittently to image the next fly. Repeat until done.

Note: some people move slower than others. 3 bottles is standard, but if you are faster, you may find that you need to add a fourth bottle so the flies are effectively anesthetized by the time you get to them. You want the flies to incubate in the ether for ~8min. You may also want to use less bottles if you are imaging more animals per sample than 3 as the flies will be in the ether bottles for longer than 15min. For some genotypes, like (G4C2)49 you cannot keep them in ether for >20min as the eyes will start to collapse.

TROUBLESHOOTING

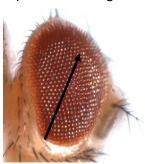
The APO16 tends to have a problem with the fine focus drifting to the max position over time. You can tell this is happening as the arrow indicating the position of the fine focus drive (the top line on the wheel) will be at the far right edge. When this occurs you need to readjust the position of the fine focus drive.

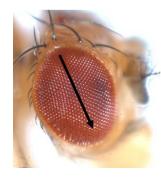
- 1. Go into Acquire and select the "Z16APOA" tab. Click "FF" and "C".
- 2. On the wheel pad, move the wheel position for the fine focus drive back to the left. Move the wheel until the arrow is between the 9:00 and 10:00 position. DO NOT move it all the way to the edge.
- 3. On the computer, click "MF" and refocus the sample using the arrows on the screen (not the wheel!). This effectively resets the main focus drive position based on the changes you made to the fine focus drive position so you can image.
- 4. Reclick "FF" and "F" in the software. Continue imaging like normal.

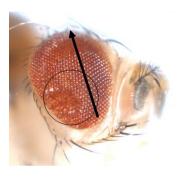
POSITION AND LIGHT SETTINGS

Below are 3 examples of good images. The center of the eye is parallel with the page and in full focus. The top and bottom of the eye are also focused. The eye is

not tilted as is indicated by the tissue surrounding the external eye being in the same visual plane. Further, in these images, it is easy to follow a row of ommatidia across the eye, while the sizes of the ommatida is consistent with the concave nature of the eye. The background is mostly overexposed while the external eye tissue is at the correct exposure.

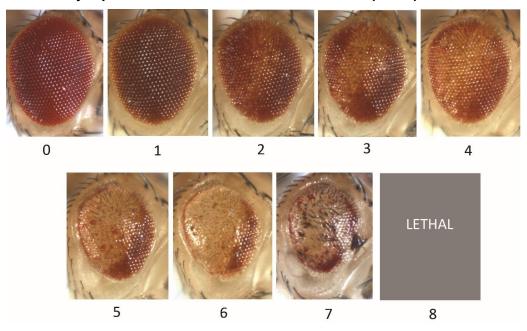

Correct position and light settings


Incorrect position and light settings


In this image, the eye is dramatically tilted upward and to the right. You can tell as you (1) cannot see all the surrounding tissue and (2) you cannot follow a row of ommatidia across the eye. It is important to manipulate the eye so you can see all of the surrounding tissue around the eye in the same visual plane. This eye needs to be tilted downward and to the left.

In this image, you can see all of the surrounding tissue around, but it is not in the same visual plane as seen by the ommatidia, which become out of focus as you move to the right. The eye is tilted down and to the right. This can easily be fixed by pushing gently upward on the proboscis.

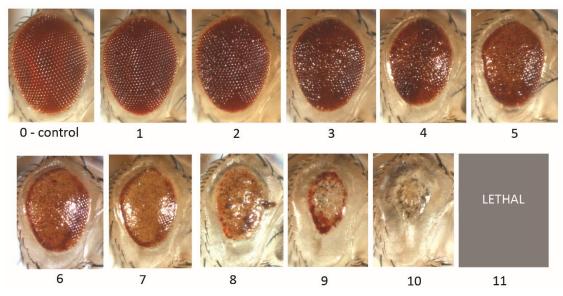
In this image, the bottom of the fly's eye is out of focus while the eye is tilted downward as seen by the surrounding tissue being out of focus when the tissue at the top is in focus. In order to capture a better image, the head should have been adjusted upward by gently pushing up on the proboscis with the forceps, making the surrounding tissue in the same visual plane. This image is also overexposed.



In this image, the top of the fly's eye is out of focus, indicating that it is tilted too far upward. The fly's head should have been tilted downward more so that the full eye was in focus. There is also a dent in the bottom left corner of the fly's eye, which may have occurred if the eye was touched by the forceps. This image is also overexposed.

Eye Morphology Quantification

During my investigations, I performed a large number of modifier crosses to YH3 > (G4C2)49, (GR)36, and TDP-43 flies. From these data, I compiled the below scales to create a scoring method based on the severity of the external eye phenotype.


External eye quantification scale for Gmr-GAL4YH3 > (G4C2)49

REFERENCE

Kramer NJ, Carlomagno Y, Zhang Y-J, Almeida S, Cook CN, Gendron TF, et al. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts associated with c9FTD/ALS. Science. 2016;353:708–12.

External eye quantification scale for Gmr-GAL4^{YH3} > (GR)36

REFERENCE

Mordes DA, Prudencio M, Goodman LD, Klim JR, Moccia R, Limone F, et al. Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun [Internet]. 2018 [cited 2018 Nov 28];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031111/

External eye quantification scale for Gmr-GAL4^{YH3} > TDP-43^{37M}

Fluorescence (GFP)

NOTES

- When performing multiple assays on the same cross (external eye imaging for morphology and GFP, plus collecting eyes for internal eye analysis), it is easiest to separate the flies for each assay into different vials.
- Typically, we image females as they are larger and easier to image. Further, females tend to have less of an external eye phenotype so we are able to avoid any loss is signal due to reduced tissue integrity.
- For YH3 > LDS-(G4C2)44^{GR-GFP} flies, it is essential that you match the *white* gene between crosses and controls (either image all flies with mutant *white* or all flies with wild-type *white*). The *mini-white* gene seems to look the same as *white* mutant flies.
- For modification of extreme degenerative phenotypes, like YH3 > LDS-(G4C2)42^{GA-GFP}#2S, consider if any reduced fluorescence is the result of suppression of toxicity caused by a modifier and thus recovered pigmentation versus actual reduced fluorescence. (this is not a concern with YH3 > LDS-(G4C2)44^{GR-GFP} flies as pigment loss is relatively weak.)

FLY LINE: Gmr-GAL4YH3 (III)

PROTOCOL

- 1. Collect flies and age them to desired time point (typically 1-2d)
 - a. Collect the progeny with the desired genotype and place them into a new vial. Typically, we image 3-4 flies of the same gender per genotype for screening and 6-10 flies for quantification, thus it's good to collect a few extra flies in case 1-2 of them get damaged or lost during imaging. Be sure to match the genders and ages of the controls and samples. It is best to collect the progeny at the same time each day in order to ensure they are approximately the same age. By imaging 3+ animals, you can then score the samples for quantification in the future.

Note: When collecting flies, it's good to visually note any inconsistencies between phenotypes of flies with the same genotype. If there is variation in the external eyes for flies with the same genotypes, gender, and similar age then take 3 images of each different type of eye and note the frequencies of each phenotype to be compared to expected results.

b. Age flies for 1 day by placing them back into the incubator from which they came. If you end up imaging them after >1dy, make sure you are consistent between all genotypes, particularly the controls vs samples, for accurate comparisons. Avoid imaging flies >3dyo for typical studies.

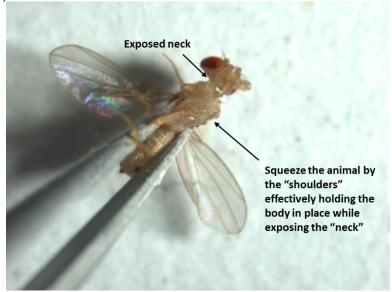
Note: It is essential that all flies are the same age. 1-2d vs 2-3d YH3 > LDS-(G4C2)44^{GR-GFP} flies have different GFP-signal strength depending on their age. I tend to use 1-2d animals.

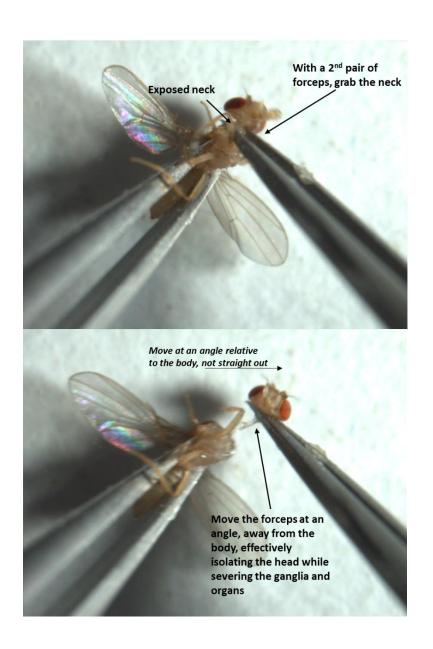
2. GFP Imaging

- b. Prepare a 10cc or 20cc luer-lock syringe with Vaseline by filling the syringe with Vaseline pull out the plunger and fill the syringe with Vaseline using a spatula. Replace the plunger and add a 20G needle. Squeeze out the air until you start to get a thin stream of Vaseline. Use a Kimwipe to clean away excess Vaseline. Very carefully, recap the needle.
- c. In the microscope room, turn on the Leica DM6000 B microscope by flipping the switch on the main microscope (right side box) and the fluorescence lamp (left side box) on the shelf. The microscope should start making noise as it turns on. After it is fully on, open the primary software on the computer, LAS AF, making sure that the configuration is set to "DefaultDynamicWidefieldTree". Press OK and the system will turn on completely.

Notes:

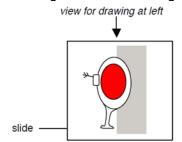
- i. Be sure to turn the microscope off when you are done!
- ii. Be sure to keep the fluorescence lamp on for a minimum of 30min. Turning it off too soon can damage the bulb.
- d. In the LAS software on the computer, click on the "Experiments" tab and click "new" to start a new experiment. Label the experiment file. Click the "Acquisition" tab and click "z" to turn on Z-stacks. Setup 2 channel imaging with GFP being the first channel then brightfield the second channel. IT IS IMPORTANT THAT GFP IS IMAGED FIRST AS THE SIGNAL QUENCHES RELATIVELY EASILY. Typical settings for GFP: 0.1-1s exposure, 1.0 gain. Typical settings for brightfield: 50ms exposure, 1.0 gain. Z-stacks are set to 1um stacks.

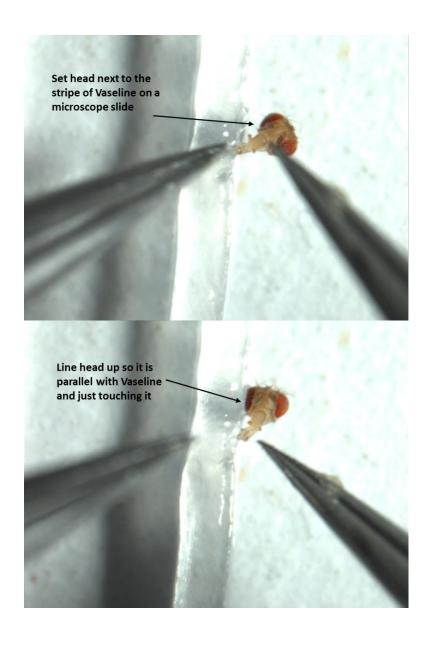

Notes


- i. It is convenient to name the folders based on the experiment date, in the order YEAR-MONTH-DAY, and a brief description of the experiment. This way, the computer will chronologically organize the folders while you know which experiment is which. Example: "151019 G4C2 TRiP screen".
- ii. It is convenient to simply open up a previous experiment. Right click on one of the samples and select "properties". Then click "apply settings". This will automatically set the software's settings to those desired z-stack, correct exposure, etc. Further, this ensures consistency between different time points for the same experiment as the settings will all be the same between time points. You will still need to manually change the objective, etc on the microscope.
- iii. It is important to record the exact settings you used for each experiment. For example, the exposure time may be different between experiments so you should have recorded exactly what was done. This also means you can recheck that everything is correct as settings may have been changed by other users. This includes settings in the software, but more importantly settings on the microscope (e.g. intensity and field).

- e. Prepare the microscope by turning the settings to normal brightfield. Use the 20X objective with a 1x optical zoom.
- f. Turn CO₂ tanks on by turning the knob (by the door). Turn on the CO₂ for the dissecting scope next to the fluorescent microscope by unclipping the white clip on the hose so it is going through the CO₂ pad (you should be able to hear it, but don't want it to be too strong as it's a waste of CO₂). Transfer the flies to be imaged onto the white CO₂ pad by flipping the vial so the opening faces the CO₂ pad and tapping the flies onto the pad. The CO₂ should be running just strong enough to keep the flies anesthetized.
- g. Once the flies are fully anesthetized, squeeze a thin line of Vaseline onto a clean microscope slide; I usually make the stripe the length of the slide and then save the slide for serial imaging sessions. Reference videos for how to position fly heads into Vaseline for imaging. Briefly, using 2 pairs of needle-nose forceps, decapitate the first animal by squeezing the "shoulders" together with one pair and grabbing the neck with the second pair. Transfer the head to the slide, placing it next to the Vaseline and facing upwards. Flip the head onto one side so the head is being held in place by the Vaseline while one eye is facing upward for imaging. Be careful not to get Vaseline on the eye to be imaged as this will create a blotchy image. Setup 2-5 heads at a time, depending on your speed.

Notes:

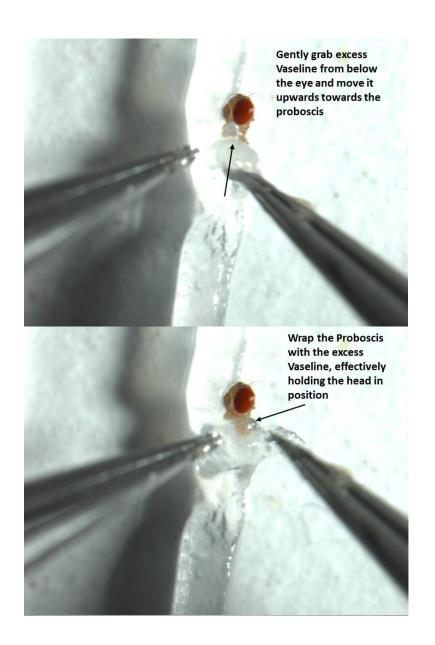

- i. The heads must be imaged within 15min or the cells start to decay, reducing the image quality.
- ii. Try to avoid too much light exposure while setting up the heads by turning the dissection scope light off when you are not actively using it. Also, I let samples sit for ~1-2min before imaging to allow any quenched signal to recover.
- h. Step 1: position the fly for decapitation by grabbing it by the "shoulders" with one hand, squeezing gently to make the head "pop-out" and expose the neck. With your dominant hand, grab the "neck" of the fly and tear at an angle (must be at an angle to effectively sever the ganglia and organs).



i. Step 2: Position the isolated head against a ~1-1.5cm line of Vaseline on a clean microscope slide. Sit the head on the slide then move the eye closest to the Vaseline into the Vaseline. Then move the other eye upward effectively positioning the head for imaging on its side.

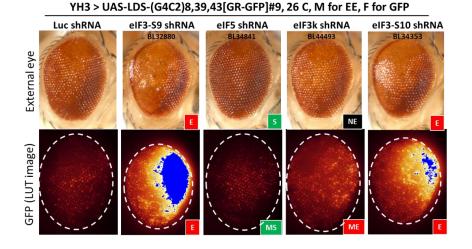
From Derek Lessing's protocol

Place forceps under the 2nd eye and gently move the head onto its side with an upward motion, effectively exposing the retinal tissue of the eye to be imaged. Be careful not to get Vaseline on this eye by regularly wiping off



Step 3: To ensure that the head remains in position during imaging with immersion oil, wrap a small amount of the Vaseline around the proboscis effectively holding the head in place. Be sure to avoid getting Vaseline on the eye tissue as this will result in blurred images and/or higher

background.


k. Place the slide on the stage of the DM6000 and turn on the brightfeild light. Move the first head into a position close to the light beam so you are relatively in the correct location while looking from the side of the microscope – you can tell as the light will turn darker with slight reddish hue when it is directly above the head. While looking through the eyepiece, slowly move the course focus into position above the eye until you can start to make out the external eye. On the microscope, click "live" set the top and bottom Z-stacks so you capture the entire external eye surface in the image. To avoid taking pictures when the GFP signal is quenched, let the head sit for 1-2min without being exposed to any light. Once the fly's head is ready for imaging click "start".

Note: Normally I image both with the eyepiece and camera open (middle position of the knob on the left of the eyepiece). However, on dimmer samples it may be necessary to adjust the knob so the image is going through only the camera or the eyepiece depending on what you are doing.

- I. Rename the image sequence under "Experiments" based on the genotype and any other relevant information.
- m. When done, be sure to save the experiment and close the software. Turn off the microscope.
- 2. Quantify data in ImageJ using the Z-stacked image:
 - a. Open images from the .lif file in FIJI (ImageJ)
 - b. Create compiled Z-stack: Click Image > stacks > Z project
 - c. Measure total fluorescence: https://sciencetechblog.wordpress.com/2011/05/24/measuring-cell-fluorescence-using-image
 - d. Measure particle # and size
 - i. Click Analyze > set scale: Record scale value (should be 2.7151pixels/micron if images taken with 20X objective lens and 1.25X zoom)
 - ii. Click Image > stacks > Z project (should be set to "Max Intensity")> OK (should be a 8-bit, gray-scale image)

- iii. Click Image > adjust > threshold
 - 1. Set threshold 45-255 (settings may change depending on the assay)
 - 2. Click "Apply" > "X" > "Cancel" on pop-up box that says, "convert stack to Binary"
- iv. Click Analyze > Analyze particles
 - 1. Set size (micron^2) to "0.5-infinity"
 - Under "Show" click "outlines" check that the objects outlined are accurate. If foci are being merged into 1 object, increase threshold. If you are missing foci, decrease threshold.
 - 3. Check: Display results, Clear results, summarize
 - 4. Click "OK". It will ask if you want to analyze 2 images. Click No (but doesn't really matter)
- v. Copy Area data to Excel
 - 1. Report number of objects per eye
 - 2. Report Mean Area of objects per eye
- 3. For publication, I use the compiled Z-stack image of the GFP. I then use the lowest stack from the brightfield image to determine where the eye tissue is within the GFP image, drawing a dotted line around the eye tissue. It is also useful to determine if there is increased GFP expression by setting the exposure on the controls to just right below overexposure using the LUT image setting. Then when you image the samples of interest, if the GFP signal is indeed brighter, there will be blue overexposed regions.

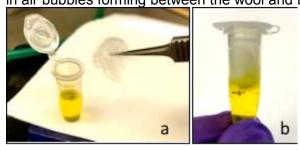
Example of final image with LUT setting: LUT allows for detection of increased GFP with mild changes. Combined external eye images from the APO16 with these GFP images allow for analysis of GFP levels in comparison to how toxicity in the eye is changed with modifiers.

All images taken with a 300ms exposure

Internal fly eye imaging

NOTE: The lab tends to use Cytoseal/Hysto-clear for mounting coverslips onto slides. Herein, I use Permount/xylenes. Permount is significantly easier to handle and is used by pathologists in the clinic! Either will work and the protocol doesn't change overall. Note that Permount can be removed by soaking the slides in xylenes; this can be convenient if something goes wrong during this step. Also, Permount requires xylenes (cannot be used with histoclear).

RECORD KEEPING


The standard way of keeping track of paraffin-embedded tissue is to assign a coded number to each sample. I used "GC###" for G4C2-project while most people use their initials. I maintain an excel sheet summarizing all samples. I recommend recording the following information: Experiment Date, parental flies, genotype, gender, n, temperature, age, days on Bouin's, date of processing, days in EtOH after leaching, date that they were sectioned (n). It is convenient to keep track of dates in case reagents go bad or for any other troubleshooting.

REAGENTS/MATERIALS

- Bouin's Fixative (Sigma # HT10132)
- Salinized Glass Wool (Sigma # 20411)
- Disposable Transfer pipettes
 - Standard: 2.5mL (Thermo Sci # 212)
 - o Fine Tip: 1.5mL (Fisher Sci # 13-711-25)
- Leaching buffer:
 - 50ml of 1M Tris, ph8.0 to 50mM (Invitrogen Cat# 15568-025)
 - o 8.7g of NaCl to 150mM
 - o Water to 1L
- Lid from a 6- or 12-welled tissue culture (TC-) plate
- Permount (Fisher Sci # SP15-100)
- Xylenes (Fisher Sci. # X5S-4)
- 25 x 75mm glass slides (positively charged)
- 22 x 50mm cover slips
- Embedding paraffin, medium (Leica # 3801320)
- Lens paper, cut into ~1.5" x 2" sheets (fisher Sci # 11-996)
- Embedding cassette (Fisher Sci # 15-200-402)
- Embedding rings (EMS # 62350)
- Metal molds (EMS # 62527-16)
- Slide rack (EMS # 62543-06)
- Staining dish (EMS # 62541)
- Microtome blades (Leica # 63065-HP)

PROTOCOL Day 0

- 1. Fixing Heads for Paraffin Sections
 - a. Collect flies. Typically 6-8 flies/genotype is sufficient.
 - i. For Gmr-gal4 studies, it is best to collect 1-3 day old animals as these have reached full maturation
 - ii. Females are larger so there is a size advantage to using them. Setting/ checking sectioning orientation is more difficult with males. However, males and females can show differences in transgene expression which can be useful in screening enhancers vs suppressors.
 - b. Using forceps, decapitate the animals and put their heads into the prelabeled microcentrifuge tube containing ~1.0ml Bouin's fixative.
 - i. Anesthetize the flies with CO2. With one pair of needle-nose forceps, squeeze a fly at the "shoulders" which causes the head to prop outward revealing the neck. With a second pair of foceps, cut the head off at the neck. Clean up the head prep by removing any crop, foregut or other tissue still attached to the head, being cautious to avoid any damage to the eyes and head.
 - ii. Immediately, transfer heads to the Bouin's/tube.
 - iii. Collect additional heads
 - c. Slowly submerge a bean-sized piece of glass wool into the microcentrifuge tube, allowing air to move around the glass wool. Effectively this submerges the heads into Bouin's and acts as a plug. Note: I've found that a looser ball of wool is better. Tighter plugs result in air bubbles forming between the wool and the Bouin's surface.

- 2. Repeat these steps for each genotype until all heads are collected.
- 3. Incubate tubes at RT for 5d with slow agitation.

Note: you may need to check the samples after 24h to remove bubbles that form below the plug. To do this, using forceps squish the glass wool to one side and gently push down, effectively squeezing the bubble out from the side of the tube free of the wool.

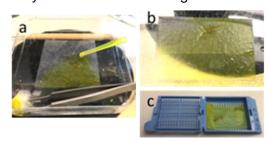
Day 5

- a. Leach samples for paraffin embedding. Note: It is convenient to transfer heads to cassettes and leach them at the end of the day so they are ready to be processed in the morning.
 - a. Prep: Collect the following reagents into the fume hood

- i. Pre-cut lens paper (1 per sample)
- ii. Staining dish filled half-way with leaching buffer
- iii. 2 pairs of needle-nose forceps
- iv. TC-plate lid
- v. pre-labeled plastic cassettes (labeled with pencil!)
- vi. a transfer pipettes (both sizes)
- vii. a waste container for formaldehyde waste
- viii. samples that have been on fixative for 5d.
- b. Using forceps, carefully remove the glass wool from your first sample. Using the fine tip transfer pipette, immediately remove all the Bouin's. Using a standard transfer pipette, immediately add ~500-1000µl of leaching buffer. Make sure not to squish or lose any heads. Repeat for all samples.

Note; The heads typically sink to the bottom of the tubes when fixed, but this is not necessary. I have had great images using heads that floated at this stage.

- c. Perform 2-3 washes with leaching buffer using the fine tip transfer pipette to remove buffer in the tube and using the standard transfer pipette to add fresh leaching buffer. When on last wash, keep all samples in leaching buffer.
- b. Transfer fixed heads to a plastic cassette
 - a. Position the TC-plate lid so the cell-side is facing you and it is at ~20° angle. Wet a piece of lens paper placed on top it using a standard transfer pipette just need a few drops to get the paper to stick to the lid.


Notes:

- the angle allows excess buffer to roll to the bottom of the plate when transferring heads to the paper. The edges of the lid help to collect the buffer at the bottom while the ridges for each well create small barriers which are useful for keeping heads in place.
- do not add too much buffer when wetting the lens paper. This can make it difficult later when trying to keep heads in the center of the paper.
- b. Using the standard transfer pipette, gently transfer the heads to the center of the pre-wet lens paper on the lid. Fold the lens paper around the heads using forceps, effectively creating a package with them trapped inside. Try to avoid any bubbles forming between or around heads as this will prevent chemical access later.

Notes

- It is vital that the heads are fully enclosed or you will lose them!
- it is important to position the heads so that they do not fall into any creases when the paper is folded as this prevents processing chemicals from accessing the heads.
- It is preferable to separate the heads from each other for better chemical access.
- It is preferable to not align the edges of the lens paper as this will make it more difficult to access the heads within the lens paper later.

c. transfer the heads/lens paper to a pre-labeled embedding cassette. Immediately transfer to the staining dish.

Note: this sample has too much residual Bouin's. it should be clear, not yellow. Also, it's better to avoid lining up edges of the lens paper when folding the paper around the heads. (b did not do this)

- d. Repeat steps for all samples, adding more leaching buffer to the staining dish as needed to keep cassettes submerged.
- c. Leach samples for 4-10h with agitation at RT.

Notes:

- samples can be stored at 4°C in 70% ethanol for ~5d prior to processing. (This is useful for accumulating multiple samples.)
- I have had success leaching samples overnight in the tubes and then transferring the heads to cassettes the next morning for processing.

Day 6: Embed samples into paraffin

- 1. Prepare
 - a. ethanol (EtOH) and xylene solutions (can be reused ~10 times)
 - 70% EtOH
 - 90% EtOH (it is convenient to simply use 190pf EtOH if available)
 - 95% EtOH
 - 100% EtOH I
 - 100% EtOH II
 - Xylenes I (in fume hood)
 - Xylenes II (in fume hood)
 - b. make sure paraffin tanks are on (should be ~61°C) and there is sufficient paraffin in them. Add more paraffin as needed (so ~1.5" deep).
- 2. Pour leaching buffer out of staining dish containing leached samples and pour in 70% EtOH. Incubate for 30min at RT with agitation.
- 3. Pour 70% EtOH out of staining dish and pour in 90% EtOH. Incubate for 30min at RT with agitation. Continue 30min incubations with the subsequent EtOH solutions: 95% EtOH → 100% EtOH I → 100% EtOH II.
- 4. In the fume hood, pour 100% EtOH II out of staining dish and pour in Xylenes I. Incubate for 30min within the fume hood. Continue 30min incubation with Xylenes II.
- 5. Transfer cassettes to paraffin I tank (closest to fume hood), making sure they are all fully submerged. Incubate for 1h. Note: It is convenient to use the metal cassette-rack that is stored above the paraffin tanks to hold cassettes together.

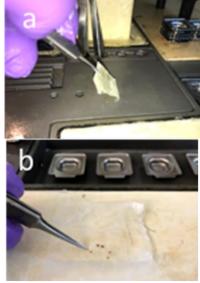
- 6. Transfer cassettes to paraffin II tank, making sure to let the paraffin drain between tanks (<1min) and that they are all fully submerged once in the new tank. Incubate for 1h.
- 7. Remove cassettes from paraffin tank II and let them cool to RT in the fume hood. It can be convenient to cool them on a cardboard fly-vial rack insert, as they tend to stick together or to paper towels.
- 8. Store cassettes at RT for future use.

Section paraffin-embedded fly heads

1. Block heads

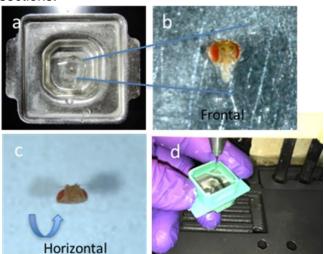
Bonini lab blocking station: Molten paraffin is distributed from a nozzle in the hot work area controlled by a foot pedal located on the floor. The hot work area includes spaces for four forceps kept heated in hot paraffin for manipulating the orientation of the head specimens. The hot work area is used for maintaining molds containing paraffin and for exposing heads from cassettes. The till can be used to pre-warm molds. The cold plate is used to solidify samples and remove molds. (Do not the cold-plate on while blocking heads.)

- a. Prepare
 - i. Pre-warm metal molds on the blocking station so they reach ~61°C. (The Bonini lab uses a Shandon Histocentre2 station.)
 Need 1 per head.
 - ii. Pre-label embedding rings with your sample name using pencil (!). Usually we cut 4-10 heads per genotype.
- b. Thoroughly clean excess wax off of 3 molds using a kimwipe. Fill each mold with molten paraffin to the top of the chamber. Maintain these on a ~61°C surface of the blocking station to keep paraffin melted.



There are two parts to the block: a metal mold shapes the area that will contain the head, an embedding ring fits on top of the mold. After completing the blocking step, the metal molds are removed. The "wings" of the metal mold go in the opposite direction as the "wings" of the plastic piece. The proboscis of the head should face one of the wings of the metal mold.

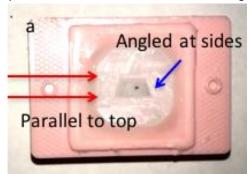
- pose your first cassette containing paraffin-embedded heads to a ~61°C surface of the blocking station, just enough to where the cassette can be opened and the heads/lens paper removed.
- d. Expose the heads/lens paper to a ~61°C surface of the blocking station, just enough to where you can open-up the lens paper and expose the heads. DO NOT FULLY MELT THE HEADS/PARAFFIN AS THIS CAN DISRUPT THE TISSUE'S INTEGRITY. Use pre-warmed needle-nose forceps as needed.


e. Transfer 1 head into each of the prepared molds using pre-warmed forceps to "cut" them out of the wax. The heads should sink at this stage. If a head does not sink it has not been properly embedded and should be

discarded.

Melt the edges of the lens paper packet just enough to pull the folds open with forceps and expose the heads. It is convenient to warm the folded edges of the paper with targeted exposure to the hot surface while avoiding the area containing the heads. Once the heads are accessible, remove the paper from heat and extract a head by carefully cutting it out of the wax with hot forceps. Place the head in a mold containing molten paraffin and set the orientation as appropriate. Be sure the change forceps frequently so you are always using warmed forceps.

f. Position the head within the mold so the proboscis is facing one of the wings of the mold. Move the head/mold to a RT surface of the blocking station and allow the wax to cool just enough that the head can be held in place. Using prewarmed forceps, flip the head by pushing up on the proboscis so it is sitting on the superior part of the head, with the inferior side facing the surface of the molten paraffin. This creates horizontal sections.



g. Carefully place a pre-labeled embedding ring on top of the mold so the wings of the mold are on opposing side from the wings on the ring. Make sure the edges are sealed together. Fill the ring/mold with molten paraffin to the top of the ring by pouring the paraffin at an edge of the mold (not center where the head is located. IT IS VITAL THAT YOU DO NOT

DISTURB THE HEAD BY LETTING THE FRESH MAX MELT THE COOLED WAX AROUNG THE HEAD!

- h. Transfer to the cold-plate of the blocking station while you block additional heads. (do not turn it on, yet.)
- Repeat blocking of each head for all heads/samples.
- j. When done blocking, turn on the cold-plate of the blocking station and incubate samples for ~30min until the molds can be easily separated from the paraffin/ring. (they typically make a popping sound when the seal is broken.) BE SURE TO TURN THE COLD-PLATE OFF WHEN DONE!
- k. Blocks can be stored long-term at RT.
- 2. Trim blocks: Using a sharp razor blade, cut excess wax away from the head within a room-temperature block, creating a small trapezoid around the head that is ~3mm (top edge) x 4mm (bottom edge). Be cautious of the position of the trapezoid in relation to the wings of the mold the top edge should be perpendicular to the wings and angled-sides should run (relatively) parallel to the wings. Top and bottom edges should be as close to parallel as possible to avoid the ribbon from curling later. Trimmed blocks can be stored long-term at RT.

Note: it can be convenient to keep the trapezoid a little larger than the final shape to leave room for further trimming the block during sectioning.

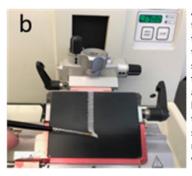
3. Section heads (8µm thickness)

The Leica RM2255 microtome is used to section the paraffinembedded sample blocks. Left, panel A shows the waterbath, microtome control pad, and microtome. Blocks are clamped into the block holder. Each rotation of the wheel advances the block-holder 8μ m towards the knfe, resulting in a tissue slice 8μ m thick when a block is being sectioned

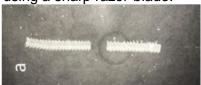
a. Preparation:

i. Clean excess wax out of the water bath next to the microtome, fill it with water, and pre-warm it to 52°C.

- ii. Position a new microtome blade onto the microtome. (One blade can be used to section ~15 heads and then it needs to be replaced.) To insert a new knife, loosen the red handle clamping the knife into the knife holder and use the magnet at the opposite end of the course brush to pull out the old knife. Take a new knife from the pack and insert. Use the handle of a fly brush to press the knife into the correct position and tighten the knife clamp
- iii. Fill a small beaker with ice and chill 2-3 pairs of needle-nose forceps.
- iv. Pre-label glass slides using pencil (!)
- v. Obtain and slide rack, paper towels, and a piece of dark poster-board or napkin.
- b. In an ice-bucket full of ice, place the blocks tissue-side down into the ice. Chill blocks for 30+ minutes.

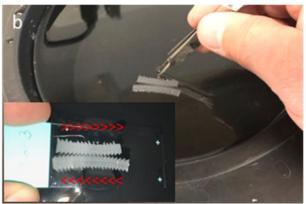


- c. With the microtome wheel locked and the blade safety bar in place, position a chilled block into the block holder on the microtome and firmly tightening the knob. The wings of the embedding ring should be on the left/right sides; in other words, The parallel edges of the blocks (top and bottom) should be parallel to the knife. MAKE SURE THE BLOCK HOLDER IS POSITIONED FAR ENOUGH BACK THAT WHEN YOU START THE MICROTOME YOU DON'T CUT THE PORTION CONTAINING THE HEAD OFF OF THE BLOCK!
- d. Unlike the wheel and advance the tissue forward to where it is just barely touching the blade (little flakes of paraffin come off of the block).
- e. Start the microtome at a low speed (~2), using the control pad. Run the microtome enough to get a sense of whether any adjustments need to be made to the trapezoid shape with the goal of a relatively straight ribbon being formed by the tissue sections. Brush off excess paraffin from the blade using a large paintbrush (move the grain of the brush along the edge of the blade, not against, or you will damage the blades' edge).


Microtome control pad:

- up/down arrows move the block holder forward (up) and backward (down)
- Knob is used to set the speed for the autorotation. It needs to be set to "Cont." for continuous to run.
- To start auto-rotation, push both blue buttons simultaneously. To stop, press wither button.

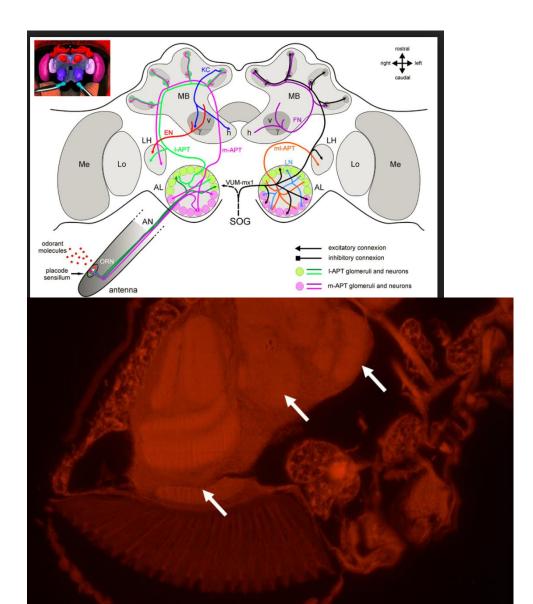
A "ribbon" is formed from subsequent tissue slices. If the trapezoid is not straight, it will curl to the left or right. Readjust the top and bottom edges of the trapezoid in early sections before reaching the tissue within the block.


- f. Run the microtome on continuous at ~5 until you reach the head tissue. Stop the microtome and discard the ribbon thus-far as this is just wax (no tissue).
- g. Run the microtome on continuous at ~2 until you reach the end of the head tissue. When running the microtome, guide the ribbon with small paint brushes, or else it will not stay straight. Stop the microtome when you no longer see red eye tissue.
- h. Using 2 small paintbrushes, gently free the last section of the ribbon from the blade and transfer the whole ribbon to a piece of dark napkin; matte side of the ribbon should be facing up. Cut the ribbon into 2-3 smaller sections using a sharp razor-blade.

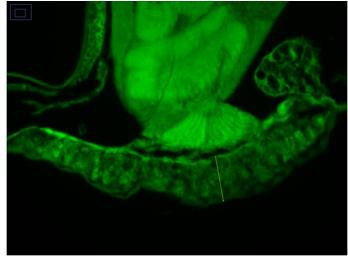
Notes

- I tend to measure the ribbon with a glass slide to see how short to cut the sections
- Be aware that when you cut the ribbon with the blade, the wax can cut stuck onto the napkin. Gently free the ribbon with the small paintbrushes.
- It is convenient to remove sections on the ends of the ribbon that do not contain any red-eye tissue.

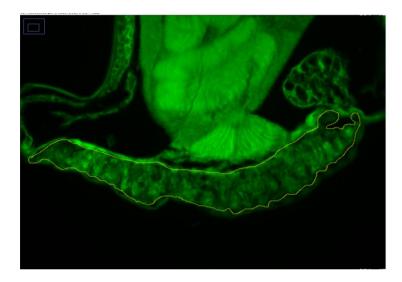
- i. Transfer each section of the ribbon, one at a time, into the water bath; matte side up. I usually achieve this by using 1 small paintbrush to lift 1 side of the section up and onto the tip of a closed, pre-chilled forcep. It is essential that the forceps be cold or the tissue/paraffin with stick to it! also, it is convenient to use maintain any small droplets of cold water that have formed on the tip of the forceps as this can help "hold" onto the ribbon.
- j. Using cold forceps, gently bring the sections together. The edges should interact, so the sections stay together. It is vital that you frequently switch forceps so they stay cold. A good strategy for imaging later is to place the two ribbons next to each other in an antiparallel fashion so the adjacent regions of the ribbons are next to each other on the slide.

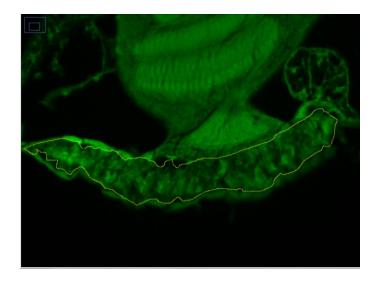


- k. Gently transfer the sections onto a pre-labeled glass slide, guiding the sections with a pair of chilled forceps.
- I. Tap the slide onto paper towels to remove excess water. Dry slide in a slide rack while you section additional samples.



- m. When sectioning is complete, place the wheel of the microtome in the locked position and put the blade guard back up. Turn off the water bath, microtome and clean up paraffin debris.
- n. Dry slides at room temperature (overnight or more).
- 4. Mount coverslips onto slides
 - a. Preparation
 - i. Warm an incubator or oven to 60°C
 - ii. Prep: Collect the following reagents into the fume hood


- 2 slide dishes filled with Xylenes labeled Xylenes (I) and Xylenes (II). Xylenes can be reused ~10 times when stored in bottles.
- Paper towels
- 22 x 50mm cover slips
- Permount
- A standard transfer pipette
- b. Incubate slides/slide rack at 60°C for ~60min. (termed: baking)
- c. Allow slides to cool for 30+ min.
- d. Transfer slides/slide rack to the slide dish containing Xylenes I. Incubate in the fume hood for 10min.
- e. Transfer slides/slide rack to the slide dish containing Xylenes II. Incubate in the fume hood for 10min. DO NOT REMOVE SLIDES/SLIDE RACK FROM THE XYLENES UNTIL THE MOMENT THAT YOU ARE MOUNTING THE COVERSLIP ON EACH INDIVIDUAL SLIDE. Tissue is ruined if it is allowed to dry out at this stage.
- f. Mount cover slips onto slides
 - i. Align 1-3 coverslips along a paper towel. Using the transfer pipette, add 3 small drops of Permount onto each coverslip so they are evenly distributed length-wise. DO NOT USE EXCESS PERMOUNT. It does not take much! them using a disposable pipet.
 - ii. remove 1 slide from the slide rack/xylenes. Wipe away excess xylenes from the back of the slide. Place the slide tissue-side down onto the prepared coverslip. The xylenes should help the permount to evenly distribute across the coverslip.
 - iii. Dab the edges of the slides on a piece of paper towel to remove excess solution and the straighten the coverslip. Also, check for any bubbles that maybe in the same position as the tissue. bubbles can be gently squeezed out from between the slide and coverslip using the lead tip of an automatic pencil.
 - iv. Place the mounted slide coverslip side up onto a piece of cardboard to dry 1-2d in the fume hood. (It is convenient to use old fly-bottle trays and to angle the slides slightly with paper towels.)
 - v. repeat steps i-iv for remaining slides.
- 2. Image slides on the DM6000 microscope using a 20X dry objective with 1.25 zoom and 588 fluorescence (looking at auto-fluorescence of the tissue). For internal eyes, use anatomical landmarks to define the tissue region for fair comparisons between samples. Typically, I image the tissue when I can see the following landmarks: AL + LH + optic chiasma.



- 3. Quantify internal eye tissue depth and total surface area in ImageJ.
 - a. Open eye images taken on a microscope in Fuji (ImageJ). If you open from the original .lif file, the scale bar will already be set.
 - b. (if not using the .lif file) Click "Analyze" > "Set scale".
 - c. Measuring the tissue depth
 - i. Using the line tool, draw a line the depth of the eye tissue at the optic chiasm.
 - ii. Click "Analyze" > "Measure"
 - iii. Copy and paste the length measurement into excel. This is in units you previously set for the scale.
 - iv. Example

- d. Measuring the total surface area of the retina tissue
 - i. Using the Freehand selection tool, trace the outer edges of the internal eye tissue. Click "Analyze" > "Measure". This will give you the Area in the units you previously set for the scale.
 - ii. Copy and paste the Area measurement into excel.
 - iii. For any pockets in the eye tissue, repeat steps a-b while tracing around these pockets. The area values given should then be subtracted from the total area measurement to give an accurate, final measurement.
 - iv. Examples

TROUBLESHOOTING

- After much trial and error, we've found that 5d on Bouin's results in the best tissue integrity. 4 and 6d can also produce some good sections while the percent of good sections reduces.
- When cleaning the microtome blade, it is essential to only use upward-strokes with a brush to avoid dulling the knife.
- It is advisable to change to a new knife on the microtome and to track the areas that have previously been used. A sharp knife will alleviate many sectioning problems.

FIBROBLASTS

Thawing, culturing, freezing

REAGENTS/MATERIALS

- DMSO, sterile (Sigma # D2650)
- heat-inactivated, sterile Fetal Bovine Serum (FBS)
- 50X MEM Amino Acids Solution (Invitrogen # 11130051)
- Pen/Strep solution
- DMEM high glucose 4.5g/L and Sodium Pyruvate
- 0.25% Trypsin-EDTA
- dPBS without Ca/Mg
- 500mL filter system (PES, 0.22µm)
- 50mL filter system (PES, 0.22µm) (Corning # 430320)
- Standard tissue-culture materials

MEDIA

Note: all media must be prepared in the TC-cabinet under sterile conditions.

- Culture media
 - 75mL heat-inactivated, sterile Fetal Bovine Serum (FBS) to 15%
 - o 5mL of 50X MEM Amino Acids Solution to 1X
 - 5mL of Pen/Strep solution to 1%
 - o 415mL DMEM high glucose 4.5g/L and Sodium Pyruvate
 - o Filter through a 500mL filter system
 - Store at 4°C for up to 2mo. (Alternatively, discard media when it changes colors based on the pH indicator within the DMEM.)
- Freezing media
 - o 5mL of DMSO (sterile) to 10%
 - 45mL heat-inactivated, sterile Fetal Bovine Serum (FBS)
 - o Filter through a 50mL filter system
 - Store at 4°C for up to 2mo.

PROTOCOL

Notes:

- Cells are maintained in a standard tissue culture incubator with 5% CO₂ and at 37°C.
- the following represents general protocols while adjustments may need to be made for specific lines, etc.
- For all steps, it is vital to maintain sterility, spraying materials and hands regularly with 70% EtOH, etc. All steps must be performed in the tissue culture (TC-) room and when applicable, in the TC-cabinet.
- the following protocol uses TC- flasks while cells can also be grown in TC-dishes if desired.

1. Thaw 1 vial of cells:

- a. Obtain a vial of cells from the LN2 tank and maintain it on dry ice. If necessary, you can do this 1-3d before thawing the cells and store the vial in the -80°C.
- b. Prep: label a T25 (or T75) flask with the cell line name, date, and the passage number on the vial. It is vital that you keep track of the passage number! Note that it doesn't start at "1" for when you start growing the cells as the cells have already been grown for a number of passages (P) prior to you culturing it. All cells must be discarded once you reach P20-25.
- c. Thaw the vial of cells in a 37°C water bath. When the ice is almost completely gone (~a pea size), transfer the vial to the TC-cabinet after spraying it thoroughly with 70% EtOH to sterilize it.
- d. Immediately, carefully remove the cap from the vial and transfer the cell suspension to the prepared flask. It is vital that this is done relatively quickly.
- e. Transfer the flask to a 37°C incubator overnight to allow the viable cells to adhere to the bottom of the flask. The next morning, remove all of the media and add fresh, pre-warmed culture media to the flask, effectively removing the freezing media and cell debris.
- f. Transfer the flask back to the 37°C incubator and check on the cells every 2-3d. when the cells reach 90-100% confluence, passage them 1:2 for the first passage after thawing. After that you can increase the passage dilution as needed. It is good practice to passage the cells 1-2x before using them for experiments to allow them to fully recover.
- 2. Passage cells when they reach 90-100% confluence.
 - a. Prep: pre-warm Culture media and Trypsin to 37°C; make sure dPBS is at RT
 - b. Remove growth media and wash cells 1x with dPBS. Add just enough trypsin to cover the monolayer of cells (1.5-2mL for a T25 flask; 3mL for a T75 flask). Incubate cells at 37°C for 5-10min.
 - c. Prep:
 - i. label new flask(s) with the cell line name, passage number, date, and dilution. It is vital to track passage number. Typically 1:5 dilutions are used for healthy fibroblast lines. However, some lines may require 1:2 dilutions to maintain viability. (1:2 = 1 confluent flask can be split into as many as 2 new flasks; 1: = 1 confluent flask can be split into as many as 5 new flasks)
 - ii. Add a minimal amount of growth media to the flasks (~3mL for T25; ~10mL for T75). It is important to consider how much of the cell suspension you will be adding later so you don't add too much volume. You want ~4-6mL end volume in a T25 or ~12-15mL end volume in a T75.
 - d. When cells have lifted off the flask, add growth media to stop the reaction (~3mL for T25; ~5-7mL for T75). It is best to pipette the media along the cell-side of the flask to wash all cells to the bottom. Pipette up/down ~5x to fully suspend cells. Transfer a defined volume of the cell suspension into the prepared flasks based on the dilution.

- e. Discard the old flask in the biomedical waste container. Transfer the new flask(s) to the 37°C incubator. Every 2-3d, check on the cells to make sure they are growing well. Passage again (or use them for experiments) when they reach 90-100% confluence.

 Note: for slow growing line, you may need to change the media every
 - ~5d. To do this by removing ½ of the current growth media and replacing it with new, pre-warmed media.
- 3. It is vital to maintain a good freezer stock for every cell line. A good rule of thumb is to always replace a thawed vial with a new vial of frozen cells. To freeze cells:
 - a. Prep: pre-warm culture media, trypsin, and freezing media to 37°C; make sure dPBS at RT is available; get a ice-bucket full of dry ice.
 Note: it is vital that the freezing media be pre-warmed as it contains DMSO which crystalizes at 4°C.
 - b. Remove growth media and wash cells 1x with dPBS. Add just enough trypsin to cover the monolayer of cells (1.5-2mL for a T25 flask; 3mL for a T75 flask). Incubate cells at 37°C for 5-10min.
 - c. Prep:
 - i. label cryo-vial with the following information: cell line name, date, passage number, # cells (can be an estimate like "½ T75")
 - ii. obtain a sterile 50mL conical and label it with the cell line name (particularly important if you are handling multiple cell lines simultaneously)
 - d. When cells have lifted off the flask, add growth media to stop the reaction (~3mL for T25; ~5-7mL for T75). Pipette up/down ~5x to fully suspend cells. Transfer cells into the pre-labeled 50mL conical.
 - e. Centrifuge the cells/50mL conical for 5min at 15,000 RPM to pellet the
 - f. Remove the supernatant and add 1mL of freezing media for each vial. Pipette up/down ~10x to fully suspend cells. Transfer cells into the prelabeled vial(s). Immediately cap the vial and transfer it to the bucket of dry ice, making sure the vial is fully surrounded by the ice. Immediately transfer the vial to a -80°C freezer overnight.
 - Note: Freezing media has DMSO which is toxic to cells. It is vital that all steps where cells are exposed to the freezing media be performed relatively quickly to get them frozen as fast as possible.
 - g. In the morning, transfer the vial to the LN2 tank for long-term storage. Optional: you can maintain vials at -80°C for ~1wk to accumulate multiple vials before transferring them to the LN2.

Protein extraction

REAGENTS

- RIPA lysis buffer
 - o 10mL of 1M Tris-HCL (pH 7.5) to 50mM
 - o 6mL of 5M NaCl to 150mM
 - o 2mL NP-40 to 1%
 - o 0.42g NaF to 50mM
 - o 2mL of 10% SDS to 0.1%
 - 1g Sodium Deoxycholate (DOC) to 0.5%
 - o dH2O to 200mL
 - Filter through a 250ml filter system, 0.22µm, PES
 - o store at 4°C. Check pH every 6-8mo.
- 5X cOmplete ULTRA Tablets, mini, EASYpack protease inhibitor cocktail (Sigma # 05892970001)
 - o 1 tablet dissolved in 1500µl of milliQ water
 - o prepare 100µl aliquots
 - store in -20°C. After thawing, precipitate may form and need to be resuspended into solution.
- (optional) 25X PhosSTOP Phosphotase inhibitor cocktail (Sigma # 04906845001)
 - 1 tablet dissolved in 400µl of MilliQ water
 - o prepare 25µl aliquots
 - store in -20°C. After thawing, precipitate may form and need to be resuspended into solution.
- 100mM PMSF
 - o 0.1742g of PMSF
 - 10mL of isopropanol
 - Filter through a 0.22µm PES filter (Fisher Sci # 09-720-511) using a luerlock syringe
 - prepare 500ul aliquots
 - store in -20°C. Before use, bring to RT and vortex until precipitate goes back into solution
- 1M DTT
 - 1.5425g of DTT (Dithiothreitol)
 - 10mL MilliQ water
 - Filter through a 0.22μm PES filter (Fisher Sci # 09-720-511) using a Luerlock syringe
 - prepare 500µl aliquots
 - o store in -20°C
 - before use, bring to RT and vortex until precipitate goes back into solution

PROTOCOL

- 1. Prepare working lysis Buffer: (must be made fresh! Store on ice.)
 - a. Calculate the total amount of lysis buffer you will need. Typically, 50µl per well of a 6-welled plate when using cell pellet method (step 2).
 - b. For every 500µl of working lysis buffer needed, add the following protease and phosphatase inhibitors. Make a minimum of 500µl of working lysis buffer then prepare additional 100µl as needed.
 - 400µL 0.5% RIPA Lysis Buffer Stock
 - 100µL of 5X cOmplete ULTRA protease inhibitor Stock to ~1X
 - 20µL of 25X PhosSTOP Phosphotase inhibitor cocktail Stock to ~1X
 - 5µL of 100mM PMSF to ~1mM
 - 0.5µL of 1M DTT for ~1mM
- 2. Lyse cells using one of two methods. (Written for a 6-welled plate. Scale up as needed.)
 - a. Prepare a cell pellet
 - i. Advantages
 - 1. can split up cells from the same plate into multiple assays
 - 2. cell pellet is prepared in a microcentrifuge tube so lysing no protein will be lost when lysis buffer is added
 - 3. can lyse cells in small volumes
 - ii. Disadvantages
 - 1. Can lose cells during every centrifuge step
 - 2. slower
 - iii. Protocol
 - 1. Prep: pre-warm Culture media and Trypsin to 37°C; make sure dPBS is at RT.

Note: it is good practice to use an aliquot of culture media in a sterile conical to prevent contaminating your primary stock of media

- Remove growth media and wash cells 1x with dPBS. Add just enough trypsin to cover the monolayer of cells (~0.5mL per well). Incubate cells at 37°C for 5-10min.
- 3. Prep: label 15mL conical

Note: you will need multiple conicals if you are splitting the cells up for different assays.

- 4. When cells have lifted off the plate, add growth media to stop the reaction (~1mL), using a P1000 pipet with tip. Pipette up/down ~5x to fully suspend cells. Transfer the cell suspension into the prepared conical(s).
- 5. Using a fresh tip on the P1000 pipet, wash the plate while holding it at an angle so any remaining cells will collect to the bottom. Collect all solution into the conical.
- 6. Repeat for remaining wells.
- 7. Pellet cells by centrifugation at 5000rpm for 5min.
- 8. Prep: label 1.5mL microcentrifuge tubes

- 9. Wash cells 2x to remove media and typsin by removing supernatant, resuspend cells in 3mL of dPBS, and pelleting cells by centrifugation at 5000rpm for 5min.
- Remove supernatant. Resuspend cells in desired volume of working lysis buffer.

Note: other cell pellets can be immediately frozen on dry ice for future use (e.g. RNA extraction).

- 11. Lyse cells for 20-40min at 4°C with agitation/rotation.
- 12. Prep: label 1.5mL microcentrifuge tubes
- 13. Pellet cell debris by centrifuging samples at 15,000xg for 10min.
- 14. Transfer supernatant to the fresh prelabeled microcentrifuge tube.
- 15. Quantify protein concentration by Bradford.
- b. Lyse cells directly on the TC-plate
 - i. Advantages
 - 1. Faster
 - 2. Can get more protein from a single preparation
 - ii. Disadvantage
 - 1. Requires larger volumes of lysis buffer, resulting in more dilute protein preparations
 - 2. If you're not good about washing the plate to collect residual lysate, you will lose protein

iii. Protocol

- 1. Prep: label 1.5mL microcentrifuge tubes
- 2. Remove growth media and wash cells 2x with dPBS.
- 3. Add desired volume of working lysis buffer (typically ~100-150µL per well)
- 4. Using cell scrapers, scrape off cells from the bottom of the plate, making sure to get all edges.
- 5. Using a P1000 pipet with tip, transfer all solution to the prelabeled microcentrifuge tube. Note: it will be gunky.
- 6. Using a fresh tip on the P1000 pipet, wash the plate with 100-150µL of lysis buffer while holding it at an angle so any remaining solution will collect to the bottom. Collect all solution into the tube. You should get all the gunky stuff this is the lysed cells.
- 7. Repeat for remaining wells.
- 8. Lyse cells for 20-40min at 4°C with agitation/rotation.
- 9. Prep: label 1.5mL microcentrifuge tubes
- 10. Pellet cell debris by centrifuging samples at 15,000xg for 10min.
- 11. Transfer supernatant to the fresh prelabeled microcentrifuge tube.
- 12. Quantify protein concentration by Bradford.