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The Effect Of Abstinence From Smoking On Stress Reactivity

Abstract
Subjective stress is a well-documented predictor of early smoking relapse, yet our understanding of stress and
tobacco use is limited by the reliability of current available measures of stress. Functional magnetic reasoning
imaging (fMRI) could provide a much-needed objective measure of stress reactivity. The goal of this
dissertation is to contribute to the understanding of abstinence-induced changes in stress reactivity by
examining neural, neuroendocrine (cortisol), and subjective measures of stress response during abstinence. In
addition, this study investigated the influence of individual variation in nicotine metabolism rates on these
measures of stress reactivity. Seventy-five treatment-seeking smokers underwent blood oxygen level
dependent (BOLD) fMRI during the Montreal Imaging Stress Task (MIST) on two occasions: once during
smoking satiety and once following biochemically confirmed 24-hour abstinence (order counter-balanced).
The primary outcome measure was brain response during stress (vs. control) blocks of the MIST. Neural
stress reactivity during abstinence (vs. satiety) was associated with significantly increased activation in the left
inferior frontal gyrus (IFG), a brain region previously associated with inhibitory control. Greater abstinence-
induced change in brain response to stress was associated with greater abstinence-induced change in
subjective stress. However, there was no association with abstinence-induced change in cortisol response. In
addition, higher rates of nicotine metabolism were associated with increased abstinence-induced change in
self-reported stress, but not with brain or cortisol response. This study provides novel evidence that the brain
response to stress is altered during the first 24 hours of a quit attempt compared to smoking satiety. These
results underscore the importance of stress response during abstinence, and suggest that neuroimaging may
provide a useful biomarker of stress response during the early smoking cessation, a period when smokers are
most vulnerable to relapse.
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ABSTRACT 
 

THE EFFECT OF ABSTINENCE FROM SMOKING ON STRESS REACTIVITY  

Cheyenne E. Allenby 

Dr. Caryn Lerman 

Subjective stress is a well-documented predictor of early smoking relapse, yet our 

understanding of stress and tobacco use is limited by the reliability of current available 

measures of stress. Functional magnetic reasoning imaging (fMRI) could provide a much-

needed objective measure of stress reactivity. The goal of this dissertation is to contribute 

to the understanding of abstinence-induced changes in stress reactivity by examining 

neural, neuroendocrine (cortisol), and subjective measures of stress response during 

abstinence. In addition, this study investigated the influence of individual variation in 

nicotine metabolism rates on these measures of stress reactivity. Seventy-five treatment-

seeking smokers underwent blood oxygen level dependent (BOLD) fMRI during the 

Montreal Imaging Stress Task (MIST) on two occasions: once during smoking satiety and 

once following biochemically confirmed 24-hour abstinence (order counter-balanced). The 

primary outcome measure was brain response during stress (vs. control) blocks of the 

MIST. Neural stress reactivity during abstinence (vs. satiety) was associated with 

significantly increased activation in the left inferior frontal gyrus (IFG), a brain region 

previously associated with inhibitory control. Greater abstinence-induced change in brain 

response to stress was associated with greater abstinence-induced change in subjective 

stress. However, there was no association with abstinence-induced change in cortisol 

response. In addition, higher rates of nicotine metabolism were associated with increased 

abstinence-induced change in self-reported stress, but not with brain or cortisol response. 

This study provides novel evidence that the brain response to stress is altered during the 
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first 24 hours of a quit attempt compared to smoking satiety. These results underscore the 

importance of stress response during abstinence, and suggest that neuroimaging may 

provide a useful biomarker of stress response during the early smoking cessation, a period 

when smokers are most vulnerable to relapse. 
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CHAPTER 1: INTRODUCTION 

 

I. Nicotine Dependence 

Smoking is responsible for over six million deaths worldwide each year and is the leading 

cause of preventable death and disease (Hughes, Keely, & Naud, 2004; WHO, 2013). 

Most smokers relapse within days or weeks after a quit attempt (Hughes et al., 2004; 

Piasecki, 2006; Schnoll & Lerman, 2006). Perceived stress or exposure to stressful life 

events in proximity to a quit attempt are linked with relapse (A. M. Allen et al., 2018; Cohen 

& Lichtenstein, 1990). In human laboratory studies, acute stress challenges after varying 

lengths of abstinence lead to increases in cigarette cravings, smoking frequency and 

smoking intensity (Buchmann et al., 2010; McKee et al., 2011).  

The rewarding and reinforcing properties of cigarettes are produced by nicotine, which 

binds to nicotinic acetylcholine receptors (nAChRs) to stimulate dopamine release in the 

mesolimbic dopaminergic system (Corrigall, Franklin, Coen, & Clarke, 1992). In addition 

to activating reward circuitry, nicotine activates overlapping stress regulation pathways 

such as the hypothalamic-pituitary-adrenal (HPA) axis (Sinha, 2007). Chronic nicotine 

exposure leads to neuroadaptations in the mesocorticolimbic system and HPA axis that 

may contribute to nicotine withdrawal symptoms such as increased irritability, cognitive 

deficits, increased stress reactivity, and cigarette craving (De Biasi & Dani, 2011; G. Koob 

& Kreek, 2007; Richards et al., 2011). In addition, withdrawal symptoms vary by individual 

differences such as nicotine dependence level and rate of nicotine metabolism (measured 

by nicotine metabolite ratio [NMR]) (Baker et al., 2012; Lerman et al., 2006). Importantly, 

the severity of withdrawal symptoms may contribute to relapse (S. S. Allen, Bade, 

Hatsukami, & Center, 2008; Piasecki, Jorenby, Smith, Fiore, & Baker, 2003). Although the  
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subjective effects of nicotine withdrawal are well-documented, the neurobiological 

mechanisms underlying these effects are not as well understood. Effects of nicotine 

withdrawal on stress reactivity may be of particular importance in light of research showing 

that up to 62% of smokers attribute their inability to stop smoking to stress (Hughes, 2009). 

Greater insight into the neurobiological basis of stress reactivity during withdrawal could 

provide new targets for smoking cessation treatments to reduce withdrawal symptoms and 

improve quit rates. 

II. Stress Reactivity  

HPA Axis Response 

Psychological stress occurs when the demands of a particular event are perceived to be 

beyond an individual’s resources (Lazarus, 1992). Meta-analysis has revealed that 

characteristics associated with induction of psychological stress include social evaluation, 

lack of controllability, and an atmosphere of high achievement (Dickerson & Kemeny, 

2004). Psychological stress response is largely mediated by the HPA axis and 

characterized by the secretion of cortisol (for an in-depth review, see (Smith & Vale, 2006). 

The HPA axis is triggered by corticotrophin releasing hormone (CRH) in the 

paraventricular nucleus that causes the release of adrenocorticotropic hormone (ACTH) 

from the pituitary. In turn, cortisol is released from the adrenal cortex and binds to 

mineralocorticoid and glucocorticoid receptors. These receptors maintain glucocorticoid 

levels and regulate HPA axis activity via a negative feedback loop. In response to HPA 

axis activation, limbic and hypothalamic brain structures coordinate inputs ranging from 

emotional and cognitive to neuroendocrine and automatic to determine an individual’s 

neural, neuroendocrine, and subjective response to an acute stressor (Lucassen et al., 
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2014). Chronic activation of the HPA axis has severe consequences on the structure and 

function of the limbic system in coordinating the stress response, and may attenuate 

sensitivity of the HPA axis to acute stressors.  

Neural Response 

Neuroimaging studies have begun to elucidate the effects of psychological stress on 

neural activity (Dedovic, Duchesne, Andrews, Engert, & Pruessner, 2009; Dedovic et al., 

2005). However, these studies are limited in comparability due to differences in 

experimental paradigm; the involvement of neural circuitry in stress regulation is largely 

dependent on the type of stressor utilized (Dedovic et al., 2005). For example, script driven 

stress stimuli have been found to increase brain activation in the medial PFC, ACC, PCC, 

bilateral basal ganglia, thalamus, and hippocampus (Sinha et al., 2005). A mental 

arithmetic task including negative psychosocial feedback is associated with increased 

activation in the medial PFC, cingulum, occipital cortex and premotor area, but decreased 

activation of the limbic system (e.g. the medio-orbitofrontal cortex [OFC], ACC, and 

hippocampus) (Dedovic et al., 2005). Nonetheless, consistencies in studies measuring 

neural and cortisol response to psychological stress implicate several regions’ 

involvement in stress response. For example, activation of the OFC and medial PFC in 

response to a stressor has been found to negatively correlate with cortisol secretion (Kern 

et al., 2008; Pruessner et al., 2008; Wang et al., 2005). Association of activity in these 

regions with emotional regulation and integration of sensory information via connections 

to the limbic system supports the role of these regions in stress reactivity. In addition, 

deactivation of the hippocampus in healthy individuals is associated with an increase in 

cortisol (Pruessner et al., 2008). Because of the role of the hippocampus in inhibition of 

HPA axis activity, it is proposed that deactivation of the hippocampus allows for a stress 
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response (Pruessner et al., 2008). Lastly, it is proposed that the stress response may be 

modulated by the ventrolateral PFC and ACC (Pruessner et al., 2008; Wang et al., 2005). 

Activation of the ventrolateral PFC is associated with executive processes such as active 

selection and processing information (Petrides, 2005) and is inversely associated with 

cortisol release (Taylor et al., 2008; Wang et al., 2005). Activation of the ventrolateral PFC 

may act to counteract the activity in the orbital and medial PFC related to stress 

processing, given the extensive connections between the ventromedial PFC and 

hippocampus (Marsh, Blair, Jones, Soliman, & Blair, 2009). In addition, while the pattern 

of activity in the ACC varies widely across studies, the ACC is involved in error monitoring 

and regulating adaptive behaviors, and thus may be involved in error processing for 

different types of stress tasks (Bush, Luu, & Posner, 2000).  

Overall, these results have led to the idea that neural response to stress occurs in a 

hierarchical process (Herman et al., 2003). During stress, orchestration of the brain’s 

response pattern switches from slow and thoughtful regulation by frontal brain regions, 

such as the PFC, to rapid, emotional response of the amygdala and related cortical 

structures. Under conditions of stress in healthy individuals, the amygdala activates stress 

pathways in the hypothalamus and brainstem leading to the release of noradrenaline and 

dopamine in the HPA axis. Also, PFC activity is hindered and cognitive functioning is 

impaired. As a result, salience of the stimulus captures attention in a manner less 

regulated by higher order cognitive regions. Therefore, brain regions involving attention 

regulation are of particular importance in stress reactivity. Although neuroimaging 

research has made significant progress in understand neural circuitry that contributes to 

stress reactivity, further research is needed. In particular, larger studies utilizing well-

validated stress induction paradigms are needed to gain a deeper understanding of stress 
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reactivity, especially in clinical populations such as smokers where stress reactivity is 

perturbed. 

III. Effects of Nicotine on Stress Reactivity 

Stress is considered to be a primary mechanism in promoting smoking behavior and 

stressful events often precede relapse (G. F. Koob & Le Moal, 2005; Shiffman & Waters, 

2004; Sinha, 2007). Stress has been shown to increase craving and desire for cigarettes 

as well as frequency and intensity of smoking (Buchmann et al., 2010; McKee et al., 2011; 

Perkins & Grobe, 1992). Acute nicotine administration modulates secretion of cortisol by 

binding to nAChRs in the HPA axis (Matta, Fu, Valentine, & Sharp, 1998). In 

neurobiological models of addiction, chronic substance use is associated with increased 

recruitment of brain stress circuits (G. F. Koob & Le Moal, 2008). Because of the 

importance of stress circuitry in addiction, it has been a research priority to characterize 

stress reactivity in smokers by measuring cortisol response to an acute stressor.  

Investigations of stress reactivity in nicotine dependence have observed that chronic 

nicotine use results in altered HPA axis activity. Chronic cigarette smokers have increased 

resting salivary cortisol concentrations compared to non-smokers, and basal levels of 

salivary cortisol are markedly decreased after 12-20 hours of abstinence (Badrick, 

Kirschbaum, & Kumari, 2007; Kirschbaum, Wust, & Strasburger, 1992; Wong, Pickworth, 

Waters, al'Absi, & Leventhal, 2014). In addition, smokers show an abnormal cortisol 

response to acute stress compared to non-smokers. Specifically, studies have found that 

chronic smokers demonstrate an attenuated cortisol response to stressful tasks such as 

public speaking and mental arithmetic tasks (al'Absi, Nakajima, Allen, Lemieux, & 

Hatsukami, 2015; al'Absi, Wittmers, Erickson, Hatsukami, & Crouse, 2003; Buchmann et 



6 
 

al., 2010; Childs & de Wit, 2009). Although it is clear that stress reactivity is altered in 

smokers, mechanisms underlying this phenomenon are not well understood. 

Characterizing neural and endocrine responses during acute abstinence is important 

because smokers are particularly vulnerable to relapse during this time (Chandra, 

Shiffman, Scharf, Dang, & Shadel, 2007); therefore, biological changes underlying altered 

stress responses may present potential targets for reducing risk of relapse.  

IV. Smoking Abstinence and Stress Reactivity  

Studies examining response to an acute stressor during abstinence have shown 

conflicting results. Some studies report heightened stress responses to acute 

psychosocial stressors, such as increased cardiovascular and neuroendocrine output 

(McKee et al., 2011; Vanderkaay & Patterson, 2006; Wardle, Munafo, & de Wit, 2011). 

Others have observed blunted cortisol responses to stress during abstinence compared 

to smoking satiety (al'Absi et al., 2003; Robinson & Cinciripini, 2006). For example, a study 

conducted by Wardle et al. demonstrated an increase in cortisol in abstinent smokers 

compared to satiated smokers following the Trier Social Stress Task (Wardle et al., 2011). 

However, al’Absi et al. found no significant differences in cortisol between the smoking 

conditions following a public speaking stressor paradigm (al'Absi et al., 2003; Wardle et 

al., 2011). In a separate study by McKee and colleagues, abstinent smokers exposed to 

a stress imagery script showed significantly increased ACTH concentration, negative 

emotions, cigarette craving, and sympathetic response compared to when they listened 

to a neutral imagery script (McKee et al., 2011). In addition, higher cortisol and ACTH 

concentrations were associated with reduced ability to resist smoking following the stress 

condition, but these responses were not compared to satiated smokers (McKee et al., 

2011). In contrast, another study demonstrated that attenuated cortisol response to a 
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public speaking stress task during abstinence (vs. satiety) predicted increased 

vulnerability to smoking relapse (al'Absi, Hatsukami, & Davis, 2005). Differences in 

outcomes between studies may be due to differences in stress induction paradigms, 

duration of abstinence, and differences in physiological measurements of stress response. 

It is possible that use of an objective measure of stress reactivity such as fMRI may provide 

additional insight into the effects of stress during abstinence. For example, the Montreal 

Imaging Stress Task (MIST) is a well-validated standardized stress provocation procedure 

that allows for measurement of stress reactivity utilizing fMRI (Dedovic et al., 2005). We 

will utilize the MIST in smokers to study effects of abstinence on brain response to stress.  

V. Challenges in Measuring Stress Reactivity  

Despite the consistently observed links between stress and smoking behavior, results of 

prior studies are bound by a few limitations. First, there is no accepted gold standard for 

the measurement of subjective stress (Hovsepian et al., 2015). Accuracy of self-reported 

measures is limited by social desirability bias (Mauss & Robinson, 2009) as well as 

introspection during the task (Wilson & Schooler, 1991). Second, subjective measures of 

stress exhibit modest or inconsistent associations with objective measures of biological 

stress response, such as cortisol, in healthy populations (Campbell & Ehlert, 2012) and in 

smokers (al'Absi, 2006; Ashare, Weinberger, McKee, & Sullivan, 2011; Dagher, 

Tannenbaum, Hayashi, Pruessner, & McBride, 2009; McKee et al., 2011). Cortisol 

response is variable due to circadian fluctuations which can mask the effects of acute 

stress (Krieger, Allen, Rizzo, & Krieger, 1971), and even well-validated stress induction 

paradigms may fail to induce a cortisol response in healthy individuals (McKee et al., 2011; 

Wheelock et al., 2016). Third, in smokers, stress reactivity as measured by cortisol 

response may be blunted (al'Absi et al., 2003; Buchmann et al., 2010; Wardle et al., 2011), 
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and effects of abstinence from smoking on stress-induced cortisol response are 

inconsistent across studies (al'Absi, 2006; al'Absi, Amunrud, & Wittmers, 2002; al'Absi et 

al., 2003; Wardle et al., 2011). To optimize stress reduction interventions for smoking 

cessation, there is a need to deepen our understanding of how early abstinence may alter 

both objective and subjective stress responses.  

Within-subject study designs that directly compare abstinence and smoking satiety can 

provide greater insight into abstinence-induced changes in neural reactivity to smoking 

cues and working memory-related brain activity that may underlie relapse (C. Allenby et 

al., 2019; Falcone et al., 2015; Loughead et al., 2015). Because stress is a significant 

contributor to relapse, studies have begun to characterize neural stress reactivity utilizing 

fMRI. Psychosocial stressors such as the MIST have shown that stress alters activation 

in the hippocampus, amygdala, hypothalamus, and medial OFC in healthy subjects 

(Dedovic et al., 2005; Dedovic, Rexroth, et al., 2009; Pruessner et al., 2008). Similar 

responses to psychosocial stress are seen in smokers during satiety (Dagher et al., 2009). 

Preliminary data from our lab suggest that brain responses during stress are increased 

the early abstinence period compared to during satiety in brain regions that are known to 

be involved in stress response, cognitive control, and smoking relapse (Ashare et al., 

2016; Berkman, Falk, & Lieberman, 2011; Chua et al., 2011; Janes et al., 2010; Kogler, 

Mueller, et al., 2015; Seo et al., 2013).  

VI. Research Aims  

Innovation Statement  

Innovation of this project lies in the combination of an objective measure (fMRI) with 

neuroendocrine response and subjective measures of stress in a within-study design to 



9 
 

better understand abstinence-induced changes in stress reactivity. In addition, this project 

evaluates a potential contributing factor to interindividual variation in stress response 

during abstinence, the nicotine metabolite ratio (NMR). As discussed in chapter 4, the 

NMR is a genetically informed biomarker of nicotine metabolism rate; faster nicotine 

metabolism is associated with smoking relapse (Lerman et al., 2015). We hypothesized 

that abstinence would be associated with increased neural response to an acute stressor 

in stress related regions such as the medial frontal cortex (MFC), OFC, and posterior 

cingulate cortex (PCC)/precuneus; furthermore, we predicted that these abstinence-

induced changes in neural response would be associated with abstinence-induced 

changes in change in cortisol level and subjective stress in smokers. In addition, these 

changes may be moderated by individual differences in nicotine metabolism rates (as 

measured by the NMR). We hypothesized that smokers with faster nicotine metabolism 

would experience heightened neural, cortisol, and subjective stress reactivity.  

Specific Aim 1: Examine effects of abstinence on neural response to stress. 

I used fMRI to measure brain activity during the MIST in 75 smokers after 24 hours 

abstinence and during smoking satiety. Using a whole brain analysis, I examined percent 

BOLD signal change during each session, and hypothesized that abstinence (vs. satiety) 

would be associated with increases in stress-induced activation of the MFC, OFC, and 

PCC/precuneus. 

Specific Aim 2: Examine effects of abstinence on stress-induced cortisol response and 

subjective measures of stress, and evaluate relationships between these measures and 

changes in stress-induced neural responses during abstinence.  

I measured abstinence-induced changes in cortisol response and subjective measures of 

stress response to acute stress (i.e., the MIST paradigm). I used multiple regression 
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modeling to determine whether these changes were associated with abstinence-induced 

changes in stress-related brain activation during the MIST. I hypothesized that stress-

induced changes in cortisol levels and subjective measures of stress would be greater in 

smokers during abstinence compared to during satiety, and furthermore, that subjective 

and neuroendocrine stress responses would be associated with changes in stress-

induced BOLD signal (abstinence vs. satiety).  

Specific Aim 3: Investigate individual differences in abstinence-induced stress response. 

I used multiple regression modeling to determine whether the NMR was associated with 

abstinence-induced changes in (a) BOLD response to stress, and (b) changes in cortisol 

response and ratings of stress during the MIST. I hypothesized that the effect of 

abstinence versus satiety on these outcomes would be greater in faster metabolizers. 
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CHAPTER 2: ABSTINENCE-INDUCED CHANGES IN STRESS REACTIVITY 

This chapter presents work featured in article: Allenby, C., Falcone, M., Ashare, R.L., Cao, 
W., Bernard, L., Wileyto, E.P., Pruessner, J., Loughead, J., Lerman, C. (2019). Brain 
Marker Links Stress and Nicotine Abstinence. Nic Tob Res, revised and resubmitted 
(minor revisions). 

 
I. Abstract 

Subjective stress is a well-documented predictor of early smoking relapse, yet our 

understanding of stress and tobacco use has been limited by reliance on self-reported 

measures of stress. To evaluate a more objective approach, we utilized a validated 

functional neuroimaging paradigm to examine whether stress exposure during early 

abstinence alters objective measures of brain function. Seventy-five participants 

underwent BOLD fMRI during the MIST on two occasions: once during smoking satiety 

and once following biochemically confirmed 24-hour abstinence (order counter-balanced). 

The primary outcome measure was brain response during stress (vs. control) blocks of 

the MIST, assessed using whole-brain analysis corrected for multiple comparisons using 

clusters determined by Z≥3.1. Abstinence (vs. satiety) was associated with significantly 

increased activation in the left inferior frontal gyrus, a brain region associated with 

inhibitory control. This study provides objective evidence that the brain response to stress 

is altered during the first 24 hours of a quit attempt compared to smoking satiety. These 

results point to the potential value of inoculating smokers with stress management training 

prior to a quit attempt. 
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II. Introduction 

Neural measures of stress response, such as blood oxygen level dependence functional 

magnetic resonance imaging (BOLD fMRI), provide an objective method to interrogate the 

links between stress and smoking behavior, offering insights beyond subjective and 

cortisol measures. Previous imaging studies have found evidence for the regulatory roles 

of the hippocampus, amygdala, and prefrontal cortex (PFC) in response to stressors, 

although different stressors may induce different patterns of response (al'Absi, 2006; 

Dedovic, D'Aguiar, & Pruessner, 2009; Pruessner et al., 2008; van Oort et al., 2017). Two 

commonly used paradigms for stress induction in the scanner include individually-

calibrated stress imagery scripts (Sinha & Tuit, 2012), and the Montreal Imaging Stress 

Task (MIST), a psychosocial stress task that requires subjects to perform challenging 

mental arithmetic in the presence of negative social evaluation (Dedovic et al., 2005; 

Pruessner et al., 2008). Stress responses to individualized scripts consistently increase 

activity in executive and limbic regions such as the dorsal anterior cingulate cortex (ACC), 

thalamus, insula, substantia nigra, medial PFC and posterior cingulate cortex (PCC) 

(Kober, Brewer, Height, & Sinha, 2017; Seo et al., 2011; Seo, Tsou, Ansell, Potenza, & 

Sinha, 2014). The MIST also increases activity in prefrontal regions during stress blocks 

relative to control blocks, however deactivation in limbic regions, such as the amygdala, 

hypothalamus, and medial OFC has also been observed (Khalili-Mahani, Dedovic, Engert, 

Pruessner, & Pruessner, 2010; Pruessner et al., 2008; Wheelock et al., 2016). 

Deactivation may be the result of a change in activation away from default state; regions 

that are basally activated at rest may become deactivated during a stressor (Pruessner et 

al., 2008). In addition, deactivation of the hippocampus in healthy individuals was limited 

to those subjects responding to the task with a cortisol increase. These findings suggest 
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that a persistently active hippocampus may be responsible for tonic inhibition of the HPA 

axis in healthy individuals, thus resulting in deactivation of this region during the MIST. A 

review of fMRI investigations of psychosocial stress found that only the MIST and serial 

subtraction tasks were able to induce a significant cortisol response in addition to neural 

reactivity (Dedovic, D'Aguiar, et al., 2009; Dickerson & Kemeny, 2004).  

To date, only two small studies have explored the effects of stress on neural responses 

among smokers using the MIST. Among non-abstinent smokers (n=15), deactivation 

during stress (relative to control blocks) was observed in limbic, paralimbic, and cognitive 

control regions (e.g. the ACC) (Dagher et al., 2009), consistent with effects previously 

observed in nonsmokers (Pruessner et al., 2008; Wheelock et al., 2016). In contrast to the 

deactivations observed in these smokers, a pilot study conducted by our lab found an 

increase in activation during the MIST stress blocks (relative to control blocks). Stress 

significantly activated regions such as the ACC, anterior insula, and medial 

frontal/cingulate gyrus (MF/CG), consistent with previous studies of stress reactivity 

(Wheelock et al., 2016). Observed differences could be due to differences in task design; 

participants in the study conducted by Dagher et al. performed the control blocks prior to 

the stress blocks while our study alternated block condition (Dagher et al., 2009).  

To identify specific regions that may contribute to abstinence-induced changes in stress 

reactivity, our pilot study in a small separate sample of smokers (n=37) compared brain 

response to stress following 24 hours of monitored abstinence or smoking satiety in a 

between-subject design. Abstinence from smoking (vs. satiety) was associated with 

stress-related increases in activation in the inferior frontal gyrus (IFG), ACC, precuneus 

and supramarginal gyrus (Ashare et al., 2016). These brain regions are typically 

suppressed when engaged in goal directed behavior and known to be involved in stress 
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response, cognitive control, and smoking relapse (Berkman et al., 2011; Chua et al., 2011; 

Janes et al., 2010; Kogler, Mueller, et al., 2015; Seo et al., 2013). These findings suggest 

that nicotine withdrawal may reduce the ability to exert control over effortful behavior 

during stress.   

Building upon prior work, the present study used a more powerful within-subject cross-

over design to ascertain how brain response to stress changes during abstinence versus 

smoking satiety in a large sample of smokers (n=75). We focused on the first 24 hours of 

abstinence, as this is the most vulnerable period for smoking relapse (Piasecki, 2006), 

and utilized the MIST paradigm. We hypothesized that abstinence (compared to smoking 

satiety) would increase brain response to psychological stress in limbic regions and those 

involved in cognitive control.  

III. Methods and Materials  

Participants  

Participants were 75 treatment-seeking smokers ages 18 to 65 who reported smoking ≥5 

cigarettes/day for ≥6 months and were recruited through media advertisements. Exclusion 

criteria were: exhaled carbon monoxide (CO) breath sample <8ppm; current use of 

nicotine products other than cigarettes (such as chewing tobacco, snuff, e-cigarettes or 

nicotine replacement therapy); pregnancy, planned pregnancy or breastfeeding; history of 

DSM-IV Axis I psychiatric disorders; substance disorders (except nicotine dependence) 

within the past two years; use of psychotropic medications; history of significant brain 

injury; left-handedness; fMRI contraindicated material in the body; claustrophobia; low or 

borderline intelligence (<85 score on Shipley’s Institute of Living Scale (Zachary, 1986)); 

breath alcohol test ≥0.01; and any impairment that would prevent task performance.  
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Eligibility and Intake  

All procedures were approved by the University of Pennsylvania Institutional Review 

Board and carried out in accordance with the Declaration of Helsinki. Initial telephone 

screen was followed by an in-person eligibility assessment. All participants provided 

written informed consent, an exhaled CO breath sample to confirm smoking status, a 

breath alcohol measurement, a urine sample to assess for the use of study-prohibited 

drugs, and if applicable, participants were provided a self-administered pregnancy 

screening. Eligible participants completed a smoking history questionnaire (cigarettes per 

day [CPD]); and the Fagerström Test for Nicotine Dependence (FTND) (Fagerstrom, 

2012). 

Study Design and Measures  

The neuroimaging experiment used a previously validated within-subject abstinence 

challenge design (Loughead et al., 2015). Two blood-oxygen-level-dependent (BOLD) 

fMRI sessions were scheduled at least 1 week apart in a randomized counterbalanced 

order: 1) smoking satiety and 2) following 24-hour abstinence. All sessions were 

scheduled to begin between 8 a.m.-10 a.m. Participants with a positive urine drug screen, 

a breath alcohol test ≥0.01, a CO reading ≥8ppm for the abstinence condition, or a CO 

reading <8ppm for the smoking satiety condition were excluded. Participants then 

completed the Minnesota Nicotine Withdrawal Scale (MNWS) (Hughes & Hatsukami, 

1986) and the Questionnaire of Smoking Urges (QSU-Brief) (Cox, Tiffany, & Christen, 

2001). For the smoking satiety condition, participants smoked a single cigarette 

approximately 1 hour prior to stress exposure (Ashare et al., 2016). Means of the 

descriptive data were calculated.  
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fMRI Data Acquisition  

BOLD fMRI was acquired with a Siemens Prisma 3T system (Erlangen, Germany) using 

a whole-brain, single-shot gradient-echo echoplanar sequence with the following 

parameters: TR/TE=1000/30ms, 78 slices, slice thickness/gap=2.0/0mm, FOV=192mm, 

matrix=64×64, effective voxel resolution of 2×2×2mm. Radiofrequency transmission 

utilized a quadrature body-coil and reception used a 64-channel head coil. Prior to BOLD 

fMRI, 5-min magnetization-prepared, rapid acquisition gradient-echo T1-weighted image 

(MPRAGE, TR 2200ms, TE 4.67ms, FOV 240 mm, matrix 192×256, effective voxel 

resolution of 1×1×1mm) was acquired for anatomic overlays of functional data and to aid 

spatial normalization to standard atlas space. 

Stress Reactivity Task 

The MIST is a validated fMRI-based stress-induction task which requires participants to 

complete mental arithmetic with increasing difficulty to a level beyond the person’s 

capacity (Ashare et al., 2016; Dedovic et al., 2005; Pruessner et al., 2008; Wheelock et 

al., 2016). This 10-minute fMRI paradigm presents one-minute blocks (stress and control) 

pseudo randomly during two 5-min acquisition periods. Participants completed a short 

practice session to become familiar with the task and response device prior to the scan. 

During the stress blocks, the screen displays a visual rotary dial for response selection, a 

feedback window (“correct,” “incorrect,” or “timeout”) and two scripted performance 

indicators: 1) individual subject’s overall performance and 2) “average” performance for 

all subjects. In the stress blocks, the time limit is dynamically calculated to be 10% shorter 

than the subject's average required time on previous trials and this limit is represented by 

a progress bar. For the control blocks, mental arithmetic is performed at a comparable 
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level of difficulty but without time restriction and neither individual nor average 

performance is displayed. To elevate stress of the overall task, participants are provided 

with scripted negative feedback regarding their performance between acquisition blocks 

(e.g., “I have to say you are not performing as well as we were expecting you to”). After 

the second fMRI scan, participants were debriefed and informed that the task was 

designed to induce stress and was not a true reflection of their ability to do mental 

arithmetic.  

Image Preprocessing and Time Series Analysis  

BOLD time series data were pre-processed using standard image analysis procedures 

executed with fMRI Expert Analysis Tool [FEAT of FSL (FMRIB’s Software Library, Oxford, 

UK)]. Pre-processing included motion correction (MCFLIRT) (Jenkinson & Smith, 2001), 

skull stripping using Brain Extraction Tools (BET) (Smith, 2002), spatial smoothing (6mm), 

and high pass filtering (100s). The median functional volume was co-registered to the 

anatomical T1-weighted structural volume and transformed into standard anatomical 

space (T1 MNI template) with FLIRT (Jenkinson & Smith, 2001). Pre-processed data were 

analyzed using FILM (FMRIB’s Improved General Linear Model). Blocks (stress and 

control) were convolved with a double gamma hemodynamic response function. The 

temporal derivative and nuisance regressors for standard plus extended motion 

parameters were also included and individual time series for each acquisition were 

averaged. The contrast of interest was stress minus control. All analyses were completed 

in subject space and transformation parameters were later applied to statistical maps for 

group-level analyses.  

Image Quality Assessment 
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Overall signal quality was measured by calculating mean temporal signal to noise ratio 

(tSNR) and participant motion was assessed with mean relative displacement. 

Participants with low tSNR (>3SD below the mean) or high mean relative displacement 

(>3SD from the mean) were identified for further evaluation. Using these procedures, three 

participants were excluded for relative motion greater than 0.57mm, resulting in a final 

sample of 75 participants.  

Whole Brain Image Analysis 

Group analyses were conducted using FSL’s local analysis of mixed effects method (FSL 

FLAME 1) (Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). First, mean task 

activation during the smoking satiety session was generated to characterize the fMRI 

stress response in this sample and confirm consistency of the pattern of activation (stress 

vs. control) with existing literature. Next, we tested between session effects (abstinence 

vs. smoking satiety) for stress response using a whole-brain, voxelwise paired t-test. Using 

random field theory, the resulting Z statistic images were corrected for multiple 

comparisons with a threshold of Z≥3.1 and cluster probability of p≤0.05 (Eklund, Nichols, 

& Knutsson, 2016; Worsley, 2001). Appropriate anatomical assignment for peak activation 

was determined using the Talairach atlas (Talairach & Tournoux, 1998).  

IV. Results 

Descriptive Data  

Eighty-eight people completed the first scan session; ten participants withdrew before the 

second scan and three were excluded due to motion in the fMRI, resulting in a final sample 

of 75 participants included in the analysis. Of these, 40 (53.3%) were male, 42 (56.0%) 

were African-American, and 43 (57.3%) had completed some education beyond high 
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school. The mean age was 43.1 years (SD 13.2), the mean CPD was 13.7 (SD 5.8), the 

mean FTND score was 4.6 (SD 1.8), and mean CO at intake was 14.8 ppm. Exhaled CO 

was significantly lower during abstinence (mean 2.6 ppm, SD 2.4 ppm) compared to the 

smoking satiety condition (mean 16.4 ppm, SD 6.9 ppm, p<0.0001), indicating compliance 

with the abstinence requirement. Subjective craving (QSU) and withdrawal (MNWS) were 

significantly higher during the abstinence condition (craving mean 45.5, SD 14.9; 

withdrawal mean 15.4, SD 8.6) compared to the smoking satiety condition (craving mean 

30.4, SD 13.6; withdrawal mean 7.8, SD 6.7; ps<0.00001).  

Abstinence Challenge Effects on Neural Stress Reactivity 

The stress minus control fMRI block contrast revealed a pattern of brain activation 

consistent with previous neuroimaging studies (Table 2-1) (Ashare et al., 2016; Dagher et 

al., 2009; Dedovic et al., 2005). The abstinence challenge (abstinence>smoking) 

produced greater activation in the left IFG (Z>3.1, p<0.05; Figure 1). There were no 

regions with greater activation for the smoking satiety condition (vs. abstinence) or for the 

control minus stress block contrast. 

V. Discussion  

This study provides objective evidence for change in neural stress reactivity during the 

first 24 hours of smoking cessation. Abstinence (vs. smoking satiety) resulted in a 

significant increase in activation in the IFG during stress (vs. control exposure). These 

findings validate and extend our prior pilot study (Ashare et al., 2016) by documenting 

effects of abstinence on stress-induced IFG activation in a larger sample of smokers. Our 

results support that smokers during abstinence may demonstrate increased activation in 

brain regions typically suppressed in goal-directed behavior; an increase in activation of 
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the IFG may reflect a change in basal tone away from the default activated state and may 

underlie inability of smokers to exert control over behavior during stress (Ashare et al., 

2016; Pruessner et al., 2008). 

Our finding of increased activation in IFG during abstinence is consistent with results of 

our prior between-subject study, and suggests that changes in abstinence-induced 

changes in IFG activation may contribute the heightened stress response experienced 

during nicotine withdrawal (Ashare et al., 2016). Although our study was not designed to 

probe the specific contribution of the IFG to subjective stress, we can speculate. The IFG 

is commonly activated during both physiological and psychological stress responses 

(Kogler, Muller, et al., 2015; Wheelock et al., 2016). IFG activation is also associated with 

response inhibition, attentional control suppression of intrusive thoughts, and regulation 

of emotion (Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010; Kuhn et al., 2013; 

Tabibnia et al., 2014). Further, abstinence-induced increases in IFG activation have been 

observed during tasks involving response inhibition (Chaarani et al., 2018), viewing of 

smoking cues (Falcone et al., 2015), and resisting craving (Hartwell et al., 2013). It is 

therefore possible that greater activation of the IFG during abstinence reflects greater 

effort to control or downregulate the stress response (Lee et al., 2014). However, it is also 

possible that activation of the IFG is contributing to greater subjective stress during 

abstinence. Interestingly, IFG activation is also sensitive to smoking cessation treatment; 

specifically, the efficacious smoking cessation medication varenicline decreases working-

memory-related BOLD activation in the IFG during abstinence compared to placebo 

(Loughead et al., 2010). This suggests that treatments that reduce abstinence-induced 

increases in IFG activation may be beneficial for smoking cessation. 
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Finally, the neural stress reactivity patterns we observed during smoking satiety are 

consistent with our previous report (Ashare et al., 2016) and with reports of stress reactivity 

networks in healthy populations (Pruessner et al., 2008; Wheelock et al., 2016). During 

smoking satiety, significant activation was observed in the MF/CG, caudate, middle 

occipital gyrus, and middle temporal gyrus (Eklund et al., 2016). This pattern supports a 

model of stress reactivity that involves recruitment of neurocircuitry in frontal, limbic, and 

cortical regions (Dedovic, D'Aguiar, et al., 2009). For example, it is proposed that the 

MF/CG are key regions involved in stress response and mood regulation and may act as 

an interface between limbic and cortical structures (Akirav & Maroun, 2007; Groenewegen 

& Uylings, 2000). These regions have been associated with top-down inhibitory control 

and self-evaluative processes, and therefore increased activation during stress may reflect 

increased recruitment of self-regulatory processes (van der Werff, Pannekoek, Stein, & 

van der Wee, 2013). The caudate has also been associated with stress-induced increases 

in neural activation in healthy participants (Wheelock et al., 2016), participants with anxiety 

(Seo, Ahluwalia, Potenza, & Sinha, 2017), and in smokers (Ashare et al., 2016), and may 

be associated with increased effort required to maintain goal directed behavior following 

the stressor (Grahn, Parkinson, & Owen, 2008). Increased activation of the middle 

occipital gyrus and middle temporal gyrus during the stress condition has been proposed 

to reflect processing of task stimuli (Dedovic et al., 2005). Taken together, these findings 

suggest that the stress reactive network in smokers who are smoking as usual is 

substantially similar to the network observed in healthy subjects.  

To our knowledge, this is the largest fMRI study of abstinence-induced changes in stress 

reactivity in smokers. The use of a well-validated within-subject abstinence challenge 

paradigm allowed us to objectively measure neurobiological differences that occur 
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specifically during abstinence (Falcone et al., 2015; Loughead et al., 2015). The MIST 

produced neural activation patterns in our sample that are consistent with those observed 

in other studies utilizing this task, which suggests that our stress manipulation was 

effective (Ashare et al., 2016; Wheelock et al., 2016). However, this study also has 

limitations. Because the time course of stress response during abstinence is not fully 

understood, it is possible that changes in stress response may be more robust at longer 

windows of abstinence (al'Absi et al., 2015). It is also possible that some participants may 

experience anticipatory stress about the fMRI scan which could heighten stress response 

to the stressor (Tessner, Walker, Hochman, & Hamann, 2006). However, the within-

subject design controls for such individual differences and we did not observe an increase 

in self-reported stress prior to the scan. On the other hand, our sample size did not enable 

testing for individual differences in stress response (such as gender differences) which 

have been noted in the literature (Seo et al., 2017; Wang et al., 2007). Lastly, we did not 

include a sample of healthy control participants to directly compare stress reactivity in 

smokers to stress reactivity in healthy populations. We therefore cannot discern whether 

changes in neural activation during abstinence represent further disruption in activation 

compared to healthy controls, or a return to “normal” responses.  

The findings of this study suggest that the first 24 hours of a quit attempt is a vulnerable 

period for abstinence-induced neural stress response, supporting the use of effective 

stress management interventions such as mindfulness training or cognitive behavioral 

therapy (CBT) prior to a quit attempt. Mindfulness training and CBT (with stress 

management) can reduce subjective stress in clinical populations as well as healthy adults 

(Stefan G. Hofmann, Alice T. Sawyer, Ashley A. Witt, & Diana Oh, 2010), and improve 

cessation rates among smokers (Yalcin, Unal, Pirdal, & Karahan, 2014). An important next 
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step in this regard would be to identify those strategies that decrease neural activation 

during an acute stressor. To that end, in a small (n=23) randomized trial of smokers, Kober 

et al. found that mindfulness training, relative to CBT, was associated with lower neural 

stress response to individualized stress scripts; stress reactivity, in turn, was associated 

with smoking reduction (Kober et al., 2017). Collectively, these findings support further 

development of treatment approaches that target neural stress reactivity during the first 

24-hours of smoking cessation, and suggest that fMRI may provide a useful tool for 

intervention optimization.  
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Table 2-1. Areas of activation for mean stress>control contrast during smoking 
satiety.  
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Figure 2-1. Effect of abstinence on neural stress reactivity. 

 

Figure 2-1 Legend: (A) The whole brain analysis of the abstinence vs. smoking satiety 

condition revealed significant activation in the left inferior frontal gyrus during the stress 

task (cluster corrected Z>3.1, p<0.05). (B) Neural stress reactivity is significantly increased 

during the abstinent condition compared to the smoking satiety condition. 
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CHAPTER 3: NEUROENDOCRINE AND SUBJECTIVE RESPONSE TO STRESS 

I. Abstract 

Utilizing a multi-modal approach to evaluating stress reactivity can further our 

understanding of abstinence-induced changes in stress response. I utilized a validated 

functional neuroimaging paradigm to examine whether stress exposure during early 

abstinence alters objective measures of brain function. In addition, I measured cortisol 

response and subjective response to stress to assess the relationship of abstinence-

induced neural stress reactivity with abstinence-induced neuroendocrine and subjective 

stress changes. Seventy-five participants underwent BOLD fMRI during the MIST on two 

occasions: once during smoking satiety and once following biochemically confirmed 24-

hour abstinence (order counter-balanced). The primary outcome measure was 

abstinence-induced neural stress reactivity utilizing BOLD percent signal change from the 

region significant activated during abstinence (vs. satiety). Abstinence-induced increase 

in IFG activation was positively associated with abstinence-induced change in subjective 

stress. However, there was no relationship between abstinence-induced neural stress 

reactivity and cortisol response. This study provides objective evidence that the alterations 

in brain response during the first 24 hours of a quit attempt is associated with heightened 

subjective stress. These results further support targeting stress reactivity during early 

abstinence to decrease risk for stress-induced relapse. 
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II. Introduction 

Acute Stress and the HPA axis 

The hypothalamic-pituitary-adrenal (HPA) axis is a key biological pathway involved in both 

stress reactivity and nicotine addiction (G. F. Koob & Le Moal, 2001). Specifically, this 

pathway functions to maintain basal and stress-related homeostasis via the 

hypothalamus, pituitary gland, and the adrenal cortex. In response to a stressor, 

corticotrophin releasing factor (CRF) from neuronal cell bodies of the paraventricular 

nucleus of the hypothalamus activate the HPA axis, resulting in the release of 

adrenocorticotropic hormone (ACTH) from the pituitary and beta-endorphin into systemic 

circulation. Via peripheral circulation to the adrenal cortex, ACTH stimulates the synthesis 

and release of cortisol (Munck, Guyre, & Holbrook, 1984). Therefore, cortisol is the primary 

measure of HPA axis activity. Following activation of the HPA axis, a negative feedback 

loop regulates ACTH and CRF release via bottom-up regulation at the level of the pituitary 

and hypothalamus. In addition, prefrontal and hippocampal projections play a role in 

negative feedback of glucocorticoids on the HPA axis and exert inhibitory control over the 

HPA axis via the paraventricular nucleus of the hypothalamus (Dedovic, Duchesne, et al., 

2009).   

Similar to nicotine, stress activates both reward and the HPA axis circuitry. The 

overlapping pathways involved in the effects of nicotine and stress suggest a mechanism 

by which stress might enhance the rewarding effects of nicotine (McKee et al., 2011; 

Wardle et al., 2011). For example, exposure to stress results in perceived greater 

satisfaction and reward from smoking (McKee et al., 2011). However, the mechanisms by 

which stress promotes smoking behavior are unknown. One possibility is that nicotine use 
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may be adaptive to combat stress by releasing hormones that restore homeostasis 

(Munck et al., 1984). Understanding how HPA axis activity is associated with changes in 

neural stress reactivity that occur during smoking and abstinence can further provide 

insight into mechanisms underlying nicotine addiction.  

Nicotine and the HPA axis 

Acute nicotine administration modulates secretion of cortisol by binding to nicotinic 

acetylcholine receptors (nAChRs) in the locus coeruleus (Matta et al., 1998). This triggers 

the release of CRH in the paraventricular nucleus of the hypothalamus, which activates 

corticotrophins in the anterior pituitary gland to release ACTH. ACTH stimulates cortisol 

secretion by the adrenal glands. Elevation of cortisol in humans is observed after cigarette 

smoking; a minimum of 2 cigarettes in rapid succession reliably increases cortisol, and 

HPA activation following acute nicotine administration appears to be dose dependent 

(Pomerleau & Pomerleau, 1990; Winternitz & Quillen, 1977). In addition, dose-dependent 

increases in brain activity following nicotine administration have been observed in regions 

involved in emotional regulation and HPA responses to stress (Stein et al., 1998). 

Changes in brain activity following nicotine chronic administration and subsequent 

abstinence during a quit attempt could alter subjective stress and ultimately cortisol output 

from the HPA axis (Stein et al., 1998; Wong et al., 2014).  

HPA Axis Activity in Smokers  

Studies of stress reactivity during smoking satiety in smokers consistently report that 

cortisol reactivity in smokers is blunted compared to non-smokers (al'Absi et al., 2003; 

Buchmann et al., 2010; Childs & de Wit, 2009; Wardle et al., 2011). Frequent and 

prolonged stimulation of the HPA axis by repeated exposure to nicotine may lead to 
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enhanced HPA axis activation, but reduced sensitivity to effects of other stimuli not related 

to nicotine such as an acute stressor (Kirschbaum, Scherer, & Strasburger, 1994). 

However, studies investigating cortisol response during an acute stressor during smoking 

abstinence are inconsistent. Some studies of laboratory stressors found no differences in 

cortisol response during abstinence (al'Absi et al., 2002; al'Absi et al., 2003); however, 

Wardle et. al found that following a stressor, there was a significantly greater increase in 

cortisol in abstinent smokers than satiated smokers (Wardle et al., 2011). In addition, 

associations between cortisol and tobacco use behavior have been observed during 

abstinence, but have not been consistent. For example, one study found that attenuated 

cortisol reactivity in abstinence compared to smoking satiety predicted relapse during a 

quit attempt (al'Absi, 2006), whereas another study observed this effect only in men 

(al'Absi et al., 2005). In contrast, increase in cortisol following a stressor during abstinence 

predicted reduced ability to resist smoking (McKee et al., 2011).  

Attempts to clarify the role of the HPA axis during abstinence have been made by 

examining the possible association between withdrawal symptoms and abstinence-

induced change in cortisol. However, subjective measures of stress exhibit modest or 

inconsistent associations with objective measures of biological stress response, such as 

cortisol, in a healthy population (Campbell & Ehlert, 2012; Dickerson & Kemeny, 2004; 

Jones, Rollman, & Brooke, 1997) and in smokers (al'Absi, 2006; Dagher et al., 2009; 

McKee et al., 2011). Although cortisol measures are widely used as a biomarker of 

biological stress response, cortisol response can be difficult to measure and is not reliably 

induced. For example, cortisol’s rapid morning decline and other circadian fluctuations can 

mask the effects of acute stress (Debono et al., 2009; Krieger et al., 1971) and well-

validated stress induction paradigms can fail to induce a cortisol response in healthy 
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individuals (McKee et al., 2011; Wheelock et al., 2016). Because of high interindividual 

variability in cortisol response, some studies have utilized post-hoc analyses of cortisol 

“responders” and “non-responders” in order to distinguish between individuals who had 

an increase versus a decrease in cortisol in response to an acute stressor (Pruessner et 

al., 2008; Wheelock et al., 2016). Measuring subjective stress and neuroendocrine 

response in addition to an objective measure such as blood oxygen level dependent 

functional magnetic resonance imaging (BOLD fMRI) can provide additional context when 

interpreting results.  

Neural Activation, Subjective Stress and Neuroendocrine Response  

Examining a possible association of subjective stress reactivity and abstinence-induced 

cortisol level changes with neural activation may provide clarification of the role of the HPA 

axis during abstinence. Subjective questionnaires and neuroendocrine responses to 

stress offer measures of stress reactivity that complement brain imaging results. Previous 

studies show increased levels of salivary cortisol during the MIST in most subjects; 

furthermore, when participants were divided into responders (those who showed a 

significant change in cortisol levels) and non-responders (those who did not), significant 

differences were observed in neural stress reactivity (Dedovic et al., 2005; Pruessner et 

al., 2008). In addition, increases in cortisol during a stressor are correlated with increases 

in craving among smokers (Buchmann et al., 2010; McKee et al., 2011). Cortisol may 

modulate craving in addition to stress responses by increasing the incentive salience of 

drug cues (Piazza & Le Moal, 1997; Sinha, 2007). Although many studies have measured 

the relationship of cue-induced BOLD response and subjective cravings (Dagher et al., 

2009; Falcone et al., 2015; Franklin et al., 2011; Jasinska, Stein, Kaiser, Naumer, & 

Yalachkov, 2014; McClernon, Hiott, Huettel, & Rose, 2005; Moran-Santa Maria et al., 
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2015), relationships between stress-induced BOLD response and subjective stress 

remain largely unexplored, especially during smoking abstinence. Administering the MIST 

prior to a smoking cue task has been shown to enhance neural response to smoking cues 

and increase craving scores compared to a non-stress condition, although the difference 

in craving scores did not reach significance (p=0.174; (Dagher et al., 2009). In addition, 

while the amygdala is considered a critical part of the limbic system and an important 

regulator of stress-related glucocorticoid secretion (Carrasco & Van de Kar, 2003; Jankord 

& Herman, 2008), previous studies have not found consistent associations between 

amygdala activity and changes in cortisol levels during psychological stress in smokers. 

However, variation in endogenous levels of cortisol has been shown to modify amygdala 

activation in response to emotional pictures (van Stegeren et al., 2007). Overall, these 

results suggest there may be a relationship between neural response to an acute stressor, 

changes in cortisol levels, and subjective stress; further insight into the role of brain 

regions involved in stress reactivity can be discerned from the association of neural 

activation with cortisol activity in smokers during abstinence and smoking satiety. 

My previous chapter provided evidence for changes in neural stress reactivity during the 

first 24-hours of smoking cessation. Specifically, abstinence (vs. smoking satiety) resulted 

in a significant increase in activation in the inferior frontal gyrus (IFG) during stress (vs. 

control). The IFG has previously been implicated in stress reactivity (Ashare et al., 2016; 

Kogler, Muller, et al., 2015) and is sensitive to abstinence effects (Chaarani et al., 2018; 

Falcone et al., 2015; Hartwell et al., 2013; Loughead et al., 2010). However, the 

relationship between stress-induced neural activation and HPA axis activity in smokers is 

not well elucidated. This chapter adds subjective and neuroendocrine measures of stress 

to understand the relationship of neural stress reactivity in the IFG with HPA axis activity. 
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I hypothesized that an increase in abstinence-induced neural stress reactivity would be 

associated with an increase in abstinence-induced change in cortisol and subjective 

stress.  

III. Methods and Materials  

The study design, stress reactivity task, and analysis of the primary outcome measure for 

this study are described in chapter 2.  

Neuroendocrine and Subjective Stress Response Assessment  

Before and after the MIST, participants completed a stress rating question (i.e., “How 

stressed are you?” on a scale of 1-10) (Wheelock et al., 2016). One participant did not 

complete the post-MIST subjective measure due to time constraints, resulting in a final 

sample of n=74 for subjective stress analyses. Salivary cortisol samples (Salimetrics, LLC 

in State College, PA, USA) obtained immediately prior to and following the MIST 

(approximately 15 minutes apart) were used to measure the physiological stress response 

produced by the task; additional samples were obtained 15 minutes and 30 minutes 

following the task (Dedovic et al., 2005). The pre- and post-MIST salivary cortisol 

measurements were differenced (post- minus pre-) and abstinence-induced cortisol 

response was calculated (abstinence minus smoking satiety session). Participants were 

excluded from cortisol analyses if their baseline cortisol measurement was greater than 

3SD from the mean during the smoking satiety condition (n=1) or if a sufficient sample 

was not collected before or after the MIST (n=4), resulting in a final sample of n=70 for 

cortisol analyses.  

 



33 
 

Salivary Cortisol Analysis  

Samples were stored at -80C prior to analysis. Samples were delivered on dry ice for 

assay at the Children’s Hospital of Pennsylvania in 3 cohorts. Lot-to-lot testing and 

validation was performed between all cohorts and kits used for analysis. On the day of 

testing, all samples were thawed and centrifuged at 3,000rpm for 15 min to remove 

mucins. Samples were assayed for cortisol using the cortisol enzyme immunoassay kit 

(Salimetrics, LLC in State College, PA, USA) following the manufacturer’s recommended 

protocol. The cortisol assay used 25 μl of saliva for singlet determinations and had a range 

of sensitivity from 0.012 to 3.00 μg/dl. Samples were assayed in duplicate and the average 

of the duplicate assays were used in the statistical analyses. On average, intra- and inter-

assay coefficients of variation were less than 5 and 10%. Cortisol data were transformed 

to nmol/L. 

Outcome measure  

The primary outcome measure for this study was the abstinence-induced change in BOLD 

percent signal change for neural stress reactivity (stress>control blocks) detailed in 

chapter 2.  

Statistical Analysis 

Descriptive statistics were obtained for all variables. Paired t-tests were used to examine 

expected abstinence challenge effects on subjective stress, and to test the effects of the 

stress reactivity task on subjective stress (post- minus pre-MIST). Linear regression (Stata 

reg, College Station, TX) was used to assess the relationship of subjective stress to neural 

stress reactivity using extracted mean percent BOLD signal change (abstinence minus 

smoking satiety) from the region significantly activated in the whole brain analysis of 
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abstinence>satiety. A second linear regression was used to assess the relationship of 

abstinence-induced neural stress reactivity and cortisol response using abstinence-

induced change in cortisol. Abstinence-induced changes in craving (post- minus pre-

MIST), sex, age, and baseline CPD and baseline CO were entered as covariates to reduce 

potential confounding (Loughead et al., 2015). Due to expected diurnal fluctuations in 

cortisol response, time since awakening was testing as a covariate but allowed to drop 

from the model as non-significant.  

IV. Results 

Descriptive Data  

Subjective stress was significantly higher following the MIST (pre-MIST M=2.7, SD=2.5; 

post-MIST M=4.2, SD=2.6; p<0.001; Figure 3-1). Change in cortisol (post- minus pre-

MIST) trended towards an increase during the abstinence condition (M=0.019 nmol/L, 

SD=1.31) compared to a decrease during the smoking satiety condition (M=-0.36 nmol/L, 

SD=0.21; p=0.07). Mean cortisol at each timepoint is shown in Figure 3-2.  

Relationship of Neural Response and Subjective Stress  

The abstinence-induced increase in neural stress reactivity in the left IFG was positively 

associated with abstinence-induced increase in subjective stress (=2.1; 95% CI= 0.18-

4.05; p=0.033; Figure 3-3). Significant covariates included change in craving (=0.38; 

p=0.004) and age (=0.07; p=0.005).The abstinence-induced increase in neural stress 

reactivity was not associated with abstinence-induced change in cortisol (p>0.5; Figure 3-

4). 
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V. Discussion 

In this chapter, I assess subjective stress and cortisol levels before and after a stress task 

and explored stress-induced changes by condition (abstinence vs. satiety) to better 

understand stress reactivity in smokers. I also examined the association of abstinence-

induced changes in neural stress reactivity with changes in cortisol and subjective stress 

in order to clarify possible brain-behavior relationships. Increased subjective stress ratings 

were observed for all time-points during abstinence (compared to smoking satiety). In 

addition, greater abstinence-induced change in neural stress reactivity in the L IFG was 

associated with a heightened abstinence-induced subjective stress response and support 

that heightened neural stress reactivity may underlie heightened stress reactivity 

experienced during abstinence. However, there was no significant effect of abstinence on 

change in cortisol, and there was no relationship between the observed neural changes 

and abstinence-induced change in cortisol response. Our findings support that fMRI is a 

measure that is sensitive to abstinence-induced changes in stress response that may 

contribute heightened subjective stress. 

Subjective Stress Reactivity 

Increased subjective stress ratings at all time points during abstinence (compared to 

smoking satiety) is consistent with prior reports of effects of nicotine withdrawal on 

subjective stress (Hughes, Gust, Skoog, Keenan, & Fenwick, 1991). Nicotine’s reinforcing 

effects are mediated by an increase in dopamine release in the nucleus accumbens via 

stimulation of dopaminergic nicotinic receptors in the ventral tegmental area (VTA). 

Following nicotine withdrawal, activation of the habenula interpeduncular area may inhibit 

dopaminergic neurons in the VTA resulting in a decrease in dopamine release in the 
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nucleus accumbens (De Biasi & Dani, 2011; Salas, Sturm, Boulter, & De Biasi, 2009). This 

decrease in dopamine may result in heightened levels of stress during smoking cessation. 

In contrast, increases in dopaminergic signaling to the PFC may also mediate stress-

related behavior (Bradberry, Lory, & Roth, 1991; Carboni, Bortone, Giua, & Di Chiara, 

2000; Thierry, Tassin, Blanc, & Glowinski, 1976). One possibility is that increased 

dopaminergic signaling in the IFG may underlie heightened stress symptoms during 

withdrawal. Increased dopamine release has been observed in the left IFG during 

emotional processing (Badgaiyan, Fischman, & Alpert, 2009). Lastly, subjective stress 

significantly increased following the MIST, indicating that our stress manipulation was 

effective. However, there was no significant difference in stress response by condition, 

suggesting that the magnitude of subjective stress response was not sensitive to 

abstinence. This is consistent with a previous study assessing negative affect prior to and 

following a stressor, and could be due to the already increased basal subjective stress 

experienced during abstinence (Wardle et al., 2011).  

Although there was no overall effect of abstinence on the change in subjective stress 

response, our examination of brain-behavior correlations revealed that a greater 

abstinence-induced change in neural stress reactivity was associated with heightened 

abstinence-induced subjective stress response. This is consistent with previous studies 

that have found an association of neural stress reactivity and subjective stress in healthy 

individuals (Wang et al., 2005; Wheelock et al., 2016). Further, this finding builds on the 

outcomes reported in Chapter 2 by demonstrating a link between changes in neural stress 

reactivity and a measurable behavioral outcome. Previous studies of stress reactivity 

during smoking or abstinence did not specifically associate neural activation with a 

subjective stress measure (Ashare et al., 2016; Dagher et al., 2009). With our within-
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subject counterbalanced design aimed at focusing specifically on abstinence-induced 

changes in neural activity, the present study supports the hypothesis that stress reactivity 

is increased during abstinence; abstinence-induced changes in the IFG may underlie 

heightened stress reactivity experienced during withdrawal.  

Cortisol Reactivity 

In contrast to the subjective stress measure, there were no associations between neural 

stress reactivity and cortisol response, and no difference in change in cortisol level (post- 

minus pre-MIST) by condition. While there was a significant decrease in cortisol following 

the MIST during smoking satiety, there was no change in cortisol following the MIST 

following abstinence. These results are consistent with previous findings reporting a lack 

of difference between cortisol response in smoking satiety and abstinence and suggests 

that cortisol response to a stressor may be independent of nicotine withdrawal (al'Absi et 

al., 2003). Lastly, consistent with prior reports, there was no association of cortisol 

response to subjective stress response (Albert, Pruessner, & Newhouse, 2015; Wheelock 

et al., 2016).   

The lack of relationship between neural stress reactivity and cortisol response may reflect 

several underlying mechanisms. For example, changes in neural stress reactivity during 

abstinence may be unrelated to HPA axis activity and may instead be the result of changes 

in other substrates of stress response such as the endogenous opioid or dopaminergic 

system. Previously identified brain region activation associated with cortisol response 

include activation in regions of the default mode network (DMN) such as the ventromedial 

PFC and PCC; stress-induced activation of these regions in this study were not 

significantly different between abstinence and smoking satiety (Laird et al., 2009; 
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Wheelock et al., 2016). Our finding of increased activation in the IFG during abstinence 

suggests that abstinence-induced changes in neural stress reactivity are region-specific, 

and therefore may not directly impact parts of the stress response network that moderate 

cortisol release. In addition, previous relationships of neural stress reactivity and cortisol 

response have been observed during post-hoc analyses of stress response by cortisol 

response group (positive vs. negative change in cortisol). For example, deactivation of the 

hippocampus observed in a study of healthy participants undergoing the MIST was 

correlated to the amount of cortisol released only in cortisol responders (participants with 

a positive increase in cortisol) (Pruessner et al., 2008). Due to our within-study design and 

the lack of consistent characterization of cortisol response in smokers during smoking 

satiety or abstinence, I did not have a hypothesis for post-hoc analysis by “responder” 

groups.  

While previous reports of cortisol response in smokers during abstinence have been highly 

variable, exploring cortisol changes by condition may contribute to understanding of stress 

reactivity during smoking satiety and abstinence. Our cortisol responses are also 

consistent with previous reports in smokers (al'Absi et al., 2003) that illustrated a reduction 

in cortisol among smokers during satiety compared to abstinent smokers, but failed to find 

a difference in cortisol response to an acute stressor between abstinent and satiated 

smokers after controlling for diurnal cortisol fluctuation measured on an independent 

testing day. This supports the idea that alterations in HPA axis activity following chronic 

nicotine exposure may be independent of withdrawal (al'Absi, 2018; al'Absi et al., 2003). 

It is possible that higher basal cortisol concentrations following chronic nicotine exposure 

result in enhanced negative feedback during exposure to a stressor. Although nicotine 

administration is associated with an increase in cortisol level, frequent and prolonged 
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stimulation of the HPA axis by nicotine may also lead to reduced sensitivity to effects of 

other stimuli (such as stressful situations) (Kirschbaum et al., 1994). Further investigation 

into mechanistic changes in the HPA axis following chronic nicotine may shed light on the 

disruption of cortisol response to a stressor. Recent preclinical evidence suggests that 

exposure to nicotine results in modifications of the dopaminergic system that are 

independent of HPA axis activation; these alterations may underlie the amplification of 

acute stress effects (Morel et al., 2018). For these reasons, changes in neural activation, 

unlike HPA axis activity, may be more reliable and sensitive measure of changes that 

occur during acute abstinence and contribute to the heightened subjective stress 

experienced during an acute stressor. 

The large within-subject design with multi-modal measurements of stress is a strength of 

this study. Neuroendocrine and subjective stress measures can provide context to 

objective markers such as fMRI. In addition, I assessed subjective stress and cortisol at 

multiple time points in attempt to capture response to the MIST, thereby optimizing our 

chances of observing a response. However, there are several limitations to this study. 

First, it is possible that an increase in cortisol during abstinence could have been obscured 

by diurnal decline in cortisol levels (i.e. the increase in cortisol in response to the stressor 

was not large enough to overcome diurnal decline). In previous studies, salivary cortisol 

levels were found to decline over time after awakening at relatively similar rates during 

smoking satiety and abstinence, supporting that abstinence does not affect the natural 

circadian response in cortisol (Teneggi et al., 2002). To account for circadian rhythms in 

cortisol secretion, both scans were conducted at the same time of day, and time since 

awakening was measured (which was not associated with our outcome measures). 

However, future studies should examine rates of diurnal decline in cortisol in participants 



40 
 

on a separate rest day and include change in cortisol during rest and test session as a 

within-subject factor in analysis (al'Absi et al., 2003). In addition, current results utilize 

salivary (free) cortisol levels, which may be vulnerable to variation due to smoking-induced 

changes in the levels of cortisol-binding globulin (Dhillo et al., 2002; Kirschbaum et al., 

1992). Future studies might bypass this by assessing plasma (total) cortisol levels or 

assessing other upstream measures of HPA axis activity such as ACTH. Finally, our study 

was not designed to probe the causality of the relationships between neural activation and 

subjective responses. Future research designed to probe this question could provide more 

information for optimizing smoking cessation treatment. 

In conclusion, this study presents new evidence that abstinence-induced changes in 

neural stress reactivity may underlie heightened subjective stress reactivity during 

abstinence. In addition, HPA axis activity was not associated with abstinence-induced 

changes in neural stress reactivity, suggesting that alternative pathways may be involved 

in orchestrating abstinence-induced changes in stress reactivity. Overall, the current study 

advances our understanding of neuroendocrine and subjective responses to stress in 

smokers, and sheds light on the importance of objective stress reactivity measures such 

as fMRI. Continued investigation of the interrelation of the HPA axis, subjective stress 

response, and neural stress reactivity will be an important means of advancing our 

understanding of how the stress response contributes to relapse in smokers.  
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Figure 3-1. Change in subjective stress by condition  
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Figure 3-1 Legend: There is a significant increase in subjective stress following the MIST 

in both the smoking and abstinent condition.  
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Figure 3-2. Change in cortisol by condition 
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Figure 3-2 Legend: There is no effect of condition on cortisol level. Change in cortisol 

(post- minus pre- MIST) trends towards significantly decreased in the smoking satiety 

condition compared to the abstinent condition (p=0.07). 
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Figure 3-3. Association between abstinence-induced neural stress reactivity and 
abstinence-induced change in subjective stress response  

 

Figure 3-3 Legend: Abstinence-induced change in subjective stress (post- minus pre-

MIST) is associated with abstinence-induced change in neural stress response (controlling 

for age, sex, baseline CO, CPD, and abstinence-induced change in craving; p=0.041). 
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Figure 3-4. Association of abstinence-induced neural stress reactivity and 
abstinence-induced change in cortisol 

 

Figure 3-4 Legend: Abstinence-induced change in cortisol (post- minus pre-MIST) is not 

associated with abstinence-induced change in neural stress response (controlling for age, 

sex, baseline CO, CPD, and abstinence-induced change in craving; p>0.05).  
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CHAPTER 4: MODERATING INFLUENCE OF NICOTINE METABOLISM ON STRESS 

REACTIVITY  

I. Abstract 

Inherited differences in the rate of metabolism of nicotine affect smoking behavior and 

quitting success; variation in stress reactivity during abstinence may be associated with 

nicotine metabolism. The nicotine metabolite ratio (NMR, 3′-hydroxycotinine/cotinine) is a 

reliable measure of nicotine clearance, and a well-validated predictive biomarker of 

response to pharmacotherapy. Seventy-five smokers were assessed for NMR and 

completed an acute psychosocial stress task during functional magnetic resonance 

imaging on two separate occasions: once during smoking satiety and once following 24 

hours of smoking abstinence. Abstinence-induced subjective stress response was 

positively associated with the NMR. Faster metabolizers of nicotine (individuals with higher 

NMR) reported a higher abstinence-induced change in subjective stress. However, there 

was no relationship between the NMR and abstinence-induced cortisol response or neural 

stress reactivity. Targeting stress reactivity during early abstinence may be especially 

effective for faster metabolizers of nicotine.  

II. Introduction 

Because nicotine activates the hypothalamic-pituitary adrenal (HPA) axis via nicotinic 

receptors (nAChRs), another possible source of individual differences in stress reactivity 

could be differences in nicotinic receptor availability. Nicotinic receptors are usually 

desensitized in chronic smokers (Quick & Lester, 2002); thus, the return to availability 

upon withdrawal from nicotine disrupts homeostasis and perturbs adaptive changes in 

dopaminergic transmission. Nicotine metabolism rate is expected to accelerate the 
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clearance of nicotine from the brain. Depending on how quickly an individual metabolizes 

nicotine, there may be greater nicotinic receptor availability during early abstinence, 

leading to more rapid onset of withdrawal and alterations in dopamine release. Dr. 

Lerman’s laboratory showed that following 24-hour abstinence, normal metabolizers show 

significantly greater thalamic 42 nAChR availability compared to slow metabolizers, 

which may be the result of greater receptor upregulation during chronic nicotine exposure 

or faster clearance of nicotine from the brain (Dubroff et al., 2015). Because stress 

response pathways are involved in the development of nicotine dependence and 

subsequent nicotine withdrawal syndrome, it is possible that individual differences in 

nicotine metabolism may contribute to variation in stress reactivity. 

Nicotine metabolism  

CYP2A6 is the liver enzyme primarily responsible for metabolizing nicotine to cotinine and 

cotinine to 3’hydroxycotinine (3HC) (Hukkanen, Jacob, & Benowitz, 2005). This pathway 

accounts for up to 80% of nicotine metabolism (Benowitz, Jacob, & Sachs, 1995). There 

are over 30 known CYP2A6 variations (Dempsey et al., 2004; Hamilton et al., 2015; 

Nakajima, Kuroiwa, & Yokoi, 2002; Oscarson, 2001). Polymorphisms in the CYP2A6 gene 

are associated with increased, reduced, or null activity (Malaiyandi, Goodz, Sellers, & 

Tyndale, 2006). While CYP2A6 *9 and *12 are reduced function variants associated with 

lower metabolic function of CYP2A6, CYP2A6 alleles resulting from gene duplication 

(*1X2 *1) result in higher metabolic capacity and lower nicotine to cotinine ratio (Benowitz, 

Swan, Jacob, Lessov-Schlaggar, & Tyndale, 2006; Dempsey et al., 2004; Johnstone et 

al., 2006; Malaiyandi et al., 2006; Rao et al., 2000). In addition, the half-life of cotinine is 

approximately 13-19 hours, which is much longer than the half-life of either nicotine (1-2 

hours) or 3HC (approximately 5 hours) (Malaiyandi et al., 2006). Because 3HC 
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concentrations are dependent on CYP2A6-mediated cotinine metabolism (Benowitz & 

Jacob, 2001; Benowitz, Pomerleau, Pomerleau, & Jacob, 2003), the ratio of 3HC to 

cotinine is a stable measure of CYP2A6 enzyme activity (and genotype) that is not 

dependent on the timing of last nicotine intake.  

The nicotine metabolite ratio (NMR) is the ratio of 3’-hydroxycotinine to cotinine and is 

strongly associated with CYP2A6 activity. Carriers of reduced function or loss of function 

variants have a lower NMR than individuals with the wildtype gene (C. E. Allenby, Boylan, 

Lerman, & Falcone, 2016; Malaiyandi et al., 2006). CYP2A6 activity is also influenced by 

biological factors such as race and gender; the NMR reflects these influences on CYP2A6 

activity (Hukkanen et al., 2005). In addition, the NMR is a biomarker of treatment outcomes 

in smokers trying to quit: faster metabolizers have lower quit rates without medication, and 

more rapid increases in anxiety and greater craving during early withdrawal (Hendricks, 

Delucchi, Benowitz, & Hall, 2014; Lerman et al., 2010; Lerman et al., 2006; Patterson et 

al., 2008; Rubinstein, Benowitz, Auerback, & Moscicki, 2008; Schnoll et al., 2009; 

Sofuoglu, Herman, Nadim, & Jatlow, 2012). Importantly, Dr. Lerman’s laboratory showed 

that faster metabolizers by the NMR achieve less benefit than slow metabolizers from 

transdermal nicotine treatment, while both slow and fast metabolizers benefit from the 

partial agonist varenicline (Lerman et al., 2015). 

Individual differences in the NMR may contribute to differences in neural activation during 

abstinence. In prior imaging studies, faster metabolizers have shown a heightened neural 

response to smoking cues during abstinence compared to slow metabolizers (D. W. Tang 

et al., 2012), and increased activation in the left caudate and left frontal pole in faster 

metabolizers was positively associate\ed with abstinence-induced craving (Falcone et al., 

2015). The precise mechanism underlying these differences is unknown; differences in 
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the availability of nicotinic receptors during abstinence could influence the degree to which 

rewarding effects of nicotine are experienced in normal metabolizers and slow 

metabolizers (Dubroff et al., 2015; Sofuoglu, Herman, Nadim, & Jatlow, 2012). This is 

because chronic nicotine use can result in smoking cues themselves inducing dopamine 

release through conditioned association with nicotine reward, in addition to nicotine 

binding to neuronal nAChRs to induce dopamine release (Brody et al., 2004; Jasinska et 

al., 2014; Yasuno et al., 2007; T. Zhang et al., 2009). During abstinence, withdrawal 

syndrome is associated with reduced extracellular dopamine concentrations (L. Zhang, 

Dong, Doyon, & Dani, 2012). Therefore, faster nicotine metabolism may result in a faster 

clearance of nicotine and altered dopaminergic signaling between slow and normal 

metabolizers, resulting in a stronger neural response in faster metabolizers, as shown in 

Dr. Lerman’s laboratory (Falcone et al., 2015). Because nicotinic receptors are also 

involved in stress response, it is possible that differences in nicotine metabolism rates 

could contribute to individual differences in stress reactivity. 

In Chapters 2 & 3, I showed that abstinence (vs. smoking satiety) resulted in a significant 

increase in activation in the inferior frontal gyrus (IFG) during stress (vs. control) exposure 

in the Montreal Imaging Stress Task (MIST). In addition, this increase in neural activation 

was associated with a greater increase in subjective stress. Building upon this prior work, 

this chapter examines the contribution of individual variation in nicotine metabolism (NMR) 

to the effects of abstinence on stress reactivity. This study is the only fMRI investigation 

to date to assess how the NMR may influence the relationship of abstinence-induced 

neural stress reactivity and changes in cortisol and subjective stress. I hypothesized that 

abstinence-induced stress reactivity (including neural response, cortisol response, and 



49 
 

subjective stress response to an acute stressor) would be heightened in individuals with 

faster nicotine metabolism. 

III. Materials and Methods  

Study design, stress reactivity task, and analysis of neural stress reactivity are described 

in chapter 2. Assessment of neuroendocrine and subjective stress response are described 

in chapter 3.  

Determination of NMR  

Saliva samples for NMR determination were collected for each participant following 

eligibility determination at intake. NMR data was determined using liquid chromatography-

tandem mass spectrometry techniques to calculate concentrations of cotinine and 3HC in 

the collected saliva samples (Dempsey et al., 2004).  

Because the population distribution of NMR values is typically skewed, NMR values in this 

sample were assessed and a log transformation was applied to the raw NMR value to 

normalize the distribution (Falcone et al., 2015; Schnoll et al., 2009; Strasser et al., 2011). 

All reported analyses were executed using the continuous log transformation of saliva 

NMR as the NMR variable.  

Statistical Analysis  

Descriptive statistics were obtained for the log transformed NMR. Chi-square tests and t-

tests were used to check for differences in the NMR by sex, age, education, race, and 

FTND score. Multiple linear regression models were used to assess the relationship of the 

NMR to abstinence-induced neural stress reactivity, change in cortisol, and change in 

subjective stress. Abstinence-induced changes in craving (post- minus pre-MIST), sex, 
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age, and baseline CPD and baseline CO were entered as covariates to reduce potential 

confounding (Loughead et al., 2015). 

IV. Results  

Descriptive statistics for the entire study population are included in Chapter 2.  

NMR: Descriptive Data  

The range of log transformed NMR values in this data set was -3.5 to -0.01 (0.03 to 1.0 

untransformed), consistent with previous studies (Falcone et al., 2015). The mean log 

transformed NMR was -1.35. There were significant associations between NMR with sex 

and FTND score; on average, women had significantly higher NMRs (M=-1.21; SD=0.69) 

than men (M=-1.47, SD=0.64; p=0.05), and a higher NMR was associated with a lower 

FTND score (less dependent; p=0.05). There were no significant differences in NMR by 

education or race.  

NMR Influence on Abstinence-Induced Changes in Stress Reactivity  

Abstinence-induced increase in subjective stress response was positively associated with 

the NMR (=1.3; 95% CI= 0.30-2.28; p=0.011; Figure 4-1). Change in craving was a 

significant covariate (=0.38; p=0.026). Abstinence-induced increases in neural stress 

reactivity or cortisol response were not associated with the NMR (p>0.5; Figure 4-2 and 

Figure 4-3). 

V. Discussion 

In this chapter, I examine effects of individual rates of nicotine metabolism on abstinence-

induced changes in stress reactivity. Specifically, this study assessed the association 
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between NMR and abstinence-induced changes in neural, neuroendocrine, and subjective 

stress response. Individuals with faster metabolism exhibited significantly greater 

abstinence-induced change in subjective stress response during the MIST. Abstinence-

induced changes in neural and neuroendocrine stress reactivity were not associated with 

NMR. Overall, these findings suggest that NMR is sensitive to abstinence-induced 

changes in subjective stress reactivity; further investigation of abstinence-induced 

changes in nicotinic receptor availability in fast versus slow metabolizers may shed light 

on mechanisms of heightened abstinence-induced stress reactivity.  

The finding that faster nicotine metabolism is associated with increased subjective stress 

response is consistent with prior studies that observed exacerbated symptoms of 

withdrawal in faster metabolizers (Liakoni et al., 2019; Rubinstein et al., 2008). To our 

knowledge, no prior studies have investigated relationships between NMR and stress 

response in smokers. These findings support that targeting stress reactivity during 

abstinence may be especially effective for these individuals. In addition, evidence that the 

NMR is associated with abstinence-induced changes in subjective stress reactivity, but 

not abstinence-induced changes in cortisol, further supports that alterations in the 

dopaminergic system via nicotinic receptors may underlie changes in abstinence-induced 

stress reactivity during withdrawal that are independent of alterations in the HPA axis. 

Understanding the contribution of nicotinic receptors to alterations in the dopaminergic 

system may present a therapeutic target for symptoms of stress during nicotine withdrawal 

(Morel et al., 2018). 

In chapter 2, I demonstrated that heightened abstinence-induced change in neural stress 

reactivity was positively associated with subjective stress response. This chapter presents 

novel findings demonstrating that individual NMR is also associated with abstinence-
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induced change in subjective stress response; however, NMR and neural stress reactivity 

and cortisol were not associated. Although prior studies have observed a relationship 

between NMR and abstinence-induced changes in neural activation during cue reactivity 

tasks (Falcone et al., 2015), a relationship between abstinence-induced changes in neural 

stress reactivity and NMR was not observed. Working memory and cue reactivity tasks 

are known to recruit neural circuits highly dependent on nicotinic cholinergic signaling; 

therefore, metabolism-based differences in nicotine clearance and subsequent receptor 

return to availability may have a greater influence on these domains. In addition, the lack 

of relationship between NMR and abstinence-induced cortisol response supports that 

alterations in the HPA axis are independent of withdrawal.  

In conclusion, this study utilized a well-validated and reliable measure of individual 

variation in nicotine metabolism. In addition, our sample size allowed us to utilize NMR as 

a continuous variable to assess relationships of NMR with abstinence-induced changes in 

stress reactivity. However, this study did not prospectively recruit for fastest and slowest 

metabolizers; previous studies have found differences by assessing individuals in groups 

such as quartiles of the NMR (Falcone et al., 2015). These data provide evidence that 

faster metabolizers may experience heightened subjective stress during abstinence 

compared to slower metabolizers. Future studies can investigate if individuals with a faster 

nicotine metabolism may especially benefit from treatments that target subjective stress 

reactivity. In addition, further research is necessary to investigate whether differences in 

subjective stress response during abstinence contribute to the increased relapse rates 

observed in faster metabolizers during a quit attempt.  
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Figure 4-1. Association between abstinence-induced change in subjective stress 
reactivity and the NMR  
 

 

Figure 4-1 Legend: The abstinence-induced increase in subjective stress was positively 

associated with the NMR (=1.3; 95% CI= 0.30-2.28; p=0.011; Figure 4-1). Change in 

craving was a significant covariate (=0.38; p=0.026). 
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Figure 4-2. Association between abstinence-induced neural stress reactivity and 
the NMR  
 

 

Figure 4-2 Legend: The abstinence-induced increase in neural stress reactivity 

(stress>control) was not associated with the NMR (p>0.05).  
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Figure 4-3. Association between abstinence-induced change in cortisol and the 
NMR  
 

 

Figure 4-3 Legend: The abstinence-induced change in cortisol reactivity (post- minus pre-

MIST) was not associated with the NMR (p>0.05). 
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CHAPTER 5: OVERALL DISCUSSION AND FUTURE DIRECTIONS 

The purpose of this research was to enhance our understanding of abstinence-induced 

changes in stress reactivity. First, I assessed neural substrates underlying abstinence-

induced changes in neural stress reactivity utilizing functional magnetic resonance 

imaging (fMRI). Next, I investigated associations between abstinence-induced changes in 

neural stress reactivity and abstinence-induced changes in neuroendocrine and subjective 

measures of stress response. Finally, I investigated if individual variation in nicotine 

metabolism rates (NMR) influenced the effects of abstinence on these measures of stress 

reactivity.  

In the largest sample of treatment seeking smokers to date, I demonstrated significant 

effects of abstinence on neural stress reactivity following 24 hours of abstinence compared 

to smoking satiety. Specifically, I found that abstinence increased neural activation in the 

left inferior frontal gyrus (IFG) during an acute stressor; furthermore, the abstinence-

induced change in activation in this region was significantly associated with subjective 

stress response. In addition, faster metabolism of nicotine (higher NMR) was associated 

with a heightened subjective stress response during abstinence. Detailed discussion on 

the individual findings can be found in chapters 2, 3, and 4.  

Our findings support the use of fMRI as an objective measure of stress reactivity that is 

sensitive to abstinence. Measurement of abstinence-induced changes in stress reactivity 

utilizing fMRI could therefore provide a biomarker for treatment efficacy. In addition, these 

findings suggest that neural changes occurring during early abstinence may underlie 

heightened stress reactivity that contributes to relapse, and that these changes may be 

influenced by individual differences in NMR. Continued investigation of the neurobiological 
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mechanisms of abstinence-induced changes in stress reactivity, in addition to individual 

differences that contribute to variation in stress response, will aid in the development of 

efficacious smoking cessation therapies. Taken together, these results suggest that 

inoculating smokers against increased stress reactivity during early abstinence may 

improve smoking cessation outcomes, especially for individuals who are faster 

metabolizers of nicotine.  

I. Abstinence-Induced Neural Changes as a Biomarker  

Based on our findings, abstinence-induced change in neural stress reactivity may offer a 

neural biomarker that could aid in developing anti-stress therapeutics for smoking 

cessation (Greenwald, 2018). A neural biomarker could be used in clinical studies of 

potential therapeutics as well as mechanistic studies probing stress reactivity pathways. 

First, clinical studies of novel therapeutics can confirm medication effects on stress 

reactivity by measuring IFG activation during a stress task (Bough et al., 2013; Greenwald, 

2018). Decreased activation in the left IFG could serve as a surrogate marker of reduced 

stress reactivity. Other neural changes during abstinence have proven to respond to 

efficacious smoking cessation medications; for example, varenicline, an 42 nicotinic 

receptor partial antagonist, has been shown to reverse abstinence-induced decrease in 

working memory-related activity. This reversal was associated with improved cognitive 

performance among highly dependent smokers (Loughead et al., 2010). Second, 

mechanistic studies can utilize this signal to probe the neurobiological changes that 

contribute to abstinence-induced changes in neural stress reactivity. For example, 

increased IFG activation may represent either increased effort towards regulating the 

stress response during abstinence or increased activation of a mechanism causing 

subjective stress. Discerning the function of the IFG may identify individual characteristics 
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attributed to IFG activation (i.e. cognitive function or impulsivity) that increase vulnerability 

of relapse. In addition, examining the effects of pharmaceutical modulation of proposed 

targets on activation in the IFG could pinpoint the involvement of specific neurotransmitter 

systems in abstinence-induced changes in stress reactivity. For example, opioid blockade 

challenges have been used to study the extent of hypothalamic-pituitary-adrenal (HPA) 

axis alteration in smokers, based on the involvement of the endogenous opioid system in 

regulation of HPA activity. In previous studies of smokers during an acute stressor, the 

effect of opioid blockade by naltrexone on cortisol response to stress was blunted in 

abstinent smokers and enhanced during satiety, implicating reduced opioid tone following 

chronic nicotine use (al'Absi, 2018). Utilizing fMRI as a biomarker could help probe 

whether dysregulation of the HPA axis via the endogenous opioid system contributes to 

abstinence-induced neural changes in stress reactivity.  

II. Factors Contributing to Stress-Induced Relapse  

Our findings highlight two biological factors (nicotine metabolism and neural stress 

reactivity) that may contribute to individual differences in subjective stress reactivity, 

thereby increasing the risk of stress-induced relapse. First, individuals with faster rates of 

nicotine metabolism (as evidenced by a higher NMR) experience heightened subjective 

stress during abstinence. The NMR is a heritable marker that accounts for individual, 

environmental, and biological factors that may contribute to differences in stress reactivity 

(C. E. Allenby et al., 2016). For example, nicotine metabolism is higher among women 

than men, and studies have shown that women are more likely to relapse, more likely to 

attribute relapse to stress, and more likely to report smoking for negative affect relief (A. 

M. Allen, Oncken, & Hatsukami, 2014; Benowitz, Lessov-Schlaggar, Swan, & Jacob, 

2006; Torres & O'Dell, 2016). However, gender was not associated with measures of 
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stress reactivity in our study, which suggests that the NMR may be capturing additional 

variation due to other factors that influence stress response. Further understanding these 

factors and the mechanisms that contribute to observed differences regarding NMR and 

neural stress reactivity can inform clinically-relevant factors to consider in smoking 

cessation treatment.  

The mechanisms that underlie abstinence-induced changes in stress reactivity are not 

well understood. Our study observed that heightened subjective stress reactivity is 

associated with increased abstinence-induced changes in neural stress reactivity. 

However, there was no relationship observed between these outcomes and abstinence-

induced cortisol response. Multiple interacting mechanisms contribute to nicotine 

dependence and stress reactivity, and this study was not designed to probe specific 

pathways other than cortisol response; however, we can speculate that one potential 

mechanism of heightened subjective stress might be abstinence-induced changes in 

nicotinic receptor availability resulting in alterations in dopaminergic signaling. Reduced 

extracellular dopamine concentrations in reward circuitry are associated with exacerbated 

withdrawal symptoms and may result in the increase in reported stress after 24 hours of 

abstinence. In addition, faster clearance of nicotine during abstinence in smokers with a 

higher NMR may alter dopaminergic signaling patterns in reward circuitry. In contrast to 

decreased dopaminergic signaling in reward circuitry, stress induction may result in an 

increase in dopaminergic signaling to the PFC, resulting in greater activation of the left 

IFG during abstinence (Badgaiyan et al., 2009; Thierry et al., 1976). These changes may 

occur independently of the alterations in the HPA axis that result in blunted cortisol 

response to stress independent of nicotine withdrawal state (al'Absi et al., 2003). However, 

it is also possible that the changes observed are the result of alterations in other pathways 
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that interact with stress and reward, such as the endogenous opioid system (Drolet et al., 

2001). The endogenous opioid system regulates activity in the HPA axis (al'Absi, 2018). 

Reduced opioid tone has been observed in smokers and may influence modulation of 

dopaminergic transmission resulting in increased negative affect (al'Absi et al., 2003). 

Future mechanistic studies could be used to probe these complementary pathways. For 

example, positron emission tomography (PET) studies can be used to measure nicotinic, 

dopamine, or mu-opioid receptor availability and assess relationships of receptor 

availability change with abstinence. Previous studies have found that slower metabolizers 

of nicotine have a reduction in thalamic nAChR availability and a greater reduction in 

craving compared to normal metabolizers during abstinence (Dubroff et al., 2015). In 

addition, in healthy individuals, PET studies have observed an increase in dopamine in 

the ventral striatum during the MIST (Dedovic et al., 2005). Improved understanding of 

intra-individual variation in stress reactivity during withdrawal and the underlying 

mechanisms will aid in the development of novel anti-stress treatments for nicotine 

dependence (Greenwald, 2018). 

III. Targeting Stress Reactivity during Early Abstinence  

The results of this study identify a neural stress system substrate that is associated with 

abstinence-induced change in subjective stress response, and suggest that the first 24 

hours of a quit attempt may be a vulnerable time period for stress-induced relapse. 

Treatments targeting stress reactivity may be particularly beneficial for smokers with a 

faster NMR. Our results add to the body of literature suggesting that chronic drug use 

results in adaptations in brain stress response systems that contribute to withdrawal 

symptoms (G. F. Koob et al., 2014). Targeting stress reactivity using effective stress 

management techniques during early abstinence may improve successful smoking 
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cessation. In addition, effective usage of current smoking cessation therapeutics (e.g. 

nicotine replacement therapy, bupropion, and varenicline) can be further refined by 

understanding the effects of these therapeutics on stress reactivity.  

Current stress mitigation strategies utilized to prepare smokers for cessation attempts 

include mindfulness training and cognitive behavioral therapy (CBT) with stress 

management. Mindfulness training reduces negative emotions and stress in clinical 

populations as well as healthy adults, which could improve cessation outcomes 

(Chambers, 2008; Goldin & Gross, 2010; S. G. Hofmann, A. T. Sawyer, A. A. Witt, & D. 

Oh, 2010). For example, one study that included two weeks of integrative body-mind 

training produced a significantly better smoking reduction and quitting rate compared to 

the relaxation training control (Y. Y. Tang, Tang, & Posner, 2013). Second, CBT including 

stress management training has been shown to reduce symptoms of stress and cortisol 

response in clinical populations and healthy young non-smoking men (Antoni et al., 2000; 

Cruess et al., 2000). In a study investigating the effects of CBT focusing on anger 

management and stress control on smokers’ quit rates, five additional sessions of CBT 

increased cessation rates after six months compared to standard cessation counseling 

(Yalcin et al., 2014). However, Kober et al. conducted a study comparing CBT and a 

mindfulness training program for smoking cessation, and examined differences in neural 

stress reactivity following each treatment (Kober et al., 2017). This study found that while 

both treatments were effective in reducing smoking, the mindfulness training group had a 

greater rate of a reduction in cigarette use treatment. In addition, the CBT group showed 

increased neural activity in limbic regions while the mindfulness group did not show 

greater neural activity in any regions during the stress reactivity paradigm. Our results may 

provide additional context by showing that increased neural activation during abstinence 
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is associated with increased subjective stress. Future studies may investigate the efficacy 

of stress management techniques in mitigating abstinence-induced neural stress 

reactivity, either alone or in conjunction with smoking cessation therapeutics.  

Lastly, there is little data on the effects of current smoking treatments on stress response 

during abstinence. Current smoking cessation therapeutics include nicotine replacement 

therapy, bupropion, and varenicline. While these medications have been shown to 

decrease craving and withdrawal symptoms during smoking cessation (Mooney & 

Sofuoglu, 2006; Shiffman, Ferguson, Gwaltney, Balabanis, & Shadel, 2006; West, Baker, 

Cappelleri, & Bushmakin, 2008), success of these treatments at one year ranges from 

seven to thirty percent (Bauld, Bell, McCullough, Richardson, & Greaves, 2010; Hughes 

et al., 2003; Shiffman, Brockwell, Pillitteri, & Gitchell, 2008; Silagy, Lancaster, Stead, 

Mant, & Fowler, 2004). As stress is cited as a primary contributor to relapse, understanding 

how these drugs effect stress reactivity may improve treatment success. In one study of 

smokers receiving bupropion treatment, bupropion did not have significant effects on 

response to stress during the nicotine withdrawal period (Kotlyar et al., 2011). Another 

study utilizing nicotine patch during abstinence found that the cortisol response to a 

laboratory stressor was not significantly different from smokers who were smoking as 

usual (Wardle et al., 2011). It is possible that these are not efficacious in targeting stress 

reactivity, however, additional investigation is needed on the effects of these treatments 

on subjective and neural stress reactivity.  

IV. Limitations and Future Directions 

This study is the largest fMRI study of abstinence-induced changes in stress reactivity. 

There are a few limitations. First, our study investigated cigarette smokers who did not 
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use other forms of nicotine. As the rate e-cigarette usage in the population continues to 

increase, it will be important to investigate the effect of abstinence from e-cigarettes on 

stress reactivity. Neural alterations and dysregulation of stress systems following chronic 

nicotine exposure may be different if patterns of nicotine exposure are different for e-

cigarette users. Second, our study utilized healthy smoking participants who did not have 

existing psychiatric comorbidities. However, smoking is highly prevalent among 

psychiatric populations, especially patients with anxiety disorder (Morissette, Tull, Gulliver, 

Kamholz, & Zimering, 2007; Piper, Cook, Schlam, Jorenby, & Baker, 2011). 

Understanding the effects of abstinence on stress reactivity among patients predisposed 

to greater anxiety will be especially important to improve smoking cessation outcomes in 

this population. Lastly, our study observed abstinence-induced changes that are 

associated with heightened subjective stress, but did not assess smoking cessation 

outcomes. Understanding how changes in neural reactivity during abstinence relate to quit 

outcomes is a priority. Previous studies have demonstrated the ability of abstinence-

induced neural changes to predict quit outcomes, implicating neural response in relapse 

behavior (C. Allenby et al., 2019; Loughead et al., 2015). Future studies utilizing short- 

and long-term quit attempts can assess the predictive validity of neural stress reactivity 

and the role of stress system substrates in relapse. 
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I. Neural Cue Reactivity During Acute Abstinence Predicts Short-Term Smoking 

Relapse 

This section has been published: 

Allenby, C., Falcone, M., Wileyto, E.P., Cao, W., Bernardo, L., Ashare, R., Janes, A., 
Loughead, J., Lerman, C. (2019). Neural Cue Reactivity during Acute Abstinence 
predicts Short-Term Smoking Relapse. Addict Biol: Epub.  

 

Abstract  

In smokers, neural responses to smoking cues can be sensitive to acute abstinence, but 

the degree to which abstinence-related cue reactivity contributes to relapse is not fully 

understood. This study addressed this question in a sample of 75 smokers who were 

motivated to quit smoking. Participants underwent blood oxygen level dependent (BOLD) 

functional magnetic resonance imaging (fMRI) during presentation of visual smoking cues 

and neutral stimuli on two occasions: once during smoking satiety and once following 24-

hour abstinence (order counter-balanced). Following the imaging sessions, participants 

received brief smoking cessation counseling prior to a short-term (7-day) quit attempt. The 

primary smoking cessation outcome was biochemically confirmed 7-day relapse. The 

secondary smoking cessation outcome measure was total number of self-reported days 

of abstinence. During abstinence (vs. satiety), smoking cue reactivity was significantly 

increased only in the anterior cingulate cortex (ACC); other regions showing a cue (vs. 

neutral) response did not exhibit an abstinence effect in the stringent whole-brain analysis. 

Participants that showed greater smoking cue reactivity in the ACC during acute 

abstinence (compared to smoking satiety) were more likely to relapse (OR=2.10 per 

standard deviation increase in percent signal change [abstinence minus smoking satiety], 

95% CI: 1.05 to 4.20, p=0.036). Greater abstinence-induced change in ACC activation 
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also predicted fewer total days abstinent (=-0.63, 95% CI=0.43 to 0.66, p<0.0001). This 

study provides the first evidence that changes in smoking cue reactivity in the ACC during 

acute abstinence predict smoking relapse, thereby improving our understanding of the 

neurobiology of smoking cessation.  

INTRODUCTION 

Each year, millions of smokers try to quit, but most smokers relapse within a few days 

(Hughes et al., 2004). One factor that may contribute to the risk of relapse is exposure to 

smoking-related cues. Frequent pairings between the visual, tactile, and olfactory 

sensations of smoking with the rewarding effects of nicotine result in a classical 

conditioning effect, such that even a picture of a cigarette can evoke strong cravings in 

chronic smokers (Shiffman et al., 2013). Among smokers who are trying to quit, these cue-

induced subjective cravings can promote relapse (Conklin et al., 2012; Ferguson and 

Shiffman, 2009). 

Functional magnetic reasoning imaging (fMRI) studies have begun to elucidate neural 

substrates involved in cue reactivity. A network of limbic and paralimbic regions (e.g. 

ventral striatum, amygdala, and anterior cingulate cortex [ACC]) has been implicated in 

cue reactivity across multiple addictive substances (Kuhn and Gallinat, 2011; Wilson et 

al., 2004). Meta-analyses of studies specifically investigating smoking cue reactivity 

identified consistent increases in activation in the medial prefrontal cortex (PFC), ACC, 

and posterior cingulate cortex in response to smoking cues (vs. neutral stimuli) 

(Engelmann et al., 2012; Wilson et al., 2004). These regions are involved with mesolimbic 

dopaminergic reward system, which is critical to the reinforcement of addictive drugs 

(Goldstein and Volkow, 2002). The same regions are also implicated in networks at rest 
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such as the default mode network and salience networks, which are associated with 

interoceptive processing and attention (Janes et al., 2015; Lerman et al., 2014). 

Alterations in connectivity of regions involved in interoceptive processing and attention 

have been associated with smoking cue reactivity (Wilcox et al., 2018) and smoking 

cessation outcomes (Claus et al., 2013; Wilcox et al., 2017). Exposure to smoking cues 

may divert attentional resources towards processing cues and trigger behavior resulting 

in relapse.   

Initial evidence supports an association of neural responses to smoking cues and relapse; 

however, the results are mixed (Courtney et al., 2016; Janes et al., 2017; Janes et al., 

2010; Owens et al., 2017; Versace et al., 2014). Among treatment-seeking smokers, those 

who relapsed showed heightened neural responses during smoking cue reactivity tasks 

during smoking satiety in a priori regions of interest including the bilateral insula, ACC, 

posterior cingulate cortex, and amygdala (Janes et al., 2010) as well as the right insula 

and dorsal striatum in a replication study (Janes et al., 2017). Another study of 55 smokers 

found that those with heightened brain response in dorsal striatum, medial PFC, and 

dorsolateral PFC to cigarette-related cues compared to pleasant stimuli during smoking 

satiety prior to quitting were less likely to be abstinent six months later (Versace et al., 

2014). However, another study found the reverse pattern: greater activation in response 

to smoking cues (vs. neutral stimuli) in the right ventral striatum, left amygdala, and 

anterior cingulate was associated with longer periods of abstinence following cessation 

(Owens et al., 2017). The majority of studies of neural cue reactivity conducted to date 

have examined smokers either in a state of abstinence or of satiety; few have directly 

examined whether response to cues differs during abstinence, and none of the prior 

studies utilized a within-subject design to evaluate whether neural responses to smoking 
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cues during abstinence (vs. smoking satiety) predict relapse. In one study that observed 

greater brain activation in the ACC during smoking cue reactivity following 24-hour 

abstinence (as compared to smoking satiety), smokers did not complete a quit attempt 

(McClernon et al., 2009).   

To investigate the relevance of abstinence-induced changes during cue reactivity to quit 

success, we conducted a within-subject investigation of 75 treatment-seeking smokers. 

We hypothesized that heightened smoking cue reactivity during abstinence (relative to 

smoking satiety) in the attentional, cognitive control, and reward networks would predict 

the likelihood of short-term smoking relapse (biochemically confirmed in the first 7 days 

of a quit attempt).  

METHODS 

Participants  

This paper reports on the effects of abstinence versus satiety on neural cue reactivity as 

part of a larger ongoing study of neural predictors of smoking relapse. Sample size for the 

present report was based on an estimated effect size of abstinence on domains involved 

in smoking behavior (e.g. cue reactivity, stress reactivity); a sample of n=75 provides 80% 

power to detect an effect size of Cohen’s d=0.33, similar to effect sizes observed in 

previous studies (Ashare et al., 2016; Loughead et al., 2015; Owens et al., 2017). 

Participants were 75 treatment-seeking smokers ages 18 to 65 who reported smoking ≥5 

cigarettes/day for ≥6 months and were recruited through media advertisements. Exclusion 

criteria were: exhaled carbon monoxide (CO) breath sample <8ppm at eligibility 

assessment; current use of nicotine products other than cigarettes (such as chewing 

tobacco, snuff, e-cigarettes or nicotine replacement therapy); pregnancy, planned 
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pregnancy or breastfeeding; history of DSM-IV Axis I psychiatric or substance disorders 

within the past two years except nicotine dependence; use of psychotropic medications; 

history of significant brain injury; left-handedness; fMRI contraindicated material in the 

body; claustrophobia; low or borderline intelligence (<85 score on Shipley’s Institute of 

Living Scale; Zachary, 1986); breath alcohol test ≥0.01; and any impairment that would 

prevent task performance. Fig. 1 shows the CONSORT flow diagram for the study. 

Screening 

All procedures were approved by the University of Pennsylvania Institutional Review 

Board and carried out in accordance with the Declaration of Helsinki. Initial telephone 

screen was followed by an in-person eligibility assessment. All participants provided 

written informed consent, an exhaled CO breath sample to confirm smoking status, a 

breath alcohol measurement, a urine sample to assess for the use of study-prohibited 

drugs, and if applicable, participants were provided a self-administered pregnancy 

screening. Eligible participants completed a smoking history questionnaire (cigarettes per 

day [CPD]) and the Fagerström Test for Cigarette Dependence (FTCD; Fagerstrom, 

2012). 

fMRI Sessions 

The neuroimaging experiment was a within-subject design with two blood-oxygen-level-

dependent (BOLD) fMRI sessions scheduled at least 1 week apart in counterbalanced 

order: 1) during smoking satiety and 2) following 24-hour abstinence (i.e., abstinence 

challenge). All sessions were scheduled to begin between 8 a.m.-10 a.m. Participants with 

a positive urine drug screen, a breath alcohol test ≥0.01, a CO reading ≥8ppm at the 

abstinent session, or a CO reading <8ppm at the smoking satiety session were excluded. 



70 
 

Participants then completed the Minnesota Nicotine Withdrawal Scale (MNWS; Hughes 

and Hatsukami, 1986) and the Questionnaire of Smoking Urges (QSU-Brief; Cox et al., 

2001). For the smoking satiety session, participants smoked a single cigarette 

approximately 1 hour prior to cue exposure (Loughead et al., 2015). Participants 

completed a short practice session to become familiar with the cue task and response 

device prior to being escorted to the scanning facility. 

fMRI Data Acquisition 

BOLD fMRI was acquired with a Siemens Prisma 3T system (Erlangen, Germany) using 

a whole-brain, single-shot gradient-echo (GE) echoplanar sequence with the following 

parameters: TR/TE=1000/30ms, FOV=192 mm, matrix=64×64, slice thickness/gap=2.0/0 

mm, 78 slices, effective voxel resolution of 2×2×2 mm. RF transmission utilized a 

quadrature body-coil and reception used a 64-channel head coil. Prior to BOLD fMRI, 5-

min magnetization-prepared, rapid acquisition gradient echo T1-weighted image 

(MPRAGE, TR 2200ms, TE 4.67ms, FOV 240mm, matrix 192×256, effective voxel 

resolution of 1×1×1mm) was acquired for anatomic overlays of functional data and to aid 

spatial normalization to standard atlas space. 

Cue Reactivity Task  

Cue reactivity was assessed during BOLD imaging using a validated event related 

smoking cue task (Janes et al., 2015). During the task, participants viewed grayscale 

images of smoking cues and neutral stimuli. Smoking cues (CUE) were images of people 

smoking, people holding cigarettes, and smoking-related items such as cigarettes. Neutral 

stimuli were images matched for visual content to a smoking image (e.g. a person with a 

pen in mouth, neutral items such as pens). To ensure participant engagement, infrequent 
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target stimuli (pictures of animals) were presented and participants were instructed to 

respond with button press. The cue task consisted of 20 CUE, 20 neutral, and four target 

stimuli each presented for 4 seconds. Images were presented with a variable ISI (6-24 

seconds) during which a fixation point appeared on a grey screen (baseline). Stimuli were 

pseudo-randomized with no more than two of an image type presented in a row. Before 

and after the cue reactivity task, participants completed a 2-item questionnaire to assess 

craving and urge to smoke (Falcone et al., 2016). The total task duration was 10 minutes 

and 36 seconds.  

Smoking Cessation Procedures 

Following completion of both imaging sessions, participants had an individual pre-quit 

counseling session using counseling protocols adapted in previous large placebo-

controlled trials (Lerman et al., 2015). During this counseling session, participants 

discussed strategies for quitting and relapse prevention with a trained smoking cessation 

counselor, and set a target quit date to occur ~1 week later. Participants completed a brief 

in-person visit on the target quit date, which included a booster counseling session to 

reinforce strategies discussed at the pre-quit visit. Following the target quit day, 

participants received a brief (15 minute) mid-week booster counseling session and verified 

quit status with a CO reading; quit status was also evaluated at one week following target 

quit day. At this visit, smoking behavior (cigarettes per day) was assessed for each day 

following the target quit day using timeline follow-back (Brown et al., 1998). In addition to 

self-report, quit status was biochemically confirmed using a CO breath sample and 

NicAlert urine test strips (Nymox Pharmaceutical Corporation, Hasbrouck Heights, NJ). 

NicAlert test strips utilized an immunochromatographic assay to provide a semi-

quantitative measure of the concentration of cotinine (the primary metabolite of nicotine) 
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in urine. Results appear as categorical levels of usage. Following manufacturer guidelines, 

NicAlert results of level two or below (equivalent to a urine cotinine concentration of <100 

ng/ml) were required to biochemically confirm abstinence, in addition to a CO reading of 

≤5ppm at the two monitoring visits: 3 days and 7 days following target quit date (Perkins 

et al., 2013). 

Image Preprocessing and Time Series Analysis  

BOLD time series data were pre-processed using standard image analysis procedures 

executed with fMRI Expert Analysis Tool (FEAT of FSL [FMRIB’s Software Library, Oxford, 

UK]). Pre-processing included motion correction (MCFLIRT; Jenkinson and Smith, 2001), 

slice time correction (interleaved), skull stripping using BET (Smith, 2002), spatial 

smoothing (6mm), and high pass filtering (100s). The median functional volume was co-

registered to the anatomical T1-weighted structural volume and transformed into standard 

anatomical space (T1 MNI template) with FLIRT (Jenkinson and Smith, 2001). Pre-

processed data was analyzed using FILM (FMRIB’s Improved General Linear Model). The 

model included regressors for CUE, neutral stimuli, and target stimuli convolved with 

double gamma hemodynamic response function. The temporal derivative and nuisance 

regressors for standard plus extended motion parameters were also included. The primary 

contrast was CUE minus neutral. This contrast isolates the additive effects of CUE (vs. 

neutral) by accounting for the shared cognitive demands of processing visual stimuli. All 

analyses were completed in subject space and transformation parameters were later 

applied to statistical maps for group-level analyses.  

Image Quality Assessment 



73 
 

 Overall signal quality was measured by calculating mean temporal signal to noise ratio 

(tSNR) and participant motion was assessed with mean relative displacement 

(Satterthwaite et al., 2014). Participants with low tSNR (>3SD below mean) or mean 

relative displacement (>3SD from mean) were identified for further evaluation. Using these 

procedures, two participants were excluded for relative motion greater than 0.5mm. One 

additional participant was excluded due to incomplete data set, resulting in a final sample 

of 75 participants.  

Whole Brain Image Analysis 

Group analyses were conducted using FSL’s local analysis of mixed effects method (FSL 

FLAME1; Woolrich et al., 2004). First, mean task activation across session was examined 

to identify regions sensitive to CUE (vs. neutral) stimuli. Next, we tested the resulting 

contrasts (CUE vs. baseline, neutral vs. baseline, CUE vs. neutral) for between session 

effects (abstinence vs. smoking satiety) using a whole brain paired t-test. Resulting Z 

statistic images were corrected for multiple comparisons using voxel-wise correction 

accounting for the effective resolution (smoothness) of the data (Worsley et al., 1992). 

Appropriate anatomical assignment for peak activation was determined using the 

Talairach atlas (Talairach and Tournoux, 1998). Due to the small number of supra-

threshold voxels yielded by voxel-wise correction, cluster correction (Z≥2.3, p≤0.01) was 

used to create an ACC mask for extraction of the mean percent signal change (Worsley, 

2001). Percent signal change was used to test the relationship between brain signal and 

behavioral measures outlined below.  

Outcome measures 
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The primary smoking cessation outcome measure was 7-day relapse; abstinence was 

biochemically verified with CO and cotinine assessment (see above). The 7-day 

monitoring period was chosen because the majority of smokers relapse within the first 7 

days of a quit attempt (Hughes et al., 2004). This measure is a validated predictor of long-

term abstinence (Ashare et al., 2013). The secondary smoking cessation outcome 

measure was total number of self-reported days quit assessed using timeline follow back 

for the 7-day monitoring period (Ashare et al., 2013). 

Statistical Analysis 

Descriptive statistics were obtained for all variables. Paired t-tests (abstinence versus 

smoking satiety) were used to examine expected abstinence challenge effects on 

differences in subjective craving and withdrawal. Logistic regressions were used to assess 

the relationship between percent signal change and short-term quit outcome. For these 

analyses a standardized difference score (abstinence minus smoking satiety for 

CUE>neutral percent signal change) was calculated. A logistic regression model (Stata 

logistic, College Station, TX) was used to predict dichotomized 7-day quit success from 

the standardized abstinence-induced change in smoking cue reactivity. Abstinence-

induced changes in craving and withdrawal, sex, age, baseline cigarettes per day (CPD), 

and CO at intake were entered as covariates to reduce bias associated with confounding. 

A second binomial regression model (Stata binreg, College Station, TX) was used for total 

number of days quit using the same covariates.  

RESULTS 

Baseline Sample Characteristics and Abstinence Challenge Effects  
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Seventy-five participants were included in the analysis. Of these, 40 (53.3%) were male, 

44 (58.7%) were African-American, and 17 (22.7%) had completed some education 

beyond high school. The mean age was 43 years (SD 12.7), the mean CPD was 13.9 (SD 

5.3), the mean FTCD score was 4.8 (SD 1.7), and mean CO at intake was 15.1 ppm. 

Exhaled CO was significantly lower at the abstinent session (mean 2.6 ppm, SD 5.3 ppm) 

than at the smoking satiety session (mean 16.3 ppm, SD 6.6 ppm, p<0.0001), indicating 

compliance with the abstinence requirement. Subjective craving (QSU) and withdrawal 

(MNWS) were significantly higher at the abstinence session (craving mean 45.2, SD 14.3; 

withdrawal mean 15.2, SD 8.5) than at the smoking satiety session (craving mean 29.5, 

SD 13.6; withdrawal mean 7.84, SD 6.7; ps<0.00001).  

Whole Brain Analysis of Cue Reactivity 

Whole brain analysis of smoking cue reactivity revealed significantly greater activation to 

CUE (vs. neutral) in the medial frontal gyrus/ACC, angular gyrus, middle temporal gyrus, 

posterior cingulate cortex/cingulate gyrus, inferior frontal gyrus, and middle frontal gyrus 

(Table 1; Fig. 2). This pattern of brain activation is consistent with previous neuroimaging 

studies and meta-analysis of smoking cue reactivity (Engelmann et al., 2012; Janes et al., 

2015; Owens et al., 2017). No voxels survived correction threshold for the neutral vs. CUE 

contrast.  

Testing abstinence vs. smoking satiety differences in CUE reactivity (CUE>neutral) 

revealed significantly greater activation during the abstinence session in the ACC (Fig. 

3A). There were no regions with significant activation for smoking satiety>abstinence 

session. When examining CUE>baseline and neutral>baseline, the ACC showed 
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significant activation during abstinence for the CUE>baseline only (p<0.05 corrected). 

There were no significant effects of abstinence on neutral>baseline.  

Predicting 7-Day Quit Status  

Twenty-three participants (30.7%) were biochemically verified to have remained quit for 

the 7-day period and 52 (69.3%) had relapsed. Abstinence-induced change in ACC BOLD 

signal significantly predicted quit outcome; participants who showed a greater increase in 

BOLD signal during abstinence (compared to satiety) were more likely to relapse 

(OR=2.10 per standard deviation increase in percent signal change [abstinence minus 

smoking satiety], 95% CI: 1.05 to 4.20, p=0.036) (Fig. 3B). As a covariate, a greater 

increase in subjective withdrawal symptoms also significantly predicted increased odds of 

relapse (OR=1.10, 95% CI=1.02 to 1.19, p=0.016); BOLD signal change in ACC was a 

significant predictor after controlling for subjective withdrawal and craving. 

Predicting Total Number of Days Quit   

The mean total number of days quit in the 7-day monitoring period was 4.0 (SD 2.96). 

Participants who showed a greater increase in BOLD signal during abstinence (vs. 

smoking satiety) reported fewer days of abstinence following the target quit day (=-0.63, 

95% CI=0.43 to 0.66, p<0.0001).  

DISCUSSION 

This study evaluated the relationship between brain responses to smoking cues during 

acute abstinence (vs. satiety) and short-term relapse in 75 treatment-seeking smokers. A 

whole-brain analysis in this large sample of smokers revealed that of the brain regions 

sensitive to smoking (vs. neutral) cues, only the ACC is sensitive to abstinence-induced 
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changes in smoking cue reactivity. Regression-based models showed that heightened 

abstinence-induced BOLD signal change in this region during CUE exposure (vs. neutral 

stimuli) predicted 7-day quit status and total number of days quit after controlling for 

changes in subjective withdrawal and craving. These data suggest that the changes that 

occur in the ACC during an abstinence challenge play a role in relapse during smoking 

cessation attempts beyond the effects of subjective withdrawal and craving. While 

previous studies have shown that smoking cue reactivity is associated with relapse (Janes 

et al., 2017; Versace et al., 2014), this study is the first to examine smoking cue reactivity 

in acute abstinence vs. satiety. 

Increased BOLD signal change in the ACC during exposure to CUE (vs. neutral stimuli) is 

consistent with prior reports (Brody et al., 2002; McBride et al., 2006; McClernon et al., 

2005; Wilson et al., 2005). A meta-analysis using 26 studies (12 studies that required 

participants to abstain and 14 studies that instructed participants to smoke ad libitum) 

found that smoking cues were associated with activation of a larger portion of the rostral 

ACC in nicotine abstinent smokers relative to smokers smoking as usual, underscoring 

the importance of the ACC for cue reactivity and highlighting the need to measure brain 

activity in participants during acute abstinence, as well as during satiety (Wilson and 

Sayette, 2015). The ACC is thought to play a key role in conflict monitoring, and 

suppression of ACC activity is integral to shifting attention (Botvinick et al., 2004; Bush et 

al., 2000). Thus, it is plausible that activation in the ACC might be required to manage 

attention to cues or to cope with disruptive stimuli during acute abstinence (McBride et al., 

2006). Indeed, nicotine has been found to improve attention by deactivating regions such 

as the anterior and posterior cingulate cortex (Hahn et al., 2007). Volitional reduction in 

ACC activity has also been associated with a reduction in craving, and active resistance 
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to cue-induced craving in bupropion treated smokers is also associated with reduced 

activation in the bilateral ACC, left ventral striatum, and left medial orbitofrontal cortex 

(Culbertson et al., 2011; Li et al., 2013). Differential engagement of the ACC may be driven 

by the differences in the degree to which abstinence vs. satiated smokers experienced the 

desire to smoke (Wilson and Sayette, 2015); our results suggest that changes in ACC 

activation during abstinence predict relapse above and beyond the effect of smoking 

urges. Future studies assessing functional connectivity could further probe the relevance 

of urge intensity. The ACC is a node of the salience network, and connections between 

the salience network and neural networks such as the default mode network are disrupted 

during abstinence (Lerman et al., 2014). Importantly, utilizing the within-subject design 

allowed us to test the effect of altered cue-elicited activation during abstinence on relapse, 

an important clinical outcome (Falcone et al., 2016; Loughead et al., 2009). Failure to quit 

smoking is often attributed to the presence of smoking cues (Ferguson and Shiffman, 

2009); the observation that the ACC is both sensitive to abstinence and that changes in 

activation during abstinence compared to smoking satiety were predictive of smoking 

cessation indicates an essential role for the ACC in relapse during abstinence.  

Several of the task active regions identified by the CUE>neutral contrast did not show an 

effect of abstinence in the between-session analysis. This is consistent with meta-analysis 

results suggesting that abstinence does not globally increase activation in all brain regions 

sensitive to smoking cue reactivity (Engelmann et al., 2012). These findings could indicate 

that certain cue reactive regions are robustly responsive to cues regardless of acute 

changes in smoking behavior. It is possible that a high level of salience is already ascribed 

to cues during satiety and therefore a ceiling effect may prevent substantial increases in 

activation during abstinence in much of the network (Wilson and Sayette, 2015). However, 
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changes in the degree of connectivity between these regions have been associated with 

cue reactivity, nicotine dependence, and smoking cessation outcomes. For example, a 

study by Wilcox et al. found that food cues were associated with greater deactivation of 

the default mode network compared to smoking cues (Wilcox et al., 2018). This is 

consistent with previous findings that the default mode network is less suppressed during 

smoking cue exposure (Janes et al., 2016). A second study showed that changes in 

connectivity with the left insula in response to smoking vs. food cues correlated with FTCD 

in areas such as the ACC, pre/post-central gyrus, left caudate, and bilateral thalamus 

(Claus et al., 2013). Greater coupling of the insula and dorsal ACC at rest is significantly 

correlated with increased cue reactivity in brain areas associated with attention (Janes et 

al., 2015). Lastly, enhanced connections between the caudate and dlPFC during rest in 

participants with high subjective withdrawal significantly predicted worse treatment 

outcome in a varenicline treatment trial (Wilcox et al., 2017). Together, these findings 

suggest that functional connectivity within and between regions in the cue reactivity 

network plays an important role in smoking behavior and treatment outcomes.  

The current study is the largest to assess acute abstinence-induced changes in smoking 

cue reactivity and to link these changes to smoking relapse. Our sample of 75 smokers 

(23 quit, 52 relapsed) is a strength of our study, and our proportions of quitters and 

relapsers are representative of quitting in a natural environment (Borland et al., 2012). As 

part of a larger longitudinal study, 1987 survey respondents had reported a recent quit 

attempt; 21.5% (95% CI: 19.7-23.3) of respondents reported a quit length of 1-6 days and 

29.0% (CI: 27.0-31.0) had reported a quit length of 7-29 days (Borland et al., 2012). 

However, these results must be interpreted in light of several weaknesses. Due to the task 

design, the relative contribution of CUE and neutral stimuli to change in subjective craving 
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could not be discerned. Also, the corrected abstinence minus smoking satiety contrast 

resulted in a relatively small number of contiguous voxels above threshold (32 mm3). 

However, we utilized a conservative correction to localize the area of peak activation 

reflecting response of this region as a whole to abstinence. The percent signal change 

extracted from the larger mask encompassing this region (Z>2.3; volume=19,672 mm3) 

significantly predicted short-term smoking relapse after correcting for individual 

differences such as age, sex, and abstinence-induced withdrawal. Future studies should 

be powered to test the moderating influence of these variables on neural cue reactivity. 

Additionally, the observed effect in the whole brain abstinence>smoking satiety contrast 

is consistent with previous findings that ACC activation during smoking cue reactivity is 

sensitive to early abstinence and relapse (Janes et al., 2010; McClernon et al., 2009; 

Owens et al., 2017).  

The results of this study add to our understanding of the neurobiological effects of early 

abstinence that may contribute to smoking cessation outcomes (Bough et al., 2013; 

Loughead et al., 2015). Altered neural activity during early abstinence could provide an 

early signal of treatment efficacy for medication development, or a directed mechanistic 

target for novel interventions. In addition, imaging measures can clarify the pathways 

linking pre-treatment factors (such as cue reactivity) with clinical outcomes (such as 

treatment response). Measures of brain function may correlate with behavioral 

phenotypes that contribute to treatment response, or provide insight into the relative 

contributions of the multiple pathways that may underlie the effects of a treatment. An 

improved understanding of the mechanisms contributing to relapse could guide research 

to refine existing treatments; for example, to optimize treatment for certain subpopulations 

of patients or optimize dosing for individuals. 



81 
 

Acknowledgements  

This research was supported by the National Institutes of Health (R35 CA197461 and R01 

DA041402 to Dr. Caryn Lerman) and the Pharmacology Graduate Group T-32 Training 

Grant (T32GM008076 to Dr. Julie Blendy). The funding source had no role in the study 

design, collection, analysis or interpretation of the data, writing the manuscript, or the 

decision to submit the article for publication. 

Author Contributions  

CL and JL conceived of and led this project. MF, RA, and AJ contributed to the study 

design and selection of task and measures. EPW, JL, MF, and WC contributed to 

development of analytical approach, and CA conducted the analysis. LB contributed to 

study design and served as study coordinator. CA drafted the manuscript and all authors 

contributed to its revision for critical intellectual content and approved the final version. 



82 
 

Table 1. Brain Reactivity to CUE>Neutral Stimuli.  

RegionA BAB HemC Z-maxD VoxelsE XF Y Z 

MFG/ACC 10 L 
7.7 8518 -4 54 16 

Angular Gyrus 39 L 
9.0 6110 -52 -62 34 

MTG 21 R 
7.6 3638 56 4 -34 

PCC/Cingulate Gyrus 9 L 
8.7 3076 -6 -52 28 

IFG 45 R 
6.3 814 52 38 -6 

Middle Frontal Gyrus 11 L 
6.8 216 -44 -46 -22 

ASignificant activation p>0.05  BBA = Brodmann Area  CHEM = Cerebral Hemisphere 
DZ-MAX values represent peak EContiguous voxel count FMNI coordinates (mm) 
 

Abbreviations: MFG: Medial Frontal Gyrus; ACC: Anterior Cingulate Cortex; MTG: Middle Temporal Gyrus;  

PCC: Paracingulate Cortex; IFG: Inferior Frontal Gyrus  
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Figure 1. CONSORT participant flow diagram. 



84 
 

 

Figure 2. Whole Brain Analysis CUE>neutral. Mean smoking cue reactivity 
(CUE>neutral) showing task active brain regions for all sessions (p≤ 0.05, corrected).   
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Figure 3. Abstinence-Induced Change in Neural Cue Reactivity Predicts 7-day Quit 
Status. A, The whole brain analysis of the abstinent>smoking satiety session revealed 
significant activation (red) in the anterior cingulate cortex (p≤0.05, corrected). A mask 
(yellow) was generated using cluster correction procedures (Z≥2.3, p≤0.01) for percent 
signal change extraction. B, Participants who showed a greater increase in ACC percent 
signal change during abstinence (vs. satiety) were more likely to relapse (OR=2.10 per 
standard deviation increase in percent signal change, 95% CI: 1.05 to 4.20, p=0.036). 
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Abstract 

Quitting smoking significantly reduces the risk of tobacco-related morbidity and mortality, 

yet there is a high rate of relapse amongst smokers who try to quit.  Phenotypic biomarkers 

have the potential to improve smoking cessation outcomes by identifying the best 

available treatment for an individual smoker.  In this review, we introduce the nicotine 

metabolite ratio (NMR) as a reliable and stable phenotypic measure of nicotine 

metabolism that can guide smoking cessation treatment among smokers who wish to quit. 

We address how the NMR accounts for sources of variation in nicotine metabolism 

including genotype and other biological and environmental factors such as estrogen 

levels, alcohol use, body mass index, or menthol exposure. Then, we highlight clinical 

trials that validate the NMR as a biomarker to predict therapeutic response to different 

pharmacotherapies for smoking cessation. Current evidence supports the use of nicotine 

replacement therapy for slow metabolizers, and non-nicotine treatments such as 

varenicline for normal metabolizers. Finally, we discuss future research directions to 

elucidate mechanisms underlying NMR associations with treatment response, and 

facilitate the implementation of the NMR as biomarker in clinical practice to guide smoking 

cessation.  
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I.  Introduction 

Tobacco smoking is responsible for over six million deaths worldwide each year, 

and the World Health Organization predicts that this number will rise to eight million per 

year by 2030 (World Health Organization 2013).  Tobacco-related morbidity and mortality 

cost the world an estimated US$500 billion per year in terms of direct health care costs 

and lost productivity (Shafey et al. 2009; World Health Organization 2008).  Quitting 

smoking significantly reduces the risk of tobacco-related morbidity and mortality (U.S. 

Department of Health and Human Services 1990), yet the addictive properties of tobacco 

result in high rates of relapse among smokers who try to quit (Centers for Disease Control 

and Prevention 2010). 

The primary addictive component in tobacco is nicotine, a stimulant which exerts 

its rewarding effects through the release of dopamine and other neurotransmitters in the 

brain (Centers for Disease Control and Prevention 2010).  The DSM-V defines tobacco 

use disorder as a problematic pattern of tobacco use leading to clinically significant 

impairment or distress, as manifested by at least two of the symptoms listed in Table 1 

occurring within a 12-month period (American Psychiatric Association 2013).  Nicotine 

addiction is a chronic, relapsing disorder; many smokers attempt to quit smoking each 

year, but of these smokers, only 4-7% are able to quit successfully (Fiore et al. 2008).  

Currently, there are only three approaches to pharmacological treatment approved 

in the United States and European Union for smoking cessation: nicotine replacement 

therapies, bupropion, and varenicline (Cahill et al. 2013).  The success of these treatments 

at 1 year range from approximately 7% to 30% (Bauld et al. 2010; Hughes et al. 2003; 

National Institute for Clinical Excellence 2002; Silagy et al. 2004).  Varenicline, an α4β2 
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nicotinic acetylcholine receptor (nAChR) partial agonist, and bupropion, a dopamine and 

norepinephrine transporter inhibitor, are non-nicotine treatments which are intended to 

mitigate cravings and withdrawal symptoms through direct or indirect actions on dopamine 

levels in the brain (Cahill et al. 2013). Varenicline is thought to also act as an antagonist 

at α4β2 nAChRs to block the reinforcing effects of nicotine during a quit attempt (Cahill et 

al. 2012).  A randomized, placebo-controlled trial of varenicline and bupropion for smoking 

cessation found that 23% of participants treated with varenicline and 14.6% of those 

treated with buproprion were continuously abstinent for one year following treatment, 

compared to 10.3% of those treated with placebo (Jorenby et al. 2006).  Nicotine 

replacement therapy (NRT) aims to replace nicotine from cigarettes by delivering it slowly 

via gum, nasal spray, or transdermal patches.  A meta-analysis of studies examining NRT 

for smoking cessation found higher cessation rates one year after treatment with active 

NRT (12.2%) compared to placebo (7.0%) (Etter and Stapleton 2006).  

The application of precision medicine, which tailors treatment to an individual 

based on genetic and lifestyle factors, has the potential to improve smoking cessation 

outcomes by identifying the best available treatment for each smoker who wants to quit 

(Bough et al. 2013; Collins and Varmus 2015; National Research Council 2011).  

Identifying and understanding factors that contribute to individual variability in treatment 

response is a key step to the development of personalized smoking cessation treatment.  

In this article, we review the discovery and validation of a genetically-informed biomarker 

of smoking cessation treatment outcomes: the nicotine metabolite ratio, or NMR.   

II. The nicotine metabolite ratio as a biomarker of nicotine clearance 

Nicotine Metabolism and the Reliability of the NMR 
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Nicotine is metabolized primarily by cytochrome p450 (CYP) 2A6, and weakly by 

CYP2B6, CYP2D6, and CYP2E1 enzymes (Messina et al. 1997; Nakajima et al. 1996; 

Yamanaka et al. 2005; Yamazaki et al. 1999). The primary metabolite of CYP2A6-

mediated metabolism of nicotine is cotinine, which is further metabolized to 3’-

hydroxycotinine (3HC). This pathway accounts for 70-80% of nicotine metabolism, with 

cotinine metabolites comprising most of the urinary metabolites (Benowitz et al. 1995; 

Hukkanen et al. 2005). The half-life of cotinine is approximately 13-19 hours, which is 

much longer than the half-life of either nicotine (1-2 hours) or 3HC (approximately 5 hours) 

(Malaiyandi et al. 2006).  Due to its long half-life, cotinine concentrations in the blood and 

urine of smokers are relatively stable throughout the day; however, they are still somewhat 

dependent on the time since last cigarette (Benowitz et al. 1999; Benowitz et al. 2003).  

Because 3HC concentrations are dependent on CYP2A6-mediated cotinine metabolism 

(Benowitz and Jacob 2001; Benowitz et al. 2003), the ratio of 3HC to cotinine is a stable 

measure of CYP2A6 activity that is not dependent on the timing of last nicotine intake.  

The ratio of 3HC to cotinine, or nicotine metabolite ratio (NMR), is a validated 

phenotypic measure of nicotine metabolism; larger ratios indicate faster nicotine 

clearance. The NMR can be measured reliably in saliva or plasma, has minimal diurnal 

variation and is independent of smoking patterns or time since last cigarette in smokers 

who smoke more than 5 cigarettes per day (Dempsey et al. 2004; Lea et al. 2006; Levi et 

al. 2007).  NMR values obtained from saliva or urine are highly correlated with plasma 

NMR measurements (r=.7) and can be used as proxy measures for plasma NMR (St Helen 

et al. 2012; Swan et al. 2005).  Test and retest reliability of the NMR has been 

demonstrated in studies with treatment-seeking and non-treatment seeking smokers 

(Hamilton et al. 2015; St Helen et al. 2012). In a study of ad-libitum smokers over a 44 
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week period, the NMR was reliable across repeated measurements (reliability 

coefficient=.70; (St Helen et al. 2012). In plasma samples taken 2-3 weeks apart, short-

term reliability was high for NMR quartile assignment (weighted k=.72, 95% CI=.64 to 

.83%). Test/retest reliability of classification of slow (quartile 1, NMR≤0.24) versus 

normal/fast metabolizers (quartiles 2-4, NMR >0.24) was comparable to that observed for 

raw NMR values and NMR quartile assignment (k=.89; 95% CI= .77-1.00), with consistent 

classification as slow versus normal across assessments for 96% of the sample (Hamilton 

et al. 2015).  

In a study conducted by Tanner et al (2015), plasma and urine samples were sent to 

eight different laboratories that used different analytical methods to measure NMR.  

Measures of plasma NMR were highly correlated between analytical methods; urine 

metabolite measurements were more variable but still in good agreement (Tanner et al. 

2015). The NMR is not affected by sampling time of day or storage temperature; 

measurements of the NMR in whole blood are stable at 4°C over a 72-hour period, and in 

plasma and saliva at room temperature over 14 days (Lea et al. 2006; St Helen et al. 

2012). The NMR is thus robust to differences in measurement protocols as well as 

laboratory site.  

NMR measurements are consistent within smokers over time despite different patterns 

or quantity of smoking (Levi et al. 2007).  Of particular interest are those who are reducing 

their nicotine intake over time (St Helen et al. 2013). In a study conducted in 30 participants 

who decreased plasma cotinine levels by 50% over 24 weeks, NMR assessments were 

reproducible across 4 separate time points. Plasma NMR showed an absolute change of 

28.5%, which was not significant with or without controlling for the effects of age, body 

mass index, gender, and race (St Helen et al. 2013). This change in plasma NMR is 
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comparable to that of variability in ad-libitum smokers (St Helen et al. 2012). Further 

evidence for the stability of NMR during nicotine reduction periods was demonstrated by 

measurements of urine NMR during 12 weeks of nicotine reduction where nicotine 

replacement therapy was used as desired (Mooney et al. 2008).  

Sources of inter-individual variation in nicotine metabolism 

Studies have shown the NMR to be highly correlated with CYP2A6 activity 

(Dempsey et al. 2004; Hamilton et al. 2015; Johnstone et al. 2006; Malaiyandi et al. 2006).  

This is a key advantage of a phenotypic measure such as the NMR because individual 

nicotine metabolism rates are influenced by biological and environmental factors as well 

as genotype.  Genetic variation in CYP2A6 contributes to differences in CYP2A6-mediated 

metabolism; however, there are over 30 known CYP2A6 variations (Nakajima et al. 2002; 

Oscarson 2001; Xu et al. 2002; http://www.cypalleles.ki.se).  Overall, 67% of the variability 

of the NMR in plasma is attributable to genetic effects, and twin studies suggest that there 

are additional unknown genetic factors (Swan et al. 2009). A genome-wide association 

study conducted by Loukola et al (2015) in three large Finnish cohorts (total n=1518) 

identified novel gene variants influencing the NMR, confirming that genetic effects are a 

major determinant of inter-individual variance in NMR.  This study found the strongest 

association with NMR in the CYP2A6 gene region.  Three independent novel signals 

combined in CYP2A6 were found to account for a total of 31% of variance in NMR in the 

study sample.  The known CYP2A6 polymorphisms can be associated with increased, 

reduced, or null activity. For example, CYP2A6 *9 and *12 are reduced function variants 

and CYP2A6 *2 and *4 are loss of function variants which have been associated with 

slower plasma clearance of nicotine and cotinine (Benowitz et al. 2006b).  CYP2A6*4 

homozygous subjects demonstrate low plasma cotinine levels and urinary excretion of 



96 
 

cotinine and 3HC after smoking or nicotine administration (Kitagawa et al. 1999; Nakajima 

et al. 2000; Xu et al. 2002; Zhang et al. 2002). On the other hand, individuals with three 

functional CYP2A6 genes resulting from gene duplication (CYP2A6*1X2/CYP2A6*1) have 

higher metabolic capacity and lower nicotine to cotinine ratio (Rao et al. 2000).  Plasma 

NMR correlates with the predicted activity of CYP2A6 based on genotype (Malaiyandi et 

al. 2006); carriers of reduced function or loss of function such as CYP2A6 alleles *2, *4, 

*9, or *12 have lower NMR values than those who are homozygous wild-type carriers, 

indicating slower nicotine metabolism (Dempsey et al. 2004; Johnstone et al. 2006; 

Malaiyandi et al. 2006).  

Observed ethnic differences in nicotine clearance may stem in part from population 

variability in CYP2A6 alleles.  For example, African-Americans have higher frequencies of 

reduced function variants and higher cotinine levels for a given tobacco exposure than 

Caucasian smokers (50% versus 20%, respectively) (Zhu et al. 2013). In Japanese and 

Korean populations, the combined frequencies of null and reduced activity alleles are 53% 

and 40%, and in Chinese-Americans the combined frequency of null and reduced activity 

alleles is 31% (Ariyoshi et al. 2002; Benowitz et al. 2002; Pitarque et al. 2001; Yoshida et 

al. 2003; Yoshida et al. 2002).  Distributions of reduced function/null alleles are listed in 

Table 2 with corresponding mean NMR values. Typically, Caucasians have higher rates 

of nicotine metabolism than Black and African-American populations, while Asians have 

the slowest rates of metabolism and Hispanics are not significantly different than whites 

(Rubinstein et al. 2013b).  Overall, relative NMR distributions parallel distributions of 

reduced function and null alleles (Table 2). 

Additional Environmental and Biological Factors  
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Environmental and biological factors such as estrogen levels, alcohol use, body 

mass index (BMI), and menthol exposure may also contribute to individual variations in 

nicotine metabolism.  Although men typically have higher plasma cotinine levels compared 

with women, nicotine clearance is significantly higher in women compared to men [mean 

NMR of 0.37 (SD 0.20) in women vs 0.41 (SD 0.22) in men]; higher in women who use 

oral contraceptives (mean 0.49, SD 0.24) compared to women who do not  (mean 0.41, 

SD 0.22); and higher during pregnancy compared to postpartum (Benowitz and Dempsey 

2004; Benowitz et al. 2006a; Benowitz et al. 1999; Dempsey et al. 2002; Gan et al. 2008; 

Prather et al. 1993). In pregnant women, NMR was significantly higher at 18-22 weeks 

(26% higher, 95% CI 12% to 38%) and 32-36 weeks (23% higher, 95% CI 9% to 35%) of 

pregnancy compared to NMR at 12 weeks post-partum (Bowker et al. 2015).  These 

findings suggest that estrogen induces CYP2A6 activity.  Indeed, other studies have 

shown a dose-response relationship between estrogen and CYP2A6 activity, with the 

highest degree of CYP2A6 induction observed during pregnancy (Benowitz and Dempsey, 

2004; Benowitz et al. 2006a; Hukkanen et al. 2005).  Nicotine metabolism among oral 

contraceptive users was shown to be higher among users taking combined and estrogen-

only contraceptives but not progesterone-only contraceptive (Benowitz et al. 2006a).  

Body mass index is negatively associated with NMR after controlling for smoking levels, 

sex, and ethnicity (rho=-.14, p<.001) (Binnington et al. 2012; Ho et al. 2009a; Mooney et 

al. 2008; Swan et al. 2009). It is possible that increased adipose levels associated with 

higher BMI may alter the activity of enzymes that are involved in nicotine metabolism, but 

this remains to be tested. Menthol inhibits CYP2A6 activity in vitro by interacting with the 

heme iron of P450 2A6 and inhibiting the microsomal oxidation of nicotine to cotinine 

(MacDougall et al. 2003).  Benowitz and colleagues (2004) demonstrated that smoking 

menthol cigarettes reduced nicotine clearance by ~11%. In a multiethnic sample of young 
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adult daily smokers, the NMR was found to be significantly lower among menthol 

compared with nonmenthol smokers after adjusting for race/ethnicity, gender, BMI, and 

cigarettes smoked per day (0.19 vs. 0.24, p=.03; (Fagan et al. 2015).  Alcohol use is 

positively associated with NMR (Chenoweth et al. 2014) but the mechanism underlying 

this association is yet to be determined.  However, as predictors in a linear regression 

model, race (Caucasian vs. African-American), sex, estrogen, alcohol use, and cigarette 

consumption contribute less than 8% to total NMR variation with each individual factor 

accounting for less than or equal to 2% (Chenoweth et al. 2014), suggesting that the NMR 

also reflects currently unknown influences on nicotine metabolism rate.  Loukola et al 

(2015) found similar results in three Finnish cohorts, where age, sex, and BMI accounted 

for up to 8.9% of variation in NMR. 

Given the diverse genetic, biological and environmental influences on nicotine 

metabolism, a genetically informed phenotypic measure such as the NMR may be a more 

useful biomarker of CYP2A6-mediated nicotine metabolism than genotype alone (Bough 

et al. 2013).  Furthermore, more than 30 CYP2A6 variants have been identified 

(http://www.cypalleles.ki.se/), and specific reduced function or null alleles may have a low 

frequency (Mwenifumbo and Tyndale 2007; Piliguian et al. 2014; Wassenaar et al. 2011). 

Due to the large number of CYP2A6 alleles, genotyping to characterize inherited 

differences in nicotine metabolism can be much more costly than testing for the NMR, 

which can be determined from blood or saliva for approximately US$50 per sample 

(Lerman et al. 2015).  Lastly, primary care physicians may be less inclined to offer a 

genetic test compared to a phenotypic biomarker; these concerns may relate in part to 

lack of knowledge about genetics and concerns about the sensitivity of genetic information 

(Levy et al. 2007; Shields et al. 2008).  
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II. Associations of the NMR with smoking behavior 

Heaviness of smoking 

The NMR has been associated with smoking quantity and smoking behavior in a 

number of studies of adult smokers.  Faster metabolizers, who clear nicotine more quickly, 

may need to smoke more frequently to maintain desired nicotine concentrations (Dempsey 

et al. 2004; Gambier et al. 2005).  Indeed, in a cohort of 545 continuing smokers who were 

contacted eight years after participating in a placebo-controlled smoking cessation 

program using NRT, the NMR was positively associated with cigarette consumption 

(Johnstone et al. 2006).  Although the difference is modest, it is consistent: a systematic 

review (West et al. 2011) found that 9 out of 15 studies observed a positive association 

between number of cigarettes smoked per day (CPD) and NMR.  In a study of 1030 

participants of European ancestry, normal metabolizers (NMR≥0.27) smoked about one 

additional cigarette per day than slow metabolizers (NMR<0.27) (Falcone et al. 2011). 

This is similar to results found in a recent study of 834 normal metabolizers (NMR >0.35) 

and 838 slow metabolizers (NMR ≤.350); slow metabolizers smoked on average 17.9 (SD 

6.8) and normal metabolizers smoked on average 19.5 (SD 8.1) cigarettes per day 

(p<.001).  Genetic studies demonstrate similar results; for example, one study found that 

CYP2A6 variants associated with reduced protein function smoked fewer cigarettes per 

day (20 CPD, compared to 24 CPD in those without these variants) (Malaiyandi et al. 

2006), and another study found that two single nucleotide polymorphisms (rs4803381 and 

rs1137115) associated with reduced CYP2A6 protein levels and activity were associated 

with reduced cigarette consumption (0.99 and 0.88 fewer cigarettes per day, respectively) 

(Bergen et al. 2015).  Although some studies have not found associations between the 

NMR and CPD, this may be due to differences in sample size and methods of NMR 
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determination.  A few of these studies utilized smaller sample sizes, which may have been 

underpowered to detect a modest effect (Tang et al. 2012, n=31; Lea et al. 2006, n=6; 

Malaiyandi et al. 2006, n=152).  Other studies measure NMR in urine rather than blood or 

saliva, which may be less predictive (Kandel et al. 2007; St Helen et al. 2012).  

In addition to smoking more cigarettes throughout the day, normal metabolizers 

may also smoke more intensely than slow metabolizers.  In a laboratory topography study, 

faster metabolizers (those in the third and fourth quartiles of NMR) took larger puff volumes 

while smoking their preferred brand than those in the first quartile (the slowest 

metabolizers).  Puff volume increased by approximately 23% and 28% with each 

increasing quartile and the NMR explained 51% of the variance in total puff volume 

(Strasser et al. 2011).  This is consistent with findings showing that smokers carrying 

CYP2A6 variants associated with reduced or null function took smaller puffs than those 

without these variants (Strasser et al. 2007).  This suggests that faster metabolizers may 

inhale more deeply to increase nicotine exposure per cigarette while slow metabolizers 

reduce their inhalation volume.  An important consequence of the association between 

nicotine metabolism and smoking behavior is carcinogen exposure. The increased total 

puff volume exhibited by smokers who are faster metabolizers is associated with 

increased total levels of the nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol 

(NNAL), a biomarker of carcinogen exposure (Strasser et al. 2011), which could result in 

increased cancer risk among normal metabolizers. 

Nicotine Dependence and Withdrawal Symptoms 

In contrast to other aspects of smoking behavior, the NMR is not consistently 

associated with degree of nicotine dependence.  Those studies which have found 
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associations indicate that nicotine metabolism rate may influence the physiological 

aspects of dependence primarily through effects on smoking quantity.  Schnoll et al. 

(2014) found that NMR was most predictive of the Heaviness of Smoking Index (HSI), 

which includes the two items from the Fagerström Test for Nicotine Dependence (FTND; 

Heatherton et al. 1991) regarding time to first cigarette after waking and smoking quantity. 

These two items measure the physiological elements of dependence more than the 

behavioral elements. The study also found that the NMR was predictive of FTND score 

among men, but not women, which is consistent with prior studies demonstrating that 

smoking behavior in men is more responsive to physiological dependence, whereas 

women are more likely to smoke for other reasons (e.g. affect regulation and conditioned 

responses to non-nicotine cues) (Field and Duka 2004; Perkins et al. 2006; Perkins et al. 

2001).  However, the majority of studies have not found associations between nicotine 

metabolism rate and nicotine dependence (Benowitz et al. 2003; Ho et al. 2009b; 

Johnstone et al. 2006; Kandel et al. 2007; Lerman et al. 2006; Patterson et al. 2008; 

Schnoll et al. 2009; Strasser et al. 2011).  Similarly, associations between the NMR and 

withdrawal symptoms are inconsistent.  Although some studies found modest associations 

between nicotine metabolism rate and withdrawal symptoms in adolescents (Rubinstein 

et al. 2008) and more severe cravings during abstinence in adults (Lerman et al. 2006), 

others found no association between the NMR and withdrawal symptoms during 

abstinence (Schnoll et al. 2009) or a slower increase in craving during abstinence among 

faster metabolizers (Hendricks et al. 2014).    

IV. The NMR as a biomarker of treatment response 

The association between individual nicotine metabolism rate and response to 

pharmacological treatment for smoking cessation was first noted in an open-label trial of 
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nicotine patch versus nicotine nasal spray in 480 treatment-seeking smokers (Lerman et 

al. 2006).  In the nicotine patch group, there was an almost 30% reduction in the odds of 

quitting with each increasing quartile of NMR.  However, there was no association 

between the NMR and quitting success for participants who received nicotine nasal spray 

(Lerman et al. 2006). This may be attributable to titration of self-administration of nasal 

spray based on nicotine metabolism rate; slow metabolizers used nasal spray less 

frequently than normal metabolizers in this study.   

To validate these findings in an independent sample, Schnoll and colleagues 

analyzed NMR data from a clinical trial involving 568 treatment-seeking smokers all 

treated with the nicotine patch (Schnoll et al. 2009).  This study found significantly higher 

quit rates at end of treatment for participants in the first quartile of NMR (the slowest 

metabolizers) compared to all other quartiles (Schnoll et al. 2009).  Similar results were 

observed among African-American light smokers (<10 CPD) who were randomly assigned 

to receive either nicotine or placebo gum and counseling (Ho et al. 2009b).  There was a 

trend toward greater quitting success among the slowest metabolizers at the end of 

treatment, compared to normal or fast metabolizers. However, these differences were 

observed in both the placebo and active nicotine gum groups suggesting that the NMR 

did not predict the efficacy of nicotine gum (vs. placebo) in this study (Ho et al. 2009b).  In 

another trial, extended treatment with the nicotine patch (i.e. six months of treatment, 

compared to standard therapy of 8 weeks) was found to improve quit rates among slow 

metabolizers but not normal metabolizers (Lerman et al. 2010).  Based on these data, one 

might expect that higher dose nicotine patch would be more effective than standard dose 

nicotine patch in normal metabolizers.  However, data from a proof of concept clinical trial 
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of high dose patch for fast metabolizers do not support this hypothesis (Schnoll et al. 

2013). 

An alternative strategy for treating normal metabolizers would be use of non-

nicotine medications.  Thus, the NMR was examined at pre-treatment in another clinical 

trial involving 414 treatment-seeking smokers randomized smokers to receive 10 weeks 

of treatment with bupropion or placebo (with counseling).  Among those receiving placebo, 

faster metabolizers displayed lower quit rates at end of treatment compared to slower 

metabolizers.  Quit outcomes for the slowest metabolizers (those in the first quartile) were 

approximately the same (~32%) in both treatment groups.  However, the fastest 

metabolizers (those in the fourth quartile) significantly benefited from bupropion treatment: 

end of treatment quit rates on bupropion were approximately 34%, compared to 10% 

among fast metabolizers who received placebo (Patterson et al. 2008). These data 

suggest that non-nicotine therapies may be efficacious alternative treatments for normal 

metabolizers who do not respond well with nicotine replacement.  

Building on these prior retrospective studies in which the NMR was assessed 

following study completion, a large multi-site, placebo-controlled clinical trial using 

prospective NMR stratification was conducted (Lerman et al. 2015).  Treatment-seeking 

smokers (n=1,246) were tested for the NMR and randomly assigned by NMR group to one 

of three treatment groups:  placebo (placebo patch and placebo pill), nicotine patch (active 

nicotine patch plus placebo pill), or varenicline (placebo patch plus active varenicline pill).  

Stratification by NMR was based on classification as either slow (plasma NMR < 0.31, 

approximately first quartile based on one of the prior clinical trials; (Schnoll et al. 2009) 

versus normal (plasma NMR ≥ 0.31, all other quartiles).  Slow metabolizers were 

oversampled in order to provide approximately equal numbers of slow versus normal 
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metabolizers.  Results revealed a significant NMR by treatment arm interaction:  among 

normal metabolizers, varenicline improved quit rates significantly compared to the nicotine 

patch.  However, among slow metabolizers, varenicline was not more efficacious than 

nicotine patch at promoting cessation (Figure 1).  The relative efficacy of varenicline 

versus nicotine patch in slow and normal metabolizers can be illustrated by the “number 

needed to treat” (NNT), a standardized measure indicating the average number of patients 

that must be treated in order to benefit one (Cook and Sackett 1995).  Among normal 

metabolizers, the NNT was 26.0 for nicotine patch and 4.9 for varenicline; among slow 

metabolizers, the NNT was 10.3 for nicotine patch and 8.1 for varenicline.  Importantly, 

there was also a significant NMR by treatment interaction observed in reported side effects 

of varenicline (versus placebo): slow metabolizers reported a significant increase in side 

effects on active pill versus placebo, but there was no increase in side effects for normal 

metabolizers receiving active varenicline.  There was no NMR by treatment interaction 

effect for side effects of nicotine patch.  These results suggest that treating normal 

metabolizers with varenicline and slow metabolizers with nicotine patch for smoking 

cessation may optimize quit outcomes while minimizing the risk of side effects.  Thus, the 

NMR could provide a useful biomarker for personalized smoking cessation treatment. 

V.  Mechanisms 

The mechanisms underlying the associations between the NMR and treatment 

response are not fully understood. Associations between the NMR and treatment 

response are not likely to be mediated by nicotine dependence or heaviness of smoking, 

because these associations remain unaltered after controlling for nicotine dependence, 

subjective craving, or heaviness of smoking in linear regression models (Benowitz et al. 

2003; Ho et al. 2009b; Johnstone et al. 2006; Kandel et al. 2007; Lerman et al. 2006; 
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Patterson et al. 2008; Schnoll et al. 2009; Strasser et al. 2011).  Studies have also found 

no association between the NMR and withdrawal symptoms during abstinence (Schnoll et 

al. 2009).  

Potential mechanisms underlying the association between the NMR and treatment 

response include differences in nicotinic receptor availability, subjective measures of 

nicotine reward and physiological effects of nicotine, or conditioned responses to smoking 

cues.  Because nicotine exerts its effects by binding to nicotinic acetylcholine receptors, 

Dubroff et al (2015) assessed the relationship between the NMR and α4β2* nAChR 

availability using PET imaging with 2-(18)F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-

(18)F-FA). Results showed a reduction of thalamic α4β2* nAChR availability and a greater 

reduction of craving in slow nicotine metabolizers compared to normal metabolizers after 

18 hours of abstinence.  

The NMR has also been associated with subjective measures of nicotine reward 

and physiological effects of nicotine.  In one study (Sofuoglu et al. 2012), smokers received 

nicotine intravenously at escalating quantities over 30 minutes following overnight 

abstinence.  Higher NMR (i.e. faster metabolism) was associated with greater self-

reported craving following overnight abstinence, and higher ratings of nicotine-induced 

good drug effects, drug liking, and wanting more drug compared to slow metabolizers.  

Faster metabolizers also had a greater heart rate increase in response to nicotine. This 

enhanced reward response may explain why faster metabolizers also display greater cue 

reactivity (a conditioned response to stimuli associated with smoking, such as a lit 

cigarette, lighter, or ashtray).   
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Neuroimaging studies have demonstrated that smokers display greater brain 

activation in areas related to reward, visual attention, and habitual learning, such as the 

insula, anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and midtemporal 

gyrus, when viewing smoking cues compared to neutral cues (Brody et al. 2002; David et 

al. 2005; Engelmann et al. 2012; McClernon et al. 2005).  A recent functional magnetic 

resonance imaging (fMRI) study compared cue reactivity in the fastest and slowest 

nicotine metabolizers (first versus fourth quartile of NMR) (Tang et al. 2012). Participants 

in this study watched video clips displaying smoking-related and neutral scenes during 

fMRI scanning.  Compared to slow metabolizers, fast metabolizers displayed greater 

activation in response to smoking cues (versus neutral cues) in the ACC, PCC, and insula 

when smokers were not deprived of cigarettes.  These results were consistent whether 

fast metabolizers were classified by the NMR or by CYP2A6 genotype.  Another recent 

neuroimaging study found that slow metabolizers showed a significant decrease in brain 

response to smoking cues in several regions (the inferior frontal gyrus, frontal pole, and 

caudate) following 24 hours of abstinence (compared to when they were smoking as 

usual), whereas normal metabolizers showed an increase in cue reactivity during 

abstinence (Falcone et al. 2015).  Cue reactivity is important because it has been linked 

to relapse (Janes et al. 2010); thus, fast metabolizers who show greater neural responses 

to smoking cues may experience greater difficulty quitting. Future research examining 

associations between NMR and cue reactivity in treatment-seeking smokers may offer 

additional insight into a possible mechanism for associations between nicotine metabolism 

rates and smoking behavior.   

 

 



107 
 

VI Future Directions 

To maximize the utility of the NMR for improving public health, there are important 

lines of research that remain to be conducted.  For example, the predictive validity of the 

NMR for treatment response has largely been examined in otherwise healthy adult 

populations. Future studies are needed to evaluate associations between NMR and 

smoking cessation in psychiatric populations, as many psychiatric disorders have a high 

comorbidity with smoking dependence.  Between 21.1% and 31.7% of nicotine dependent 

individuals have a current alcohol use, mood, or anxiety disorder, and this population 

consumes 34.2% of all cigarettes smoked in the United States (Grant et al. 2004).  In a 

study of the prevalence of smoking among individuals with schizophrenia or bipolar 

disorder, 64% of individuals with schizophrenia and 44% of individuals with bipolar 

disorder reported smoking compared to 19% of individuals without a psychiatric illness 

(Dickerson et al. 2013).  

Associations between nicotine metabolism rates and smoking behavior have been 

shown to differ for adolescents compared to adults, and it is possible that adolescents may 

also differ in response to smoking cessation treatment as a function of the NMR (Berlin et 

al. 2007; Rubinstein et al. 2013a).   Additionally, the NMR may be less predictive of smoking 

behavior in lighter smokers; Ho and colleagues (2009a) found no predictive value of NMR for 

smoking quantity in light smokers, and relationships with treatment outcomes were less robust.  

Additional research is necessary to evaluate the utility of the NMR in light and non-daily 

smokers.   

The feasibility of the NMR as a biomarker in clinical practice must also be 

assessed. Individual NMR values may be obtained from blood or saliva samples collected 
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at a primary care facility and sent to a laboratory for analysis of cotinine and 3HC 

concentrations using liquid chromatography-tandem mass spectrometry (Jacob et al. 

2011).  One challenge that must be addressed prior to implementation is determining a 

precise cut-point to classify slow versus normal metabolizers.  Although there is typically 

consensus on defining slow metabolizers as those in the lowest quartile of NMR (see 

Table 3), the majority of studies have defined quartiles within each sample, leading to 

variation in specific cut-points used to define slow versus normal metabolizers. This 

approach is impractical from a clinical standpoint.  After reviewing cut-points used in prior 

studies and examining the distribution of NMR values within the population screened for 

their clinical trial, Lerman et al (2015) selected a plasma cut-point of 0.31 to classify slow 

versus normal metabolizers, and demonstrated significant differences in treatment 

response using this classification scheme.   Based on published correlations between 

plasma and saliva NMR values, a plasma cut-point of 0.31 corresponds to a saliva cut-

point of 0.22. (Chenoweth et al. 2014).  For these reasons, we recommend that slow 

metabolizers be classified as those with a plasma NMR value <0.31 or saliva NMR value 

<0.22.  

Cost-effectiveness data from prospective clinical trials using the NMR will be 

critical for future implementation of this biomarker (Schnoll and Leone 2011).  To illustrate, 

an analysis of cost-effectiveness of genetic testing to predict treatment outcomes on 

varenicline compared to bupropion suggested that prior genetic testing may be justified 

only if the genotype is neither too rare nor common (Heitjan et al. 2008).  Because of the 

population distribution of nicotine metabolism groups, and the low cost of testing, the NMR 

may be cost effective; however, this is yet to be analyzed formally.   Other factors to 

consider include ease of implementation in a healthcare setting, and whether primary care 
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physicians would be willing to incorporate biomarker assessment into standard treatment 

(Cummings et al. 1989; Emmons and Goldstein 1992; Heitjan et al. 2008; Shields et al. 

2008).  Future studies are necessary to evaluate cost effectiveness, optimal 

implementation in the electronic health record, and potential efficacy in the healthcare 

settings. This research will give valuable insight into implementing the NMR as a 

biomarker to maximize successful response to current treatments. 

VII Conclusions 

The NMR is a reliable measure of inherited individual differences in nicotine 

metabolism rate, and a validated biomarker of pharmacological treatment response 

among smokers who wish to quit.  Existing evidence supports recommendation of nicotine 

replacement therapy for slow metabolizers, and non-nicotine treatments such as 

varenicline for normal metabolizers (Figure 2).  Because it is easy to assess (in saliva as 

well as blood), stable over time, and not dependent on time of day or time since last 

cigarette, the NMR is a practical clinical biomarker and could provide useful information to 

help clinicians guide treatment approach.  Although further research is necessary to 

develop a simple and cost-effective point-of-care assessment to facilitate clinical 

applications, the NMR may provide a worthwhile approach to personalized medicine for 

smoking cessation. 
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Table 1. Criteria for the Diagnosis of Nicotine Addiction 

The DSM-V defines tobacco use disorder as a problematic pattern of tobacco 

use leading to clinically significant impairment or distress, as manifested by at 

least two of the following occurring within a 12-month period: 

 Using tobacco in larger amounts or for a longer period than intended  

 A persistent desire or unsuccessful efforts to cut down or control tobacco 
use 

 A great deal of time is spent in activities necessary to obtain or use tobacco  

 Craving, or a strong desire or urge to use tobacco  

 Recurrent tobacco use resulting in a failure to fulfill major role obligations at 
work, school, or home  

 Continued tobacco use despite having persistent or recurrent social or 
interpersonal problems caused or exacerbated by the effects of tobacco 

 Important social, occupational, or recreational activities are given up or 

reduced because of tobacco use. 

 Recurrent tobacco use in situations in which it is physically hazardous 

 Tobacco use is continued despite knowledge of having a persistent or 

recurrent physical or psychological problem that is likely to have been 

caused or exacerbated by tobacco. 

 Tolerance 

 Withdrawal 

 

Table 1 Legend:  Criteria for the diagnosis of tobacco use disorder according to the 
DSM-V (American Psychiatric Association, 2013).  
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Table 2.  Population distribution of mean NMR and frequency of reduced 
function/null CYP2A6 alleles. 

Population NMRa Frequency of reduced function/ 

 Plasmab Salivac Urined null alleles (*4, *5, *7, *9, *10)e 

White 0.41 (0.20) 0.20 (.10) 5.48 (4.5) 5.2-12.5 

Black/African 
American 

0.33 (0.21) 0.14 (.07) 4.18 (3.1) 6.6-10.4* 

Asian -- 0.11 (.07) 3.29 (3.9) 23.4-60.2** 

Hispanic/Latino -- 0.19 (.08) 4.87 (2.4) -- 

a.  Values shown are mean (SD) . 
b.  Chenoweth et al. 2014. 
c.  Rubinstein et al. 2013b. 
d.  Standard deviations shown here were calculated based on reported sample sizes 
and confidence intervals (Kandel et al. 2007). 
e. Numbers in columns represent allele frequency ranges, as percentage of total alleles, 
in previously published studies (Liu et al. 2011). 
*Black-African and African-American 
**Chinese, Japanese and Korean 
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Table 3.  Clinical trials of the NMR as a predictor of treatment response. 

Study Population NMR 
classification 

Results 

Lerman et 
al. 2006  

480 
treatment 
seeking 
smokers  

Slower 
metabolizers 
(NMR <0.23) 
versus 
normal/faster 
metabolizers 
(NMR≥0.23) 

Quitting success with nicotine patch decreased 
significantly as the NMR increased. The NMR did not 
predict cessation in smokers using nicotine nasal 
spray.  

Schnoll et 
al. 2009 

568 
treatment 
seeking 
smokers 

Slowest 
metabolizers 
NMR<0.26 
versus 
normal/faster 
metabolizers 
NMR≥0.26 

Normal/faster metabolizers were significantly less 
likely to quit with nicotine patch compared to slow 
metabolizers.  

Ho et al. 
2009b 

646 
treatment 
seeking 
African-
American 
Smokers 

Slowest quartile 
versus all other 
quartiles  

Individuals in the slowest quartile had higher quitting 
rates with both placebo and nicotine gum treatments 
compared to normal/faster metabolizers.  

Lerman et 
al. 2010 

470 
treatment 
seeking 
Caucasian 
smokers 

Slowest 
metabolizers 
<0.26 versus 
normal 
metabolizers 
(NMR ≥0.26) 

Extended duration therapy was superior to standard 
therapy in genotypic or phenotypic slower 
metabolizers of nicotine, but not in normal 
metabolizers.  

Schnoll et 
al. 2013 

87 treatment 
seeking fast 
metabolizers 
of nicotine 

Faster 
metabolizers 
>0.18  

There were no differences in quit rates at the end of 
treatment in fast metabolizers treated with high dose 
vs. standard dose patch   

Patterson 
et al. 
2008 

414 
treatment 
seeking 
smokers  

Slowest 
metabolizers 
<0.26 versus 
fastest 
metabolizers 
>0.54 

Slow metabolizers had equivalent quit rates with 
placebo or bupropion after 10 weeks of treatment 
(32%), whereas the fastest metabolizers had low quit 
rates with placebo (10%) which were significantly 
increased by bupropion (34%).  

Lerman et 
al. 2015 

1246 
treatment 
seeking 
smokers  

Slow 
metabolizers 
(NMR <0.31) 
versus normal 
metabolizers 
(NMR ≥0.31) 

Varenicline was more efficacious than nicotine patch 
in normal metabolizers but not in slow metabolizers. 
Slow metabolizers reported greater overall side-effect 
severity with varenicline versus placebo, whereas 
there were no differences in side effects by treatment 
group among normal metabolizers.  
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Figure 1.  The NMR predicts treatment outcomes on nicotine replacement therapy 
and varenicline. 

 

 

 

 

Figure 1 Legend.  Smoking cessation rates by NMR and treatment group.  Varenicline 
treatment significantly improved quit rates compared to the nicotine patch among normal 

metabolizers; however, among slow metabolizers, varenicline was no better than the 
nicotine patch at promoting cessation.  Adapted from Lerman et al. 2015.   
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Figure 2.  Incorporating the NMR to aid in smoking cessation treatment selection. 

 

Figure 2 Legend.  A proposed model for incorporating the NMR into smoking cessation 
treatment decision-making.  
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III. Using Genetics to Improve Addiction Treatment Outcomes  

This section has been published: 

Allenby, C.E., Falcone, M. (2016). Using genetics to improve addiction treatment 
outcomes. Current Behavioral Neuroscience Reports: 4(1):1-9. 

 

Abstract 

Purpose of review: This review will discuss recent studies that have employed 

pharmacogenetic findings to advance development of therapeutics and improve treatment 

outcomes for substance use disorder.  

Recent findings: Pharmacogenetic studies have inspired new treatment targets for 

smoking cessation, with mixed results.  Promising initial evidence that mu-opioid receptor 

genotype (OPRM1 A118G) was associated with response to naltrexone treatment for 

alcohol dependence has not been supported in prospective trials.  The nicotine metabolite 

ratio (NMR) may be useful for predicting response to smoking cessation treatment.  

Candidate gene studies suggest several genes that may identify responders for cocaine 

or opiate pharmacotherapy, but these studies require replication.   

Summary: Significant progress has been made in pharmacogenetics studies of addiction 

treatment; however, efforts must be made to bridge the translational gap.  Robust 

prospective studies are needed in order to gather sufficient information on the clinical utility 

of pharmacogenetic testing prior to implementation in a clinical setting.   
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Introduction 

Addiction, or substance use disorder, is a common polygenic, chronic, relapsing 

brain disease which remains a significant public health issue.  In 2014, approximately 21.5 

million people in the U.S. aged 12 or older reported a substance use disorder in the past 

year [1], and the economic cost of substance use in the U.S. is estimated at more than 

$600 billion per year [2]. The Diagnostic and Statistical Manual V (DSM-V) defines 

substance use disorder as recurrent use of alcohol and/or drugs which results in clinically 

and functionally significant impairment.  Diagnostic criteria include development of 

tolerance, craving, continued use despite physical and social consequences, and inability 

to discontinue use [3].  

Genetic variation contributes to heterogeneity of response to drugs of abuse as 

well as to pharmacological treatment of substance use [4]; research in this field is known 

as pharmacogenetics [5]. Pharmacogenetic variability can influence treatment efficacy as 

well as adverse side effects, which in turn contribute to the risk of noncompliance and 

relapse [6-9].  By identifying individuals who will respond positively or negatively to a given 

medication, it may be possible to identify the optimal treatment for an individual to improve 

clinical outcomes [6, 7, 9-11].  

Significant progress has been made in identifying genetic factors that contribute to 

the development and maintenance of addiction.  Addiction has historically been attributed 

to the ability of addictive drugs to directly or indirectly trigger the release of dopamine in 

the ventral striatum (for comprehensive reviews, see [12, 13]); however, some drugs of 

abuse, such as nicotine and cannabis, only trigger small amounts of dopamine release 

[14, 15], and others, such as alcohol and opiates, trigger little to no release of dopamine 

in the ventral striatum [16].  These findings suggest that the involvement of dopamine in 

addiction is more nuanced than previously believed [12].  Nevertheless, genetic variation 
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in dopamine transmission pathways is associated with risk of addiction and relapse for 

multiple drugs of abuse [17].  Variation in genes affecting opioid neurotransmission, which 

is a direct target for opiate drugs and is indirectly involved in nicotine and alcohol addiction, 

has also been associated with addiction outcomes [18].  Finally, genes that contribute to 

the metabolism of addictive substances or pharmacotherapies have been shown to 

contribute to treatment outcomes [19]. 

  Despite the enormous strides that have been made in understanding the genetics 

of addiction, there has been limited success so far in translating these findings to addiction 

treatment.  This manuscript will review efforts to apply knowledge obtained from genetic 

studies to develop new treatments for addiction, and to identify personalized approaches 

to existing treatments.  We will also discuss the challenges facing future pharmacogenetic 

studies and implementing pharmacogenetics in a clinical setting.  

Using genetics to identify new drug targets 

Understanding how genetic variation influences addiction has the potential to 

reveal new targets for addiction pharmacotherapy.  This section will highlight recent 

attempts to apply lessons learned from genetic associations to identify new avenues for 

treatment. 

 

Inhibition of Catechol-O-methyltransferase for Nicotine Dependence 

Catechol-O-methyltransferase (COMT) degrades dopamine and is the primary 

regulator of dopamine levels in the prefrontal cortex (PFC). A common polymorphism in 

the gene encoding COMT results in a valine to methionine substitution at codon 158 

(COMT Val158Met).  The COMT Val allele is associated with increased enzyme activity, 

leading to more rapid metabolism of extracellular dopamine and consequently to lower 

levels of dopamine in the PFC [20].  The PFC is a core region of the executive control 
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network, and regulation of extracellular dopamine in this region can influence executive 

control processes which contribute to behavioral self-control [21].  The COMT Val allele 

has been associated with poorer performance on measures of executive control (such as 

working memory and sustained attention) [22-26], although these findings are not always 

replicated [27-29].  Several studies have demonstrated higher rates of smoking relapse 

among smokers with the Val allele compared to Met/Met homozygotes [30-33], although 

these are also not always replicated [34, 35].  Smoking withdrawal is associated with 

deficits in working memory that are predictive of relapse [36, 37]; it is possible that the 

COMT Val allele could contribute to greater vulnerability to withdrawal-induced cognitive 

deficits. An initial study demonstrated greater withdrawal-induced changes in performance 

on a working memory task among smokers with the Val/Val genotype compared to Met 

carriers.  Furthermore, the Val/Val genotype was associated with reduced activation in the 

dorsolateral prefrontal cortex (DLPFC) and dorsal cingulate/medial prefrontal cortex 

during abstinence, whereas Met carriers showed little change in activation during 

abstinence [38].  These findings suggested that regulation of dopamine levels in the PFC 

by COMT could contribute to the cognitive effects of smoking withdrawal. 

 Based on these findings, Ashare and colleagues hypothesized that pharmacologic 

regulation of COMT activity could mitigate the withdrawal-induced cognitive deficits that 

are associated with smoking relapse [39].  Because the risk allele is associated with more 

rapid enzyme activity, they identified tolcapone, a COMT inhibitor, as a potential candidate 

drug to slow COMT activity.   Tolcapone is FDA-approved for treatment for Parkinson’s 

disease, and has been shown to improve working memory performance among healthy 

controls [40].  To test their hypothesis, they evaluated 20 smokers who completed two 

medication periods in a within-subject, double-blind, crossover design [41].  During each 

period, participants received 8 days of medication treatment (tolcapone or placebo) and 
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at the end of each period they completed an n-back working memory task during functional 

magnetic resonance imaging (fMRI) following 24 hours of abstinence.   A two-week 

washout period separated the two periods to minimize carryover effects.  Participants were 

also genotyped in order to examine potential differences in medication response based 

on COMT genotype.  Unfortunately, the results from this study were not promising; 

although tolcapone (compared to placebo) produced a small increase in accuracy on the 

working memory task and increased suppression of activation in the task-negative 

ventromedial PFC, there were no effects on response time or activation in the DLPFC (the 

measures shown to predict relapse) [41].  An analysis examining treatment by genotype 

interactions found that tolcapone actually increased response time and decreased 

activation in task-positive regions for the Val/Val participants, which was the opposite of 

the desired effect.  Furthermore, tolcapone had no effect on smoking rate during the 

medication period, or on subjective measures of withdrawal or craving during abstinence.  

These findings do not provide support for further investigation of tolcapone for smoking 

cessation. 

 

Inhibition of CYP2A6-mediated Nicotine Metabolism for Nicotine Dependence 

Nicotine is the primary addictive component in cigarettes, and studies have shown 

that smokers titrate their smoking behavior to obtain optimal levels of plasma nicotine [42]. 

Nicotine is metabolized primarily by cytochrome P450 (CYP) 2A6 to cotinine and 

3’hydroxycotinine [43]. Individuals with CYP2A6 variants associated with reduced enzyme 

activity smoke fewer cigarettes per day and are more likely to quit smoking with nicotine 

replacement therapy [44]. Therefore, pharmacological inhibition of CYP2A6-mediated 

nicotine metabolism may have the potential to aid in smoking cessation. To test this 

hypothesis in animal models, investigators pre-treated mice with methoxsalen, a highly 
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potent and specific inhibitor of CYP2A5 (the mouse ortholog of CYP2A6) and examined 

effects of nicotine reward in a conditioned place preference paradigm [45, 46]. 

Methoxsalen enhanced nicotine-induced place preference, except at the highest dose. In 

addition, methoxsalen significantly increased nicotine plasma levels and enhanced the 

ability of a low dose of nicotine to reverse withdrawal signs. These results suggest that 

combining a CYP2A6 inhibitor with a low dose of nicotine replacement may have the 

potential to mitigate withdrawal symptoms for smokers trying to quit. In human smokers, 

methoxsalen plus nicotine replacement therapy has been shown to increase plasma 

nicotine levels and decrease the number of cigarettes smoked during an ad-libitum 

smoking period [47]. Although these findings are promising, additional research is needed 

to evaluate the efficacy of CYP2A6 inhibitors for treatment-seeking smokers.   

Using pharmacogenetics to personalize treatment approaches 

Currently available treatments for substance use disorder fail in a large portion of 

patients; for example, up to 75% of smokers relapse after using smoking cessation 

treatments, and one year retention for methadone maintenance treatment is only 60% [48, 

49].   Identifying the optimal approach for each patient prior to treatment could improve 

treatment outcomes and reduce the cost to patients in terms of both time and money spent 

on treatments that might not work for them [50]. In this section, we will discuss progress 

toward tailoring treatment for alcohol and nicotine dependence.  We will touch on research 

examining treatments for cocaine and opioid dependence; however, progress in these 

fields is more limited. 

Alcohol Dependence 

  One of the most common treatments for alcohol dependence is naltrexone, a non-

specific opioid antagonist [51].  Pharmacogenetic studies of naltrexone have focused on 

a single nucleotide polymorphism (SNP) in the mu opioid receptor gene OPRM1 (A118G, 
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also called rs1799971) that results in a change from asparagine to aspartate at position 

40. This mutation results in reduced expression of mu-opioid receptors in the mesolimbic 

system [52, 53]. Because alcohol indirectly triggers the release of endogenous opioids, 

the OPRM1 118G allele is associated with enhanced sensitivity to alcohol [54].  The minor 

G allele is present in 15-30% of Europeans, 40-50% of Asians, and 1-3% of Hispanic and 

African-Americans [55]. Carriers of the G allele report greater feelings of intoxication and 

sedation and increased craving following exposure to alcohol [56-58]. Initial 

pharmacogenetic studies suggested that carriers of the G allele have better rates of 

response to naltrexone than those with the A allele [59, 60]. Indeed, a large clinical trial 

showed that among carriers of the OPRM1 G allele, naltrexone (compared to placebo) 

nearly doubled the number of patients with a good clinical outcome, whereas there were 

no effects in A/A homozygous patients [60]. Another study of 112 male problem drinkers 

receiving naltrexone or placebo for 12 weeks found that those with at least one G allele 

were significantly more likely to achieve non-hazardous drinking patterns (defined as no 

more than 14 drinks per week and no more than 4 drinks on any given day) following 

naltrexone treatment compared to those homozygous for the A allele [61]. However, these 

studies utilized retrospective associations between the treatment outcome and genotype. 

In contrast, a 12 week, double blind, randomized clinical trial of naltrexone vs. placebo 

which prospectively stratified randomization by OPRM1 genotype (A/A vs. */G) found no 

significant genotype by treatment interactions on time to relapse to heavy drinking [62]. 

Other recent studies have also found no difference in treatment response based on 

OPRM1 genotypes [63, 64]. These conflicting findings highlight the need for replication of 

promising initial findings in adequately powered prospective studies.  
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Nicotine Dependence 

Currently, there are three FDA approved pharmacological treatments to aid 

smoking cessation: nicotine replacement therapy (NRT), bupropion, and varenicline [65]. 

The success of these treatments at one year after a quit attempt ranges from 7% to 30% 

[66-69]. A substantial amount of research has been conducted on the impact of genetic 

variation on treatment outcomes in smoking cessation trials. Many studies have 

demonstrated associations between treatment response and variation in genes encoding 

dopamine receptor D2 (DRD2), COMT, ankyrin repeat and kinase domain-containing 1 

(ANKK1 Taq1A), dopamine transporter (SLC6A3, also called DAT1), and serotonin 

transporter (SLC6A4) (for a recent review, see [70]); however, the majority of these 

associations have not been replicated. In this section we will discuss the nicotine 

metabolite ratio (NMR), a genetically informed biomarker of individual nicotine metabolism 

rate which has been the most consistently replicated pharmacogenetic predictor of 

smoking cessation treatment outcomes.   

Nicotine is metabolized by CYP2A6 to cotinine and then 3’-hydroxycotinine [42].  

The nicotine metabolite ratio is the ratio of 3’hydroxycotine to cotinine, and is a stable and 

reliable measure of CYP2A6 activity. The NMR accounts for genetic variation in CYP2A6 

activity as well as biological and environmental influences such as estrogen level, alcohol 

use, and menthol exposure [71, 72]. A number of studies have demonstrated that faster 

metabolizers are less likely to quit with NRT or placebo treatment.  For example, a study 

of 480 smokers treated with the transdermal nicotine patch showed an almost 30% 

reduction in the odds of quitting with each increasing quartile of NMR [73]. However, there 

were no differences in response to nicotine nasal spray by NMR quartile, suggesting that 

faster metabolizers may have been able to titrate to a more effective dose using this 

method of delivery [73]. A study by Schnoll et al. also demonstrated significantly higher 
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quit rates on transdermal nicotine (vs. placebo) for participants in the first quartile of NMR 

(the slowest metabolizers) compared to all others [74]. A community based study of 499 

smokers receiving transdermal nicotine and behavioral counseling also demonstrated 

lower quit rates among faster metabolizers compared to slow metabolizers (24% vs. 33%) 

[75]. On the other hand, a study of 414 treatment-seeking smokers receiving 10 weeks of 

treatment with bupropion or placebo found that the fastest metabolizers (those in the fourth 

quartile) had significantly higher quit rates with bupropion compared to placebo (34% vs. 

10%), whereas slower metabolizers did not benefit significantly from bupropion [76]. For 

this reason, non-nicotine therapies such as bupropion may be a better treatment for faster 

metabolizers who do not respond to nicotine replacement.  

Recently, a large multisite, placebo-controlled clinical trial examined the utility of 

the NMR as a prospective predictor of treatment outcomes [77].  In this study, 1246 

treatment-seeking smokers were randomly assigned to treatment with varenicline (with 

placebo patch), nicotine patch (with placebo pill), or placebo patch and placebo pill.  

Randomization was stratified by NMR based on classification of slow metabolizers 

(plasma NMR<.31) versus normal metabolizers (plasma NMR>=.31). This study revealed 

a significant NMR by treatment interaction, in which faster metabolizers were more likely 

to benefit from treatment with varenicline, whereas slow metabolizers derived equal 

benefit from treatment with varenicline or the nicotine patch [77]. Slow metabolizers also 

reported a significant increase in side effects while on varenicline versus placebo, but 

there was no significant difference in side effects for normal metabolizers.  

In conclusion, the NMR could be a useful biomarker for optimizing treatment 

selection for smokers trying to quit. Existing research suggests that slow metabolizers will 

benefit from treatment with NRT, whereas normal metabolizers should be treated with 

non-nicotine therapies such as varenicline or bupropion to optimize treatment outcomes. 
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However, additional research is needed to examine the feasibility of implementation in the 

clinic.  

Cocaine Dependence 

Pharmacogenetic studies of cocaine dependence have largely focused on 

response to disulfiram (DS), which metabolically alters levels of dopamine and 

norepinephrine in the brain through enzymatic inhibition of dopamine beta-hydroxylase 

(DBH) [78].  This inhibition prevents conversion of dopamine to norepinephrine in 

noradrenergic neurons; preclinical studies have shown that doses of DS that lower 

norepinephrine levels in the brain also block drug-primed reinstatement of cocaine-

seeking behavior in rats [79]. Recent studies have investigated functional DBH 

polymorphisms that alter transcription and decrease DBH plasma levels, such as the DBH 

C-1021T polymorphism (rs161115) [80]. In one study, DS treatment significantly reduced 

the number of cocaine positive urine samples only among subjects with the DBH C/C 

genotype (associated with normal DBH levels) [80]. Other studies found associates 

between DS response, ANKK1 rs1800497 and DRD2 rs2283265 variants (individuals 

carrying at least one minor allele for either gene responded better to disulfiram treatment 

than those carrying only the major alleles [81]), or 5-10-methylene tetrahydrofolate 

reductase (MTHFR) rs1801133 (carriers of the T allele may respond better to disulfiram 

treatment than C/C homozygotes [82]).  Although these are preliminary results in small 

samples, they may warrant further investigation.  

Opiate Dependence  

Methadone is a long-acting synthetic mu-opioid receptor agonist which is used to 

treat opiate dependence. Methadone maintenance therapy (MMT) allows opiate-

dependent patients to regain function by mitigating withdrawal symptoms; however, poor 

efficacy and low retention rates remain a significant issue for MMT.  Response to MMT 
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has been associated with genetic variation in myocardin (MYOCD) and metabotropic 

receptor 6 (GRM6). These genes are associated with metabotropic receptors and have 

previously been identified as involved with heroin addiction in a genome-wide association 

study [83, 84]. A study in 169 opiate-dependent patients who had received a stable dose 

of MMT for at least two months demonstrated an increased risk for poor treatment 

response in carriers of the A allele at MYOCD rs1714984 if they also had an A/G genotype 

at GRM6 rs953741 [84].  A low frequency haplotype subset formed by six SNPs in the 

gene encoding brain derived neurotrophic factor (BDNF rs7127507, rs1967554, 

rs11030118, rs988748, rs2030324, and rs11030119) has also been associated with 

poorer response to MMT [85]. However, the low frequency of this haplotype in the 

population (2.7%) limits the potential applications for this finding.  

Buprenorphine is a mixed mu-opioid receptor agonist and kappa opioid receptor 

antagonist which is also used to treat opiate dependence.  In the past 5 years, only two 

studies have investigated associations between gene variants and treatment response to 

buprenorphine [86, 87]. One study found that a variable number tandem repeat (VNTR) in 

the dopamine transporter (DAT) gene SLC6A3/DAT1 was significantly associated with 

buprenorphine response; the 10-repeat allele was more common among non-responders 

than responders to buprenorphine [86]. A second study found that SNPs in the delta opioid 

receptor (OPRD1 rs581111 and rs529520) were associated with buprenorphine treatment 

outcomes, but only in women [87]. Women with the G/G genotype at rs581111 showed 

better treatment outcomes than those who carried at least one A allele, and those with a 

C/C genotype at rs529520 showed significantly improved outcomes over A/A 

homozygotes.  However, these findings require replication in future studies. 

 

 



134 
 

Challenges and Future Directions 

Although many studies have demonstrated pharmacogenetic influences on 

treatment response for substance abuse, few of these findings have been translated to 

clinical use. Challenges facing the field include failure to replicate initial findings, a need 

to develop standards of evidence for validation studies, and efficient translation of 

advances into mainstream medicine [4, 88].  

Although many studies initially find significant associations between genetic 

polymorphisms and treatment response, subsequent studies fail to replicate these 

findings. Small sample sizes in candidate gene studies may contribute to false positive 

findings; larger genome-wide association studies provide greater reliability, but are more 

difficult to conduct. Methods to improve reproducibility may include the use of stringent 

statistical methods to correct for multiple comparisons, increased acceptance of papers 

that report negative findings in order to limit publication bias, and standardization of 

definitions for treatment outcomes [32, 89]. After preliminary evidence has been 

replicated, larger clinical trials must be conducted where subjects are recruited and 

prospectively randomized to treatment by genotype to limit bias. 

Future pharmacogenetic studies should make an effort to increase generalizability 

for a diverse patient population. A recent review found that 76-81% of the reviewed studies 

on addiction pharmacogenetics in dopaminergic genes included only men, and a majority 

of studies are conducted in populations of European descent [17, 90]. Furthermore, 

because addiction is highly comorbid with other psychiatric disorders, recruiting larger 

patient populations with comorbid disorders will improve the generalizability of a 

pharmacogenetics test.   

It is also important to assess clinical utility, cost of implementation, and willingness of 

patients and physicians to adopt pharmacogenetic testing for addiction treatment [91, 92].  
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A genetic test is of limited clinical utility if the variant tested has a small effect on the 

treatment outcome or if the risk allele is rare [92]. Common guidelines will aid the transition 

of a genetic test into the clinic [93-96]. The Evaluation of Genomic Applications in Practice 

and Prevention Working Group (EGAPP) has played a key role in laying the foundation 

for transitioning tests into the clinic and has recently published a framework for combining 

indirect evidence gathered on clinical utility with direct evidence gathered from clinical 

trials (97). Overall, this approach emphasizes alternative research designs such as 

pragmatic clinical trials and feasibility studies to complement randomized clinical trials and 

monitor real-time outcomes [98]. Early translation efforts can prioritize the most promising 

genetic markers as prototypes, which will allow clinical implementation to be studied 

concurrently with larger validation trials [99]. Small scale implementation of promising 

pharmacogenetic tests can help to close the translational gap by generating an evidence 

base to support more widespread use and providing a basic infrastructure to enable 

efficient translation of future tests as additional gene-drug associations are discovered 

[100]. However, this approach presents unique challenges in ethical, legal, and social 

issues of genetic testing [88, 90]. Implementing pharmacogenetics testing in clinical 

practice without sufficient evidence of utility could limit access to medications, as 

physicians might hesitate to prescribe a treatment to a supposed non-responder patient. 

Furthermore, if an alternative treatment was needed for a non-responder, it may be more 

costly or difficult to obtain this medicine. Due to the high rate of substance abuse among 

lower socioeconomic populations, the increased cost of a less available treatment may 

prevent patients from receiving care [101]. It is therefore critical to develop minimum 

standards of evidence for clinical utility prior to translation to clinical use. 

Analysis of cost-effectiveness is another key requirement for pharmacogenetic-

based treatment guidelines. To date, few studies exist that analyze the cost-effectiveness 
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of pharmacogenetic testing for personalized medicine [102, 103]. Two major differences 

between the cost-effectiveness of a pharmacogenetic test and of a drug are that the 

benefits are typically lower and the uncertainties are typically greater for pharmacogenetic 

tests [5]. It is also important to take into account physicians’ willingness to order genetic 

testing as well as availability of a lab to perform the test.  Pragmatic approaches are 

required to ensure that evidence gathering is patient-centric and that healthcare 

practitioners willingly engage with treatment pathways [88, 104, 105]. 

Summary and Conclusions 

In conclusion, although much progress has been made in identifying potential 

pharmacogenetic markers to optimize substance abuse treatment, successful translation 

of these findings depends on developing rigorous standards of evidence, improving 

generalizability of results by conducting clinical trials in more diverse populations, and 

facilitating implementation in the clinical setting.   A clear goal is to generate much-needed 

evidence on the clinical utility and cost-effectiveness of pharmacogenetic treatment 

selection. This research must be ongoing alongside continued efforts to identify new 

targets and genes that are involved in substance abuse in order to fully realize the potential 

of personalized medicine for addiction treatment.  
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IV. Transcranial Direct Current Stimulation Decreases Impulsivity in ADHD 

This section has been published: 

Allenby, C., Falcone, M., Bernardo, L., Wileyto, E.P., Rostain, A., Ramsay, J.R., Lerman, 
C., Loughead, J. (2018). Transcranial Direct Current Brain Stimulation Decreases 
Impulsivity in ADHD. Brain Stimulation: 11(5):974-981. 

 

Abstract 

Background: Impulsivity is a core deficit in attention deficit hyperactivity disorder (ADHD). 

Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex 

(DLPFC) has been shown to modulate cognitive control circuits and could enhance 

DLPFC activity, leading to improved impulse control in ADHD. 

Objective/Hypothesis: We predicted 2.0 mA anodal stimulation (tDCS) versus sham 

stimulation applied over the left DLPFC would improve Conners Continuous Performance 

Task (CPT) scores. Our secondary hypothesis predicted that stop signal task (SST) 

reaction time would decrease with tDCS (versus sham). 

Methods:  Thirty-seven participants completed two periods of three tDCS (or sham) 

sessions two weeks apart in a within-subject, double-blind, counterbalanced order. 

Participants performed a fractal N-back training task concurrent with tDCS (or sham) 

stimulation. Participants completed the CPT and SST at the beginning of treatment 

(baseline), at the end of the treatment, and at a 3-day post-stimulation follow-up.   

Results: There was a significant stimulation condition by session interaction for CPT false 

positive scores (2 =15.44, p<0.001) driven by a decrease in false positive errors from 

baseline to end of treatment in the tDCS group (β=-0.36, 95% Confidence Interval (CI) -

0.54 to -0.18, p<0.001). This effect did not persist at follow-up (β=-0.13, p>0.05). There 
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was no significant stimulation condition by session interaction effect on CPT true positive 

errors or response time (ps>0.05).  No significant change in SSRT performance was 

observed (p>0.05). 

Conclusion: These findings suggest that stimulation of the left DLPFC with tDCS can 

improve impulsivity symptoms in ADHD, supporting the therapeutic potential for tDCS in 

adult ADHD patients.  

Keywords: Attention deficit hyperactivity disorder, tDCS, impulsivity, dorsolateral 

prefrontal cortex, continuous performance task  

Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is a disease characterized by 

symptoms of impulsivity, inattention, and hyperactivity that emerge in childhood.  In up to 

60% of cases, these symptoms persist into adulthood and can lead to poorer life outcomes 

in areas such as employment and interpersonal relationships [1]. Current pharmacological 

treatments include stimulants such as methylphenidate and amphetamine, and non-

stimulant medications such as atomoxetine [2]. These medications can significantly 

improve ADHD symptoms and life outcomes. For example, in adults with ADHD, 

pharmacologic treatment for more than two years is associated with improved ADHD 

symptoms and mental health functioning compared to treatment for two years or less [3]. 

There is substantial variation in response; dosages must be individually titrated to minimize 

adverse effects while maintaining efficacy [2] and for more than 50% of adult ADHD patients 

pharmacotherapy alone is not sufficient treatment [4]. In addition, the long-term risk/benefit 
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profile of these treatments is uncertain. There remains a need for novel treatments for adult 

ADHD. 

Neuroimaging studies in healthy subjects and ADHD subjects have linked 

cognitive deficits and impulsive decision-making with reduced activity in brain regions sub-

serving the cognitive control network [5-8]. A meta-analysis of 55 whole-brain fMRI studies 

showed significant hypoactivation in ADHD patients relative to controls in bilateral attention 

networks, including the dorsolateral prefrontal cortex [9]. When performing a response 

inhibition task, adolescent ADHD patients demonstrated reduced activation in the DLPFC 

compared to healthy controls [10].  Because cognitive control networks rely heavily on 

prefrontal cortex function, impairment in these regions can promote impulsivity, a core 

symptom of ADHD [11].  These deficits can be particularly debilitating for adults diagnosed 

with ADHD, as they are associated with poor occupational outcomes and difficulty in 

maintaining relationships [12-14]. Impulsivity in adult ADHD patients can be evaluated 

using computerized measures such as the Conners Continuous Performance Test (CPT) 

[15] and Stop Signal Task [16]. Continuous performance tasks are the leading assessment 

of ADHD symptomology in ADHD research, and the Conners CPT is considered the gold 

standard of CPTs [17, 18]. CPT outcome measures are associated with ADHD 

symptomology:  false positive errors (i.e., response to a non-target stimulus) are associated 

with impulsivity, while true positive errors (i.e., non-response to a target stimulus) are 

associated with inattention [19-21].  ADHD patients make more false positive errors than 

healthy adults, and these errors are sensitive to the effects of stimulant treatment in ADHD 

patients [22-25].  Furthermore, performance on this task is sensitive to effects of 

methylphenidate, an efficacious ADHD treatment [24-27].  Stimulant medications such as 

methylphenidate decrease false positive error rates following three weeks of treatment, with 
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a medium-to-large effect size (η2=.21) [26]. The Stop Signal Task, which measures an 

individual’s ability to inhibit a proponent response, is another computerized task which has 

been used to assess ADHD symptoms. Stop-signal reaction time (SSRT) is longer in patients 

who endorse more symptoms of impulsivity, and this measure effectively discriminates 

ADHD patients from healthy control patients [16, 22, 28].   

Emerging evidence suggests that activity in cognitive control circuits can be 

modulated using noninvasive direct current transcranial stimulation (tDCS) [29-31]. TDCS 

treatment consists of a weak electric current (1-2 mA) applied to the scalp through conductive 

electrodes [32]. A single session of tDCS targeting the left DLPFC has been shown to 

improve memory, planning ability, inhibitory control, and neural efficiency during cognitive 

processing with minimal side effects [33-35]. Some findings suggest that performance 

improvements may be related to current density; studies utilizing a 1mA dose have shown 

mixed results in an ADHD population [36, 37], whereas a higher dosage (i.e., 2mA 

compared to 1mA or sham tDCS) has been shown to improve cognitive performance in 

both healthy samples and neuropsychiatric populations [31, 38, 39].   Furthermore, 

concurrent performance of a challenging task to engage the targeted control circuits may 

offer synergistic effects on tDCS-induced neuroplastic changes, promoting greater 

functional connectivity between large-scale brain networks and improved neural efficiency 

resulting in improved performance on objective measures of cognitive control [40-43]. The 

fractal N-back is a working memory task which has been shown to robustly activate the 

DLPFC, and co-administration of this task with tDCS results in greater DLPFC activation 

than when the task is performed alone [11, 29, 30, 44, 45]. Finally, multiple tDCS sessions 

with concurrent cognitive training may provide greater benefits than a single session [26, 

46].  
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Although many studies have reported positive results for cognitive enhancement 

with tDCS, studies investigating tDCS treatment specifically for ADHD are limited. In a 

study of adolescent ADHD patients, tDCS over the left DLPFC with a concurrent N-back task 

revealed that active stimulation (compared to sham) led to greater activation of the working 

memory network, including the left DLPFC [45]. A second study of adolescents found that 

5 days of anodal tDCS over the left DLPFC caused a significant reduction in inattention 

and impulsivity at end of treatment and 7 days post stimulation [47]. In adults, anodal tDCS 

to the right DLPFC resulted in improved inattention scores [48] and anodal tDCS over the 

inferior frontal gyrus reported that tDCS treatment reduced false positive errors on an 

interference task in male adolescents with ADHD [37].  However, tDCS applied over the 

left DLPFC in adults with ADHD did not reveal significant differences on a go/no go task 

following one stimulation session [36].  

Based on the rationale above, we hypothesized that modulating activation in the 

cognitive control network using tDCS with a concurrent training task would transfer to 

improved performance on objective measures of cognitive control and impulsivity. We 

conducted a within-subject crossover study to examine whether three sessions of anodal 

2mA tDCS applied over the left DLPFC during working memory training (versus working 

memory training with sham stimulation) would attenuate the cognitive symptoms of ADHD 

in adults. We predicted 2.0 mA anodal tDCS (versus sham) applied over the left DLPFC 

would improve Conners Continuous Performance Task (CPT) scores (false positive 

errors, true positive errors, and true positive response time). Our secondary hypothesis 

predicted that stop signal task (SST) reaction time, a measure of response inhibition, 

would decrease with tDCS (versus sham). 
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Materials and Methods  

Participants: Adults between the ages of 18 and 65 with a prior diagnosis of ADHD were 

identified through referrals from the University of Pennsylvania’s Adult ADHD Treatment 

& Research Program or recruited by mass media. ADHD diagnosis and comorbid medical 

conditions were assessed by an experienced clinician using a brief medical history 

interview and the Structured Clinical Interview for DSM-V (SCID-V; [49]). Individuals who 

met criteria for DSM-V Axis I psychiatric (schizophrenia, mania, bipolar disorder, and 

major depression) or substance disorders (except nicotine dependence) on the SCID-V 

and those taking psychotropic medications (other than stimulant medications for ADHD) 

were excluded. Participants with a history of major depression who had been in remission 

for the past 6 months were considered eligible. Participants who reported taking daily 

stimulant medication for the treatment of ADHD were asked to continue their prescribed 

regime for the duration of the study.  Exclusion criteria included neurological conditions 

including history of epilepsy, seizure disorder, stroke, and tumors of the brain or spinal 

cord.  Additional exclusion criteria were: pregnancy, planned pregnancy or breastfeeding; 

tDCS application contraindication (e.g. metallic implants in the head or history of seizure); 

estimated IQ <90 on Shipley Institute of Living Scale [50]; and any vision impairment or 

other disability that would prevent task performance.  

Participants were assigned to a treatment order (tDCS first versus sham first) using 

a simple randomization with replacement. Prior to each session, participants completed a 

urine drug screen, pregnancy screen (women only), and provided exhaled carbon 

monoxide (smokers only) and breath alcohol content measures. All participants provided 
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consent. All procedures were approved by the University of Pennsylvania Institutional 

Review Board and carried out in accordance with the Declaration of Helsinki. 

Thirty-seven participants completed both study periods and thirty-five participants 

attended all sessions. The sample was predominantly male (n=26, 70.1%), and white 

(n=29, 78.4%). Approximately half the sample completed high school or some college 

(n=18, 48.6%). The mean age was 31.7 years old. At intake, 17 participants reported 

taking stimulant medication to treat ADHD. Twenty-one participants were of the primarily 

inattentive ADHD subtype; 16 participants were combined (inattentive and hyperactive) 

subtype. There were no significant differences in performance between ADHD subtypes. 

There were no differences in age, gender, or education level between participants on and 

off medication.  

Overview of procedures: This study utilized a within-subject, cross-over design 

consisting of two treatment periods: active 2mA tDCS and sham. Periods were separated 

by a two-week washout and period order was randomized, double-blind and 

counterbalanced [32, 51]. During each period, participants attended four visits: three 

stimulation visits on days one, three, and five, and a follow-up visit on day eight.  On days 

one, three, and five, participants received twenty minutes of stimulation (tDCS or sham) 

while concurrently performing a working memory training task (see below). Participants 

missing more than one treatment session were withdrawn (n = 4), leaving a final sample 

of 37.  

tDCS Treatment: A neuroConn DC-Stimulator Plus delivered a constant direct current via 

two 5cm × 5cm electrodes covered in saline-soaked sponges. Electrode placement used 
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the international 10-20 system developed for EEG [52]. The anodal electrode was placed 

at F3 for stimulation over the left DLPFC and the cathode was placed over the right supra-

orbital area. Our montage choice was based on previously reported tDCS modulation of 

the DLPFC [30, 39, 44, 53-56] and results from a pilot feasibility study conducted in our 

lab (unpublished data). This montage allowed for effective blinding, ease of administration, 

and tolerable participant comfort. Stimulation with the neuroConn DC stimulator allows for 

double-blinding: a collection of five digit codes are assigned to each treatment condition, 

and the randomization procedure supplies the tDCS administrator with a code that can be 

input into the tDCS device. With this approach, neither the administrator nor the participant 

know which treatment condition is being applied.  During the active condition, current was 

ramped up over 30 seconds until 2.0 mA was reached, maintained for 19 minutes and 

ramped down over 30s at the end of stimulation (total stimulation period 20 min). For the 

sham treatment session, current was ramped up over 30 seconds until 2mA was reached 

and then immediately ramped down over 30 seconds at the beginning and end of a 20 

minute period to mimic the skin sensations experienced during tDCS [57].  

Concurrent tDCS Task: While receiving tDCS (or sham), participants performed a visual 

working memory training task with complex geometric figures (fractals) [58, 59]. 

Participants viewed complex fractals under four conditions (0, 2, 3, and 4-back): in the 0-

back condition, participants responded with a button press (dominant hand) to a specified 

target fractal; for the 2-back condition, participants responded if the current fractal was 

identical to the item presented two trials back; etc. Each condition was presented three 

times in 20-trial blocks (33% targets; 60s). Each fractal was presented for 500 ms, with a 

2500 ms inter-stimulus interval.  The task was synchronized with tDCS administration and 
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began with a 3-minute baseline rest period to allow participants to become accustomed to 

the sensations produced by the stimulation. 

Outcome Measures: The primary outcome measures were CPT false positive errors, true 

positive errors, and true positive response time. The secondary outcome measure was 

stop signal reaction time (SSRT).  

Cognitive Assessment: Participants completed a computerized cognitive assessment 

battery at baseline, end of treatment, and at a follow-up session 3 days post-treatment. 

Tasks were administered in a fixed order that prioritized our primary outcome [60].  All 

tasks were presented on a standardized computer monitor.  The timing of the cognitive 

battery relative to stimulation was different at each session: the cognitive assessment was 

performed prior to stimulation at the baseline session in each period, immediately following 

stimulation at the end of treatment sessions, and prior to the N-back task (without 

concurrent tDCS) at the follow-up session. Participants were seated approximately 50 

inches from the monitor and responded to stimuli with their dominant hand by pressing 

labeled keys on a standard keyboard. 

Conners Continuous Performance Task (CPT): The Conners CPT (Multi-Health Systems, 

North Tonawanda, NY) is a well-validated attention task with excellent internal consistency 

for both normative and clinical groups and a median test-retest correlation of .67 [15].  In 

this task, participants are shown a series of stimuli (letters) on a computer screen and are 

asked to press the spacebar in response to target stimuli, but to withhold responding to 

other stimuli. The letters (approximately 1 inch in size) are presented one at a time and 

each letter is displayed for 250 ms. The task consists of 6 blocks with 60 trials each; each 
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block contained three sub-blocks of 20 trials each. The sub-blocks differ in terms of 

interstimulus interval (1, 2 or 4s).  Performance variables of interest are false positive 

errors (commission errors) and true positive errors (omission errors), as well as true 

positive response time. (Task duration: ~14 min). 

Stop Signal Task (SST): The SST is a measure of the ability to inhibit a prepotent response 

that involves two tasks: the “go task” and the “stop task” [16, 28]. The go task is a two-

choice visual discrimination task that instructs participants to press labeled keyboard keys 

as quickly and as accurately as possible to indicate the direction of the right or left-facing 

arrowed present on the screen (“z” for left; “/” for right). Following a 32-trial practice, stop 

signals (an 800-Hz, 100-ms, 70-dB tone) were presented on 25% of trials for three task 

blocks of 64 trials each. The initial stop delay in each block was 250 ms and adjusted by 

50 ms increments depending on whether the participant was able to successfully inhibit a 

response [16]. All trials consisted of a 500-ms warning stimulus followed by a 1,000-ms 

go signal (left- or right-facing arrow) and 1,000-ms intertrial interval blank screen. The 

timing of the stop signal adjusts dynamically based on performance on earlier stop trials 

to yield approximately 50% inhibition. Mean RT for each block was calculated based on 

valid responses (i.e., RT greater than 200 ms), and only blocks with 20–80% inhibition 

and at least 80% accuracy were analyzed. SST reaction time (SSRT) was calculated by 

subtracting the mean stop delay from the mean RT on go-trials (Task duration: ~10 

minutes). 

tDCS Side Effects: Side effects of tDCS were assessed at the end of each tDCS (or 

sham) session using the tDCS Effects Questionnaire [61]. This questionnaire asks 
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participants to indicate to what extent they experienced symptoms both during and after 

tDCS administration using an 11-point Likert-like scale (0 = “None” to 10 = “Severe”).  

Analysis: Descriptive statistics were obtained for all variables. Performance outliers were 

identified as values 2.5 SD above the mean for error rates and 2.5SD above the mean for 

reaction times, and were excluded from analysis. Stimulation condition (tDCS vs. sham) 

by session (baseline, end of treatment, and follow-up) interaction effects for primary 

outcomes were analyzed using separate linear mixed effects models with subject-level 

random effects estimated using maximum likelihood techniques (Stata; StataCorporation, 

College Station, TX, USA). We used an adjusted alpha of 0.02 to correct for multiple 

hypothesis testing, based on 3 primary outcome measures with an average correlation of 

r=-0.26 [62]. Education level (high school/some college versus college graduate), period 

order (tDCS first vs. sham first), sex, age, and current medication usage were included as 

covariates in the multiple regression models. Similar models were used to examine the 

secondary outcome (SSRT).  An exploratory analysis used similar models to examine 

stimulation condition by session interaction effects within the sub-groups of participants 

who were taking stimulant medications and those who were not. Reported side effects of 

tDCS were examined for statistical differences between the active and sham conditions 

using t-tests for side effect rating during and following tDCS. 

Results 

Primary Outcomes: There was a significant stimulation condition by session interaction 

effect on CPT false positive scores, after correcting for three primary outcomes (2=15.44, 

p<0.001; Figure 1A).  Post-hoc examination suggests that this effect was driven by the 
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decrease in false positive errors from baseline to end of treatment in the tDCS group (β=-

0.36, 95% Confidence Interval (CI) -0.54 to -0.18, p<0.001). The effect did not persist at 

follow-up after tDCS had been discontinued (β=-0.13, p>0.05). There were no significant 

baseline differences between conditions in any measures, no condition by order 

interactions, and no stimulation condition by session interaction effects for CPT true 

positive errors or hit response time (p>0.05; Figure 1B-C). 

Secondary Outcome: There was no significant stimulation condition by session 

interaction for SSRT (p>0.05). In the Stop Signal Task, there was no significant 

difference observed between task performance measure at baseline between sham and 

active condition (p>0.05). Absolute stop signal reaction time is included in Table 2.    

 

Concurrent tDCS Task Performance: There was no significant stimulation condition by 

session interaction for total true positives or true positive reaction time on the N-back task 

(2=4.92, p>0.05). Overall, task performance was typical for the N-back task with a 

parametric decrease in true positives as memory load increased and overall performance 

for this sample was comparable to previous studies [63]. Absolute error rates and reaction 

times for baseline, end of treatment, and follow-up for tDCS and sham condition are 

included in Table 1.    

 

Exploratory Analysis of Effects of Medication Status:   CPT false positive errors, but 

not true positive errors or reaction time, were significantly different by medication status 

at each session (Figure 2; p < .05 for medicated vs. non-medicated participants at each 

time point). Medication status was included as a covariate in the analytical models, and 

significantly predicted CPT false positives (β = -0.69; p=0.001).  Although our sample size 
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was too small to test for a three-way condition by session by medication status interaction 

effect, separate exploratory analyses within each group revealed significant condition by 

session interaction at end of treatment for both medicated (2 =12.15; p<0.001) and non-

medicated participants (2=4.97; p<0.03), suggesting that our overall effect was not driven 

by one of these sub-groups.  

Side Effects: There were significant differences in reported side effects during stimulation 

in the tDCS period compared to sham for burning, itching, and tingling (Table 2). However, 

there were no differences in reported side effects following the stimulation.  Participants 

were able to correctly identify active tDCS stimulation during period 1 and period 2 

(OR=8.56, P<0.0001).  

Discussion 

Consistent with our primary hypothesis, we found that three treatment sessions 

with active anodal tDCS over the left DLPFC (with cathodal placement over the right supra-

orbital area) significantly improved performance on the Conners Continuous Performance 

Task. Specifically, participants in this within-subject cross-over study showed significant 

reductions in false positive errors on the Conners CPT during the active tDCS period 

(compared to sham treatment) at the end of treatment time point. However, these effects 

were not present at the follow-up session conducted three days after the final stimulation 

session. The improvement in performance following tDCS (versus sham) observed in the 

current study (d=0.5) is similar to effect sizes previously noted for methylphenidate on 

false positive errors [26, 64]. We did not observe an effect of tDCS on CPT true positive 

error or CPT response time, which is also similar to findings reported for methylphenidate 



159 
 

treatment [26, 65].  False positives, unlike true positive errors, are specifically believed to 

probe impulsivity and are among the most reported outcomes for continuous performance 

task results [26]. This suggests that repeated tDCS may be a novel treatment for 

impulsivity in ADHD, though additional research is necessary to determine whether an 

optimized treatment approach could induce persistent effects.  

Impulsivity is a core deficit in adult ADHD, and is one of the primary diagnostic 

criteria [11]. Impulsive behaviors such as blurting out answers without thinking, having 

difficulty awaiting a turn, or interrupting others can lead to poor occupational performance 

and difficulty in maintaining relationships [12]. The Conners CPT task is considered a gold 

standard of measuring ADHD symptoms such as impulsivity and sustained attention [15]. 

Specifically, false positive errors on the CPT task provide a continuous quantitative 

measure that can effectively distinguish ADHD patients versus healthy controls and has 

been associated with genetic factors that are also associated with ADHD [22, 23, 66]. A 

decrease in false positive errors on the CPT may reflect reduced impulsivity symptoms in 

ADHD patients [23, 67, 68]. False positive errors in children with ADHD were found to be 

positively correlated with parental ratings of impulsive behavior [69].  This pattern provides 

support for a model of poor cognitive control contributing to underactive behavioral 

inhibition and increased impulsivity in adults with ADHD [70]. In a study conducted by 

Boonstra et al., methylphenidate treatment resulted in a significant decrease in false 

positive errors [26]. Furthermore, this study found that the decrease in false positive errors 

during the medication phase compared to placebo provided a moderate predictive value 

for clinical response to treatment; positive predictive power of the decrease in false 

positive errors on medication response was 78%. In addition, associations have been 
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identified between false positive errors and the dopamine receptor D2 gene (DRD2; 

rs207654, rs1079596), which may contribute to the pathology of ADHD [66]. 

Although the precise mechanisms underlying the effects we observed were not tested 

in this study, we propose that tDCS treatment targeting the DLPFC network may enhance 

top-down control by enhancing DLPFC activity, as frontal dysfunction in ADHD patients 

may be involved in generating impulsive behavior [71, 72]. The DLPFC is a crucial site for 

dopaminergic effects on cognitive function, and current stimulant treatments for ADHD 

rely on increases in dopaminergic activity to improve ADHD symptomology [73-75]. It is 

possible that modulation of DLPFC activity increases the level of inhibitory control over 

impulsive behaviors [76]. Therefore, novel treatments, such as tDCS administered with 

the N-back training task, which enhance DLPFC activity and reduce impulsivity may be 

beneficial for ADHD patients.  

Our findings are consistent with previous reports that tDCS may be beneficial for 

ADHD and other conditions marked by deficits in cognitive control, such as addiction and 

obesity. A recent meta-analysis of studies utilizing tDCS or repetitive transcranial magnetic 

stimulation (rTMS) found that stimulation of the DLPFC reduced craving for nicotine, 

alcohol, and marijuana in addicted individuals, and reduced craving for food in subjects 

who normally experienced strong food cravings [77]. High definition tDCS stimulation over 

the left DLPFC specifically was found to reduce subject impulsivity on an intertemporal 

choice task, another measure of impulsive behavior [78]. Indeed, multiple studies targeting 

regions involved in executive control functions have observed improvements in cognitive 

deficits that characterize ADHD, such as impulsive responding, memory, and planning, 

and have shown increases in brain connectivity and neural efficiency following treatment 
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[79-81]. For example, anodal tDCS over the left DLPFC with contralateral cathodal tDCS 

resulted in more cautious decision-making behavior [82]. Boggio et al. reported that active 

anodal stimulation to the DLPFC (compared to sham stimulation) enhanced inhibitory 

responses in a go/no-go task [54]. Differences in paradigms, such as differences in 

stimulation amplitude or lack of training task, may explain why some studies have failed 

to find an effect of tDCS targeting the DLPFC on impulsivity [36].   

CPT false positive errors were unrelated to working memory and SST performance 

outcomes, suggesting that CPT false positive errors may assess a specific component of 

impulsivity in ADHD patients (Pearson’s r for false positives vs: N-back true positive count 

r=-0.11, p=0.19; N-back true positive reaction time r=0.08, p=0.54; SSRT r=-0.02, p=0.81).  

Lack of treatment response in the SSRT is not unexpected; previous studies have found 

smaller methylphenidate effects on SSRT [26]. This may be due to differences in the 

nature of the auditory stop signal used in the SST compared to visual signals like those in 

the CPT, or even differences in neural systems underlying the SST compared to other 

response inhibition tasks [71]. The go/no-go task is similar to the CPT in that the visual 

cue indicates when a participant should act or not, so that participants must restrain a 

primed action.  In comparison, the SST presents an auditory stop cue after the visual go 

cue has been presented; therefore, participants are required to cancel an action that has 

already begun.  In direct comparisons of generic stop signal tasks and go/no-go, tasks 

increased BOLD signal was observed in left DLPFC, medial, and parietal cortices during 

the go/no-go task, presumably reflecting a left frontoparietal specialization for response 

selection [83]. Performance on the go/no-go is not associated with SST performance in 

children with ADHD [84], and in adults, tDCS treatment targeting the left DLPFC increased 

the proportion of correct responses in the “go stage” of the go/no-go test compared to 
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sham [85]. It is possible that impulsivity consists of multiple components, and component-

specific assessment of impulse control in healthy participants has revealed different 

activation patterns of the neural impulse control network [86, 87].  Therefore, the absence 

of tDCS effects on other CPT outcomes, such as true positive errors and reaction time, 

may be due to differences in inhibitory processes for false positive versus true positive 

errors. Similar to studies using methylphenidate, there was no effect of tDCS treatment on 

overall mean CPT reaction time, and correlation studies suggest that mean reaction time 

is minimally related to ADHD symptoms as a whole [26, 69]. Differences may also be due 

to the fixed task order and fatigue experienced as a result of performing the N-back before 

or after cognitive tasks. However, findings by Erdodi et al. suggest that a standardized 

administration sequence minimizes order effects in the CPT [60]. Lastly, we did not 

observe changes in performance for the N-back training task (true positive count or true 

positive reaction time) during tDCS. The effects of tDCS on concurrent working memory 

performance are mixed; studies often fail to replicate previous reported effects [36, 38, 53, 

55, 85, 88]. In a meta-analysis of 12 studies, meta-regressions showed that tDCS 

presented only an improvement in faster response times, not in accuracy. Other studies 

showing improvement in working memory performance measured performance following 

stimulation [44, 89, 90]. Studies showing positive effects of tDCS in ADHD have primarily 

been conducted in adolescents [37, 45, 47, 91], and it is possible that adults with ADHD 

respond differently. Differences may also be due to differences in study design such as 

dosage and treatment duration, or to participant experiences of side effects during 

stimulation. 

Our sample of 37 individuals provided 80% power to detect an effect size of d ≈ 0.6, 

similar to effect sizes seen for methylphenidate treatment in adult ADHD, and the inclusion 
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of ~30% women is representative of the general ADHD population. Strengths of our 

paradigm include the within-subject design, multiple stimulation sessions, and the use of 

a concurrent working memory training task during stimulation. A limitation of this study is 

the lack of CPT performance data immediately following stimulation at Session 1. Because 

our outcomes were not assessed after Session 1, we cannot be certain that treatment 

effect on false positive errors was a cumulative effect of three stimulation sessions, rather 

than an acute effect of stimulation at Session 3. However, multiple tDCS sessions have 

been shown to produce a cumulative increase in cortical excitability, and combining tDCS 

with a training task over time may result in greater gain on a non-trained test than tDCS 

alone [46, 92]. Sham stimulation may not be the optimal method for blinding participants 

during tDCS treatment [93, 94]. As a contribution to this discussion, we found that our 

participants were able to correctly identify tDCS during period 1 and period 2 (OR=8.56, 

P<0.0001).  This may be related to the significant differences in side effects ratings 

between conditions; although side effects in both conditions were generally mild (rated <3 

out of 10), participants endorsed higher ratings during the tDCS condition compared to 

sham (Table 2).  It is possible that order of stimulation in a within-subject design could 

influence outcomes. However, prior studies suggest that a two-week washout period is 

sufficient to minimize carry over effects, and treatment order did not significantly contribute 

to our model (ps>0.05; [32]), suggesting that any carry over effects were minimal. Another 

potential limitation is that our sample included participants who were taking stimulant 

medications as well as those who were not. However, our within subject design reduces 

the chance that our results are confounded by medication status. Medication status was 

included as a covariate in our analysis. Although there was a significant difference in 

performance by medication status at each time point, our exploratory analysis revealed a 

significant condition by session interaction at end of treatment for those currently using 
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ADHD medication  as well as those who were not. However, it is possible that tDCS could 

be more effective when used in combination with stimulant medication, because 

stimulants increase dopamine in the executive function circuitry (such as the DLPFC) 

targeted by tDCS [73]. Many ADHD symptoms persist despite current medication usage 

and future research with adequate sample size is needed to assess the effects of tDCS 

with and without current medication usage. Additionally, approximately half of our 

participants met criteria for the primarily inattentive subtype of ADHD, and half-met criteria 

for the combined inattentive and hyperactive/impulsive subtype. ADHD subtype may 

influence performance and task-related brain activation on attention and response 

inhibition tasks [71, 95].  Finally, the dose-response curve for tDCS effects on cognitive 

outcomes is not fully understood and may be non-linear [96]. Building on results from this 

study, further research conducted examining dose-response curves for tDCS on cognitive 

performance would be very useful.  

Our findings that active anodal tDCS over the left DLPFC with cathodal tDCS over 

the right supra-orbital area significantly decreased false positive errors in the Conners 

CPT suggests that tDCS may offer promise as a novel treatment for impulsivity in ADHD.  

This treatment was well tolerated; reported side effects were mild and subsided 

immediately following tDCS administration. Future studies employing different 

standardized training tasks (such as ones more specific response inhibition) may be useful 

in order to optimize outcomes, and additional studies would benefit from a larger sample 

size sufficiently powered to test differences in treatment by current medication status. 

Furthermore, repeated dose administration over a longer time period may provide more 

persistent performance outcomes following treatment. These data support advancing to a 

larger study to optimize treatment course for more durable potential benefits.   
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Table 1: Cognitive Task Performance Outcomes  

  tDCS Sham 

CPT False Positive Error (Primary) Mean SEM Mean SEM 

Baseline 21.5 1.9 19.8 1.9 

End of Treatment 17.1 1.5 19.8 1.8 

Follow-up 20.2 2.0 19.8 2.2 

CPT True Positive Error      

Baseline 2.0 0.8 2.4 0.8 

End of Treatment 1.9 0.7 2.1 0.4 

Follow-up 1.0 0.3 1.3 0.4 

CPT Response Time      

Baseline 416.7 12.2 422.6 12.2 

End of Treatment 420.9 10.4 419.7 12.0 

Follow-up 407.2 10.3 411.9 12.7 

SST Reaction Time     

Baseline 284.3 11.0 300.8 11.3 

End of Treatment 288.4 12.5 291.5 11.2 

Follow-up 268.1 9.3 267.6 11.0 

N-back True Positive Response Count     

Baseline 45.5 1.1 43.5 1.5 

End of Treatment 43.3 1.3 44.9 1.4 

Follow-up 46.0 1.3 47.6 1.7 

N-back True Positive Response Time  

Baseline 727.9 24.1 725.4 29.3 

End of Treatment 744.1 26.0 744.6 29.5 

Follow-up 709.1 23.8 715.6 27.1 
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N-back False Positive Count      

Baseline 20.6 1.9 19.5 2.5 

End of Treatment 13.9 1.6 14.8 2.2 

Follow-up 16.9 1.9 17.1 2.5 

N-back False Positive Reaction Time    

Baseline 955.0 55.6 955.9 49.0 

End of Treatment 1021.9 49.0 984.1 53.3 

Follow-up 982.4 44.8 1016.9 48.6 

 

Table 1 Caption: Stimulation condition by session interaction is significant for CPT false 

positive errors only (p<0.001).  There were no significant differences by condition in 

baseline performance measures.  
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Table 2. Mean Ratings for Side Effects Reported during tDCS 

Side effect during 
tDCS 

Sham M(SD) tDCS M(SD) 

Tingling 1.4(1.4) 1.9(1.4)* 

Itching Sensation 1.8(1.3) 1.1 (1.3)* 

Burning Sensation 1.5 (2.0) 2.8 (2.0)* 

Pain 0.2(0.4) 0.5(0.7)* 

Fatigue 1.3(1.9) 1.4(1.8) 

Nervousness 0.2(0.4) 0.3(0.8) 

Difficulty 
concentrating 

2.1(2.0) 2.0(1.9) 

Mood change 0.4(0.8) 0.5(0.8) 

Change in vision 0.2(0.6) 0.3(0.7) 

Headache 0.3(0.6) 0.3(0.6) 

Visual sensation  0.3(0.7) 0.6(0.8) 

 

Table 2 Caption: The average side effect ratings were mild. Ratings for tingling, itching 

sensation, burning sensation, and pain were significantly different between active and 

sham stimulation.  * p<0.05  
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Figure 1.  CPT Performance by Session 

 

 

Figure 1 Caption: There was a significant stimulation condition by session interaction 

for CPT false positive scores (2 =15.44, p<0.001; Figure 1A) driven the decrease in 

commission errors from baseline to end of treatment in the tDCS group (β=-0.36, 95% 

Confidence Interval (CI) -0.54 to -0.18, p<0.001). This effect did not persist at follow-up 

(β=-0.13, p>0.05). There was no significant stimulation condition by session interaction 

effect on true positive errors or response time (p>0.05; Figure 1B-C). 
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Figure 2.  CPT Performance by Medication Status 

 

 

 

Figure 2 Caption: Medication status was a significant covariate in the overall model. 

Exploratory analysis reveals a significant condition by session interaction at end of 

treatment for those currently using ADHD medication (2 =12.15; p<0.001) There is also 

a significant interaction at end of treatment for those currently not using ADHD 

medication (2 =4.97; p<0.03) Overall, there is no significant condition by current 

medication interaction (p>0.05).  
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