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Studies On Fractionalization And Topology In Strongly Correlated
Systems From Zero To Two Dimensions

Abstract
The interplay among symmetry, topology and condensed matter systems has deepened our understandings of
matter and lead to tremendous recent progresses in finding new topological phases of matter such as
topological insulators, superconductors and semi-metals. Most examples of the aforementioned topological
materials are free fermion systems, in this thesis, however, we focus on their strongly correlated counterparts
where electron-electron interactions play a major role. With interactions, exotic topological phases and
quantum critical points with fractionalized quantum degrees of freedom emerge. In the first part of this thesis,
we study the problem of resonant tunneling through a quantum dot in a spinful Luttinger liquid. It provides
the simplest example of a (0+1)d system with symmetry-protected phase transitions. We show that the
problem is equivalent to a two channel SU(3) Kondo problem and can be mapped to a quantum Brownian
motion model on a Kagome lattice. Utilizing boundary conformal field theory, we find the universal peak
conductance and compute the scaling behavior of the resonance line-shape.

For the second part, we present a model of interacting Majorana fermions that describes a superconducting
phase with a topological order characterized by the Fibonacci topological field theory. Our theory is based on
a SO(7)1=SO(7)1/(G2)1 x (G2)1 coset construction and implemented by a solvable two-dimensional
network model. In addition, we predict a closely related ''anti-Fibonacci'' phase, whose topological order is
characterized by the tricritical Ising model. Finally, we propose an interferometer that generalizes the Z2
Majorana interferometer and directly probes the Fibonacci non-Abelian statistics.

For the third part, we argue that a correlated fluid of electrons and holes can exhibit fractional quantum Hall
effects at zero magnetic field. We first show that a Chern insulator can be realized as a free fermion model with
p-wave(m=1) excitonic pairing. Its ground state wavefunction is then worked out and generalized to m>1. We
give several pieces of evidence that this conjectured wavefunction correctly describes a topological phase,
dubbed ''fractional excitonic insulator'', within the same universality class as the corresponding Laughlin state
at filling 1/m. We present physical arguments that gapless states with higher angular momentum pairing
between energy bands are conducive to forming the fractional excitonic insulator in the presence of repulsive
interactions. Without interactions, these gapless states appear at topological phase transitions which separate
the trivial insulator from a Chern insulator with higher Chern number. Since the nonvanishing density of
states at these higher angular momentum band inversion transitions can give rise to interesting many-body
effects, we introduce a series of minimal lattice models realizations in two dimensions. We also study the effect
of rotational symmetry broken electron-hole exciton condensation in our lattice models using mean field
theory.
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ABSTRACT

STUDIES ON FRACTIONALIZATION AND TOPOLOGY IN STRONGLY

CORRELATED SYSTEMS FROM ZERO TO TWO DIMENSIONS

Yichen Hu

Charles L. Kane

The interplay among symmetry, topology and condensed matter systems has

deepened our understandings of matter and lead to tremendous recent progresses

in finding new topological phases of matter such as topological insulators, super-

conductors and semi-metals. Most examples of the aforementioned topological ma-

terials are free fermion systems, in this thesis, however, we focus on their strongly

correlated counterparts where electron-electron interactions play a major role. With

interactions, exotic topological phases and quantum critical points with fractional-

ized quantum degrees of freedom emerge. In the first part of this thesis, we study

the problem of resonant tunneling through a quantum dot in a spinful Luttinger liq-

uid. It provides the simplest example of a (0+1)d system with symmetry-protected

phase transitions. We show that the problem is equivalent to a two channel SU(3)

Kondo problem and can be mapped to a quantum Brownian motion model on a

Kagome lattice. Utilizing boundary conformal field theory, we find the universal

peak conductance and compute the scaling behavior of the resonance line-shape.

For the second part, we present a model of interacting Majorana fermions that

describes a superconducting phase with a topological order characterized by the Fi-
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bonacci topological field theory. Our theory is based on a SO(7)1 = SO(7)1/(G2)1×

(G2)1 coset construction and implemented by a solvable two-dimensional network

model. In addition, we predict a closely related “anti-Fibonacci” phase, whose topo-

logical order is characterized by the tricritical Ising model. Finally, we propose an

interferometer that generalizes the Z2 Majorana interferometer and directly probes

the Fibonacci non-Abelian statistics.

For the third part, we argue that a correlated fluid of electrons and holes can

exhibit fractional quantum Hall effects at zero magnetic field. We first show that a

Chern insulator can be realized as a free fermion model with p-wave(m = 1) exci-

tonic pairing. Its ground state wavefunction is then worked out and generalized to

m > 1. We give several pieces of evidence that this conjectured wavefunction cor-

rectly describes a topological phase, dubbed “fractional excitonic insulator”, within

the same universality class as the corresponding Laughlin state at filling 1/m. We

present physical arguments that gapless states with higher angular momentum pair-

ing between energy bands are conducive to forming the fractional excitonic insulator

in the presence of repulsive interactions. Without interactions, these gapless states

appear at topological phase transitions which separate the trivial insulator from

a Chern insulator with higher Chern number. Since the nonvanishing density of

states at these higher angular momentum band inversion transitions can give rise

to interesting many-body effects, we introduce a series of minimal lattice models

realizations in two dimensions. We also study the effect of rotational symmetry
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broken electron-hole exciton condensation in our lattice models using mean field

theory.
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Chapter 1

Introduction

How does matter arrange itself? That is the ultimate puzzle that every condensed

matter physicist would love to solve. Historically, symmetry has always been a fun-

damental principle underlying different phases of matter. One early success is Lan-

dau’s approach where spontaneous symmetry breaking dictates phase transitions[1].

Then the discovery of integer quantum Hall effects[2] adds another layer - topol-

ogy. Two distinct phases could possess the same symmetry, but there are robust

physical quantities insensitive to smooth changes in material parameters that can

tell them apart. Recent advancements in topological phases of matter, such as pre-

dictions and subsequently experimental realizations of topological materials[3, 4],

are marvelous examples of the interplay of symmetry and topological in condensed

matter physics. These topological materials can be modeled by free fermion band

theory and are thus exactly solvable. On the other hand, many equally interest-
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ing strongly correlated systems, such as fractional quantum Hall states[5], heavy

fermion systems[6], and high Tc superconductors[7] where electron-electron inter-

actions can not be ignored, fall out of the realm of band theory. Interactions are

notoriously hard to analyze and traditionally treated with mean field approaches or

diagrammatic perturbation theory, such as the BCS theory of superconductivity[8]

and Landau’s Fermi liquid theory[9, 10]. Our understandings of the role interac-

tions played in many condensed matter systems are still far from complete. In this

thesis, we take a stab at the question how interactions could bring novel phenomena

to matter. We show that interactions can drive systems into exotic fixed points and

can open up gaps which leads to highly non-trivial topological ordered phases.

This introduction is organized as follows. In 1.1, basic concepts of mesoscopic

physics and Luttinger liquid are reviewed which is related to discussions in Chapter

2. In 1.2, we give a concise introduction to Majorana fermions in condensed matter

systems which are the fundamental building blocks in Chapter 3. In 1.3, we study

quantum Hall effects in crystal - Chern insulators. This serves as a warm-up for

studies in Chapter 4 and 5.

2



1.1 Mesoscopic Quantum Wires and Luttinger Liq-

uid

Figure 1.1: a) Quantum point contact[16]. b) Quantum dot.

Mesoscopic physics, roughly speaking, governs structures from nano- to micron-

meter scales. At low temperature, quantum effects of individual electrons and their

correlations become important in mesoscopic systems. Decades of studies have

revealed novel physical phenomena and important applications, examples include

Coulomb blockade[11, 12], electron teleportation[13] and the fluxonium qubit[14],

etc. One major triumph of mesoscopic physics is in studies of low dimensional

electron transport. With negative voltage gates deposited on top and bottom of a

2D electron gas forming a constriction with width comparable to electronic wave-

length(Fig. 1.1a), a quantum point contact is designed to deplete and confine

electron so that only a few transverse electron modes can be transmitted through.

Conductance from these modes or “channels” are therefore quantized in units of

e2/h and controlled by gate voltage. Additionally, an island can be put in be-

tween gates such that we can define single electron energy levels(Fig. 1.1b). If this
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quantum dot is weakly coupled to two single-channel leads with non-interacting

electrons, when we tune the chemical potential of the dot to be the same of as one

of the electron energy levels, electron tunneling is on-resonance and conductance

takes the maximum quantized value of e2/h. On the other hand, electron tunnel-

ing off-resonance leads to suppressed temperature dependent conductance. The full

theory of electron transport in mesoscopic devices is Landauer-Büttiker formalism

which we refer readers to [15] for comprehensive studies.

k

E

-kf kf

LLLL

Figure 1.2: Luttinger liquid describes the low energy physics of a 1D electron gas linearized around Fermi points

±kf .

More interesting scenarios arise with 1D interacting quantum wires modeled

by Luttinger liquids[17, 18]. A Luttinger liquid is a low energy model of 1D elec-

tron gas linearzied near Fermi energies(Fig. 1.2). Interaction strength between

electrons is usually denoted by a parameter g, with g < 1(> 1) characterizing re-

pulsive(attractive) interactions. Classical works by Kane and Fisher[19, 20] have

carefully examed the drastic effect of electron interactions on resonant electron

tunnelings. On contrary to non-interacting electrons, with repulsive interactions,

4



there is no conductance at zero temperature even with only a weak barrier on the

quantum dot. With attractive interactions, conductance is ge2/h and not affected

by the barrier no matter how large it is. Spatial dimension being one for Lut-

tinger liquid models also comes handy for solving interaction problems. Two major

advantages here is the spin-charge separation and bosonization. Since spin and

charge modes in a Luttinger liquid can propagate with different velocities, they are

decoupled degrees of freedom each with their own conductance and behave inde-

pendently under backscattering. As for the method of bosonization, since the low

energy excitations of a Luttinger liquid involve particle and hole excitations across

the Fermi points ±kf , they can be mapped exactly to phonon displacement fields in

1D. The bosonized Hamiltonian of the original interacting fermion model will then

be quadratic in this displacement boson field and thus exactly solvable.

1.2 Majorana Fermions in Condensed Matter Sys-

tems

Soon after Paul Dirac proposed the Dirac equation, Ettore Majorana found his

famous solution[21]. Fermions obtained from this solution are real, charge neutral

and act as their own anti-particles. Their peculiar physical properties has long

puzzled physicists as where to find them. In particle physics, people have tried

to associate Majorana fermions with neutrinos since both are quite uninteractive
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with the environment. However, recent discovery of neutrino oscillations[22, 23]

casts doubts on this view and current efforts of identifying Majorana fermions as

fundamental particles remain elusive. However, Majorana fermions turned a corner

and emerged in condensed matter systems, and this time as a quasiparticle.

a b

Vbg

I1 

V1 

I2 

V2 

ISC  Electrode

Superconductor

Magnetic TI

Back-gate electrode

a1

a2
b1

b2I II III

Dielectric substrate

Figure 1.3: a) Magnetic field-dependent spectroscopy(dI/dV vs. V ). Data are for different B field from 0 to

490mT in 10mT steps. Arrows indicate the induced gap peaks. b) Quantum anomalous hall insulator - supercon-

ductor heterostructure for chiral Majorana modes.

In a superconductor, a single-particle excitation is a coherent superposition of

an electron and a hole - a Bogoliubov quasiparticle. The particle-hole symmetry

relates a Bogoliubov quasiparticle γ at energy E to its anti-particle γ† at energy

−E. Therefore, the Majorana condition is automatically satisfied at E = 0 and

gives rise to Majorana zero modes. There are an abundance of condensed matter

systems that are theoretically proposed to host these Majorana bound states. Just

to name a few, the surface excitations of B phase of Helium-3[24, 25], quasiparticles

in a ν = 5/2 fractional quantum hall state[26, 27], vortex excitations of a p-wave

superconductor[27, 29, 30] and defects in a proximity effect induced topological

superconductor[28]. Recent experimental progresses in the Majorana fermion hunt,
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especially those based on topological material and superconductor heterostructures,

have shown great promises. In one dimension, Yazdani’s group have found evidences

of the existence of Majorana zero modes based on zero-bias conductance peak signals

from a ferromagnetic chain proximatized to superconductivity[31, 32](Fig. 1.3a).

In two dimension, an experimental setup shown in Fig. 1.3b based on a quantum

anomalous Hall insulator and superconductor heterostructure claim to have realized

chiral Majorana fermion modes[33]. A more direct probe of Majorana zero modes,

especially for chiral Majorana edge modes, is to measure their thermal Hall con-

ductance. This is recently achieved by a beautiful experiment by Heiblum[34] and

revives debates surrounding an old mystery of particle-hole symmetry in half-filled

Landau levels which is out of the scope of this thesis.

1.3 Quantum Hall Effects in Crystal - Chern In-

sulator

The discovery of quantum Hall effects[2, 5] fundamentally changed the paradigm

of phases of matter. The old symmetry breaking picture fails because there is no

local order parameter distinguishing different quantum Hall phases. Instead, robust

topological invariants characterizing physical quantities unchanged under smooth

deformation can be found and serve as labels for different topological phases. More-

over, the topology is really a ground state feature. As long as the bulk gap is kept
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open, matter remains in the same phase. Experimental realizations of quantum

Hall effects using 2D electron gas and a perpendicular magnetic field typically re-

quire rather large fields and low temperature and are thus hard to construct in

ordinary materials. Nevertheless, as first shown by Haldane[35], the same quan-

tum Hall effects with quantized Hall conductance σxy can be implemented in lattice

models and even in a way that has net zero magnetic field. Along this direction,

as long as the band gap is large, quantum Hall effects are easier to be observed in

realistic materials adequately described by such lattice models. This is indeed the

case where we see Chern insulators successfully realized using magnetic topologi-

cal insulators[36] and in engineered cold-atom systems[37–39]. In the following, we

review the Haldane model for Chern insulator.

A generic non-interacting lattice system assume the following form:

H =
∑
ij,GG’

tijGG’ψ
†i
Gψ

j
G’ (1.3.1)

where G and G’ are lattice vectors and ψ†iG creates an electron with index i at

site specified by lattice vector G. tijGG’ records the hopping amplitude and on-site

energy. With translational symmetry and periodic boundary conditions, we can

Fourier transform each electron operator to k-space.

ψ†k =
1√
N

∑
G

ψ†iGe
−ik·G (1.3.2)

where N is the number of lattice sites and k is momentum in the Brillouin zone.
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This transforms the Hamiltonian into

H =
∑
ij,k

hij(k)ψ†ik ψ
j
k (1.3.3)

and diagonliazation of the Hamiltonian gives

H =
∑
ij,k

Eα(k)ψ†αk ψ
α
k (1.3.4)

where ψ†αk =
∑

i U
α
kic
†i
k and U denotes a unitary transformation. The electron

wavefunctions are then given by ψ†αk (r) = 〈r|ψ†αk |0〉. Using Bloch’s theorem, these

wavefunctions can be written as ψαk(r) = eik·ruαk(r).

As for each state or band indexed by α on a lattice site we are associated with a

wavefunction uαk(r)(a U(1) bundle), this allows us to calculate its Berry connection

Aα = −i 〈uαk| ∇k |uαk〉. This is a gauge field in the momentum space, and thus we can

further define the Berry curvature Fα = ∇k×Aα. Integrating the Berry curvature

over the whole Brillouin zone 1
2π

∫
BZ

d2kFα gives the total flux in momentum space

which also equals the Chern number of the α band. Physically, the Chern number C

is the amount of quantized conductance e2/h such that σxy = C e2

h
. It is this insight

that both non-trivial bands with Chern number and Landau levels can produce the

characteristic quantized Hall conductance leads Haldane to his famous model.

Starting with a 2D honeycomb lattice model with two sites per unit cell, ignoring

electron spin, we have a two band tight-binding model. The near-neighbor hopping

Hamiltonian reads:

H(k) = ~h(k) · ~σ, (1.3.5)
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p=+1 p=-1

Figure 1.4: Second neighbor hopping terms have complex hopping matrix elements and break time-reversal

symmetry. The sign p depend on whether the second neighbor hopping is turning to the left or right.

where

h(k) = (−t
3∑
i=1

cos k · ai,−t
3∑
i=1

sin k · ai, 0)

and a1 = (0, a), a2 = (
√

3
2
a, 1

2
a), a3 = (−

√
3

2
a, 1

2
a) are three nearest-neighbor hopping

vectors and ~σ = (σx, σy, σz) is a vector of Pauli matrices. It is known that near

K,K ′ = ±( 4π
3
√

3a
, 0) points of the Brillouin zone, H(k) reduces to massless Dirac

equations in 2D. The trick of getting into gapped Chern insulator phase is to come

up with mass terms that could open up these Dirac cones protected by inversion

and time-reversal symmetry. Imaging adding an imaginary second neighbor hopping

term with a sign depending on whether electrons hop to the left or right(Fig. 1.4).

Explicitly,

hz(k) = m
3∑

i<j=1

pij sin (ai − aj)

where the sign convention is pij = ±1 when j = i±1 mod 3. For m > 0, masses at

K and K ′ points have opposite sign which means ~h(k) winds one time when tracing

out the whole Brillouin zone. This is the desired Chern number and gives rise to a

quantized Hall conductance σxy = e2/h.
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Chapter 2

Universal Symmetry-Protected

Resonances in a Spinful Luttinger

Liquid

3+2=5

2.1 Introduction

Quantum impurity problems are ubiquitous in condensed matter physics. They

are among the simplest problems that exhibit interesting many-body effects. The

prototypical model of a quantum impurity problem involves critical bulk degrees

of freedom interacting with a quantum mechanical degree of freedom localized on
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the boundary. The archetypal example is the Kondo problem[49], along with its

multichannel variants[50]. The same Kondo physics is also found in many closely

related problems, such as resonant tunneling in non-Abelian quantum Hall states

coupled to a quantum dot[51–54], fractional quantum Hall/normal-metal junctions

in the strongly coupling regime[55] and resonant tunneling through a weak link in

an interacting one dimensional electron gas - or a Luttinger liquid [19, 20, 56–58].

In this chapter, we focus on the resonant tunneling problem in a spinful Luttinger

liquid. The resonant tunneling problem in a Luttinger liquid was studied extensively

in the 1990’s[19, 20, 58]. For spinless electrons, it was found that with repulsive

interactions (described by a Luttinger parameter g with g < 1) an arbitrarily weak

barrier leads to an insulating behavior in the limit of zero temperature. However,

for 1/4 < g < 1 it is possible, by tuning two parameters, to achieve a resonance

with perfect conductance at zero temperature. At small but finite temperature, the

line shape of the resonance is described by a universal crossover scaling function

that connects two renormalization group fixed points: the perfectly transmitting

(small barrier) fixed point and the perfectly reflecting (large barrier) fixed point.

It was further observed that for symmetric barriers, a perfect resonance could be

achieved by tuning only a single parameter. Here we note that this is an example of

a symmetry protected topological critical point separating two topologically distinct

symmetry protected insulating states. We know that an inversion symmetric one

dimensional insulator is characterized by a quantized polarization, which takes two
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values: P = 0 mod e or P = e/2 mod e[59]. Likewise, for our resonant tunneling

problem, we can define a polarization N mod e to distinguish different symmetry

protected insulating states. N is the number of charges transferred across the

infinite barrier in the large-barrier limit. Without an inversion symmetric barrier,

N can take any continous value. With an inversion symmetric barrier, in the large

barrier limit, N = 0 or e/2 mod e. These insulating states are topologically distinct:

one can not go smoothly from one phase to the other without going through a

topological quantum critical point - the perfectly transmitting fixed point. Note

that states emerged in our resonant tunneling problem are not the usual topological

phases which possess a bulk gap. For the special value g = 1/2, this fixed point can

also be identified with the non-Fermi liquid fixed point of the two-channel Kondo

problem, described by a SU(2)2 boundary conformal field theory[60, 61].

Armed with this insight we consider resonances in a spinful Luttinger liquid,

which will lead us to a class of symmetry protected resonance fixed points that was

not studied in detail in the early work. A spinful Luttinger liquid is characterized

by two Luttinger parameters gρ and gσ, with SU(2) spin symmetry fixing gσ = 1

1. As shown in Ref. [19, 20], the system can achieve perfect resonance by tuning

a single parameter for 1/2 < gρ < 1. This resonance, which is controlled by the

perfectly transmitting fixed point, corresponds to a transition between insulating

states characterized by a polarization Npair. This polarization is defined by whether

1The value of Luttinger parameters gρ and gσ is set to 2 for noninteracting electrons in spinful

Luttinger liquid in Ref. [19, 20]
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or not a pair of electrons with opposite spins is transferred across the infinite bar-

rier in the large-barrier limit. With inversion and time-reversal symmetry, the only

possible values of Npair are 0 or e mod 2e. When gρ < 1/2, the perfectly transmit-

ting fixed point becomes unstable even on resonance. In that case a new kind of

insulating state emerges characterized by Npair = ±e/2 mod 2e. Like the other two

insulating states, the new state is charge insulating. However, with time-reversal

symmetry, the spin degrees of freedom in this state is not completed locked due

to the fact that an unpaired spin can be transferred across. The new state thus

has a finite conductance for spin. Transitions between these insulating states are

governed by a quantum critical point that can not be described by a free Luttinger

liquid fixed point. Rather, it is an intermediate fixed point[63, 64], which could only

be described in certain perturbative limits. Here we will show that like the spinless

case there is a special value of gρ = 1/3 for which the nontrivial fixed point maps to

a two-channel SU(3) Kondo problem, described by a SU(3)2 boundary conformal

field theory[65, 66]. This analysis allows us to compute the nontrivial on-resonance

conductance, as well as the scaling behavior of the width of the resonance as a func-

tion of temperature, which is determined by the scaling dimension of the leading

relevant operators at the fixed point.

We also note that the special point gρ = 1/3 of the 1D spinful Luttinger liquid

model is of direct relevance to a corresponding resonant tunneling problem between

edge states in the fractional quantum Hall effect, for which the Luttinger parameter
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Figure 2.1: a) Two e = 1/3 quasiparticle tunneling processes in a ν = 2/3 fractional quantum Hall system. b)

Two backscattering processes in a spinful Luttinger liquid.

is not an interaction dependent quantity. Specifically, at filling ν = 2/3, disorder

is predicted to lead to an edge state that has an upstream neutral mode with an

emergent SU(2) symmetry[67]. The effective theory is described by the following

K-matrix and charge vector

K =

1 2

2 1

 , q =

1

1

 .

Further calculations[68] show that the backscattering terms of an electron in a

Luttinger liquid can be identified as the tunneling terms of an e = 1/3 quasiparticle

in the fractional quantum Hall system (Fig. 2.1).

Relationships between the resonant tunneling problem and the Kondo problem

is provided by mapping both problems to a quantum Brownian motion model[69–

72]. We will argue that both the resonant tunneling problem and the two-channel

SU(3) Kondo problem are described by the quantum Brownian motion on a Kagome

lattice, when they are tuned to an appropriate Toulouse limit[73]. We will show that

this, in turn is closely related to the quantum Brownian motion on a honeycomb

lattice, which was shown earlier to be related to the three-channel SU(2) Kondo
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problem. We will argue that this quantum Brownian motion picture provides a new

insight into the level-rank duality that relates the SU(3)2 and SU(2)3 conformal

field theories.

The chapter is organized as follows. In section 2, we review various symmetry-

protected states in both the spinless and spinful Luttinger liquid. In section 3, we

analyze our resonant tunneling problem which maps to a quantum Brownian motion

model on a Kagome lattice at the Toulouse limit. From the quantum Brownian

motion model, an intermediate fixed point is identified. Then we show how our

resonant tunneling problem maps to a two-channel SU(3) Kondo problem which

comes handy for later analysis of the same fixed point. In section 4, utilizing the

boundary conformal field theory, we calculate the on-resonance conductance and

by identifying the “knob” controlling resonance we determine the critical exponent

determining the scaling of the resonance line-shape with temperature. In section

5, we show that the quantum Brownian motion on both the honeycomb lattice and

the Kagome lattice flows to the same fixed point characterized by its mobility which

manifests the so called level-rank duality. We also point out some generalizations.
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2.2 Symmetry-protected states in resonant tun-

neling problem

Let us first take a look at the resonant tunneling problem in a spinless Luttinger

liquid[20]. Introduced by Haldane[17, 18], for spinless electrons, we can represent

electrons in terms of two bosonic fields: the displacement field θ and the phase field

ϕ with the following commutation relation

[∂xθ(x), ϕ(x′)] = iπδ(x− x′). (2.2.1)

Electron operators can then be bosonized as

ψ(x) ≈
∑
m odd

eim(kF x+θ(x))eiϕ(x), (2.2.2)

where kF is the Fermi momentum and the effective Hamiltonian density may be

written as

H =
vF
2π

[g(∂xϕ)2 +
1

g
(∂xθ)

2] (2.2.3)

where vF is the Fermi velocity and g is the Luttinger parameter characterizing

strength of interaction. Passing from Hamiltonian to Lagrangian, we have two

equivalent description of the Luttinger liquid. The actions are

S0 =

∫
dxdτ

1

2πg
[vF (∂xθ)

2 +
1

vF
(∂τθ)

2] (2.2.4)

S0 =

∫
dxdτ

g

2π
[vF (∂xϕ)2 +

1

vF
(∂τϕ)2]. (2.2.5)

For the weak barrier limit, Eq. (2.2.4) is a particular convenient representation of

the action. The barrier is modeled as a scatter potential V (x) coupling to electrons.
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Assuming θ(x) varies slowly on the scale of the potential and V (x) is nonzero only

near x = 0, integrating out fluctuations in θ(x) away from zero, the effective action

becomes

S0 =
1

πg

∑
iωn

|θ(ωn)|2, (2.2.6)

plus an extra term corresponding to the effect of the potential:

−
∫
dτ

1

2

∞∑
n=−∞

vne
i2nθ(x=0,τ) (2.2.7)

where vn = v∗−n are Fourier components of V (x) at momenta 2nkF and ωn is the

Matsubara frequency. The extra term serves as the effective weak pinning potential

for our resonant tunneling problem and we denote it as Veff[θ(x = 0)]. To leading

order in the backscattering, the RG flow equations are

dvn
d`

= (1− gn2)vn. (2.2.8)

Notice that for 1/4 < g < 1, the only relevant perturbation is the backscattering

term at k = 2kF :

Re (v1) cos(2θ)− Im (v1) sin(2θ).

In general, the system achieves resonance by tuning the two coefficients Re(v1) and

Im(v1). With inversion symmetric barrier (V (x) = V (−x)), v1 is a real number and

therefore only one parameter needs to be tuned.

For the opposite limit, the strong barrier at the origin cuts the system into two

weakly linked wires. The displacement field θ(x) is pinned at the origin. Therefore,

for each wire, its electron operator at the origin is ψ†i (x = 0) = eiϕi(x=0) and Eq.
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(2.2.5) becomes the most convenient representation of its action. The appropriate

tunneling term of a single electron from one wire to the other is

− t(ψ†1ψ2(x = 0) +H.c.) = −2t cosϕ(x = 0) (2.2.9)

where ϕ(x = 0) = ϕ1(x = 0) − ϕ2(x = 0) and t is the hopping matrix element.

Integrating out fields ϕi away from x 6= 0, the effective action becomes

S0 =
g

π

∑
j=1,2

∑
iωn

|ωn||ϕj(ωn)|2. (2.2.10)

In general, n electrons tunneling terms with tn as the hopping matrix element are

also allowed and if we take them into consideration, the RG flow equation is

dtn
d`

= (1− n2/g)tn. (2.2.11)

It is easy to check that when electron-electron interaction is repulsive and within

the range 1/4 < g < 1, from Eq. (2.2.8), the only relevant backscattering pertur-

bation at the small-barrier limit is at 2kF (n = 1) which makes the perfectly trans-

mitting fixed point unstable. At the opposite limit, from Eq. (2.2.11), no tunneling

perturbations are relevant. Thus, the perfectly reflecting fixed point is stable.

We now turn to the spinless resonant tunneling problem. A concrete model con-

sists of a perfect wire with two δ-function barriers at x = 0 and x = d. In the weak

barrier limit, for 1/4 < g < 1, the only relevant backscattering perturbation term is

at 2kF : Re (v1) cos(2θ)−Im (v1) sin(2θ). We need to turn off two parameters(Re(v1)

and Im(v1)) to tune the system to resonance. However, if the two barriers are sym-

metric then the inherited inversion symmetry implies that V (x) = V (−x) and only
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Figure 2.2: Flow diagram for spinless resonant tunneling problem. The top(bottom) line represents small(large)

barrier limits. Arrows represent RG flows and the solid dot represents the perfectly transmitting fixed point. At

the large-barrier limit, two inversion symmetry protected insulating phases emerge shown in a) and b) represented

in their cosine potential configuration. The dashed line indicates the center of inversion. VG is the gate voltage on

the quantum dot one can tune to achieve resonance at V ∗G.

one parameter needs to be tuned(v1 becomes a real number). Moreover, there is a

gate voltage VG coupling to electrons on the quantum dot between the two barriers.

the effective action in the θ representation is

S =S0 + v1

∫
dτ cos θ(x = 0) + cos θ(x = d)

+ VG

∫
dτ(θ(x = 0)− θ(x = d)).

(2.2.12)

Integrating out the θ field away from the barriers, the effective action becomes

Seff =
1

πg

∑
iωn

|ωn|(|θρ(ωn)|2 + |θσ(ωn)|2) +

∫
dτVeff(θρ, θσ) (2.2.13)

where θρ = (θ(x = 0) + θ(x = d))/2, θσ = (θ(x = 0) − θ(x = d))/2 represent the

number of electrons transferred across or in between the two barriers respectively

and

Veff(θρ, θσ) = VG
θσ
π

+ v1 cos 2θρ cos 2θσ. (2.2.14)
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With relevant perturbations, the system flows towards the perfectly reflecting

fixed point. θρ,σ fields will be locked in minimas of Veff and instanton events connect-

ing degenerate minimas are dominant processes in the large barrier limit(VG � v1).

Although the system ends up in a insulating state, there is a subtlety that has been

overlooked: there are two distinct insulating states respecting inversion symmetry.

To demonstrate, let us define a “polarization” for the system. We choose the origin

as the center for inversion. If we start with v1 > 0, then we must have Veff pinned

in the potential minimum which is at θρ = π/2. This corresponds to a polarization

N = e/2 mod e. On the other hand, if we start with v1 < 0, we must have minimum

of the potential pinned at θρ = 0 and results in a polarization N = 0 mod e. The

physics of our resonant tunneling problem is then two symmetry-protected insulat-

ing states separated by the perfectly transmitting fixed point. Transition between

the two states is only possible by tuning the system through resonance(tuning v1

through 0). This transition in our problem is analogous to the transition from a

topological insulator to an ordinary insulator[40]. Both transitions go through a

conducting point. For topological/ordinary insulator transition this is the familiar

band gap closure.

For electrons with spin, we have two Luttinger parameters, the dimensionless

conductance gρ and the dimensionless “spin conductance” gσ for spin-current. For

each spin µ =↑, ↓, there are two bosonic fields (θµ, ϕµ). It is convenient to separate
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them into charge and spin degrees of freedom:

θρ = θ↑ + θ↓, θσ = θ↑ − θ↓. (2.2.15)

In the small-barrier limit, there are two competing perturbation terms in the action

which are most relevant for gρ < 1 and gσ = 1[20]

−
∫
dτve cos(θρ) cos(θσ) (2.2.16)

and

−
∫
dτv1 cos(2θρ) + v2 sin(2θρ), (2.2.17)

where ve is the process that backscatters an electron and vρ = v1 + iv2 is the

process that backscatters an up spin electron together with a down spin electron.

These two perturbation terms combined is the effective weak pinning potential

Veff(θρ(x = 0), θσ(x = 0)) of the spinful resonant tunneling problem and their flow

equations are given as

dve
d`

= (1− gρ
2
− gσ

2
)ve (2.2.18)

dvρ
d`

= (1− 2gρ)vρ. (2.2.19)

Notice that the vρ process is relevant only for gρ < 1/2. There is another process

vσ which corresponds to backscattering of an up spin electron and a down spin

electron incidenting from opposite directions(net charge momentum unchanged).

If this process is relevant, it could pin θσ to the minimum of pinning potential.

However, in the range of Luttinger parameters of our discussion, this process will

always be irrelevant.[20]
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Figure 2.3: Flow diagram for the spinful case with 1/2 < gρ < 1 and gσ = 1. The top(bottom) line represents

small(large) barrier limits. Arrows represent RG flows and the solid dot represents the perfectly transmitting fixed

point. At the large-barrier limit, two inversion and time-reversal symmetry protected insulating phases emerge

shown in a) and b) represented in their cosine potential configuration. The dashed line indicates the center of

inversion. VG is the gate voltage on the quantum dot one can tune to achieve resonance at V ∗G.

When 1/2 < gρ < 1 and gσ = 1, the vρ process will be irrelevant. Two distinct

insulating states separated by a perfectly transmitting fixed point again emerge

as shown in Fig. 2.3. However, this time, they are protected by both inver-

sion symmetry and time-reversal symmetry with the potential minimum pinned

at (θρ(x = 0) = π, θσ(x = 0) = 0) for ve > 0 and (θρ(x = 0) = 0, θσ(x = 0) = 0)

for ve < 0 as the system flows into the large-barrier limit. They are characterized

by Npair = e or 0 mod 2e respectively. Transition between these two symmetry

protected insulting states are achieved by tuning the system to resonance(tuning ve

through 0).

A more interesting intermediate fixed point can be found if we make interactions
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Figure 2.4: For the spinful case with gρ < 1/2 and gσ = 1, the perfectly transmitting fixed point(the black solid

dot) becomes unstable and opens up to the intermediate fixed point(the red solid dots) as indicated by the dashed

arrows. Under RG flows(indicated by arrows), three inversion and time-reversal symmetry protected phases emerge

shown in a), b) and c) represented in their cosine potential configuration. VG is the gate voltage on the quantum

dot one can tune to achieve resonance at V ∗G1,2
.

in charge sector more repulsive (gρ < 1/2) while keeping spin symmetry (gσ = 1).

The vρ = v1 (due to inversion symmetry, the v2 term is eliminated) process is now

relevant, and we have to take it into account. There are two different situations

depending on the sign of v1. When v1 > 0, the minimum of the potential Veff is

pinned to θρ(x = 0) = π/2. The ve process is thus eliminated and the v1 process

dominates under RG flows. The previous perfectly transmitting fixed point becomes

unstable and flows into an intermediate fixed point. A new symmetry protected

state emerges as shown in Fig. 2.4. Note that at this new state we are free to

change θσ since the vσ process is still irrelevant. Thus, it is a charge insulating state

characterized by Npair = ±e/2 mod 2e with a finite spin conductance. On the other

hand, when v1 < 0, the minimum of the potential is pinned to either θρ(x = 0) = 0

or π. In this case, since the ve process is also present and its magnitude grows to

infinity under RG flows, (θρ(x = 0), θσ(x = 0)) will be locked to either (0, 0) or (π, 0)

depending on the sign of ve as before. This gives us two charge and spin insulating
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states. All three symmetry protected states can be accessed by adjusting a single

parameter - the ratio ve/v1. A previous study of this intermediate fixed point can be

found in Ref. [19, 20]. It was shown that this fixed point becomes perturbatively

accessible from the perfectly transmitting fixed point with an ε-expansion near

critical values of Luttinger parameters g∗ρ = 1/2 and g∗σ = 3/2 at the small-barrier

limit. Unfortunately, for our SU(2) symmetric case with gσ = 1, this intermediate

fixed point is not perturbatively accessible using the ε-expansion method. However,

for gρ = 1/3, an exact description can be obtained using boundary conformal field

theory as shown in section 4.

2.3 Resonant tunneling problem and related quan-

tum impurity problems

In this section, we will further develop our understandings of the resonant tunneling

problem in spinful Luttinger liquid and explore the connection between our reso-

nant tunneling problem and other quantum impurity problems. First, the simpler

spinless resonant tunneling problem[20] is reviewed. Then, we perform renormaliza-

tion group calculations for our spinful resonant tunneling problem. At the Toulouse

limit, our resonant tunneling problem is nothing but a quantum Brownian motion

model on a Kagome lattice. At both small (small v) and large (small t) barrier

limits of the quantum Brownian motion model, the system flows to an intermedi-
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ate fixed point. To obtain an exact description of this fixed point, we map our

resonant tunneling problem to a two-channel Kondo problem with SU(3) impurity

spin[65, 66].

2.3.1 Spinless Resonant Tunneling Problem

N

N+1

n

θ

N

N+1

n

1 2 3 1 2 3

a) b)

ρ

σ

π

π θ
σ
π

ρ π

Figure 2.5: Positions of the minima of the action in the θρ-θσ plane. a) K = 1, b) K = 0.

Again we start with the spinless resonant tunneling problem. Taking the large-

barrier limit, if the capacity on the quantum dot is small, a large charging energy

fixes the number of charge on the dot and transmissions through the dot are sup-

pressed. By tuning the gate voltage, the chemical potential on the dot can be

adjusted and resonant tunneling can be achieved. A theoretical model takes a

double-barrier structure, it is a wire with two δ-functions on it separated by a

quantum dot with size d. On the dot, a gate voltage VG is assigned. We denote

θi=1,2/π as the number of electrons tunneled through the corresponding barrier. We

also define θρ/π = (θ1 + θ2)/π as the number of electrons transferred across two

barriers and θσ/π = (θ2 − θ1)/π as the number of electrons on the dot. Then,the

action has deep minima when θσ/π is an integer (see Fig. 2.5a). Since for infinite

large barriers θ fields are pinned at minima, it is more convenient to use the ϕ
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representation((ϕρ, ϕσ) are dual bosonic fields of (θρ, θσ)). In this case, the parti-

tion function describes instantons connecting these degenerate minima representing

hopping processes. The partition function can be analyzed in the Coulomb-gas

representation in powers of the tunneling amplitude t,

Z =
∑
n

∑
{q=±1}

∫
d2nτ

τc
〈(t |1〉 〈0| e−i(q

1√
g
ϕρ+

√
K√
g
ϕσ)

+ h.c.)2n〉. (2.3.1)

where |1〉 , |0〉 are quantum states on the dot labeling the number of electrons on

the dot. K is the renormalization constant and is initially set to be 1. Its value

flows under renormalization group.

Integrating out bosonic fields ϕ mediates a logarithmic interaction between

“charges” in the Coulomb-gas representation. The “charges” correspond to physical

hopping processes and we have two kind of “charges” in our problem: hopping elec-

trons on and off the dot. After integration, the partition function is in the following

form:

Z =
∑
n

∑
{qi=±1}

t2n
∫
d2n

τc
e−

∑
i<j Vij ,

Vij =
2

g
(qiqj +Krirj) ln

(τi − τj)
τc

,

(2.3.2)

where qi = θρ/π = ±1 denotes the charge transferred to the right in a hopping

event and ri = θσ/π = ±1 denotes the change in charge on the dot. Due to the

discreteness of charge on the dot which can only change by 1, ri must alternate

whereas qi can have any ordering.
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Tuning into resonance, the system renormalizes according to the RG flow equations[20]

dK

dl
= −8τ 2

c t
2K,

dt

dl
= t[1− (1 +K)

4g
].

(2.3.3)

During the process, electrons on the dot can virtually tunnel back to the leads

reducing the average charge on the dot θσ. On resonance, the hopping directions

along θσ collapse(K = 0) which renders θσ/π into precisely a half integer(Fig.

2.5b). This reduction of dimensionality of (θρ/π, θσ/π) plane from two to one at

the Toulouse limit greatly simplifies the problem. A similar simplification will arise

in the spinful problem discussed below.

It is also worth mentioning that at g = 1/2, the spinless resonant tunneling

problem can be mapped to a two-channel Kondo problem with SU(2) impurity

spin[74, 75].

2.3.2 Spinful Resonant Tunneling Problem

ρ
σ

θ

θ

th

th

tσ

0 1

1

π

π

ρ

ρ

ρ
σ

th

th

tσ

0 1

1

θ
π

θ
π

ρ

ρ

Figure 2.6: Resonant tunneling problem in θρ↑-θ
ρ
↓ plane at the large-barrier limit. Red spots are minima of the

periodic potential. a) gρ = gσ = 1. b) gρ = 1/3 and gσ = 1. (© = |0〉, � = |↑〉, 4 = |↓〉)
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Examining the spinful case, at the large-barrier limit, for each barrier, there are

bosonic fields (θ, ϕ) as defined in Eq. (2.2.15). We can reorganize (θ, ϕ) fields into

the following

θρρ,σ =
1√
2

(θ1
ρ,σ + θ2

ρ,σ), θσρ,σ =
1√
2

(θ1
ρ,σ − θ2

ρ,σ),

ϕρρ,σ =
1√
2

(ϕ1
ρ,σ + ϕ2

ρ,σ), ϕσρ,σ =
1√
2

(ϕ1
ρ,σ − ϕ2

ρ,σ).

(2.3.4)

The superscript ρ and σ denote physical quantities transferred across two barriers

or changed in the dot respectively. The subscript ρ and σ denote charge or spin

respectively. Now, the action

S = S0 +

∫
dτVeff((θρ↑(τ), θρ↓(τ), θσ↑ (τ), θσ↓ (τ))) (2.3.5)

(Veff is a periodic potential possesses lattice symmetry shown in Fig. 2.6) will

have deep minima whenever θρ↑/π(the number of electrons with up spin transferred

over two barriers) or θρ↓/π (the number of electrons with down spin transferred

over two barriers) is an integer(Fig. 2.6). We can adopt the same Coulomb-gas

representation of the partition function to describe our resonant tunneling problem.

In our case there are three tunneling processes. The processes in which a spin

up or down electron hops on or off the quantum dot has a tunneling amplitude

th↑ or th↓ . The process in which both the spin of an electron on the lead and

that of an electron on the quantum dot are flipped has a tunneling amplitude tσ.

When gρ = 1/3 and gσ = 1, the three tunneling processes have the same tunneling

amplitude tσ = th↑,↓ = t(Fig. 2.6).
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Expanding the partition function in powers of tσ and th↑,↓ , we arrive at

Z =
∑
n

∑
a=±

∫
dnτj
τc
〈(tσ |↓〉 〈↑| e−i[a

1√
gσ
ϕρσ+ Kσ√

gσ
ϕσσ ]

+ th↑ |↑〉 〈0| e
−i[a( 1

2
√
gρ
ϕρρ+ 1

2
√
gσ
ϕρσ)+(

Kρ
2
√
gρ
ϕσρ+ Kσ

2
√
gσ
ϕσσ)]

+ th↓ |↓〉 〈0| e
−i[a( 1

2
√
gρ
ϕρρ− 1

2
√
gσ
ϕρσ)+(

Kρ
2
√
gρ
ϕσρ−

Kσ
2
√
gσ
ϕσσ)]

+ h.c.)n〉

=
∑
n

∑
a=±

∫
dnτj
τc
〈(

∑
k=σ,h↑,h↓

tkδ
k+e−i(a

~Hk+· ~ϕρ+ ~Hk+K ~ϕσ) + h.c.)n〉

(2.3.6)

where a = ±1, |l〉 〈m|l 6=m,l,m=↑,↓,0 have been relabeled as δk±(k = σ, h↑, h↓) and

exponents are shortened as dot products of vectors ~Hk±k=σ,h↑,h↓

~Hσ± = ±(0, 1√
gσ

) (2.3.7)

~Hh↑± = ±( 1
2
√
gρ
, 1

2
√
gσ

) (2.3.8)

~Hh↓± = ±( 1
2
√
gρ
,− 1

2
√
gσ

), (2.3.9)

~ϕj(j=ρ,σ) = (ϕjρ, ϕ
j
σ) and K =

Kρ 0

0 Kσ

.

For gρ = 1/3 and gσ = 1, we have Kρ,σ = K which is initially set to 1 and

tσ,h↑,h↓ = t. Integrating out bosonic ϕ fields mediates logarithmic interactions be-

tween “charges” in the following form:

Z =
∑
n

1

n!
tn

∑
{ai=±1}

∫
dnτi
τc

e−
∑
i<j Vij ,

Vij = ( ~HiK
2 ~Hj + aiaj ~Hi · ~Hj) ln

τi − τj
τc

.

(2.3.10)

where ai = ±1.
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Let us explain this Coulomb-gas model further. Because of the extra spin de-

grees of freedom, instantons now move in a four-dimensional space coordinated by

(θρρ, θ
ρ
σ, θ

σ
ρ , θ

σ
σ) with discrete values. “Charges” here are again different physical hop-

ping processes. Since there are six physical hopping processes: hopping on or off

either an up or down electron to the dot and flipping the spin on the dot, relations

among all possible processes for a single time step constitute a triangle(see Fig.

2.6). “Charges” are now vectors of the triangle instead of scalars and their phys-

ical relevance are encoded in their length which depend on Luttinger parameters.

Three “charges” from Eq. (2.3.7)-(2.3.9) characterizing the change of both spin and

charge on the quantum dot are analogous to ri in the spinless case. At each time

τj, they have to alternate among the three possible occupation states(|↑〉 , |↓〉 , |0〉).

The other three “charges” are ai ~Hi analogous to qi, characterizing both spin and

charge transferred across two barriers with no restriction of alternation.

To help with visualization, imagine that we have a four-dimensional lattice space

representing the minima of pinning potential. There are two kinds of instanton

tunneling events, one with tunneling along ~His on hyper-surfaces with constant

(θρρ, θ
ρ
σ) and the other with tunneling along ai ~His on hyper-surfaces with constant

(θσρ , θ
σ
σ). Conservation of total spin and charge in our resonant tunneling problem

poses two constraints

∑2
i=1 θ

i
ρ + θσρ = const (2.3.11)

∑2
i=1 θ

i
σ + θσσ = const, (2.3.12)
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and forces spin or charge on the dot to alternate. Following the same reasoning as

the spinless case, directions for tunneling between different (θσρ , θ
σ
σ) hyper-surfaces

will get renormalized and eventually leads to the four-dimensional lattice collapsing

into the two-dimensional lattice shown in Fig. 2.6(with basis changed to (θρ↓, θ
ρ
↑)).

K

t

-1 0 1

Figure 2.7: Flow diagram for resonant tunneling problem in a spinful Luttinger liquid. The dashed line is the

Toulouse limit(K = 0). The circle denotes the fixed point.

A detailed RG calculation in Appendix 2.A gives the following flow equations

with the corresponding flow diagram Fig. 2.7. The Toulouse limit is along the line

with K = 0.

dt
d`

= (1− 1
2
(K2 + 1))t (2.3.13)

dK
d`

= −6τ 2
c t

2K (2.3.14)

This Toulouse limit(K = 0) of our resonant tunneling problem, where instantons

are confined in a two dimensional sublattice with coordinates (θρρ, θ
ρ
σ) and directions

along the other two bosonic fields decouple, is identical to a quantum Brownian

motion model on a Kagome lattice. More rigorously, at the Toulouse limit, the
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action for our resonant tunneling problem is

SRT = t

∫
dτ

τc

∑
a=±1

∑
i=σ,h↑,h↓

[δi+e−ia
~Hi+· ~ϕρ + h.c.]. (2.3.15)

If we do the following mapping

t↔ t ~R (2.3.16)

δi±i=σ,h↑,h↓ ↔ τ i±i=©,�,4 (2.3.17)

~ϕρ ↔ 2π~k (2.3.18)

a ~Hi± ↔ ~aRi±, (2.3.19)

then this is precisely the action of a quantum Brownian motion model tunneling on

a Kagome lattice in the large-barrier limit

S = t ~R

∫
dτ

τc

∑
a=±1

∑
i=©,�,4

[τ i+ei
~aRi±·2π~k(τ) + h.c.]. (2.3.20)

where t ~R is the amplitude of hopping between minima connected by a lattice vector

a ~Ri±, ~k(τ) is the position of particle in the momentum space and©,�,4 describe

three distinct minima.

The quantum Brownian motion model was originally proposed as a theoretical

model for heavy charged particle in a metal[69]. Although the applicability of this

model to its original proposed problem is questioned[76, 77], the model is later

shown to be relevant to quantum impurity problems. It describes a Brownian

particle moving in a lattice with a periodic potential. The coupling of the potential

to the particle generates a frictional force which acts as dissipative bath.
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There are two perturbatively accessible limits to analyze the effect of the periodic

potential in a quantum Brownian motion model. In the small v limit for which the

barrier is small, the action is

S = S0[~l(τ)]−
∫
dτ

τc

∑
~G

v ~Ge
i2π ~G·~l (2.3.21)

where S0 is the dissipative kinetic energy and the latter integral represents the

energy of the periodic potential. In the integrand the periodic potential amplitude

at the particle trajectory ~l(τ) is written in sums of Fourier components v ~G(~G is the

reciprocal lattice vector).

Under RG calculations in the leading order, the flow equation depends on the

length of the reciprocal lattice vector

dv ~G
d`

= (1− |~G|)v ~G. (2.3.22)

Similarly, for the small t (large barrier) limit, the flow equation depends on the

length of the lattice vector

dt ~R
d`

= (1− | ~R|)t ~R (2.3.23)

We know that for a Kagome lattice the product of the shortest reciprocal lattice

vector | ~G0| and the shortest lattice vector | ~R0| is | ~G0|| ~R0| = 1/
√

3. Then it follows

that for 1/3 < | ~G0|2 < 1, both small and large-barrier limits are unstable and

there must be a stable intermediate fixed point in between. The intermediate fixed

point is characterized by the mobility µ of the Brownian particle under the external

frictional force where µ = 1 at v = 0 and µ = 0 at t = 0. Thus 0 < µ∗ < 1 for our
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intermediate fixed point. In general, µ∗ depends on | ~G0|2 and is hard to calculate.

This reminds us of a previous work by Yi and Kane[63, 64]. In it, they were

able to map a quantum Brownian motion model on a N−1 dimensional honeycomb

lattice to the Toulouse limit of an N -channel Kondo problem with SU(2) impurity

spin. We should follow their approach and map our resonant tunneling problem to

the corresponding multichannel Kondo problem.

ts

th th

t

t t

Figure 2.8: Representative triangles of tunneling processes for both the special gρ = 1/3 and gσ = 1 case (left)

and the more general case (right).

Before we end this subsection, we note that there is a more general situation

for our resonant tunneling problem. With inversion and time-reversal symmetry,

it is not guaranteed that the three tunneling processes have the same amplitude,

although it does require th↑ = th↓ = th(Fig. 2.8). As a result, Kρ 6= Kσ, RG flow
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equations are also modified as:

dtσ
d`

= (1− 1
2
(K2

σ + 1))tσ, (2.3.24)

dth
d`

= (1− 1
2
(3

4
K2
ρ + 1

4
K2
σ + 1))th, (2.3.25)

dKσ
d`

= −2((th)
2 + 2(tσ)2)τ 2

cKσ, (2.3.26)

dKρ
d`

= −6(th)
2τ 2
cKρ. (2.3.27)

2.3.3 Connection to Multichannel Kondo Problem

In this subsection, we will establish the equivalence between resonant tunneling

problems in a Luttinger liquid and the multichannel Kondo problem. This allows us

to use the boundary conformal field theory technique developed for the multichannel

Kondo problem[78] to obtain an exact description of our newly found intermediate

fixed point. The previously mentioned work by Yi and Kane[63, 64] also utilized

this method to study the intermediate fixed point of the quantum Brownian motion

model on the honeycomb lattice.

Let us recall the Emery-Kivelson solution of the two-channel SU(2) Kondo

problem[75]. This Kondo problem can be mapped to our spinless resonant tun-

neling problem at g = 1/2. It was shown that with symmetric channels, at the

Toulouse limit, only half of the impurity spin degree of freedom is coupled to the

conduction electrons resulting in the non-Fermi liquid properties. If we replace the

SU(2) impurity spin by the two degenerate charge states of the dot, then the half

coupling behavior of the Kondo impurity spin at the Toulouse limit is the same as
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the half occupation of the quantum dot by electrons hopping from leads(i.e. θσ/π

is a half integer when K = 0).

Now, for the spinful case, a suitable Kondo problem would be one with two

channels and three spin states for the impurity spin. Naturally, this leads us to

the two-channel Kondo problem with SU(3) impurity spin for which the three spin

states corresponds to the three possible occupation states on the quantum dot(Fig.

2.9).

The Hamiltonian of a two-channel SU(3) Kondo problem reads

H = ivF

3∑
s=1

2∑
a=1

∫
ψs†a ∂xψ

s
a + 2πvF

8∑
i=1

2∑
a=1

Jiχ
iSia(x = 0), (2.3.28)

where a and s are channel and spin indices respectively and ~χ is the impurity spin.

SU(3) has eight generators {λi}, i = 1 . . . 8 and thus the electron spin operator

~Sa = ψ†as(λss′/2)ψas′ . We can regroup generators of SU(3) into three pairwise

linear combinations of off-diagonal generators in analogy with the SU(2) case as

T± = (λ1 ± iλ2), U± = (λ4 ± iλ5) and V± = (λ6 ± iλ7). This allows us to write out

the spin operators for electrons.

Following the Emery-Kivelson solution[75], we first bosonize fermions as

ψsa =
1√

2πvF τc
e−iΦ

s
a , (2.3.29)

where Φs
a is a bosonic field satisfying

[Φs
a(x),Φs′

a′(x
′)] = −iπδaa′δss

′
sgn(x− x′). (2.3.30)
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Then the electron spin operators at each channel are

ST±a =
1

2πvF τc
e±iΦ

σ1
a (2.3.31)

SU±a =
1

2πvF τc
e±i

(
√

3Φ
σ2
a +Φ

σ1
a )

2 (2.3.32)

SV±a =
1

2πvF τc
e±i

(
√

3Φ
σ2
a −Φ

σ1
a )

2 (2.3.33)

S3
a =

1

4π
∂xΦ

σ1
a (2.3.34)

S8
a =

1

4π
∂xΦ

σ2
a , (2.3.35)

where Φσ1
a = Φ1

a − Φ2
a, Φσ2

a = (1/
√

3)(Φ1
a + Φ2

a − 2Φ3
a) are associated with the two

diagonal U(1) subgroups of SU(3). If we further assume that our Kondo problem

is anisotropic meaning that the diagonal coupling constants J3 and J8 (in analogy

with Jz in the SU(2) case) are not equal to the off-diagonal ones for which we call

J⊥ (in analogy with J± in the SU(2) case) in general, then the Hamiltonian becomes

H = HK +HJ (2.3.36)

with

HK =
2∑

a=1

vF
8π

∫
dx[(∂xΦ

ρ
a)

2 + (∂xΦ
σ1
a )2 + (∂xΦ

σ2
a )2] (2.3.37)

HJ =
1

2

2∑
a=1

{
vF
[
J3τ

3∂xΦ
σ1
a (0) + J8τ

8∂xΦ
σ2
a (0)

]}
+
J⊥
τc

∑
i=T,U,V

[χi+Si−a + h.c.]

(2.3.38)

where HK is the kinetic energy of electrons and HJ is the interaction between the

impurity and electron spins at origin.
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Now we introduce a unitary transformation

Uε3,ε8 = ei(ε3
∑
a Φ

σ1
a (0)+ε8

∑
a Φ

σ2
a (0)), (2.3.39)

to decouple ∂xΦ
σ1
a (0) and ∂Φσ2

a (0) in HJ in Eq. (2.3.38). By setting ε3,8 = J3,8/2,

the system flows along the dash line in Fig. 2.7 which is precisely the Toulouse

limit.

Then we perform an orthogonal transformation for variablesΦσi
sf

Φσi
s

 = O

Φσi
1

Φσi
2

 , (2.3.40)

with

O =

 1√
2
− 1√

2

1√
2

1√
2

 . (2.3.41)

The partition function of our anisotropic Kondo problem is

Z =
∑
n

1

n!
(
J⊥
2

)n
2∑

a=1

∫
dnτj
τc
〈(χT+e

−i( 1−J3√
2

Φ
σ1
s +O−1

a1 Φ
σ1
sf )

+ χU+e
− i

2
((

1−J3√
2

Φ
σ1
s +

√
3(1−J8)√

2
Φ
σ2
s )+(O−1

a1 Φ
σ1
sf +
√

3O−1
a1 Φ

σ2
sf ))

+ χV+e
− i

2
((− 1−J3√

2
Φ
σ1
s +

√
3(1−J8)√

2
Φ
σ2
s )+(−O−1

a1 Φ
σ1
sf +
√

3O−1
a1 Φ

σ2
sf ))

+ h.c.)n〉

=
∑
n

1

n!
(
J⊥
2τc

)n
∑
ai=±

∫
dnτje

∑
k<l Vklδ(

∑
p

Oap1~rp),

(2.3.42)

the interaction potential is given as

Vkl = 2(~rkR~rl +O−1
ak1O1al ~rk · ~rl) ln

τk − τl
τc

, (2.3.43)
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~rT± = ±(1, 0) (2.3.44)

~rU± = ±(
1

2
,

√
3

2
) (2.3.45)

~rV± = ±(−1

2
,

√
3

2
) (2.3.46)

and R=

R2
3 0

0 R2
8

 =

 (1−J3)2

2
0

0 (1−J8)2

2

.

tσ

th th

rT

rU rV

1 2

3

Figure 2.9: Mapping between resonant tunneling problem and Kondo problem. Number 1-3 indicates the three

spin states for the impurity spin and rs are spin transferring processes of the Kondo problem.

The following mapping turns our resonant tunneling problem to the two-channel

SU(3) Kondo problem:

J⊥
2
↔ t (2.3.47)

χi±i=U,V,T ↔ |l〉 〈m|l 6=m,l,m=↑,↓,0 (2.3.48)

(Φσ1
sf ,Φ

σ2
sf ,Φ

σ1
s ,Φ

σ2
s )↔ (ϕρσ, ϕ

ρ
ρ, ϕ

σ
σ, ϕ

σ
ρ) (2.3.49)

R↔ K (2.3.50)

~ri ↔ ~Hi (2.3.51)

O−1
ai1
↔ ai. (2.3.52)

The essential idea is to relate the spin and charge transferred in the resonant tunnel-

ing problem to spin transferred in the Kondo problem. In this way, when gρ = 1/3
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and gρ = 1, the spin SU(2) symmetry × U(1) charge symmetry can be mapped to

the SU(3) symmetry of the Kondo problem.

2.4 Universal Resonance

In this section, we utilize the previously established mapping to the multichannel

Kondo problem to study our tunneling problem on resonance. As a known result[20],

at low but finite temperature, the width of the resonance line-shape vanishes as a

power of temperature.

VG

Gρ*

VG* VGVG*

Gσ*

a) b)

∞Tλ ∞Tλ

Gρ Gσ

2e/h2

Figure 2.10: Universal scaling function for a) charge conductance and b) spin conductance.

The charge and spin conductance through resonance assume a universal shape

following a scaling function[79] (Fig. 2.10)

Gρ(δ, T ) = Gρ(c
δ

T λ
) (2.4.1)

Gσ(δ, T ) = Gσ(c
δ

T λ
) (2.4.2)

where c is a non-universal constant and δ is the distance to resonance in gate

voltage. Using boundary conformal field theory description of the Kondo problem,

we calculate the on-resonance conductance G∗ρ,σ at T = 0 in section 4.1. Moreover,
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in section 4.2, we exam all allowed operators at the fixed point of our resonant

tunneling problem and identified the sole relevant operator for which we could tune

the system through resonance. The scaling behavior of the resonance line-shape,

which depends on the critical exponent λ = 1−∆, is obtained from calculating the

scaling dimension ∆ of that relevant operator.

2.4.1 On-Resonance Conductance

r

t
Kondo B.C

r

t
Kondo B.C

Kondo B.C

Figure 2.11: Boundary conformal field theory description of Kondo problem

Unlike the spinless case in which the fixed point is perturbatively accessible at

the small-barrier limit, here, we can not extract information about conductance

without an exact description of the intermediate fixed point. Despite the failure

of perturbative methods, since our resonant tunneling problem is equivalent to a

two-channel SU(3) Kondo problem, we can study the intermediate fixed point using

boundary conformal field theory.

The BCFT description of our Kondo problem resides on the upper half-plane

(Fig. 2.11) with Kondo boundary condition encoded on the real axis[78, 80]. It

is precisely this non-trivial Kondo boundary condition that gives calculations of

correlation functions an extra twist as reflected in Appendix 2.B. Following Eqs.
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(2.3.37)-(2.3.42), by identifying electron operators in our tunneling problem with the

two-channel SU(3) Kondo problem, we have our current-operator correspondence:

Jρσ(0±, τ)↔ Jσ1
sf (0±, τ) (2.4.3)

Jρρ (0±, τ)↔ Jσ2
sf (0±, τ). (2.4.4)

Using the Kubo formula, the on-resonance Kubo conductance is

GK∗
ρ = 2gρµ

∗ e
2

h
(2.4.5)

GK∗
σ = 2gσµ

∗ e
2

h
. (2.4.6)

For gρ = 1/3 and gσ = 1, the mobility µ∗ is calculated using the boundary conformal

field theory in Appendix 2.B. We have

µ∗ =
5−
√

5

4
≈ 0.691. (2.4.7)

The physical conductance and its relation to the Kubo conductance calculated

above is explained in Appendix 2.C. The physical on-resonance conductance is

G∗ρ,σ =
2gρ,σµ

∗

1 + (gρ,σ − 1)µ∗
e2

h
. (2.4.8)

For gρ = 1/3 and gσ = 1, we have

G∗ρ ≈ 0.854
e2

h
(2.4.9)

G∗σ ≈ 1.382
e2

h
. (2.4.10)
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2.4.2 Tuning Through Resonance

According to Cardy[81], properties of the boundary operators can be obtained by

conformally mapping the upper half-plane to an infinite stripe with Kondo bound-

ary conditions on both ends (Fig. 2.11). Therefore, to obtain the spectrum of

Hamiltonian HKK in an infinite stripe with the “Kondo-Kondo” boundary condi-

tion, we can use the “double fusion” rule hypothesized by Affleck and Ludwig[78, 80]

starting with the free fermion boundary condition “FF” on both ends. Since the

conformal embedding of our Kondo problem is U(1)charge×SU(2)flavor3 ×SU(3)spin2 ,

just like the case for the three-channel SU(2) Kondo problem with spin and fla-

vor interchanged, then any boundary operators can be represented as a triplet

(Q, j, λ) where the three quantum numbers are weights in representations of Lie

groups U(1), SU(2) and SU(3) respectively[78, 80]. The allowed triplets are of

course all possible primary fields at the intermediate fixed point. The calculation

from Eq. (2.B.12) shows that both the two-channel SU(3) and the three-channel

SU(2) Kondo problems[63, 64] flow to the same intermediate fixed point. There-

fore, using the latter Kondo problem, if we start with the free fermion boundary

condition (0, 0, 0), and fuse the boundary operators with the impurity spin operator

s = 1/2 (0, 1/2, 0) twice, the resultant operators are all possible primary fields at

the intermediate fixed point. Their scaling dimensions are given as[82]

∆ =
(λ, λ+ 2ρ)

2(k + g)
, (2.4.11)
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where (·) is the scalar product induced by Killing forms, λ is the weight of the

boundary operator in the corresponding representation of its Lie group, ρ is the Weyl

vector, k is the level and g is the Coexter number[82]. The only relevant operators

left are (0, 1, 0) with ∆ = 1/2 and (0, 0, [1, 1]) with ∆ = 3/5 which transform as

elements of the adjoint representation of SU(2) and SU(3), respectively.

Counting the number of available operators is the same as counting the di-

mension of the two adjoint representations, which gives dim(ad SU(2))+dim(ad

SU(3))=11 possible relevant operators. However, channel symmetry and SU(3)

spin symmetry in the Kondo problem all impose constraints via conservation laws.

Any off-diagonal elements of the adjoint representation will modify either channel

number or spin numbers and thus break the conservation laws. We are left with

three diagonal relevant operators.

In the familiar two-channel SU(2) Kondo problem, there are two relevant diag-

onal operators, each from SU(2)spin2 and SU(2)flavor2 sectors, respectively. Inversion

symmetry demands there should be no difference between two channels. Therefore,

the diagonal operator from flavor SU(2) can not be present since it will lead the

system flow towards an anisotropic Kondo fixed point with one channel strongly

coupled and the other disconnected by breaking the flavor SU(2) symmetry[83].

When interpreting this in the spinless resonant tunneling problem, since the fixed

point is at the perfect conducting limit, then cos(2θ) and sin(2θ) are the two afore-

mentioned relevant diagonal operators. Inversion symmetry in this case requires the
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two barriers to be the same and eliminates sin(2θ). Similarly, in the two-channel

SU(3) Kondo problem, inversion symmetry again eliminates any relevant diagonal

operator from flavor SU(2). Moreover, we know that the relevant diagonal oper-

ator in subgroup spin SU(2) ⊆ spin SU(3) must vanish to make rU = rV . This

is because when translating back to our resonant tunneling problem, time-reversal

symmetry requires there be no difference between spin states so that the two th

processes are equal. Note that tσ is allowed to have a different amplitude. This

extra degree of freedom is precisely controlled by the remaining one relevant diago-

nal operator from spin U(1) ⊆ spin SU(3) and can be used to tune the system to

resonance.

With this knowledge, at finite temperature, we are able to calculate the critical

exponent

λ = 1−∆ = 2/5 (2.4.12)

for the resonant line-shape. The exact form of the scaling function G can be obtained

from the Monte-Carol simulation[68].

2.5 Level-Rrank Duality in the Quantum Brow-

nian Motion Model

BCFT has granted us an exact description of our two-channel SU(3) Kondo fixed

point. Translating everything into the quantum Brownian motion on a Kagome
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Small v limit

Small t limit

SU(2) SU(3)

v

t

µ~0.691

Q

Q

Figure 2.12: Flow diagram for quantum Brownian motion models on a honeycomb and a Kagome lattice.

The top(bottom) line represents small(large) barrier limits. Arrows indicate the direction of RG flows and the

solid dot represents the intermediate fixed point with its mobility µ labeled. Since the two models flow to the

same intermediate fixed point from both limits, this phenomenon manifests the level-rank duality from a quantum

Brownian motion model perspective.
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lattice using the mapping from section 3, the spin-current conductance in the Kondo

problem, becomes the mobility µ of fictitious particles on the lattice of a quantum

Brownian motion model(see Appendix 2.B).

The mobility calculated in Eq. (2.B.12) confirms that the quantum Brownian

motion on both the honeycomb lattice[63, 64] and the Kagome lattice flows into the

same strong coupling fixed point (Fig. 2.12). Mathematically, this can be attributed

to the fact that the same conformal embedding is realized at the fixed point, namely

U(1)×SU(2)3×SU(3)2. If we dig in a little further, this phenomenon is called level-

rank duality relating SU(3)2 conformal field theory to SU(2)3 conformal field theory

[82]. However, instead of going through mind-boggling mathematical formalism,

here we provide a more physical picture of this equivalency using quantum Brownian

motion models.

This equivalency in the large-barrier limit can be assessed by comparing the

mobility of the two quantum Brownian motion models since both are related to

Kondo problems in the Toulouse limit. From that calculation, a more general

pattern emerges. We find that with n + k fixed, any SU(n)k quantum Brownian

motion model flows into an intermediate fixed point with the same mobility µ =

2 sin2 [π/(n+ k)]. This is checked up to n+ k = 10 using MATHEMATICA.

On the other hand, in the small-barrier limit, to the first order, the quantum

Brownian motion model is governed by the renormalization group Eq. (2.3.22)

which drives the system towards the intermediate fixed point. The general pattern
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stated in the previous paragraph is harder to establish since for general n and k, vG

is a complex number in general (v ~G = v∗− ~G). Therefore, it is not clear how the two

systems will behave under the first order flow equation. However, for special cases

with either n or k = 2, there is a simple argument to show their equivalency at

the small-barrier limit. First of all, it is not hard to see that the SU(2)k quantum

Brownian motion lives on a generalized honeycomb lattice and the SU(k)2 quantum

Brownian motion lives on a generalized Kagome lattice both in k − 1 dimensional

space. In Appendix 2.D, by choosing an appropriate origin, we have shown that

all v ~G ∈ R and vh~G0
of the generalized honeycomb lattice have the same sign as vk~G0

of the generalized Kagome lattice. Therefore, the two quantum Brownian motion

models flow to the same intermediate fixed point. We leave detailed calculations in

Appendix 2.D.
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Appendix

2.A Renormalization group for resonant tunnel-

ing problem in a spinful luttinger liquid

Here we set gρ = 1/3 and gσ = 1 and adopt the renormalization group calculation

developed by Anderson, Yuval, and Hanmann[84].

First, we decimate all possible closely placed pairs of charges with a range be-

tween τc and τc + dτc. Inserting them in between charge i and i + 1, the partition

function becomes

Z =
∑
n

1

n!
tn
∫
dnτi

∑
ai

e−
∑
i<j Vij

× [1− t2dτc
∑
i

∫ τi+1+τc

τi+τc

dτ
∑
a

eVia(τ) + · · · ]
(2.A.1)

where the interaction of the dipoles with all other charges is

Via(τ) = −
∑
j

∑
~r

[ ~HK2 ~Hj + aaj ~H · ~Hj]τc∂τ ln
τ − τj
τc

. (2.A.2)
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Expand the exponent

Z =
∑
n

1

n!
tn
∫
dnτi

∑
ai

e
∑
i<j Vij

× [1− t2dτc
∑
i

∫ τi+1

τi

dτ
∑
a

(1 + Via(τ) + · · · ) + · · · ].
(2.A.3)

H

T T

T HH

Figure 2.A.1: Hopping vectors ~H and auxiliary vectors ~T

Now, define ~Hi = ~Ti+1/2 − ~Ti−1/2 (Their relation is depicted in Fig. 2.A.1),∑
i,a

∫ τi+1

τi

Via(τ)

= −
∑
ij

∑
~H

2 ~HK ~Hjτc(ln
τi+1 − τj

τc
− ln

τi − τj
τc

)

= −
∑
i<j

∑
~T 6=~T

i+ 1
2

4(~T − ~Ti+ 1
2
)K ~Hjτc(ln

τi+1 − τj
τc

− ln
τi − τj
τc

)

= −
∑
i<j

∑
~T

4(~T − ~Ti+ 1
2
)K ~Hjτc(ln

τi+1 − τj
τc

− ln
τi − τj
τc

)

= −
∑
i<j

(
∑
~T

4~T − 3 · 4~Ti+ 1
2
)K ~Hjτc(ln

τi+1 − τj
τc

− ln
τi − τj
τc

)

= −
∑
i<j

12 ~HiK ~Hjτc ln
τi − τj
τc

(2.A.4)
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Due to neutrality condition,
∑

i
~Hi = 0 gives

∑
i<j

~Hi · ~Hj = −1/2n. Rescaling

τc to τc + dτc, the partition function becomes

Z =
∑
n

∑
{ai}

tn(
τc + dτc
τc

)−
1
2
n(1+K2)

×
∫
dnτiexp(−

∑
i<j

[K2 ~Hi · ~Hj(1− 12t2τcdτc)

+ aiaj ~Hi · ~Hj] ln
τi − τj
τc

),

(2.A.5)

which leads to the flow equations

dt
d`

= (1− 1
2
(K2 + 1))t (2.A.6)

dK
d`

= −6τ 2
c t

2K (2.A.7)

2.B Mobility of Quantum Brownian motion on

Kagome Lattice

In this section, we calculate the universal mobility µ∗ of quantum Brownian motion

model on Kagome lattice at the intermediate fixed point using boundary conformal

field theory results on Kondo problem. The analog of Ri
a is the spin in our Kondo

problem Sia. Therefore spin currents for our Kondo problem are

Jσia =
vF
4π
∂xΦ

σi
a =

1

4π
∂tΦ

σi
a (2.B.1)

and their linear combinations

Jσis =
∑2

a=1
1√
2
Jσia = 1

4π
∂tΦ

σi
s (2.B.2)

Jσisf =
∑2

a=1 O1aJ
σi
a = 1

4π
∂tΦ

σi
sf (2.B.3)
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can be translated into velocity of Brownian particles[63, 64].

For example, the velocity ∂tRσi is mapped to the rate of spin σi injected into

spin-flavor channel

Jσisf (x = 0+)− Jσisf (x = 0−)↔ ∂tRσi (2.B.4)

where

Rσi =

∫
dxψ†as

λσiss′

2

σzaa′

2
ψa′s′ (2.B.5)

The mobility µ now becomes the response of spin currents to applied potentials.

µ∗ = lim
ω→0

1

2π|ω|

∫
dτ(1− eiωτ )〈Tτ [Jσisf (0+, τ)

− Jσisf (0−, τ)][Jσisf (0+, 0)− Jσisf (0−, 0)]〉0
(2.B.6)

where 〈· · · 〉0 is the average with respect to the free non-interacting Hamiltonian.

r

t

z1

z2*

r

t

z1 z2

a) b)

Figure 2.B.1: a) Correlators like 〈TτJσisf (0+, τ)J
σi
sf (0−, 0)〉0 that across the non-trivial boundary can not be

translated asymptotically away from the boundary. While in b), correlators like 〈TτJσisf (0+, τ)J
σi
sf (0+, 0)〉0 can and

thus produce trivial value which is not affected by the boundary.

Using boundary conformal field theory[78, 80], the correlation functions are

calculated

〈TτJσisf (0+, τ)Jσisf (0+, 0)〉0 = 〈TτJσisf (0−, τ)Jσisf (0−, 0)〉0

=
1

2τ 2
,

(2.B.7)
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〈TτJσisf (0+, τ)Jσisf (0−, 0)〉0 = 〈TτJσisf (0−, τ)Jσisf (0+, 0)〉0

=
a

2τ 2
,

(2.B.8)

where a is a universal complex number depending on Kondo boundary condition

and can be calculated using modular S-matrix[78, 80]

a =
Sλs /S

λ
0

S0
s/S

0
0

. (2.B.9)

(λ is the highest weight representation of Jσisf and s is the highest weight of repre-

sentation of impurity spin in the corresponding Lie algebra ).

The general formula for calculating modular S-matrix is given as[82]

Sλs = i|4+||P/Q∨|− 1
2 (k + g)−r/2

×
∑
w∈W

ε(w)e−2πi(w(λ+ρ),s+ρ)/(k+g)

(2.B.10)

where |4+| is the number of positive roots, |P/Q∨| = detAij(A is the Cartan

matrix) for simply-laced algebras, k is the level, g is the dual Coexter number, W

is the Weyl group, ε(w) is the signature function and ρ is the Weyl vector which is

half of the sum of all positive roots.

For our SU(3) case, we have Jσisf is in the adjoint representation of SU(3) and the

impurity spin is in the fundamental representation. Thus, λ = [1, 1] and s = [1, 0]

or [0, 1]. Then

a =
(−4 sin 2π

5
+ 2 sin 4π

5
)/(2 sin 2π

5
+ 4 sin 4π

5
)

(4 sin 4π
5

+ 2 sin 2π
5

)/(4 sin 2π
5
− 2 sin 4π

5
)

=

√
5− 3

2
(2.B.11)

which agrees with a calculated in three-channel SU(2) Kondo problem[63, 64].
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The mobility is

µ∗ =
1− a

2
=

5−
√

5

4

≈ 0.691

(2.B.12)

2.C Physical conductance

It is known that the Kubo conductance computed from linear response theory does

not match the physical DC conductance measured in a system with Fermi liquid

lead[85–91]. The Kubo conductance describes the response of an infinite Luttinger

liquid, where the limit L → ∞ is taken before ω → 0, and relates the current to

the potential difference between the incident chiral modes of the Luttinger liquid.

However, the potential of the chiral modes is not the same as the potential of

the Fermi liquid leads. There is a contact resistance between the Luttinger liquid

and the electron reservoir where the voltage is defined. An appropriate model to

account for this is to consider a 1D model for the leads in which the Luttinger

parameter gρ = gσ = 1 in the leads[91]. Here we review that argument for the

simple case of spinless electrons characterized by a single Luttinger parameter g.

The generalization to include spin is straightforward.

The relationship between the Kubo conductance and the physical conductance

can be determined by specifying the appropriate boundary condition at the interface

between the Luttinger liquid and Fermi liquid, where g = g(x) in Eq. (2.2.3)

changes. Charge conservation requires θ̇ is continuous, while the condition of zero
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backscattering at the interface requires ϕ̇ is continuous. Using the equations of

motion determined by Eqs. (2.2.1) and (2.2.3), we thus conclude that gv∂xϕ and

v∂xθ/g are continuous. Since the Kubo conductance relates the current to the

potential difference between the incoming chiral modes, it is useful to rewrite this

boundary condition in terms of the chiral potentials VR/L = v(∂xϕ ± ∂xθ/g). We

thus require the continuity of g(x)(VR−VL) (charge conservation) and VR +VL (no

backscattering).

I

VL

VR
VR

VL

LLLead
g(x)=1

g(x)=g

Figure 2.C.1: Chiral currents in the Fermi-liquid lead and the Luttinger liquid.

Applied to a single interface between g(x) = 1 and g(x) = g (Fig. 2.C.1), we

thus conclude

V̄R − V̄L = g(VR − VL) = (h/e2)I (2.C.1)

V̄R + V̄L = VR + VL. (2.C.2)

Elinminating V̄L and VL leads to

V̄R − VR =
h

e2

g − 1

2g
I (2.C.3)

Thus, the potential of the incoming chiral mode in the Fermi liquid lead is higher

than potential of the chiral mode in the Luttinger liquid. The contact between
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g(x) = 1 and g(x) = g effectively contributes a series resistance

Rc =
g − 1

2g

h

e2
. (2.C.4)

In a two terminal setup with two Fermi liquid leads the series contact resistance

is doubled. Writing the Kubo conductance as gµe2/h, where 0 < µ < 1 is the

mobility, we then conclude the physical conductance is

G =
e2

h

gµ

1 + (g − 1)µ
. (2.C.5)

This reproduces the fact that for perfect transmission µ = 1 the physical conduc-

tance is e2/h, while the Kubo conductance is ge2/h.

For the spinful case, in both the charge and the spin sectors, the contact resis-

tance gets a factor of 1/2 and the Kubo conductance gets a factor of 2. Therefore,

the physical conductance gets an overall factor of 2.

2.D Generalized honeycomb and Kagome lattices

in small-barrier limit

In this section we will discuss how our quantum Brownian motion picture of level-

rank duality fits to general values of n and k and apply the knowledge to establish

proof of equivalence between quantum Brownian motion models on generalized

honeycom and Kagome lattice.

First, notice that we can represent primitive vectors of Bravais lattice of the
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SU(n)k quantum Brownian motion model as n× k matrices N with the only non-

zero terms at N11 = Nij = 1 and N1j = Ni1 = −1 for i, j > 1

1

2



1 . . . −1 . . .

...
. . .

...
. . .

−1 . . . 1 . . .

...
. . .

...
. . .


(2.D.1)

Basically, a primitive vector hops particle between adjacent lattice site with the

same basis label. In Kondo language, it refers to processes which leave intact the

impurity spin. Since we can choose arbitrary spin state for our impurity spin from

1 · · ·n, let it be 1, then each N matrix represents the process which transfers an i

spin from channel 1 to channel j via impurity spin.

Clearly we can not put Nij = 1 in either the first row or the first column, it

leaves only (n− 1)(k − 1) independent spots. Therefore, the matrices are actually

describing a (n − 1)(k − 1) dimensional lattice. For the corresponding reciprocal

lattice, we find primitive vectors are n× k matrix G:

± 2

nk



1 . . . 1 −(k − 1)

...
. . .

...

1
. . . −(k − 1)

−(n− 1) . . . −(n− 1) (n− 1)(k − 1)


.

Different primitive vectors can be obtained by shifting both the row and column

containing entry (n− 1)(k − 1) around at all nk positions in the matrix.
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With the foundation laid, now let us proceed to the special cases with either n

or k = 2. We will show in the following that all v ~G ∈ R and vh~G0
= cvk~G0

for some

positive constant c.

The first trick is to choose the right origin. In general, vG will be a complex

number, however, if we choose the origin of our coordinate system to be at one of the

center of inversion, then we are putting ~G and −~G at the same footing. Therefore,

v ~G = v− ~G which makes it a real number. For later calculation convenience, we will

choose one of the center of the bond of our generalized honeycomb lattice to be the

origin for both lattices (Fig. 2.D.1).

Figure 2.D.1: Two choices of center of inversion for both lattices: 1. the center of hexagon(black), 2. the center

of a bond of the honeycomb lattice(red). However, it is hard to define an analogous position of the first one for

generalized honeycomb lattice in odd dimensional space.

Next, let us again embed our k−1 dimensional lattices into a higher dimensional

space, this time a k dimensional space. For generalized k-honeycomb and k-Kagome

lattice, we found basis vectors are:

~lh1 =
1

2
(1,

0s︷︸︸︷· · · ), ~lh2 =
1

2
(−1,

0s︷︸︸︷· · · ) (2.D.2)

and

~lki=1,...,k−1 =
1

2
(1,

0s︷︸︸︷· · · ,−1
i+1
,

0s︷︸︸︷· · · ), ~lkk = 0, (2.D.3)
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and the shortest vectors for their reciprocal lattice are:

~Gj=1,...,k
0 =

2π

k
(

1s︷︸︸︷· · · ,−k + 1
j

,

1s︷︸︸︷· · · ). (2.D.4)

What’s left is just plug and chug. Substitute our vectors into

v ~G =
∑
~G

ei
~G·~l (2.D.5)

we find

vh~Gj0
=


2 cos π

k
, if j 6= 1

−2 cos π
k
, otherwise

(2.D.6)

and

vk~Gj0
=


k − 2, if j 6= 1

2− k, otherwise

. (2.D.7)

Since k ∈ Z and k ≥ 2, we conclude that vh~G0
has the same sign as vk~G0

.
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Chapter 3

Fibonacci Topological

Superconductor

7

3.1 Introduction

Current interest in topological quantum phases is heightened by the proposal to

use them for quantum information processing[92, 93] and by prospects for realizing

them in experimentally viable electronic systems. There is growing evidence that

the fractional quantum Hall (QH) state at filling ν = 5/2 is a non-Abelian state[26,

34, 94–96] with Ising topological order. A simpler form of Ising order is predicted in

topological superconductors (T-SC)[27, 29] and in SC proximity effect devices[28,
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97–100]. In these systems the Ising σ particle is not dynamical, but is associated

with domain walls or vortices that host gapless Majorana fermion modes. Recent

experiments have found promising evidence for Majorana fermions in 1D and 2D

SC systems[32, 101, 102].

Ising topological order is insufficient for universal quantum computation, but the

richer Fibonacci topological order is sufficient[103]. Fibonacci order arises in the Z3

parafermion state introduced by Read and Rezayi[104], which is a candidate for the

fractional QH state at ν = 12/5. Parafermions can also be realized by combining

SC with the fractional QH effect[106, 108, 109]. This line of inquiry culminated in

the tour de force works[110, 111] that showed a ν = 2/3 QH state, appropriately

proximitized, could exhibit a Fibonacci phase.

In this chapter we introduce a different formulation of the Fibonacci phase based

on a model of interacting Majorana fermions. Our starting point is a system of chi-

ral Majorana edge states, which can in principle be realized in SC proximity effect

structures. We show that a particular four fermion interaction leads to an essentially

exactly solvable model that realizes the Fibonacci phase. In addition to providing

a direct route to the Fibonacci phase without parafermions, our theory reveals a

distinct but closely related “anti-Fibonacci” state that is a kind of particle-hole

conjugate to the Fibonacci state with a topological order that combines Ising and

Fibonacci. Our formulation also suggests a method for experimentally probing the

Fibonacci state. We introduce a generalization of the interferometer introduced
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earlier for Majorana states[112, 113], and argue that it provides a method for un-

ambiguously detecting Fibonacci order.

The fact that interacting Majorana fermions can exhibit a Fibonacci phase is

foreshadowed by Rahmani, et al. [114](RZFA), who showed that a 1D Majorana

chain with strong interactions can be tuned to the tricritical Ising (TCI) critical

point. The same critical point arises in the 1D “golden chain” model of coupled

Fibonacci anyons[115], as well as at interfaces connecting Ising and Fibonacci order

in the QH effect[116]. There is a sense in which the TCI point of the RZFA model

is like a Fibonacci chain, but it is not clear how to extend it to 2D. Our theory

provides a method for accomplishing that.

3.2 SO(7)1/(G2)1 Coset

Mong et al. [110] formulated the Fibonacci phase using a “trench” construction

that began with 1D strips of ν = 2/3 QH states coupled along trenches in the

presence of a SC. A single trench mapped to the 3 state clock model, with a critical

point described by the Z3 parafermion conformal field theory (CFT). The resulting

1D states were coupled to create a gapped 2D phase.

This is similar to the coupled wire construction[117] for the Read Rezayi state

introduced in Ref. [118], but differs in an important way. That model was based on

the coset construction[119–121], which allows a simple CFT ([SU(2)1]3 with central

charge c = 3) to be factored into less trivial CFTs (SU(2)3 + SU(2)3
1/SU(2)3 with
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c = 9/5 + 6/5). This exact factorization identifies a solvable coupled wire Hamil-

tonian, where counter-propagating modes of the two factors pair up differently,

resulting in a non-trivial unpaired chiral edge mode.

Different from previous proposals, our construction of the Fibonacci phase is

based on the coset SO(7)1/(G2)1[123] without Z3 parafermions. SO(7)1 describes 7

free chiral Majorana modes with c = 7/2. G2 is a Lie group that sits inside SO(7).

(G2)1, with c = 14/5, is the Fibonacci CFT[110, 124]. The quotient is a CFT with

c = 7/2− 14/5 = 7/10, (3.2.1)

which can be identified with the TCI model. Thus, the edge states of a non-

interacting T-SC with Chern number n = 7 factor into a (G2)1 Fibonacci (FIB)

sector and a SO(7)1/(G2)1 TCI sector. In the following we will design an interaction

that separates the factors and leads to 2D topological phases with either c = 14/5

(Fibonacci) or c = 7/10 (anti-Fibonacci) edge states.

We begin with some facts about G2, which is well known in mathematical

physics[123, 125]. G2 is the simplest exceptional Lie group. Its relation to SO(7)

involves the mathematics of the octonion division algebra[126]. An octonion is spec-

ified by 8 real numbers: q = q0 +
∑7

a=1 qaea, where ea are 7 square roots of −1 that

satisfy the non-associative multiplication rule

eaeb = −δab + Cabcec. (3.2.2)

Cabc is a totally antisymmetric tensor. It is not unique, but can be chosen to
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satisfy[126]

Ca+1b+1c+1 = Cabc, C124 = 1, (3.2.3)

where the indices are defined mod 7. Eq. 3.2.3 along with antisymmetry specifies all

the non-zero elements of Cabc. ea define a set of 7 unit vectors that transform under

SO(7). However, not all SO(7) rotations preserve (3.2.2). G2 is the automorphism

group of the octonions: the subgroup of SO(7) that preserves Cabc.

The 21 generators of SO(7) can be represented by 7×7 skew symmetric matrices

Tm,n of the form Tm,nab = i(δmaδnb−δmbδna). There are 14 combinations that preserve

Cabc, which can be written[125]

MA =


TA,A+2−TA+1,A+5

√
2

1 ≤ A ≤ 7

TA,A+2+TA+1,A+5−2TA+3,A+4
√

6
8 ≤ A ≤ 14.

(3.2.4)

These matrices are normalized by Tr[MAMB] = 2δAB and represent the generators

of G2 in the 7D fundamental representation, analogous to the Pauli matrices of

SU(2). In what follows, it will be useful to express the quadratic Casimir operator

as ∑
A

MA
abM

A
cd =

2

3
(δadδbc − δacδbd)−

1

3
∗ Cabcd (3.2.5)

where ∗Cabcd = εabcdefgCefg/6 is the dual of Cabc whose non-zero elements follow

from ∗C3567 = −1, as in (3.2.3).

We now consider the coset factorization of a 1D system of 7 free chiral Majorana

fermions described by

H0 = −iv
2

7∑
a=1

γa∂xγa. (3.2.6)
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We adopt a Hamiltonian formalism1 with Majorana operators satisfying {γa(x), γb(x
′)} =

δ(x − x′)δab. H0 describes a SO(7)1 Wess Zumino Witten (WZW) model with

c = 7/2. The coset construction allows this to be written H0 = HFIB + HTCI. The

FIB sector is expressed in terms of (G2)1 currents in Sugawara form [121]2,

HFIB =
∑
A

πvJAJA

k + g
, JA =

∑
ab

1

2
MA

abγaγb, (3.2.7)

with k = 1, g = 4. Using (3.2.5), the operator product gives

HFIB = −2iv

5

∑
a

γa∂xγa −
πv

60

∑
abcd

∗Cabcdγaγbγcγd,

HTCI = − iv
10

∑
a

γa∂xγa +
πv

60

∑
abcd

∗Cabcdγaγbγcγd. (3.2.8)

The correlator of Hα=FIB,TCI is 〈Hα(x)Hβ(x′)〉 = v2δαβcα/8π
2(x− x′)4, with cFIB =

14/5 and cTCI = 7/10 3. This shows that H0 decouples into two independent sectors,

as depicted in Fig. 3.2.1a.

HFIB describes a (G2)1 WZW model, with two primary fields 1, τ of dimension

h = 0, 2/5. τ transforms under the 7D representation of G2 and obeys the Fibonacci

fusion algebra τ × τ = 1 + τ . HTCI describes the M(5, 4) minimal CFT with 6

primary fields 1, ε, ε′, ε′′, σ, σ′, with h = 0, 1/10, 3/5, 3/2, 3/80, 7/16[121]. The

1The Hamiltonian density is equivalent to the CFT energy momentum tensor on a cylinder:

H0 = vTcyl/2π.
2In addition to [127], JA differs in normalization from the WZW current defined in Ref. [121],

which is 2πJA

3Note that 〈γa(x)γb(0)〉 = δab/2πix and
∑ ∗C2

abcd = 168.
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FIB A-FIB

c=7/2
c=14/5  (FIB)

c=7/10  (TCI)
=

(a) (b)

(c) (d)

0 L

γ ε

τ

Figure 3.2.1: (a) 7 chiral Majorana edge modes factor into FIB and TCI sectors with c = 14/5+7/10 = 7/2. (b)

A 1D non-chiral system with interaction λ
∑
A J

A
RJ

A
L transmits the TCI sector, but reflects the FIB sector. The

bottom panels show network constructions for the Fibonacci phase (c) and the anti-Fibonacci phase (d).

Majorana fermion operator γa factors into the product

γa = τa × ε (3.2.9)

with h = 2/5 + 1/10 = 1/2. The 21 bilinears iγaγb decompose into 14 JA’s, along

with 7 operators τa × ε′ with h = 2/5 + 3/5 = 1. JA act only in the FIB sector:

[JA, HTCI] = 0. The trilinear combination Cabcγaγbγc is ε′′ with h = 3/2 and acts

only in the TCI sector.

3.3 G2 Interactions and Network Construction

We now introduce a 1D model of 7 non-chiral Majorana fermions γaR/Lwith an

interaction that gaps the FIB sector, leaving the TCI sector gapless. Consider

H = −iv
2

∑
a

(γaR∂xγaR − γaL∂xγaL) + λ
∑
A

JARJ
A
L , (3.3.1)
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where JAR/L are given in (3.2.7). The λ term commutes with HTCI, so it operates

only in the FIB sector. A perturbative renormalization group analysis gives dλ/d` =

−2λ2/πv, so λ < 0 is marginally relevant. When λ flows to strong coupling it is

natural to expect that it leads to a gap ∆ ∝ e−πv/2|λ| in the FIB sector and a gapless

TCI critical point. This is similar to the RZFA model, except the G2 symmetry

locates the critical point exactly.

The exact factorization allows the two sectors to be separated. Consider the 1D

system in Fig. 3.2.1b, with λ(x) 6= 0 for 0 < x < L. Provided L � ξ = v/∆, the

gap in the FIB sector leads to an exponential suppression of transmission. The FIB

sector will be perfectly reflected, while the TCI sector will be perfectly transmitted.

Interestingly, this means an incident Majorana fermion γa splits, with τa reflected

and ε transmitted. This forms the basis for the interferometer to be discussed below.

We wish to use (3.3.1) to construct a 2D gapped topological phase. One ap-

proach is to adapt the coupled wire model[117]. This requires coupling right movers

of the TCI sector on wire i to left movers of the TCI sector on wire i + 1. If this

gaps the TCI sector, then we will have a 2D gapped phase with TCI edge states.

This is problematic, however, because the simplest tunneling term that can be built

from local operators and does not couple to the gapped FIB sector is the trilinear

Cabcγaγbγc. The resulting tunneling term uε′′iRε
′′
i+1L, with dimension 3, is perturba-

tively irrelevant. This does not preclude the possibility of a gapped phase for large

u, but a non-perturbative analysis would be necessary to establish it. Fortunately,
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however, the exact factorization of the coset model allows for an alternative network

construction, inspired by the Chalker Coddington model[130].

Fig. 3.2.1c shows a network of n = 7 T-SC islands in which each island has 7

chiral Majorana modes. In the absence of coupling the Majorana modes are localized

on each island, so the system is a trivial SC. If the islands are strongly coupled by

single particle tunneling they will merge, and the system is a n = 7 T-SC. In the

absence of interactions, the transition between these phases will have 7 gapless

2 + 1D Majorana modes. For strong interactions intermediate topological phases

can arise. We turn off the single particle tunneling and couple the neighboring

islands with the interaction term in (3.3.1). Provided the contact length L � ξ,

the excitations in the FIB sector will be reflected from the contact, which means

they are transmitted to the next island. Excitations in the TCI sector, however, are

transmitted by the contact, so they remain localized on the same island. From Fig.

3.2.1c, it can be seen that both the TCI and the FIB sectors are localized in the

interior of the network. The TCI states are localized on the islands, while the FIB

states are localized on the dual lattice of voids between the islands. Since all bulk

states are localized in finite, lattice scale regions, there will be a bulk excitation gap.

The perimeter of the network, however has a gapless FIB edge state with c = 14/5.

We emphasize that though fine tuning is required to achieve the exactly solvable

Hamiltonian (3.3.1), the tuning does not need to be perfect. This gapped Fibonacci

phase will be robust to finite single particle tunneling and other interactions.
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1 ψ σi

1 1 ε′′ σ′

τ ε′ ε σ

Table 3.3.1: The 6 quasiparticles of the TCI model can be identified with combinations of Ising and Fibonacci

quasiparticles.

Fig. 3.2.1d shows a similar network that is surrounded by a n = 7 chiral

Majorana edge state. This leads to a distinct phase that also has a bulk gap, but

has TCI edge states with c = 7/10. This state can be viewed as a Fibonacci phase

sitting inside a n = 7 T-SC, with c = 7/2− 14/5. We call this the “anti-Fibonacci”

in analogy with the “anti-pfaffian” [131, 132], which is the pfaffian sitting inside a

ν = 1 QH state. The anti-Fibonacci has a topological order associated with the TCI

CFT. However, the 6 TCI quasiparticles can also be understood as a combination

of 1, τ Fibonacci quasiparticles with the 1, ψ, σi Ising quasiparticles. The TCI

fusion rules[121] of the quasiparticles identified in Table 1 are reproduced by the

simpler Fibonacci and Ising fusion rules (e.g. σi × σi = 1 + ψ). Similar fusion rule

decompositions have been identified for other theories[116, 124]. As in the T-SC

σ and σ′ are not dynamical quasiparticles, but they will be associated with h/2e

vortices in the SC. Depending on the energetics, a SC vortex in the anti-Fibonacci

phase will bind either a σ or σ′. If it is σ, then the vortex binds a Fibonacci anyon.

Likewise in the Fibonacci phase, a vortex could bind 1 or τ [110].

The above considerations suggest a possible route towards realizing the Fi-
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bonacci phase is to start with a system close to a multi-component T-SC - trivial

SC transition. This could be achieved by introducing SC via the proximity effect

into a 2D electron gas in the vicinity of a quantum Hall plateau transition with

degenerate Landau levels. Progress in this direction has recently been reported in a

quantum anomalous Hall insulator coupled to a SC, where a plateau observed in the

two terminal conductance was attributed to T-SC[102]. Another promising venue

is graphene, which has a four-fold degenerate zeroth Landau level. Coexistence of

SC with the quantum Hall effect in these systems appears feasible[133, 134].

3.4 Fibonacci Interferometer

If the Fibonacci and/or the anti-Fibonacci T-SC can be realized, then it will be

important to develop experimental protocols for probing them. One approach is to

measure the thermal Hall conductance, which directly probes the central charge c

of the edge states: κxy = cπ2Tk2
B/3h. This has proven to be a powerful method

for identifying the topological order of QH states[34, 135, 136], but it does not

directly probe the non-Abelian quasiparticle statistics. In the QH effect, Fabry

Perot[137–139] and Mach Zehnder[140, 141] interferometers have been proposed

for this purpose. Here we introduce a distinct interferometer that generalizes the

Majorana fermion interferometer[112, 113].

Fig. 3.4.1 shows a Hall bar with 4 Ohmic contacts (C1-4) where the electron

density is adjusted so that adjacent regions have QH filling factors ν = 1 and ν = 4.
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ν = 1 ν = 1

ν = 4 ν = 4

c=1

c=3

c=1/2

c=
1/

2

c=
1/2

c=14/5

c=7/10

n=8 SC

FIB

c=1

c=3

n=1 T-SC

c=4 c=4

τ

C2

C4C3

C1

c=7/2

τ

εγ1

γ0

ν = 1 ν = 1

ν = 4 ν = 4

c=1

c=3

c=1/2

c=
1/

2

c=
1/2

c=14/5

c=7/10

c=1

c=3

c=4 c=4

C2

C4C3

C1

c=7/2

τ

ε

γ1

γ0

A-FIB σ

γ'1

γ'1

n=8 SC

n=1 T-SC

(b)

(a)

Figure 3.4.1: A Fibonacci interferometer in a Hall bar with Ohmic contacts C1-4 and SC in the shaded region.

Dirac (Majorana) edge states are indicated by solid (dashed) lines. The c = 7/2 edge splits into FIB and TCI

edges around the Fibonacci (a) or anti-Fibonacci (b) island. A quasiparticle adds a branch cut (dotted line) that

modifies transmission from C1 to C2.

The middle is coupled to a SC that leads to a n = 1 T-SC region and a trivial n = 8

SC region. We assume that at the boundary between the n = 1 and n = 8 SCs

there is an island of either Fibonacci (Fig. 3.4.1a) or anti-Fibonacci (Fig. 3.4.1b).

This leads to the pattern of edge states shown.

Suppose contact C1 is at voltage V1, and that the SC and the other 3 contacts are

grounded. We compute the current I2 in C2 using a Landauer-Büttiker formalism.

The current operator for the ν = 1 edge entering C2 is proportional to iγ0γ
′
1. γ0

comes directly from C1, but γ′1 comes from the region where τ and ε split and then

recombine. First suppose there are no quasiparticles on the island. γ′1 will be a

linear combination
∑7

j=1 t1jγj of the incident Majorana modes, where tij is a real
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orthogonal scattering matrix and γ2−7 are associated with the c = 3 edge. Ignoring

the contributions from the grounded contact C3, iγ0γ
′
1 = t11iγ0γ1. This relates I2

to the current coming out of C1, I2 = t11(e2/h)V1.

Quasiparticles localized on the island will modify this result. The transmitted

particles will encounter a branch cut due to non-Abelian statistics that can modify

the state of the localized quasiparticle. Provided the local Hamiltonian near the

edge is not modified by the presence of the extra quasiparticle, this will be purely

of topological origin. The expectation value of the current will only be non-zero if

the localized quasiparticle returns to its original state. The probability amplitude

that anyon a returns to its original state when circled by anyon b is given by the

monodromy matrix[139] Mab = SabS11/Sa1Sb1, which depends the topological data

in the modular S-matrix Sab. We therefore predict

I2 =
e2

h
t11MabV1, (3.4.1)

where a and b are labels for the transmitted and localized quasiparticles. Provided

quasiparticles can be introduced to the island without modifying t11, (which de-

pends on the local Hamiltonian near the edges) the ratios of the conductances for

different localized quasiparticles will be universal (note Ma1 = 1). Other proposed

interferometric measurements of Fibonacci statistics have challenges similar to con-

trolling t11[124, 139]. A possible (albeit more complicated) way to overcome that

is to include a contact inside the island that allows quasiparticles to come and go,

leading to telegraph noise[143].
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For the FIB phase, where the transmitted quasiparticle is τ the universal ratio

is determined by

MFIB
ττ = −1/ϕ2, (3.4.2)

where ϕ = (1 +
√

5)/2 is the golden mean. In the A-FIB phase, the ratios are

determined by MTCI
εb for b = 1, ε, ε′, ε′′, σ, σ′. These can be evaluated from the 6× 6

TCI S-matrix[114]. However, the same results are obtained by treating the A-FIB

as the FIB sitting inside Ising. Then, MTCI
εb = M I

ψbi
MFIB

τbf
, where bi(f) are the Ising

(Fibonacci) decomposition of particle b from Table 1. The non-trivial Ising term is

M I
ψσi

= −1 (which is probed in the Majorana interferometer). In the A-FIB state,

if a vortex binds σ, the extra quasiparticle can be controlled with a magnetic flux,

and MTCI
εσ = +1/ϕ2.
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Chapter 4

Fractional Excitonic Insulator

3 or 1
3

4.1 Introduction

The quantum Hall effect was originally understood as a consequence of the emer-

gence of Landau levels for two dimensional electrons in a magnetic field [2], but was

reformulated in the framework of topological band theory [144]. This introduced the

notion of “Chern bands”, which have a rich structure due to the interplay between

lattice translations and magnetic translations [145], and allow for the existence of

a Chern insulator in the absence of a uniform magnetic field [35]. There is a sense

in which all quantum Hall states are the same and can be adiabatically connected

to a flat band limit that resembles a Landau level. However, the opposite to the
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flat band limit occurs near a quantum Hall transition, which occurs when the con-

duction band and valence band invert at a Dirac point [146]. A weakly inverted

quantum Hall state differs from a trivial insulator only near the Dirac point, and can

be viewed as a quantum fluid formed by the low energy electrons and holes of the

original trivial insulator. The band inversion paradigm has proven to be a powerful

tool for engineering topological phases of non-interacting fermions [3, 27, 147, 148].

In recent years there has been effort to study analogs of the Chern insulator

for the fractional quantum Hall (FQH) effect. Theoretical work has focused on the

proposal for creating nearly flat Chern bands [149–151] that can be fractionally

filled and can host states—called fractional Chern insulators [152]—that resemble

the Laughlin state of a fractionally filled Landau level (see the reviews [153–155]

and references therein). Experimental progress has been reported in twisted bilayer

graphene [156], where the commensuration with the moiré pattern leads to interest-

ing structure in the observed FQH states at finite magnetic field. The zero field frac-

tional Chern insulator is more challenging because it requires a non-stoichiometric

band filling. Here we consider the opposite limit and propose a wavefunction de-

scribing a fractional excitonic insulator: a gapped FQH state built from a strongly

correlated fluid of electrons and holes. We argue that this provides an alternative

route to realizing a FQH state at zero field in a stoichiometric system that is close

to a special kind of band inversion.

We consider a wavefunction inspired by the celebrated Laughlin wavefunction [157]
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of the form

|Ψm〉 =
∑
N

fN

N !
|ψNm〉, (4.1.1)

where |ψNm〉 describes a state with N electrons and holes described by a Jastrow

wavefunction

ψNm({zi, wj}) =

∏
i<i′(zi − zi′)m

∏
j<j′(wj − wj′)m∏

i,j(zi − wj)m
. (4.1.2)

Here z1,...,N (w1,...,N) are complex coordinates for electrons (holes) and m is an odd

integer. ψNm is similar to a Halperin bilayer wavefunction [158], except that the

Gaussian associated with the lowest Landau level is absent, and it has a singular

denominator. The denominator can be fixed without changing the long distance

behavior by introducing a cutoff ξ in a prefactor
∏

ij h(|zi − wj|/ξ), where h(x →

0) ∼ x2m and h(x → ∞) = 1 [159]. A similar wavefunction was mentioned by

Dubail and Read [204] in connection with tensor network trial states. Like them,

we will argue that |Ψm〉 is topologically equivalent to a single component ν = 1/m

Laughlin state.

4.2 Chern Insulator from p-wave Excitonic Pair-

ing

We will begin by showing that for m = 1, |Ψ1〉 (despite the denominator) is the exact

ground state of a simple non-interacting model of a Chern insulator, and can be

viewed as a condensate of p+ip excitons. We then present several pieces of evidence
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that |Ψm>1〉 describes a FQH state. This includes an analysis of the Laughlin

plasma analogy, as well as the ground state degeneracy on a torus. We introduce a

composite fermion mean field theory as well as a coupled wire model that reproduce

the phenomenology of the FQH state. We also identify an interacting Hamiltonian

whose exact ground state is (4.1.2). Finally, we propose that a feasible route towards

realizing this state is to find a material whose band structure features the touching

of two bands that differ in angular momentum by 3. We argue that coupling the

bands favors excitonic pairing in a (px + ipy)
3 channel, and that interactions could

stabilize the m = 3 state.

To describe them = 1 state, consider the non-interacting spinless fermion Hamil-

tonian,

H1 =
∑

k

εk(c†ekcek + c†hkchk) + ∆kc
†
ekc
†
h−k + h.c., (4.2.1)

with

εk = (k2 − v2)/2; ∆k = iv(kx − iky). (4.2.2)

This is a two band model in which c†e(h)k create conduction band electrons (valence

band holes). We particle-hole transformed the valence band, so that the vacuum

|0〉 (annihilated by ce,hk) is the topologically trivial filled valence band. This model

is properly regularized for k → ∞, and describes a Chern insulator in which the

conduction and valence bands are inverted at k = 0. Note that (4.2.2) has a single

parameter v 1. The coefficient of k2 can be fixed by a choice of units, but a more

1The phase of ∆k can be chosen by defining the phase of chk. The choice in (4.2.2) makes f
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generic model [161, 162] has independent coefficients for the other terms. For this

particular choice the energy eigenvalues are ±Ek = ±(k2 + v2)/2. The analysis of

this model is similar to the BCS theory of superconductivity. The ground state is

|Φm=1〉 =
∏
k

(uk + vkc
†
ekc
†
h−k)|0〉, (4.2.3)

where uk = i(kx+iky)/
√

2Ek and vk = v/
√

2Ek. Following the Read Green analysis

of a p+ ip superconductor [27], this can be written in the real space form

|Φm=1〉 ∝ e
∫
d2zd2wg(z−w)ψ†e(z)ψ†h(w)|0〉, (4.2.4)

where c†e,hk and gk ≡ vk/uk = −iv/(kx+iky) have Fourier transforms ψ†e,h(z = x+iy)

and g(z) = v/(2πz). |Φm=1〉 then has the form (4.1.1) with f = v/(2π) and

φNm=1({zi, wj}) = det

[
1

zi − wj

]
. (4.2.5)

The equivalence of φNm=1 and ψNm=1 follows from the Cauchy determinant iden-

tity [163], which can be checked by writing the determinant over a common denom-

inator, noting its units and antisymmetry.

Though the precise form of g(z) that makes the Jastrow form exact is particular

to our choice of parameters, the topological structure of the Chern insulator dictates

that the 1/z behavior for z → ∞ remains in a more generic theory. The short

distance behavior, however, depends on the details as well as the lattice cutoff.

A related model was studied in Ref. [162], where the connection was made to

a Halperin (1, 1,−1) bilayer state. Viewed as a bilayer system, this is related to

in (4.1.1) real.
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a (1, 1, 1) state by a particle-hole transformation in one layer [164]. The (1, 1, 1)

state describes a single component “spin polarized” quantum Hall fluid with broken

spin symmetry. In our problem the spin symmetry corresponds to the independent

conservation of electrons and holes, which is violated by the “p+ip pairing term” ∆k.

Thus, we can view the Chern insulator as an excitonic insulator that is distinguished

from the trivial insulator by a condensation of p + ip excitons. Unlike the original

excitonic insulator [166, 195], this condensation does not involve a spontaneously

broken symmetry, since electrons and holes are not independently conserved. It is

analogous to a proximitized p+ ip superconductor.

4.3 Fractional Excitonic Insulator From Wavefunc-

tion Analysis

Encouraged by the success of |Ψm=1〉, we now consider the generalization to a

fractional excitonic insulator. To motivate that this should be possible, we first

introduce a composite fermion mean field theory. Consider a 2D two band system

and perform a statistical gauge transformation that attaches ±(m− 1) flux quanta

to the electrons (holes) [167]. This is accomplished in Eqs. (4.2.1) and (4.2.2) by

replacing kce(h)k → (−i∇± a)ψe(h), where the statistical vector potential satisfies

∇× a = 2π(m− 1)(ψ†eψe − ψ†hψh). (4.3.1)
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Equivalently, in a Lagrangian formulation, flux attachment is implemented by

adding a Chern-Simons term LCS = εµνλaµ∂νaλ/(4π(m−1)) ≡ a∂a/4π(m−1) [168].

This is different from the conventional composite fermion model, because in the

valence band flux is attached to the holes rather than the electrons. This transfor-

mation has no effect on electrons deep in the valence band and is compatible with

exact particle-hole symmetry [169].

When the electron and hole densities are equal, the average statistical flux seen

by each particle is zero. Thus, in mean field theory we can consider a system of

composite fermions with Hamiltonian given by (4.2.1) and (4.2.2). Assuming the

composite fermions are in a Chern insulator phase, we integrate them out in the

presence of a and the external vector potential A. This leads to Leff = LCS + (a+

A)∂(a + A)/4π. Integrating out a then gives Leff = A∂A/4πm. This shows the

resulting phase is a FQH state with σxy = (1/m)e2/h. A second indication this

phase is possible is provided by the coupled wire construction [117]. In Appendix

4.A, we show that an array of alternating n-type and p-type wires can support this

phase at zero magnetic field.

We now analyze the wavefunction of Eq. (4.1.1) and (4.1.2). To determine

whether it describes a FQH fluid, we follow Laughlin [157] and view 〈Ψm|Ψm〉 as

the partition function of a classical plasma. Like Laughlin’s plasma, our charges

interact by a 2D Coulomb interaction −βV =
∑

i<j 2mqiqj log |zi − zj|/ξ, where

m plays the role of inverse temperature. Unlike Laughlin’s plasma, our plasma
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Figure 4.3.1: Kosterlitz Thouless renormalization group flow diagram [170] for the plasma analogy of (4.1.1)

and (4.1.2) as a function of fugacity f and the coefficient of the Coulomb interaction, the bare value of which is

controlled by m.

has charges qi = ±1, and the neutralizing background (due to the Gaussian) is

absent. It is in the grand canonical ensemble with a fugacity f . This plasma maps

precisely to the Kosterlitz Thouless problem [170, 204], and exhibits two phases: a

high temperature phase characterized by perfect screening, and a low temperature

phase with bound charges. For small f the transition is determined by balancing

the energy m logL of an unbound charge with the entropy logL2 giving a critical

point at m = 2. For m = 1 the plasma is in the screening phase, which is consistent

with our understanding of |Ψ1〉 as a quantum Hall state. For m = 3 the plasma

is in a bound phase for small f . This is similar to the Laughlin wavefunction for

large m, which describes a crystal. However, for larger f screening renormalizes the

Coulomb interaction, and a screening phase is expected above a critical value of f ,

as indicated in Fig. 4.3.1. Since the only length in the problem is the cutoff scale
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ξ, the screening phase will occur at high density, when electrons and holes have a

typical separation of order ξ.

The structure of the plasma analogy is reminiscent of the wire construction for

the ν = 1/m state [117], which involves coupling edge states with an irrelevant sine-

Gordon type coupling that leads to exactly the same plasma. The correspondence

of the plasmas is not an accident, given the expectation that the ground state wave-

function can be interpreted as a correlator of the same conformal field theory that

describes the edge states [26]. The only difference with the conventional Laughlin

state is the absence of the background charge. Following this logic, we construct a

wavefunction for a quasi-hole at position Z as

ψe
∗

N (Z, {zi, wj}) =
∏
i

Z − zi
Z − wi

ψN({zi, wj}). (4.3.2)

In the plasma analogy, this state has an external charge at Z. Assuming the plasma

perfectly screens, this leads to a charge e∗ = e/m quasi-hole. Quasi-electron states

are constructed similarly by exchanging zi and wj.

Another probe of topological order is the ground state on a torus, which may also

be useful for numerical studies. Following Haldane and Rezayi [171], we consider a

torus with z = z + L and z = z + Lτ identified (τ is a complex number describing

the shape of the torus). The periodic generalization of (4.1.2) then involves two

modifications. First, the terms in the denominator become

(zi − wj)m → ϑ1(π(zi − wj)/L|τ)m, (4.3.3)

where ϑ1(u|τ) is the odd elliptic theta function [172]. The terms in the numerator
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are modified similarly. Second, ψNm is multiplied by a function of the center of mass

coordinates Z =
∑

i zi, W =
∑

j wj, given by

FCM(Z,W ) = eiK(Z−W )ϑ1(π(Z −W − z0)/L|τ)m. (4.3.4)

From the periodicity properties of ϑ1(u|τ), it can be checked that this modified wave-

function is properly periodic, with K and z0 depending on the phase twisted bound-

ary conditions. For fixed boundary conditions there are m independent choices for

K and z0, establishing the m-fold ground state degeneracy. We have also checked

that for m = 1 the non-interacting ground state of (4.2.2) on a torus has the form

det[g(zi−wj)], with g(z) ∝ eiKzϑ1(π(z−z0)/L|τ)/ϑ1(πz/L|τ). (K, z0 again depend

on boundary conditions). A generalization of the Cauchy identity [173] shows that

this is precisely equivalent to the wavefunction described above.

4.4 Designer Hamiltonian and Higher Angular Mo-

mentum Pairing

Having established that (4.1.1) and (4.1.2) describe an excitonic fractional quantum

Hall state, we now seek a Hamiltonian that can realize it. One approach is to find an

“exact question to the answer”: a Hamiltonian designed to have |Ψm〉 as its exact

ground state [174]. While we do not have an analog of the two body δ-function

type interaction [175] that stabilizes the Laughlin state, we adopt the construction

in Ref. [176], which provides a natural generalization of (4.2.2) to m > 1 at the
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price of introducing several-body interactions. By applying ∂z∗j ≡ 1
2
(∂xj + i∂yj) (or

∂/∂w∗j ) to (4.1.2) and noting that due to analyticity only the poles contribute, we

show in Appendix 4.B.1 that the operators

Qe(z) = 2∂z∗ψe − vmψ†h(∂z − ia)m−1

Qh(z) = 2∂z∗ψh − vmψ†e(∂z + ia)m−1 (4.4.1)

satisfy Qe,h(z)|Ψm〉 = 0. Here vm = 2πf/(m− 1)!, and ∂z acts to the left on ψ†h,e(z)

and

a(z) = m

∫
d2u

ρ(u)

i(z − u)
; ρ = ψ†eψe − ψ†hψh. (4.4.2)

This can be interpreted as a(z) = ax − iay, where a is a statistical vector potential

similar to (4.3.1), except with m fluxes per particle, rather than m − 1. We then

define

Hm =
1

2

∫
d2z
[
Q†e(z)Qe(z) +Q†h(z)Qh(z)

]
. (4.4.3)

Since Hm is the sum of positive operators, |Ψm〉 is guaranteed to be a ground state.

For m = 1, Qe,h(z) is the Fourier transform of
√

2Ekγe,hk, where γe(h)k =

u±kce(h)k±v±kc
†
h(e)−k are Bogoliubov quasiparticle annihilation operators. It follows

that (4.4.3) reduces to (4.2.1) and (4.2.2) up to an additive constant. For m > 1,

(4.4.3) involves up to (2m − 1) body interactions. While we have not proven that

Hm has a gap, it is plausible that it does, provided |Ψm〉 is in the screening phase

and has short ranged correlations 2. If so, then turning down the several-body in-

2In Appendix 4.B.1 we also introduce a second set of operators Pe,h(z) that annihilate |Ψm〉

and define a second term in Hm that can also contribute to the energy gap.
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teractions will not immediately destroy the state. This motivates a more practical

strategy for realizing this state.

Imagine turning off the interaction terms in (4.4.3), so that Qe = 2∂∗zψe −

vm∂
m−1
z ψ†h. This leads to a non-interacting Hamiltonian of the form (4.2.1), where

for k→ 0

εk = k2/2; ∆k = vm(ikx + ky)
m/2m−1. (4.4.4)

This describes a system with quadratically dispersing bands that touch at k = 0

and are coupled by angular momentum m excitonic pairing. We now argue that this

gapless “(p+ ip)m pairing” state is a candidate for supporting a fractional excitonic

insulator in the presence of strong repulsive interactions.

The ground state |Φm〉 of Eq. (4.2.1) with εk and ∆k as defined in Eq. (4.4.4)

can be written in the form (4.2.4). Using gk ∝ (ikx + ky)
m/k2 for k � ξ−1 the

component with N particles and holes has the form

φNm({zi, wj}) = det [g(zi − wj)] ; g(|z| � ξ) ∝ z−m. (4.4.5)

If we multiply out the determinant and put it over a common denominator, then

φNm gets the denominator in (4.1.2) right—at least in the universal zi−wj � ξ limit.

The numerator of φNm is not the same as ψNm , but if we use the large z limit of g(z)

then it will be a degree mN(N−1) polynomial. As a function of one of its variables

(say z1) the numerator has m(N−1) zeros - the same as the numerator of ψNm . N−1

of the zeros are guaranteed by Fermi statistics to sit on z2,...,N , but the remaining

(m− 1)(N − 1) zeros are “wasted” and sit between the particles. This is similar to
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a 1/m filled Landau level, where the magnetic field guarantees there are m times

as many zeros as there are particles. In that case, repulsive interactions stabilize

the Laughlin state, which puts the required zeros on top of the particles. The

above argument strictly applies to the dilute limit, where electrons and holes are

separated by more than ξ, so |Ψm〉 is in a bound phase. In the dense limit, however,

|Ψm〉 is still more effective than |Φm〉 at keeping the electrons (holes) apart, and

it also builds in the (p + ip)m pairing of electrons and holes favored by (4.4.4). It

will be interesting to test our conjecture that (4.4.4), along with strong repulsive

interactions can stabilize the fractional excitonic insulator state by the numerical

analysis of model systems.

Eq. (4.4.4) presents an appealing target for band structure engineering. It

requires the crossing of two bands that differ in angular momentum by m. For

m = 3 this can occur at the Γ point in a crystal with C6 rotational symmetry

but broken time reversal and in-plane mirrors. For example, this could arise if two

bands with mj = ±3/2 touch at the Fermi energy. Here we introduce a simple

two band model for spinless electrons that provides a starting point for numerical

studies.

Consider a triangular lattice with an s state and a single f state with m = 3 on

each site. A Hamiltonian with first and second neighbor hopping can be written as

Eq. (4.2.1) with

εk = ε0 − t0γ0(k); ∆k = t1γ1(k) + it2γ2(k) (4.4.6)
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where γ0(k) =
∑

n cos k·a1n, γ1(k) =
∑

n(−1)n sin k·a1n and γ2(k) =
∑

n(−1)n sin k·

a2n. Here a1(2)n are the 6 first (second) neighbor lattice vectors at angles θ =

nπ/3 (+π/6). t0 connects nearest neighbors of the same orbitals, while t1 and t2

connect first and second neighbor s and f orbitals with an angle dependent phase

e3iθ.

For −6 < ε0/t0 < 2 (4.4.6) is a Chern number 3 insulator. Outside that range

it is a trivial insulator. For ε0 = 2t0 the gap closes at the 3 M points, while for

ε0 = −6t0 the critical point is at Γ. While it is not our primary focus, the Chern

number 3 transition is of interest on its own. For ε0 = −6t0 +δ the small k behavior

is

εk = δ + 3t0k
2/2; ∆k = t+k

3
+ + t−k

3
−, (4.4.7)

with t± = (t1 ± 3
√

3t2)/8 and k± = kx ± iky. For δ > 0 the gap Eg ∝ δ is at

k = 0, but for δ < 0 Eg ∝ |δ|3/2, and is located on a “Fermi surface” of radius

∝ |δ|1/2. The critical point δ = 0 has precisely the structure of (4.4.4) when

t− = 0 [160]. For non-zero t−, the vorticity 3 winding of ∆k around k = 0 remains,

so the long distance phase winding of g(z) is not altered. It will be interesting

to study this model near the transition to determine whether electron interactions

stabilize the fractional excitonic insulator by addressing signatures such as ground

state degeneracy, spectral flow under flux insertion and entanglement spectrum.

Importantly, in contrast to the case of fractional Chern insulators, this model should

be studied at integer filling per unit cell.
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Appendix

4.A Coupled wire construction

In this section we introduce a simple modification of the coupled wire construction

[117] that allows us to describe a fractional excitonic insulator at zero magnetic

field. We consider an array of alternating n type and p type wires, as indicated in

Fig. 4.A.1. On the n-type wires the right (left) moving states are at momentum

+kF (−kF ), but on the p-type wires they are at −kF (+kF ). This allows momentum

conserving processes that lead to the quantum Hall effect in zero magnetic field.

Specifically, we consider the Hamiltonian H = H0 + V , where

H = −i
∑
i

∫
dxψ†i,R∂xψi,R − ψ†i,L∂xψi,L (4.A.1)

describes the low energy excitations on each wire. The electron annihilation oper-

ator is given by

ci(x) = e±ikF xψi,R + e∓ikF xψi,L (4.A.2)

where the upper (lower) sign corresponds to the n type (p type) wires for i odd

(even).
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The ν = 1/m Laughlin state (for m an odd integer) is generated by introducing

the m body coupling term V m =
∑

i

∫
dx(V m

i (x) + h.c.), where

V m
i (x) = vmψ

†(m+1)/2
i,R ψ

(m−1)/2
i,L ψ

†(m−1)/2
i+1,R ψ

(m+1)/2
i+1,L (4.A.3)

Here, powers of ψi,R are understood as an operator product expansion and include

appropriate derivatives. Note that V m conserves momentum in zero magnetic field

for all m. No tuning of the electron or hole densities is required, provided they are

equal, so that the Fermi energy is at the band crossing point.

In the absence of other interactions, vm has scaling dimension (1 + m2)/2, and

will be irrelevant for m > 1. Nonetheless, as argued in Ref. [117], it is possible to

choose forward scattering interactions that can make any particular vm relevant. In

the presence of such interactions, vm will flow to strong coupling, which leads to an

energy gap and the ν = 1/m fractional excitonic insulator phase.

The connection with Laughlin’s plasma analogy can be understood by consider-

ing a particular limit where the problem decouples into independent 1D problems.

When forward scattering interactions on each wire make them Luttinger liquids

with K = 1/m, the vm term couples only to a purely chiral operator on each wire.

In this case, vm is identical to electron tunneling between the edge states of strips of

ν = 1/m fractional quantum Hall states, which upon bosonization lead to a 1 + 1D

sine-Gordon type model. In this case, vm has scaling dimension m. Expanding the

partition function in powers of vm leads to exactly the same Coulomb plasma as

the analysis of the Laughlin type wavefunction.
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Figure 4.A.1: (a) An array of alternating n-type and p-type wires. (b) Energy bands as a function of momentum,

showing the electron like (hole like bands), that live on the odd (even) wires. The red arrows indicate the correlated

tunneling processes that lead to the ν = 1/m fractional excitonic insulator for the case m = 3.

4.B Exact Hamiltonian

In this section we demonstrate that the state |Ψm〉 as defined in the main text is

the exact ground state wavefunction of Hamiltonian (14) of the main text. Our

strategy is to seek operators X which annihilate the ground state, i.e., X |Ψm〉 = 0.

With the help of such operators one may then construct positive (and manifestly

Hermitian) operators ∼ X†X, which can be used to define a Hamiltonian with

|Ψm〉 as its ground state. Any operator X satisfying X |Ψm〉 = 0 can be used to

define a term which may enter in the exact Hamiltonian. In fact, by explicitly

constructing two sets of such operators, we will demonstrate that the space of exact

Hamiltonians is larger than Hm given in the text. The full exact Hamiltonian,

which is a sum of all allowed terms, can be used to study more physical few-body

pseudopotential Hamiltonians, for which the wavefunction |Ψm〉 may still describe
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the ground state properties. With this goal in mind, we will conclude this section

with a brief comparison to a class exact Hamiltonians for the Laughlin wavefunction

introduced in Ref. [176]. In these case of the latter two sets of operators are needed

to construct an exact Hamiltonian with the Laughlin state as its ground state and

a gap to excited states.

4.B.1 Construction of Hamiltonian

To begin, first recall that |Ψm〉 is defined as

|Ψm〉 =
∑
N

fN

N !
|ΨN

m〉 , (4.B.1)

where |ΨN
m〉 is a state with N particle-hole pairs defined as

|ΨN
m〉 =

∫ ( N∏
i=1

dzidwi

)
ΨN
m({zi, wi}) |N, {zi, wi}〉 , (4.B.2)

with |N, {zi, wi}〉 given by (1/N !)
∏N

i=1 ψ
†
e(zi)ψ

†
h(wi) |0〉. Note that the factor 1/N !

ensures proper normalization.

A natural choice for the annihilation operators involves the derivative operators

∂z = 1
2
(∂z − i∂y) and ∂z∗ = 1

2
(∂z + i∂y). Consider first the derivative operator ∂z. It

is a simple matter to verify that the (second quantized) operators

Pe(z) = (∂z − ia)ψe(z), (4.B.3)

Ph(z) = (∂z + ia)ψh(z), (4.B.4)

annihilate the states |ΨN
m〉 with N particle-hole pairs, i.e., Pe,h(z) |ΨN

m〉 = 0, where
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a = a(z) = ax − iay is the statistical gauge field defined as

ia(z) = m

∫
d2u

ρ(u)

z − u, ρ = ψ†eψe − ψ†hψh. (4.B.5)

The statistical gauge field attaches ±m flux quanta to the particles (holes). Note

that within the sector of Fock space defined by N − 1 electrons and N holes a(z)

takes the form

ia(z) =
N−1∑
i=1

m

z − zi
−

N∑
i=1

m

z − wi
, (4.B.6)

from which it directly follows that Pe,h(z) annihilate each |ΨN
m〉, and thus annihilate

|Ψm〉. It is worth pointing out that the first quantized operators

Π± ≡ ∂z ± ia (4.B.7)

have the commutators [Π±,Π
†
±] = ±2πρ = ±∇ × a. We then use the operators

Pe,h(z) to define the Hamiltonian H(1)
m given by

H(1)
m =

1

2

∫
d2z
[
P †e (z)Pe(z) + P †h(z)Ph(z)

]
. (4.B.8)

By construction this Hamiltonian annihilates the wavefunction, which implies that

|Ψm〉 is eigenstate with eigenvalue 0. Since H(1)
m is positive |Ψm〉 must be a ground

state.

Next, consider the derivative operator ∂z∗ . Since only the holomorphic coordi-

nates zi enter the wavefunction, the action of ∂z∗ requires a more careful treatment.

We first define and evaluate

Φ(z) = ∂z∗ψe(z) |ΨN
m〉 . (4.B.9)
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Note that ψe(z) picks one of the N electron coordinates zi and sets it to z. Fur-

thermore, Φ(z) describes a state with one electron removed from |ΨN〉, which we

may alternatively view as a state with one hole added to |ΨN−1
m 〉. We will therefore

seek to relate Φ(z) to |ΨN−1
m 〉.

Note that ∂z∗ gives zero when acting on an analytic function except at the poles.

Since there are N such poles, located at wi, we can rename each pole w and then

relabel the remaining N − 1 wi’s. We separate out the dependence on z and w and

obtain

ψe(z) |ΨN
m〉 = N

∫
dw

1

(z − w)m
ψ†h(w) |Ψ̃N−1

m (z, w)〉 , (4.B.10)

where the state |Ψ̃N−1
m (z, w)〉 is defined as

|Ψ̃N−1
m (z, w)〉 =

∫ (N−1∏
i=1

dzidwi

)
Ψ̃N−1
m (z, w, {zi, wi})

× |N − 1, {zi, wi}〉 (4.B.11)

with a wavefunction given by

Ψ̃N−1
m (z, w, {zi, wi}) = F (z, w, {zi, wi})ΨN−1

m ({zi, wi}). (4.B.12)

Here ΨN−1
m ({zi, wi}) is the wave function of |ΨN−1

m 〉 and F defined as

F (z, w, {zi, wi}) =
N−1∏
i

(z − zi)m(w − wi)m
(w − zi)m(z − wi)m

. (4.B.13)

We observe that F can be rewritten as

F = e
m

∑
log

z−zi
w−zi

−log
z−wi
w−wi

= e
∫ z
w du

∑
i(

m
u−zi

− m
u−wi

)
= ei

∫ z
w dua(u), (4.B.14)
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where a(u) is the gauge field introduced in (4.B.5) and is given by

ia(u) =
N−1∑
i=1

(
m

u− zi
− m

u− wi

)
. (4.B.15)

We thus find that the Eq. (4.B.11) can be expressed in the concise form

|Ψ̃N−1
m (z, w)〉 = e

∫ z
w dua(u) |ΨN−1

m 〉 . (4.B.16)

The next step is to consider the action of ∂z∗ on the pole at w. One finds that

∂z∗
1

(z − w)m
=

∂m−1
w

(m− 1)!
∂z∗

1

z − w

=
π

(m− 1)!
∂m−1
w δ(2)(z − w) (4.B.17)

where we used Cauchy’s integral formula and

∂z∗
1

z − w = πδ(2)(z − w) (4.B.18)

As a result, Φ(z) defined in Eq. (4.B.9) becomes

Φ(z) =
πN

(m− 1)!

∫
dw[∂m−1

w δ(z − w)]ψ†h(w)ei
∫ z
w dua(u) |ΨN−1〉 (4.B.19)

The right hand side can be integrated by parts to obtain

∂z∗ψe(z) |ΨN〉 =
πN

(m− 1)!
ψ†h(
←−
∂z − ia)m−1 |ΨN−1〉 . (4.B.20)

Equation (4.B.20) gives the desired relation between Φ(z) and |ΨN−1〉, and we use

it to define the operator

Qe(z) = ∂z∗ψe(z)− πf

(m− 1)!
ψ†h(
←−
∂z − ia)m−1, (4.B.21)
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which, by construction Qe(z), annihilates the state |Ψm〉. A very similar analysis

can be applied to ∂z∗ψh(z) and leads to the definition of Qh(z), which is given by

(4.B.21) after exchanging ψe, ψ
†
e ↔ ψh, ψ

†
h and substituting a→ −a.

We use the operators Qe,h(z) to construct another positive Hermitian H(2)
m given

by

H(2)
m =

1

2

∫
d2z
[
Q†e(z)Qe(z) +Q†h(z)Qh(z)

]
, (4.B.22)

which has |Ψm〉 as a zero energy ground state. Combining Eqs. (4.B.8) and (4.B.22),

one may form the exact Hamiltonian

Hm = λ1H(1)
m + λ2H(2)

m . (4.B.23)

Note that in the case m = 1 the H(2)
m=1 simply reduces to the non-interacting for

px + ipx excitonic pairing, see Eqs. (3) and (4) of the main text. This implies that

for m = 1 the exact Hamiltonian Hm is specified by (λ1, λ2) = (0, 1).

4.B.2 Comparison to lowest Landau level

Let us now compare the operators Qe,h and Pe,h to operators which annihilate the

Laughlin wavefunction ΨLaughlin
m describing a fractional quantum Hall liquid in the

lowest Landau level at filling factor ν = 1/m. In the symmetric gauge the single-

particle states in the lowest Landau level are eigenstates of angular momentum.

The Laughlin wave function takes the form

ΨLaughlin
m ∝

∏
i<j

(zi − zj)me−
∑
i ziz

∗
i . (4.B.24)
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It is worth pointing out that the Gaussian piece originates from the magnetic field

(and we have taken twice the magnetic length as the unit of length).

Now consider the following two (first-quantized) operators involving the deriva-

tives ∂z and ∂z∗ :

Π = ∂z∗ + z, (4.B.25)

Λ = ∂z + z∗ − ia. (4.B.26)

The operator Π annihilates all single-particle states of the lowest Landau level and

therefore annihilates ΨLaughlin
m . This can be understood by recognizing that Π and

Π† are the ladder operators of the Landau levels, i.e., Π (Π†) lowers (raises) the

Landau level index. The Hamiltonian constructed from Π, given by Π†Π, simply

corresponds to the kinetic energy of a particle in a magnetic field (up to an additive

constant). Therefore, Π†Π does not by itself lead to energy gap at filling ν = 1/m.

One may also note that since Π†Π annihilates all wavefunctions constructed from

states in the lowest Landau level, it is certainly not sufficient to single out the

Laughlin wavefunction as the ground state wavefunction.

Instead, the Laughlin wavefunction is selected by interactions, and an exact

interacting Hamiltonian can be constructed by including Λ†Λ. Note that ∂z + z∗

lowers the angular momentum of the single-particle states, i.e., Λ is defined as the

angular momentum lowering operator minus a statistical gauge field a given by

ia(zi) = m
∑
j 6=i

1

zi − zj
. (4.B.27)
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It is then straightforward to verify that Λ indeed annihilates the Laughlin state.

As a result, in the fractional quantum Hall problem both operators Π and Λ are

needed to construct an exact interacting Hamilonian with (4.B.24) as its ground

state wave function. Such Hamiltonian can be related to an interacting Hamiltonian

with short-ranged two-body interactions [175], of which the ground state properties

are described by (4.B.24).

This leads to the expectation that in the case of the fractional excitonic insu-

lator a general Hamiltonian of the form (4.B.23), involving both the Qe,h and Pe,h

operators, should be considered for m 6= 1.
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Chapter 5

Higher Angular Momentum Band

Inversions in Two Dimensions

5.1 Introduction

The notion of a band inversion provides a central paradigm for the understanding of

free fermion topological phases[3, 147, 177]. A band inversion marks the transition

between two gapped electronic phases in the same symmetry class but with distinct

topology, and must necessarily lead to a closing of the energy gap[40, 41]. At the

gapless band touching point, where the order of bands is reversed, the topological

index associated with the symmetry class changes [178, 179]. As a result, knowledge

of the type of band inversion gives access to information on the topological distinc-

tion between the two phases separated by a topological phase transition. This is
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most clearly exemplified by those band inversions which can be described by a sin-

gle Dirac fermion theory. In such theories a sign change of the Dirac fermion mass

indicates a change of bulk topology. In two dimensions this defines the low-energy

theory for the quantum Hall transition [146] and in three dimensions this describes

the transition between a trivial and a topological insulator [4].

In general, when band inversions occur at high-symmetry momenta, the type of

such band inversion can be indicated by the eigenvalues of spatial symmetry oper-

ators of the bands which invert [147, 180–183]. For instance, the Fu-Kane formula

can be viewed as a symmetry indicator for a band inversion transition occurring at

a time-reversal invariant momentum which changes the Z2 topological index [147].

Another example of established symmetry indicators are crystal rotation symme-

tries [180, 184, 185]. Two bands characterized by different crystal rotation eigen-

values have different angular momentum, which implies that, in two dimensions,

an inversion of such bands leads to a change of the Chern number (assuming the

existence of an energy gap on both sides of the transition). In this chapter we study

this type of band inversion, with a particular focus on higher angular momentum

band inversions. Such band inversions mark the transition to a Chern insulator with

higher Chern number and generalize the transition described by a Dirac fermion.

Our understanding of Chern insulators and Chern bands fundamentally relies

on their connection to (flat) Landau levels in a magnetic field [35]; as far as their

topological classification is concerned, Chern bands and Landau levels are equiva-
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lent [144]. To a large extent, it is this equivalence, and its implications for properties

such as edge state spectrum and Hall conductance quantization [2], which has moti-

vated and driven much of the research on Chern insulating phases. Furthermore, the

connection to Landau levels has been successfully exploited to, for instance, address

the effect of electronic interactions in partially filled Chern bands, and thereby ex-

plore the possibility of realizing correlated liquid states akin to fractional quantum

Hall states without magnetic field [152–155]. Here we take a rather different, and

in some sense contrary, perspective on Chern insulators, by focusing not on isolated

Chern bands but instead on the band inversion transition to the Chern insulating

state. Notably, the low-energy description of such transition, which can be viewed

as a higher angular momentum generalization of a Dirac fermion transition, exposes

a connection to the BCS theory of paired states of fermions in two dimensions [177].

In particular, this connection, which was previously recognized in the context p+ ip

pairing phases [162], suggests that the transition to a Chern insulator phase can be

phrased in terms of pairing of electrons and holes—rather than pairs of electrons.

One of our aims is to examine this connection in more detail.

We are further motivated by the broader aim to find many-body generalizations

of band inversion transitions. In the search for such many-body generalizations

higher angular momentum band inversions are of particular interest since the bands

disperse quadratically at the critical point of the transition (i.e., when the gap closes

and the bands touch, see Fig. 5.2.1). This property, which is protected by rotation
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symmetry, leads to a non-vanishing density of states and implies that—in contrast

to band inversion transitions described by a Dirac fermion—interactions are likely

to affect the nature of the band inversion [186–194].

In previous chapter we have argued that, given the importance of interactions,

higher angular momentum band inversions provide a promising route towards corre-

lated fluids of electrons and holes. This argument is based on the pairing formulation

of the Chern band inversion and was encouraged by the well-established connections

between pairing states and fractional quantum Hall wave functions [177]. In this

chapter we focus attention on a second possibility for a correlation-driven phase

in the vicinity of the band inversion: the excitonic insulator [195]. The excitonic

insulator is defined by the condensation of electrons and holes into exciton bound

states, which can be called excitonic pairing, and is associated with rotation sym-

metry breaking [193].

5.2 Band inversions and Chern insulators

We begin by introducing a low-energy theory for band inversion transitions which

signal a change of the Chern number index. To describe a band inversion of this

type it is sufficient to consider two bands, and we thus consider a system with a

filled valence band and an empty conduction band, which we study in the vicinity of

a band inversion at k = 0. We define the annihilation operators of the conductions

band and valance band states as cke and ckh, respectively, and collect them in the
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spinor

ψk =

cke
ckh

 . (5.2.1)

Note that the choice of vacuum (i.e., a filled valence band) implies that ckh creates

holes in the valence band and can be viewed as a creation operator with respect to

the vacuum. In this sense, ψk may be compared to a Nambu spinor of electrons

and holes. In terms of ψk and ψ†k the Hamiltonian can be expressed as

H =
∑

k

ψ†khkψk, hk =

 εk ∆k

∆∗k −εk

 . (5.2.2)

Here εk describes the dispersion of the conduction and valence band close to the

band inversion at k = 0. To lowest order in momentum the dispersion takes the

form εk = k2/2m∗ − δ, where m∗ is an effective mass and δ is the energy difference

between the two bands. The parameter δ determines whether the bands are inverted

(δ > 0) or have normal band ordering (δ < 0). This is schematically shown in

Fig. 5.2.1, where (A) corresponds to the uninverted regime and (C) corresponds to

the inverted regime.

It is important to note that δ is not determined or constrained by symmetry.

This should be contrasted with systems exhibiting a symmetry-protected degener-

acy of two bands at k = 0, in which case δ represents a gap opening associated with

the breaking of a symmetry [186]. Here, on the other hand, we consider a transition

between two phases with the same symmetry but different topology. Note further

that the inverted regime δ > 0 leads to the notion of an electron-hole Fermi surface
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Figure 5.2.1: Band inversion transition with higher angular momentum. A band inversion transition

with higher angular momentum in two dimensions separates a trivial insulating phase (A) from a topological

Chern insulating phase (C) with higher Chern number. At the critical point, shown in (C), the band dispersion is

quadratic, in sharp contrast to band inversion transitions described by a Dirac fermion, for which it is linear. The

non-vanishing density of states of the former makes interaction effects relevant, making higher angular momentum

band inversions promising venues for many-body generalizations of topological band inversion transitions.

defined by the condition εk = 0 and the wave vector kF =
√

2m∗δ.

The coupling of the electron and hole bands is given by ∆k and is constrained

by the symmetry properties of the electron and hole bands. In this work we focus

on a class of band inversion Hamiltonians hk for which the function ∆k describing

the coupling is chiral and characterized by a definite nonzero angular momentum l.

Couplings with angular momentum l can expressed in the general form

∆k = ∆(kx + κiky)
|l|, (5.2.3)

where ∆ is the strength of the coupling (which may be complex) and κ = sgn(l).

With ∆k given by Eq. (5.2.3) it is straightforward to see that the energy spectrum of

hk, which consists of two branches ±Ek with Ek = (ε2
k + |∆k|2)1/2, has a full energy
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gap except for the special case δ = 0. This shows that δ controls the transition

between two gapped phases with different topological character, as we now explain.

The form of (5.2.3) combined with the form of Eq. (5.2.2) suggests a formal

connection to the BCS theory of chiral superconductors in two dimensions [177, 201].

In the latter case, ∆k corresponds to the pairing potential and is associated with

the breaking of U(1) charge conservation. In this sense, the class of systems we

consider here is very different, since all terms present in the Hamiltonian of Eq.

(5.2.2), including ∆k, represent symmetry-allowed couplings between single-particle

states. In particular, the number of conduction band electrons and valence band

holes is not separately conserved. Given the absence of a broken symmetry one

might compare the “pairing” of particles and holes described by Eq. (5.2.2) to

proximitized superconductors [194].

The formal connection of Eq. (5.2.2) to chiral superconductors can nevertheless

be fruitfully exploited for the purpose of analyzing the ground state wavefunction

and its properties. A gapped chiral superconductor in two dimensions with angular

momentum l is known to have a topological ground state characterized by a nonzero

Chern number C = l [177]. This leads to the conclusion that hk with ∆k given

by (5.2.3) describes a band inversion transition from a trivial insulator to a Chern

insulator with Chern number C = l. These two insulating phases are separated

by a gap closing at δ = 0 (depicted in Fig. 5.2.1 B), with δ > 0 corresponding to

the Chern insulator, as shown in Fig. 5.2.1 (C). Following the work of Read and
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Green [177] the ground state of Eq. (5.2.2) can be expressed in the form

|Φ〉 =
∏
k

(uk + vkc
†
keckh) |Ω〉 ∝ e

∑
k gkc

†
keckh |Ω〉 , (5.2.4)

where uk and vk are solutions to the equations (εk +Ek)vk + ∆kuk = 0 and ∆∗kvk +

(Ek− εk)uk = 0 with constraint |uk|2 + |vk|2 = 1, and |Ω〉 is the vacuum defined by

a filled valence band and empty conduction band (see Appendix 5.A). The ground

state |Φ〉 describes a Chern insulating phase defined by a “condensate” of electrons

and holes with nonzero angular momentum l. The topology of the many-body

wavefunction is encoded in pair correlation function g(r) =
∫
d2k gke

−ik·r/(2π)2

with gk = vk/uk. In Sec. 5.4 we study the pair correlation function in more detail

and discuss its connection to the lattice models introduced in Sec. 5.3.

To address the question how a band inversion of the type defined by Eqs. (5.2.2)

and (5.2.3) can arise, and in particular which model systems can describe higher

Chern number transitions, it is helpful consider the symmetry properties of ∆k.

Since ∆k is chiral and carries nonzero angular momentum, it can only arise when

time-reversal and vertical reflection symmetry are both broken. Furthermore, def-

inite angular momentum implies that the form of ∆k is constrained by rotational

symmetry. To see this, consider the case l = −m, where m is a positive integer.

The Hamiltonian hk can be expressed as

hk = εkτz + ∆(km+ τ− + km− τ+), (5.2.5)

where τx,y,z are Pauli matrices and we have defined τ± = (τx ± iτy)/2 as well as

k± = kx ± iky. Under rotations by an angle θ one has km± → eimθkm± and, as a

106



result, one must have τ± → eimθτ± for hk to be invariant under rotations. We may

formulate this in real space by noting that the Hamiltonian takes the form

h = τz(−∂2 − δ) + ∆ [τ−(∂z∗/i)
m + τ+(∂z/i)

m] , (5.2.6)

where ∂z,z∗ = ∂x ∓ i∂y. Invariance under rotations implies that the Hamiltonian

commutes with the angular momentum operator Lz (i.e., the generator of rotations).

To satisfy [h, Lz] = 0 Lz must have the form

Lz = z∂z − z∗∂z∗ +
m

2
τz, (5.2.7)

where z = x + iy. This leads to the conclusion that the electron and hole bands

must have relative angular momentum m, i.e., their rotation symmetry quantum

numbers must differ by m. It is this conclusion which provides the basis for the

construction of the lattice models in the next section.

Before we come to a discussion of such models, however, two remarks are in

order. First, since the dispersion of the electron and hole band is chosen as ±εk,

Eq. (5.2.2) has a particle-hole symmetry given by e ↔ h and l → −l. This is a

convenient starting point for analysis but it is not an essential assumption, and in

general one expects this symmetry to be broken by the different band curvature of

electron and hole bands. Second, to ensure that the topology of hk is well-defined

for |l| > 1, i.e., that hk is un-inverted at k → ∞, higher order terms in k2 should

be added to εk.
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5.3 Lattice Models for Chern Band Inversions

In this section we present a construction of simple lattice models which realize

band inversion transitions to Chern insulators with Chern number C = l. Here

l corresponds to the angular momentum of the band coupling ∆k defined in Eq.

(5.2.3). As demonstrated in the previous section, the constituent degrees of freedom

of such models are required to have nonzero relative angular momentum and thus

transform nontrivially under the symmetry group of the lattice. Since symmetry

plays a central role, we begin by reviewing the generic symmetry properties of Chern

insulators and Chern bands and then survey the point symmetry groups compatible

with the symmetry requirements of higher angular momentum band inversions.

Note first that the existence of a Chern insulating state requires broken time-

reversal (T ) and mirror (M) symmetry, which follows directly from the transforma-

tion property of the Berry curvature under T and M symmetry [202]. Here M is

a reflection with respect to a vertical mirror plane which inverts one of the coordi-

nates, e.g., (x, y) → (x,−y). Broken T and M is consistent with the chiral nature

of nonzero angular momentum excitonic pairing described by Eq. (5.2.3). When

the system has multiple inequivalent vertical mirror planes all these reflection sym-

metries must be broken. As a result, in what follows broken M symmetry should

be understood as the absence of all vertical mirror symmetry. A similar result holds

for twofold rotations about an axis in the plane, as the Berry curvature is odd under

such rotations.

108



Chern insulators are compatible with rotation symmetry and our aim is to con-

struct Chern insulator models which preserve the rotation symmetry of the lattice.

More precisely, our aim is to construct models which exhibit maximal rotation

symmetry. The discrete symmetry of the crystal lattice sets limits for rotation

invariance: in lattice systems with an n-fold rotation symmetry Cn=2,3,4,6 angular

momentum l is only defined modn. As a result, the largest possible angular mo-

mentum that can be distinguished is l = ±3, which implies that the construction

of lattice models for excitonic Chern insulators is limited to C = ±3.

In the context of rotationally invariant Chern insulating phases it is worth noting

that the relation between the Chern number and angular momentum is also reflected

in the fact that the Chern number can be obtained from energy band rotation

eigenvalues at rotation invariant momenta (up to multiples of n) [185].

Next, we examine the crystallographic point groups which may in principle

support Chern insulating states with rotation symmetry. Since we consider layer

systems with a two-dimensional lattice the appropriate symmetry groups are axial

point groups. Admissible symmetry groups are those which leave an angular mo-

mentum l along the z axis invariant and allow to distinguish different values of l.

Consider first the hexagonal groups. There are three groups which satisfy the first

condition: C6, C6h, and C3h. The latter, however, only allows to distinguish l = ±1

and is not of interest. Of the trigonal point groups only C3 and C3i = S6 are com-

patible with chiral pairing along the z axis. Since S6 includes an inversion s-wave
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Figure 5.3.1: Symmetry of orbital states. Graphical representation of the symmetry of the orbital degrees

of freedom with integral angular momentum l = 1, 2, 3. The p-, d-, and f -wave states form the basis of the Chern

insulator models of Sec. 5.3.1.

and f -wave angular momenta have distinct symmetry. In systems with tetragonal

symmetry we can only hope to distinguish angular momenta up to l = ±2. Of the

groups which preserve angular momentum along z, given by C4, C4h, and S4, all

are sufficient to protect l = ±2 pairing.

To summarize, the symmetry groups of interest are: C6 and C6h (hexagonal);

S6 (trigonal); C4, C4h, and S4 (tetragonal). With this knowledge we now introduce

models for systems in these symmetry classes.
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5.3.1 Orbital Angular Momentum Models

The Square Lattice

We first focus on the square lattice. Since the square lattice has C4 rotation sym-

metry angular momentum can be distinguished up to l = ±2. As a result, the

square lattice can support models for band inversion transitions up to Chern num-

ber C = ±2. To obtain such models it is natural to choose on-site orbital degrees

of freedom with relative angular momentum ±2. We thus consider s-wave and

dxy-wave orbitals and define sk and dk as the electron annihilation operators cor-

responding to the s- and d-wave states. (The symmetry of the higher angular

momentum orbitals is shown in Fig. 5.3.1.) We write the Hamiltonian H for this

two-band system as

H =
∑

k

ϕ†khkϕk, ϕk =

sk

dk

 , (5.3.1)

where the Hamiltonian matrix hk may be expanded in Pauli matrices τx,y,z.

As outlined in the beginning of this section, the form of hk is determined by

the symmetry requirements of a C4 symmetric Chern insulator and symmetry of

the s- and d-wave states. An elegant and simple way to derive the form of hk is

to formulate the allowed couplings in terms of lattice harmonic functions, which

may be viewed as lattice analogs of spherical harmonics and describe hoppings with

distinct symmetry. As an example, the (lowest order) s-wave harmonic λsk given by

λsk = cos kx + cos ky, (5.3.2)
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corresponds to the standard nearest neighbor hopping. Note that due to the discrete

symmetry of a lattice the lattice harmonics are labeled by the finite set of point

group representations (see Table 5.3.1). The two d-wave harmonics with dx2−y2 and

dxy symmetry are given by

λd1
k = cos kx − cos ky, λd2

k = sin kx sin ky, (5.3.3)

and the p-wave harmonics are given by (λp1

k , λ
p2

k ) = (sin kx, sin ky). The symmetry

properties and the point group labels of the lattice harmonics are summarized in

Table 5.3.1 and are shown schematically in Fig. 5.3.1.

Using the symmetry of both the orbital basis states and the lattice harmonics,

it is straightforward to construct a Hamiltonian H which satisfies all symmetry

requirements and has a gapped ground state. We write H as a sum of two parts:

Hδ and H∆. Here Hδ describes both nearest neighbor intra-orbital hopping and an

energy splitting εs − εd of the s and d states, and H∆ describes the (inter-orbital)

couplings between the s and d states. The splitting between the s and d states

is conveniently parametrized as εs − εd = 2t − δ, where t is the nearest neighbor

hopping parameter; Hδ then takes the form

Hδ =
∑

k

(2t− δ − tλsk)(s†ksk − d†kdk). (5.3.4)

The structure ofH∆ follows from the observation that d†ksk transforms as a dxy wave.

The simplest rotationally invariant but T - and M -broken coupling then takes the

112



400 800 1200
-4
-3
-2
-1
0
1
2
3
4

400 800 1200
-4
-3
-2
-1
0
1
2
3
4

1

-1

-1 i

i -i

-i

1

�d2

k
<latexit sha1_base64="Wthdg7ClpZ6ywLbmjiQ8yic4bRg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuCpJEXRZdOOygn1AU8NkMmmHTh7MTIQSs/BX3LhQxK2/4c6/cdJmoa0HBg7nnMu9c7yEM6ks69uorKyurW9UN2tb2zu7e+b+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMl14fceqJAsju7UNKHDEI8iFjCClZZc88jhOuzj+8x3m7mbOV6AJnnNNetWw5oBLRO7JHUo0XbNL8ePSRrSSBGOpRzYVqKGGRaKEU7zmpNKmmAywSM60DTCIZXDbHZ/jk614qMgFvpFCs3U3xMZDqWchp5OhliN5aJXiP95g1QFl8OMRUmqaETmi4KUIxWjogzkM0GJ4lNNMBFM34rIGAtMlK6sKMFe/PIy6TYbttWwb8/rrauyjiocwwmcgQ0X0IIbaEMHCDzCM7zCm/FkvBjvxsc8WjHKmUP4A+PzB1AMlZ8=</latexit><latexit sha1_base64="Wthdg7ClpZ6ywLbmjiQ8yic4bRg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuCpJEXRZdOOygn1AU8NkMmmHTh7MTIQSs/BX3LhQxK2/4c6/cdJmoa0HBg7nnMu9c7yEM6ks69uorKyurW9UN2tb2zu7e+b+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMl14fceqJAsju7UNKHDEI8iFjCClZZc88jhOuzj+8x3m7mbOV6AJnnNNetWw5oBLRO7JHUo0XbNL8ePSRrSSBGOpRzYVqKGGRaKEU7zmpNKmmAywSM60DTCIZXDbHZ/jk614qMgFvpFCs3U3xMZDqWchp5OhliN5aJXiP95g1QFl8OMRUmqaETmi4KUIxWjogzkM0GJ4lNNMBFM34rIGAtMlK6sKMFe/PIy6TYbttWwb8/rrauyjiocwwmcgQ0X0IIbaEMHCDzCM7zCm/FkvBjvxsc8WjHKmUP4A+PzB1AMlZ8=</latexit><latexit sha1_base64="Wthdg7ClpZ6ywLbmjiQ8yic4bRg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuCpJEXRZdOOygn1AU8NkMmmHTh7MTIQSs/BX3LhQxK2/4c6/cdJmoa0HBg7nnMu9c7yEM6ks69uorKyurW9UN2tb2zu7e+b+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMl14fceqJAsju7UNKHDEI8iFjCClZZc88jhOuzj+8x3m7mbOV6AJnnNNetWw5oBLRO7JHUo0XbNL8ePSRrSSBGOpRzYVqKGGRaKEU7zmpNKmmAywSM60DTCIZXDbHZ/jk614qMgFvpFCs3U3xMZDqWchp5OhliN5aJXiP95g1QFl8OMRUmqaETmi4KUIxWjogzkM0GJ4lNNMBFM34rIGAtMlK6sKMFe/PIy6TYbttWwb8/rrauyjiocwwmcgQ0X0IIbaEMHCDzCM7zCm/FkvBjvxsc8WjHKmUP4A+PzB1AMlZ8=</latexit><latexit sha1_base64="Wthdg7ClpZ6ywLbmjiQ8yic4bRg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuCpJEXRZdOOygn1AU8NkMmmHTh7MTIQSs/BX3LhQxK2/4c6/cdJmoa0HBg7nnMu9c7yEM6ks69uorKyurW9UN2tb2zu7e+b+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMl14fceqJAsju7UNKHDEI8iFjCClZZc88jhOuzj+8x3m7mbOV6AJnnNNetWw5oBLRO7JHUo0XbNL8ePSRrSSBGOpRzYVqKGGRaKEU7zmpNKmmAywSM60DTCIZXDbHZ/jk614qMgFvpFCs3U3xMZDqWchp5OhliN5aJXiP95g1QFl8OMRUmqaETmi4KUIxWjogzkM0GJ4lNNMBFM34rIGAtMlK6sKMFe/PIy6TYbttWwb8/rrauyjiocwwmcgQ0X0IIbaEMHCDzCM7zCm/FkvBjvxsc8WjHKmUP4A+PzB1AMlZ8=</latexit>

�d1

k
<latexit sha1_base64="jB7kbYw6//nXmafEK21fWY2KGDM=">AAAB/3icbVDLSsNAFL3xWesrKrhxM1gEVyURQZdFNy4r2Ac0MUwmk3bo5MHMRCgxC3/FjQtF3Pob7vwbJ20W2npg4HDOudw7x085k8qyvo2l5ZXVtfXaRn1za3tn19zb78okE4R2SMIT0fexpJzFtKOY4rSfCoojn9OeP74u/d4DFZIl8Z2apNSN8DBmISNYackzDx2uwwG+zwPPLrzc8UM0Luqe2bCa1hRokdgVaUCFtmd+OUFCsojGinAs5cC2UuXmWChGOC3qTiZpiskYD+lA0xhHVLr59P4CnWglQGEi9IsVmqq/J3IcSTmJfJ2MsBrJea8U//MGmQov3ZzFaaZoTGaLwowjlaCyDBQwQYniE00wEUzfisgIC0yUrqwswZ7/8iLpnjVtq2nfnjdaV1UdNTiCYzgFGy6gBTfQhg4QeIRneIU348l4Md6Nj1l0yahmDuAPjM8fTn6Vng==</latexit><latexit sha1_base64="jB7kbYw6//nXmafEK21fWY2KGDM=">AAAB/3icbVDLSsNAFL3xWesrKrhxM1gEVyURQZdFNy4r2Ac0MUwmk3bo5MHMRCgxC3/FjQtF3Pob7vwbJ20W2npg4HDOudw7x085k8qyvo2l5ZXVtfXaRn1za3tn19zb78okE4R2SMIT0fexpJzFtKOY4rSfCoojn9OeP74u/d4DFZIl8Z2apNSN8DBmISNYackzDx2uwwG+zwPPLrzc8UM0Luqe2bCa1hRokdgVaUCFtmd+OUFCsojGinAs5cC2UuXmWChGOC3qTiZpiskYD+lA0xhHVLr59P4CnWglQGEi9IsVmqq/J3IcSTmJfJ2MsBrJea8U//MGmQov3ZzFaaZoTGaLwowjlaCyDBQwQYniE00wEUzfisgIC0yUrqwswZ7/8iLpnjVtq2nfnjdaV1UdNTiCYzgFGy6gBTfQhg4QeIRneIU348l4Md6Nj1l0yahmDuAPjM8fTn6Vng==</latexit><latexit sha1_base64="jB7kbYw6//nXmafEK21fWY2KGDM=">AAAB/3icbVDLSsNAFL3xWesrKrhxM1gEVyURQZdFNy4r2Ac0MUwmk3bo5MHMRCgxC3/FjQtF3Pob7vwbJ20W2npg4HDOudw7x085k8qyvo2l5ZXVtfXaRn1za3tn19zb78okE4R2SMIT0fexpJzFtKOY4rSfCoojn9OeP74u/d4DFZIl8Z2apNSN8DBmISNYackzDx2uwwG+zwPPLrzc8UM0Luqe2bCa1hRokdgVaUCFtmd+OUFCsojGinAs5cC2UuXmWChGOC3qTiZpiskYD+lA0xhHVLr59P4CnWglQGEi9IsVmqq/J3IcSTmJfJ2MsBrJea8U//MGmQov3ZzFaaZoTGaLwowjlaCyDBQwQYniE00wEUzfisgIC0yUrqwswZ7/8iLpnjVtq2nfnjdaV1UdNTiCYzgFGy6gBTfQhg4QeIRneIU348l4Md6Nj1l0yahmDuAPjM8fTn6Vng==</latexit><latexit sha1_base64="jB7kbYw6//nXmafEK21fWY2KGDM=">AAAB/3icbVDLSsNAFL3xWesrKrhxM1gEVyURQZdFNy4r2Ac0MUwmk3bo5MHMRCgxC3/FjQtF3Pob7vwbJ20W2npg4HDOudw7x085k8qyvo2l5ZXVtfXaRn1za3tn19zb78okE4R2SMIT0fexpJzFtKOY4rSfCoojn9OeP74u/d4DFZIl8Z2apNSN8DBmISNYackzDx2uwwG+zwPPLrzc8UM0Luqe2bCa1hRokdgVaUCFtmd+OUFCsojGinAs5cC2UuXmWChGOC3qTiZpiskYD+lA0xhHVLr59P4CnWglQGEi9IsVmqq/J3IcSTmJfJ2MsBrJea8U//MGmQov3ZzFaaZoTGaLwowjlaCyDBQwQYniE00wEUzfisgIC0yUrqwswZ7/8iLpnjVtq2nfnjdaV1UdNTiCYzgFGy6gBTfQhg4QeIRneIU348l4Md6Nj1l0yahmDuAPjM8fTn6Vng==</latexit>

(A)
<latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit><latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit><latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit><latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit>
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(B)
<latexit sha1_base64="gPFIB2Mx4wTtE2xe0rr20stySUw=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBHqpeyKoMdSLx4r2A9pl5JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmGnuLu3f3BYOjpumTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2Ob2d++4lpw2P1YCcJCyQZKh5xSqyTHitZL4xwfXrRL5W9qjcHXiV+TsqQo9EvffUGMU0lU5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcVkcwE2fzgKT53ygBHsXalLJ6rvycyIo2ZyNB1SmJHZtmbif953dRGN0HGVZJapuhiUZQKbGM8+x4PuGbUiokjhGrubsV0RDSh1mVUdCH4yy+vktZl1feq/v1VuVbP4yjAKZxBBXy4hhrcQQOaQEHCM7zCG9LoBb2jj0XrGspnTuAP0OcPpWCPow==</latexit><latexit sha1_base64="gPFIB2Mx4wTtE2xe0rr20stySUw=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBHqpeyKoMdSLx4r2A9pl5JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmGnuLu3f3BYOjpumTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2Ob2d++4lpw2P1YCcJCyQZKh5xSqyTHitZL4xwfXrRL5W9qjcHXiV+TsqQo9EvffUGMU0lU5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcVkcwE2fzgKT53ygBHsXalLJ6rvycyIo2ZyNB1SmJHZtmbif953dRGN0HGVZJapuhiUZQKbGM8+x4PuGbUiokjhGrubsV0RDSh1mVUdCH4yy+vktZl1feq/v1VuVbP4yjAKZxBBXy4hhrcQQOaQEHCM7zCG9LoBb2jj0XrGspnTuAP0OcPpWCPow==</latexit><latexit sha1_base64="gPFIB2Mx4wTtE2xe0rr20stySUw=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBHqpeyKoMdSLx4r2A9pl5JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmGnuLu3f3BYOjpumTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2Ob2d++4lpw2P1YCcJCyQZKh5xSqyTHitZL4xwfXrRL5W9qjcHXiV+TsqQo9EvffUGMU0lU5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcVkcwE2fzgKT53ygBHsXalLJ6rvycyIo2ZyNB1SmJHZtmbif953dRGN0HGVZJapuhiUZQKbGM8+x4PuGbUiokjhGrubsV0RDSh1mVUdCH4yy+vktZl1feq/v1VuVbP4yjAKZxBBXy4hhrcQQOaQEHCM7zCG9LoBb2jj0XrGspnTuAP0OcPpWCPow==</latexit><latexit sha1_base64="gPFIB2Mx4wTtE2xe0rr20stySUw=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBHqpeyKoMdSLx4r2A9pl5JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmGnuLu3f3BYOjpumTjVlDVpLGLdCYlhgivWtNwK1kk0IzIUrB2Ob2d++4lpw2P1YCcJCyQZKh5xSqyTHitZL4xwfXrRL5W9qjcHXiV+TsqQo9EvffUGMU0lU5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcVkcwE2fzgKT53ygBHsXalLJ6rvycyIo2ZyNB1SmJHZtmbif953dRGN0HGVZJapuhiUZQKbGM8+x4PuGbUiokjhGrubsV0RDSh1mVUdCH4yy+vktZl1feq/v1VuVbP4yjAKZxBBXy4hhrcQQOaQEHCM7zCG9LoBb2jj0XrGspnTuAP0OcPpWCPow==</latexit>

(C)
<latexit sha1_base64="Z2MGYkP+3z2sz6nhlTFfpoeld+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMdgLh4jmIckS5idzCZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7a+sbm1Xdgp7u7tHxyWjo5bRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Whcn/ntJ6oNU/LBThIaCjyULGYEWyc9VrJeFKP69KJfKvtVfw60SoKclCFHo1/66g0USQWVlnBsTDfwExtmWFtGOJ0We6mhCSZjPKRdRyUW1ITZ/OApOnfKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauObMGMySS2VZLEoTjmyCs2+RwOmKbF84ggmmrlbERlhjYl1GRVdCMHyy6ukdVkN/Gpwf1Wu3eZxFOAUzqACAVxDDe6gAU0gIOAZXuHN096L9+59LFrXvHzmBP7A+/wBpuaPpA==</latexit><latexit sha1_base64="Z2MGYkP+3z2sz6nhlTFfpoeld+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMdgLh4jmIckS5idzCZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7a+sbm1Xdgp7u7tHxyWjo5bRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Whcn/ntJ6oNU/LBThIaCjyULGYEWyc9VrJeFKP69KJfKvtVfw60SoKclCFHo1/66g0USQWVlnBsTDfwExtmWFtGOJ0We6mhCSZjPKRdRyUW1ITZ/OApOnfKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauObMGMySS2VZLEoTjmyCs2+RwOmKbF84ggmmrlbERlhjYl1GRVdCMHyy6ukdVkN/Gpwf1Wu3eZxFOAUzqACAVxDDe6gAU0gIOAZXuHN096L9+59LFrXvHzmBP7A+/wBpuaPpA==</latexit><latexit sha1_base64="Z2MGYkP+3z2sz6nhlTFfpoeld+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMdgLh4jmIckS5idzCZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7a+sbm1Xdgp7u7tHxyWjo5bRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Whcn/ntJ6oNU/LBThIaCjyULGYEWyc9VrJeFKP69KJfKvtVfw60SoKclCFHo1/66g0USQWVlnBsTDfwExtmWFtGOJ0We6mhCSZjPKRdRyUW1ITZ/OApOnfKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauObMGMySS2VZLEoTjmyCs2+RwOmKbF84ggmmrlbERlhjYl1GRVdCMHyy6ukdVkN/Gpwf1Wu3eZxFOAUzqACAVxDDe6gAU0gIOAZXuHN096L9+59LFrXvHzmBP7A+/wBpuaPpA==</latexit><latexit sha1_base64="Z2MGYkP+3z2sz6nhlTFfpoeld+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMdgLh4jmIckS5idzCZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7a+sbm1Xdgp7u7tHxyWjo5bRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Whcn/ntJ6oNU/LBThIaCjyULGYEWyc9VrJeFKP69KJfKvtVfw60SoKclCFHo1/66g0USQWVlnBsTDfwExtmWFtGOJ0We6mhCSZjPKRdRyUW1ITZ/OApOnfKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauObMGMySS2VZLEoTjmyCs2+RwOmKbF84ggmmrlbERlhjYl1GRVdCMHyy6ukdVkN/Gpwf1Wu3eZxFOAUzqACAVxDDe6gAU0gIOAZXuHN096L9+59LFrXvHzmBP7A+/wBpuaPpA==</latexit>

(D)
<latexit sha1_base64="tRNPXkaTrbCtLwJdObTlRXfOG+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMegHjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vb2V1bX1js7BV3N7Z3dsvHRw2jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMkHO05oKPBAspgRbJ30WMm6UYxuJ2e9Utmv+jOgZRLkpAw56r3SV7evSCqotIRjYzqBn9gww9oywumk2E0NTTAZ4QHtOCqxoCbMZgdP0KlT+ihW2pW0aKb+nsiwMGYsItcpsB2aRW8q/ud1UhtfhRmTSWqpJPNFccqRVWj6PeozTYnlY0cw0czdisgQa0ysy6joQggWX14mzfNq4FeD+4ty7TqPowDHcAIVCOASanAHdWgAAQHP8ApvnvZevHfvY9664uUzR/AH3ucPqGyPpQ==</latexit><latexit sha1_base64="tRNPXkaTrbCtLwJdObTlRXfOG+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMegHjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vb2V1bX1js7BV3N7Z3dsvHRw2jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMkHO05oKPBAspgRbJ30WMm6UYxuJ2e9Utmv+jOgZRLkpAw56r3SV7evSCqotIRjYzqBn9gww9oywumk2E0NTTAZ4QHtOCqxoCbMZgdP0KlT+ihW2pW0aKb+nsiwMGYsItcpsB2aRW8q/ud1UhtfhRmTSWqpJPNFccqRVWj6PeozTYnlY0cw0czdisgQa0ysy6joQggWX14mzfNq4FeD+4ty7TqPowDHcAIVCOASanAHdWgAAQHP8ApvnvZevHfvY9664uUzR/AH3ucPqGyPpQ==</latexit><latexit sha1_base64="tRNPXkaTrbCtLwJdObTlRXfOG+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMegHjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vb2V1bX1js7BV3N7Z3dsvHRw2jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMkHO05oKPBAspgRbJ30WMm6UYxuJ2e9Utmv+jOgZRLkpAw56r3SV7evSCqotIRjYzqBn9gww9oywumk2E0NTTAZ4QHtOCqxoCbMZgdP0KlT+ihW2pW0aKb+nsiwMGYsItcpsB2aRW8q/ud1UhtfhRmTSWqpJPNFccqRVWj6PeozTYnlY0cw0czdisgQa0ysy6joQggWX14mzfNq4FeD+4ty7TqPowDHcAIVCOASanAHdWgAAQHP8ApvnvZevHfvY9664uUzR/AH3ucPqGyPpQ==</latexit><latexit sha1_base64="tRNPXkaTrbCtLwJdObTlRXfOG+w=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMegHjxGMA9JljA7mU2GzGOZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEs6M9f1vb2V1bX1js7BV3N7Z3dsvHRw2jUo1oQ2iuNLtCBvKmaQNyyyn7URTLCJOW9HoZuq3nqg2TMkHO05oKPBAspgRbJ30WMm6UYxuJ2e9Utmv+jOgZRLkpAw56r3SV7evSCqotIRjYzqBn9gww9oywumk2E0NTTAZ4QHtOCqxoCbMZgdP0KlT+ihW2pW0aKb+nsiwMGYsItcpsB2aRW8q/ud1UhtfhRmTSWqpJPNFccqRVWj6PeozTYnlY0cw0czdisgQa0ysy6joQggWX14mzfNq4FeD+4ty7TqPowDHcAIVCOASanAHdWgAAQHP8ApvnvZevHfvY9664uUzR/AH3ucPqGyPpQ==</latexit>

X
<latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit>

M
<latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

X
<latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit>

M
<latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>
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<latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit><latexit sha1_base64="OWtJg4Ad2OtPgbAFnq6vVRIF1+w=">AAACAXicbVDLSsNAFL2prxpfUTeCm8FScFUSEXRZdOOygn1AE8NkMmmHTh7MTIQS6sZfceNCEbf+hTv/xmmbhbYeGDiccy537gkyzqSy7W+jsrK6tr5R3TS3tnd296z9g45Mc0Fom6Q8Fb0AS8pZQtuKKU57maA4DjjtBqPrqd99oEKyNLlT44x6MR4kLGIEKy351lHd5Tod4vsi9J2JX7hBhEYTs+dbNbthz4CWiVOSGpRo+daXG6Ykj2miCMdS9h07U16BhWKE04np5pJmmIzwgPY1TXBMpVfMLpigulZCFKVCv0Shmfp7osCxlOM40MkYq6Fc9Kbif14/V9GlV7AkyxVNyHxRlHOkUjStA4VMUKL4WBNMBNN/RWSIBSZKl2bqEpzFk5dJ56zh2A3n9rzWvCrrqMIxnMApOHABTbiBFrSBwCM8wyu8GU/Gi/FufMyjFaOcOYQ/MD5/AGHHli8=</latexit>
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<latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit><latexit sha1_base64="QPPnyXE3dGDD0HRrV31yh+/eeZw=">AAACAXicbVDLSsNAFL3xWeMr6kZwM1gKrkoigi6LbtwIFewDmhgmk0k7dPJgZiKUUDf+ihsXirj1L9z5N07bLLT1wMDhnHO5c0+QcSaVbX8bS8srq2vrlQ1zc2t7Z9fa22/LNBeEtkjKU9ENsKScJbSlmOK0mwmK44DTTjC8mvidByokS5M7NcqoF+N+wiJGsNKSbx3WXK7TIb4vQt8Z+4UbRGg4Nm98q2rX7SnQInFKUoUSTd/6csOU5DFNFOFYyp5jZ8orsFCMcDo23VzSDJMh7tOepgmOqfSK6QVjVNNKiKJU6JcoNFV/TxQ4lnIUBzoZYzWQ895E/M/r5Sq68AqWZLmiCZktinKOVIomdaCQCUoUH2mCiWD6r4gMsMBE6dJMXYIzf/IiaZ/WHbvu3J5VG5dlHRU4gmM4AQfOoQHX0IQWEHiEZ3iFN+PJeDHejY9ZdMkoZw7gD4zPH1EbliQ=</latexit>

Figure 5.3.2: Square lattice model. Panel (A) shows the two-orbital square lattice model introduced in

Eq. (5.3.6), with inter-orbital nearest neighbor hopping (∆1) and next-nearest neighbor (∆2) hopping. The onsite

orbitals with s- and d-wave symmetry are represented by (superimposed) black and red dots. Shown is also the real

space structure of the inter-orbital hoppings defined in Eq. (5.3.5) and described by the square lattice harmonics

λd1k and λd1k of Eq. (5.3.3). (B), (C), and (D) show the spectrum of the square lattice model in the inverted

regime, at the critical point, and in the normal regime, respectively. As parameters we chose δ = 0.4t, 0,−0.4t and

(∆1,∆2) = (0.4t, 0.4t).
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form

H∆ =
∑

k

(i∆1λ
d1
k + ∆2λ

d2
k )d†ksk + H.c., (5.3.5)

where ∆1,2 are both real and the relative phase is responsible for broken T . Com-

bining these two terms we arrive at the form of hk given by

hk = εkτz + ∆1λ
d1
k τy + ∆2λ

d2
k τx, (5.3.6)

where we defined εk = 2t− δ − tλsk. The square lattice model defined by (5.3.6) is

shown pictorially in Fig. 5.3.2 (A).

It is straightforward to verify that hk has a gapped spectrum for nonzero (δ,∆1,∆2)

and supports Chern bands with C = ±2 for 4t > δ > 0. The parameter δ can be

directly identified with the band inversion parameter of Eq. (5.2.2). The spectrum

of (5.3.6) is shown in Fig. 5.3.2 (B)–(D), corresponding to the inverted regime

(δ > 0), the critical point (δ = 0), and the normal regime (δ < 0). A more detailed

analysis of Eq. (5.3.6) from the perspective of Eq. (5.2.2) will be presented below.

The Triangular Lattice

Next, we turn to the triangular lattice, which has sixfold rotation symmetry and

allows to resolve angular momentum up to l = ±3. We introduce s-wave and

f -wave states as on-site orbital degree of freedom and define the corresponding

electron (annihilation) operator as

ϕk =

sk

fk

 . (5.3.7)
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Symmetry Lattice Square Hexagonal

harmonics (D4h) (D6h)

s λsk A1g A1g

px, py λp1

k , λ
p2

k Eu E1u

dx2−y2 , dxy λd1
k , λ

d2
k B1g, B2g E2g

fx3−3xy2 , fy3−3yx2 λf1

k , λ
f2

k Eu B1u, B2u

Table 5.3.1: Symmetry of angular momentum states. Table summarizing the point group symmetry

properties of angular momentum basis functions on the square and hexagonal lattices with (axial) point groups

D4h and D6h, respectively. These groups are the maximal symmetry groups of a two-dimensional layer. Second

column lists the lattice harmonics with given symmetry. Final two columns lists the symmetry quantum numbers.

As there are two symmetry-distinct f waves, we fix the symmetry by declaring that

f †k creates electrons in a fx3−3xy2 orbital state, see Fig. 5.3.1.

To determine the form of the Hamiltonian hk on the triangular lattice we must

first specify the triangular lattice harmonics. To this end, it is helpful to define the

three lattice vectors ai=1,2,3 as

ai =

cos θi

sin θi

 , θi = (i− 1)
2π

3
. (5.3.8)

The symmetric s-wave harmonic then takes the form λsk =
∑3

i=1 cos ki, where ki =

k · ai. The two lowest order symmetry-distinct f -wave harmonics are given by

λf1

k =
3∑
i=1

sin ki, λf2

k =
1

3
√

3

3∑
i=1

sin(ki − ki+1), (5.3.9)
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where the latter corresponds to next-nearest neighbor coupling (the proportionality

constant is chosen for convenience). The f waves f1 and f2 are identified with

fx3−3xy2 and fy3−3yx2 , respectively. In systems with hexagonal symmetry both the p

waves (λ
p+

k , λ
p−
k ) and the d waves (λ

d+

k , λ
d−
k ) are degenerate, i.e., they form partners

of a two-dimensional representation. Expressed in the chiral basis p± = px ± ipy

and d± = dx2−y2 ± idxy, the triangular lattice p- and d-waves harmonics take the

form

λ
p+

k =
3∑
i=1

ωi−1 sin ki, λ
d+

k =
3∑
i=1

ω1−i cos ki, (5.3.10)

with ω = e2πi/3 and λ−k = (λ+
k )∗. Note that the px,y waves (λp1

k , λ
p2

k ) are simply

obtained via the relation λ
p±
k = λp1

k ± iλp2

k , and similarly for the d waves.

Given the triangular lattice harmonics and their symmetry properties, we di-

rectly obtain the triangular lattice analog of Eq. (5.3.6) given by

hk = εkτz + ∆1λ
f1

k τy −∆2λ
f2

k τx. (5.3.11)

Here we have defined the difference of on-site energies εs − εf as 3t − δ and εk =

3t−δ−tλsk, where t denotes ordinary nearest neighbor hopping. The invariance of hk

under C6 rotations of follows directly from the symmetry of the f -waves couplings.

This may be seen, for instance, from Fig. 5.3.1. Since the f -wave harmonics are

odd functions of k, the second term in Eq. (5.3.11) is invariant under T , whereas

the third term breaks both T and M . A schematic representation of the triangular

lattice model of (5.3.11), in particular the inter-orbital hoppings described by ∆1,2,

is shown in Fig. 5.3.3 (A). For nonzero (δ,∆1,∆2) the spectrum of hk has a full
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energy gap and the two non-degenerate bands are Chern bands with C = ±3 when

4t > δ > 0. A plot of the energy bands in the inverted regime, δ = 0.5t, is shown

in Fig. 5.3.3 (B). Note that the gap is proportional to δ3/2. Below, in Sec. 5.3.1,

we discuss the low-energy limit of the transition as function of δ in more detail.

In addition to the model with C = ±3 bands, it is straightforward to construct

a triangular lattice model with C = ±2 bands. This is achieved by considering

s-orbital and d-orbital states as local degrees of freedom. Since the two d-wave

states (dx2−y2 , dxy) are degenerate, both should be included a priori. Consider the

following model describing the coupling of s and d states, where dk1,2 annihilate

electrons with dx2−y2,xy-orbital symmetry:

H =
∑

k

εk(s†ksk − d†kαdkα) + Ω
∑

k

d†k−dk−

+
∑

k

∆(λ
d+

k s†kdk− + λ
d−
k s†kdk+) + H.c. (5.3.12)

Once more we have defined εk = 3 − λsk + δ and the operators dk± = dk1 ± idk2

correspond to the chiral basis of the d-wave states; a sum over α = 1, 2 is implied.

Observe that the term proportional to ∆, which couples the s- and d-states, is fully

invariant under rotations. Furthermore, it is invariant under T and M . The second

term, on the other hand, which is proportional to Ω and energetically splits chiral

d-waves, breaks T and M symmetry. We may choose this energy scale to be positive

and very large, i.e., Ω � 1, and project out the dk− states to obtain an effective

model for the s and d+ states. Note that projecting out the dk− states is consistent
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M
<latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

K
<latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit><latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit><latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit><latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit>

M
<latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit>

(A)
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Figure 5.3.3: Triangular lattice model. Panel (A) shows two-orbital triangular lattice model introduced in

Eq. (5.3.11), with inter-orbital nearest neighbor hopping (∆1) and next-nearest neighbor hopping (∆2). In case of

the triangular lattice, the onsite orbitals have s- and f -wave symmetry, and the real space structure of the inter-

orbital hopping, described by the lattice harmonics λf1k and λf1k , is schematically shown on the right. (B) Spectrum

of the triangular lattice model in the inverted regime, i.e., δ = 0.5t > 0, for the parameters (∆1,∆2) = (1.5t, 1.5t).

In inset shows the Brillouin zone path.
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with C6 symmetry and broken T and M symmetry. The reduced two-band model

can then be expressed in the form of (5.3.1) with hk given by

hk = εkτz + ∆λ
d−
k τ+ + ∆∗λ

d+

k τ−, (5.3.13)

where τ± ≡ (τx ± iτy)/2. This Hamiltonian describes a transition from a trivial

insulator to a Chern insulator with C = ±2 on the triangular lattice. Note that,

contrary to Eq. (5.3.11) or (5.3.6), there is only one parameter ∆ describing the

coupling of s- and d-states, which is due to C6 symmetry.

Clearly, by simply making the replacement d→ p in Eq. (5.3.12) this construc-

tion directly applies to states with p-wave symmetry, in which case one obtains a

C = ±1 Chern insulator model. Furthermore, the p-wave model is easily general-

ized to the square lattice using the square lattice harmonics [203], leading to the

spinless (and lattice-regularized) Bernevig-Hughes-Zhang (BHZ) model [3].

The Honeycomb Lattice

Up to this point, we have considered onsite orbital degrees of freedom with nonzero

angular momentum. This might suggest that the models introduced here require

higher angular momentum atomic-like states (see Fig. 5.3.1) at sites of the crystal

lattice. In fact, our construction is more general, and also applies when effective

higher angular momentum states arise as a result of the structure of the unit cell.

More specifically, in crystal lattices with a nontrivial unit cell, i.e., a unit cell

containing multiple atoms which map to each other under symmetry operations,
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one can form symmetrized states within the unit cell. These symmetrized states

transform nontrivially under the symmetry group, in a way that is equivalent to

nonzero angular momentum states. Therefore, the orbital states shown in Fig. 5.3.1

should be understood in a more general sense as states of a specific symmetry type,

rather than atomic orbitals.

To illustrate this with an example, we now consider a simple honeycomb lattice

model for spinless electrons. The honeycomb lattice, which has a triangular Bravais

lattice, consists of two (triangular) sublattices, the A and B sublattice, and we

define the corresponding electron operators as ak and bk. As before, we collect

these in a spinor

ϕk =

ak

bk

 . (5.3.14)

The Hamiltonian H is defined as H =
∑

k ϕ
†
khkϕk with hk given by

hk = (tφk − t′φ′k)τ+ + (tφ∗k − t′φ′∗k )τ− + tHλ
f1

k τz. (5.3.15)

Here φk is a honeycomb lattice harmonic describing nearest neighbor hopping and is

defined as φk =
∑

i e
ik·di , where di=1,2,3 are the three nearest neighbor bond vectors

di=1,2,3 = (sin θi, cos θi)
T/
√

3. [The angles θi=1,2,3 are the same as in Eq. (5.3.8).]

Furthermore, the honeycomb lattice harmonic φ′k =
∑

i e
−2ik·di describes third near-

est neighbor hopping across a hexagon, and the final term proportional to tH is the

Haldane term [35], with λf1

k defined in Eq. (5.3.9). The three hoppings are shown

in Fig. 5.3.4 (B), where arrows indicate T -breaking imaginary hopping.
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200 400 600

-4

-2

0

2

4

En
er

gy
 (t

)

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

K
<latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit><latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit><latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit><latexit sha1_base64="xfwB6XV48og0g7RSbRcElk0Rp/4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdCO4qWAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9SxJYl</latexit>

M
<latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit><latexit sha1_base64="2nVroxrkt6ieAdBTICT5edGNYT4=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWApuCpJEXRZdONGqGAf0MQwmUzaoZNJmJkIJcSNv+LGhSJu/Qt3/o3TNgttPTBwOOdc7twTpIxKZdvfRmVldW19o7ppbm3v7O5Z+wddmWQCkw5OWCL6AZKEUU46iipG+qkgKA4Y6QXjq6nfeyBC0oTfqUlKvBgNOY0oRkpLvnVUd5lOh+g+j/xm4eduEMFxYd74Vs1u2DPAZeKUpAZKtH3ryw0TnMWEK8yQlAPHTpWXI6EoZqQw3UySFOExGpKBphzFRHr57IIC1rUSwigR+nEFZ+rviRzFUk7iQCdjpEZy0ZuK/3mDTEUXXk55minC8XxRlDGoEjitA4ZUEKzYRBOEBdV/hXiEBMJKl2bqEpzFk5dJt9lw7IZze1ZrXZZ1VMExOAGnwAHnoAWuQRt0AAaP4Bm8gjfjyXgx3o2PebRilDOH4A+Mzx9VzJYn</latexit>

�
<latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit><latexit sha1_base64="RBSw9Qh1JZUQMTNrbAEqvQ0psO0=">AAACBnicbVDLSgMxFM3UV62vUZciBEvBVZkpgi6LLnRZwT6gHYc7aaYNTWaGJCOUoSs3/oobF4q49Rvc+Tem7Sy09UDgcM65Se4JEs6Udpxvq7Cyura+UdwsbW3v7O7Z+wctFaeS0CaJeSw7ASjKWUSbmmlOO4mkIAJO28Hoauq3H6hULI7u9DihnoBBxEJGQBvJt48rPW7SfbjPQr828bNeEOLRpNS7BiHAt8tO1ZkBLxM3J2WUo+HbX71+TFJBI004KNV1nUR7GUjNCKfm2lTRBMgIBrRraASCKi+brTHBFaP0cRhLcyKNZ+rviQyEUmMRmKQAPVSL3lT8z+umOrzwMhYlqaYRmT8UphzrGE87wX0mKdF8bAgQycxfMRmCBKJNcyVTgru48jJp1aquU3Vvz8r1y7yOIjpCJ+gUuegc1dENaqAmIugRPaNX9GY9WS/Wu/UxjxasfOYQ/YH1+QMxZphL</latexit>

(A)
<latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit><latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit><latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit><latexit sha1_base64="4LULjoDuROsrNApyX1ZlMg79xBE=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKoMeoF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc9VrJuFKPryVmvVPar/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJ87wa+NXg/qJcu8njKMAxnEAFAriEGtxBHRpAQMAzvMKbp70X7937mLeuePnMEfyB9/kDo9qPog==</latexit>
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Figure 5.3.4: Honeycomb lattice model. (A) Spectrum of the honeycomb lattice model defined in Eq. (5.3.15)

for hopping parameters (t′, tH) = (1.2t, 1.2t); the inset shows the Brioullin zone path. (B) The honeycomb lattice

model is defined by three hopping parameters t, t′, and tH . Here, t′ describes hopping across the hexagon, which

is taken to have negative sign in (5.3.15), and tH corresponds to the Haldane term and describes T -breaking

next-nearest neighbor hopping.

To see how Eqs. (5.3.14) and (5.3.15) give rise to states which have the symmetry

of higher angular momentum orbitals consider the Hamiltonian at k = 0. The

Hamiltonian takes the form hk=0 = (t − t′)τx, which implies that the eigenstates

are the even and odd linear combinations ak=0 ± bk=0. Clearly, the odd linear

combination is odd under all symmetries of the honeycomb lattice which exchange

the sublattices, and therefore the eigenstates at k = 0 transform as s and f waves.

Now, if we redefine t′ = t−δ, then δ parametrizes a band inversion transition of two

bands with relative angular momentum l = 3 at k = 0. As a result, Eq. (5.3.15) falls

in the class of models of which the low-energy description is captures by Eq. (5.2.2).

It is easy to recognize that the Hamiltonian of Eq. (5.3.15) can be viewed as a

simple generalization of the Haldane model introduced in Ref. [35]. In the context
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of the Haldane model, the band inversion transition described by Eq. (5.3.15) can

be understood as follows. First, we take t′ = 0 but choose tH nonzero; this is the

Haldane model and describes a Chern insulator with C = ±1 bands. Now we turn

on and increase t′ (which we take positive). As long as the gap stays open the

ground state is a Chern insulator with C = ±1 bands. At t′ = t the gap closes and

reopens for t′ > t. Since this transition is an angular momentum l = ±3 transition,

the Chern numbers must have changed by ±3 and indeed we find the resulting

bands to have Chern number C = ∓2. (Note that the sign of C is determined by

the sign of tH .) As a result, neither side of the transition corresponds to the trivial

insulator. A plot of the bands for t′ > t is shown in Fig. 5.3.4 (A). Note that a

large tH leads to a large separation of bands at K, which can be viewed as a large

mass for the graphene Dirac points.

Low-energy Limit

In the models presented above, in particular the square and triangular lattice mod-

els, we have made use only of the lowest order lattice harmonics, i.e., we included

the nearest (or at most next-nearest) neighbor couplings. As our considerations

have shown, for the purpose of constructing models with a low-energy description

given by Eqs. (5.2.2) and (5.2.3) this is sufficient. In general, one may include

higher order lattice harmonics of the same symmetry type, without affecting the

essential physics described by the model.
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We now turn to a more detailed analysis of Eqs. (5.3.6) and (5.3.11) from the

viewpoint of higher angular momentum band inversion transitions. We begin by

expanding the coupling terms of the former [which should be identified with ∆k of

Eq. (5.2.3)] to lowest order in k, and find for m = 2, 3

∆k ∝ (∆1 −∆2)km+ + (∆1 + ∆2)km− , (5.3.16)

where m = 2 and m = 3 correspond to Eqs. (5.3.6) and (5.3.11), respectively. The

fact that both km+ and km− appear is due to discrete crystal symmetry; the form of

Eq. (5.2.3) is only recovered at a fine-tuned point when ∆1 = ∆2. The dominant

term is determined by the relative magnitude of |∆1 +∆2| and |∆1−∆2|, which also

determines the Chern number in the inverted regime. By changing one of the two

parameters ∆1,2 while keeping the other fixed, the system undergoes a transition

from a Chern number C = ±m phase to a Chern number C = ∓m phase. This

transition occurs via a mass inversion at 2m Dirac points located on the electron-

hole Fermi surface defined by kF (see Sec. 5.2). Note that this is consistent with

the fact that in a Cn-symmetric system the Chern number can only be determined

from the rotation eigenvalues mod n [185]; here we have 2m = n for m = 2, 3 and

n = 4, 6.

Now, let us address the question whether (5.3.6) and (5.3.11) represent the most

general form a Hamiltonian consistent with C4 or C6 rotation symmetry. That

is to say, we ask whether there might be additional terms which can be added

to (5.3.6) and (5.3.11) while preserving its generic structure. In the case of C4
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symmetry, we can reconsider Eq. (5.3.5) and observe that in general ∆1 and ∆2 can

be complex. This more general Hamiltonian is still symmetric under C4 rotations

and translates into an additional term for the lattice model of Eq. (5.3.6) given

by ∆′1λ
d1
k τx + ∆′2λ

d2
k τy. Expanding this full C4-symmetric Hamiltonian in small

momenta k one finds

∆k ∝ ∆̃+k
2
+ + ∆̃−k

2
−, (5.3.17)

with ∆̃± given by

∆̃± = ∆′1 ±∆′2 − i(∆1 ∓∆2). (5.3.18)

From this we conclude that a full account of the symmetry-allowed couplings leads

to a low-energy Hamiltonian of the form Eqs. (5.2.2) and (5.2.3) with ∆k given by

(5.3.17) in terms of ∆̃±. Only the magnitudes |∆̃±| are important for the topological

classification in the inverted regime (δ > 0). Clearly, this conclusion holds equally

for the case m = 3 and C6 symmetry; in particular, Eq. (5.3.18) is still valid.

5.3.2 Spin Angular Momentum Models

The two-band models constructed in the previous subsection all rely on on-site or-

bital states with integral angular momentum. This property is not strictly required

by Eq. (5.2.7), since it only fixes the relative angular momentum. Therefore, a

different approach to engineering a band inversion with relative angular momen-

tum l relies on exploiting the spin degree of freedom. For instance, two states with

spin quantum number jz = ±l/2 with odd l have relative angular momentum l.
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Similarly, by considering states with general spin quantum numbers l1/2 and l2/2

and engineering couplings between such states, it becomes possible to realize band

inversions with angular momentum (l1 − l2)/2, where l1,2 are both odd. In this

subsection we follow this approach.

In the presence of a spin degree of freedom a minimal model describing a band

inversion must have four bands. We therefore begin by considering a triangular

lattice model with two spin jz = ±3
2

Kramers pairs. We introduce the electron

operators ck⇑,⇓ for each Kramers pair, where ⇑,⇓≡ ±3
2
, and collect these in a

vector ck defined as

ck =

ck⇑α
ck⇓α

 . (5.3.19)

Here α = 1, 2 is a flavor index which labels the two pairs. The Hamiltonian is then

defined as H =
∑

k c
†
khkck with four-band matrix hk. To describe the couplings

between spin states we introduce a set of spin Pauli matrices σx,y,z, where σz = ±1

corresponds to ⇑,⇓; we use the Pauli matrices τx,y,z to describe couplings in flavor

space.

The form of the Hamiltonian hk can be determined using the same symmetry

prescription as before. The symmetry of the spin matrices σx,y,z follows from the

transformation properties of the jz = ±3
2

spin states, which are different from the

transformation properties of a more familiar jz = ±1
2

doublet. In particular, the

spin matrices σx and σy do not transform as the x, y-components of an S = 1

angular momentum (which transform as px,y waves) but instead transform as f
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waves. This implies that a rotationally symmetric coupling of the spin states has f -

wave symmetry. We again take εk = 3−λsk−δ and find that a minimal Hamiltonian

with C6 symmetry but broken T and M symmetry takes the form

hk = εkτz + bzσz + ∆1λ
f1

k τxσx + ∆2λ
f2

k τxσy. (5.3.20)

The first term describes the dispersion εk and energy difference δ of two spin-

degenerate bands. Here, we are interested the regime where these bands remain

uninverted and therefore set δ < 0. The second term describes a Zeeman splitting

of the jz = ±3
2

Kramers pair states in each band, and as such it breaks T , vertical

reflections, and twofold rotations about in-plane axes; the Zeeman splitting pre-

serves C6. For Eq. (5.3.20) to describe a band inversion with angular momentum

l = ±3, we consider the case |bz| > δ, which corresponds to an inversion of a jz = 3
2

and jz = −3
2

band with different flavor index. The final two terms then describe

an f -wave coupling between the spin species, which is off-diagonal in flavor space.

This coupling gaps out the inverted bands and realizes a Chern insulating phase

in the way described by Eq. (5.2.2). We note here that the f -wave coupling of

Eq. (5.3.20) does not break T and can thus viewed as a form of spin-orbit coupling;

we will return to this observation in Sec. 5.5. This remains true when considering a

slightly more general coupling of the form (∆1λ
f1

k + ∆2λ
f2

k )τxσ+ + h.c., where ∆1,2

are complex. The latter form should be viewed in the context of the discussion

following Eqs. (5.3.17) and (5.3.18).

Next, consider the case of two Kramers pairs with jz = ±3
2

and jz = ±1
2
,
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respectively. Adopting the notation ↑, ↓≡ ±1
2

for the two jz = ±1
2

states, we can

collect the electron operators in a vector ck given by

ck = (ck⇑, ck↑, ck↓, ck⇓)
T , (5.3.21)

which has the structure of a j = 3
2

quartet. Since the particle-hole pairs c†k⇑ck↓ and

c†k⇓ck↑ have angular momentum +2 and −2, respectively, we can seek to engineer

a band inversion between the corresponding bands and couple these with angular

momentum l = ±2 lattice harmonics. The minimal Hamiltonian which achieves

this has a structure similar to Eq. (5.3.20) and takes the form

hk = εkσzτz + bzσz + ∆(λ
d+

k σ− + λ
d−
k σ+). (5.3.22)

Here τz = ±1 still describes the two Kramers pairs but the basis is defined by

Eq. (5.3.21). As in Eq. (5.3.20), the first two terms are responsible for the band

inversion and the final two terms describe a d wave pairing of the inverted bands,

which is responsible for the energy gap. Recall that the d waves are degenerate on

the triangular lattice, leading to a single coupling parameter ∆. Due to the d-wave

nature of the coupling, the ground state of (5.3.22) realizes a Chern insulator with

C = ±2. A model related to Eq. (5.3.22) was considered in Ref. [193].

5.4 Interactions and Excitonic Pairing

In this section we turn to a more thorough study of the Chern insulator models

introduced in the previous section. In particular, we address the effect of elec-
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tronic correlations on the nature of the band inversion transition. As explained

in Sec. 5.2, the Hamiltonian of Eq. (5.2.2) describes a band inversion transition of

non-interacting fermions. Similarly, the lattice models introduced in the previous

section are free fermion models. To see how interactions can affect the nature of

the band inversion, consider the critical point defined by δ = 0 where the two bands

touch at k = 0. First note that symmetry protects the quadratic dispersion of

the bands at the touching point, which implies that the density of states does not

vanish. This should be contrasted with a Dirac fermion transition, characterized

by linear dispersion at the touching point, for which the density of states vanishes.

Due to the nonzero density of states it is natural to expect that interactions give

rise to correlated states with an energy gap.

Two different possibilities for correlated states can be distinguished. The first

is the formation of an excitonic insulator defined by the condensation of (conduc-

tion band) electron and (valence band) hole bound states. The condensation of

electron-hole excitons breaks rotational symmetry and is therefore associated with

a spontaneously broken (discrete) symmetry. The second possibility is the forma-

tion of a correlated liquid of electrons and holes which does not break symmetries

but instead has fractional quantum Hall topological order [194, 204]. This intrigu-

ing second scenario has motivated a previous study [194], in which we proposed

and analyzed a wave function description for such correlated liquid of electrons and

holes. In this work we focus on the first scenario and study the excitonic insulator
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state in the vicinity of the band inversion. More precisely, we consider the mean

field theory of the excitonic insulator.

We have argued in Sec. 5.2 that the description of the higher angular momentum

band inversions is formally similar to the BCS theory for (higher angular momen-

tum) pairing states of fermions. In case of the former, however, there is no notion of

a broken symmetry in the absence of interactions. The interaction-driven excitonic

insulator, on the other hand, does break a symmetry and its mean field theory (at

low-energies) is an analog of BCS theory for s-wave pairing. As a result, the forma-

tion of excitons can be referred to as excitonic pairing of electrons and holes. As we

will demonstrate, the development of a mean field theory for excitonic pairing, in

close analogy with BCS theory, gives access to information about the structure of

the ground state in the vicinity of the band inversion transition. Most importantly,

this will lead us to the conclusion that the ground state in the band inverted regime

can be viewed as a multicomponent C = 1 quantum Hall liquid of electrons and

holes.

It is worth pointing out that the present case of quadratically crossing bands

is different from previously studied quadratic band crossing models [186, 190–192].

In the latter, the degeneracy at the touching point is protected by point group and

T symmetry. In contrast, in the present case the touching point is not symmetry-

protected, but instead defines the critical point of the band inversion transition

parametrized by δ; δ does not reflect a broken symmetry. A band inversion of this
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Figure 5.4.1: Dirac points at the topological phase transition. For the case m = 3 the transition from

the topological Chern insulating phase to the excitonic insulator phase is marked by three Dirac points, as shown

schematically on the left. This transition is described by Eq. 5.4.1 and occurs when |∆0| = |∆m=3|(2δ)3/2. The

Dirac points are located on a circle with radius kF and are related by threefold rotation symmetry, as shown on

the right. Importantly, the angle at which the Dirac points are located is determined by the phase of ∆0.

kind was considered in Ref. [193], which recognized the importance of interactions

when symmetry protects the quadratic band dispersion and studied the implications

for the topological transition.

5.4.1 Excitonic Insulator Mean Field Theory

General Analysis of the Continuum Model

To begin, consider the low-energy description of the square and triangular lattice

models of Eqs. (5.3.6) and (5.3.11). In the analysis that follows we particularize to

these models for illustrative purposes, without loss of generality. Consider further-

more the special case ∆1 = ∆2 ≡ ∆; according to Eq. (5.3.16), for small momenta k
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this implies ∆k ∼ ∆m(kx− iky)m with m = 2, 3. Based on Eq. (5.3.18), we promote

∆m to a complex number with arbitrary phase. In addition, in the small momentum

limit one has εk ' k2/2 − δ. As discussed, the form of ∆k (i.e., an eigenstate of

Lz with angular momentum l = −m) is determined by the rotational symmetry of

the system. Importantly, the formation of excitons, i.e., excitonic pairing, alters the

form of ∆k and breaks rotational symmetry. Specifically, in a mean field description

of excitonic pairing ∆k becomes

∆k = ∆0 + ∆m(kx − iky)m, (5.4.1)

where m = 2, 3 and ∆0 represents the formation of excitons. We observe that

∆0 is an angular momentum l = 0 coupling of conduction and valence band, and

since (5.4.1) is a superposition of terms with different angular momentum, rota-

tional symmetry is broken. In the low-energy continuum limit the l = 0 angular

momentum term breaks the emergent continuous rotation symmetry and lowers the

symmetry to Zm. In particular, ∆0 transforms as ∆0 → e−imθ∆0 under rotations by

an angle θ. This establishes a link between the phase of ∆0 and rotation symmetry

breaking, which is analogous to the link between the superconducting phase and

U(1) charge conjugation.

On the lattice, in the case m = 2 the fourfold rotation C4 is reduced to C2; in

the case m = 3 the rotational symmetry is lowered from C6 to C3. In both cases,

m = 2 and m = 3, the form of (5.4.1) can be derived from a lattice model mean

field Hamiltonian given by hk → hk + ∆0τ+ + ∆∗0τ−.
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To examine the implications of (5.4.1), in particular the excitonic term, it is

useful to invoke the connection to the problem of pairing states. In the context

of pairing states, ∆0 can be interpreted as an s-wave pairing. Assuming one is in

the band inverted regime, this implies a transition from a Chern insulating phase

to a trivial insulator phase as function of the strength of ∆0. This follows from

the fact that s-wave pairing is topologically trivial. The transition occurs when

|∆0| = |∆m|kmF = |∆m|(2δ)m/2, where kF is a momentum defined by the condition

εk = 0 (see Sec. 5.2). At the transition the system is gapless, with three (m = 3)

or two (m = 2) Dirac points located on a circle in momentum space with radius

kF . Thus, the transition is marked by three (or two, in the case of m = 2) Dirac

fermion mass inversions, which is consistent with the total change in the Chern

number. This is shown schematically in Fig. 5.4.1 for the case m = 3. Note that

the location of the Dirac points depends on the phase of ∆0: assuming ∆0 = |∆0|eiθ0

and ∆m real but negative, the Dirac points are located at angles θ0/m + j2π/m

with j = 0, 1, 2.

Mean Field Phase Diagram

Having discussed the qualitative features of the excitonic mean field theory, we now

turn to a more quantitative analysis. To this end, we take the triangular lattice

model of Eq. (5.3.11) (the analysis is similar for the m = 2 square lattice model), in

which we set ∆1 = ∆2 ≡ ∆m=3, and add an onsite Hubbard repulsion of the form
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HU = U
∑

j njsnjf , where ns,f are the density operators of the s and f orbitals and

the sum is over sites. A similar mean field theory for a many-body band inversion of

spinful electrons was previously considered for a C = ±2 transition on the triangular

lattice [193].

In momentum space the Hubbard repulsion takes the form

HU =
U

N

∑
q

∑
kk′

s†k+qskf
†
k′fk′+q, (5.4.2)

where N is the system size (i.e., total number of sites). By performing a mean field

decoupling of (5.4.2) in the excitonic channel (see Appendix 5.B for details) one

obtains a self-consistency condition for the excitonic order parameter ∆0 given by

∆0 = − U

2N

∑
k

〈ϕ†kτxϕk〉. (5.4.3)

Here ϕk are the fermion operators defined in Eq. (5.3.7). At zero temperature

Eq. (5.4.3) defines the stationary point of the free energy density

F [∆0] = −
∑

k

Ek +
N

U
∆2

0, Ek =
√
ε2

k + |Σk|2, (5.4.4)

where Σk is defined as Σk = ∆0 + ∆k with ∆k = ∆3(iλf1

k + λf2

k ).

Solving these equations at zero temperature, we obtain a phase diagram of

excitonic pairing as function of the interaction strength U and the band inversion

parameter δ. The results are presented in Fig. 5.4.2, which we now discuss. We

first focus on the case δ = 0. In this case, the non-interacting system is right at

the topological transition and is gapless, with two quadratically dispersing bands
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Figure 5.4.2: Excitonic mean-field theory. Panel (A) shows the dependence of ∆0 on U at the band inversion

transition defined by δ = 0; since ∆0 ∼ exp(−1/αU), we plot ln ∆0 as function of −1/U . Panel (B) shows the U–δ

phase diagram obtained from the mean field theory of excitonic pairing at zero temperature. In the inverted regime

(δ > 0) the blue curve shows the phase boundary separating the rotation symmetric topological phase from the

rotation symmetry broken phase with nonzero excitonic pairing. The critical interaction strength Uc, which defines

this phase boundary, is obtained from (5.4.6). The dashed curve indicates the presence of a second transition in

the vicinity of the symmetry breaking transition, at U ′c > Uc, which separates the symmetry broken topological

phase from the trivial excitonic insulator. In all calculations the overall energy scale is fixed by setting t = 1 and

∆3 is set to ∆3 = 1.0.
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touching at k = 0. As a consequence of the non-vanishing density of states at the

gapless point, the susceptibility is divergent and one expects a rotation symmetry

broken state with nonzero ∆0 at infinitesimal U . More precisely, one expects ∆0 ∼

exp(−1/αU), where α is a constant reflecting the density of states [186]. This is

confirmed in Fig. 5.4.2 (A), where we show ln ∆0 as function of −1/U for the case

δ = 0. (In all calculations we choose ∆3 = 0.5t.)

We then proceed to the case δ 6= 0. For nonzero δ, when the non-interacting

system given by hk in Eq. (5.3.11) is gapped, one expects a transition to the rotation

symmetry broken state at finite interaction strength Uc. The critical interaction

strength as function of δ defines the phase boundary which separates the rotation

symmetric phase from the rotation symmetry broken phase with nonzero excitonic

pairing. Since the inverted regime (δ > 0) and the uninverted regime (δ < 0) have

different dispersion, as is clear from Fig. 5.2.1 (A) and (C), the critical strength

Uc is expected to be smaller in the inverted regime. We find that the transition

to the symmetry broken phase is a second order transition in mean field theory,

which implies that a closed form expression for Uc can be obtained by expanding

F of Eq. (5.B.9) in powers of ∆0. Such Landau-type expansion can only have

even powers of ∆0 and is valid in the vicinity of the transition when ∆0 is small;

specifically, one has up to fourth order

F [∆0]/N =
(
U−1 − c2

)
∆2

0 + c4∆4
0. (5.4.5)

Then, Uc is defined by the condition that the coefficient of the quadratic term
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vanishes and we find

Uc =
1

c2

, c2 =
1

2N

∑
k

[
1

Ek

− (Re∆k)2

E3
k

]
, (5.4.6)

where Ek defined in Eq. (5.B.9) is evaluated at ∆0 = 0. Figure 5.4.2 (B) shows the

U–δ phase diagram obtained by evaluating Uc as function of δ. As expected, Uc is

smaller in the inverted regime (blue curve) compared to the uninverted regime (red

curve).

As discussed above in Sec. 5.4.1, in the inverted regime defined by δ > 0 one

expects a second transition as the interaction strength increases. This second tran-

sition is a topological phase transition described by three Dirac fermions and occurs

when |∆0| ∼ |∆k=kF |. One may thus identify a second U ′c associated with the topo-

logical phase transition and it is then natural to ask how U ′c differs from Uc. To get

an understanding, we employ the Landau theory of Eq. (5.4.5) and solve for ∆0.

Minimization directly yields |∆0| =
√

(c2 − U−1)/2c4. Within this approach the

value of U ′c is determined by setting this result equal to the value of ∆0 at which

which the topological transition occurs. Defining the latter as ∆̃0, we find

U ′c − Uc
Uc

=
1

(2c4Uc∆̃2
0)−1 − 1

. (5.4.7)

We have verified that this estimate based on (5.4.5) is in good agreement with

the numerically exact result. Since (2c4Uc∆̃
2
0)−1 � 1, Eq. (5.4.7) implies that the

transitions, i.e., the symmetry breaking transition and the topological transition,

are in close proximity. This is indicated by the dashed line in Fig. 5.4.2 (B).
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To understand why (U ′c − Uc)/Uc is small, it is helpful to consider the continuum

description discussed in Sec. 5.4.1, which is valid for small δ. In this case one has

∆̃2
0 ∼ δ3 and c4 ∼ δ−2, from which one finds (U ′c − Uc)/Uc ∼ δ/ ln δ. Note that in

case of the square lattice one finds (U ′c − Uc)/Uc ∼ 1/ ln δ.

The close proximity of the two transitions is an interesting aspect of higher

angular momentum band inversions. The fate of these two transitions in an inter-

acting theory beyond mean field will be an interesting question to address. Such

theory should be formulated in terms of three flavors of Dirac fermions coupled to

a fluctuating phase of the excitonic order parameter ∆0, as suggested by Fig. 5.4.1.

5.4.2 Structure of the Ground State

Having discussed the quantitative aspects of the excitonic pairing mean field the-

ory, we return to a more conceptual analysis, which we develop within the low-

energy continuum model. More specifically, we proceed to examine the structure

of the ground state as defined in Eq. (5.2.4). As discussed in Sec. 5.2 (see also Ap-

pendix 5.A), the continuum model ground state is specified in terms of the function

gk and we demonstrate below that the excitonic pairing term ∆0 plays a key role in

the interpretation of its Fourier transform g(r). This leads to the conclusion that a

theory for the band inversion transition which includes the excitonic pairing term

gives access to the structure of the electron-hole ground state.

To show this, it is useful to first consider the case ∆0 = 0, i.e., when rotation
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symmetry is not broken, and obtain g(r). We note that the form of gk, and thus

g(r), changes across the band inversion transition and thus depends on δ. We

focus on two cases: the critical point of the transition when δ = 0, and the Chern

insulating phase when δ > 0. Consider the former case first. Right at the transition

and for small momentum k→ 0 one finds that gk ∝ k2/∆(kx − iky)m. Taking the

Fourier transform to obtain g(r) one obtains

g(r) ∝ 1/zm, (5.4.8)

where z = x + iy. Note that since gk is considered in the small momentum limit,

(5.4.8) describes the long-distance behavior of g(r). In this limit g(r) falls off as a

power law as function of the distance between the electron and hole forming a pair,

and this regard the interpretation of (5.4.8) as describing the pairing of electrons

and holes with angular momentum l = −m makes sense. Furthermore, in Ref. [194]

wave argued that many-body Slater-determinant of (5.4.8), defined by (5.2.4), can

be related to lowest Landau level wavefunctions at filling factor ν = 1/m. This

argument was based on a comparison of the number of zeros of the many-body

wave function, viewed as a function of one of its variables.

Consider next the band-inverted regime δ > 0 (still taking ∆0 = 0). In this case

the small momentum limit of gk is given by gk ∝ δ/∆∗(kx + iky)
m, which implies

that in the long-distance limit g(r) has the form

g(r) ∝ (z∗)m−1/z. (5.4.9)

As a result, one has that |g| is constant for m = 2 [177] and |g| ∼ |z| for m = 3 at
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long distances. This long-distance behavior of g(r) presents a puzzle, since it is not

immediately clear how to reconcile it with the interpretation of g(r) as describing

the pairing of electrons and holes; the electrons and holes cannot be said to be

bound into a pair in a meaningful sense. In contrast, this is different for the well-

known case of an l = −1 band inversion transition described by a Dirac fermion,

which corresponds to m = 1 in (5.4.9). In the case of the latter, (5.4.9) corresponds

to the “weak-pairing phase” [177] and the many-body Slater determinant of the

electron-hole paired state defines a many-body wavefunction for the C = ±1 Chern

insulator.

To make progress in understanding the higher Chern number phases in the

inverted-regime, we break rotation symmetry by introducing a nonzero ∆0, such

that ∆k is given by (5.4.1). As explained earlier, the amplitude of ∆0 controls a

transition from a Chern insulating phase to a trivial insulator phase, while keeping δ

fixed. As far as the topology of the two phases is concerned, this is same topological

transition as the transition controlled by δ (while keeping ∆0 = 0). The former,

however, is characterized by a critical gapless phase with three linearly dispersing

Dirac points and as a result, the topological transition parametrized by ∆0 is de-

scribed by m simultaneous l = −1 band inversions, consistent with a total angular

momentum l = −m transition. Each of these l = −1 band inversions, which are

described by a Dirac fermion theory, is well understood and has g(r) ∝ 1/z. Con-

sequently, the band inversion via three Dirac points reveals that a higher angular
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momentum band inversion has the generic structure of three l = −1 Dirac fermion

transitions, with three flavors of electron-hole pairing states describing a ν = 1

quantum Hall phase.

This argument can be put on a more precise footing by considering gk for ∆k

given by (5.4.1). In this case one finds

gk ∝
δ

km+ + ∆0/∆m

, (5.4.10)

which has m first order poles at kn (n = 1, . . . ,m) rather than one m-th order

pole at k = 0. Defining k1 = (∆0/∆m)1/m one has kn = ei2π(n−1)/3k1 and (5.4.10)

can be written as a sum over the three poles
∑m

n=1 γn/(k+ − kn), where γn are

the residues. Fourier transforming then gives the expected form of g(r) for three

l = −1 transitions, with additional oscillatory factors originating from the nonzero

momenta kn.

A few comments are in order regarding the significance of rotational symmetry

breaking. As explained, the existence of m Dirac points at three distinct nonzero

momenta requires the breaking of rotation symmetry. When full rotation symmetry

is present it forces the three transitions to all occur at k = 0, which in a sense ob-

scures the topological structure of the transition, as evidenced by (5.4.9). As far as

the topological structure of the transition between the higher Chern number insu-

lating phase and the trivial insulator is concerned, the presence of higher rotational

symmetry is not required. In fact, from the perspective of topology the situation

where the three l = −1 transitions occur at different momenta is more generic.
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A similar reasoning relying on broken rotation symmetry has been presented

by Read and Green in the context of chiral d-wave pairing [177], which may be

compared to our m = 2 case. In the case of chiral d-wave pairing, Read and

Green showed that by studying the transition to a trivial s-wave pairing state—in

contrast to changing the chemical potential—the correct edge excitation spectrum

and vortex states of a chiral d-wave superconductor can be obtained. Since both

the edge and vortex modes are rooted in the topological structure of the phase, this

is another instance where only the more generic transition described by multiple

Dirac fermions (and with broken rotation symmetry) reveals the true nature of the

phase.

5.4.3 m-component C = 1 Quantum Hall States

The previous analysis of band inversions with broken rotation symmetry, in particu-

lar the splitting into multiple l = −1 band inversions, leads to an important insight

regarding the structure of the higher Chern number phase. It can be stated as

follows: Since the transition is described by m flavors of Dirac fermions, the higher

Chern number phase can be viewed as an m-component C = 1 phase, of which each

component is characterized by a quantum Hall wavefunction for electron-hole pairs

at the Dirac point.

It should be emphasized that here we reach this conclusion based on a theory

for the band inversion transition and do not make reference to the notion of a full
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Chern band. This approach is very different from—but may be compared to—an

approach which explicitly addresses the structure of the Chern band by studying its

Wannier state representation [205]. The latter approach clearly requires knowledge

of the full Chern band, as the Wannier state representation is inaccessible within

a (low-energy) continuum model for the band inversion. Using the Wannier state

representation, Ref. [205] showed that a band with Chern number C > 1 can be

mapped to C layers of Landau levels, each of which is equivalent to a C = 1

band. Even though the two approaches are different, we thus see that both point

to a characteristic structural property of higher Chern number bands: they are

intrinsically multi-component in nature, with the number of components given by

the Chern number C.

The Wannier state representation of bands with higher Chern number leads to

a further important observation regarding the action of translational symmetry on

the multi-layer quantum Hall systems [205]. Due to the structure of the Wannier

states, one of the two primitive translations acts as a permutation on the C lay-

ers and thus acts nontrivially on the layer degree of freedom. This was shown to

have rather drastic consequences when lattice dislocations are present. In particu-

lar, dislocations give rise to an intricate interplay between geometry and topology,

resulting in topological degeneracy even for Abelian states.

Within the framework of the continuum model for the band inversion transition,

we can establish a connection to this result by considering the effect of the m-fold
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rotations. As noted earlier, the m-fold rotations give rise to a residual Zm symmetry.

Furthermore, the m-fold rotations permute the m Dirac points and thus permute

the m C = 1 components. As an example, consider m = 3 and let k0,1,2 denote

the location of the three Dirac points at the transition, as shown in Fig. 5.4.1. The

threefold rotation relates these as kn = Cn
3 k0, where n = 0, 1, 2. As explained in

Sec. 5.4.1, the three Dirac point momenta k0,1,2 are determined by the phase of ∆0.

A U(1) vortex in the phase of ∆0 is associated with a 2π/3 rotation and permutes

the Dirac points. This suggests an interesting field theoretic description of the band

inversion transition in terms of an XY variable ∆0 and three Dirac fermions, where

proliferation of vortices in the phase of ∆0 restores rotational symmetry and leaves

the Dirac fermions ill-defined. We leave the systematic development and analysis

of such field theoretic description of higher angular momentum band inversions for

future studies.

5.5 Time-reversal Invariant Generalizations

5.5.1 Transition from Normal to Topological Insulator

Now that we have introduced a class of Chern insulator models based on the notion

of higher angular momentum band inversions, both the theory and the historical

development of topological insulators lead to a natural question: do there exist

time-reversal invariant generalizations of such models? For the orbital models of
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Sec. 5.3.1 the answer is clearly yes, since we may simply introduce a spin degree of

freedom and build a T -invariant Hamiltonian by combining two copies of hk: one

for the up spins and a time-reversed version of hk for the down spins. In particular,

in the spirit of BHZ [3, 206] one can define

Hk =

hk

h∗−k

 . (5.5.1)

This Hamiltonian describes a transition between a trivial insulator and a Chern

insulating phase in each spin sector, where the Chern numbers associated with the

two spin species have opposite sign. This can be viewed as a transition between

a normal insulator and a topological insulator characterized by an integer number

of helical edge modes. The number of helical edge modes is equal to the angular

momentum of the transition.

At low-energies, close to the band inversion transition, the coupling of the

|l = 0,±1
2
〉 and |l = ±m,±1

2
〉 bands is a diagonal matrix ∆k in spin space given

by

∆k = ∆

km±
(−k∓)m

 , (5.5.2)

with m = 2, 3 and k± = kx ± iky. By construction, this implies that the transition

from normal to topological insulator (or vice versa) is special in the sense that right

at the critical point of the transition (i.e., when the bands touch) the bands disperse

quadratically. As in Sec. 5.4, one then expects interaction effects to be important.

In this time-reversal invariant case, the two possibilities for correlated states are
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the excitonic insulator and the fractional topological insulator [44, 154, 207–213].

In particular the fractional topological insulator is an interesting possibility, and

band inversions of the type described by (5.5.1) and (5.5.2) are a promising venue

for their realization.

The Hamiltonian of Eq. (5.5.1) has the property that it commutes with spin

rotations about the z-axis, i.e., [Hk, σz] = 0, which implies that Sz is conserved.

This property, however, is not guaranteed unless it is mandated by appropriate

physical symmetries of the system. For a given symmetry group, the most general

Hamiltonian allowed by symmetry may have spin-orbit coupling terms which violate

Sz conservation. Since such terms are likely to spoil the form of the coupling ∆k at

low energies, and thus potentially destroy the preconditions for interactions to be

important, it is necessary to determine under what conditions the form of (5.5.1)

is enforced by symmetry.

5.5.2 Symmetry Protection

To examine the symmetry protection of the T -invariant band inversion, we consider

the axial point groups of two-dimensional layer groups (as in Sec. 5.3) and determine

the constraints each imposes. Importantly, whereas in Sec. 5.3 we only needed to

consider symmetry groups compatible with nonzero chirality, here we must consider

a more general class of axial symmetry groups. These groups are summarized in

Table 5.5.1, organized by crystal system and the presence of inversion symmetry.
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We start by examining systems with orbital (l) and spin (jz) degrees of freedom

given by (l, jz) = (m,±1
2
), with m = 2, 3, which are simple spinful generalizations

of the models introduced in Sec. 5.3.1. We then consider T -invariant generalizations

of the models introduced in Sec. 5.3.2, which are constructed from two jz = ±3
2

Kramers pairs. We conclude by discussing a generalized Kane-Mele model [42]

based on Sec. 5.3.1.

Systems with (l, jz) = (m,±1
2
) States

Consider the triangular lattice with s and f states (i.e., m = 3). We introduce the

spin degree of freedom by defining

H =
∑

k

Φ†kHkΦk, Φk =

sk↑,↓

fk↑,↓

 , (5.5.3)

such that Hk is matrix in orbital and spin space; σz = ±1 denotes ↑, ↓. A T -

invariant version of Eq. (5.3.11) is given by

Hk = εkτz + ∆1λ
f1

k τy + ∆2λ
f2

k τxσz, (5.5.4)

which is clearly of the form (5.5.1). To determine what symmetries are sufficient to

protect the structure of the Hamiltonian, we begin by examining the hexagonal and

trigonal symmetry groups of Table 5.5.1 with inversion symmetry. In the presence

of both T and inversion symmetry all bands are necessarily twofold degenerate,

imposing a strong constraint on the Hamiltonian.

We first observe that (5.5.4) is invariant under all symmetries of the hexagonal

146



group D6h. In fact, if D6h is imposed (5.5.4) exhausts all symmetry-allowed terms,

which implies that the full group D6h is sufficient to protect the band inversion

transition. The same is true for the trigonal group D3d, which is a subgroup of D6h.

We conclude that both D6h and D3d protect a T -invariant band inversion of spinful

s and f bands.

Next, consider the symmetry groups C6h and S6. These differ from the previous

two groups by the absence of twofold rotations about axes in the plane. As a result

of the lower symmetry, the Hamiltonian takes a more general form given by

Hk = εkτz + (∆1λ
f+

k + ∆∗1λ
f−
k )τy + (∆2λ

f+

k + ∆∗2λ
f−
k )τxσz, (5.5.5)

where now ∆1,2 are complex and we have defined λ
f±
k = λf1

k ± iλf2

k . Since (5.5.5)

still commutes with σz, the Hamiltonian is of the form (5.5.1). The effect the of the

more general coupling can be understood by expanding around the band inversion

transition at k = 0. We find

∆k = (−i∆1 ±∆2)k3
+ + (−i∆∗1 ±∆∗2)k3

−, (5.5.6)

which should be compared to the discussion in Sec. 5.3.1. We see that the additional

couplings only have an effect on the phase and amplitude of the cubic terms and

therefore do not fundamentally alter the structure of the band inversion. As a

result, all symmetry groups which possess an inversion symmetry provide sufficient

protection for a T -invariant band inversion with higher angular momentum.

We then proceed to the point groups listed in Table 5.5.1 which do not have an
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Hexagonal Trigonal Tetragonal

Inversion D6h D3d D4h

C6h S6 C4h

No Inversion D6, C6v, D3h D3, C3v D4, C4v, D2d

C6, C3h C3 C4, S4

Table 5.5.1: Classification of axial point groups. Table summarizing the basic symmetry properties of the

axial point groups. The point groups with an inversion symmetry can protect the structure of the band inversion

given by Eqs. (5.5.1) and (5.5.2). Point groups on the second row differ from the first row by the lack of a twofold

rotation perpendicular to the principal rotation axis; point groups on the fourth row differ from the third row by

the lack of a perpendicular twofold rotation or a vertical mirror plane.

inversion symmetry. Owing to the absence of inversion symmetry, additional spin-

orbit coupling terms can be symmetry-allowed. For instance, in the case of C6v the

following two spin-orbit coupling terms are generically present in the Hamiltonian:

H′k = t1(λp1

k σy − λp2

k σx) + t2τy(λ
d1
k σy − λd2

k σx). (5.5.7)

These terms do not commute with σz and, furthermore, when expanded in small

momenta k the first term describes a linear splitting of the spin species. Such linear

coupling changes the nature of the band inversion, as it causes the density of states

to vanish at the transition. A similar result is obtained for the symmetry groups

D6 and C6, which leads to the conclusion that systems governed by these groups

cannot have symmetry-protected higher angular momentum band inversions.

The point group D3h is similar to D6 and C6v but differs in an essential way:
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instead of a twofold rotation about the principal axis it contains a horizontal re-

flection. Since under the latter reflection (σx, σy, σz)→ (−σx,−σy, σz) the terms of

Eq. (5.5.7) are symmetry-forbidden. We therefore find that D3h imposes sufficient

constraints for the protection of the band inversion. This is not true for the point

group C3h, as its admits the coupling ∆0τx, which changes the nature of the band

inversion transition.

Finally, since the trigonal groups without inversion are all subgroups of symme-

try groups for which protection is lost, these do not protect the T -invariant higher

angular momentum band inversion.

We conclude this part by noting that a similar analysis applies to the square

lattice Hamiltonian of Eq. (5.3.6). Its T -invariant generalization based on (5.5.1)

is given by

Hk = εkτz + ∆1λ
d1
k τy + ∆2λ

d2
k τxσz. (5.5.8)

The form of this Hamiltonian is protected by tetragonal D4h symmetry. Lowering

the symmetry to C4h allows for the additional couplings ∆′2λ
d2
k τy+∆′1λ

d1
k τxσz, which

have an effect similar to that described by Eq. (5.5.6). When inversion symmetry

is lacking, as is the case for symmetry groups D4 and C4v, the additional spin-orbit

coupling term λp1

k σy − λp2

k σx is activated.

149



Systems with jz = ±3
2

Doublets

In Sec. 5.3.2 we introduced models for higher angular momentum inversions of jz =

±3
2

states. To describe such band inversions, it is necessary to consider two jz = ±3
2

Kramers pairs, see Eq. (5.3.19). As a result, a T -invariant generalization can be

obtained by imposing T symmetry on the Hamiltonian defined in Eq. (5.3.20), which

yields

hk = εkτz + τx(∆λ
f+

k σ+ + ∆∗λ
f−
k σ−), (5.5.9)

where ∆ is complex and λ
f±
k = λf1

k ± iλf2

k as before. Close to k = 0 the coupling

between the bands is a matrix in spin space and reads as

∆k =

 ∆k3
±

∆∗k3
∓

 . (5.5.10)

To determine the symmetry protection it is necessary to specify the symmetry

quantum numbers more precisely. Here we first assume the presence of inversion

symmetry and focus on the case where one of Kramers pairs is inversion even and

one is odd. This implies that (5.5.9) is invariant under inversion. More specifically,

(5.5.9) is invariant under all symmetries of D6h and represents the most general

form of the Hamiltonian with this symmetry. Furthermore, lowering the symmetry

to D3d, C6h, or S6 does not give rise to additional terms in the Hamiltonian and a

result, all symmetry groups with inversion symmetry protect the structure of the

T -invariant band inversion.
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Generalized Kane-Mele Model

We conclude this section by discussing the time-reversal invariant generalization of

the honeycomb lattice model defined in Eq. (5.3.15). As discussed, the honeycomb

lattice model can be viewed as the Haldane model with third-nearest neighbor hop-

ping across the hexagon. This immediately suggests that a time-reversal invariant

version is obtained by replacing the Haldane term with the Kane-Mele spin-orbit

coupling term [42]. The Hamiltonian then becomes [see Eq. (5.3.15)]

Hk = (φk − t′φ′k)τ+ + (φ∗k − t′φ′∗k )τ− + tsocλ
f1

k τzσz. (5.5.11)

The structure of this Hamiltonian is symmetry-protected as long as the symmetry

group of the systems is D6h or C6h.
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Appendix

5.A Ground State of Hamiltonian (5.2.2)

The Hamiltonian hk of Eq. (5.2.2) is diagonalized with the help of the unitary

matrix Uk, which contains the eigenvectors as its columns, and one has

U †khkUk =

Ek

−Ek

 , Uk =

−u∗k vk

v∗k uk

 (5.A.1)

where Ek =
√
ε2

k + |∆k|2 is the energy. The matrix Uk must satisfy U †kUk = 1,

which implies |uk|2 + |vk|2 = 1. The ratio of uk and vk is independent of the U(1)

phase degree of freedom associated with the eigenvectors and is given by

vk/uk = −(Ek − ξk)/∆∗k. (5.A.2)

We define normal mode operators γke and γkh corresponding to the energy eigen-

values ±Ek as

γk =

γke

γkh

 = U †ψk. (5.A.3)
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The normal mode operators for the negative energy states are given by

γ†kh = vkc
†
ke + ukc

†
kh. (5.A.4)

The mean-field ground state |GS〉 is given by filling all the negative energy states,

i.e., |GS〉 =
∏

k γ
†
kh |0〉. Substituting Eq. (5.A.4) and using the identity ckhc

†
kh |0〉 =

|0〉, the ground state can be written in the following form

|GS〉 =
∏
k

(uk + vkc
†
keckh) |Ω〉 . (5.A.5)

Here |Ω〉 defines a vacuum state obtained by filling all valence band states: |Ω〉 =∏
k c
†
kh |0〉. Since ckh creates holes in the vacuum defined by |Ω〉, it is natural to

perform a particle-hole transformation on the hole operators given by

ckh → c†−kh, γkh → γ†−kh. (5.A.6)

After particle-hole transformation the normal mode annihilation operators take the

form

γke = vkc
†
−kh − ukcke (5.A.7)

γ−kh = vkc
†
ke + ukc−kh (5.A.8)

and in full analogy with BCS theory one obtains the ground state by determining

the state which is annihilated by all such normal mode operators. A state which

clearly has this property is
∏

k γkeγ−kh |Ω〉 and one thus finds the ground state as

|GS〉 =
∏
k

(uk + vkc
†
kec
†
−kh) |Ω〉 , (5.A.9)

which is precisely (5.A.5) with ckh → c†−kh.
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5.B Excitonic Insulator Mean Field Theory

For the purpose of a mean field analysis it is useful to express interacting Hamilto-

nian HU of Eq. (5.4.2) in a form which can decoupled. To this end we rewrite the

interacting Hamiltonian as

HU = − U

4N

∑
kk′

(ϕ†kτxϕk)(ϕ†k′τxϕk′), (5.B.1)

with ϕk as defined in Eq. (5.3.7). Here N is the system size. To perform the

mean field decoupling of the interaction, we write the action of interacting system

as S = S0 + SU with S0 =
∫ β

0
dτ
∑

k ϕ
†
k(∂τ + hk)ϕk and SU =

∫ β
0
dτHU . The

interacting part of the action is decoupled in terms of the field ∆0 as exp(−SU) =∫
D∆0 exp(−S ′U [∆0]), where S ′U [∆0] is now bilinear in the fermions and given by

S ′U [∆0] =
∫ β

0
dτH ′U [∆0] with

H ′[∆0] = 2∆0

∑
k

ϕ†kτxϕk + 4N∆2
0/U. (5.B.2)

For the subsequent analysis it is convenient to redefine the mean field as 2∆0 → ∆0.

5.B.1 Mean Field Solution

Integrating out the fermions one obtains the free energy as a functional of ∆0; the

saddle-point of this free energy defines the mean field self-consistency equation,

which is given by

δF

δ∆0

= 0 ⇒ ∆0 = − U

2N

∑
k

〈ϕ†kτxϕk〉. (5.B.3)
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The expectation value is defined with respect to the ground state of the mean field

Hamiltonian

hMF
k =

εk Σk

Σ∗k −εk

 , Σk = ∆0 + ∆k, (5.B.4)

where ∆k = ∆3(iλf1

k + λf2

k ). Here we have taken ∆1 = ∆2 in Eq. (5.3.11) and

redefined it as ∆m=3. The energies of the mean field Hamiltonian are given by

±Ek = ±
√
ε2

k + |Σk|2 and the matrix Uk which diagonalizes the mean field Hamil-

tonian is given by

Uk =
1√

2Ek(Ek − εk)

 −Σ∗k εk − Ek

εk − Ek Σk

 . (5.B.5)

Substituting this into the self-consistency condition (5.B.3) one finds

∆0 =
U

2N

∑
k

Re[Σk]

Ek

[f(−Ek)− f(Ek)]. (5.B.6)

where f(ε) = (1 + eβε)−1 is the Fermi function. At zero temperature the self-

consistency condition reduces to ∆0 = U
2N

∑
k Re[Σk]/Ek.

5.B.2 Free Energy

The free energy itself can be directly evaluated and at finite temperature T

F [∆0] = − 2

β

∑
k

ln cosh

(
βEk

2

)
+
N

U
∆2

0, (5.B.7)

where we have ignored the constant contribution −(N/β) ln 4. By taking the deriva-

tive with respect to ∆0 and setting it equal to zero one recovers the saddle-point

equation (5.B.6).
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At zero temperature the free energy takes the simple form

F [∆0] = −
∑

k

Ek +N∆2
0/U. (5.B.8)

5.B.3 Expansion of Free Energy in ∆0

To study the phase transition to the rotation symmetry broken state one may

expand the free energy powers of the order parameter ∆0 to obtain a simple Landau

theory for the transition. At zero temperature, the free energy (5.B.8) can be

expanded as

F [∆0]/N =
(
U−1 − c2

)
∆2

0 + c4∆4
0, (5.B.9)

where the expansion coefficients are given by

c2 =
1

2N

∑
k

(
1

Ek

− (Re∆k)2

E3
k

)
, (5.B.10)

c4 =
1

8N

∑
k

(
1

E3
k

− 6
(Re∆k)2

E5
k

+ 5
(Re∆k)4

E7
k

)
. (5.B.11)

Note that since we are expanding around ∆0 = 0, in these expressions the energy

Ek is evaluated at ∆0, i.e., Ek =
√
ε2

k + |∆k|2.
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Chapter 6

Future Directions

“A prudent question is one-half of wisdom.” Following the wisdom of Francis Ba-

con, we present questions arise from all three parts of this dissertation. Hopefully,

this would serve partially as a guide for future directions of research and partially

a fun read composing some of my wild speculations.

A small plateau is found in quantum point contact experiments to exist at 0.7

e2/h[216, 217]. Its origin is still far from clear, despite many proposed explana-

tions from smeared van Hove singularity[218] to exchange interaction induced spin

fluctuations[219]. It is suggested that this phenomenon could be associated with

a Kondo problem[220] and reflects the existence of an intermediate fixed point.

Then one may wonder if 0.7 anomaly could be analyzed using methods developed

in Chapter 2? Quantum Brownian motion picture is a powerful tool for studying

lower dimension electron transport problems. It recently has found applications in
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electron teleportation problems[221] and localization problems of electrons moving

in quasiperiodic potential[222]. It would be interesting to extend discussions along

this line of research.

G2 is the first of five exceptional Lie group. What most interesting about it is

that it is the automorphic group of the octonions[126]. For octonions, its algebra

even breaks associativity[126]. This is originally seen as problematic when particle

physicists tried to use them to build GUT based on G2 as the non-associativity

is in conflict with quantum mechanics. It would be interesting to ask if this non-

associativity turns out to be related to something interesting in our condensed

matter settings. Another aspect differentiates particle physic/string theory’s view

towards G2 compared to our case is that they are really thinking of G2 as a larger

group that contains SU(3). For them, having SU(3) guarantees that the physics

of quarks can be reproduced[223]. Would this particular structure be useful for

condensed matter physics? Apart from the peculiar mathematics of G2, physically

it would be very useful if a field theoretical description could be developed starting

from our topological superconductor system. In this way, a complete phase diagram

relating the Fibonacci phase and topological superconductor systems can be worked

out and tell us where to look for this exotic phase.

Understanding the role of electron interactions starting with a higher angular

momentum paired gapless state is crucial for the fractional excitonic phase. Our

presented arguments would come short moving away from the long-wavelength limit.
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Therefore, it is desirable to numerically test the effect of turning on some short-

ranged repulsive interactions between same charged particles. Another avenue to

explore is d-wave paired states(m = 2). Are they gapless Fermi liquids or would

develop some topological order under electron interactions? Would our composite

fermion theory with both electrons and holes provide any insight? Also, since our

system is equipped with particle-hole symmetry to begin with, would it have any

connection to the recently proposed particle-hole Pfaffian topological order[169]?
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