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Cortical And Subcortical Mechanisms For Sound Processing

Abstract
The auditory cortex is essential for encoding complex and behaviorally relevant sounds. Many questions
remain concerning whether and how distinct cortical neuronal subtypes shape and encode both simple and
complex sound properties. In chapter 2, we tested how neurons in the auditory cortex encode water-like
sounds perceived as natural by human listeners, but that we could precisely parametrize. The stimuli exhibit
scale-invariant statistics, specifically temporal modulation within spectral bands scaled with the center
frequency of the band. We used chronically implanted tetrodes to record neuronal spiking in rat primary
auditory cortex during exposure to our custom stimuli at different rates and cycle-decay constants. We found
that, although neurons exhibited selectivity for subsets of stimuli with specific statistics, over the population
responses were stable. These results contribute to our understanding of how auditory cortex processes natural
sound statistics. In chapter 3, we review studies examining the role of different cortical inhibitory interneurons
in shaping sound responses in auditory cortex. We identify the findings that support each other and the
mechanisms that remain unexplored. In chapter 4, we tested how direct feedback from auditory cortex to the
inferior colliculus modulated sound responses in the inferior colliculus. We optogenetically activated or
suppressed cortico-collicular feedback while recording neuronal spiking in the mouse inferior colliculus in
response to pure tones and dynamic random chords. We found that feedback modulated sound responses by
reducing sound selectivity by decreasing responsiveness to preferred frequencies and increasing
responsiveness to less preferred frequencies. Furthermore, we tested the effects of perturbing intra-cortical
inhibitory-excitatory networks on sound responses in the inferior colliculus. We optogenetically activated or
suppressed parvalbumin-positive (PV) and somatostatin-positive (SOM) interneurons while recording
neuronal spiking in mouse auditory cortex and inferior colliculus. We found that modulation of neither PV-
nor SOM-interneurons affected sound-evoked responses in the inferior colliculus, despite significant
modulation of cortical responses. Our findings imply that cortico-collicular feedback can modulate responses
to simple and complex auditory stimuli independently of cortical inhibitory interneurons. These experiments
elucidate the role of descending auditory feedback in shaping sound responses. Together these results
implicate the importance of the auditory cortex in sound processing.
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ABSTRACT 

CORTICAL AND SUBCORTICAL MECHANISMS FOR SOUND PROCESSING 

Jennifer M. Blackwell 

Maria N. Geffen 

The auditory cortex is essential for encoding complex and behaviorally relevant 

sounds. Many questions remain concerning whether and how distinct cortical neuronal 

subtypes shape and encode both simple and complex sound properties. In chapter 2, we 

tested how neurons in the auditory cortex encode water-like sounds perceived as natural 

by human listeners, but that we could precisely parametrize. The stimuli exhibit scale-

invariant statistics, specifically temporal modulation within spectral bands scaled with the 

center frequency of the band. We used chronically implanted tetrodes to record neuronal 

spiking in rat primary auditory cortex during exposure to our custom stimuli at different 

rates and cycle-decay constants. We found that, although neurons exhibited selectivity for 

subsets of stimuli with specific statistics, over the population responses were stable. These 

results contribute to our understanding of how auditory cortex processes natural sound 

statistics. In chapter 3, we review studies examining the role of different cortical inhibitory 

interneurons in shaping sound responses in auditory cortex. We identify the findings that 

support each other and the mechanisms that remain unexplored. In chapter 4, we tested 

how direct feedback from auditory cortex to the inferior colliculus modulated sound 

responses in the inferior colliculus. We optogenetically activated or suppressed cortico-

collicular feedback while recording neuronal spiking in the mouse inferior colliculus in 

response to pure tones and dynamic random chords. We found that feedback modulated 
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sound responses by reducing sound selectivity by decreasing responsiveness to preferred 

frequencies and increasing responsiveness to less preferred frequencies. Furthermore, we 

tested the effects of perturbing intra-cortical inhibitory-excitatory networks on sound 

responses in the inferior colliculus. We optogenetically activated or suppressed 

parvalbumin-positive (PV) and somatostatin-positive (SOM) interneurons while recording 

neuronal spiking in mouse auditory cortex and inferior colliculus. We found that 

modulation of neither PV- nor SOM-interneurons affected sound-evoked responses in the 

inferior colliculus, despite significant modulation of cortical responses. Our findings imply 

that cortico-collicular feedback can modulate responses to simple and complex auditory 

stimuli independently of cortical inhibitory interneurons. These experiments elucidate the 

role of descending auditory feedback in shaping sound responses. Together these results 

implicate the importance of the auditory cortex in sound processing. 
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CHAPTER 1: Introduction 

 

 

Acoustic signals from the peripheral auditory system enter the cochlear nucleus in 

the brainstem via the auditory nerve. From the brainstem, information travels through the 

auditory midbrain, the inferior colliculus, to the auditory thalamus, the medial geniculate 

body, to the auditory cortex (AC). The auditory cortex is essential for encoding complex 

and behaviorally relevant sounds (Nelken, 2004; Aizenberg and Geffen, 2013; Carruthers 

et al., 2013, 2015; Mizrahi et al., 2014; Aizenberg et al., 2015). In this dissertation we 

address questions about processing of sounds important for everyday hearing in the 

auditory cortex. 

The goal of our work is to elucidate whether and how distinct cortical neuronal 

subtypes and projections shape and encode both simple and complex sound properties. We 

address the following questions about auditory processing in the auditory cortex: (1) How 

does the auditory cortex encode the statistics of a natural sound such as water? 

Experimental auditory stimuli are typically designed to uniformly sample stimulus space. 

The particular spectro-temporal statistics of natural sounds are not captured by these 

stimuli. Testing how the auditory system processes these stimulus statistics is important 

for understanding how organisms interact with behaviorally relevant sounds. (2) How do 

inhibitory-excitatory networks shape sound responses in the auditory cortex? Extensive 

work has been done to characterize how different cortical neuronal subtypes interact 

functionally and anatomically. Here we examine this literature to identify cohesive themes 
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found and mechanisms that remain unclear.  (3) How does feedback from the auditory 

cortex to the inferior colliculus shape sound processing in the inferior colliculus? Whereas 

information is typically thought of as integrated along the auditory system in a hierarchical 

fashion, there is extensive feedback within the auditory pathway, including from the 

auditory cortex, that can modulate auditory processing and auditory behaviors. However, 

the mechanisms by which information processing is shaped via the descending feedback 

pathway remain poorly characterized. Modulating direct feedback projections allows us to 

test the contributions of feedback in sound processing. 

 Understanding how different classes of neurons auditory cortex process simple and 

complex sounds provides insight into the role of auditory cortex in sound processing and, 

thus, auditory behaviors. To introduce these topics, we will describe scale-invariant 

properties of natural sounds and known functions of intracortical networks and feedback 

in shaping auditory processing. 

 

 

SCALE-INVARIANT PROPERTIES OF NATURAL SOUNDS 

In a rich and complex sensory world, an organism’s sensory systems must extract 

and encode a plethora of behaviorally relevant signals from the environment. However, the 

computational capacity of neurons places physiological limits on the amount information 

we can process. The efficient coding hypothesis postulates that, to compensate for this, the 

brain evolved to efficiently process natural inputs by adapting to the statistics of natural 

scenes (Attneave, 1954; Barlow, 1961). Many natural signals, such as environmental 
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sounds, exhibit scale-invariant statistics. These statistical regularities can be used by the 

auditory system to recognize categories of sounds even with certain types of modulation, 

such as compression of an audio file. One characteristic of natural sounds, like music and 

speech, is that the power spectrum scales inversely with the frequency, following the 1/f 

statistics law (Voss and Clarke, 1975; Attias and Schreiner, 1997; Singh and Theunissen, 

2003). The temporal modulation spectrum also obeys scale-invariant statistics within 

frequency bands (Voss and Clarke, 1975, 1978; Attias and Schreiner, 1997; Nelken et al., 

1999; Singh and Theunissen, 2003; Garcia-Lazaro et al., 2006; Rodríguez et al., 2010; 

McDermott and Simoncelli, 2011). 

Sounds with these statistical regularities in their structure are perceived as natural 

by human listeners and varying the correlation of spectro-temporal modulations affects the 

naturalness of this perception (Voss and Clarke, 1978; Geffen et al., 2011). There are also 

neural correlates demonstrating preference for these characteristics, in particular 1/f 

temporal modulation (Escabí and Read, 2005; Garcia-Lazaro et al., 2006; Rodríguez et al., 

2010).  

In chapter 2, we used an artificial stimulus perceived as natural water sounds, but 

that can be parametrized precisely (Geffen et al., 2011), to test how populations of neurons 

in auditory cortex encode different sets of parameters contributing to the ‘naturalness’ of 

water-like sounds.  
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THE ROLE OF INHIBITORY INTERNEURONS IN SHAPING 

ACTIVITY IN THE AUDITORY CORTEX 

In AC, interactions between excitation and inhibition shape sound responses in 

excitatory cell populations. Cortical inhibitory interneurons are comprised of a vastly 

diverse population, with cells differing both morphologically and physiologically (Figure 

1.1). Hundreds of inhibitory neuronal subtypes can be identified depending on the 

characteristics used for classification (Kawaguchi, 1997; DeFelipe et al., 2013; Kepecs and 

Fishell, 2014; Tremblay et al., 2016). The two most predominant classes in the sensory 

cortices, classified based on molecular markers, are: parvalbumin-positive (PV) and 

somatostatin-positive (SOM) interneurons (Rudy et al., 2011). PVs, the most common 

class in the sensory cortex, include the "basket cells", which target excitatory neuronal cell 

bodies (Wang et al., 2002). SOMs, the second most common class, contain a large 

population of Martinotti cells (Wang et al., 2004), which target the distal dendrites of 

excitatory neurons. These differences may have consequences in how PVs and SOMs 

shape sound tuning in auditory cortex. PVs are thought to provide global inhibition to 

excitatory neuronal populations (Packer and Yuste, 2011), while SOMs could exert a more 

specific effect of modulating excitatory neuronal responses to stimuli (Vu and Krasne, 

1992; Urban-Ciecko and Barth, 2016). In the auditory cortex, activating PVs decreased 

frequency selectivity and increased tone-evoked responses of excitatory neurons (Hamilton 

et al., 2013; Aizenberg et al., 2015), producing a mixture of subtractive and divisive shifts 

in frequency tuning (Seybold et al., 2015). Suppression of PV interneurons had the opposite 

effect (Aizenberg et al., 2015), although a mixture of additive and multiplicative shifts in 
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tuning were still observed (Phillips and Hasenstaub, 2016). Activating or suppressing 

SOMs decreased or increased the activity of excitatory neurons respectively (Seybold et 

al., 2015; Phillips and Hasenstaub, 2016), but the effect was more often multiplicative 

when SOM activity was reduced as compared with PVs.  

Activity in the auditory cortex change with stimulus temporal history, exhibiting 

stimulus-specific adaptation (SSA) by reducing response to repeated stimuli (Ulanovsky et 

al., 2003; Natan et al., 2015). Inhibitory-excitatory networks support this transformation, 

and PVs and SOMs were found to play a differential role in cortical adaptation. SSA is 

quantified as the change in response to a rare ‘deviant’ tone presented as part of a sequence 

with a common ‘standard’ tone. Suppressing either PVs or SOMs increased the response 

to repeated stimuli in excitatory neurons (Natan et al., 2015). However, suppression of 

SOMs increased excitatory responses to the standard, but not the deviant tones, whereas 

suppressing PVs led to a non-specific response increase (Natan et al., 2015). PVs and 

SOMs also differentially affected frequency tuning following adaptation. SOM 

suppression increased tone-evoked response to an adapted stimulus, but not upon initial 

presentation of the stimulus, specifically for preferred frequencies. In contrast, PV 

suppression increased tone-evoked responses to non-preferred frequencies consistently 

across stimulus repeats (Natan et al., 2017). These results suggest SOM inhibition 

increased with stimulus repetition, while PV inhibition remained stable.  

A third class of cortical inhibitory interneuron, the vasoactive intestinal 

polypeptide-positive interneurons (VIPs) (Rudy et al., 2011; Tremblay et al., 2016), target 

both SOM (Lee et al., 2013; Pfeffer et al., 2013; Pi et al., 2013; Jiang et al., 2015; Walker 

et al., 2016) and PV interneurons (Pi et al., 2013), although they preferentially target 
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SOMs. Since SOM and PV interneurons target excitatory cells, VIP interneurons are 

ideally placed to modulate cortical activity through disinhibition of excitatory cells via 

inhibition of SOM interneurons (Pfeffer et al., 2013). In the auditory cortex, activation of 

VIPs caused an additive shift in frequency response curves, increasing in tone-evoked 

responses of putative excitatory cells across frequencies (Pi et al., 2013). Activating 

cholinergic inputs, which target VIPs, increased frequency selectivity of cortical excitatory 

cells by decreasing responses to preferred frequencies and increasing responses to less 

preferred frequencies (Nelson and Mooney, 2016). These findings are consistent with VIPs 

role in disinhibition of excitatory neurons.  

In chapter 3, we discuss previous studies on the function of inhibitory neurons and 

microcircuits in audition and, in chapter 4, we test whether and how modulation of cortical 

inhibitory-excitatory microcircuits propagates to the inferior colliculus by optogenetically 

activating or suppressing cortical PV or SOM inhibitory interneurons and measuring the 

effect on spontaneous and sound-evoked activity in the inferior colliculus.  
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Figure 1.1 
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Figure 1.1 Schematic diagram of connectivity between select neurons in the auditory 

cortex (note that layer-specific information is omitted here): Exc: Excitatory neurons; 

PV: parvalbumin-positive interneurons; SOM: somatostatin-positive interneurons; VIP: 

vasopressin-positive interneurons; TC: Thalamo-cortical projection neurons. All neuron 

types receive additional inputs from other brain areas, which were omitted from the 

diagram for simplicity. Open circles: excitatory synapses; closed circles: inhibitory 

synapses. Solid lines indicate dominant projections; dashed lines indicate occasional 

connections 
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DESCENDING MODULATION FROM AUDITORY CORTEX 

Descending feedback allows for modulation of inputs from nuclei earlier in the 

ascending pathway. There is extensive feedback within the auditory pathway, which drive 

changes in auditory processing and behaviors. 

 The auditory cortex sends descending projections to the auditory thalamus and 

auditory nuclei in the brainstem. Feedback to the medial geniculate body (MGB), the 

auditory thalamus, is one of the largest descending auditory pathways. Cortico-thalamic 

projections originate from AC layer 5 and 6 (Ojima, 1994; Bajo et al., 1995; Prieto and 

Winer, 1999; Williamson and Polley, 2019) and targets both principal neurons as well as 

thalamic inhibitory interneurons (Guo et al., 2017). Modulation of AC activity affected 

frequency tuning by shifting best frequency of thalamic neurons (Zhang et al., 1997), but 

inactivation by cooling had mixed effects on bandwidth, increasing or decreasing 

frequency tuning bandwidth in distinct thalamic subpopulations (Villa et al., 1991). 

Electrical stimulation of AC increased sound-evoked responses in MGB, although a small 

subpopulation of neurons was also suppressed (He et al., 2002). Consistent with this 

finding, activation of direct feedback also induced an increase in sound-evoked responses 

and similar patterns of change in frequency selectivity are seen in MGB and AC which 

depending on timing of activation (Guo et al., 2017). Selectively ablating cortico-

thalamic feedback impaired detection of sound harmonicity (Homma et al., 2017) and 

activation modulated discrimination and detection of simple sounds depending on timing 

of activation (Guo et al., 2017). These mixed effects are not unexpected given that 

feedback targets both excitatory and inhibitory neurons. 
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Projections from auditory cortex terminate in the auditory brainstem, specifically 

in the lateral lemniscus (Beneyto et al., 1998; Budinger et al., 2000), superior olivary 

complex (Doucet et al., 2003; Coomes and Schofield, 2004), cochlear nucleus (Schofield 

and Coomes, 2005; Meltzer and Ryugo, 2006), and the pontine nuclei (Schofield and 

Coomes, 2005; Perales et al., 2006). Similar to the cortico-collicular projections, 

feedback to brainstem nuclei also originate exclusively in AC layer 5. There is evidence 

that modulation of auditory cortex indirectly affects activity of cochlear hair cells (Xiao 

and Suga, 2002; Perrot et al., 2006), but the role of cortical feedback in shaping upstream 

auditory processing in the brainstem is unclear.  

The auditory cortex also sends extensive projections to the inferior colliculus (IC), 

the auditory midbrain nucleus, which have been observed in monkeys (Winer et al., 2002), 

cats (Winer and Prieto, 2001; Winer et al., 2002), ferrets (Bajo et al., 2007), guinea pigs 

(Coomes et al., 2005), gerbils (Bajo and Moore, 2005), and rats (Herbert et al., 1991; 

Saldaña et al., 1996; Doucet et al., 2003). This pathway originates predominantly from 

ipsilateral layer 5, but also includes projections from layer 6 (Saldaña et al., 1996; Winer 

et al., 1998; Doucet et al., 2003; Bajo and Moore, 2005; Coomes et al., 2005; Bajo et al., 

2007; Schofield, 2009). There are also a small subset of projection neurons originating 

from the contralateral auditory cortex (Schofield, 2009; Bajo et al., 2010). Projections are 

not restricted to a specific region of auditory cortex, but rather from all regions of the 

auditory cortex (Winer et al., 1998), although the primary areas of cortex send the densest 

projections (Bajo et al., 2007). Cortico-collicular feedback is also tonotopically organized 

(Lim and Anderson, 2007; Markovitz et al., 2013; Barnstedt et al., 2015; Straka et al., 
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2015), which provides a mechanism by which cortico-collicular feedback could modulate 

tuning properties of neurons in IC. 

Previous studies demonstrated that neuronal responses to sounds in IC are altered 

by focal electrical stimulation and inactivation of AC. Cortical stimulation shifted tuning 

properties of IC neurons toward those of the stimulated neurons in frequency (Jen et al., 

1998; Yan and Suga, 1998; Ma and Suga, 2001a; Jen and Zhou, 2003; Yan et al., 2005; 

Zhou and Jen, 2007), amplitude (Jen and Zhou, 2003; Yan et al., 2005; Zhou and Jen, 

2007), azimuth (Zhou and Jen, 2005, 2007), and duration (Ma and Suga, 2001b). 

Stimulation of AC had mixed effects on sound-evoked responses in IC, increasing and 

decreasing responses in different subpopulations of neurons (Jen et al., 1998; Zhou and 

Jen, 2005). AC inactivation studies, on the other hand, found less consistent effects on IC 

responses. Cooling AC altered IC interaural level difference (ILD) sensitivity, causing 

shifts in preferred ILDs and increased selectivity bandwidth, although a subset of cells 

were unaffected (Nakamoto et al., 2008). It has been found that pharmacological 

inactivation of AC caused a shift in best frequency in IC neurons (Zhang et al., 1997). 

However, several studies show inactivation of AC had no effect on frequency selectivity 

in IC (Jen et al., 1998), but rather modulated sound-evoked and spontaneous activity 

(Gao and Suga, 1998; Popelář et al., 2003, 2016). 

There is limited data exploring the role of direct cortico-collicular feedback in 

shaping sound responses in the inferior colliculus. Activation of cortico-collicular axon 

terminals in IC increased sound-evoked responses in IC, while suppression decreased 

sound-evoked responses (Xiong et al., 2015). Consistent with the findings that electrical 

stimulation of AC increased or decreased sound-evoked responses in distinct populations 
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of IC neurons, different patterns of direct cortico-collicular activation enhanced or 

suppressed white noise-induced responses in IC (Vila et al., 2019). 

Cortico-collicular feedback is also critical for auditory learning. Pairing electrical 

leg stimulation with a tone induced a shift in best frequency of IC neurons, while 

presentation of a tone alone was insufficient to alter sound responses (Gao and Suga, 1998, 

2000). Furthermore, cortico-collicular feedback is necessary for learning to adapt to a 

unilateral earplug during a sound localization task (Bajo et al., 2010). Furthermore, 

activation of cortico-collicular feedback can induce running in mice and feedback 

suppression attenuates running in response to a loud noise (Xiong et al., 2015), implicating 

the importance of this feedback pathway in an innate fear response to aversive sounds. 

Overall, these findings suggest that AC can modulate sound responses in IC and that the 

direct feedback pathway may play an important role in auditory learning. 

 In chapter 4, we test how direct feedback from the auditory cortex to the inferior 

colliculus shapes sound-evoked responses in the inferior colliculus by optogenetically 

activating or suppressing direct cortico-collicular projection neurons and measuring 

responses to pure tones and dynamic random chords in the inferior colliculus. 
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CHAPTER 2: STABLE ENCODING OF NATURAL SOUNDS 

IN THE AUDITORY CORTEX 

 

Adapted from: Blackwell JM, Taillefumier TO, Natan RG, Carruthers IM, Magnasco MO, 

Geffen MN (2016) Stable encoding of sounds over a broad range of statistical parameters 

in the auditory cortex, Eur. J. Neurosci. 43:751-764 

 

ABSTRACT 
 

Natural auditory scenes possess highly structured statistical regularities, which are dictated 

by the physics of sound production in nature, such as scale-invariance. We recently 

identified that natural water sounds exhibit a particular type of scale invariance, in which 

the temporal modulation within spectral bands scales with the center frequency of the band. 

Here, we tested how neurons in the mammalian primary auditory cortex encode sounds 

that exhibit this property, but differ in their statistical parameters. The stimuli varied in 

spectro-temporal density and cyclo-temporal statistics over several orders of magnitude, 

corresponding to a range of water-like percepts, from pattering of rain to a slow stream. 

We recorded neuronal activity in the primary auditory cortex of awake rats presented with 

these stimuli. The responses of the majority of individual neurons were selective for a 

subset of stimuli with specific statistics. However, as a neuronal population, the responses 

were remarkably stable over large changes in stimulus statistics, exhibiting a similar range 
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in firing rate, response strength, variability and information rate, and only minor variation 

in receptive field parameters. This pattern of neuronal responses suggests a potentially 

general principle for cortical encoding of complex acoustic scenes: while individual 

cortical neurons exhibit selectivity for specific statistical features, a neuronal population 

preserves a constant response structure across a broad range of statistical parameters. 

 

2.1 INTRODUCTION 
 

Natural environmental sounds span a broad range of frequencies, and possess 

characteristic spectro‐temporal statistical regularities in their structure (Voss and Clarke, 

1975; Singh and Theunissen, 2003). Encoding information about these statistical 

regularities is an important processing step in the central auditory pathway, required for 

accurate analysis of an auditory scene (Chandrasekaran et al., 2009). Spectro‐temporal 

statistical regularities in sounds can be used by the auditory system to recognize specific 

sounds and distinguish them from each other (Woolley et al., 2005; Geffen et al., 2011; 

McDermott and Simoncelli, 2011; McDermott et al., 2013; Gervain et al., 2014). 

The power spectrum of natural sounds scales inversely with the frequency, 

following the 1/f statistics law (Voss and Clarke, 1975; Attias and Schreiner, 1997; Singh 

and Theunissen, 2003). Furthermore, the overall power spectrum and the temporal 

modulation spectrum also obey scale‐invariant statistics. Neurons in the central auditory 

pathway encode small variations in spectro‐temporally modulated stimuli (Elhilali et al., 

2004) and respond preferentially to sounds exhibiting natural characteristics (Nelken et al., 
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1999; Woolley et al., 2005), and 1/f frequency spectrum in particular (Escabí and Read, 

2005; Garcia-Lazaro et al., 2006; Rodríguez et al., 2010). Changes in the statistical 

structure of stimuli, including the spectro‐temporal density, or the spectro‐temporal range, 

affect response properties of cortical neurons, leading to gain adaptation in their firing rate 

(Blake and Merzenich, 2002; Valentine and Eggermont, 2004; Asari and Zador, 2009; 

Pienkowski and Eggermont, 2009; Eggermont, 2011; Rabinowitz et al., 2011; Natan et al., 

2015). 

Recently, we identified an additional form of scale‐invariance in environmental 

sounds (Geffen et al., 2011; Gervain et al., 2014). In sounds of running water, a subset of 

environmental sounds, the temporal modulation spectrum across spectral bands scales with 

the center frequency of the band (Geffen et al., 2011; Gervain et al., 2014). When the 

recording of running water was stretched or compressed temporally, it was still perceived 

as a natural, water‐like sound (Geffen et al., 2011). Such a relationship corresponds to the 

optimal representation of a sound waveform under sparse coding assumptions (Lewicki, 

2002; Garcia-Lazaro et al., 2006; Smith and Lewicki, 2006). Sounds that obeyed the 

invariant scaling relationship but which varied in cyclo‐temporal coefficients and spectro‐

temporal sound density evoked different percepts, ranging from pattering of rain to sound 

of a waterfall to artificial ringing. In the present study, we adapted this set of stimuli to the 

hearing range of rats to examine how changing spectro‐temporal statistical properties affect 

responses of neurons in the primary auditory cortex (A1), an essential area for encoding 

complex and behaviorally meaningful sounds (Nelken, 2004; Aizenberg and Geffen, 2013; 

Carruthers et al., 2013; Mizrahi et al., 2014; Aizenberg et al., 2015; Carruthers et al., 2015). 
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We recorded the responses of neurons in A1 of awake rats to naturalistic, scale‐

invariant sounds, designed to mimic the variety of natural water sounds, as their statistical 

structure was varied. We found that individual neurons exhibited tuning for a specific 

cyclo‐temporal coefficient and spectro‐temporal density of the stimulus, yet over the 

population of neurons, sounds with vastly different statistics evoked a similar range of 

response parameters. 

 

2.2 RESULTS 
 

We characterized the responses of neurons in the auditory cortex to acoustic stimuli 

designed to capture the statistical properties of natural water sounds. To construct these 

stimuli, we adapted the random droplet stimuli that were originally constructed to mimic 

the sound percept of water sounds (Geffen et al., 2011; Gervain et al., 2014), for 

presentation in the electrophysiological recordings to rats by expanding the frequency 

range and sample rate. The stimulus consisted of a superposition of gammatones, which 

can be thought of as individual droplet sounds, that are uniformly distributed in log‐

frequency space, and in time (Figure 2.1A). The amplitude of each droplet sound was 

drawn from a random probability distribution, as described in the Methods. The length of 

each droplet sound was scaled relative to its frequency, to mimic the statistical structure of 

environmental sounds (Figure 2.1B) (Geffen et al., 2011). 

We varied two stimulus parameters: the cyclo‐temporal coefficient, Q, and the 

droplet density, r (Geffen et al., 2011). Q denotes the ratio between the time constant of 
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decay for the individual droplets, and their center frequency. As such, it regulates how 

many cycles are contained within each droplet. Sounds with high Q have a sustained quality 

to them, sounding metallic. Sounds with Q = 2 sound natural, water‐like. Sounds with low 

Q sound like pattering of rain. For very low Q, sounds are static‐like, resembling fire 

crackling or similar fire‐like sounds. r specifies how many droplets per second are 

combined to generate the stimulus. Sounds with r high and Q = 2 sound like a fast waterfall, 

and with r low and Q = 2 sound like dripping water (Geffen et al., 2011). 

To cover the range of variability expected from natural sounds, we selected three 

values of Q and r to construct five random droplet stimuli (Geffen et al., 2011) (Figure 

2.1A). The probability density of the stimulus gammatone transform exhibited a 

logarithmic relationship within distinct spectral bands. The density curves overlapped 

across a vast range of frequencies, demonstrating that the stimulus preserved the self‐

similar scaling structure, from 1 to 40 kHz (Figure 2.1C). Furthermore, these stimuli had 

a logarithmic power spectrum (Figure 2.1D). This indicates that these sounds possessed 

scale‐invariance not just in the power spectrum, but also in temporal statistics across 

spectral channels. The random droplet stimulus allowed us to measure not only the 

response strength, but also the temporal and spectral time course of the dependency of the 

responses on the stimulus for the different statistical parameters. 
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Figure 2.1 
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Figure 2.1 The random droplet stimulus mimics scale‐invariant structure of natural stimuli, 

while allowing spectro‐temporal constant (Q) and density (rate) to vary. A Droplet onset 

matrix for the five stimuli used in the study. Each line depicts an individual droplet, plotted 

according to its center frequency and onset time. Color depicts relative maximum 

amplitude, darker colors corresponding to higher amplitudes. Width corresponds to Q. B 

Time course of the waveform for individual droplets. Top: center frequency of 18 kHz. 

Bottom: center frequency of 10 kHz. Droplets are depicted for Q = 0.5, 2 and 8. C 

Histogram of the gammatone transform of the Q = 2, rmed stimulus. D Power spectrum 

density for each of the five stimuli in eight frequency bands. 
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The stimulus reliably drives auditory‐evoked responses in the primary auditory 

cortex 

We recorded the activity of 654 units in the primary auditory cortex in awake rats, 

in response to the five variants of the random droplet stimulus. We used the stimulus with 

Q = 2, rmed, as the baseline stimulus, as this stimulus was perceived as most natural by 

human listeners (Geffen et al., 2011). Individual units reliably followed the stimulus, 

repeated 50 times, exhibiting a significantly modified level of activity during the stimulus 

presentation, as compared with baseline responses (n = 368 out of 654, response strength 

> 6, Figure 2.2A–C). 

The types of responses ranged from sparse, time‐locked responses to sustained 

responses (Figure 2.2B, C). Two representative neuronal responses are depicted in Figure 

2.2B and C. Neuron 1 exhibited elevated responses throughout the stimulus presentation 

(Figure 2.2B), whereas neuron 2 exhibited sparse responses (Figure 2.2C). 

The recorded units spanned a broad range of best frequencies, corresponding to the 

hearing range of rats. Neurons across the full range of best frequencies exhibited significant 

responses to the stimulus (Figure 2.2D, n = 368), as expected for a broadband stimulus. 
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Figure 2.2 
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Figure 2.2 Neurons in primary auditory cortex exhibit reliable responses to the stimulus. 

A Stimulus waveform for the baseline stimulus (Q = 2, rmed). B, C Raster plot and firing 

rate of responses of a representative unit showing time‐locking responses to the stimulus. 

Top panel: raster plot – each black line denotes an action potential produced by the neuron 

at a particular delay from stimulus onset (x‐axis) in a particular trial (y‐axis). Bottom panel: 

mean firing rate of the neuron. D Mean response strength of recorded units to the stimulus 

vs. their center frequency (n = 368). 
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Selectivity of neuronal responses for specific stimulus statistics 

We next tested whether and how changing the spectro‐temporal statistical structure 

of the stimulus affected neuronal response patterns. The responses of the same neuron to 

variants of the stimuli included time‐locked excitatory responses, elevated sustained 

responses or suppressed responses (Figure 2.3). 

The majority of recorded units exhibited selectivity for a subset of the stimuli. 

Time‐locked responses to a subset of stimuli were more common (Figure 2.3A). Figure 

2.3A depicts a neuron that exhibited time‐locked, sparse responses to stimuli of Q = 2, rlow 

or rmed, and Q = 8, rate rhigh. The faster fluctuating (Q = 0.5) or more dense (rhigh) stimuli 

were less efficient in driving this neuron. Some neurons exhibited sustained responses 

(Figure 2.3B). The neuron whose response is depicted in Figure 2.3B exhibited an elevated 

firing rate, but not precise time locking to the stimulus. It was most responsive for the 

stimulus with Q = 0.5, rmed. Some neurons responded significantly to all five stimuli 

(Figure 2.3C, D). While elevated responses (Figure 2.3C) were more common, some 

suppressed responses were also observed (Figure 2.3D). 
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Figure 2.3 
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Figure 2.3 Neurons in primary auditory cortex exhibit diverse responses to the five stimuli 

used in the study. Responses of four sample units to the five stimuli used in the study. Each 

row depicts raster plot and firing rate of responses to one of the five stimuli. Left inset: 

diagram depicting which stimulus was used (compare with Figure 2.1A). A Responses of 

a selective time‐locked neuron. B Responses of a selective sustained neuron. C Responses 

of a non‐selective neuron. D Responses of a non‐selective suppressed neuron. 
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To assay selectivity in neuronal responses to different stimuli, we computed the 

selectivity index and the sparseness index. The selectivity index was measured as the 

difference between the strongest and the mean response strength to the five stimuli for each 

unit, normalized by the strongest response (Figure 2.4A). This measure is 1 if the neuron 

responds to only one stimulus and 0 if it responds to all stimuli with equal strength. The 

sparseness index quantified how specific the neuronal responses were to a particular 

stimulus (Figure 2.4B). We found that, typically, neurons were responsive to more than a 

single stimulus. Still, most neurons exhibited a non‐zero selectivity ratio (mean selectivity 

index = 0.24) and sparseness index (mean sparseness index = 0.069). These values were 

higher than when responses were randomly shuffled across stimuli (Figure 2.4, selectivity: 

P = 1.9e‐9; sparseness, P = 4.1e‐57, Wilcoxon sign rank test), such that ~50% of neurons 

were above the 5% significance threshold for the shuffled data. These results indicate that 

most neurons exhibited higher selectivity for a subset of stimuli than would be expected by 

chance. 

Did selectivity for a specific stimulus imply that a neuron encoded more 

information about its structure? We estimated the information conveyed about the stimulus 

by neuronal responses across different stimulus conditions. We applied an information‐

theoretic calculation following a previously developed procedure (Magri et al., 2009; 

Kayser et al., 2010) by estimating the information (in bits) in six successive 2‐ms bins 

between the neuronal responses and the stimulus over seven 1‐s stimulus ‘chunks’. 

Neurons exhibited significantly higher mutual information for stimuli to which they 
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responded most strongly as compared with those that they responded to least strongly 

(Figure 2.4C, n = 304, P = 0.009). 

Mutual information may be increased due to an increase in reliability of neuronal 

responses (Kayser et al., 2010). Consistently, we found a positive correlation between 

mutual information and the inverse of the Fano factor for responses of neurons to both most 

and least preferred stimuli (most preferred: correlation coefficient = 0.12, P = 0.04; least 

preferred: correlation coefficient = 0.31, P = 2.1e‐8). However, there was no difference in 

the Fano factor between responses to the most preferred and the least preferred stimulus 

(sign rank test, P > 0.05). Therefore, the increase in mutual information may be attributed 

to increased responses of individual neurons to the preferred stimuli. 
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Figure 2.4 
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Figure 2.4 Neurons in primary auditory cortex exhibit selectivity for specific spectro‐

temporal statistics. A Histogram of stimulus selectivity index across the recorded neuronal 

population (grey) and for randomly shuffled responses (black). Many units exhibit 

selective responses to a subset of stimuli. The selectivity index is higher for recorded than 

for shuffled responses. B Histogram of the sparseness of responses across the recorded 

neuronal population (grey) and for randomly shuffled responses (black). Sparseness is 

higher for the recorded population than for shuffled responses. C Mutual information 

between the responses and the stimulus is higher for the stimulus, for which the neuron 

exhibits high selectivity. P = 0.009, paired t‐test. 
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Droplet onset and spectrogram fits of the linear/non‐linear model to neuronal 

responses 

We next sought to characterize which parameters of neuronal responses change 

with the spectro‐temporal statistics of the stimuli. Responses of neurons in the auditory 

cortex to an acoustic stimulus have previously been successfully modelled through a 

linear/non‐linear (LN) model (Eggermont et al., 1983b; deCharms et al., 1998; Depireux 

et al., 2001; Escabí and Read, 2003; Linden et al., 2003; Gourévitch and Eggermont, 2008). 

This model is used to predict the firing rate of a neuron in response to a new stimulus by 

first convolving the stimulus with a linear filter, and then passing the linear prediction 

through an instantaneous non‐linearity (Geffen et al., 2007, 2009). The linear filter can be 

thought of as the receptive field of the neuron, and the instantaneous non‐linearity to 

represent the transformation from inputs that change membrane voltage to neuronal 

spiking. 

We fitted the parameters of the linear and non‐linear components of the responses 

of each neuron to the stimulus. There was, however, an important problem in comparing 

these parameters. Typically, the receptive field of the neuron is computed as the reverse 

correlation of the firing rate of the neuron to the spectrogram of the stimulus. In the case 

of a white noise stimulus, this operation is equivalent to a spike‐triggered average of the 

stimulus. The changing cyclo‐temporal coefficient of the stimulus introduces dependencies 

across time within spectro‐temporal channels, resulting in temporal correlations. These 

correlations are further exaggerated in the spectrogram‐based representation of the 

stimulus due to binned sampling. To overcome this uneven sampling of the stimulus space, 
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a standard approach is to use decorrelation, in which the linear prediction from the spike‐

triggered average is divided by the auto‐correlation of the stimulus (Theunissen et al., 2001; 

Baccus and Meister, 2002). We applied this approach to the spectrogram‐based 

representation of the stimulus. However, the time scale of correlations would typically 

dominate over the time course of neuronal responses, effectively smoothing them and 

therefore precluding the analysis of the receptive field changes across different statistics of 

the stimulus. 

The construction of the droplet‐based stimulus allowed us to innovatively extend 

an existing approach to estimate the linear filter (deCharms et al., 1998). Instead of the 

spectrogram‐based representation, the stimulus was represented by the droplet‐onset 

matrix. This matrix, by construction, does not contain any correlations, and therefore the 

optimal filter can be computed as the spike‐triggered average of the droplet‐onset matrix, 

normalized by mean amplitude of each spectral channel. The droplet‐onset matrix does not 

contain information about Q, so the matrix is the same for all stimuli at the same rate. Using 

this matrix as the stimulus representation allowed us to test the hypothesis that the neurons 

respond predominantly to the onsets of the droplets in the stimulus, rather than their 

sustained structure. In other words, the information about the sustained ‘ringing’ of 

droplets may prove less important to the majority of neurons than the timing of the droplet 

onsets. Such a response pattern would allow the neurons to create a sparse representation 

of the stimulus, and would be consistent with previous hypotheses on sparse representation 

of natural acoustic stimuli in the auditory cortex (Smith and Lewicki, 2006; Hromádka et 

al., 2008). An analogous representation is provided by the cochleagram, a standard method 
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for representing acoustic stimuli (Lyon, 1982; Meddis et al., 1990). In a cochleagram, the 

acoustic waveform is transformed across spectro‐temporally delimited channels using 

kernels that scale the bandwidth relative to the center frequency (Smith and Lewicki, 2006; 

McDermott et al., 2013). 

Therefore, we fitted the LN model to the responses of each neuron under three 

different representations of the stimulus. The stimulus was represented as either a 

spectrogram or a cochleagram, and the filter was computed as the spectro‐temporal 

receptive field; or in the droplet onset representation, in which only the information about 

the droplet onset time, amplitude and frequency was contained –DTRF (Figure 2.5A–C). 

We analyzed the performance of the model by fitting it based on responses on a 

random subset of 50% of trials, and computing the correlation coefficient between the 

prediction for the firing rate and the measured firing rate for the remaining 50% of the trials 

(Carruthers et al., 2013; Ahn et al., 2014). We found that the droplet‐based and 

cochleagram‐based representation provided more accurate predictions of the neuronal 

responses than the spectrogram‐based model (Figure 2.5D–F, n = 232). This relationship 

held when computed over all stimuli [Droplet: 45%, P (all stimuli) = 2.2e‐15, 

Cochleagram: 60%, P (all stimuli) = 5.8e‐43], but also for most individual stimuli [Droplet: 

P (Q = 2, rmed) = 2.7e‐6; P (Q = 0.5, rmed) = 0.0031; P (Q = 8, rmed) = 0.0026; P (Q = 2, rlow) 

= 2.8e‐8; P (Q = 2, rhigh) > 0.05 ‐ not significant, Cochleagram: P (Q = 2, rmed) = 7.5e‐13; 

P (Q = 0.5, rmed) = 1.1e‐6; P (Q = 8, rmed) = 7.6e‐10; P (Q = 2, rlow) = 1.3e‐8; P (Q = 2, rhigh) 

= 2.8e‐10], except Q = 2, rhigh. Because this stimulus Q = 2, rlow corresponds to the highest 

r value (densest dynamics), the result is probably due to the spectrogram approximation 
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being more similar to the droplet matrix under the fastest stimulus dynamics as compared 

to the other stimuli. The predictions based on the cochleagram‐based representations were 

more accurate than the droplet‐based representations over all stimuli, but the improvement 

was not as great as for droplet‐based prediction over the spectrogram‐based prediction 

[35%, P (all stimuli) = 7.7e‐12] and for stimuli 1, 3 and 5 [P (Q = 2, rmed) = 2.9e‐4; P (Q = 

0.5, rmed) > 0.05, not significant; P (Q = 8, rmed) = 9.3e‐6; P (Q = 2, rlow) > 0.05, not 

significant; P (Q = 2, rhigh) = 1.7e‐8]. In some studies, neurons in the auditory cortex have 

been shown to be more sensitive to stimulus onsets, rather than the prolonged ‘ringing’ of 

distinct spectral components. This observation may provide an explanation for the 

improved performance of the LN model when using droplet‐based representation of the 

stimulus, as this model is more sensitive to the stimulus onsets by design. 
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Figure 2.5 
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Figure 2.5 LN model based on droplet‐onset matrix predicts responses to the stimulus 

better than spectrogram‐based LN model. A Representation of the acoustic waveform of 

the droplet stimulus as a droplet‐onset matrix. B Representation of the acoustic waveform 

of the droplet stimulus as a spectrogram. C Representation of the acoustic waveform of the 

droplet stimulus as a cochleagram. D Prediction quality based on the droplet, spectrogram, 

or cochleagram‐based prediction. Prediction quality is significantly higher for droplet and 

cochleagram‐based prediction than spectrogram (for droplet: P (all stimuli) = 2.2e‐15; for 

cochleagram: P (all stimuli) = 5.8e‐43]. E LN prediction and recorded firing rate (black) 

for the spectrogram‐based (blue), droplet‐based (red) and cochleagram‐based (yellow) 

model for a representative neuron. F Quartile plot for the prediction quality for the droplet, 

spectrogram and cochleagram based prediction (filled bars: droplet‐temporal receptive 

field‐based prediction, open bars: spectro‐temporal receptive field‐based prediction, cross‐

hatched bars: cochleagram‐based prediction). **P < 0.01, ***P < 0.001, ****P < 0.0001, 

Wilcoxon sign rank test, corrected for multiple comparisons. 
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Response parameters of the receptive field of A1 neurons do not exhibit systematic 

change with changing cyclo‐temporal constant 

We next examined whether there were any systematic changes in the time course 

and the spectral structure of the receptive field depending on the stimulus (Figure 2.6). We 

measured the spectral width, temporal delay and temporal length of the positive lobes of 

the cyclo‐temporal receptive fields (the linear component of the model computed using the 

droplet‐onset matrix as the stimulus) of the recorded units (Woolley et al., 2006; Shechter 

and Depireux, 2007; Schneider and Woolley, 2010). Across the neuronal population, there 

were only modest changes in a small subset of DTRF parameters (Figure 2.6C): for Q = 

0.5, r med stimulus, the peak frequency was slightly reduced (P = 0.008); for Q = 2, r low 

stimulus, temporal width of DTRF increased (P = 0.004) whereas spectral width decreased 

(P = 0.011) as compared with the baseline Q = 2, rmed stimulus. This difference is attributed 

to the temporal delay between droplet onsets in the low‐droplet‐rate stimulus, which allows 

for more sustained neuronal responses. This suggests that rather than scaling the receptive 

field's temporal response with changing Q and droplet rate, over the population of neurons, 

the receptive fields cover the same range of parameters despite the change in the statistical 

structure of the stimulus. 

We also tested whether over repeated presentations of the same stimulus there was 

adaptation in the receptive field parameters over time. We computed DRTFs separately for 

both the first and the last 20 trials and the first and last five trials of each stimulus repeat. 

We found no significant differences for any parameters for any stimulus over the first and 

last halves of stimulus blocks (P > 0.06 for all comparisons). These results demonstrate 
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that there is no adaptation to stimulus repeats over time within presentation of the same 

stimulus. 

Nonetheless, we found that the prediction accuracy for each neuron's response was 

significantly higher using the LN parameters from the corresponding stimulus (same 

condition) than from the baseline condition (cross‐prediction) (Figure 

2.7, n = 165, P = 4e‐12 over all five stimuli, P < 0.05 for stimuli 2 and 4). This analysis 

demonstrates that while there are no systematic changes over the neuronal population, at 

the level of individual units, the LN parameters differ between the stimuli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49 

 

Figure 2.6 
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Figure 2.6 Spectro‐temporal receptive fields of neurons do not exhibit consistent changes 

with the stimulus statistics. A Droplet‐temporal receptive field of a representative neuron 

for the five stimuli. B Firing rate of the neuron to five stimuli. C Parameters of droplet‐

temporal receptive field for each measured neuron for stimuli with different statistics vs. 

baseline (Q = 2, rmed) stimulus: temporal width, spectral width, delay to peak and peak 

frequency of the DTRF. *P < 0.05, **P < 0.01, Wilcoxon signed‐rank test. 
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Figure 2.7 
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Figure 2.7 LN model fails in predicting the responses of neurons to stimulus with different 

statistical parameters. A Prediction quality of the LN model, for neuronal responses to four 

stimuli based on a model that was fitted based on the responses to ‘cross‐condition’ 

(baseline, Q = 2, rmed) vs. to the ‘same‐condition’. Prediction quality is significantly higher 

for responses to ‘same’ vs. ‘cross’ stimulus (P = 3.9e‐32 across all stimuli). B Quartile plot 

for the prediction quality of the model fitted to the ‘same’ (filled bars) vs. ‘baseline’ (open 

bars) stimulus. ***P < 0.001; *P < 0.05: paired t‐test. 
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Neuronal population maintains stable mean response profiles across varying stimulus 

statistics 

Whereas for individual neurons there were large differences in response strength 

for different stimuli, across the population there were no significant differences in the 

response strength or mean firing rate between stimuli. Over the population of neurons, the 

mean response strength (Figure 2.8A) did not change significantly with Q or rate as 

compared with the baseline stimulus (n = 368, P > 0.05 for each comparison, Stimulus 

1: Q = 2, rmed; Stimulus 2: Q = 0.5, rmed; Stimulus 3: Q = 8, rmed; Stimulus 4: Q = 2, rlow; 

Stimulus 5: Q = 2, rhigh). The mean firing rate was also remarkably stable: it did not differ 

from baseline for stimuli 2, 3 and 4 (Figure 2.8B, n = 368), and was only marginally 

smaller for stimulus 5 (Q = 2, rhigh: difference 8.8%, P = 0.0068). 

We next assayed the variability of the firing rate of neuronal responses. We 

calculated the Fano factor, which indicates how variable the discharge count is over trials 

relative to the mean firing rate. For a Poisson neuron, the standard deviation of the response 

is equal to the mean, and Fano factor is 1. Typical Fano factors for neurons recorded in the 

awake mammalian cortex exceed 1. Indeed, our calculations of the Fano factor demonstrate 

that it exceeded 1 on average for all stimuli. The mean Fano factor did not differ from the 

baseline for stimuli 2, 3 and 4 (Figure 2.8C, n = 368, P > 0.05), and was only marginally 

increased for stimulus 5 (Q = 2, rhigh: difference 7.5%, P = 0.026). Importantly, the mutual 

information was not significantly different in a population pairwise comparison across all 

neurons tested (Figure 2.8D, n = 304, P > 0.05) between the stimuli, further underlining 

the stability of the distribution of neuronal response parameters across different stimulus 

statistics. 
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Overall, our data demonstrate that stimuli with different cyclo‐temporal statistics 

or density are stable in their representation over the neuronal population. 
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Figure 2.8 
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Figure 2.8 Neuronal population exhibits even responses to stimuli with different stimulus 

statistics. A Mean response strength over the population of neurons to the five stimuli. B 

Mean firing rate over the population of neurons to the five stimuli. C Mean Fano factor 

over the population of neurons to the five stimuli. D Mean mutual information between the 

response and the stimulus for the five stimuli. **P < 0.01; *P < 0.05: paired t‐test to 

responses to baseline stimulus. 
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2.3 DISCUSSION 

Natural water sounds exhibit spectro‐temporal regularities in their structure, which are 

characterized by scale‐invariant statistics. The goal of this study was to establish how 

populations of neurons in the auditory cortex respond to sounds across a wide range of 

spectro‐temporal parameters that correspond to a range of acoustic percepts (Geffen et al., 

2011). We focused on two statistical quantities, which we had previously identified as 

perceptually relevant for distinguishing water‐like sounds. Cyclo‐temporal coefficient, Q, 

refers to the ratio of temporal change within a particular frequency band to its centre 

frequency. Droplet rate corresponds to the spectro‐temporal density of sounds. We found 

that most units recorded in A1 exhibited tuning for specific combinations of Q and droplet 

rate. However, over the neuronal population, the responses and response parameters were 

stable across the broad range of the spectro‐temporal statistics of the stimulus. These results 

suggest that tuning to spectro‐temporal statistics in neurons may be distributed in such a 

way as to preserve the mean responses over the population, rather than individual neurons. 

 

Even population responses across changed stimulus statistics 

Spectro‐temporal statistics vary greatly between different acoustic environments. Within 

different water sounds, the statistics can differ over several orders of magnitude, from a 

loud gurgling brook to rain pattering on the roof to droplets falling from a slowly melting 

icicle. Yet our auditory system needs to be able to represent the multitude of sounds with 

a limited set of resources. This limited set of resources is generally constrained by the range 

of the firing rate of neurons, as well as their noise level. Our results demonstrate that, for 
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the group of water‐like sounds, the response properties are matched over the neuronal 

population across a large range of stimulus statistics. Conservation of the mean firing rate 

and other response characteristics of neurons is considered an important organizational 

principle for sensory systems. Neuronal selectivity can be thus thought of as a process that 

enables neurons to preserve mean response parameters in the context of stimuli with vastly 

different statistical structure. The specialization of response properties of individual 

neurons to specific subsets of spectro‐temporal stimulus statistics may arise from a 

combination of inputs tuned to relatively simple statistics of the stimulus (McDermott and 

Simoncelli, 2011), and facilitate perceptual discrimination of acoustic environmental 

sounds (McDermott et al., 2013). 

 

Naturalistic stimulus to probe spectro‐temporal receptive field properties of auditory 

neurons under naturalistic conditions 

Typically, responses of neurons in the auditory cortex to sounds are characterized 

by identifying their spectro‐temporal receptive fields (Depireux et al., 2001; Escabí and 

Schreiner, 2002; Theunissen et al., 2004). The stimuli that are used to map the spectro‐

temporal receptive field include random pip and random chord sequences (Eggermont et 

al., 1983b; deCharms et al., 1998; Blake and Merzenich, 2002; Escabí and Read, 2003; 

Linden et al., 2003; Gourévitch and Eggermont, 2008). These stimuli differ from the scale‐

invariant stimulus set because the temporal dynamics are at the same timescale within each 

spectral band. Similarly, white noise (Eggermont et al., 1983a) or dynamic ripple stimuli 

(Klein et al., 2000; Depireux et al., 2001; Elhilali et al., 2004), designed to measure the 
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responses of neurons for sound with continuously changing temporal modulations, apply 

temporal modulations uniformly across all spectral channels. By contrast, the random 

droplet stimuli probe the auditory system within the statistical regime characteristic of 

water‐like sounds, in which the temporal modulation of the structure of sounds scales with 

the centre frequency of the droplet (Geffen et al., 2011; Gervain et al., 2014). 

Numerous studies have shown that the response properties of neurons depend on 

the statistical make‐up of the stimuli with which they are probed. A receptive field 

measured with a white‐noise stimulus can differ from that measured with a stimulus with 

scale‐invariant statistics (Sharpee et al., 2004). Therefore, the use of the droplet stimulus 

is advantageous in measuring the receptive fields of neurons in that it reflects an important 

property of natural sounds. In estimating the linear receptive field of neurons, using a 

stimulus that follows a random distribution of parameters is furthermore of an advantage 

for practical reasons: as the stimulus space is sampled uniformly, the optimal filter can be 

constructed without a correction for stimulus auto‐correlation. The present stimulus 

provides such a representation in the droplet‐based matrix because the timing of the 

droplets as well as their amplitude are picked from a random distribution that does not have 

correlations in either time or frequency. 

Changing Q modulates both the rise/fall time of the amplitude of each droplet as 

well as the bandwidth, and therefore can affect auditory responses through several 

mechanisms at different stages of auditory processing. Temporal envelope and modulation 

frequency are important parameters that have previously been shown to be important for 

psychoacoustic (Irino and Patterson, 1996) and physiological responses to sounds (Heil et 
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al., 1992; Heil, 1997; Lu et al., 2001; Krebs et al., 2008; Lesica and Grothe, 2008; Zheng 

and Escabi, 2008; Lin and Liu, 2010). Therefore, the selective responses for different Q–

r combinations may be a result of integration of changes in the auditory periphery (Lu et 

al., 2001; Lin and Liu, 2010; Heil and Peterson, 2015) as well as central processing (Blake 

and Merzenich, 2002; Valentine and Eggermont, 2004). 

 

Variability of neuronal responses and time course of spectro‐temporal receptive fields 

The temporal width of the receptive fields that we identified in the study is very tight – 

some of the receptive fields contained a positive lobe with a width of <10 ms (Figure 

2.6C). This is consistent with several previous studies that have demonstrated that neuronal 

responses in A1 provide important information about the stimulus at the time scale of 1–

3 ms (Yang et al., 2008; Kayser et al., 2010). Remarkably, our analysis revealed that as the 

droplet presentation rate slowed, the temporal integration window of the receptive field 

became longer. This suggests that under the regime of slower modulations, the droplet 

onsets trigger more sustained responses than under the regime with fast scale of 

modulations. It is plausible that higher‐order statistics, which differ between stimuli with 

short and long Q parameters, may account for this change. 

 

Non‐linear transformation of the stimulus 

The droplet‐based LN model belongs to a greater family of non‐linear linear – non‐

linear models as the droplet‐onset matrix can be thought of as a non‐linear transformation 

of the stimulus (Marmarelis and Marmarelis, 1978; Butts et al., 2011; McFarland et al., 
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2013). We note that this stimulus representation differs from the commonly used cochlear 

gammatone‐like filter bank, constructing a cochleagram (Klein et al., 2000; Elhilali et al., 

2004) in that the gammatone onsets are specified during stimulus construction, and rather 

than being used as filters, are components of the stimulus. In a recent study, we found that 

for A1 responses to another class of stimuli, rat ultrasonic vocalizations, a non‐linear 

transformation of the stimulus into a dominant amplitude‐ and frequency‐modulated 

parametrized tone led to a more accurate prediction of the LN model (Carruthers et al., 

2013). Similarly, in the present study, the representation of the stimulus as a droplet‐based 

matrix provides a more accurate prediction than a spectrogram‐based representation for all 

but the most sluggish stimulus. A similar stimulus was used to model the receptive fields 

of neurons in response to sounds with constant temporal statistics across different 

frequency bands (deCharms et al., 1998), but that approach did not extend to scale‐

invariant sounds, in which the spectro‐temporal coefficient Q is presented across frequency 

bands. While our representation probably oversimplifies the operations that are performed 

within the auditory periphery, it is consistent with previous predictions and experimental 

observations for processing of acoustic stimuli by the cochlea and the auditory nerve 

(Robles and Ruggero, 2001). 

Although LN models have been successfully used to study the linear components 

and receptive fields of neurons throughout the auditory pathway, these models carry 

significant limitations, which pose constraints on the interpretation of our results. In using 

a single‐stage model, it is difficult to pinpoint at which stage of the pathway the 

transformation takes place. On the other hand, more complex models that include several 
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linear and non‐linear terms may preclude a summary of the effect of statistics of the 

stimulus on a subset of response parameters (Ahrens et al., 2008; Christianson et al., 2008). 

Adding the pre‐processing step for representing the stimulus as an ensemble of 

gammatones expands the ability of the LN model to predict the stimulus responses, while 

simplifying the representation of the stimulus. 

 

Generalization of the random droplet stimulus to probe speech and other 

communication signals 

An additional advantage of this stimulus is that the droplet‐like representation can 

be used to construct a representation of an arbitrary complex sound, and that such a 

representation is optimal for sparsely firing neurons (Smith and Lewicki, 2006; Carlson et 

al., 2012). It has been previously demonstrated that the optimal sparse code for representing 

natural sounds consists of unitary scale‐invariant impulses that correspond to the auditory 

revcorr filters (Smith and Lewicki, 2006). The random droplet stimulus can be modified to 

probe specificity of neuronal responses to speech and communication signals. To represent 

a speech signal, the acoustic waveform could be projected on the impulse functions, used 

as band‐passed filters, and represented as ‘spikes’. The droplets used in the present stimulus 

can be viewed as a simplified, generalizable version of such impulses, and would produce 

a similar representation of different environmental sounds, beyond the range of measured 

water sounds. Decomposing a speech acoustic waveform on spectro‐temporal channels 

will then allow us to compute the cross‐correlation functions across those channels. A 
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random droplet signal can be constructed to match the cross‐correlation functions, and the 

responses across different statistical dependencies can be compared. 

Speech contains important information at different time scales, which is relevant 

for different aspects of speech comprehension (Rosen, 1992; Poeppel, 2003). Introducing 

the dependencies at varying time scales into the random droplet stimulus would allow us 

to test neuronal responses to different aspects of speech and vocalization processing. 

 

2.4 METHODS 
 

This study was performed in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol 

was approved by the Institutional Animal Care and Use Committee of the University of 

Pennsylvania. 

 

Animals 

Subjects in all experiments were adult male rats. Rats were housed in a temperature‐ and 

humidity‐controlled vivarium on a reversed 24‐ light–dark cycle with food and water 

provided ad libiditum. 

 

Surgery 

Sprague Dawley or Long Evans adult male rats (n = 5) were anaesthetized with an 

intraperitoneal injection of a mixture of ketamine (60 mg per kg body weight) and 
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dexmedetomidine (0.25 mg/kg). Buprenorphine (0.1 mg/kg) was administered as an 

operative analgesic with ketoprofen (5 mg/kg) as post‐operative analgesic. Rats were 

implanted with chronic custom‐built multi‐tetrode microdrives as previously described 

(Otazu et al., 2009). The animal's head was secured in a stereotactic frame (David Kopf 

Instruments, Tujunga, CA, USA). Following the recession of the temporal muscle, a 

craniotomy and durotomy were performed over the location of the primary auditory cortex. 

A microdrive housed eight tetrodes, of which two were used for reference and six for signal 

channels. Each tetrode consisted of four polyimide‐coated Nichrome wires (Kenthal‐

PalmCoast, FL, USA; wire diameter of 12 μm) twisted together and was controlled 

independently with a turn of a screw. Two screws (one reference and one ground) were 

inserted in the skull at locations distal from A1. The tetrodes were implanted 4.5–6.5 mm 

posterior to bregma and 6.0 mm left of the midline, covered with agar solution (3.5%) and 

secured to the skull with dental acrylic (Metabond) and dental cement. The location of the 

electrodes was verified based on the stereotaxic coordinates, the electrode position in 

relation to brain surface blood vessels, and through histological reconstruction of the 

electrode tracks post‐mortem. The electrodes were gradually advanced below the brain 

surface in daily increments of 40–50 μm. The location was also confirmed by identifying 

the frequency tuning curve of the recorded units. The recorded units’ best frequency, which 

elicited the highest firing rate, spanned the range of rat hearing and was consistent with 

previous studies (Sally and Kelly, 1988). 

 

Stimulus construction 
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To generate scale‐invariant sounds, the sound waveform, y(t), was modelled as a sum of 

droplets, where each droplet, x i(a i, f i, Q, τ i; t) was modelled as a gammatone function 

(Geffen et al., 2011): 

𝑦(𝑡) =  ∑ 𝑥𝑖(𝑎𝑖 , 𝑓𝑖 , 𝑄, 𝜏𝑖; 𝑡) =  ∑ 𝑎𝑖

𝑓𝑖

𝑄
(𝑡 −  𝜏𝑖)𝑒−𝑓(𝑡−𝜏𝑖)/𝑄𝑖 sin(2𝜋𝑓𝑖(𝑡 −  𝜏𝑖))

𝑖𝑖

 

with parameters amplitude, a i, frequency, f i, onset time, τ i, and cycle constant of 

decay, Q, drawn at random from distinct probability distributions. f i was uniform random 

in log‐frequency space, between 400 and 80000 Hz; onset time was uniform random with 

mean rate r. Five distinct 7‐s stimuli were generated, each comprising a different set of 

values of Q and r (in units of droplets/octave/s), chosen from: Stimulus 

1: Q = 2, r med = 530; Stimulus 2: Q = 0.5, r med = 530; Stimulus 3: Q = 8, r med = 530; 

Stimulus 4: Q = 2, r low = 53; Stimulus 5: Q = 2, r high = 5300. The resulting waveforms 

were normalized for equal root‐mean‐square sound pressure level. Further, to make the 

signal punctate within each spectral band, the amplitude distribution of the droplets was 

drawn from an inverse square distribution, 𝑝(𝑧) ~ 
1

𝑧2  (Geffen et al., 2011). The 

distributions of droplet amplitude and frequencies were exactly matched between the 

stimuli – all sounds generated at the same rate were produced with the same random seed. 

Each stimulus was 7 s long, and repeated at least 40 times with an inter‐stimulus interval 

of 1 s. 

 

Neural recordings 
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Neural signals were analysed as previously described (Carruthers et al., 2013, 2015; 

Aizenberg et al., 2015; Natan et al., 2015). Neuronal signals were acquired daily from 24 

chronically implanted electrodes in awake, freely moving rats using a Neuralynx Cheetah 

system. The neuronal signal was filtered between 0.6 and 6.0 kHz, digitized and recorded 

at 32 kHz. Discharge waveforms were clustered into single‐unit and multi‐unit clusters 

using either Neuralynx Spike Sort 3D or Plexon Off‐line Spike Sorter software (Carruthers 

et al., 2013). Discharge waveforms had to form a visually identifiable distinct cluster in a 

projection onto a three‐dimensional subspace (Otazu et al., 2009; Bizley et al., 2010; 

Brasselet et al., 2012). 

The acoustical stimulus was delivered via a magnetic speaker (MF‐1, Tucker‐Davis 

Technologies, Alachua, FL, USA) positioned above the recording chamber. The speaker 

output was calibrated using Bruel and Kjaer 1/4‐inch free‐field microphone type 4939, 

which was placed at the location that would normally be occupied by the animal's ear, by 

presenting a recording of repeated white noise bursts and tone pips between 400 and 

80 000 Hz. From these measurements, the speaker transfer function and its inverse were 

computed. The input to the microphone was adjusted using the inverse of the transfer 

function such that the speaker output was 70 dB (sound pressure level relative to 20 μP, 

SPL) tones, within 3 dB, between 400 and 80 000 Hz. Spectral and temporal distortion 

products were measured in response to tone pips between 1 and 80 kHz, and were found to 

be >50 dB below the SPL of the fundamental (Carruthers et al., 2013). All stimuli were 

presented at 400 kHz sampling rate, using custom‐built software based on a commercially 
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available data acquisition toolbox (Mathworks, Inc., Natick, MA, USA), and a high‐speed 

data acquisition card (National Instruments, Inc., Austin, TX, USA). 

 

Frequency response analysis 

We first presented a stimulus designed to map the frequency response function of the 

recorded units: consisting of 50 tones, each 50 ms long, between 400 and 80 000 Hz, 

logarithmically spaced, at 70 dB SPL, repeated five times. The response strength, which 

combined onset and offset responses, was computed as the mean firing rate of neurons 

during 0–80 ms after tone onset. The best frequency was computed as the frequency of the 

tone that evoked the maximum response strength (Brown and Harrison, 2009; Carruthers 

et al., 2013). 

 

Droplet stimulus representation 

The stimulus, s(f, t), was represented either as the spectrogram of the sound waveform 

(2048‐point spectrogram computed in Matlab) or as a matrix of droplet onset 

time/magnitude. The droplet onset matrix was computed from the stimulus design matrix, 

by binning the droplet onset time into 5‐ms bins, and droplet center frequency into 0.0772‐

octave windows. The value of each point of the matrix was the sum of magnitudes of all 

droplets originating in that bin. 

 

Firing rate and response strength 
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The discharge times in each trial were histogrammed in 1‐ms bins after stimulus onset (0–

8 s), averaged across trials, and smoothed with a Gaussian filter with 3‐ms standard 

deviation. Mean firing rate was computed as the response averaged across the first 7 s of 

stimulus presentation. The response strength was computed as the difference between the 

firing rate during the stimulus and that during the baseline, divided by the standard error 

of the mean of the firing rate at the baseline over trials. The response was considered 

significant if the response strength exceeded 6. 

 

Selectivity index and sparseness 

For each neuron, the selectivity index was computed as the difference between the 

strongest and the mean response strength to the five stimuli for each unit, normalized by 

the strongest response. 

For each neuron, sparseness, S, was computed using the following formula (Weliky 

et al., 2003): 

𝑆 = 1 −
(∑

𝑣𝑖

𝑁𝑖 )
2

∑
𝑣𝑖

2

𝑁𝑖

 

where v i is the firing rate (spikes/s) of a single neuron to the ith stimulus, and n is the total 

number of stimuli (n = 5). S takes a value between 0 and 1, where a higher value indicates 

that the neuron responds to a narrow range of stimuli and a lower value indicates that the 

neuron responds to a broad range of stimuli. 

 

Linear-Non-Linear model fit 
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The response of each unit, r(t), was computed as the probability of emitting a 

discharge within a 5‐ms temporal bin relative to the onset of the stimulus. We fitted a linear 

– non‐linear model (LN model) computed using a standard reverse correlation technique 

(Theunissen et al., 2001; Baccus and Meister, 2002; Escabí and Read, 2003; Geffen et al., 

2007), using a spectrogram or the droplet‐based representation as an input. 

To determine the droplet‐temporal receptive field (DTRF), the stimulus was 

represented in terms of the onset time and maximum amplitude of each droplet within its 

frequency band. One hundred uniformly, logarithmically distributed frequency bands were 

used (range: 0.4–80 kHz). DTRF was computed as the normalized average of the stimulus 

preceding each discharge. 

To determine the spectrogram‐based spectro‐temporal receptive field (STRF), the 

stimulus was represented as a spectrogram of the waveform. We used the Auditory 

Toolbox to compute a cochleagram‐based representation of the stimulus (Lyon, 1982; 

Meddis et al., 1990) with sampling rate of 400 kHz and decimation factor 100. STRF and 

cochleagram‐based receptive fields were computed as reverse‐correlation between 

discharge times and the spectrogram or cochleagram of the stimulus, using ridge regression 

(Theunissen et al., 2001). 

The linear prediction of the firing rate was computed as the convolution of the 

stimulus with DTRF, cochleagram‐based receptive field or STRF. The instantaneous non‐

linearity was computed directly from firing rate vs. linear prediction plot (Baccus and 

Meister, 2002; Geffen et al., 2007). 
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The model parameters were fitted to the data over randomly selected 50% of trials. 

The remaining 50% of trials were used to test the prediction accuracy of the model (Ahn 

et al., 2014). The prediction accuracy of the LN model was assessed by computing the 

coefficient of correlation between the predicted and recorded firing rate. Only neurons with 

correlation coefficient above 0.13 for either droplet‐based or spectrogram‐based prediction 

for at least one stimulus were included in the comparisons for model prediction quality 

over different variants of the model (Figures 2.5, 2.7). This value was chosen as the elbow 

in the histogram of model prediction correlation coefficients, followed by visual inspection 

of the predicted and actual firing rates for the cases close to the chosen threshold. 

 

Receptive field measurement 

The spectral width, temporal width, time to peak and peak frequency of the positive lobe 

of the DTRF were computed using standard methods (Woolley et al., 2006; Shechter and 

Depireux, 2007; Schneider and Woolley, 2010). DTRF was denoised by setting all values 

outside of a significant positive cluster of pixels to 0. To determine the significance of the 

cluster, the z‐score of pixels was computed relative to the baseline values from a DTRF 

generated with scrambled spike trains, using the Stat4ci toolbox (Chauvin et al., 2005). To 

measure temporal parameters of the receptive field, the positive portion of the cluster‐

corrected DTRF was averaged across frequencies and fitted with a one‐dimensional 

gaussian filter. Delay to peak was defined as the center of the gaussian fit. Temporal width 

was defined as twice the standard deviation of the gaussian fit. Likewise, to measure 

spectral parameters of the DTRF, the DTRF was averaged across time, and fitted with a 
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one‐dimensional gaussian. Peak frequency and spectral width were defined as the center 

and 2 × standard deviation of the gaussian fit, respectively. Only DTRFs that produced 

prediction accuracy of 0.13 or higher over the full set of trials for at least one of the stimuli 

were included in the analysis. 

 

Fano factor 

A Fano factor was computed as the mean of the variance of the firing rate over individual 

trials (in 50‐ms bins), divided by the mean firing rate in each bin. Because of the sparseness 

of responses, only ten bins with the highest firing rates were used for each neuron. 

 

Information measured 

Mutual information was computed between the response and the stimulus as 

previously described (Magri et al., 2009; Kayser et al., 2010). The mutual information 

between stimuli S and neural responses V is defined as: 

𝐼(𝑆; 𝑉) =  ∑ 𝑃(𝑠)𝑃(𝑣|𝑠)𝑙𝑜𝑔2

𝑃(𝑣|𝑠)

𝑃(𝑣)𝑣,𝑠
 

where P(s) is the probability of presenting stimulus s, P(v|s) is the probability of observing 

response v when stimulus s is presented, and P(v) is the probability of observing 

response v across all trials to any stimulus. A value of zero would indicate that there is no 

relationship between the stimulus and the response. 

The 7‐s stimulus was separated into seven ‘chunks’, each 1 s long. Mutual 

information was computed for 50 randomly selected responses to each of the stimulus 

‘chunks’, and averaged. Each instance of the response was a randomly selected spike count 
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in six consecutive 2‐ms bins to a stimulus chunk (Kayser et al., 2010). These parameters 

were selected following a pilot calculation of mutual information on a subset of data with 

variable timing and number of bins. 

 

Statistical comparisons 

Samples with n < 50 that did not pass the Shapiro–Wilk test for normality were compared 

using a Wilcoxon signed rank test. Measurements across different stimulus conditions 

with n > 50 were compared via paired Student's t‐test, with a post‐hoc Bonferroni multiple‐

comparison correction when appropriate unless otherwise noted. P < 0.05 was considered 

significant, unless otherwise noted. 
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CHAPTER 3: THE FUNCTION OF CORTICAL 

MICROCIRCUITS IN AUDITORY PROCESSING 

 

Adapted from: Blackwell JM, Geffen MN (2017) Progress and challenges for 

understanding the function of cortical microcircuits in auditory processing. Nature 

communications 8:2165 

 

In auditory processing, a long-standing question has been the function of cortical 

architecture in specific sensory functions. Auditory cortex (AC) is comprised of neurons 

of many different types, providing the ability to perform an astonishing number of 

computations. Even the most basic distinction between neurons into excitatory and 

inhibitory units dramatically expand the computational capacity of a network, and a quest 

in auditory neuroscience has been to unravel the function of specific micro-circuits in 

sound encoding and plasticity. A particularly interesting aspect of cortical connectivity is 

the diversity of inhibitory neurons in their morphology and synaptic properties (Kepecs 

and Fishell, 2014) (Figure 3.1A). Interneurons form reciprocal connections not only with 

the excitatory neurons, but also with each other (Figure 3.1B). Furthermore, the diversity 

of connections between different types of inhibitory interneurons can affect how 

information is processed in the network (Figure 3.1C). 
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Recent advances in optogenetics and imaging (Roux et al., 2014) facilitate the 

exploration of the role of cortical circuits comprised of distinct inhibitory neurons in basic 

auditory functions, such as frequency discrimination and adaptation to temporal stimulus 

statistics. In combination with computational techniques for inhibitory-excitatory network 

analysis, these experimental approaches offer promise for unraveling the microcircuits 

within auditory cortex for representing sounds. Here, we discuss progress and limitations 

in our understanding that emerges from recent investigations of the function of cortical 

micro-circuits in audition. 

 

Role of inhibition in auditory frequency discrimination. 

Spectral differences between sounds are fundamental cues for identifying a 

dangerous sound, be it the sound of an approaching predator or screeching brakes; 

recognizing a familiar speaker; or distinguishing different animal vocalizations (Bregman, 

1990; Feng and Ratnam, 2000; Aizenberg and Geffen, 2013). Frequency selectivity, 

originating with spectral decomposition of the acoustic signal by the cochlea, is a strong 

organizing feature of neuronal responses in the auditory pathway. Neurons in the auditory 

cortex exhibit frequency selectivity (Abeles and Goldstein, 1970; Shamma et al., 1993; 

Wehr and Zador, 2003), responding to a subset of frequencies more strongly than others. 

This selectivity is thought to support perceptual frequency discrimination acuity (Talwar 

and Gerstein, 2001; Tramo et al., 2002; Dykstra et al., 2012) (but see (Ohl et al., 1999; 

Gimenez et al., 2015)): the greater the difference either in individual or population neuronal 

responses for tones of neighboring frequencies, the higher frequency discrimination acuity. 
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Either more narrowly tuned neurons, or neurons with higher signal-to-noise ratio in tone-

evoked responses would support higher frequency discrimination acuity, as the difference 

in responses to neighboring tones will be higher in these neurons than in broadly tuned/low 

signal-to-noise neurons. One of the most extensively tested roles of cortical inhibition in 

auditory processing has been in shaping frequency selectivity of excitatory neurons. 

Inhibition may sharpen frequency tuning and increase the signal-to-noise ratio in excitatory 

tone-evoked responses by suppressing spontaneous excitatory activity; alternatively, either 

broad or co-tuned inhibitory inputs may sharpen frequency selectivity due to the rectifying 

non-linear integration (such as the spiking non-linearity) (Liu et al., 2007; Wu et al., 2008; 

Schinkel-Bielefeld et al., 2012). Differential timing of excitatory and inhibitory co-tuned 

inputs can further refine frequency tuning of excitatory neurons (Oswald et al., 2006). 

Experimental evidence from pharmacological experiments and intra-cellular recordings 

has supported either effect (Chen and Jen, 2000; Wang et al., 2000; Wehr and Zador, 2003; 

Oswald et al., 2006; Wu et al., 2008; Tan and Wehr, 2009). An interesting possibility is 

that distinct inhibitory neuronal cell types may contribute differentially to shaping 

frequency selectivity. The development of optogenetic manipulations has promised to 

disambiguate the effects of different specific neuronal cell types (Lee et al., 2012).  
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Figure 3.1 
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Figure 3.1 Simplified views of cortical circuits. A. Diagram of excitatory-inhibitory circuit 

with recurrent connections. Theoretical and experimental studies demonstrate that 

inhibition stabilizes between excitatory and inhibitory neurons in the auditory cortex. B. 

Inhibitory-excitatory network can be extended to include several interneuron subtypes. C. 

Schematic diagram of connectivity between select neurons in the auditory cortex (note that 

layer-specific information is omitted here): Exc: Excitatory neurons; PV: parvalbumin-

positive interneurons; SOM: somatostatin-positive interneurons; VIP: vasopressin-positive 

interneurons; TC: Thalamo-cortical projection neurons. All neuron types receive additional 

inputs from other brain areas, which were omitted from the diagram for simplicity. Open 

circles: excitatory synapses; closed circles: inhibitory synapses. Solid lines indicate 

dominant projections; dashed lines indicate occasional connections. 
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A series of studies that optogenetically manipulated the most common interneuron 

type, parvalbumin-positive interneurons (PVs) confirmed that inhibitory neurons modulate 

frequency tuning in AC: Activating PVs enhanced feedforward connectivity between 

excitatory units. The spontaneous activity of excitatory neurons was decreased, and the 

frequency tuning width was narrower, increasing frequency selectivity (Hamilton et al., 

2013). Consistently, PV activation also increased the strength of tone-evoked responses 

and improved behavioral frequency discrimination acuity, while suppression decreased the 

strength and tuning width of the tone-evoked responses in putative excitatory neurons, and 

drove an impairment in behavioral frequency discrimination acuity (Figure 3.2A-C) 

(Aizenberg et al., 2015). 

But are the effects different between distinct interneuron types? There is a range of 

interneuron classifications available, with at least two major groups of neurons emerging 

besides PVs, somatostatin (SOMs), and serotonin receptor 5HT3aR, of which a major 

group are also positive for vassopressin (VIPs) (Markram et al., 2004; Rudy et al., 2011; 

Kepecs and Fishell, 2014). Although each interneuron class includes a number of different 

cell types and may change with development and experience (Spitzer, 2017), these classes 

of neurons have received prominent attention, as they approximate a canonical cortical 

circuit (Figure 3.1), and due to availability of transgenic mouse lines. Optogenetic 

activation of either PVs or SOMs exerted a similar mix of effects on tone-evoked activity 

in excitatory cells, with activation providing either multiplicative scaling, as would be 

expected from co-tuned inhibition, or linear amplification, as would be expected from 

broad inhibitory inputs (Seybold et al., 2015).  This variability in combination with spiking 

threshold non-linearity and strength of suppression across different neurons can both 
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amplify and sharpen tuning properties of excitatory neurons (Seybold et al., 2015). On 

average, suppressing interneurons had differential effects: suppressing SOMs increased the 

gain of excitatory neurons, whereas suppressing PVs weakened frequency tuning (Phillips 

and Hasenstaub, 2016). Nonetheless, as with activation, in individual neurons inactivation 

of either type of interneuron showed a range of effects, thus supporting a number of models 

for interactions between PVs, SOMs and excitatory neurons. Measuring the tuning widths 

of individual PVs, excitatory neurons and SOMs neurons furthermore did not yield clear 

distinctions (Moore and Wehr, 2013; Li et al., 2015), potentially because these classes of 

neurons are themselves comprised of multiple cell types. These differences may be 

exacerbated across studies by the various biases toward specific subclasses by different 

recording techniques. Indeed, a recent review of SOMs estimated over 100 subtypes of 

SOM neurons (Yavorska and Wehr, 2016). Thus, whereas the optogenetic perturbations of 

PVs and SOMs confirmed their role in shaping frequency tuning in the auditory cortex, the 

results were consistent with the range of results in the pharmacological literature, and a 

clear distinction between the function of the two interneuron subtypes in frequency tuning 

has not emerged. 

By targeting the electrophysiological recordings to specific cell types, it has begun 

possible to assess the diversity of neuronal responses in both stimulus selectivity and 

timecourse. Interestingly, in the temporal domain, responses of PVs had faster onsets on 

average than excitatory neurons, while SOM neurons exhibited slower response onsets than 

excitatory neurons (Moore and Wehr, 2013; Li et al., 2015). Such differential activation 

timing may provide an additional mechanism for sharpening of tone-evoked responses in 

AC (Denève and Machens, 2016): the differences between inhibitory and excitatory 



 88 

 

response onsets would drive more precise response onsets over the excitatory population. 

The timing differences in suppression between PVs and SOMs could support a number of 

other functional effects, for example when applied to suppression of responses due to the 

stimulus history. These observations, facilitated by targeted recordings, provide 

information about specific neuronal synaptic parameters that should inform the design of 

computational models. Future studies are required for understanding whether the timing 

differences in tone-evoked responses of PVs and SOMs results in distinct function of these 

neurons in frequency discrimination. 
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Figure 3.2 
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Figure 3.2 Inhibitory interneurons affect auditory cortical responses and behavior. 

Activating PVs with ChR2 A increases tone-evoked responses and improves behavioral 

frequency discrimination acuity, whereas suppressing PVs using Arch has the opposite 

effect B. C Direct activation of excitatory neurons with ChR2 does not change tone-evoked 

responses or behavioral frequency discrimination acuity on average. A-C. Left: diagram of 

optogenetic manipulation. Center: Mean tone-evoked response magnitude under light-off 

and light-on conditions based on neuronal recordings. Right: Behavioral response to a shift 

in frequency under light-off and light-on conditions. Adapted from (Aizenberg et al., 

2015). 
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Role of inhibition in adaptation to stimulus statistics 

Time processing is particularly important for auditory perception. Perception is 

formed as much by the present stimulus as by the history of preceding stimuli; it is an 

interaction between the representation of new events and memory of past events. Sensory 

cortex constantly reshapes responses to present stimuli dependent on the context. 

Responses of nearly all neurons in the auditory cortex (95%) change with stimulus 

temporal history, exhibiting stimulus-specific adaptation (SSA) (Ulanovsky et al., 2003; 

Natan et al., 2015). Typically, the firing rate is reduced in response to repeated stimuli 

through a process that involves integration of stimulus statistics over time (Ulanovsky et 

al., 2003; Natan et al., 2015). Inhibitory-excitatory networks support this transformation, 

and PVs and SOMs were found to play a differential role in cortical adaptation. SSA is 

quantified as the index of change in the firing rate in response to a rare ‘deviant’ tone 

presented as part of a sequence with another common ‘standard’ tone, at varying 

presentation probabilities (for example, 10%, deviant versus 90% standard). SSA is 

thought to be supported by a combination of thalamo-cortical depression and intra-cortical 

inhibitory-excitatory circuit effects (Nelken, 2014). Indeed, suppressing either PVs or 

SOMs optogenetically increased the strength of adaptation in excitatory neurons (Natan et 

al., 2015) (Figure 3.3A, B). However, PVs and SOMs differed in their contribution to 

adaptation: suppression of SOMs evoked a stimulus-selective increase in excitatory 

responses to the standard, but not the deviant tones, whereas suppressing PVs led to a non-

specific response increase. When examining the effect of SOM suppression on excitatory 

responses to repeated presentations of the standard tones following a deviant tone, 

disinhibition of the excitatory response increased with repeated presentations (Figure 
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3.2A-C), further confirming that SOMs provided a selective inhibitory contribution to 

stimulus-specific adaptation. PV and SOM interneurons themselves both exhibit SSA 

(Chen et al., 2015; Natan et al., 2015), so that the unique contribution of SOMs in stimulus-

specific inhibition of excitatory responses was possible through selective suppression of 

this cell type.  

Further work revealed that stimulus specific inhibition mediated by SOMs persisted 

over a longer time scale, in habituation following passive exposure to sounds over several 

days (Kato et al., 2015) (Figure 3.3C, D). Whereas the excitatory and PV neuronal 

responses to habituated sounds were reduced over several weeks of exposure, SOM 

responses increased, as did inhibition from SOMs. Thus, in temporal domain, the function 

of SOMs is consistent with regulation of the gain of cortical responses to sounds based on 

their behavioral prominence or relevance. SOMs thus contribute to adaptation and 

habituation, acting on several time scales to control the gain in response to commonly 

presented acoustic stimuli, exerting a more specific modulation than PVs. Such modulation 

of excitatory activity may contribute to the more general context-specific gain modulation 

and adaptation observed within AC (Williamson et al., 2016). As discussed earlier, the 

temporal history of the stimulus accounts for the differential function of interneuron 

modulation. This functional dissociation likely underlies other temporally differentiated 

functions, such as integration of stimulus sequences, or more general computation of 

spectro-temporal statistical regularities in sound sequences. A promising direction for 

future studies would be to continue the exploration of the function not just over the 

instantaneous responses to tones, but in understanding how, over a range of time scales, 

inhibition may modulate dynamic changes in sound response properties.  
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Inhibitory cascades within the auditory cortex 

 While the above studies mainly considered the effects of PVs and SOMs on 

excitatory neurons, understanding how PVs and SOMs act within a cortical microcircuit is 

of particular importance given the modulatory roles these interneurons play when targeted 

by feedback from other brain regions and different neuromodulatory projections. In a 

circuit that supports reduction of auditory responses during locomotion, a subset of 

secondary motor cortex neurons, which are active during movement, suppresses excitatory 

tone-evoked responses in AC by activating PVs, which in turn suppress excitatory neurons 

(Nelson et al., 2013; Schneider et al., 2014). Additionally, PVs are involved in inter-

hemispheric information integration, as callossal projections terminate on PVs, which 

suppress cortico-cortical excitatory neurons (Rock and Apicella, 2015). PVs and SOMs 

can be activated by oxytocin, which likely supports the sharpening of responses to pup 

calls observed in mothers (Marlin et al., 2015). PVs also shape cortical responses to tones 

coupled with aversive stimuli (Letzkus et al., 2011), as part of circuit, which includes 

projections from the amygdala to layer 1 neurons in AC. Thus, projections from cognitive 

and emotional brain centers likely preferentially target inhibitory interneurons and may 

affect behavioral and emotional processing.  

Other inhibitory neuronal subtypes further contribute to inhibitory cascades in the 

cortex. For example, there is extensive evidence that PVs and SOMs are regulated by VIPs. 

Cortical VIP interneurons are recruited by projections from other brain regions (Lee et al., 

2013; Zhang et al., 2014) and can be modulated by cholinergic projections (Fu et al., 2014; 
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Poorthuis et al., 2014; Koukouli et al., 2016; Kuchibhotla et al., 2017) allowing for external 

control of these local microcircuits. In the auditory cortex, engagement in an auditory task 

enhanced the activity of PVs, SOMs, and VIPs, attributed to cholinergic modulation 

(Kuchibhotla et al., 2017). Activation of VIP interneurons disinhibited excitatory responses 

(Pi et al., 2013), consistent with an additional inhibitory synapse between VIPs, another 

inhibitory neuron and excitatory neuron. Indeed, in vitro activation of VIPs suppresses PV 

and SOM activity, thereby providing a mechanism for delayed activation of excitatory 

tone-evoked responses. Interestingly, VIP neurons were driven by sounds at much lower 

intensities than either PV or SOM neurons (Mesik et al., 2015). The increased excitatory 

neuronal activity due to VIP activation may contribute to increased gain of sensory inputs, 

although it remains to be determined whether the relative timing of disinhibition may 

provide an increase in gain, rather than nonspecific elevation in cortical activity. VIP 

neurons have also been implicated in integration of cross-modal activity, as responses of 

VIPs in the visual cortex are suppressed by sound (Ibrahim et al., 2016). This wide range 

of effects of VIP activation suggests that the connections between VIPs and inhibitory and 

excitatory neurons are likely modulated in a task- and modality- specific fashion, and 

therefore the interpretation of their function should inherently be studied in a specific 

statistical and behavioral context. To understand whether and how these circuits integrate 

with each other and what biophysical constraints are required for their function, the results 

of these studies need to be incorporated in a circuit-level model that includes interactions 

between the different circuits. 

 

Caveats in optogenetic result interpretation 
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 In interpreting these rich and varied experimental results, it is important to account 

for limitations and potentially confounding factors: An important caveat to grouping the 

interneurons into classes based on molecular markers is that each of these classes are 

comprised of multiple interneuron subtypes, and those subtypes are distributed 

differentially across the different cortical laminae. For instance, PV interneurons are 

comprised of not only two already diverse large groups of neurons, basket and chandelier 

cells, but also of a number of other neurons (Kepecs and Fishell, 2014). SOM interneurons 

include Martinotti cells, whose axons target the distal dendrites of pyramidal neurons, as 

well as at least two other classes of layer 2/3 targeting neurons (McGarry et al., 2010). A 

recent review estimated between 4 and 100 subtypes of SOMs depending on classification 

method, such as differential labeling and projection patterns (Yavorska and Wehr, 2016). 

Incorporating some specific aspects of neuronal morphology, such as by building multi-

compartment neuronal models and accounting for expression of different molecules 

involved in neuronal communication, may prove essential for differentiating between the 

effects of dendrite-targeting SOMs and cell-body targeting interneurons. Indeed, the 

excitatory-inhibitory circuit composition likely differs between cortical layers with some 

neuronal types being overrepresented and targeting different parts of the excitatory cell 

body, leading to differences in integration and non-linearity (DeFelipe et al., 2013; Fino et 

al., 2013; Naka and Adesnik, 2016). Different recording techniques, such as extracellular 

recordings of activity of optically tagged neurons versus two-photon guided patch-clamp 

recordings might be biased toward different subclasses within the optogenetically 

identified groups and different cortical sublayers, potentially reporting conflicting results 

on the response properties of different cell types (Moore and Wehr, 2013; Li et al., 2015). 
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By measuring a number of essential connectivity parameters, the strength and time constant 

of synapses between different neuronal types within different layers, it should be possible 

to further develop models to extrapolate the results across different cortical connectivity 

patterns. In turn, electrophysiological experiments, including multiple-neuron intracellular 

recordings, could be used to establish the specific parameters for connectivity between 

different neuronal cell types (Song et al., 2005). The computational approaches to 

implement such detailed biophysical models have been developed, and, as detailed in the 

next section, a small number of studies started using these computational frameworks to 

build models incorporating multiple neuronal subtypes in a variety of circuit motifs. 
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Figure 3.3 
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Figure 3.3 Specific inhibitory neuron type mediates auditory adaptation. A. Top: The 

effect of SOM and PV inactivation on stimulus-specific adaptation to frequent tones was 

tested using an oddball stimulus, with two tones at 10-90 ratio, light every 5th tone. 

Bottom: The mean firing rate (FR) during repeated tones adapted with successive 

presentations of the standard tone. B. SOMs provide stimulus-specific inhibition, as the 

effect of SOM suppression increased with repeated standard tones. PVs provided constant 

inhibition regardless of adaptation. A, B adapted from (Natan et al., 2015). C. Passive 

exposure to a tone stimulus lead to a decrease in excitatory and an increase in inhibitory 

activity over 5 days. Left: Calcium activity was imaged using two-photon microscopy in 

populations of identified inhibitory and excitatory neurons before and after subjecting the 

mouse to prolonged exposure to tones. Neuronal activity was measured as spike counts 

inferred from the imaged fluorescence signal. Right: Change index of the mean activity in 

response to the tone to which the mouse was exposed, averaged over populations of 

excitatory (red) or inhibitory (blue) neurons, over days since prolonged tone exposure 

onset. Mean excitatory activity decreased with exposure, whereas mean inhibitory activity 

increased. D. Among the inhibitory neurons, the activity of SOMs increased following 

passive tone exposure, whereas the activity of PVs decreased. Mean z-scored time course 

of Calcium activity of SOMs or PVs in response to a tone at day 1 (black traces) and day 

5 (blue traces). C, D adapted from (Kato et al., 2015). 
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Computational models for excitatory-inhibitory interactions. 

The approaches for incorporating inhibition into modeling sensory cortical function 

have ranged from implementing massive inhibition, forming inhibition-stabilized networks 

(Tsodyks et al., 1997; Latham and Nirenberg, 2004; Ozeki et al., 2009) to fine-tuning 

parameters of individual neuronal feedback circuits (Sussillo, 2014). Indeed, the large 

range of response profiles to activation of interneurons in inter-connected networks was 

extensively studied in the context of inhibition-stabilized networks that interpret the 

function of inhibition as supporting “stability” in neuronal pattern discharges across 

neuronal population activity (Aizenberg et al., 2015; Seybold et al., 2015). Stabilization of 

excitatory neuron activity by recurrent inhibition can be explained by analyzing the 

dynamics of firing rates of excitatory and inhibitory populations over time, including 

feedback propagation of activity (Figure 3.4A). This relatively simple model also 

explained heterogeneous findings from experiments testing the effect of increasing 

inhibition on network activity (Aizenberg et al., 2015; Seybold et al., 2015; Phillips and 

Hasenstaub, 2016) as providing input to inhibitory neurons resulting in increased activity 

of excitatory neurons in a model of an excitatory-inhibitory network (Tsodyks et al., 1997). 

Additional studies of inhibition-stabilized circuits focused on the role of inhibition in 

improving tuning of neurons for specific sensory features, such as orientation selectivity in 

the visual cortex using more abstract supra-linear networks with feedback inhibition (Rubin 

et al., 2015), and the ability to tightly track the stimulus fluctuations in a balanced 

excitatory-inhibitory regime (Denève and Machens, 2016). Extending the inhibitory-

excitatory network model to incorporate the connectivity patterns between different types 
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of interneurons, including PVs, SOMs and VIPs, required a different set of constraints for 

explaining cortical tuning properties than when only one inhibitory subtype was used 

(Litwin-Kumar et al., 2016) (Figure 3.1B). Moreover, the resulting network did not require 

the massive inhibitory feedback consistent with inhibition-stabilized networks to model the 

observed effects for tuning properties. This was particularly important for understanding 

the tuning properties of neurons in layers 2/3 of the visual cortex, where only weak 

inhibition was identified experimentally. 

 In the auditory cortex, simpler models have already proved useful for understanding 

the heterogeneity of the effects of optogenetic manipulations. A static model illustrated the 

origin of the heterogeneous effects of optogenetic perturbations of PVs and SOMs on 

excitatory neuronal activity by shifting the threshold as well as the strength of inhibitory-

excitatory conductances (Seybold et al., 2015). This model demonstrated plausibility that 

linear scaling and additive effects are produced by the same underlying mechanism – 

addition followed by rectification. A mutually coupled excitatory-inhibitory firing rate 

model reproduced the differential effects of manipulating PVs and excitatory neurons on 

the baseline and tone-evoked responses by adjusting the non-linearity at the inhibitory-

excitatory synapse (Aizenberg et al., 2015). Differential synaptic strength of connections 

between the excitatory and inhibitory neurons could account for the differences between 

SOM and PV effects on adaptation in excitatory neurons, including flat and saturating non-

linearities for synapses between PVs or SOMs and excitatory neurons, respectively (Figure 

3.4B). The principles outlined by the simplified models illustrate that by manipulating a 

specific aspect of input integration, the same wiring pattern can produce the heterogeneous 

results observed experimentally.  
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Several additional studies have used similar approaches to explore the role of 

distinct interneurons in cortical processing across sensory modalities. Using a combination 

of anatomical and optogenetic data in the somatosensory cortex (Avermann et al., 2012), a 

model could identify correlations in connection strengths between different neuronal 

subtypes (Tomm et al., 2014). Furthermore, a model of mutually coupled, fast-spiking and 

non-fast-spiking interneurons, revealed the limitations in the role of fast-spiking neurons 

in cortical oscillations (Vierling-Claassen et al., 2010). Beyond the sensory cortex, model 

circuits incorporating several inhibitory interneuron subtypes exhibited recurrent memory 

across a number of biophysically plausible configurations (Merolla et al., 2014; Markram 

et al., 2015). Indeed, recurrence in neuronal circuits increased the network’s capacity to 

efficiently store and recall memories (Wang et al., 2004), as originally proposed (Hopfield, 

1982). Measuring whether and how inhibitory neuronal populations control and contribute 

to recurrent activity using recently developed methods for efficient model training 

(Sussillo, 2014) should prove a fruitful way forward for understanding not only the key 

cell types that are affected by optogenetic perturbations, but also the time scales of their 

modulatory effects.  

The temporal impact of optogenetic manipulations on auditory activity might differ 

between opsins, and thus have variable behavioral effects (Guo et al., 2015). Expanding 

current models to account for the effects of inhibition at a circuit level will clarify how 

inhibition shapes trajectories of neuronal population dynamics (Loewenstein et al., 2015). 

In a complex network, where stimulus-evoked activity and neuronal connectivity patterns 

are highly heterogeneous (Bandyopadhyay et al., 2010; Rothschild et al., 2010; Aizenberg 

et al., 2015), computational models incorporating mutually coupled excitatory-inhibitory 
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cells can reveal network features that may otherwise be obscured by results of 

electrophysiological and imaging experiments, which are biased toward stronger 

connections (Chambers and MacLean, 2015). Recurrent circuit dynamics may be the 

dominating feature of cortical circuits, and the interpretation of results based on 

optogenetic perturbations need to incorporate feedback dynamics in their design (Aljadeff 

et al., 2015; Landau et al., 2016; Rajan et al., 2016). 

As the number of simultaneously observed neurons has increased with recent 

advances in functional imaging and dense electrophysiological recording techniques, there 

is a growing need to efficiently represent how units in a large population relate to one 

another and how these relations change over time (Yatsenko et al., 2015). To meet these 

demands, current computational approaches address the dynamics of neuronal populations 

that exhibit non-random dynamics and form higher-degree connectivity (Song et al., 2005; 

Ko et al., 2013; Timme et al., 2016). The study of the structure of excitatory-inhibitory 

connectivity can be combined with synaptic organizational principles to understand the 

basis for cortical dynamics (Ocker et al., 2015; Landau et al., 2016).  

One such approach is to apply principles from network science to tracking the 

dynamics of neuronal cortical populations (Figure 3.4C). Network science has been 

extensively used to characterize large-scale brain networks, revealing modular, 

hierarchical or random organization (Bassett et al., 2008, 2011). There is extensive 

evidence that neuronal populations exhibit stereotyped, temporally precise tone-activated 

patterns of activity in AC (Harris et al., 2011), which are repeated during spontaneous 

firing, reflecting stereotypical population activity organization (Luczak et al., 2009). Such 

population activity patterns may differ between the synchronized and the desynchronized 
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state of the cortical network (Pachitariu et al., 2015), and identifying interconnected 

modules using network science methods can reveal whether and how the modules are 

transformed between the different brain states. Shared variability in neuronal populations 

can potentially be explained by distinct patterns of connections between neurons (Lin et 

al., 2015), whereas diverse response patterns may correspond to different coupling patterns 

between single neurons and neuronal populations (Okun et al., 2015) – network analysis 

of activity in cortical slices already identifies functional modules, that exhibit similar 

organization across sensory cortex (Sadovsky and MacLean, 2013; Gururangan et al., 

2014) (Figure 3.4C). Two-photon imaging of calcium activity in large networks of neurons 

identified similar population activity modes in the auditory cortex (Deneux et al., 2016). 

Such modes correlated with behavioral responses (Bathellier et al., 2012). Analyzing 

neuronal activity in terms of population firing rate or activity variability discounts the 

complex temporal structure of these cellular networks, and thus might underestimate the 

information contained in neuronal responses (Pachitariu et al., 2015; Kuczala and Sharpee, 

2016). Network analysis can furthermore reveal whether and how the neurons within 

functional modules reorganize with adaptation and learning, and whether specific 

inhibitory neurons assume specialized roles within networks. 

 

Outlook/future directions. 

The diversity of these computational approaches for modeling the function of 

excitatory – inhibitory circuits and population neuronal activity in cortical sensory 

processing provides for the basic framework for moving forward in identifying the cortical 
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circuits involved in auditory scene analysis. The complex effects of network interactions 

can only partially be understood in the context of natural audition when tested with a 

limited set of isolated stimuli. To the extent that we can view audition through the lens of 

temporal processing, recurrent inhibitory-excitatory networks can yield unique capabilities 

for storing and recalling complex temporal sequences, detecting unexpected events, and 

recognizing patterns of activation characteristic of more complex stimuli (Aljadeff et al., 

2015; Landau et al., 2016; Rajan et al., 2016), such as speech/vocalizations/music. The 

models should be fitted on data from experiments that would incorporate progressively 

complex acoustic stimuli; constructed either by varying spectro-temporal complexity, 

based on the scale-invariant statistical structure of environmental sounds (Geffen et al., 

2011; Gervain et al., 2014), or using statistical methods for shaping random signals to 

match different sound textures (McDermott and Simoncelli, 2011).  Taking advantage of 

the full computational toolset provided by inhibitory-excitatory network modeling, 

recurrent network dynamics and network science will allow us to tackle the complex 

richness of cortical circuits and generalize results across sensory modalities and behavioral 

paradigms.  

 The use of dynamic analysis tools to explore sets of possible neuronal activity 

regimes makes inhibitory-excitatory networks a powerful framework for testing 

hypotheses on population responses in the cortex. The expansion of these models to include 

different cell types and wiring schemes in combination with analysis of the network 

structure dynamics is required for understanding the functions and sources of variability 

within specific neuronal populations. In order to fully understand cortical network function, 
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our computational models must take into account the field’s wealth of data concerning 

neuronal subtypes, how they are connected locally and to other areas, how they respond to 

stimuli, and how optogenetic manipulation perturbs them in order to make testable 

predictions about how these networks behave. Thus, modeling studies need to be combined 

with a range of experimental techniques that would allow measurement of the strength of 

synaptic connections between neurons within specific layers and more precisely defined 

cellular classes. 
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Figure 3.4 
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Figure 3.4 Progressively complex view of cortical dynamics. A. Diagram of the time 

course of inhibition-stabilized recurrent dynamics. Adapted from (Ozeki et al., 2009). B. 

Reduced model of mutually coupled Excitatory (Exc) – PV – SOM network. Exc rate is a 

non-linear – linear function of excitatory synaptic inputs (filled circles) evoked by the tone, 

as well as inhibitory inputs (open circles) from PVs and SOMs. PV and SOM firing rate is 

a non-linear – linear function of excitatory synaptic inputs from excitatory cells and tone-

evoked excitatory inputs. Optogenetic manipulation by Arch is modeled as an inhibitory 

synaptic input. Adapted from (Natan et al., 2015). C. Left: network modules identified 

based on the correlation network structure. Adapted from (Deneux et al., 2016). Right: 

Diagram of the time course of transformation in brain network structure with learning: 

Nodes belonging to the same module are colored in the same color. Black lines refer to the 

edges of the network. Note that with learning, the connectivity within and between modules 

is transformed. Adapted from (Bassett and Sporns, 2017). 
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CHAPTER 4: THE ROLE OF FEEDBACK FROM THE 

AUDITORY CORTEX IN SHAPING RESPONSES TO 

SOUNDS IN THE INFERIOR COLLICULUS 

 

Adapted from: Blackwell JM, Rao W, De Biasi M, Geffen MN (2019) The role of 

feedback from the auditory cortex in shaping responses to sounds in the inferior 

colliculus bioRxiv doi: 10.1 101/584334 

 

ABSTRACT 

The extensive feedback from the auditory cortex (AC) to the inferior colliculus (IC) 

supports critical aspects of auditory learning, but has not been extensively characterized. 

Furthermore, it remains unknown whether and how intra-cortical processing of auditory 

information propagates to earlier stages in the auditory pathway. Previous studies 

demonstrated that responses of neurons in IC are altered by focal electrical stimulation and 

pharmacological inactivation of auditory cortex, but these methods lack the ability to 

selectively manipulate the activity of projection neurons. Combining viral technology with 

electrophysiological recordings, we measured the effects of selective optogenetic 

activation or suppression of cortico-collicular feedback projections on IC responses to 

sounds. Activation of cortico-collicular feedback generally increased spontaneous activity 

and decreased stimulus selectivity in IC, whereas suppression of the feedback did not affect 
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collicular activity. To further understand how microcircuits in the auditory cortex may 

control collicular activity, we tested the effects of optogenetically modulating different 

cortical neuronal subtypes, specifically parvalbumin-positive (PV) and somatostatin-

positive (SOM) inhibitory interneurons. We found that, despite strong effects on sound-

evoked responses across the layers of AC, activating either type of interneuron did not 

affect IC sound-evoked activity. However, suppression of SOMs, but not PVs, weakly 

increased spontaneous activity in IC. These findings suggest that shaping of sound 

responses mediated by cortical inhibition does not affect sound processing in the IC of 

passive awake mice. Combined, our results identify that activation of excitatory 

projections, but not inhibitory-driven increases in cortical activity, affects collicular sound 

responses. 

 

4.1 INTRODUCTION 

A common view of information processing within a sensory pathway is that the 

information about the stimulus ascends along the hierarchy of sensory areas, with each area 

performing a computation increasing in complexity. In this framework, the role of 

descending feedback between these nuclei is often overlooked. In the auditory system, the 

auditory cortex (AC) sends extensive feedback to nuclei earlier in the auditory pathway, 

including the auditory thalamus (Winer et al., 2001; Alitto and Usrey, 2003; Rouiller and 

Durif, 2004) and the auditory midbrain (Saldaña et al., 1996; Winer et al., 1998; Doucet et 

al., 2003; Bajo and Moore, 2005; Coomes et al., 2005; Bajo et al., 2007). Whereas the way 

the information is processed and integrated between brain areas along the ascending 
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pathway has been extensively studied, the mechanisms by which information processing is 

shaped via the descending feedback pathway remains poorly characterized. In this study, 

we examined how modulation of activity in the auditory cortex, selectively targeting 

excitatory projections or inhibitory interneurons, shapes spontaneous activity and sound-

evoked responses in the auditory midbrain nucleus, the inferior colliculus (IC).  

Previous studies demonstrated that neuronal responses to sounds in IC are altered 

by focal electrical stimulation and inactivation of AC. Cortical stimulation shifted tuning 

properties of IC neurons toward those of the stimulated neurons in frequency (Jen et al., 

1998; Yan and Suga, 1998; Ma and Suga, 2001a; Jen and Zhou, 2003; Yan et al., 2005; 

Zhou and Jen, 2007), amplitude (Jen and Zhou, 2003; Yan et al., 2005; Zhou and Jen, 

2007), azimuth (Zhou and Jen, 2005, 2007), and duration (Ma and Suga, 2001b). 

Stimulation of AC had mixed effects on sound-evoked responses in IC, increasing and 

decreasing responses in different subpopulations of neurons (Jen et al., 1998; Zhou and 

Jen, 2005). Consistent with this effect, different patterns of direct cortico-collicular 

activation enhanced or suppressed white noise-induced responses in IC (Vila et al., 2019). 

AC inactivation studies, on the other hand, found less consistent effects on IC responses. 

Whereas pharmacological inactivation of AC caused a shift in best frequency in IC neurons 

(Zhang et al., 1997), several studies show inactivation of AC had no effect on frequency 

selectivity in IC (Jen et al., 1998), but rather modulated sound-evoked and spontaneous 

activity (Gao and Suga, 1998; Popelář et al., 2003, 2016). Cortico-collicular feedback is 

critical to auditory learning, specifically learning to adapt to a unilateral earplug during 

sound localization (Bajo et al., 2010). Pairing electrical leg stimulation with a tone induced 

a shift in best frequency of IC neurons, while presentation of a tone alone was insufficient 
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(Gao and Suga, 1998, 2000). Furthermore, cortico-collicular feedback was necessary to 

induce running in response to a loud noise (Xiong et al., 2015).  

In AC, interactions between excitation and inhibition shape sound responses in 

excitatory cell populations. Modulating activity of different inhibitory interneuron 

subtypes in AC narrowed frequency tuning and attenuated tone-evoked responses of 

excitatory neurons, while suppression had the opposite effect (Hamilton et al., 2013; 

Aizenberg et al., 2015; Seybold et al., 2015; Phillips and Hasenstaub, 2016). Electrical 

stimulation of AC, cooling or pharmacological inactivation affected the amplitude of 

sound-evoked responses and shifted the best frequency of neurons in IC, but it remains 

unknown how specific these effects are to direct feedback and whether the effects of 

intra-cortical inhibition propagate to the IC. 

The goal of the present study is to examine the role of cortico-collicular projections 

in shaping sound responses in IC. We used viral transfection methods to selectively drive 

excitatory or inhibitory opsin expression in IC-projecting neurons in AC. We then recorded 

neuronal activity in IC and tested how activation or suppression of cortico-collicular 

projections affected spontaneous activity and sound-evoked responses in IC neurons. IC 

receives glutamatergic (Feliciano and Potashner, 1995) inputs from neurons originating 

predominantly in layer 5 of AC (Saldaña et al., 1996; Winer et al., 1998; Doucet et al., 

2003; Bajo and Moore, 2005; Coomes et al., 2005; Bajo et al., 2007). As previously 

mentioned, inhibitory interneurons shape sound response of excitatory neurons in AC. To 

better understand whether and how intra-cortical network interactions propagated to IC, 

we  manipulated the activity of the two most common inhibitory neuronal subtypes in AC, 

Parvalbumin-(PV) and Somatostatin-(SOM) positive interneurons (Rudy et al., 2011).  We 



 124 

 

then recorded neuronal activity in AC and IC and tested how activation or suppression of 

AC inhibitory interneurons affected spontaneous activity and sound-evoked responses in 

IC neurons and compared this to how these manipulations affected activity in AC. This 

study elucidates how descending auditory feedback shapes downstream auditory 

processing. 

 

4.2 RESULTS 

Activating direct cortico-collicular feedback modulates activity in the inferior 

colliculus 

Our first goal was to characterize the effects of activating the direct cortico-

collicular projections on tone-evoked responses in IC. We used a viral transfection strategy 

to deliver either an excitatory opsin, ChannelRhodopsin2 (ChR2) or an inhibitory opsin, 

ArchaerhodopsinT (ArchT), bilaterally, specifically to the neurons in the auditory cortex 

which project to the inferior colliculus. To achieve such specificity, we injected a 

retrograde virus that encoded Cre recombinase (Retro2 AAV.Cre) in IC. This retrograde 

viral construct ensured that neurons projecting to IC expressed Cre recombinase a few 

weeks later. At the same time, we injected a virus that encoded ChR2 or ArchT in reversed 

fashion under the FLEX cassette in AC (AAV.Flex.ChR2, AAV.Flex.ArchT). This 

strategy ensured that only neurons expressing Cre recombinase in the auditory cortex 

would express ChR2 or ArchT in AC. Therefore, opsin was expressed exclusively in AC-

IC projecting neurons (Figure 4.1 A,B). Shining light over AC of these mice would 

therefore directly activate or suppress only these cortico-collicular feedback projections. 
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First, we measured and quantified neuronal spiking in IC in response to stimulation 

or suppression of cortico-collicular projections. To activate these neurons, we shone blue 

laser over AC, recorded neuronal activity in IC, and quantified the effects of manipulating 

feedback in the absence of sound (Figure 4.1 E,F). We measured the spiking activity as 

we varied the duration of laser manipulation (1 ms, 5 ms, 25 ms, 250 ms). As expected, 

activation of cortico-collicular neurons resulted, on average, in an increase in firing rate of 

IC neurons. This effect persisted at all laser durations we used. Specifically, for all 

durations the distribution of the change in activity with activation was significantly 

different from normally distributed around zero (Figure 4.1E; 1 ms: p = 3.07e-15, mean = 

1.1 stdevs, median = 0.21 stdevs; 5 ms: p = 4.4e-20, mean = 1.7 stdevs, median = 0.19 

stdevs; 25 ms: p = 5.5e-17, mean = 1.6 stdevs, median = -0.021 stdevs; 250 ms: p = 3.4e-

12, mean = 0.58 stdevs, median = 0.101 stdevs, Kolmogorov-Smirnov test). Whereas the 

direction of the effect was consistent with our prior expectations, the magnitude of the 

effect was unexpectedly small. This suggests that AC targets a small subpopulation of IC 

neurons and that the effect of activation does not spread too far within IC. 

We tested the effect of suppressing AC-IC neurons on firing responses in IC and, 

surprisingly, we detected no difference in firing in IC neurons. For all laser durations the 

population of responses were normally distributed around zero change in activity (Figure 

4.1F). This result suggests that AC-IC inputs at rest do not contribute to IC responses, but 

rather modulate collicular activity only when activated.  

Next, our goal was to characterize modulation of sound-evoked responses in IC by 

cortical feedback. We first tested the effects of feedback modulation on acoustic click 

responses. We chose clicks as the initial stimulus because they drive fast responses in both 
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AC and IC. Laser stimulation began 250 ms prior to click train onset to allow for the 

response to the laser to come to a steady state, and continued activation throughout the 

clicks. Activating the feedback had a weak suppressive effect on the firing rate of IC 

neurons in response to clicks. Consistent with previous experiments, we observed an 

overall increase in spontaneous activity (Figure 4.1G, bottom; p = 0.0031, spont ON = 5 

± 0.87 Hz, spont OFF = 4.3 ± 0.92 Hz). Activating feedback caused a small decrease in 

click-evoked response (Figure 4.1G, left; p = 0.001, click ON = 10.4 ± 1.2 Hz, click OFF 

= 10.7 ± 1.1 Hz). 

By contrast, suppressing cortico-collicular feedback using ArchT had no effect on 

IC click responses (Figure 4.1H). Because attenuating the input does not affect the activity 

in IC during clicks this result further suggests that the strength of the baseline signal from 

AC to IC, even in the presence of cortical activity, is not sufficient to modulate IC 

responses. 

We also tested whether the effects of cortico-collicular modulation differed across 

the receptive field of collicular neurons. We presented a stimulus that consisted of tones of 

50 frequencies ranging from 3 to 70 kHz. To modulate the feedback from AC, we tested 

three different laser onsets (-100 ms, -20 ms, +8 ms) relative to tone onset to isolate the 

effect of timing on affecting IC responses. These delays were chosen for the following 

reasons: -100ms delay would allow for the laser effect on cortical activity to come to a 

steady state, making it easier to quantify the effect throughout the tone pip; +8 ms is set up 

to mimic the time scale of cortical response to a tone, effectively amplifying the onset of 

the cortical response; -20 ms delay is an intermediate value.  
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Figure 4.1 
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Figure 4.1 Effects of modulating feedback activity on responses in IC in the absence of 

sounds and to clicks. A Experimental design: Injection of retro AAV.Cre into IC and 

anterograde AAV.Flex.opsin into AC and record from IC (left) in awake mice while 

shining laser into AC, all performed bilaterally (right). B Image of opsin-tdTomato 

expression in cortico-collicular feedback projections in AC. Scale bar: 200um. C Example 

unit response to two laser pulse durations (blue), 25 ms (left) and 250 ms (right). D 

Example unit response to clicks with (blue) and without laser.  E Distributions of change 

in unit activity in response to different laser durations in ChR2 cohort (1 ms, 5 ms, 25 ms, 

250 ms), + indicates median,  indicates mean. These distributions are not normally 

distributed (Kolmogorov-Smirnov test; 1 ms: p = 3.07e-15, mean = 1.1 stdevs, median = 

0.21 stdevs; 5 ms: p = 4.4e-20, mean = 1.7 stdevs, median = 0.19 stdevs; 25 ms: p = 5.5e-

17, mean = 1.6 stdevs, median = -0.021 stdevs; 250 ms: p = 3.4e-12, mean = 0.58 stdevs, 

median = 0.101 stdevs). F Distributions of change in unit activity in response to different 

laser durations in ArchT cohort (1 ms, 5 ms, 25 ms, 250 ms), + indicates median,  

indicates mean. These distributions are normally distributed (Kolmogorov-Smirnov test). 

G Population response to clicks with activation shows a decrease in click response (left; p 

= 0.001, click ON = 10.4 ± 1.2 Hz, click OFF = 10.7 ± 1.1 Hz) and an increase in 

spontaneous activity (bottom; p = 0.0031, spont ON = 5 ± 0.87 Hz, spont OFF = 4.3 ± 0.92 

Hz). H Population response to clicks with suppression shows no change in activity. 
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We found that whereas activating feedback increased spontaneous activity of IC 

neurons (Figure 4.2A, left; -100 ms: p = 0.022, ON = 4.3 ± 0.47 Hz; OFF = 3.6 ± 0.38; -

20 ms: p = 8.6e-6, ON = 5.6 ± 0.63, OFF = 3.7 ± 0.47),  overall the feedback decreased 

tone-evoked response magnitude in IC, which we defined as the difference between 

spontaneous and tone-evoked response, at all laser onsets (Figure 4.2A, right; -100 ms: p 

= 3.2e-5, ON = 14.2 ± 0.98 Hz; OFF = 15.5 ± 1.04 Hz; -20 ms: p = 1.4e-6, ON = 11.8 ± 

1.08 Hz, OFF = 13.9 ± 1 Hz; +8 ms: p = 0.0034, ON = 13.03 ± 1.03, OFF = 13.7 ± 1.03). 

This suggests that the broad activation of feedback upregulates the baseline activity of IC 

neurons, but decreases tone-evoked response (Figure 4.3E). By contrast, suppressing the 

feedback had no effect on either spontaneous activity or tone-evoked response magnitude 

(Figure 4.2B), suggesting that at baseline, AC does not provide strong modulation of IC 

activity, as removing it does not affect sound-evoked effects in IC. 
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Figure 4.2 
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Figure 4.2 Effects of modulating feedback activity on spontaneous and tone-evoked 

response magnitude in IC. Left panels: neuronal activity (spontaneous, left or tone-evoked, 

right) on laser on versus laser off trials. Right panels: Average neuronal activity 

(spontaneous, left or tone-evoked, right) for laser on and laser off trials. A Activating 

feedback increased spontaneous activity (left; -100 ms: p = 0.022, ON = 4.3 ± 0.47 Hz; 

OFF = 3.6 ± 0.38; -20 ms: p = 8.6e-6, ON = 5.6 ± 0.63, OFF = 3.7 ± 0.47) and decreased 

tone-evoked response magnitude (right; -100 ms: p = 3.2e-5, ON = 14.2 ± 0.98 Hz; OFF = 

15.5 ± 1.04 Hz; -20 ms: p = 1.4e-6, ON = 11.8 ± 1.08 Hz, OFF = 13.9 ± 1 Hz; +8 ms: p = 

0.0034, ON = 13.03 ± 1.03, OFF = 13.7 ± 1.03). B Suppressing feedback had no effect on 

spontaneous activity or tone-evoked response magnitude.  
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We then examined the effect of feedback on frequency tuning of IC units. 

Activation of feedback decreased frequency selectivity in the subsets of units that also 

showed a decrease in tone-evoked response magnitude or increase in spontaneous activity, 

but not in units that showed an increase in tone-evoked response magnitude or decrease in 

spontaneous activity (Figure 4.3A, mag decrease: -20 ms, p = 0.00031, sparse ON = 0.49 

± 0.027, sparse OFF = 0.55 ± 0.025; +8 ms, p = 0.00029, sparse ON = 0.46 ± 0.027, sparse 

OFF = 0.55 ± 0.024; spont increase: -100 ms, p = 0.011, sparse ON = 0.49 ± 0.032, sparse 

OFF = 0.56 ± 0.031; -20 ms, p = 0.00018, sparse ON = 0.46 ± 0.034, sparse OFF = 0.56 ± 

0.029; +8 ms, p = 2.2e-6, sparse ON = 0.41 ± 0.032, sparse OFF = 0.55 ± 0.029). Over the 

population of neurons with decreased tone-evoked response magnitude and/or increased 

spontaneous activity, the median slopes and y-intercepts of ranked linear fits to frequency 

responses are less than 1 and above zero, respectively (Figure 4.3D). These results, in 

combination with the decreased tone-evoked activity observed (Figure 4.3E, -100 ms: p = 

0.018, ON = 19.01 ± 1.2 Hz, OFF = 18.5 ± 1.2 Hz; +8 ms: p = 0.007, ON = 17.3 ± 1.2 Hz; 

OFF = 16.9 ± 1.2 Hz), indicate the decrease in frequency selectivity was due to a decrease 

in response to tones at preferred frequencies, not non-preferred frequencies. This result 

suggests that the suppressive effect of the feedback is preferential for higher firing 

responses. Suppressing feedback resulted in very small (< 0.04 %) change in sparseness, 

therefore it did not affect frequency selectivity (Figure 4.3B).  
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Figure 4.3 
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Figure 4.3 Effect of modulating direct cortico-collicular feedback at different latencies 

relative to tone onset on frequency selectivity in IC. A Left panels: Sparseness for laser on 

versus laser off trials. Right panels: Average sparseness for laser on and laser off trials. 

Activating feedback decreased frequency selectivity in a subset of units (mag decrease: -

20 ms, p = 0.00031, sparse ON = 0.49 ± 0.027, sparse OFF = 0.55 ± 0.025; +8 ms, p = 

0.00029, sparse ON = 0.46 ± 0.027, sparse OFF = 0.55 ± 0.024; spont increase: -100 ms, p 

= 0.011, sparse ON = 0.49 ± 0.032, sparse OFF = 0.56 ± 0.031; -20 ms, p = 0.00018, sparse 

ON = 0.46 ± 0.034, sparse OFF = 0.56 ± 0.029; +8 ms, p = 2.2e-6, sparse ON = 0.41 ± 

0.032, sparse OFF = 0.55 ± 0.029). B Left panels: Sparseness for laser on versus laser off 

trials. Right panels: Average sparseness for laser on and laser off trials. Suppressing 

feedback has little effect on frequency selectivity (mag decrease: -100 ms, p = 0.011, sparse 

ON = 0.53 ± 0.021, sparse OFF = 0.51 ± 0.021; mag increase: -100 ms, p = 0.019, sparse 

ON = 0.48 ± 0.021, sparse OFF = 0.49 ± 0.021; spont increase: -100 ms, p = 0.043, sparse 

ON = 0.46 ± 0.029, sparse OFF = 0.45 ± 0.029). C Example unit response timecourse (top) 

and tuning curves (bottom) for laser on (blue) and laser off (grey) conditions. Bottom insets 

represent ranked linear fits for example unit. D Slope coefficients (top, mag decrease: -100 

ms, median = 0.88; -20 ms, median = 0.92; +8 ms, median = 0.903; spont increase: -100 

ms, median = 0.99; -20 ms, median = 1; +8 ms, median = 0.94) and y-intercepts (bottom, 

mag decrease: -100 ms, median = 0.0086; -20 ms, median = 0.014; +8 ms, median = 0.022; 

spont increase: -100 ms, median = 0.014; -20 ms, median = 0.025; +8 ms, median = 0.037) 

of ranked linear fits, red horizontal lines indicate median, red vertical lines indicate 

interquartile range. E Left panels: Tone-evoked response for laser on versus laser off trials. 

Right panels: Average tone-evoked response for laser on and laser off trials. Activating 
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feedback slightly decreased tone-evoked response, averaged across 7 most preferred 

frequencies (-100ms: p = 0.018, ON = 19.01 ± 1.2 Hz, OFF = 18.5 ± 1.2 Hz; +8ms: p = 

0.007, ON = 17.3 ± 1.2 Hz; OFF = 16.9 ± 1.2 Hz) F Best frequencies for laser off versus 

laser on trials. Activating feedback had little effect on best frequency (spont increase: -100 

ms, p = 0.022). 
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To better understand the effect of modulation of cortical activity on spectro-

temporal receptive field properties of IC neurons, we presented a continuous signal 

comprised of dynamic random chords (DRCs) sampled from a uniform distribution of 

loudness values per frequency bin. The unbiased nature of this stimulus allowed us to 

estimate the spectro-temporal receptive field of neurons (STRF), which quantifies the 

dynamics of sound waveform in time and frequency that lead to a neuronal response. 

During the DRC stimulus, we turned on the laser every other second for 250 ms to either 

activate or suppress cortico-collicular projections. We found that a subset of cells reduced 

their mean DRC-evoked firing rates (N = 56), whereas another subset of cells increased 

their mean DRC-evoked firing rate when we activated cortico-collicular feedback (N = 47). 

We next separately computed the receptive fields for each neuron when laser was off and 

when laser was on and compared the STRFs. To quantify those changes, we identified the 

positive (activation) and negative (suppressive) regions in the STRFs and compared them 

for laser ON and laser OFF conditions. In the subset of neurons whose firing rate increased 

with laser STRFs changed: only 42% of positive lobes, and 63% of negative lobes persisted 

with the laser (Figure 4.4B, left). Of those lobes that persisted, for positive lobes, there 

was on average a decrease in temporal width (p = 0.00098, ON = 0.0303 ± 0.0018 s, OFF 

= 0.037 ± 0.0023 s), frequency selectivity (p = 0.00042, ON = 6.7 ± 1.1 Hz, OFF = 9.6 ± 

1.8 Hz) and STRF size (p = 0.00036, ON = 46.05 ± 6.9 pixels, OFF = 77.5 ± 12.04 pixels), 

whereas for negative lobes, we did not detect any changes (Figure 4.4C, left). In neurons 

whose firing rate was decreased, there was a much smaller change in the lobes, with 78% 

and 79% of positive and negative lobes persisting, respectively (Figure 4.4B, right). For 

both positive lobes and negative lobes, the only difference was an increase in the temporal 



 137 

 

width when laser was activated (Figure 4.4C, right; Positive lobes: p = 0.026, ON = 0.034 

±0.0025 s, OFF = 0.032 ± 0.0025 s; Negative lobes: p = 0.02, ON = 0.037 ± 0.0028 s, OFF 

= 0.032 ± 0.0024 s). The decrease in STRF size in units with increased DRC-evoked 

response and decrease in sparseness across the population is consistent with the 

interpretation that the effect of the feedback leads to a decrease in responsiveness to tones 

that evoke the greatest responses (in the center of the receptive field) and an increase to 

stimuli that evoke weaker activity. In other words, neuronal firing increases overall, but 

selective responses to specific frequency bands decrease. 
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Figure 4.4 
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Figure 4.4 Effects of activating direct cortico-collicular feedback on STRF properties. A 

Example STRF with and without activation of feedback for units that increase firing rate 

(left) and decrease firing rate (right) in response to feedback activation. B Number of 

positive and negative lobes that persisted with laser (stable). C Changes in STRF 

parameters of stable positive and negative lobes. Left panels: STRF parameter for laser off 

versus laser on trials. Center panels: Average positive lobe STRF parameter for laser on 

and laser off trials. Right panels: Average negative lobe STRF parameter for laser on and 

laser off trials. For units with an increase in firing rate we observed a decrease in temporal 

width (p = 0.00098, ON = 0.0303 ± 0.0018 s, OFF = 0.037 ± 0.0023 s), frequency width 

(p = 0.00042, ON = 6.7 ± 1.1 Hz, OFF = 9.6 ± 1.8 Hz), and overall size (p = 0.00036, ON 

= 46.05 ± 6.9 pixels, OFF = 77.5 ± 12.04 pixels) of positive lobes. For units with a decrease 

in firing rate we observed only a small increase in temporal width for both positive (p = 

0.026, ON = 0.034 ±0.0025 s, OFF = 0.032 ± 0.0025 s) and negative (p = 0.02, ON = 0.037 

± 0.0028 s, OFF = 0.032 ± 0.0024 s) lobes.  
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Modulating inhibitory neuronal activity in AC does not affect collicular sound 

responses 

Auditory responses in AC are shaped by interactions between excitatory and 

inhibitory neurons (Blackwell and Geffen, 2017; Wood et al., 2017). To determine how 

modulating frequency selectivity in AC might affect tone-evoked responses in IC in a 

frequency-selective fashion, we perturbed the excitatory-inhibitory interactions by 

modulating two different classes of inhibitory interneuron known to contribute to sound 

responses in AC: PV and SOM inhibitory interneurons. We found that modulating PV 

interneuron activity in AC had little effect on spontaneous and tone-evoked activity or 

frequency selectivity in IC (Figure 4.5 B-E) despite modulating frequency selectivity, 

spontaneous activity, and tone-evoked response magnitude in AC. Specifically, in AC, 

activating PVs decreased spontaneous activity and tone-evoked response magnitude 

(Figure 4.5F; spontaneous activity: p = 2.2e-9, ON = 0.88 ± 0.16 Hz, OFF = 2.7 ± 0.34 

Hz; tone-evoked response magnitude: p = 8.02e-7, ON = 6.9 ± 1.06 Hz, OFF = 11.5 ± 1.3 

Hz) and increased frequency selectivity (Figure 4.5G; p = 3.3e-12, ON = 0.59 ± 0.022, 

OFF = 0.42 ± 0.02), while suppressing PVs increased spontaneous activity (Figure 4.5I; p 

= 5.2e-5, ON = 4.08 ± 0.54 Hz, OFF = 3.06 ± 0.55 Hz) and decreased frequency selectivity 

(Figure 4.5J; p = 3.8e-5, ON =  0.34 ± 0.027, OFF = 0.41 ± 0.031). This suggests that the 

increase in cortical activity driven by broad PV activation does not propagate to the inferior 

colliculus. 
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Figure 4.5 
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Figure 4.5 Effects of modulating PV interneurons in AC on tone-evoked responses in IC. 

A Stain for PV (center) and opsin-GFP (left). Scale bar: 50um. B Activating PVs had no 

effect on spontaneous activity or tone-evoked response magnitude in IC. C Activating PVs 

had no effect on frequency selectivity in IC. D Suppressing PVs had no effect on 

spontaneous activity or tone-evoked response magnitude in IC. E Suppressing PVs had 

weak effects on frequency selectivity in IC (mag decrease: p = 0.0068, ON = 0.57 ± 0.092, 

OFF = 0.5 ± 0.087). F Activating PVs decreased spontaneous activity (p = 2.2e-9, ON = 

0.88 ± 0.16 Hz, OFF = 2.7 ± 0.34 Hz) and tone-evoked response magnitude (p = 8.02e-7, 

ON = 6.9 ± 1.06 Hz, OFF = 11.5 ± 1.3 Hz) in AC. G Activating PVs increased frequency 

selectivity in putative excitatory units in AC (p = 3.3e-12, ON = 0.59 ± 0.022, OFF = 0.42 

± 0.02). H Activating PVs affected putative excitatory units across all layers of AC. I 

Suppressing PVs increased spontaneous activity (p = 5.2e-5, ON = 4.08 ± 0.54 Hz, OFF = 

3.06 ± 0.55 Hz) but does not affect tone-evoked response magnitude in AC. J Suppressing 

PVs decreased frequency selectivity in AC (p = 3.8e-5, ON = 0.34 ± 0.027, OFF = 0.41 ± 

0.031). K Suppressing PVs affected putative excitatory units across all layers of AC. 

B,D,F,I Left panels: neuronal activity (spontaneous, left or tone-evoked, right) on laser on 

versus laser off trials. Right panels: Average neuronal activity (spontaneous, left or tone-

evoked, right) for laser on and laser off trials. C,E,G,J Left panels: Sparseness for laser on 

versus laser off trials. Right panels: Average sparseness for laser on and laser off trials. 

H,K Change in spontaneous activity (laser on trials – laser off trials), left panels: for units 

at each tetrode; right panels: separated into supragranular: tetrodes 1-3; granular: tetrodes 

5,6;  infragranular: tetrodes 7-10. 
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Different interneuron classes may function in distinct networks, so we also tested 

the effects of modulating SOM interneurons. Modulating SOM interneurons had no effect 

on tone-evoked activity (Figure 4.6 B,D, right) or frequency selectivity (Figure 4.6 C,E), 

but suppressing SOM interneurons increased spontaneous activity in IC (Figure 4.6D, left; 

p = 0.029, ON = 6.9 ± 0.66 Hz, OFF = 6.7 ± 0.63 Hz), a change that we also observed with 

activation of the direct feedback projections (Figure 4.2A, left). Similar to PV 

interneurons, activating SOM interneurons decreased spontaneous activity and tone-

evoked response magnitude in AC (Figure 4.6F; spontaneous activity: p = 1.4e-12, ON = 

0.97 ± 0.25 Hz, OFF = 2.9 ± 0.37 Hz; tone-evoked response magnitude: p = 1.3e-15, ON 

= 3.3 ± 0.59 Hz, OFF = 11.4 ± 1.2 Hz) and increased frequency selectivity (Figure 4.6G; 

p = 1.6e-13, ON = 0.69 ± 0.024, OFF = 0.47 ± 0.019). In AC, suppressing SOMs reduced 

spontaneous activity, but had no significant effect on tone-evoked response magnitude or 

frequency selectivity (Figure 4.6 I,J; p = 8.1e-4, ON = 3.6 ± 0.41 Hz, OFF = 2.2 ± 0.38 

Hz). This lack of effect was not due to the relatively small effect of light penetrating to the 

deep layers. In fact, to confirm that modulating PV and SOM activity in AC affected 

activity of units in L5/6 where the feedback projections we looked at changes in 

spontaneous activity at each tetrode which spanned the entire auditory cortex. We found 

that activity was modulated across the layers (Figure 4.5-4.6 H,K). Whereas modulating 

PVs did not have an effect on IC activity, SOM suppression resulted in an increase in 

spontaneous, but not tone-evoked activity in IC, which suggests that inhibitory modulation 

of sound responses in AC does not propagate to IC. 
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Figure 4.6 
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Figure 4.6 Effects of modulating SOM interneurons in AC on tone-evoked responses in 

IC. A Stain for SOM (center) and opsin-GFP (left). Scale bar: 50um.  B Activating SOMs 

had no effect on spontaneous activity or tone-evoked response magnitude in IC. C 

Activating SOMs had no effect on frequency selectivity in IC.  D Suppressing SOMs 

increased spontaneous activity (p = 0.029, ON = 6.9 ± 0.66 Hz, OFF = 6.7 ± 0.63 Hz) but 

did not affect tone-evoked response magnitude in IC. E Suppressing SOMs had no effect 

on frequency selectivity in IC. F Activating SOMs decreased spontaneous activity (p = 

1.4e-12, ON = 0.97 ± 0.25 Hz, OFF = 2.9 ± 0.37 Hz) and tone-evoked response magnitude 

(p = 1.3e-15, ON = 3.3 ± 0.59 Hz, OFF = 11.4 ± 1.2 Hz) in AC. G Activating SOMs 

increased frequency selectivity in putative excitatory units in AC (p = 1.6e-13, ON = 0.69 

± 0.024, OFF = 0.47 ± 0.019). H Activating SOMs affected putative excitatory units across 

all layers of AC. I Suppressing SOMs increased spontaneous activity (p = 8.1e-4, ON = 

3.6 ± 0.41 Hz, OFF = 2.2 ± 0.38 Hz) but did not affect tone-evoked response magnitude in 

AC. J Suppressing SOMs had no effect on frequency selectivity in AC. K Suppressing 

SOMs affected putative excitatory units across all layers of AC. B,D,F,I Left panels: 

neuronal activity (spontaneous, left or tone-evoked, right) on laser on versus laser off trials. 

Right panels: Average neuronal activity (spontaneous, left or tone-evoked, right) for laser 

on and laser off trials. C,E,G,J Left panels: Sparseness for laser on versus laser off trials. 

Right panels: Average sparseness for laser on and laser off trials. H,K Change in 

spontaneous activity (laser on trials – laser off trials), left panels: for units at each tetrode; 

right panels: separated into supragranular: tetrodes 1-3; granular: tetrodes 5,6;  

infragranular: tetrodes 7-10. 
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4.3 DISCUSSION 
 

Auditory cortex sends extensive projections to IC (Saldaña et al., 1996; Winer et 

al., 1998; Doucet et al., 2003; Bajo and Moore, 2005; Coomes et al., 2005; Bajo et al., 

2007). Our results demonstrate that activation of this cortico-collicular feedback modulates 

sound responses in IC by upregulating spontaneous IC activity, but decreasing frequency 

selectivity and reducing spectro-temporal receptive field size in IC. Interestingly, 

suppressing cortico-collicular feedback had little effect on IC activity, which suggests that 

at baseline and during passive tone presentation the feedback does not affect activity of IC 

neurons. We also found that SOM, but not PV inhibitory interneurons modulated IC 

activity, suggesting that the effects of modulation of cortical activity by PVs does not back-

propagate to IC, whereas SOM-driven modulation affects spontaneous activity, but not 

tone-evoked responses. Overall our findings imply that direct cortico-collicular feedback 

can modulate responses to simple (pure tones) and more complex (DRCs) auditory stimuli 

by reducing, rather than increasing, sound selectivity. This modulation occurs 

independently of the activity of cortical inhibitory interneurons. 

 

 Effects of modulating direct cortico-collicular feedback 

Whereas optogenetic manipulation allows for temporally precise control and cell-

type specificity, the technique lacks the spatial specificity of electrical stimulation. Since 

both AC and cortico-collicular projections are tonotopically organized (Lim and Anderson, 

2007; Markovitz et al., 2013; Barnstedt et al., 2015; Straka et al., 2015), spatially specific 

stimulation can more accurately mimic frequency-specific responses by activating specific 
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regions in the tonotopic map. Previous studies found that electrical stimulation of AC 

caused best frequencies in IC to shift towards the best frequencies of the stimulated site in 

AC (Gao and Suga, 1998; Yan and Suga, 1998; Gao and Suga, 2000; Ma and Suga, 2001a; 

Yan et al., 2005; Zhou and Jen, 2007). These results suggest that cortico-collicular 

feedback may be important for increasing the representation of behaviorally relevant 

stimuli in IC. However, when activating direct feedback, we did not observe consistent 

changes in IC best frequencies (Figure 4.3F). In this activation paradigm, we activated 

feedback projections across cortex, and therefore across the tonotopic map, so it is 

unsurprising that we did not find shifts in the best frequencies of neurons.  

Previous studies found no effect of activating projection terminals on responses in 

the central nucleus of IC, only shell regions of IC (Xiong et al., 2015), which are the 

predominant targets of cortico-collicular feedback. In our study we were able to record 

from a larger neuronal population, revealing a subset of neurons in central IC that were 

modulated by feedback. The effects in central IC may be due to direct cortico-collicular 

feedback, intra-collicular circuits (Saldaña and Merchań, 1992; Malmierca et al., 1995; 

Miller et al., 2005; Sturm et al., 2014) , or a combination of these mechanisms.  

Inactivation studies have shown mixed effects on sound-evoked responses in IC, 

but consistently demonstrated no effect on frequency selectivity. Specifically, suppression 

of AC increased or decreased IC sound responses in distinct subsets of cells (Popelář et al., 

2003, 2016) while suppression of direct cortico-collicular feedback terminals in IC 

decreased sound-evoked responses (Xiong et al., 2015). However, our results show that 

suppression of direct cortico-collicular feedback has inconsistent effects on frequency 

selectivity and no effect on any other sound response properties in IC. Xiong et al. found 
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changes in IC responses specifically in the shell regions of IC, while our study targeted the 

central nucleus of IC, thus it is plausible that the difference in the recording locations might 

explain this discrepancy. 

Our interest in central IC is due to its frequency tuning properties and that it is part 

of the behavioral output pathway leading to the pedunculopontine tegmental nucleus, 

which controls pre-pulse inhibition (PPI) of the acoustic startle reflex. Understanding how 

AC modulates sound responses in central IC may provide insight into how AC drives 

changes in auditory behaviors. Previously, we found that behavioral frequency 

discrimination acuity changed after differential auditory fear conditioning and these 

changes were driven by the auditory cortex (Aizenberg and Geffen, 2013; Aizenberg et al., 

2015). The behavioral task used to test frequency discrimination acuity was a modified PPI 

task. Although AC can modulate this behavior, PPI is still observed after decerebration (Li 

and Frost, 2000) and the underlying circuit is believed to be subcortical (Fendt et al., 2001). 

The IC is a critical structure in the PPI circuit (Leitner and Cohen, 1985; Li et al., 1998; 

Fendt et al., 2001), with the central nucleus of IC receiving ascending auditory projections 

and the external nucleus of IC acting as the output station (Fendt et al., 2001; Li and Yue, 

2002). In fact, stimulation of the central nucleus of IC also induces a running response in 

mice, but not if AC is silenced (Xiong et al., 2015). The broad frequency tuning in the shell 

regions of the IC (Syka et al., 2000; Barnstedt et al., 2015) made the central nucleus of IC, 

which has sharper tuning and a tonotopic organization (Syka et al., 2000; Ehret et al., 2003; 

Malmierca et al., 2008; Barnstedt et al., 2015), a good candidate for how AC may drive 

changes in frequency discrimination acuity. Limited evidence for a descending pathway 
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from AC to the pedunculopontine tegmental nucleus (Schofield and Motts, 2009) suggests 

another alternative pathway by which AC modulates frequency discrimination. 

Future studies 

One caveat of our study is that our experiments were performed in passively 

listening mice. It is possible that the lack of effect we observe with suppression of cortico-

collicular feedback is due to the lack of task engagement. Previous studies have found that 

inactivation of this pathway affects innate responses to sound (Xiong et al., 2015) and 

auditory learning (Bajo et al., 2010), suggesting that activity of this pathway is critical for 

auditory behaviors. Studies have found that task engagement modulates neuronal responses 

to sounds (Fritz et al., 2003; Lakatos et al., 2013; McGinley et al., 2015; Downer et al., 

2017; Kuchibhotla et al., 2017). Thus, we would expect suppression of this pathway to 

affect sound processing in IC during a behavioral task. Future studies should explore how 

activity changes with an animal actively engaged in a behavioral task.  

 

4.4 METHODS 

Animals.  

All experiments were performed in adult male and female mice (supplier: Jackson 

Laboratories; age, 12–15 wk; weight, 22–32 g; PV-Cre mice, strain: B6; 129P2-

Pvalbtm1(cre)Arbr/J; SOM-Cre mice, strain: Ssttm2.1(cre)Zjh/J; Cdh23 mice, strain: 

Cdh23tm2.1Kjn/J, or PV-Cre x Cdh23 or SOM-Cre x Cdh23 crosses). Mice were housed 

at 28°C on a 12 h light–dark cycle with water and food provided ad libitum, less than five 

animals per cage. In PV-Cre mice Cre recombinase (Cre) was expressed in parvalbumin-
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positive interneurons, and in SOM-Cre, Cre was expressed in somatostatin-positive 

interneurons. All animal work was conducted according to the guidelines of University of 

Pennsylvanian IACUC and the AALAC Guide on Animal Research. Anesthesia by 

isofluorane and euthanasia by ketamine were used. All means were taken to minimize the 

pain or discomfort of the animals during and following the experiments. All experiments 

were performed during the animals' dark cycle. 

 

Viral Vectors. 

Modified AAVs encoding ArchT (AAV9-CAG-FLEX-ArchT-GFP or AAV9-CAG-

FLEX-ArchT-tdTomato; UNC Vector Core) or ChR2 (AAV9-CAG-FLEX-ChR2-

tdTomato; Penn Vector Core) were used for selective suppression or excitation, 

respectively. Retrograde AAV virus encoding Cre (retro AAV-hSyn-Cre-GFP) was custom 

made in our laboratory.  Briefly, RetroAAV2 hSyn Cre-GFP was packaged using the 

Helper-Free system (Agilent) and the retrograde trafficking plasmid, Retro2, which bears 

capsid mutations in serotype 2.   

 

Surgery and Virus Injection.  

At least 21 days prior to electrophysiological recordings, mice were anesthetized with 

isoflurane to a surgical plane. The head was secured in a stereotactic holder. The mouse 

was subjected to a small craniotomy (2 x 2 mm) over AC under aseptic conditions. Viral 

particles were injected (750 nl) bilaterally using a syringe pump (Pump 11 Elite, Harvard 

Apparatus) targeted to AC (coordinates relative to bregma: −2.6 mm anterior, ±4.3 mm 
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lateral, +1 mm ventral). Fiber-optic cannulas (Thorlabs, Ø200 μm Core, 0.22 NA) were 

implanted bilaterally over the injection site at depth of 0.5 mm from the skull surface. For 

a subset of mice, to target direct feedback, the mouse was also subjected to a craniotomy 

over IC (1 x 4 mm). Retro AAV viral construct was injected (3 x 200 nl) via glass syringe 

(30-50 um diameter) using a syringe pump (Pump 11 Elite, Harvard Apparatus) bilaterally 

in IC. Craniotomies were covered with a removable silicon plug. A small headpost was 

secured to the skull with dental cement (C&B Metabond) and acrylic (Lang Dental). For 

postoperative analgesia, slow release Buprenex (0.1 mg/kg) and Bupivicane (2 mg/kg) 

were injected subcutaneously. An antibiotic (5 mg/kg Baytril) was injected subcutaneously 

daily (for 4 days) at the surgical site during recovery. Virus spread was confirmed 

postmortem by visualization of the fluorescent protein expression in fixed brain tissue, and 

its colocalization with PV or SOM, following immuno-histochemical processing with the 

appropriate antibody. 

 

Acoustic Stimuli. 

Stimuli were delivered via a magnetic speaker (Tucker-Davis Technologies) directed 

toward the mouse’s head. Speakers were calibrated prior to the experiments to ±3 dB over 

frequencies between 3 and 70 kHz by placing a microphone (Brüel and Kjaer) in the 

location of the ear contralateral to the recorded AC hemisphere, recording speaker output 

and filtering stimuli to compensate for acoustic aberrations (Carruthers et al., 2013).  

Clicks. 
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Click trains were composed of six 50 ms clicks with a 50 ms ISI. Click trains were repeated 

120 times with a 450 ms ISI between trains. Alternating click trains were also paired with 

1 s laser stimulation beginning 250 ms prior to click train onset. 

 

Tuning Stimuli. 

 (1) To measure tuning for direct feedback cohorts, a train of 50 pure tones of frequencies 

spaced logarithmically between 3 and 70 kHz, at 70 dB sound pressure level relative to 20 

microPascals (SPL), in pseudo-random order was presented 20 times. Each tone was 50 ms 

duration (5-ms cosine squared ramp up and down) with an inter-stimulus interval (ISI) of 

450 ms. Alternating tones were paired with continuous 250 ms laser pulse at either -100 

ms, -20 ms, or +8 ms onset relative to tone onset. 

(2) For SOM-Cre and PV-Cre cohorts, a train of pure tones of 35 frequencies spaced 

logarithmically between 3 and 70 kHz and 8 uniformly spaced intensities from 0 to 70 dB 

SPL were presented 10 times in a pseudo-random order. Alternating tones were paired with 

continuous 250 ms laser pulse at -100 ms relative to tone onset. 

 

Dynamic Random Chords (DRCs).  

To measure spectro-temporal receptive fields (STRFs) we constructed DRCs from 20 ms 

chords (with 1 ms ramp) of 50 frequencies spaced logarithmically between 5 and 40 kHz 

with average intensity of 50 dB SPL and 20 dB SPL standard deviation. Total duration was 

40 minutes with a 250 ms continuous laser pulse presented every 1 s. 

 

Electrophysiological Recordings. 
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All recordings were carried out inside a double-walled acoustic isolation booth (Industrial 

Acoustics). Mice were placed in the recording chamber, and a headpost was secured to a 

custom base, immobilizing the head. Activity of neurons in AC were recorded via a custom 

silicon multi-channel probe (Neuronexus), lowered in the area targeting AC via a 

stereotactic instrument following a craniotomy at a 35-degree angle. The electrode tips 

were arranged in a vertical fashion that permits recording the activity of neurons across the 

depth of the auditory cortex and the inferior colliculus. Activity of neurons in IC were 

recorded via the same custom probes, lowered in the area targeting IC via a stereotactic 

instrument following either a craniotomy (SOM-Cre and PV-Cre cohorts) or removal of 

the silicon plug, vertically. Electro-physiological data from 32 channels were filtered 

between 600 and 6000 Hz (spike responses), digitized at 32kHz and stored for offline 

analysis (Neuralynx). Spikes belonging to single neurons and multi-units were detected 

using commercial software (Plexon). We examined the following experimental conditions 

(note: we do not distinguish here between PV-Cre/SOM-Cre and PV-Cre x Cdh23/SOM-

Cre x Cdh23): Cdh23 + ArchT (N = 4 male mice, awake) Cdh23 + ChR2 (N = 5 male mice, 

awake) SOM-Cre + ChR2 (N = 15 male mice; 8 anesthetized, 7 awake) SOM-Cre + ArchT 

(N = 7 mice; 4 female, 3 male, 4 anesthetized, 3 awake) PV-Cre + ChR2 (N = 16 male 

mice; 12 anesthetized, 4 awake) PV-Cre + ArchT (N = 4 male mice, awake). For cohorts 

with awake and anesthetized recordings data were analyzed separately, but we observed 

no difference in our results so data were combined. Mice that did not show effect of laser 

activation or suppression in auditory cortex were excluded. The proportions of units from 

each of the cohorts for tone-evoked/spontaneous responses are as follows: 

Cdh23 + ChR2: N = 4 single units; N = 187 multi-units 
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Cdh23 + ArchT: N = 22 single units; N = 181 multi-units 

PV-Cre + ChR2: N = 25 single units in IC; N = 3 single units in AC; N = 198 multi-units 

in IC; N = 64 multi-units in AC; N = 57 units from awake animals in IC; N = 138 units 

from anesthetized animals in IC; N = 14 units from awake animals in AC; N = 53 units 

from anesthetized animals in AC. 

PV-Cre + ArchT: N = 2 single units in IC; N = 3 single units in AC; N = 44 multi-units in 

IC; N = 56 multi-units in AC 

SOM-Cre + ChR2: N = 15 single units in IC; N = 9 single units in AC; N = 90 multi-units 

in IC; N = 90 multi-units in AC; N = 76 units from awake animals in IC; N = 29 units from 

anesthetized animals in IC; N = 49 units from awake animals in AC; N = 50 units from 

anesthetized animals in AC. 

SOM-Cre + ArchT: N = 16 single units in IC; N = 4 single units in AC; N = 161 multi-

units in IC; N = 155 multi-units in AC; N = 75 units from awake animals in IC; N = 37 

units from anesthetized animals in IC; N = 67 units from awake animals in AC; N = 36 

units from anesthetized animals in AC. 

 

Photostimulation of Neuronal Activity. 

Neurons were stimulated by application of continuous light pulse delivered from either 

blue (473 nm, BL473T3-150, used for ChR2 stimulation) or green DPSS laser (532 nm, 

GL532T3-300, Slocs lasers, used for ArchT stimulation) through implanted cannulas. 

Laser power measured through cannulas was 3 mW. Timing of the light pulse was 

controlled with microsecond precision via a custom control shutter system, synchronized 

to the acoustic stimulus delivery. 
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Neural Response Analysis. 

Unit selection. Units were selected based on pure-tone responsiveness. For each unit we 

identified the 7 frequencies that elicited the highest response and averaged activity across 

these trials (and the highest 3 amplitudes for stimulus with multiple amplitudes). Units 

with tone-evoked activity (75 ms window after tone onset) less than two standard 

deviations above the spontaneous activity (50 ms window prior to tone onset) in no laser 

condition were excluded from the analysis. Both single units and high quality multi-units 

(multi-units with <1% of spikes with <1ms inter-spike-interval) were used. 

Spontaneous activity and tone-evoked response magnitude  

Feedback cohort: Spontaneous activity was the average firing rate in a 20 ms window (to 

allow for equivalent comparison between -100 ms and -20 ms tone onset conditions) 

prior to tone onset of top 7 preferred frequencies. 

SOM-Cre/PV-Cre cohorts: Spontaneous activity was the average firing rate in a 50 ms 

window prior to tone onset of top 7 preferred frequencies and 3 highest amplitudes. 

All mice: Tone-evoked response magnitude was calculated as the difference between the 

average tone-evoked response in a 75 ms window after tone onset and the spontaneous 

activity. 

Sparseness. To examine frequency selectivity of neurons, sparseness of frequency tuning 

was computed as: 

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = 1 −  
(∑

𝐹𝑅𝑖

𝑛  𝑖=𝑛
𝑖=1 )

2

∑
𝐹𝑅𝑖

2

𝑛
𝑖=𝑛
𝑖=1
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where FRi is tone-evoked response to tone at frequency i, and n is number of frequencies 

used (Weliky et al., 2003). Subgroups of neurons used in sparseness analyses were 

separated based on > 1 standard deviation change based on the -100 ms laser onset trials. 

Linear fits across frequencies. Linear fits were calculated using linear regression (fitlm.m; 

MATLAB) over 50 data points, one for each of the 50 frequencies tested (Natan et al., 

2017b). The 50 data points were separately calculated as the mean FR over all repeats of 

each frequency.  

 

Best Frequency. Best frequency was defined as the frequency that elicited the maximum 

response. 

 

STRF Analysis. To calculate the STRF we separated the stimulus into 1-second chunks, 

concatenating the 250 ms laser ON chunks and the 250 ms laser OFF chunks immediately 

preceding laser onset.  These data were then used to calculate the average spectrogram 

preceding a spike. To allow for finer temporal resolution of the STRFs we upsampled the 

DRCs using nearest neighbor interpolation. Subsequently we averaged the STRF across 

the eight stimulus files. To determine the significance of the cluster, the z-score of pixels 

was computed relative to the baseline values from an STRF generated with scrambled spike 

trains, using Stat4ci toolbox (Chauvin et al., 2005; Natan et al., 2017a). We ran this 

significance test 100 times and any pixel identified as significant more than 90 times was 

considered significant. Clusters were matched between laser ON and laser OFF trials by 

comparing the overlap of the clusters, requiring a 50% overlap of the smallest cluster size 

to be a match. From STRF, the peak time, temporal width, peak frequency, and frequency 
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width of the positive and negative clusters were measured (Woolley et al., 2006; Shechter 

and Depireux, 2007; Schneider and Woolley, 2010). 

 

Statistical Analyses. 

Significant differences and P values were calculated using paired Wilcoxon sign-rank test 

(unless noted otherwise) with standard MATLAB routine. For the laser alone data, to 

compare distributions to standard normal distribution data were normalized by mean and 

standard deviation and then significant differences and P values were calculated by 

Kolmogorov-Smirnoff test with standard MATLAB routine. Mean ± standard error of the 

mean was reported unless stated otherwise. * indicates p < 0.05, ** indicates p < 0.01, *** 

indicates p < 0.001. 
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CHAPTER 5: CONCLUSIONS 

 

In this dissertation we described experiments that explore whether and how distinct 

neuronal subtypes in auditory cortex shape and encode both simple and complex sound 

properties. In chapter 2, we tested how neurons in the auditory cortex encode sounds that 

exhibit scale-invariant statistics, but vary across multiple scale magnitudes. Scale 

invariance is a property of sounds whose temporal modulation within spectral bands scale 

with the center frequency of the band. We found that for these naturalistic sounds, although 

neurons exhibited selectivity for subsets of stimuli with specific statistics, over the 

population responses were stable over large changes in stimulus statistics. In chapter 4, we 

tested how direct feedback from the auditory cortex to the inferior colliculus modulated 

sound responses in the inferior colliculus. We found that this feedback modulated 

responses to simple and complex auditory stimuli by reducing sound selectivity, 

specifically by decreasing responsiveness to tones that evoke the greatest responses and an 

increasing response to stimuli that evoke weaker activity. Furthermore, we tested the 

effects of perturbing intra-cortical inhibitory-excitatory networks on sound responses in 

the inferior colliculus by modulating the activity of distinct inhibitory subtypes in auditory 

cortex. We found that modulation of neither PV- nor SOM-interneurons affected sound-

evoked responses in the inferior colliculus, despite significant modulation of cortical 

responses (also described in chapter 3). Overall our findings imply that direct cortico-

collicular feedback can modulate responses to simple and more complex auditory stimuli 

independently of the activity of cortical inhibitory interneurons. Together these results 
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provide evidence supporting the importance of the auditory cortex in sound processing. 

Here we discuss the implications of our results and suggest future questions we would like 

to address. 

 

Role of attention in modulating cortico-collicular feedback 

Previous studies have demonstrated the behavioral consequences of inactivating 

this pathway, causing impairments in auditory learning (Bajo et al., 2010) and innate noise-

evoked running response (Xiong et al., 2015). These results suggest that cortico-collicular 

feedback can modulate auditory processing. In chapter 4, however, we found that 

suppression of cortico-collicular feedback had no effect on spontaneous activity or sound-

evoked responses in the inferior colliculus. Cortico-collicular feedback may not be active 

in the absence of behavioral task engagement. In our experiments, mice were awake and 

passively listening to sounds, which may explain the lack of effect we observed with 

suppression of cortico-collicular feedback.  

Previous studies have found that task engagement modulates neuronal responses to 

sounds (Fritz et al., 2003; Lakatos et al., 2013; McGinley et al., 2015; Downer et al., 2017; 

Kuchibhotla et al., 2017). Engagement in a tone detection task enhanced STRF 

representation of the behaviorally relevant frequency and changes in STRF parameters are 

correlated with behavioral performance (Fritz et al., 2003).  Given the evidence suggesting 

the importance of this pathway in auditory behaviors and the effects of attention on 

receptive field plasticity, we would expect suppression of this pathway to affect sound 

processing in IC during a behavioral task. Future studies should explore how activity 

changes with an animal actively engaged in a behavioral task.  
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Of particular interest would be testing the effects of modulating cortico-collicular 

feedback in frequency discrimination. Based on effects we observed with activation we 

would expect broad activation of feedback across auditory cortex would impair behavioral 

performance due to the decrease in selectivity. Stimulation of neurons in auditory cortex 

with specific preferred frequencies increased and enhanced representation of those 

frequencies in the inferior colliculus (Jen et al., 1998; Yan and Suga, 1998; Ma and Suga, 

2001; Jen and Zhou, 2003; Yan et al., 2005; Zhou and Jen, 2007). These results suggest 

that specific activation of cortico-collicular projection neurons tuned to behaviorally 

relevant frequency would enhance discrimination and suppression of cortico-collicular 

feedback might impair discrimination. Cortico-collicular feedback is necessary for sound-

localization adaptation after a unilateral earplug (Bajo et al., 2010). Our lab has 

demonstrated that auditory cortex drives changes in frequency discrimination acuity after 

differential auditory fear conditioning (Aizenberg and Geffen, 2013). The role of cortico-

collicular feedback in auditory learning suggests that cortico-collicular feedback is a 

candidate pathway by which auditory cortex modulates this behavior. We therefore expect 

that inactivation of cortico-collicular feedback following differential auditory fear 

conditioning would attenuate changes in frequency discrimination acuity observed after 

learning. 

 

Local cortical circuits modulating cortico-collicular feedback 

We observed little effect of modulating AC inhibitory interneurons on activity in 

IC despite the changes observed in AC (Figures 4.5, 4.6), which suggests there may be 

another neuron subtype that plays a modulatory role during cortico-collicular plasticity in 
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driving feedback modulation. One possibility that was not explored here are cholinergic 

inputs from the nucleus basalis. The nucleus basalis (NB), a cholinergic nucleus in the 

basal forebrain, has been implicated as a key structure in learning-induced auditory 

plasticity. Studies have found that pairing NB stimulation with presentation of a tone has 

been sufficient to induce receptive field plasticity in AC (Kilgard and Merzenich, 1998; 

Kilgard et al., 2001; Weinberger, 2003) and that blocking muscarinic receptors in AC 

impairs this plasticity (Miasnikov et al., 2008). Of greater interest is the receptive field 

plasticity also observed in IC. Acetylcholine applied to AC increased spontaneous and 

tone-evoked activity in both AC and IC (Ji et al., 2001). Furthermore, pairing AC 

stimulation with nucleus basalis stimulation (Ma and Suga, 2003) or pairing tone 

presentation with nucleus basalis stimulation (Zhang et al., 2005) shifted best frequencies 

in both AC and IC and application of atropine in AC inhibited this IC plasticity (Zhang et 

al., 2005). It is plausible that NB cholinergic inputs may be responsible for driving 

responses of IC neurons rather than PV or SOM inhibitory interneurons. However, SOMs 

in AC are depolarized by application of cholinergic agonist (Kuchibhotla et al., 2017). 

Furthermore, the lack of effect we observe with inhibitory interneuron activation is 

consistent with our results from suppressing cortico-collicular feedback. Thus, while 

another neuronal subtype may be responsible for driving feedback activity in a behavioral 

context, inhibitory interneurons may still play a role in shaping responses of feedback once 

active 

 Combined, our studies reveal two novel aspects of computation in the cortical and 

sub-cortical areas of the central auditory pathway. These studies open new avenues for 
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probing how the auditory cortex functions in everyday acoustic environments and elucidate 

the function of cortical and sub-cortical microcircuits in learning. 

 

Technical limitations of optogenetic activation of cortico-collicular feedback 

In chapter 4 we found that only optogenetic activation of cortico-collicular 

feedback had any measurable effect on activity in IC. There are several technical 

limitations to the design of our experiments that are important to consider when interpreting 

these results. 

First, whereas optogenetic manipulation allows for temporal precision and cell-type 

specificity, the technique lacks the spatial specificity of electrical stimulation. Both AC 

and cortico-collicular projections are tonotopically organized (Lim and Anderson, 2007; 

Markovitz et al., 2013; Barnstedt et al., 2015; Straka et al., 2015). In our experiments we 

activated feedback projections across cortex and, therefore, across the tonotopic map. For 

any given stimulus, only a subset of neurons tuned to those stimulus properties will be 

active. Previous studies found that electrical stimulation of AC caused best frequencies in 

IC to shift towards the best frequencies of the stimulated site in AC (Gao and Suga, 1998, 

2000; Yan and Suga, 1998; Ma and Suga, 2001; Yan et al., 2005; Zhou and Jen, 2007). 

These results suggest that cortico-collicular feedback may be important for increasing the 

representation of behaviorally relevant stimuli in IC. Stimulating frequency region-specific 

subsets of feedback projections would more accurately mimic natural neuronal activation 

patterns and provide better insight as to how cortico-collicular feedback stimulus-specific 

responses. 



 171 

 

Second, we chose to activate cortico-collicular neurons by shining light in the 

cortex, thus initiating spikes at the level of the cell body as would occur in response to a 

sound. An important consideration with this method, however, is that these neurons do not 

only send collaterals to IC, but also to the auditory thalamus (Asokan et al., 2018; 

Williamson and Polley, 2019), amygdala (Asokan et al., 2018), and striatum (Asokan et 

al., 2018). There is also evidence of descending projections to IC from thalamus (Winer et 

al., 2002) and amygdala (Marsh et al., 2002). When interpreting our results it is important 

to consider that the effects we observe from activating cortico-collicular feedback may also 

be due, at least in part, to these secondary pathways. 

 Future experiments should take into account the technical limitations of our current 

study. To explore the role of cortico-collicular projections in shaping sound responses in 

IC we propose taking advantage of two-photon imaging in IC. This technique would allow 

for identification of direct targets of cortico-collicular feedback using fluorescent tagging 

to visualize cortico-collicular axon terminals. We could then differentiate activity of direct 

and indirect targets of cortico-collicular feedback. We then propose identifying subsets of 

of cortico-collicular axons in IC active in response to particular tones and then using 

holographic optogenetics (Pégard et al., 2017) in order to activate a similar pattern of 

neurons as we observe in response to sounds while silencing AC to prevent antidromic 

spikes. These experiments would (1) further our understanding of how cortico-collicular 

feedback shapes sound responses in IC both directly (measuring activity of direct synaptic 

targets) and indirectly (measure activity of non-synaptic targets) and (2) measure more 

precisely the contribution of direct projections from AC to IC in shaping sound responses 

by using more natural patterns of activation. 
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