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Detecting Ancient Balancing Selection: Methods And Application To
Human

Abstract
Balancing selection can maintain genetic variation in a population over long evolutionary time periods.
Identifying genomic loci under this type of selection not only elucidates selective pressures and adaptations
but can also help interpret common genetic variation contributing to disease. Summary statistics which
capture signatures in the site frequency spectrum are frequently used to scan the genome to detect loci
showing evidence of balancing selection. However, these approaches have limited power because they rely on
imprecise signatures such as a general excess of heterozygosity or number of genetic variants. A second class of
statistics, based on likelihoods, have higher power but are often computationally prohibitive. In addition, a
majority of methods in both classes require a high-quality sequenced outgroup, which is unavailable for many
species of interest. Therefore, there is a need for a well-powered and widely-applicable statistical approach to
detect balancing selection. Theory suggests that long-term balancing selection will result in a genealogy with
very long internal branches. In this thesis, I show that this leads to a precise signature: an excess of genetic
variants at near identical allele frequencies to one another. We have developed novel summary statistics to
detect this signature of balancing selection, termed the β statistics. Using simulations, we show that these
statistics are not only computationally light but also have high power even if an outgroup is unavailable. We
have derived the variance of these statistics, allowing proper comparison of β values across sample sizes,
mutation rates, and allele frequencies - variables not fully accounted for by many previous methods. We
scanned the 1000 Genomes Project data with β to find balanced loci in humans. Here, I report multiple
balanced haplotypes that are strongly linked to both association signals for complex traits and regulatory
variants, indicating balancing selection may be affecting complex trait architecture. Due to their high power
and wide applicability, the β statistics enable evolutionary biologists to detect targets of balancing selection in
a range of species and with a degree of specificity previously unattainable.
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DETECTING ANCIENT BALANCING SELECTION: METHODS AND

APPLICATION TO HUMAN

Katherine M. Siewert

Benjamin F. Voight, Ph.D.

Balancing selection can maintain genetic variation in a population over long evolu-

tionary time periods. Identifying genomic loci under this type of selection not only

elucidates selective pressures and adaptations but can also help interpret common

genetic variation contributing to disease. Summary statistics which capture signa-

tures in the site frequency spectrum are frequently used to scan the genome to detect

loci showing evidence of balancing selection. However, these approaches have limited

power because they rely on imprecise signatures such as a general excess of heterozy-

gosity or number of genetic variants. A second class of statistics, based on likelihoods,

have higher power but are often computationally prohibitive. In addition, a majority

of methods in both classes require a high-quality sequenced outgroup, which is un-

available for many species of interest. Therefore, there is a need for a well-powered

and widely-applicable statistical approach to detect balancing selection. Theory sug-

gests that long-term balancing selection will result in a genealogy with very long

internal branches. In this thesis, I show that this leads to a precise signature: an

excess of genetic variants at near identical allele frequencies to one another. We have

developed novel summary statistics to detect this signature of balancing selection,

termed the β statistics. Using simulations, we show that these statistics are not only
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computationally light but also have high power even if an outgroup is unavailable. We

have derived the variance of these statistics, allowing proper comparison of β values

across sample sizes, mutation rates, and allele frequencies - variables not fully ac-

counted for by many previous methods. We scanned the 1000 Genomes Project data

with β to find balanced loci in humans. Here, I report multiple balanced haplotypes

that are strongly linked to both association signals for complex traits and regulatory

variants, indicating balancing selection may be affecting complex trait architecture.

Due to their high power and wide applicability, the β statistics enable evolutionary

biologists to detect targets of balancing selection in a range of species and with a

degree of specificity previously unattainable.
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Chapter 1

Introduction

Overdominance is “due to the occurrence of a rather special class of mutations and

gene combinations, which confer on heterozygotes a higher adaptive value... Although

overdominance is, by and large, an exceptional situation, it is of particular interest

to a student of population genetics”.

— Theodosius Dobzhansky, 1952
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1.1 A brief history of balancing selection

1.1.1 Development of the theory of overdominance as a source
of hybrid vigor

The concept of balancing selection arose from early discussions of hybrid vigor. This

phenomenon had been observed for centuries and has been of significant interest

due to its direct relevance to plant breeding (Crow, 1987). Indeed, it was noted by

Mendel, who observed that hybrid pea strains were larger and more vigorous than

parental strains (Mendel 1865). Charles Darwin also had an interest in the topic:

he wrote an entire book on inbreeding depression and hybrid vigor (Darwin, 1878).

Geneticists in the early 1900s, particularly George Shull and Edward East, suggested

that this hybrid vigor, or heterosis, was due to the increased diversity of alleles found

in an individual with higher heterozygosity. It was proposed that these alleles increase

fitness in a complementary fashion to one another (East, 1936; Shull, 1948). The term

overdominance was introduced by Fred Hull to refer to this phenomena. He defined

it as the situation in which the fitness of a heterozygote would be over the fitness

that would be observed if either allele was dominant (Hull, 1945, 1946). Although

overdominance fell out of favor as the reason for hybrid vigor (see section 1.4.1), it

continued to be of general interest as a possible selective force acting on genomes.
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1.1.2 Modern definitions of balancing selection

Throughout the next several decades, balancing selection became defined as natural

selection in which multiple alleles are maintained at a locus in a population (Levene,

1953). It can be due to overdominance as originally suggested, but further work

demonstrated that it can also be due to spatially, temporally, or negative-frequency

dependent selection. For instance, if multiple niches are present in an environment an

equilibrium can occur if alternate alleles are beneficial in the different niches (Levene,

1953; Haldane, J.B.S., Jayakar, 1963). Furthermore, if the fitness of an allele in a

population fluctuates with time, then under certain conditions, this can lead to long-

term maintenance of the alternately favored alleles (Hedrick et al., 1976). Finally, the

fitness of an allele may be inversely proportional to its frequency, which will cause

the frequency of the allele to increase until it is no longer favored and has therefore

reached its equilibrium frequency (Takahata and Nei, 1990).

1.1.3 Examples of balanced loci

Throughout the last century, there has been an interest in finding genomic loci that

have experienced balancing selection. There are several classic sites long proposed

to be under this type of selection. Perhaps the most famous is the Hemoglobin-β

locus. Homozygotes for the sickle-cell allele have sickle-cell anemia, homozygotes for

the other alleles have an increased risk of malaria, while heterozygotes have resistance

to malaria and at most have a mild case of sickle-cell (Luzzatto, 2012; Aidoo et al.,

3



2002). The major histocompatibility complex (MHC) region has also been long hy-

pothesized to be under selection for multiple reasons (Slade and McCallum, 1992).

The first is overdominance, as it could be advantageous for an immune system to be

able to respond to a wider diversity of pathogens. However, studies have shown that

the level of heterozygosity observed in the MHC in humans cannot be explained solely

by overdominance (De Boer et al., 2004). Frequency-dependent selection may be re-

sponsible for the additional signal of balancing selection in the MHC. The mechanism

for this type of selection would be that pathogens may not be adapted to overcome

rare human alleles that aid in resistance against them (Slade and McCallum, 1992).

There have also been a number of loci recently proposed to be under balancing selec-

tion with experimental or observational evidence (Schweizer et al., 2018; Sano et al.,

2018; Network, 2015; Wheat et al., 2010). One example is balancing selection on a

locus in North American wolves. Homozygotes and heterozygotes for the KB allele

have a black coat color, while homozygotes for the ky allele have a gray coat color

(Anderson et al., 2009). Interestingly, heterozygotes have the highest fitness in Yel-

lowstone populations, suggesting that coat color is not the only selective pressure

(Schweizer et al., 2018). Evidence suggests that overdominance may be acting at this

locus, possibly due to the K locus being involved with not only coat color, but also

immune response (Schweizer et al., 2018).

Another recently described example is spatially-dependent selection in a species of

extremophile cyanobacterium. A polymorphism which affects the function of hetero-

cysts, which are nitrogen-fixing cells, has been maintained for tens of millions of years

4



in this species (Fischerella thermalis) and has significantly different allele frequencies

between individuals living in two different temperatures. There is high gene flow

between the individuals living in the different temperatures, and very low population

differentiation elsewhere in the genome (Sano et al., 2018). This suggests that these

individuals are part of the same species and that this locus may be under long-term

spatially dependent selection due to adaptation to different temperature conditions.

1.2 The effect of balancing selection on coalescence

and patterns of variation

1.2.1 Effects of balancing selection on the coalescent process

Initially, a newly balanced allele will increase in frequency. This creates long haplo-

types of limited diversity, mimicking the effects of an incomplete positively selected

sweep (Charlesworth, 2006). The allele will then increase in frequency until it reaches

what is termed its equilibrium frequency – the frequency at which it is expected to

be maintained. This frequency is determined by the relative fitness of the different

genotypes. For instance, if the fitness of the two homozygote classes are equal, and

the fitness of the heterozygote is higher, then the equilibrium frequency will be 50%.

In the case of the sickle cell allele in populations in malaria-endemic regions, the

homozygotes for the sickle-cell alleles have much lower fitness than for the opposite

allele. This low fitness results in the allele frequency of the sickle-cell allele being

5



much lower than 50%. In malaria endemic regions estimates have found its frequency

to be no more than 18% in any population (Piel et al., 2010).

If the selective pressure is sustained, then balancing selection can maintain alleles in

populations for potentially very long time periods, given certain conditions. Specif-

ically, the selective coefficient must be high enough that the heterozygotes have a

significant fitness advantage over homozygotes (Robertson, 1962). In addition, the

equilibrium frequency must be of intermediate frequency (between about 20 and 80%)

(Takahata and Nei, 1990; Ewens and Thomson, 1970; Robertson, 1962), or genetic

drift will remove the variation after enough generations.

By maintaining polymorphism, balancing selection affects the structure of the coa-

lescent tree at the locus. Under neutrality, genetic drift will cause coalescence of all

lineages after a moderate amount of time. In contrast, neither allele can fix in the

population under balancing selection, so the time to most recent common ancestor

(TMRCA) will predate the start of balancing selection, making it potentially much

older than at a neutral locus (Fig. 1.1) (Kaplan et al., 1988). The genealogy of

each allelic class, defined as all haplotypes containing one of the two balanced alleles,

will be nearly identical to that of a neutral locus of sample size equal to the size of

the allelic class (Hey, 1991). The number of individuals in the two sub-trees is de-

termined by the equilibrium frequency. Although these characteristics will hold true

under all types of long-term balancing selection, the structure of the coalescent tree

under temporally-dependent selection may be more complex, due to the relative sizes

of the allelic classes varying throughout time.
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Figure 1.1: Balancing selection increases the time to most recent common ancestor
at a locus. Circles represent haploid individuals.

1.2.2 Effects of extended time to most recent common an-
cestor on the site frequency spectrum

The long time to most recent common ancestor at a locus under balancing selection

results in old haplotypes. Due to their age, these haplotypes have had time to accu-

mulate large numbers of mutations (Charlesworth 2006). More specifically, balanced

haplotypes will accumulate their own unique alleles, but these alleles are not allowed

to fix in the population because selection constrains the frequency of the haplotype

class in which they arose (Hey, 1991). This results in the classic signature of bal-

ancing selection: an excess number of intermediate frequency alleles and a deficit of

substitutions (i.e. genomic positions in which the allele in all ingroup individuals

differs from the outgroup individual) (Fig. 1.2) (Hudson et al., 1987; Tajima, 1989).

The effect of balancing selection on the coalescent process is analogous to a hap-
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Figure 1.2: Site frequency spectrum of derived alleles in balanced or neutral simula-
tions, with core variant removed. Substitutions, i.e. positions in which the derived
allele is fixed in the species under consideration, are displayed as SNPs of frequency
1.0. Window size is 500 base pairs on either side of the core site, with sample size
100 chromosomes. Based on simulations with an equilibrium frequency of 0.5.

loid two-island model (Hey, 1991). In this model, a population is split into two

isolated subpopulations. Mutations can arise on each island, but without migration

between the islands, the mutations will not reach the subpopulation on the other

island. Instead, these mutations build-up on the islands, causing an excess number

of intermediate frequency alleles when the sub-populations are combined into a site

frequency spectrum (Tajima, 1989). However, migration will allow alleles to transfer

between the two islands, reducing the number of unique alleles. Analogously, un-

der balancing selection, two haplotype classes are maintained in the population with

neither one allowed to fix due to selection. Mutations unique to each allelic class

will build-up throughout time. Eventually, recombination will occur, decoupling the
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mutations from the effects of selection (Hudson and Kaplan, 1988; Hey, 1991).

1.3 Detecting balancing selection: statistics and

scans

1.3.1 Motivation for detecting balancing selection

A number of fundamental questions in evolutionary biology can be addressed through

scans for natural selection. One key question is what selective pressures species have

experienced throughout their evolutionary history, and how they have adapted to

these pressures. If a balanced locus is detected in a scan for selection, then compu-

tational and/or experimental approaches may be used to figure out what phenotypes

the locus is associated with. In some cases, the causal selective pressures on the

locus can be inferred. This process has successfully uncovered multiple targets of

balancing selection and their associated phenotypes, as discussed in section 1.1.3,

though I note that only some of these began with a genome-wide scan for selection.

Scans for positive selection and follow-up have been more successful, possibly owing

to a larger history of methodological development for detecting positive selection.

Established sites under positive selection in humans with an established phenotype

include EDAR for hair follicle thickness (Kamberov et al., 2013), lactase persistence

(Bersaglieri et al., 2004; Tishkoff et al., 2007), alcohol dehydrogenase (Osier et al.,

1999; Whitfield, 2002), and selection on PDE10A for spleen size in sea nomads (Ilardo
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et al., 2018). These successes in scans for positive selection bode well for the goal of

detecting and explaining sties under balancing selection.

In fact, one advantage of detecting balancing selection is that it leaves a much nar-

rower footprint in the genome than does positive selection (Section 2.4). This results

in a smaller number of possible causal variants, making the identification of the true

causal variant easier. Despite this factor, the number of balanced loci in humans

with an established phenotype and/or selective pressure is very limited, motivating

the need research on balancing selection.

A second key question scans for selection can help answer is the impact different types

of selection have had on patterns of variation in species. This is discussed more in

section 1.4. In short, in order to identify the prevalence of balancing selection, we

must first develop a better understanding of its effects on genomic loci under this

type of selection.

In order to answer both these questions, a highly specific signature of balancing

selection, and a corresponding high-powered test for its detection, is needed.

1.3.2 Classic methods for detecting balancing selection based
on the site frequency spectrum

By scanning population-level sequencing data for the signatures of selection, loci

which have experienced long-term balancing selection can be detected. Current meth-
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ods of doing so calculate a statistic sensitive to the effects of balancing selection on

the site frequency spectrum in a sliding window across the genome.

Tajima’s D is one such statistic. It is the difference of two unbiased estimators

of the mutation rate. Intuitively, these estimators estimate the mutation rate by

counting the number of SNPs, using the intuition that a higher mutation rate will

result in a higher number of mutations in a window. Accordingly, estimators of

the mutation rate will be higher if there are more SNPs. The first estimator which

comprises Tajima’s D, θπ, estimates the mutation rate using heterozygosity. Because

the number of intermediate frequency mutations on old haplotypes is expected to be

higher than on newer haplotypes (Fig. 1.2), this estimator will increase in windows

which have experienced long-term balancing selection. The second estimator, θW ,

uses the total number of SNPs in a window to estimate the mutation rate. This

estimator is relatively insensitive to balancing selection and is used to correct for

the background mutation rate. Tajima’s D is the difference of these two estimators

divided by the standard deviation (Tajima, 1989):

D =
θπ − θW

V ar[θπ − θW ]
(1.3.1)

Therefore, values of D significantly above zero indicate potential long-term balancing

selection, while values close to zero indicate an absence of evidence of balancing

selection.

Another commonly used statistic, the Hudson-Kreitman-Aguad (HKA) test, does not
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look at allele frequencies, but instead compares only the number of polymorphisms

and the number of substitutions to their expected number under neutrality. By com-

bining these terms in a chi-squared statistic, significant deviation from neutrality can

be detected (Hudson et al., 1987). Specifically, a higher number of polymorphisms,

and a lower number of substitutions are expected under balancing selection, as pre-

viously discussed.

Several other statistical tests have also been used to detect these signatures of bal-

ancing selection. The Mann-Whitney U test can be used to detect an excess number

of intermediate-frequency alleles. This test can be used in combination with a mod-

ified HKA test, which detects an excess number of variants at a locus. The union

of these tests produced a set of loci with both higher-frequency SNPs and a higher

total number of SNPs than the background levels in the human genome, indicating

balancing selection (Andres et al., 2009).

1.3.3 Trans-species SNPs and haplotypes as a signature of
balancing selection

An orthogonal signature of balancing selection is shared SNPs or haplotypes between

multiple species. Trans-species haplotypes are defined as two or more variants that are

found in tight linkage disequilibrium and are shared between humans and a primate

outgroup (in our case, chimpanzee). If a neutral SNP was present in a common

ancestor to two species, under most conditions it is expected to have drifted out of
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the population in one or both species, leading to a substitution. In contrast, if the

SNP is under balancing selection in both species, it can be maintained from the time

it arose until present (Takahata, 1990; Takahata and Nei, 1990). This leads to the

segregation of both alleles in both species. Therefore, if two species share one SNP

(a trans-species SNP) or more than one SNP at a locus (a trans-species haplotype),

this indicates potential balancing selection.

The presence of trans-species SNPs may be due to recurrent mutations (i.e. the same

mutation occurs in both species independently), so are not a test for selection with

high specificity. In contrast, due to the very low probability of two recurrent muta-

tions occurring in high linkage disequilibrium under human and chimp demography

(Gao et al., 2014), trans-species haplotypes are a very specific signature of balanc-

ing selection in humans. Multiple studies have used human and chimp sequencing

data to detect these shared SNPs and haplotypes (Leffler et al., 2013; Teixeira et al.,

2015). These scans have identified a number of balanced loci potentially involved

in immunity, including loci involved with recognizing plasmodium falciparum (Leffler

et al., 2013) or a missense change in LAD1, an autoantigen which causes linear IgA

disease (Teixeira et al., 2015). In addition, the ABO blood group has been proposed

to be under long-term balancing selection in humans on the basis of trans-species

comparisons (Ségurel et al., 2012; Teixeira et al., 2015).
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1.3.4 Recent statistics to detect balancing selection: Com-
posite likelihood methods

An ideal statistic to detect balancing selection would be a full likelihood estimation of

a locus being under balancing selection as opposed to being neutral. Such a statistic

could be based on summary level information about the site frequency spectrum,

such as the probability of seeing a mutation at each frequency at each distance from

a balanced SNP. Alternatively, it could make use of individual-level genotype data,

calculating the likelihood of the observed haplotype structures at various distances

from the balanced SNP. These are in contrast to the early statistics designed to detect

balancing selection, which do not rely on likelihoods and instead use a summary

statistic to capture the general patterns caused by selection.

Recently, two composite likelihood methods were developed to detect balancing se-

lection (DeGiorgio et al., 2014) which utilize the site frequency spectrum. These

statistics are composite in that they consider each SNP independently of the other

SNPs at the locus. The Kaplan-Darden-Hudson model, which describes the genealogy

of a neutral SNP linked to a selected SNP (Kaplan et al., 1988; Hudson and Kaplan,

1988), is used to model the probability of seeing a segregating site or substitution

at each recombination-scaled distance from a balanced SNP. The background levels

of polymorphism and substitutions are used to generate the expected site frequency

spectrum near a SNP evolving neutrally. By comparing these two composite likeli-

hoods, a test for balancing selection, T1, is derived (DeGiorgio et al., 2014). The T1

statistic looks only at the presence of polymorphisms and substitutions but does not
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consider allele frequencies.

DeGiorgio et al. then derive the T2 statistic, which does take into account allele

frequencies (DeGiorgio et al., 2014). However, because the site frequency spectrum

under balancing selection is unknown, simulations are used to generate probabili-

ties of seeing SNPs at various frequencies. These simulations are performed under

specified parameter values, including a large range of equilibrium frequencies and

recombination rates. By using simulations matched for equilibrium frequency and re-

combination rate at a locus, these simulation-generated likelihoods are incorporated

into a composite likelihood framework.

1.3.5 Power and applicability of existing method for detect-
ing balancing selection

Using simulations, DeGiorgio et al. (2014) demonstrated that the power of their

T1 and T2 statistics are higher than the HKA test and Tajimas D. The power of

their T2 method is higher than T1, as would be expected because it considers allele

frequencies. However, T2 presents challenges in its applicability. Namely T2, like

the T1 and HKA test, requires an outgroup with which to call substitutions and

ancestral/derived allele states. In addition, prior to scanning the genome with the

T2 test, large numbers of simulations must be performed to generate expected site

frequency spectra. These simulations are computationally intensive, making wide

applicability of the T2 statistic difficult.
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In some cases, a sequenced individual from an outgroup species is unavailable, render-

ing all these summary statistics inapplicable except Tajima’s D. However, Tajima’s

D has the lowest power to detect balancing selection in the analysis of DeGiorgio

et al. (2014). Furthermore, calling trans-species SNPs and trans-species haplotypes

requires multiple outgroup individuals. This suggests the need for new methods to

detect selection which do not require an outgroup but have the high power of the T2

method.

1.3.6 Coalescent methods

Recent methods seek to directly estimate the time to most recent common ancestor

(TMRCA), as opposed to using summary statistics. These methods are based on the

pairwise sequentially Markovian coalescent (PSMC) method (Li and Durbin, 2011).

This method models coalescent times between two individuals at a locus along the

genome using a hidden Markov model, with the hidden state being the TMRCA, and

emissions being whether the two haploid individuals match (produce a homozygote)

or have different alleles (produce a heterozygote). Transitions between states are the

result of recombination. The longer the coalescence time between the individual, the

more time there has been for mutations to build-up between them. Therefore, the

number of heterozygote sites will be proportional to the TMRCA of the individuals

at the locus. Specifically, the number of SNPs occurring on a branch is exponentially

distributed with rate equal to the individual mutation rate multiplied by the branch
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lengths.

More recent methods have adapted the PSMC method to multiple genomes. One

such method, ARGweaver, was used to detect loci with extremely old TMRCAs,

indicative of balancing selection (Rasmussen et al., 2014). However, these methods

are computationally intensive, taking multiple days to weeks to estimate genome-

wide TMRCAs on a high-powered computer. Recent methods have continued to

improve on these methods, both in terms of speed and applicability, however, they

remain prohibitively computationally expensive for general use (Palamara et al., 2018;

Speidel et al., 2019).

1.4 Genome-wide impact of balancing selection

1.4.1 Debate on the importance of balancing selection to evo-
lution

Since its conception, there has been an unanswered question about prevalence of bal-

ancing selection in the evolutionary history of both humans and other species. In the

early to mid 1900s, there was a debate as to why the increased number of heterozy-

gotes seen in hybrid individuals increases vigor. Many argued it was due to there

being less recessive deleterious alleles in the homozygote state in hybrids, termed

the dominance hypothesis (Bruce, 1910). Others favored the idea that it was due to

overdominance, supported by the view at the time that there was a higher number of
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mutations in populations than would be expected, as would be expected due to long

term balancing selection (Crow, 1998). However, the overdominance explanation fell

out of favor, as it became clear that the mutation rate was higher than previously

thought and that some of the observed overdominance was due to deleterious reces-

sive alleles being linked to vigor-increasing dominant alleles (Moll et al., 1963). In

addition, experimental evidence showed that the dominance hypothesis better fit the

fitness patterns seen with various genetic crosses (Crow, 1998).

However, despite the general consensus that overdominance was not as widespread

as previously thought, the field still lacked an understanding of exactly how rare it

was. The availability of genome sequencing from humans and other primates allowed

a reconsideration of the debate decades later. An early scan for trans-SNPs using

expressed sequence tags and virtual transcripts found little evidence of trans-species

SNPs between human and chimpanzee (Asthana et al., 2005). A year later, a scan

for high polymorphism density found no loci showing significant evidence of ancient

balancing selection (Bubb et al., 2006).

However, more recent datasets, which contain whole-genome, high-quality genetic

variation data, enable a more comprehensive look into the prevalence of ancient

balancing selection. Multiple recent papers have looked for shared haplotypes be-

tween human and one or more primate outgroups and have found a number of shared

haplotypes. Leffler et al. (2013) found 125 shared haplotypes between human and

chimpanzee. A more recent paper looked for trans-species SNPs shared between hu-

mans, chimpanzees and bonobos and found 4 trans-species SNPs after performing
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very conservative filters (Teixeira et al., 2015)

These trans-species SNPs and haplotypes are potentially only a small number of the

total balanced loci in the genome. This is because for a balanced locus to be trans-

species, the balancing selection must predate speciation, and the balanced haplotypes

must not have drifted out of the population in either species, which could occur either

because of a change in selective pressures or demography encouraging loss of variation.

Therefore, the presence of trans-species SNPs and haplotypes in the genome indicate

that balancing selection may have played a larger role in the evolution of humans than

previously thought. However, the extent to which balancing selection has shaped

patterns of variation in humans remains an open debate (Hedrick, 2012; Key et al.,

2014).

1.4.2 Effects of balancing selection on the deleterious muta-
tion load

One might predict that deleterious mutation which occur in a species will be quickly

removed by purifying selection. Therefore the number of deleterious mutations should

be low, and any deleterious mutations that do segregate should be of recent origin and

at low frequency. In contrast to this expectation, it has been suggested that there is

an excess number of intermediate frequency deleterious mutations segregating in the

human genome, termed the deleterious mutation load (Henn et al., 2015). One reason

for this might be human demographic parameters which make purifying selection less
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effective (Keinan and Clark, 2012; Eyre-Walker and Keightley, 1999). However, there

is ongoing debate as to how much of the deleterious mutation load can be credited to

human demography (Do et al., 2015; Simons et al., 2014).

An alternative explanation for the deleterious mutation load in humans is balancing

selection, which can increase the deleterious mutation load via multiple mechanisms.

The first is that the deleterious mutation can be the direct target of balancing se-

lection, as is the case with the sickle cell allele at the human hemoglobin-β locus

(Allison, 1954). The second is that the deleterious mutation can be on the same

haplotype as the sweeping allele upon the start of balancing selection. The delete-

rious mutation will be swept up to intermediate frequency along with the balanced

haplotype and will be maintained in the population until being decoupled from the

balancing selection due to recombination. It has been proposed that this mechanism

is responsible for some fraction of the deleterious mutations in the MHC region (Lenz

et al., 2016). Therefore, if balancing selection is common throughout the genome, it

could be partly responsible for the deleterious mutation load in humans.

By increasing the number and frequency of deleterious variants, balancing selection

may raise the heritability of complex traits by increasing the variance in the trait

explained by genetics. This leads to the untested hypothesis that balanced loci may

have increased trait heritability. Furthermore, if this hypothesis is true, then balanced

loci should be prioritized in scans for disease-causing loci, as they have a higher

probability of causing disease a priori.
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1.5 Motivation for a new method for detecting an-

cient balancing selection

In summary, understanding where balancing selection has acted on the genome is

of interest for multiple reasons: (1) it can reveal selective pressures, (2) adaptations

to those pressures, (3) identify loci which may be influencing risk for disease and

(4) help explain the deleterious mutation load. However, high power and widely-

applicable methods for detecting balancing selection are critical to answer all four of

these questions. As discussed in section 1.3, prior to this thesis, methods to detect

this type of selection suffered from at least one of the following drawbacks: (1) They

were of lower power, (2) they required an outgroup sequence or (3) they were too

computationally intensive for wide applicability. It is the aim of this thesis to develop

a method without these shortcomings.
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Chapter 2

Detecting ancient balancing
selection using an excess of allele
frequency similarity

The results of this chapter are presented in:

Siewert, K.M. and Voight B.F. 2017. Detecting Long-Term Balancing Selection Using

Allele Frequency Correlation. Molecular Biology and Evolution, 34(11): 2996 3005.
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2.1 Effects of balancing selection on the site fre-

quency spectrum

2.1.1 A forward in time perspective

Consider a new neutral mutation that arises within an outcrossing, diploid population.

In a genomic region not experiencing selection, this mutation is expected to eventually

either drift out of the population, or become fixed (i.e., become a substitution).

However, if the SNP is under balancing selection, then the allele’s frequency can reach

no higher than the frequency of the balanced allele it arose in linkage with, assuming

no recombination. This is because the frequency is constrained by selection. Without

a recombination event and given enough time, variants that are fixed within these

allelic classes (defined by the selected variant) accumulate (Fig. 2.1). In addition

to this build-up of variants, there will be a corresponding reduction in the number

of substitutions, because the variants that may have fixed in the population without

balancing selection can instead reach a frequency no higher than that of the balanced

allele that they are linked to.

2.1.2 A coalescent perspective

As discussed prior (Section 1.2), balancing selection causes long internal branches on

a locus’s coalescent tree. These internal branches will be ancestral to all sampled

individuals in an allelic class, but not ancestral to individuals in the other allelic
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Figure 2.1: Model of allelic class build-up. (1) A new SNP (red star) arises in the
population and is subject to balancing selection. (2) It sweeps up to its equilibrium
frequency. (3) New SNPs enter the population linked to one of the two balanced alleles
and some drift up in frequency. However, unlike in the neutral case, their maximum
frequency is that of the balanced allele they are linked to, so variants build-up at this
frequency (e.g., blue diamond or brown circle). (4) Recombination decouples SNPs
(e.g., purple pentagon) from the balanced site, allowing them to experience further
genetic drift.

class. Therefore, mutations occurring on these branches will be fixed within their

allelic class (i.e. at the frequency of the balanced allele that they are linked to)

(Fig. 2.2). This contrasts with a tree representing a neutral locus, in which all

lineages will have coalesced more recently. Any mutations occurring on the tree after

(going backwards in time) this coalescent event will have occurred in an ancestor

to all individuals at this locus and will therefore be a substitution when the locus

is compared to an outgroup species. Therefore, once again, our model of balancing

selection predicts that under balancing selection there will be an excess number of

variants at identical frequency to the balanced alleles and a deficit of substitutions,

when compared to the neutral model.
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Figure 2.2: Long internal branches cause build-up of alleles at identical frequencies
under balancing selection. Branches are colored by allelic class, which here have
frequencies 3/5 (blue) and 2/5 (red).

2.1.3 Effects of recombination on the signature of balancing
selection

Eventually, recombination decouples variants from the balanced allele, which allows

them to drift to loss or fixation within the population (Fig. 2.1). However, even

after recombination, the frequency of the genetic variants previously fixed in their

allelic class will remain close to that of their previous class until enough time has

passed for genetic drift to significantly change their frequencies. In our simulations

of balancing selection, a window expected to have experienced recombination since

selection’s start still has an excess number of variants at similar frequencies to the

balanced variant. However, there is a smaller excess at identical frequencies relative

to the narrower window, demonstrating the effects of recombination (Fig. 2.3).
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Figure 2.3: Simulations demonstrate the build-up of alleles at frequencies similar to
balanced alleles as compared with selectively neutral counterparts. The 400 basepair
window is not expected to have experienced recombination between allelic classes
since the start of selection, whereas the 2000 basepair window is more likely to have.

2.2 The β(1) statistics for detecting balancing se-

lection

2.2.1 Framework for capturing excess allele frequency corre-
lation

To detect loci under ancient balancing selection we therefore want to develop a sum-

mary statistic which captures an excess number of SNPs at near identical frequencies

to one another. We will use several components to do this. The first is a measure

of allele frequency similarity. This allows one to weight SNP counts based on their

frequency similarity to a core SNP. Next, we incorporate this measure of similarity
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into an estimator of a mutation rate. Finally, we use this estimator in combination

with another estimator that measures the background mutation rate as our statistic.

In addition, we derive the variance of this statistic, so we can standardize it.

In this chapter I present two versions of this statistic. The first, the unfolded version,

takes into account the ancestral/derived state at each SNP. By doing so, it can give

more weight to SNPs of higher frequency, because they are less likely under neutrality.

The second version, the folded version, does not use allele ancestral/derived states.

Therefore, it is applicable even to species without a high-quality sequenced outgroup

species.

2.2.2 Capturing allele frequency correlation

To capture allele frequency correlation, we derive a measurement of frequency simi-

larity between a core variant and a second variant of interest. Let n be the number

of chromosomes sampled, f0 be frequency of the core SNP, fi be the frequency of the

second SNP, i, and p be the scaling constant. Finally, g(f) returns the folded allele

frequency and m is the maximum possible folded allele frequency difference between

the core SNP and SNP i, We then measure the similarity in frequency, di, by:

g(f) = min(f, n− f) (2.2.1)

m = max
(
g(f0),

n

2
− g(f0)

)
(2.2.2)

di =

(
1− |g(f0)− g(fi)|

m

)p
(2.2.3)
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Thus, g(f0)− g(fi) is the folded frequency difference between the core SNP and the

SNP under consideration. We then divide by m, the maximum folded frequency

difference possible with the core SNP, to get the percent of the maximum frequency

different the two SNPs have. We then take 1 minus the result to give a similarity

metric instead of a distance metric. We raise it to the power p so that we can weight

variants in a non-linear fashion with respect to this fraction. Therefore, di can range

from 0 if a SNP has the maximum frequency difference with the core SNP, to 1 if

SNP i is at the same frequency as the core SNP (Fig. 2.4). Guidance on the

choice of p is given in section 2.2.3. We use the folded site frequency spectrum in

calculating di, as the frequency difference between the core variant and the second

variant is independent of whether the derived or ancestral allele of the nearby allele

is in linkage with the derived or ancestral core allele.

In a region under long-term balancing selection, the average di between a core SNP

and the surrounding variants is expected to be elevated. However, di alone is not op-

timally powered to detect balancing selection, as its value will be sensitive to changes

in the mutation rate in the surrounding region, and it does not take into account the

probability of seeing each allele frequency under neutrality.

2.2.3 Choice of p parameter

The power of our method lies in capturing allele frequency correlations. The param-

eter p controls how similar of allele frequencies to the core site are captured. As p
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Figure 2.4: Absolute value of allele frequency similarity with core SNP (|g(f0)−g(fi)|)
versus allele frequency similarity (di) as used by the β statistics, by different values
of the p parameter. The grey and red lines represent the value of di at the given
frequency similarity, while the light red bars represent the number of SNPs at a given
frequency difference away from the core SNP in simulations of balancing selection,
based on the 2000 basepair window panel of Fig. 2.3.

approaches infinity, the only sites that contribute towards θB are those that exactly

match the frequency of the core SNP. At p = 0, all SNPs contribute the same amount

to the estimate of θ̂B, and so θ̂B becomes equivalent to θ̂w. Simulations show that

our method is fairly robust to choice of p (Fig. 2.5).

That said, the optimal p will depend on the data set at hand. If allele frequency

estimates are known to be inaccurate or sample sizes vary between SNPs, then a lower

p may be more optimal, because variants fixed in allelic class may not accurately be

called as being at identical frequency to the core SNP. In addition, by including SNPs

at very similar frequency to the core SNP in the calculation of θ̂B, SNPs that were

once fixed in class, but are no longer due to recombination followed by a small amount

of drift, are included. However, making p too low will result in the inclusion of allele

frequencies that are very different than the balanced allele’s frequency (Fig. 2.4).

29



0.0

0.2

0.4

0.6

0.8

1.0

.2
5

Older Selection Younger Selection

0.0

0.2

0.4

0.6

0.8

.5
0

0.000.010.020.030.04

0.0

0.2

0.4

0.6

0.8

.7
5

0.000.010.020.030.040.05

1

2

10

20

1000

False Positive Rate

T
ru
e
 P
o
sitiv

e
 R
a
te

Figure 2.5: Power of methods to detect ancient balancing selection using different
value of p parameter with Beta
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In this chapter, we chose a p = 20, which gives the most weight to exact frequency

matches, and a small amount of weight to very near, but not exact frequencies. If

varying sample sizes are used for each SNP, then a lower p value may be optimal

(Fig. 2.21).

2.2.4 Estimator of the mutation rate based on allele fre-
quency correlation

Derivation of Unfolded θB

Let n be the number of chromosomes sampled, di be the similarity measure and Si

be the number of variants at frequency i in the sample.

E[
n−1∑
i=1

idiSi] =
n−1∑
i=1

E[idiSi] (2.2.4)

=
n−1∑
i=1

idiE[Si] (2.2.5)

=
n−1∑
i=1

idi
1

i
θ (2.2.6)

θ̂β =

n−1∑
i=1

idiSi

n−1∑
i=1

di

(2.2.7)
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Derivation of Folded θB

E[
n−1∑
i=1

diSi] =
n−1∑
i=1

E[diSi] (2.2.8)

=
n−1∑
i=1

diE[Si] (2.2.9)

=
n−1∑
i=1

di
1

i
θ (2.2.10)

θ̂ =

n−1∑
i=1

diSi

n−1∑
i=1

di
1
i

(2.2.11)

Let g(x) be the folded frequency of a SNP of frequency x, Sg(x) be the number of

SNPs at that folded frequency, h = .5(n−1) and m = .5n. Folding the site frequency

spectrum, we obtain:

θ̂∗β =

∑m
i=1 diSg(i)∑m

i=1 di(
1
i

+ 1
n−i)

1
1+δi,n−i

(2.2.12)

2.2.5 A summary statistic to detect balancing selection based
on the site frequency spectrum

We propose a statistic, β, that uses our measure of allele frequency correlation, di,

incorporated in θβ, combined with a measure of the overall mutation rate, to detect

balancing selection. Our approach is inspired by previous summary statistics of the

site frequency spectrum (Tajima, 1989; Fay and Wu, 2000). These methods compute
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the difference between two estimators of θ, the population mutation rate parameter,

one of which is more sensitive to characteristics of the site frequency spectrum dis-

torted in the presence of natural selection. We propose to calculate β at each SNP

in a region of interest to identify loci in which there is an excess of variants near the

core SNP’s allele frequency, as evidence of balancing selection.

It has been previously shown that the mutation rate in a region can be estimated

as: θ̂i = Si ∗ i, where Si is the total number of derived variants found i times in the

window from a sample of n chromosomes in the population (Fu, 1995). An estimator

of θ can then be obtained by taking a weighted average of θi. In our method, we

weight by the similarity in allele frequency to the core SNP, as measured by di. If

there is an excess of variants at frequencies close to the core SNP allele frequency,

then our new estimator, θβ, will be elevated. We propose:

β(1) = θ̂β − θ̂w (2.2.13)

β(1)∗ = θ̂∗β − θ̂w (2.2.14)

θw is simply Watterson’s estimator (Watterson, 1975). β is, in effect, a weighted sum

of SNP counts based on their frequency similarity to the core SNP. We exclude the

core site from our estimation of θw and θβ.

Under neutrality, the expected value of β is zero, because it is a difference of two

unbiased estimators. In contrast, under balancing selection it is expected that there
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will be an excess number of SNPs at near identical frequencies to one another elevating

θβ substantially over the true mutation rate in the window, while θW will be elevated

only slightly. Therefore, values of β significantly above zero are suggestive of long-

term balancing selection.

2.2.6 Properties of β(1) in simulations

To better understand the properties of β, we used simulations (for details see section

2.5.1) to examine its distribution with and without a balanced SNP.

As expected, under long-term balancing selection β tends to be greater than 0, and

under neutrality it tends to be close, but slightly higher than, 0 (Fig. 2.6). Under

neutrality it is not exactly zero, because all the neutral windows β is actually calcu-

lated on will have at least one SNP, and the site frequency spectrum conditioned on

seeing a SNP of a certain frequency does not equal the unconditional site frequency

spectrum, as discussed in section 2.2.7 (Ferretti et al., 2018).

We note that the mean value of β in our neutral simulations generally increases

slightly with higher equilibrium frequencies. This behavior is expected because higher

frequency alleles will tend to have a longer TMRCA and therefore higher diversity.

The exception to this trend is neutral SNPs of frequency 0.5, which we posit is due

to the fact that this allele frequency requires the most time for mutations to drift up

to the equilibrium frequency needed to fix in their allelic class.
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Figure 2.6: Distribution of β(1) in 1kb windows around a core SNP at different equi-
librium frequencies. Based on simulations using default parameters. µ refers to the
mean value of β(1) in balanced or neutral simulations.

2.2.7 On the assumption of independence between basepairs

In our derivations of θ̂β we do not use the conditional site frequency spectrum. In

other words, the formula we use for the expected value and variance in SNP counts

does not take into account the frequency of the core site. However, the conditional

and unconditional SFS are unequal, as conditioning on the core SNP’s frequency gives

some knowledge about which underlying tree structures are most likely. Recently, two

papers deriving the moments of the conditional SFS were published (Ferretti et al.,

2018; Klassmann and Ferretti, 2018). We used these moments to derive a modified θ̂β

and θ̂W conditioned on the core SNP being at the observed frequency. However, doing

so decreased power (Fig. 2.7). We posit that this is because under the conditional

site frequency spectrum, the expected number of SNPs at identical frequency to the

35



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

β(1) Conditional β(1)

Figure 2.7: Power of β(1) statistic when derived using the unconditional site frequency
spectrum of Fu (1995) versus conditional of Ferretti et al. (2018).

core SNP is increased. Therefore, when an estimator of the mutation rate is derived

using this expected value, each SNP at that frequency is weighted less than if using

an unconditional site frequency spectrum. This behavior is opposite the ideal: we

want to give the most weight to SNPs at identical frequency to the core SNP, not

less. Therefore, the power of this statistic is reduced, so we use moments of the

unconditional site frequency spectrum to derive our β statistics and their variances.

2.3 Standardization of the β(1) statistics

We next derive the variance of our statistics, enabling normalization of β. This allows

β scores to be properly compared across a range of parameters which can affect its
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distribution, including population size, survey sample size, equilibrium frequencies,

and mutation rate. This is a feature lacking from other summary statistics, with the

exception of Tajima’s D (Tajima, 1989).

2.3.1 Variance of the unfolded β statistic

The V ar[θ̂β] can be obtained from the formula for variance of a general group of

estimators presented in (Achaz, 2009) for which θ̂β is a member. σ is defined in

Achaz (2009) and di is the measure of frequency similarity presented in section 2.2.2.

V ar[θ̂β] =
( n−1∑
i=1

di

)−2(
θ
( n−1∑
i=1

d2i i
)

+ θ2
( n−1∑
i=1

d2i i
2σii + 2

n−1∑
i=1

n−1∑
j=i+1

ijdidjσij

))

(2.3.1)

2.3.2 Variance of the folded β statistic

The formulation for β(1)∗ does not fall into the class of neutrality tests based on the

folded site frequency spectrum studied in Achaz (2009), because the folded frequency

of each SNP is not considered in our formulation. Therefore, we provide a derivation

below. φ and ρ are defined in Achaz (2009) and di is the measure of frequency sim-

ilarity. Sg(i) is the number of SNPs in the window of folded frequency g(i) and is

analogous to ηi in Achaz (2009). Set m = dn
2
e, where de denotes the ceiling. We refer

to the estimator of θ̂foldβ reported in Siewert and Voight (2017) as θ̂∗β. The variance
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of β(1)∗ is:

V ar[θ̂∗β − θ̂W ] = V ar[θ̂∗β] + V ar[θ̂W ]− 2Cov[θ̂∗β, θ̂W ] (2.3.2)

First, we derive the variance of θ̂∗β to be:

V ar[θ̂∗β] = V ar

[ ∑m
i=1 diSg(i)∑m

i=1 di(
1
i

+ 1
n−i)

1
1+δi,n−i

]

=

(
m∑
i=1

di

(1

i
+

1

n− i

) 1

1 + δi,n−i

)−2
V ar

[
m∑
i=1

diSg(i)

]

=

(
m∑
i=1

di

(1

i
+

1

n− i

) 1

1 + δi,n−i

)−2( m∑
i=1

V ar[diSg(i)] +
∑
i 6=j

Cov[diSg(i)djSg(j)]

)

=

(
m∑
i=1

di

(1

i
+

1

n− i

) 1

1 + δi,n−i

)−2( m∑
i=1

d2i (φiθ + ρiiθ
2) +

∑
i 6=j

didjρijθ
2

)

=

(
m∑
i=1

di

(1

i
+

1

n− i

) 1

1 + δi,n−i

)−2( m∑
i=1

d2i (φiθ + ρiiθ
2) + 2

∑
1≤i≤j≤m

didjρijθ
2

)

(2.3.3)

Next, the V ar[θ̂W ] is taken from Achaz (2009):

V ar[θ̂W ] =
( m∑
i=1

n

i(n− i)(1 + δi,n−i)

)−2(
θ
( m∑
i=1

( n

i(n− i)(1 + δi,n−i)

)2
φ−1i

)
+ θ2

( m∑
i=1

( n

i(n− i)(1 + δi,n−i)

)2
φ−2i ρii

+ 2
m∑
i=1

m∑
j=i+1

φ−1i φ−1j
n

i(n− i)(1 + δi,n−i)

n

j(n− j)(1 + δj,n−j)
ρij

))
(2.3.4)
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Finally, the covariance of θ̂∗β and θ̂W :

Cov[θ̂∗β, θ̂W ] = Cov

[ ∑m
i=1 diSg(i)∑m

i=1 di(
1
i

+ 1
n−i)

1
1+δi,n−i

,

∑m
i=1 Sg(i)∑m

i=1(
1
i

+ 1
n−i)

1
1+δi,n−i

]

=
1∑m

i=1 di(
1
i

+ 1
n−i)

1
1+δi,n−i

1∑m
i=1(

1
i

+ 1
n−i)

1
1+δi,n−i

Cov
[ m∑
i=1

diSg(i),

m∑
i=1

Sg(i)

]
=

1∑m
i=1 di(

1
i

+ 1
n−i)

1
1+δi,n−i

1∑m
i=1(

1
i

+ 1
n−i)

1
1+δi,n−i

m∑
i=1

m∑
j=1

diCov[Sg(i), Sg(i)]

=
1∑m

i=1 di(
1
i

+ 1
n−i)

1
1+δi,n−i

1∑m
i=1(

1
i

+ 1
n−i)

1
1+δi,n−i

m∑
i=1

m∑
j=1

diρijθ
2

(2.3.5)

2.3.3 Standardized β statistics

The standardized β(1) statistics are given by:

β
(1)
std =

β(1)√
V ar[β(1)]

=
θ̂β − θ̂W√
α∗nθ̂ + β∗nθ̂

2

(2.3.6)

β
(1)∗
std =

β(1)∗√
V ar[β(1)∗]

=
θ̂∗β − θ̂W√

V ar[θ̂∗β] + V ar[θ̂W ]− 2Cov[θ̂∗β, θ̂W ]
(2.3.7)
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2.4 Window size containing signature of balancing

selection

Although β can be calculated on any window size, previous work has suggested that

the effects of balancing selection are localized to a narrow region surrounding the

balanced site (Gao et al., 2014). Ultimately, the optimal window size depends on the

recombination rate, as it breaks up alleleic classes.

If one uses too small of window size, then some of the signal of alleleic-class build

up will be excluded from the statistic, reducing power. It too large of window size

is used, then noise from regions beyond those which provide any signal of selection

will decrease power. Optimally, we could calculate β on the window which has not

experienced much, if any, recombination between alleleic classes. According to our

model, this region will contain all variants fixed in alleleic class, and potentially some

variants which were once fixed in alleleic class but have drifted slightly in frequency

due to recombination beginning to decouple them from selection.

The probability of recombination between allelic classes is equal to the total coalescent

branch length in the allelic class multiplied by the probability of recombination onto

the other allelic class. Because we are detecting long-term selection, most of the

coalescent branch length will fall into the portion between coalescence within each

allelic class and coalescence of the two allelic classes. We can, therefore, put an upper

bound on the size of the ancestral region. The probability of any recombination event

occurring at a certain position at any time point in T generations is ρT, where ρ is the
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individual recombination rate. The probability of a recombination event occurring

between a chromosome from allelic class 1 and any chromosome from allelic class 2,

given that a recombination event occurs in a chromosome from class 1, is just the

frequency of allelic class 2. Similarly, the probability that if a recombination event

occurs in class 2, it is with any chromosome from class 1, is just the frequency of

allelic class 1. Let λ be the rate of observable recombination, in units of base pairs,

where p and q are the frequencies of the 2 allelic classes, which must sum to 1 by

definition.

λ = Tρp+ Tρq

λ = Tρ

The distribution of the length of the ancestral segments on either side of the balanced

loci is then exponential with rate parameter Tρ.

For our analysis of the 1000 Genomes Project, we are focusing on detecting events

that occurred after a split with chimpanzee, but that are old enough that our method

has power. Assuming a recombination rate of 2.5× 10−8 per individual per basepair

and a split time of 250, 000 generations prior with selection starting at this same

time, the 95th quantile on either side is then 479 basepairs. The most recent events

we can hope to detect are closer to 100, 000 generations prior to present, giving a 95th

quantile of 1198 bases on either side of the core SNP. Based on these estimates, we

chose to perform our analysis using a window size of 500 base pairs on either side of
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the core site, for a total size of 1kb. This matches the window size with optimal power

for each summary statistic in simulations with the recombination rate 2.5×10−8 (Fig.

2.8).

2.5 Power analysis

2.5.1 Simulations

We generated two sets of simulations: one without a balanced variant (the set we refer

to as our neutral simulations) and one with a balanced variant (balanced simulations)

using the forward genetic simulator SLiM 2 (Haller and Messer, 2017). In the second

set, a single balanced variant was introduced at the center of the simulated region

in the human population, either at the time of speciation (250,000 generations prior

to simulation ending), or 150,000 generations after speciation (100,000 generations

prior to simulation ending). The simulations then continued as normal, conditional

on maintenance of the balanced SNP in the population. If this balanced variant was

lost, the simulation restarted at the generation in which the balanced variant was

introduced. In the second (neutral) set, no balanced variant was introduced, so all

variants are selectively neutral.

Each balanced SNP had an overdominance coefficient h and selection coefficient s.

The fitness of the heterozygote is then 1+hs, and the fitness of the ancestral and
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Figure 2.8: Power to detect ancient balancing selection using different window sizes,
in units of base pairs, with an equilibrium frequency of 0.5.
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derived homozygotes are 1 and 1+s, respectively. We simulated two different s values:

10−2 (our default) and 10−4. We simulated six different equilibrium frequencies: 0.17,

0.25, 0.5, 0.75, 0.83, which correspond to h=0.25, 0.5, 100, 1.5, 1.25. Negative h

values were paired with negative s values.

2.5.2 Method of power comparison

After simulation completion, the frequency of each variant in the sampled individuals

was calculated. Our default sample size was 100 haploid individuals. Substitutions

were defined as any variant in which the allele from the chimpanzee chromosome was

not found in the sampled human individuals. For each set of balanced simulations, we

define the core SNP as the variant under balancing selection. For each set of balanced

simulations, we then found a corresponding set of core SNPs in our neutral simulations

which were within 10% of the equilibrium frequency of the balanced variants. We then

calculated the score for each statistic on these core variants. In this way, we have

statistic scores for the balanced variant from each balanced simulation replicate, and

a score for a neutral variant matched for similar frequency.

To calculate the power of each method, we compared the score of the balanced variant

in balanced simulations with the score of SNPs matched for equilibrium frequency

in neutral simulations. For each neutral simulation replicate, we randomly identified

one SNP in the simulated region at a frequency within 10 percent of the equilibrium

frequency of the corresponding simulations with a balanced SNP. Throughout our
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discussion of simulations, we refer to the number of the haploid genotypes, corre-

sponding to the total number of chromosomes, as the number of individuals. Power

calculations were performed with p=20 for β.

For T1 and T2, a number of informative sites of about 20, or 10 on either side of

the core site, achieved maximum power in simulations (Fig. 2.9). Furthermore,

this roughly matches the expected number of informative sites in a 1-kb region under

selection. Therefore, a window of 20 total informative sites is roughly equal to the

expected ancestral region size, which is roughly equal to the window at which all

these methods achieve optimal power. For this reason, we used a 1-kb window or 20

informative sites, as applicable, when calculating each statistic.

The T1 and T2 statistics require an estimate of divergence time with the outgroup

species and a summary of the background levels of polymorphisms and substitutions.

To generate these empirical genome-wide estimates, we pooled all of our neutral

simulation replicates for the appropriate parameter set, and then inputted these into

the functions provided by BALLET, the software package implementing the T1 and

T2 statistics (DeGiorgio et al., 2014).

To generate expectation and variance for the HKA test, we took 1kb regions from

each of our neutral simulations under the relevant parameter set. We then calculated

the mean and variance of the number of sites that are polymorphic in the human

simulated population, and of the average number of differences between a random

human individual and the chimp outgroup individual. Our HKA statistic was then
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Figure 2.9: Power to detect ancient balancing selection using different numbers of
informative sites. The number of sites corresponds to the number of sites on either
side of the core site.
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the sum of two chi-squared statistics: one corresponding to the number of human

polymorphisms, and one corresponding to the average number of human/chimp dif-

ferences.

For the mutation and recombination rate variation power analysis, we used the back-

ground files generated using the simulations based on our default rates. The reason

for this is to both check for over-fitting to these parameters and also to test for power

upon misspecification of population parameters.

2.5.3 Power comparison results

Compared to other summaries, β had the greatest performance across most parameter

combinations (Fig. 2.10). As expected, the β(1) statistics performs slightly worse

than T2 under many conditions. However, unlike T2, our method does not require

an outgroup sequence or grids of simulations which are computationally expensive.

We next investigated the power of β under more complex demographic scenarios

representative of recent human history (DeGiorgio et al., 2014). We found that β

performs well under bottleneck and expansion models. Under an expansion scenario,

the performance of all methods decreased (Fig. 2.11), consistent with results from

previous studies (DeGiorgio et al., 2014), possibly due to the larger population size

increasing the expected time until an allele can fix in its allelic class. The effect of a

population bottleneck on power was less drastic and led to a slight increase in power
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Figure 2.10: Power to detect ancient balancing selection under equilibrium demogra-
phy. Rows correspond to different equilibrium frequencies.
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Figure 2.11: Power of methods to detect ancient balancing selection under a model
of population expansion. In this demographic model, the human population expands
to Ne = 20, 000 at generation 302,000, then remains that size until sampling. Based
on rescaled simulations.

to detect more recent selection (Fig. 2.12).

Population substructure can confound scans for selection (Ingvarsson, 2004; Schierup

et al., 2000). To investigate the power of our method in these scenarios, we sim-

ulated two models of population substructure. First, we considered a model of two

completely subdivided populations. We pooled together 50 individuals from each sub-

population with which to perform the statistical calculations. In this case, the power

of all methods to detect balancing selection at equilibrium frequency 0.5 decreased
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Figure 2.12: Power of methods to detect ancient balancing selection under a model
of a population bottleneck. Based on rescaled simulations. In this scenario, human
population size drops to Ne = 5, 500 from generations 320,000 to 328,000, then returns
to Ne = 10, 000. Based on rescaled simulations.
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considerably (Fig. 2.13). This matches expectation, as this situation is expected to

drastically increase the number of variants at frequency 0.5.

Next, we considered a two-pulse model of ancient admixture. We selected this model

because of its approximation of Neanderthal admixture into human (Vernot and Akey,

2015), which may be thought to confound scans for selection in humans. Power with

Neanderthal admixture stayed roughly the same as without (Fig. 2.14). This is as

expected, as most haplotypes introduced through admixture are expected to be at

very low frequency so will not reach the frequency of the balanced SNPs or matched

neutral SNPs.
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Figure 2.13: Power of methods to detect ancient balancing selection under a model
of complete population subdivision. In this case, the human population is completely
divided into two subpopulations of equal size, Ne = 5000, at generation number
300,000, with no admixture between them. The subpopulations were then combined
to calculate allele frequencies. This represents an extreme case: there are expected
to be a large number of variants at frequency 0.5. In this analysis, we excluded sim-
ulation replicates in which the core SNP was not of frequency exactly 0.5, in order to
investigate the power at the exact frequency that variants are expected to accrue due
to population substructure. Balanced variants were of the ”older selection” category,
so were introduced at generation 100,000. For this analysis, we used the empirical
background files from the corresponding neutral simulations, but the estimated diver-
gence time from the simulations using our default rates. This is because the simple
divergence time estimator included in BALLET is not able to accurately infer diver-
gence times with the outgroup in the presence of significant population structure. We
note that Beta Folded and Unfolded perform nearly identical in this case. Based on
rescaled simulations.
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We next examined the power for all methods under models of variable mutation rates,

recombination rates, and sample sizes. As expected, the power of all methods was

positively correlated with mutation rate (Fig. 2.15, 2.16), and negatively correlated

with recombination rate (Fig. 2.17, 2.18). A higher mutation rate provides more

variants that can accumulate within an allelic class, whereas a lower recombination

rate causes longer haplotypes upon which mutations can accumulate.

β has reasonable power down to very small sample sizes, achieving near maximum

power with as few as 20 sampled chromosomes (Fig. 2.19, 2.20). In practice, the

sample size used to calculate the frequency of each variant may differ between variants.

We tested the power of β when the sample size of each variant is downsampled from

the original size of 100 by a random amount from 0 to 25 individuals. We found that

this decreases power very slightly, and that lower values of p perform better in this

scenario (Fig. 2.21).

Finally, power remained high under frequency-dependent selection (Fig. 2.22), and

when a lower selection coefficient was simulated (Fig. 2.23). This matches expec-

tation, as frequency-dependent selection is expected to maintain haplotypes in the

population for long time periods, causing allelic class build-up. A lower selective co-

efficient would be expected to lower the probability of maintenance of the balanced

allele in the population, but conditioned on this maintenance, should not affect power,

as we observed.

Simulations show that the power of the folded version of β is similar to the unfolded
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version at intermediate allele frequencies, but has reduced power at very high frequen-

cies (Fig. 2.10). However, even at these frequencies, it still outperforms Tajima’s

D, the only other statistic of those tested which does not require knowledge of the

ancestral state or an outgroup.
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Figure 2.14: Power to detect ancient balancing selection under admixture. Bal-
anced variants were introduced at generation 250,000. In this scenario, we simulated
Neanderthal admixture into Asian populations. Based on the demographic model
presented in Vernot and Akey (2015), we used a two pulse model, with a split from
the human lineage into Neanderthal at generation 315, 000 with an Ne of 1500. The
first pulse of Neanderthal admixture into human occurred from generations 347, 750
to 347, 780, with a migration rate of .00075. The second, weaker pulse occurred
from generation 347, 820 to 347, 850, with migration rate .0002. The human Ne and
chimpanzee remained our default.
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Figure 2.15: Power of methods with an increased mutation rate of 2.5× 10−7.
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Figure 2.16: Power of methods with a decreased mutation rate of 2.5×10−9. We note
that T1 and T2 perform poorly due to there not being 20 informative sites in the 10
kb simulated region, which results in an error.
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Figure 2.17: Power of methods with an increased recombination rate of 2.5× 10−7.
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Figure 2.18: Power of methods with a decreased recombination rate of 2.5× 10−9.
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Figure 2.19: Power of β at a 1 percent false positive rate to detect selection 100,000
generations old, by number of chromosomes sampled and at different equilibrium
frequencies (f).
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Figure 2.20: Power of β at a 1 percent false positive rate to detect selection 250,000
generations old, by number of chromosomes sampled and at different equilibrium
frequencies (f).
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Figure 2.21: Power of β(1) to detect balancing selection when SNP frequencies are cal-
culated using different numbers of individuals and different values of the p parameter.
In order to investigate the effects this has on power, we subsampled individuals from
our initial set of 100. For each SNP in each simulation replicate, we chose a number
uniformly, between 0 and 25, of individuals to remove. After these individuals were
removed the frequency was recalculated on the remaining individuals.
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Figure 2.22: Power of the β(1) statistic under a model of frequency-dependent selec-
tion. In this case, the fitness coefficient was .01 and the overdominance coefficient
was .05. The fitness of the derived allele was set to equal 1.5 minus the frequency of
the allele. This results in an equilibrium frequency of .5. The color corresponds to
age of selection, either 100,000 generations after the start of selection (older selection)
or 250,000 generations after the start(younger selection).
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Figure 2.23: Power of methods with a selective coefficient of 1 × 10−4 and over-
dominance coefficient of h = 100. We were only able to test power with h = 100,
because of the extremely high frequency at which the balanced allele was lost at other
equilibrium frequencies.
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Chapter 3

Application of β(1) to detect
balancing selection in humans

3.1 Overview of scan

We applied β(1) to population data obtained by the 1000 Genomes Project (Phase 3)

to detect signatures of balancing selection (The 1000 Genomes Consortium, 2015).

We calculated the value of β in 1kb windows around each SNP in all 26 popula-

tions, separately. We focused on regions that passed sequencing accessibility and

repeat filters (Section 3.2). β scores appeared well-calibrated and consistent across

populations (Fig. 3.1).

We defined extreme β scores as those in the top 1% in the population under consid-

eration (Section 3.2). We analyzed the autosomes and X-chromosome separately.
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Figure 3.1: Distribution of Beta in 4 representative populations. Beta scores binned
in units of 4.

Because our method is designed to detect ancient balancing selection, we focus on

signals of selection that predate the split of modern populations. For this reason, we

further filtered for loci that were top-scoring in at least half of the populations tested.

We focus on results of our unfolded β scan, however, we also scanned using the folded

β statistic to test for robustness of our top scoring sites.

We identified 8,702 autosomal, and 317 X-chromosomal, top-scoring variants that

were shared among at least half (≥ 13) of the 1000 Genomes populations. Together,

these variants comprise 2,453 distinct autosomal and 86 X-chromosomal loci, and

these signatures overlapped 692 autosomal and 29 X-chromosomal genes.
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3.2 Methods for 1000 Genomes Analysis

To apply our method to 1000 Genomes data, we first downloaded data for each of

the 26 populations in phase 3 of the project (obtained May 2nd, 2013). We then

calculated allele frequencies separately for each population, and calculated β in 1

kb sized windows centered around each SNP for each population. We filtered out

variants which did not have a folded frequency of at least 15% in a minimum of one

population. The purpose of the frequency filter is to prevent false positives: we were

unable to simulate balancing selection with a folded equilibrium frequency of less

than 15%, due to the high probability of one allele drifting out of the population, as

expected due to theory (Section 1.2.1). Therefore, variants with a high β score but

a folded frequency less than 15% have a high likelihood of being false positives.

Because poorly sequenced regions can artificially inflate the number of SNPs in a re-

gion, we then filtered out regions that contained one or more base pairs that were ruled

as poor quality in the 1000 Genomes phase 3 strict mask file. For further confirma-

tion that the signal was not a result of poor mapping quality, we overlapped SNPs of

interest with hg19 human RepeatMasker regions, downloaded from the UCSC Table

Browser on February 9th, 2017. We then removed all core SNPs from consideration

that were found within a repeat, similar to Bubb et al. (2006). We further removed

SNPs that were not of common frequency (at or above a folded frequency of 15%)

in at least one population. After filtering, there were 1,803,299 SNPs that remained.

We then found the top 1% of these high-quality SNPs in each population in our β
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scan.

Unknown paralogs or other technical artifacts could inflate the number of intermedi-

ate frequency alleles. Although the 1000 Genomes data provides strict quality filter

masks, we wanted to further verify that our haplotypes of interest in WFS1 and

CADM2 were not the result of obvious technical artifacts. In order to do this, we

used the –hardy flag in vcftools (Danecek et al., 2011), and investigated both the

one-tailed p-value for an excess of heterozygotes, and the two-tailed p-value, in our

4 representative populations (YRI: Yoruban from Africa, CEU: Utah Residents with

Northern and Western European Ancestry, CDX: Chinese Dai, and PJL: Punjabi).

All variants on these haplotypes had p-values above 1× 10−3.

The lowest autosomal significance cut-off of any population, ASW, corresponds to

a β score of 47.49. This score is in the top 0.05 percentile of core SNPs in neutral

simulations corresponding to an equilibrium frequency of 0.5 (Fig. S3).

To find top-scoring sites that are also GWAS hits, we obtained LD proxies in European

populations for our top-scoring SNPs, using a cut-off of r2 of 0.9, a maximum distance

of 50kb and a minimum minor allele frequency of 5%. We then overlapped these LD

proxies with GWAS hits obtained from the GWAS Catalog to get our final list of

putatively balanced GWAS hits (Welter et al., 2014) (Table 3.1). Gene names and

locations were downloaded from Ensembl BioMart on November 26th, 2016.

For our trSNP comparison, we used the Human/Chimp shared haplotypes from Leffler

et al. (2013). Using logistic regression, we then modeled the outcome of a SNP being

66



part of a trHap as dependent on the β Score and distance to nearest gene.

3.3 Characterization of signals

Trans-species haplotypes are highly unlikely to occur by chance, unlike trans-species

SNPs, which are expected to be observed in the genome due to recurrent mutations

(Gao et al., 2014). These haplotypes present a signature of balancing selection inde-

pendent from the signature captured by β. If β captures true signatures of balancing

selection, one would expect an enrichment of high β values at trans-species haplo-

types. We found that β was in fact predictive of trans-species haplotype status from

Leffler et al. (2013), even after including adjustments for the distance to the nearest

gene (P < 2 × 10−16) (Section 3.2). However, out of 125 trans-species haplotypes

from Leffler et al. (2013) only 6 are in the top percentile in the Yoruban (YRI) pop-

ulation. Although this represents an enrichment, it is perhaps lower than one would

expect. We hypothesize that this is due to the lower power of β in regions with a lower

effective mutation rate, as would be expected in regions of high selective constraint.

These regions of higher selective constraint are enriched for trans-species haplotypes

(Leffler et al., 2013), confounding this analysis.

Our scan identified several loci that have been previously implicated as putative tar-

gets of balancing selection. Several major signals occurred on chromosome 6 near the

HLA, a region long presumed to be subjected to balancing selection Hedrick (1998);
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Figure 3.2: Signal of balancing selection at CADM2. The signal of selection is located
in an intron of CADM2. (a) rs17518584 is the lead GWAS SNP for several intellectual
traits and is marked by the brown vertical dashed line. The purple dashed line marks
two regulatory variants found on the balanced haplotype. β scores were calculated
using a rolling average with windows of size 5 kb, including only SNPs at the same
frequency as the core SNP in the average. In addition, we show the allele frequen-
cies of the GWAS and a top-scoring β SNP in each representative population. (b)
Approximate haplotype lengths for each population.

Hughes and Nei (1988). In particular, we found a strong signal in the HLA at a locus

influencing response to Hepatitis B infection, rs3077 (Jiang et al., 2015; DeGiorgio

et al., 2014; Thursz et al., 1997). Several additional top sites in our scan matched

those from DeGiorgio et al. (2014). These include sites that tag phenotypic associ-

ations (Welter et al., 2014), such as MYRIP, involved with sleep-related phenotypes

(Gottlieb et al., 2007), and BICC1, associated with corneal astigmatism (Lopes et al.,

2013). We focus on two of our top-scoring regions, located in the CADM2 and WFS1

genes. In addition to passing the 1000 Genomes strict filter and the RepeatMasker

test, these haplotypes also passed Hardy-Weinberg filtering (Section 3.2).
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3.4 A signature of balancing selection at the CADM2

locus

One of our top-scoring regions fell within an intron of the cell adhesion molecule

2 gene, CADM2. This locus contains a haplotype with β scores falling in the top

0.25 percentile in 17 of the 1000 Genomes populations, and scoring in the top 0.75

percentile across all 26 populations (Fig. 3.2). This site was also a top scoring SNP

in the CEU population based on the T2 statistic (DeGiorgio et al., 2014). In our

scan using the folded β statistic, this haplotype contained top-scoring variants in 20

populations, indicating the result was not due to ancestral allele miscalling. In the

remaining six populations, the haplotype was at folded frequency 0.15 or lower, where

the folded version of β has significantly reduced power.

To elucidate the potential mechanisms contributing to the signal in this region, we

overlapped multiple genomic datasets to identify potential functional variants that

were tightly linked with our haplotype signature. First, one variant that perfectly

tags (EUR r2 = 1.0) our signature, rs17518584, has been genome-wide significantly

associated with cognitive functions, including information processing speed (Davies

et al., 2015; Ibrahim-Verbaas et al., 2016). Second, multiple variants in this region

co-localized (EUR r2 between 0.9 − 1 with rs17518584) with eQTLs of CADM2 in

numerous tissues (Lung, Adipose, Skeletal Muscle, Heart-Left Ventricle), though no-

tably not in brain (The GTEx Consortium, 2015). That said, several SNPs with

regulatory potential (RegulomeDB scores of 3a or higher) are also strongly tagged
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by our high-scoring haplotype (EUR r2 between 0.9 − 1.0 with rs17518584), which

include regions of open chromatin in Cerebellum and other cell types (Boyle et al.,

2012). Several SNPs on this haplotype, particularly rs1449378 and rs1449379, fall

in enhancers in several brain tissues, including the hippocampus (Ernst and Kellis,

2012; Boyle et al., 2012). Taken collectively, these data suggest that our haplotype

tags a region of regulatory potential that may influence the expression of CADM2,

and potentially implicates cognitive or neuronal phenotypes in the selective pressure

at this site.

rs4458523      G     T

rs13108780    G     A

YRI Freq      .29   .71

CEU Freq     .65   .35

CDX Freq    .17   .83

PJL Freq      .30   .70
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Figure 3.3: Signal of balancing selection at the WFS1 gene. (a) rs4458523 is the
lead GWAS SNP for diabetes, and is marked by the brown vertical dashed line. The
purple dashed line marks 5 regulatory variants found on the balanced haplotype. In
addition, we show the allele frequencies of the GWAS and a top-scoring β SNP in each
representative population. (b) Approximate haplotype lengths for each population.
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3.5 A signature of balancing selection near the di-

abetes associated locus, WFS1

We identified a novel region of interest within the intron of WFS1, a transmembrane

glycoprotein localized primarily to the endoplasmic reticulum (ER). WFS1 functions

in protein assembly (Takei et al., 2006) and is an important regulator of the unfolded

protein and ER Stress Response pathways (Fonseca et al., 2005). A haplotype in

this region (approximately 3.5 kb) contains approximately 26 variants, 3 of which are

in high-quality windows and are high-scoring β in all populations (Fig. 3.3). The

haplotype was also in the top 1 percentile in our folded β scan in 21 populations. In

the remaining 5 populations, this haplotype was at frequency 0.82 or higher, where

the folded version of β has significantly lower power than the unfolded version.

Our identified high-scoring haplotype tags several functional and phenotypic variant

associations. First, one variant that perfectly tags our signature (EUR r2 = 1.0),

rs4458523, has been previously associated with type 2 diabetes (Voight et al., 2010;

Mahajan et al., 2014). Second, multiple variants in this region are associated with

expression-level changes of WFS1 in numerous tissues (The GTEx Consortium, 2015);

these variants are strongly tagged by our high-scoring haplotype (EUR r2 between

0.85 − 0.9 with rs4458523). Finally, several SNPs with regulatory potential (Regu-

lomeDB scores of 2b or higher) are also strongly tagged by our high-scoring haplotype

(EUR r2 between 0.9−1.0 with rs4458523). Taken collectively, these data suggest that

our haplotype tags a region of strong regulatory potential that is likely to influence
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the expression of WFS1.

3.6 Discussion of top β loci

When overlapping our top β scores with lead GWAS SNPs from the GWAS catalog,

we discover over 50 potentially balanced loci that have phenotypic associations (Table

3.1). These include plausibly selected phenotypes, including asthma, schizophrenia

and age at menarche. However, more work is needed to discover how these loci may

be influencing these phenotypes. Furthermore, it is very difficult to know for sure

whether balancing selection has been acting at the putatively balanced loci, as any

statistic for balancing selection has a non-zero false positive rate. I also note that

GWAS results from one population may not be applicable to another (Martin et al.,

2017), adding further complexity.

Although it is impossible to know the true selective pressure underlying our high-

lighted loci, our results suggest that balancing selection could contribute to the ge-

netic architecture of complex traits in human populations. At the CADM2 locus,

functional genomics data suggests that our haplotype signature may connect to brain-

related biology. Intriguingly, a recent report also noted a strong signature of selection

at this locus in canine (Freedman et al., 2016), suggesting a possibility of conver-

gent evolution. That said, the phenotypes that have resulted in a historical fitness

trade-off at this locus are far from obvious.

72



Similarly, speculation on the potential phenotypes subject to balancing selection at

WFS1 should also be interpreted cautiously. It is known that autosomal recessive,

loss of function mutations in this gene cause Wolfram Syndrome. This gene is a

component of the unfolded protein response Fonseca et al. (2005) and is involved

with ER maintenance in pancreatic β-cells. Furthermore, deficiency of WFS1 results

in increased ER stress, impairment of cell cycle, and ultimately increased apoptosis

of beta-cells Yamada et al. (2006). These data would suggest that reduced expres-

sion of WFS1 would be diabetes risk increasing; however, eQTLs that co-localized

with the diabetes risk-increasing allele elevate expression, at least in non-pancreas

tissue, suggesting perhaps a more complex functional mechanism. Furthermore, how

the unfolded protein response could connect to historical balancing selection is also

not immediately obvious. One possibility derives from recent work suggesting that

these pathways respond not only to stimulus from nutrients or ER stress, but also to

pathogens Nakamura et al. (2010). This could suggest the possibility that expression

of WFS1 is optimized in part to respond to pathogen exposure at a population level.
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GWAS
SNP

Phenotype Reported
Gene(s)

Pubmed
ID

rs17110736 Dialysis-related mortality ABCA4 21546767
rs1478912 Response to taxane treatment RYR2 23006423
rs78037194 Schizophrenia NR 26198764
rs12120588 Urate levels in overweight individuals SPATA17 25811787
rs3771166 Asthma IL18R1 20860503
rs9807989 Asthma IL18R1 22561531
rs11568377 Systolic blood pressure in sickle cell anemia ABCB11 24058526
rs9287719 Prostate cancer NOL10 25217961
rs7577463 Schizophrenia NR 26198764
rs6599077 Sleep-related phenotypes MYRIP 17903308
rs9861887 Visceral/subcutaneous adipose tissue ratio CNTN6 22589738
rs17518584 Information processing speed CADM2 25869804
rs17518584 Cognitive function CADM2 25644384
rs1801214 Type 2 diabetes WFS1 20581827
rs11942476 IgG glycosylation NR 23382691
rs4458523 Type 2 diabetes WFS1 24509480
rs1967256 Response to antipsychotic treatment GPR98 20195266
rs3077 Hepatitis B HLA-DPA1 21750111
rs365302 Coronary heart disease FNDC1 21606135
rs10947262 Knee osteoarthritis HLA, BTNL2 20305777
rs3077 Hepatitis B (viral clearance) HLA-DPA1 22737229
rs10947261 Crohns disease HLA, BTNL2 23850713
rs3077 Chronic hepatitis B infection HLA-DP 23760081
rs12196860 Psychosis (atypical) COL21A1 24132900
rs10447419 PR interval intergenic 23534349
rs3077 Chronic hepatitis B infection HLA-DPA1 25802187
rs1747593 Sitting height ratio NR 25865494
rs2349775 Neuroticism NXPH1 18762592
rs7804356 Type 1 diabetes intergenic 19430480
rs10486158 Bipolar disorder and schizophrenia NR 20889312
rs10486483 Crohns disease intergenic 23128233
rs10486483 Crohns disease NR 26192919
rs10486483 Inflammatory bowel disease NR 26192919
rs2294008 Bladder cancer PSCA 19648920
rs2294008 Bladder cancer PSCA 20972438
rs2294008 Duodenal ulcer PSCA 22387998
rs7818688 Vincristine-induced peripheral neuropathy NDUFAF6 25710658
rs2294008 Gastric cancer PSCA 26098866
rs2294008 Gastric adenocarcinoma PSCA 26098866
rs7044529 Central corneal thickness COL5A1 20719862
rs1927702 Body mass index NR 19851299
rs7044529 Corneal structure COL5A1 23291589
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rs7084402 Refractive error BICC1 23396134
rs1658442 Corneal astigmatism NR 23322567
rs17134585 Blood metabolite ratios AKR1C4 24816252
rs1832007 Triglycerides AKR1C4 24097068
rs59132240 Ejection fraction in T. cruzi seropositivity NR 24324551
rs10846260 Bone mineral density and age at menarche DERA 26312577
rs1926657 Breast cancer ABCC4 17903305
rs6563739 Menarche (age at onset) COG6 25231870
rs6574644 Obesity-related traits STON2 23251661
rs17111396 Uric acid levels TSHR 21294900
rs607541 Obesity-related traits SQRDL 23251661
rs11071033 Menarche (age at onset) UNC13C 23599027
rs7165042 Myocardial infarction ADAMTS7 26343387
rs4468572 Coronary artery disease ADAMTS7 26343387
rs8070723 Parkinsons disease MAPT 21044948
rs8070723 Progressive supranuclear palsy MAPT 21685912
rs12185268 Parkinsons disease MAPT 21738487
rs9303525 Intracranial volume MAPT, GRN,

CRHR1, STH
22504418

rs12373124 Male-pattern baldness intergenic 22693459
rs892961 Airflow obstruction SEPT9 22837378
rs1864325 Bone mineral density MAPT 22504420
rs17577094 Parkinsons disease MAPT 24842889
rs17649553 Parkinsons disease MAPT 25064009
rs1981997 Interstitial lung disease MAPT 23583980
rs12185268 Corticobasal degeneration MAPT 26077951
rs8072451 Subcortical brain region volumes MAPT, GRN,

CRHR1, STH
25607358

rs17689882 Subcortical brain region volumes CRHR1 25607358
rs11876941 Body mass index (interaction) DCC 23192594
rs2281135 Liver enzyme levels PNPLA3,

SAMM50
18940312

rs2896019 Hematological, biochemical traits PARVB,
PNPLA3,
SAMM50

20139978

rs2896019 Non-alcoholic fatty liver disease PARVB,
PNPLA3,
SAMM50

23535911

Table 3.1: Lead SNPs from the GWAS catalog that are in high linkage disequilibrium
(r2 > 0.9) with a top β SNP.
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Chapter 4

Detecting ancient balancing
selection using substitutions

The results of this chapter are presented in:

Siewert, K. M. and Voight, B. F. 2018. BetaScan2: Standardized statistics to detect

balancing selection utilizing substitution data. bioRxiv : 497255.

The β(1) statistics use only polymorphism (i.e. within-species mutation) data to detect

selection. However, balancing selection also reduces the number of substitutions (see

section 1.2.2). This chapters details an addition to the β suite of statistics, β(2), which

looks not only at polymorphism data, but also substitution data. This statistic has

increased power over β(1) to detect balancing selection.
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4.1 Derivation of θ̂D and its variance

We first derive our estimator of the mutation rate based on the divergence between

two species, θ̂D. To measure divergence, we use the number of substitutions, which we

define as the nucleotide positions in which the outgroup individual is different than all

ingroup individuals. We note that this differs from the measure of between-species di-

vergence in the HKA test, which is instead the average number of differences between

a randomly selected ingroup and outgroup gamete (Hudson et al., 1987). We choose

this measure of divergence, because as noted in Hudson et al. (1987), it has slightly

lower variance than the one they used (albeit, a slightly more complex derivation).

We assume that there is a single outgroup individual and that the time since specia-

tion is sufficiently long that the ingroup coalescence occurred prior to coalescing with

the outgroup. Throughout our derivations, we assume Hardy-Weinberg equilibrium,

an infinite sites model, and no recombination. In practice, recombination will act

to decrease the variance, making our standardized β statistics conservative (Tajima,

1989).

We model divergence using the coalescence tree of the ingroup individuals and the

outgroup individuals (Fig. 4.1). This tree contains two parts that can contribute

to substitutions. Considering the tree backward in time, these parts are (i) after

the coalescence of the common ancestor of the ingroup and outgroup individuals and

(ii) after the coalescence within each species, but before coalescence between the two

species.
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Figure 4.1: The coalescent tree between two species can be broken up into three
segments. Here, mutations on the green segment result in polymorphisms, the orange
part results in substitutions and the purple part results in shared derived alleles
between the two species. t is the ingroup speciation time and T is the coalescence
time between the two species.

Expected number and variance of substitutions from part (ii), D(ii):

The number of substitutions in part (ii) of the tree is Poisson distributed, D(ii) ∼

Poisson(µL), where µ is the mutation rate and L is the branch length in part (ii).

The branch length is given by L ≈ 2T − t, where T is the coalescence time of the

ingroup and outgroup (i.e. speciation time), and t is the coalescence time of the

ingroup species. The expected value and variance of t is given in Tavaré (1984). Let

F be the Poisson distributed variable representing the number of mutations along

these branches, and G represent the height of the ingroup coalescence tree. Define

the surveyed size of sampled chromosomes to be n, the effective population size as

Ne, and θ = 4Neµ with µ as the usual mutation rate per base per generation. We

can derive the expected value and variance of D(ii) using the properties of compound

probability distributions, the theorem for moments of the height of a coalescent tree
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from Tavaré (1984) and the mean and variance of the Poisson distribution. First, we

find the expected value:

E[D(ii)] = EG[EF [D(ii)|L]]

= EG[µ(2T − t)]

= 2Tµ− EG[t]µ

= 2Tµ− 4Ne

(
1− 1

n

)
µ

= θ
( T

2Ne

− (1− 1

n
)
)

(4.1.1)

Next, we find the variance of D(ii), using the variance of t from Tavaré (1984):

V ar[D(ii)] = EG[V arF [D(ii)|L]] + V arG[EF [D(ii)|L]]

= EG[(2T − t)µ] + V arG[(2T − t)µ]

= 2Tµ− EG[t]µ+ V arG[2Tµ− tµ]

= 2Tµ− 4Ne(1−
1

n
)µ+ µ2V arG[t]

= 2Tµ− 4Neµ+
4Neµ

n
+ (4Neµ)2

( n∑
i=2

1

i2(i− 1)2

)
(4.1.2)

Expected number and variance of substitutions from part (i), D(i):

We obtain the expected number and variance of D(i) by noting that it is equivalent
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to the difference between two random gametes from Watterson (1975).

E[D(i)] = θ (4.1.3)

V ar[D(i)] = θ + θ2 (4.1.4)

Expected number and variance of substitutions from whole tree:

We denote the total number of substitutions as D = D(i) +D(ii). From Eqs. (1) and

(3) above, the expected value is then given by:

E[D] = E[D(i)] + E[D(ii)]

= θ + θ
( T

2Ne

− (1− 1

n
)
)

= θ
( T

2Ne

+
1

n

) (4.1.5)

Because the coalescent process in part (i) is independent of the coalescence process

in part (ii), we can simply add variances from Eqs. (2) and (4) above to obtain:

V ar[D] = V ar[Di] + V ar[Dii]

= θ + θ2 + 2Tµ− 4Neµ+
4Neµ

n
+ (4Neµ)2(

n∑
i=2

1

i2(i− 1)2
)

= θ2 +
Tθ

2Ne

+
θ

n
+ θ2

n∑
i=2

1

i2(i− 1)2

(4.1.6)

We note that our results for the mean and variance of D are simplified forms of equa-

tions 29C and 31C from Hey (1991) when taking the large T limit.
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Solving for θ in Eq. 4.1.5 we obtain θ̂D:

θ̂D =
D

T
2Ne

+ 1
n

(4.1.7)

The variance of θ̂D is then:

V ar[θ̂D] = V ar

[
D

T
2Ne

+ 1
n

]
=

(
1

T
2Ne

+ 1
n

)2

V ar[D]

=

(
1

T
2Ne

+ 1
n

)2(
θ2 +

Tθ

2Ne

+
θ

n
+ θ2

n∑
i=2

1

i2(i− 1)2

) (4.1.8)

This leads to:

β
(2)
std =

β(2)√
V ar[β(2)]

=
θ̂β − θ̂D√

V ar[θ̂β] + V ar[θ̂D]
(4.1.9)

where T is the estimated speciation time in generations, Ne is the estimated effective

population size of the ingroup species, and θ̂ is the estimated mutation rate. For

simplicity, we assume that Cov[θ̂β, θ̂D]=0. This assumption results in a slight un-

derestimate of the variance of β(2), as would be expected due to the small negative
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Figure 4.2: Distribution of each θ estimator on simulated 100kb windows with no
selection or recombination and equilibrium demography. Core frequencies were chosen
to be 0.5, regardless of whether a SNP of that frequency was found in the window.
Mean (µ) and standard deviation (σ) are displayed, with the first number being the
sample value, and the second being the theoretical value.

covariance between the ingroup coalescence time and the number of substitutions.

However, under an equilibrium model (constant population size), the expected val-

ues and variances of θβ,θW and θD fit those seen in simulations, confirming these

derivations as sounds approximations. Furthermore, the mean of each β statistic is

approximately zero, as would be expected, and the variance is extremely close to what

would be expected. (Fig. 4.2, 4.3).

4.2 Estimation of the speciation time

The variance of β(2) is also dependent on the speciation time (in coalescent units, i.e.

units of 2Ne). The speciation time can be obtained from prior demographic analyses

of the species of interests, or by estimating it from the data at hand. The software
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Figure 4.3: Distribution of each β statistic on simulated 100kb windows with no
selection or recombination and equilibrium demography. Core frequencies were chosen
to be 0.5, regardless of whether a SNP of that frequency was found in the window.
Mean (µ) and standard deviation (σ) are displayed, with the first number being the
sample value, and the second being the theoretical value.

presented in DeGiorgio et al. (2014) implements an estimator of divergence based on

the site frequency spectrum and the number of substitutions, which we recommend

when prior estimates of speciation time are not available. However, the power of β is

very robust to choice of T (Fig. 4.4).
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Figure 4.4: Power of β(2) and β
(2)
std when the speciation time parameter is correctly

specified as 250,000 generations prior to sampling versus when it is underestimated by
100,000 generations. An equilibrium frequency of 50% and a selection age of 250,000
generations prior to sampling were used.

4.3 Power analysis

4.3.1 Power analysis of β(2) and standardized β statistics

The power analyses in chapter 2 focus on the β(1) statistics. In order to evaluate the

power of β(2), we repeated these analyses. We find that β(2) has higher power than

either β(1) statistic, demonstrating that substitution counts provide additional signal

over polymorphism data (Figs. 4.5a, 4.6, 4.7). When there is mutation rate vari-

ation across simulations, we find that standardization improves power (Fig. 4.5b).
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Figure 4.5: Power of β statistics at (A) different equilibrium frequencies and (B) with
mutation rate variation, where one half of neutral and balanced simulation replicates
had a mutation rate of 2.5×10−8 (our default rate), and the remaining half had a rate
of 1.25× 10−8. (C) Power of β(2) compared to other methods for detecting balancing
selection. An equilibrium frequency of 50% was used for (B) and (C). The values
of each statistic were compared between simulations containing only neutral variants
(True Negatives) or with a balanced variant (True Positives).

Next, we compare power to alternative methods: NCD2 (Bitarello et al., 2018),

NCDmid (Cheng and DeGiorgio, 2018), T1 and T2 (DeGiorgio et al., 2014), Tajima’s

D (Tajima, 1989) and the HKA test (Hudson et al., 1987). When there is mutation

rate variation, we find that β
(2)
std performs the strongest (Fig. 4.5c). However, T2, a

method that relies on grids of simulations to generate composite likelihoods, performs

best when the mutation rate is stable and the parameters underlying the simulations

for T2 match the selection scenario, as is the case with the older balancing selection

category. When there is a mismatch between these, the power of T2 is reduced, and

β starts to outperform (Figs. 4.6, 4.7). Our results were not biased by window size

(Fig. 4.8). As discussed below, the relative performance of these methods stayed

consistent using both power analysis paradigms that have been used in the literature

(Figs. 4.6, 4.7).
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Figure 4.6: Power of methods to detect long-term balancing selection. Power was
calculated based on simulation replicates containing only neutral variants (True Neg-
atives) or containing a balanced variant that was introduced (True Positives). The
score of the balanced SNP was used for each statistic, as was the score of a SNP from
the neutral simulations matched for frequency. Rows correspond to simulations of
balanced alleles at equilibrium frequencies 0.25, 0.50, and 0.75. Columns correspond
to older and more recent selection, beginning 250,000 and 100,000 generations prior to
sampling, respectively. The black line goes from the origin to a true and false positive
rate of one, and would correspond to a method with no discriminatory power.
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Figure 4.7: Power of methods to detect ancient balancing selection without matching
for allele frequency. Power was calculated based on simulation replicates containing
only neutral variants (True Negatives) or containing a balanced variant that was in-
troduced (True Positives). The maximum value of each statistic in each simulated
10kb window was used. Rows correspond to simulations of balanced alleles at equilib-
rium frequencies 0.25, 0.50, and 0.75. Columns correspond to older and more recent
selection, beginning 250,000 and 100,000 generations prior to sampling, respectively.
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Figure 4.8: Power of the NCD2 statistic using different window sizes and minimum
number of informative sites (SNPs plus substitutions). Here, we show that the 1kb
window we used for NCD2 is optimal for power. In addition, Bitarello et al. (2018)
suggested that NCD2 may require a minimum of 5 or 10 informative sites for maxi-
mum power. We show that when using an optimal window size, no minimum is needed
under our simulation parameters. For each row, any windows with less than the given
number of informative sites were called as neutral. Units are in base pairs. An equi-
librium frequency of 50% was used. Columns correspond to older and more recent
selection, beginning 250,000 and 100,000 generations prior to sampling, respectively.

4.3.2 Techniques for power comparison

Two techniques for power analysis have been used in the literature. We use both, and

show that the relative performance of the various methods remains roughly consistent
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across comparison methods.

I Single target frequency. This power comparison method answers the question

“How well do the methods distinguish between a balanced SNP at a certain

frequency and a neutral SNP of a similar frequency?”

To perform this power analysis, we directly scored the simulated balanced SNP

for each statistic. We note that the balanced SNPs are usually not at exactly

the equilibrium frequency, due to genetic drift and sub-sampling of individuals,

but most are within 10% of the equilibrium frequency (data not shown). For this

reason, for the neutral scores, we found a SNP in each neutral simulation replicate

within frequency 10% of the equilibrium frequency of the balanced SNPs, and

used its score. If there was not a SNP within frequency 10%, we did not use

that simulation replicate in that power analysis. In this way, all methods are

testing for allelic class build-up at approximately one frequency. Instead of using

the frequency of the core SNP, the NCD2 statistic requires the user to specify a

target frequency (Cheng and DeGiorgio, 2018)(Bitarello et al., 2018). We used

a value equal to the expected equilibrium frequency in the balanced simulations,

which represents the best case for NCD. This power comparison method was

used for all figures except (Fig. 4.7).

II Multiple target frequencies. This power comparison method answers the question

“How well do the methods distinguish between a window with a balanced SNP

and any window without a balanced SNP?”
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The maximum value of each statistic is used in each simulated balanced and

neutral window. However, the values of NCD2 calculated using different target

frequencies are not comparable. To address this issue, Cheng and DeGiorgio

(2018) developed NCDmid, which calculates a modified NCD2 value using a grid

of target frequencies. We compare the power of NCD using NCDmid for this

comparison type. This power comparison method was used for Fig. 4.7).

4.3.3 Comparison with prior power analyses.

In both Fig. 4.6 and Fig. 4.7, our results coincide with those of Cheng and

DeGiorgio (2018) in that T2 outperforms NCD2 or NCDmid. However Cheng and

DeGiorgio (2018) did not compare the power of β, as they were focused on methods to

detect selection shared between multiple species, for which β is not especially tailored.

The performance of the β, T1, and T2 statistics relative to NCD2 deviate from that

found in Bitarello et al. (2018). This is due to two differences between our power

analysis methods. The first, as pointed out in Cheng and DeGiorgio (2018), is that

100, not 10, informative sites were used to calculate T1 and T2 in Bitarello et al.

(2018), reducing the power of T1 and T2. Like in Cheng and DeGiorgio (2018), we

used 10 informative sites so the window sizes for all statistics are as equivalent as

possible.

Secondly, in Bitarello et al. (2018), the value of NCD2 used to calculate power is based

90



on a single core/target SNP frequency. In contrast, the T and β values that were used

were the maximum T or β score across all SNPs in the window. Because T2 and β

adapts to use the frequency of each SNP it is calculated on, this is equivalent to using

power comparison method (I) for NCD2, but power comparison method (II) for the

other statistics. This increases the number of core SNP frequencies that the β and T

statistics must test, and therefore artificially increase the false positive rate relative to

NCD2. When we use the same power comparison method for all statistics, whether

it be using a single target/core frequency or all allele frequencies in the simulated

window, we find that T2 and the β statistics tend to perform the strongest (Fig.

4.6, Fig. 4.7). T2 uses simulated site frequency spectra under balancing selection

and neutrality. When the computational power, outgroup sequence and knowledge

of demographic parameters exist to perform these simulations, our findings suggest

that T2 may be the ideal statistic to use, while the β statistics may be best to use

otherwise.

4.3.4 Comparison of β(2) and NCD2 statistics.

The NCD2 statistic measures the average frequency difference between SNPs in a

window and a target frequency, with substitutions considered as SNPs of frequency

0.

NCD(tf) =

√∑n
i=1(pi − tf)2

n
(4.3.1)
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where pi is the allele frequency of the ith of n SNPs in a window. The target frequency

is analogous to the core SNP frequency from β or T1/T2. However, NCD requires this

parameter to be set by the user, unlike with β or T1/T2, which use the frequency of

the SNP at the center of each window as the target/core SNP frequency. The reason

for this is that the expected value of NCD is not constant across target frequencies,

so NCD scores can only be compared to scores using the same target frequency.

NCD2 and β(2) are similar in their approach, in that they both explicitly capture

excessive allele frequency correlation. We posit that the relative strength of β(2)

compared to NCD2 is due to several factors. The first is that by using a difference

of two unbiased estimators of the mutation rate, β(2) has a constant expected value

(zero), whereas the expected value of NCD2 varies with target frequency (Bitarello

et al., 2018). This enables β values to be compared across different allele frequencies,

so that it can use the exact frequency of the core SNP, instead of having to use the

same target frequency across all SNPs.

Secondly, instead of taking the square of the average frequency difference between

each SNP and the target frequency, β is a function of the sum of the frequency

similarity. This means that SNPs at large frequency differences away from the core

site frequency have very little effect on β. In contrast, for NCD, these SNPs factor

into the average and add noise. For instance, NCD with a target frequency of 50

will return the same value if there is a window with ten SNPs at frequency 50%

and ten singletons as it will in a window with two SNPs at frequency 50% and two

singletons. In contrast, the β score will be nearly five times higher in the first case
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than the second as there is a five times stronger signal of allelic class build-up. In

addition, rare variant calls are often problematic in real data and are not indicative

of the presence or absence of balancing selection, so an ideal statistic would not be

influenced by their presence.

Thirdly, because it does not take into account speciation time like T2 or β(2) does, the

distribution of NCD2 is heavily dependent on speciation time. Too long of speciation

time would increase the number of substitutions considerably and could dwarf a signal

in the polymorphism portion of the spectrum.

Lastly, NCD2 considers substitutions to be SNPs of frequency zero, which can cause

a false signal of excessive allele frequency correlation when trying to detect balanc-

ing selection at extreme equilibrium frequencies (Cheng and DeGiorgio, 2018). We

instead consider them in a separate estimator, θ̂D.

4.4 Estimation of the background mutation rate

Calculating the variance of each β statistic requires knowledge of the underlying

mutation rate. We recommend estimating this from the data. Several estimators of

the mutation rate may be appropriate. If sequencing errors are expected to be rare,

then Watterson’s estimator is a good choice, as it has very low variance. However,

in practice rare variants can be prone to false or missing calls. In situations like

this, estimators which ignore rare variation may be a better choice. Achaz (2008)
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proposed an estimator similar to Watterson’s estimator which uses the number of

segregating sites, singletons excluded, to estimate the mutation rate: θ̂S−ξ1
=

S−ξ1

an−1 ,

where S−ξ1 is the number of segregating sites excluding singletons and an =
∑n

i=1
1

n−1 .

Achaz (2008) introduces a similar estimator which excludes singletons for when only

a folded site frequency spectrum is available. One of these two estimators are more

appropriate in case where singletons are prone to false positive or missing calls (e.g.,

elevated error rates from technology or low-pass sequencing coverage).

The mutation rate can either be estimated at a genome-wide level or for individual

loci. Estimating at a locus-by-locus level allows the variance to reflect changes in

mutability or background selection. However, doing so can also increase the variance

of the mutation rate estimator, as the size of window used to estimate the mutation

rate will be smaller. If too small of a window is used, the variance of the denominator

of the standardized statistics may swamp signals of selection from the numerator,

decreasing power. In practice, we recommend using the largest window you think

still reflects local changes in mutation rate that will be important. Using simulations

of human parameters, we find that Watterson’s theta on 1kb windows surrounding

the core SNP does a poor job of estimating the background mutation rate (data not

shown), while 10kb windows do significantly better (Fig. 4.9).
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Figure 4.9: Power of β statistics when the background mutation rate is estimated
using a 10kb window centered at the core SNP (µ̂) versus using the true mutation
rate. A mutation rate of 2.5× 10−8, an equilibrium frequency of 50% and a selection
age of 250,000 generations prior to sampling was used.
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Chapter 5

Conclusions and future directions

5.1 The β statistic in perspective

Here, I have described our new suite of methods for detecting balancing selection:

the β statistics. It is my hope that due to their power and flexibility, others will find

the β statistics useful. To this aim, I have implemented these statistics into a toolkit,

and provided an extensive user manual, to allow others to scan the genome of their

species of interest: https://github.com/ksiewert/BetaScan. This toolkit is also quick

– calculating β on an entire chromosome takes less than a minute.

The β statistics are the first of a new class of summary statistics to detect balancing

selection using a more precise signature of balancing selection than Tajima’s D: an

excess number of SNPs at near-identical frequencies to the balanced alleles. It is
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illustrative to compare the power of T2 and β(2). The T2 statistic of DeGiorgio et al.

(2014) uses a simulated site frequency spectrum to generate a composite likelihood

of seeing a SNP of a given frequency at each distance from a balanced SNP, condi-

tioned on the balanced SNP being at the observed equilibrium frequency. Prior to

the β statistics, T2 had significantly higher power than any other method to detect

balancing selection. The similarity in power between T2 and the β statistics indicate

the signature explicitly captured by the β statistics may encompass most of the the

signature which T2 implicitly captures using simulated site frequency spectra.

The closest classic method to β in both statistical structure and signature captured

is Tajima’s D (Tajima, 1989). Both statistics look for an excess of SNPs around a

given frequency, and use a difference between an estimator sensitive to this excess and

Watterson’s θ to detect selection. In the case of Tajima’s D, an excess of SNPs near

frequency 50% is measured, as this is when heterozygosity, and therefore θπ, is highest.

If the equilibrium frequency of the balanced allele is close to 50%, then Tajima’s D

has power closer to T2 or the β statistics. However, if the equilibrium frequency is at a

more extreme frequency, the power of Tajima’sD suffers, as SNPs fixed in alleleic class

will not result in as high of heterozygosity as if they were at frequency 50%. Unlike

Tajima’s D, the β statistics utilize the observed SNP frequencies to adjust which

frequencies should be tested for an excess of in order to detect balancing selection,

increasing power.

Furthermore, Tajima’s D does not use an explicit similarity function, although it in

effect weights SNPs an amount proportional to the square of their similarity to 50%.
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In contrast, β weights SNPs an amount proportion to the power p (which would be the

square if p = 2) of their fraction of maximum possible allele frequency similarity to the

core SNP. The higher power of β(1)∗ over Tajima’s D even at equilibrium frequency

50% indicates that this similarity function used by β more precisely captures the

shape of the peak in the site frequency spectrum caused by balancing selection than

heterozygosity does.

5.2 Potential improvements to the β statistics

Many possible improvements to this class of statistics are possible. For instance, β

currently uses a fixed window size around each core SNP. However, it may be possible

to infer the optimal window size from looking at patterns of linkage disequilibrium

at the locus. The optimal window would contain the balanced haplotype, but would

not extend past it. However, this potential future direction has the downside that it

would likely have increased run-time and memory usage, as it would require looking at

individual-level sequence data and making inferences about the length of haplotypes

from that data. In this way, it would lose some of the advantages of summary statistics

and approach coalescent estimators in its complexity.

An additional increase in power could result from a method which does not use the

same allele frequency correlation function across all SNPs in a window. For instance,

SNPs closest to the core SNP are more likely to have not experienced recombination
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between them and the core SNP, and therefore are more likely to be at exactly the core

SNP frequency. Therefore, a larger value of the p parameter may be more suitable. A

better theoretical understanding of the signature of balancing selection could inform

a more optimally designed measure of allele frequency similarity. Along the same

lines, additional theoretical development on the signature of balancing selection with

recombination could inform how allele frequency similarity is expected to change

across distances from the balanced SNP.

A promising class of methods for detecting selection are coalescent estimators (see

section 1.3.6). Currently, it is difficult to apply these methods to data or to compare

their power to existing methods, because of high computational cost. However, as

methods to estimate coalescent times improve, they may become a standard approach

to detect selection.

5.3 Large-scale effects of balancing selection on

the genome: future avenues for exploration

In this thesis, I describe only the application of β(1) to detect selection in humans.

However, the power of β(1) is decreased in regions of low mutation rate or higher

background selection. Therefore, it is of lower power in regions with the highest

probability of containing functional mutations which may be balanced. βstd allows

one to scan the genome in a manner less affected by mutation rate. A scan using a

standardized β statistic would allow a better characterization of the effects of balanc-

99



ing selection genome-wide. I would expect that such a scan would find a much higher

overlap between top β SNPs and trans-species SNPs, and also a stronger enrichment

for top β scores near genes.

However, a key challenge of quantifying the effects of balancing selection genome-

wide remains that the null distribution of any statistic we use to detect selection is

unknown under human demography. Therefore, the appropriate significance threshold

and corresponding false discovery rate is unknown, making it difficult to measure how

common ancient balancing selection has been in the evolutionary history of a species

of interest. Simulations may be performed to generate an empirical p-value threshold,

however if these simulations do not accurately model demography, they may do a poor

job generating a simulated null distribution.

Perhaps an approach similar to the one taken to measure the genome-wide effects

of positive selection could be taken. To overcome this challenge when investigating

the frequency of positive selection, evidence for correlations between signatures of

positive selection, such as population differentiation or haplotype length, and func-

tional annotations, such as distance to nearest gene or PolyPhen annotation have

been quantified (Hernandez et al., 2011; Enard et al., 2014). If positive selection is

indeed prevalent throughout evolution, then you would expect correlation between

these features. A similar approach could be taken for balancing selection. Key to this

analysis would be a well-powered statistic for detecting the signature of balancing

selection. In addition, these statistics must not be confounded by factors such as

mutation rate, which could induce spurious correlation between features. For this
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reason, statistics with known variance, such as β, may be a good choice.

From revealing selective pressures and resulting adaptations, to increasing our un-

derstanding of the mutation load, future research on balancing selection promises to

increase our understanding of evolution and genetic architecture. The βstd statistics

presented in this thesis enable researchers to better answer these questions through

high powered detection of balancing selection.
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