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Minimax Optimality In High-Dimensional Classification, Clustering, And
Privacy

Abstract
The age of “Big Data” features large volume of massive and high-dimensional datasets, leading to fast
emergence of different algorithms, as well as new concerns such as privacy and fairness. To compare different
algorithms with (without) these new constraints, minimax decision theory provides a principled framework
to quantify the optimality of algorithms and investigate the fundamental difficulty of statistical problems.
Under the framework of minimax theory, this thesis aims to address the following four problems:

1. The first part of this thesis aims to develop an optimality theory for linear discriminant analysis in the high-
dimensional setting. In addition, we consider classification with incomplete data under the missing completely
at random (MCR) model.

2. In the second part, we study high-dimensional sparse Quadratic Discriminant Analysis (QDA) and aim to
establish the optimal convergence rates.

3. In the third part, we study the optimality of high-dimensional clustering on the unsupervised setting under
the Gaussian mixtures model. We propose a EM-based procedure with the optimal rate of convergence for the
excess mis-clustering error.

4. In the fourth part, we investigate the minimax optimality under the privacy constraint for mean estimation
and linear regression models, under both the classical low-dimensional and modern high-dimensional
settings.
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ABSTRACT

MINIMAX OPTIMALITY IN HIGH-DIMENSIONAL CLASSIFICATION,

CLUSTERING, AND PRIVACY

Linjun Zhang

T. Tony Cai

The age of “Big Data” features large volume of massive and high-dimensional datasets,

leading to fast emergence of different algorithms, as well as new concerns such as privacy and

fairness. To compare different algorithms with (without) these new constraints, minimax

decision theory provides a principled framework to quantify the optimality of algorithms

and investigate the fundamental difficulty of statistical problems. Under the framework of

minimax theory, this thesis aims to address the following four problems:

1. The first part of this thesis aims to develop an optimality theory for linear discriminant

analysis in the high-dimensional setting. In addition, we consider classification with

incomplete data under the missing completely at random (MCR) model.

2. In the second part, we study high-dimensional sparse Quadratic Discriminant Analysis

(QDA) and aim to establish the optimal convergence rates.

3. In the third part, we study the optimality of high-dimensional clustering on the un-

supervised setting under the Gaussian mixtures model. We propose a EM-based

procedure with the optimal rate of convergence for the excess mis-clustering error.

4. In the fourth part, we investigate the minimax optimality under the privacy con-

straint for mean estimation and linear regression models, under both the classical

low-dimensional and modern high-dimensional settings.
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CHAPTER 1 : Introduction

The age of “Big Data” features large volume of massive and high-dimensional datasets,

leading to fast emergence of different algorithms, as well as new concerns such as privacy and

fairness. To compare different algorithms with (without) these new constraints, minimax

decision theory provides a principled framework to quantify the optimality of algorithms

and investigate the fundamental difficulty of statistical problems.

Under the framework of minimax theory, a matching upper and lower minimax bound would

indicate the optimality of the algorithm and the fundamental difficulty of the problem.

However, finding the matching bound is not always easy, especially in the high-dimensional

setting. Moreover, unlike the high-dimensional linear regression problem, whose optimality

has been deeply studied due to the popularity of LASSO, the optimality of high-dimensional

classification and clustering, in contrast, is yet to be well understood. Moreover, in modern

data analysis, the large-scale data analysis aggravates privacy concerns. The minimax the-

ory with such privacy constraint is a fundamental but unexplored problem in the statistics

literature. To address these problems, this thesis consists of the following four parts.

1.1. Liner Discriminant Analysis

Linear discriminant analysis (LDA), or Fisher’s linear discriminant, is a popular method

used in statistics, pattern recognition and machine learning to find a linear combination

of features that characterizes or separates two or more classes of objects or events (Hastie

et al., 2009). The first chapter aims to develop an optimality theory for LDA in the high-

dimensional setting. A data-driven and tuning-free classification rule, which is based on an

adaptive constrained `1 minimization approach, is proposed and analyzed. Minimax lower

bounds are obtained and this classification rule is shown to be simultaneously rate optimal

over a collection of parameter spaces. In addition, we consider classification with incomplete

data under the missing completely at random (MCR) model. An adaptive classifier with

theoretical guarantees is introduced and optimal rate of convergence for high-dimensional

1



linear discriminant analysis under the MCR model is established. The technical analysis

for the case of missing data is much more challenging than that for the complete data. We

establish a large deviation result for the generalized sample covariance matrix, which serves

as a key technical tool and can be of independent interest. An application to lung cancer

and leukemia studies is also discussed.

This chapter is based on Cai and Zhang (2018c), joint work with T. Tony Cai.

1.2. Quadratic Discriminant Analysis

In this chapter, we extend the results in the previous chapter by considering the Quadratic

Discriminant Analysis (QDA) model where the two covariance matrices of two classes are

different. We study high-dimensional sparse QDA and aim to establish the optimal conver-

gence rates for the classification error. Minimax lower bounds are established to demonstrate

the necessity of structural assumptions such as sparsity conditions on the discriminating

direction and differential graph for the possible construction of consistent high-dimensional

QDA rules.

We then propose a classification algorithm called SDAR using constrained convex optimiza-

tion under the sparsity assumptions. Both minimax upper and lower bounds are obtained

and this classification rule is shown to be simultaneously rate optimal over a collection of

parameter spaces, up to a logarithmic factor. Simulation studies demonstrate that SDAR

performs well numerically. The method is also illustrated through an analysis of prostate

cancer data and colon tissue data.

This chapter is based on Cai and Zhang (2018b), joint work with T. Tony Cai.

1.3. Unsupervised Gaussian Mixture Model

Unsupervised learning is an important problem in statistics and machine learning with a

wide range of applications. In this paper, we study clustering of high-dimensional Gaussian

mixtures and propose a procedure, called CHIME, that is based on the EM algorithm and a

2



direct estimation method for the sparse discriminant vector. Both theoretical and numerical

properties of CHIME are investigated. We establish the optimal rate of convergence for the

excess mis-clustering error and show that CHIME is minimax rate optimal. In addition,

the optimality of the proposed estimator of the discriminant vector is also established.

Simulation studies show that CHIME outperforms the existing methods under a variety of

settings. The proposed CHIME procedure is also illustrated in an analysis of a glioblastoma

gene expression data set and shown to have superior performance.

Clustering of Gaussian mixtures in the conventional low-dimensional setting is also consid-

ered. The technical tools developed for the high-dimensional setting are used to establish

the optimality of the clustering procedure that is based on the classical EM algorithm.

This chapter is based on Cai et al. (2019a), joint work with T. Tony Cai and Jing Ma.

1.4. Parameter Estimation with Differential Privacy

Privacy-preserving data analysis is a rising challenge in contemporary statistics, as the

privacy guarantees of statistical methods are often achieved at the expense of accuracy.

In this paper, we investigate the tradeoff between statistical accuracy and privacy in mean

estimation and linear regression, under both the classical low-dimensional and modern high-

dimensional settings. A primary focus is to establish minimax optimality for statistical

estimation with the (ε, δ)-differential privacy constraint. To this end, we find that classical

lower bound arguments fail to yield sharp results, and new technical tools are called for.

We first develop a general lower bound argument for estimation problems with differential

privacy constraints, and then apply the lower bound argument to mean estimation and

linear regression. For these statistical problems, we also design computationally efficient al-

gorithms that match the minimax lower bound up to a logarithmic factor. In particular, for

the high-dimensional linear regression, a novel private iterative hard thresholding pursuit

algorithm is proposed, based on a privately truncated version of stochastic gradient descent.

The numerical performance of these algorithms is demonstrated by simulation studies and

3



applications to real data containing sensitive information, for which privacy-preserving sta-

tistical methods are necessary.

This chapter is based on Cai et al. (2019b), joint work with T. Tony Cai and Yichen Wang.

4



CHAPTER 2 : High-dimensional Linear Discriminant Analysis: Optimality,

Adaptive Algorithm, and Missing Data

2.1. Introduction

Classification is one of the most important tasks in statistics and machine learning with

applications in a broad range of fields. See, for example, Hastie et al. (2009). The problem

has been well studied in the low-dimensional setting. In particular, consider the Gaussian

case where one wishes to classify a new random vector Z drawn with equal probability from

one of two Gaussian distributions Np(µ1,Σ) (class 1) and Np(µ2,Σ) (class 2). In the ideal

setting where all the parameters θ = (µ1,µ2,Σ) are known, Fisher’s linear discriminant

rule, which is given by

Cθ(Z) =


1, (Z − µ1+µ2

2 )>Ωδ < 0

2, (Z − µ1+µ2

2 )>Ωδ ≥ 0,

(2.1)

where δ = µ2 − µ1, and Ω = Σ−1 is the precision matrix, is well known to be optimal

(Anderson, 2003). Fisher’s rule separates the two classes by a linear combination of features

and its misclassification error is given by Ropt(θ) = Φ
(
−1

2∆
)
, where Φ is the cumulative

distribution function of the standard normal distribution and ∆ =
√
δ>Ωδ is the signal-to-

noise ratio.

Although Fisher’s rule can serve as a useful performance benchmark, it is not practical

for real data analysis as the parameters µ1,µ2 and Σ are typically unknown and need

to be estimated from the data. In applications, it is desirable to construct a data-driven

classification rule based on two observed random samples, X
(1)
1 , ...,X

(1)
n1

i.i.d.∼ Np(µ1,Σ) and

X
(2)
1 , ...,X

(2)
n2

i.i.d.∼ Np(µ2,Σ). In the conventional low-dimensional setting, this is easily

achieved by plugging in Fisher’s linear discriminant rule (2.1) the corresponding sample

means and pooled sample covariance matrix for the parameters µ1,µ2 and Σ respectively.

This classification rule is asymptotically optimal when the dimension p is fixed. See, for

5



example, Anderson (2003).

Driven by many contemporary applications, much recent attention has been on the high-

dimensional setting where the dimension is much larger than the sample size. In this

case, the sample covariance matrix is not even invertible and it is difficult to estimate

the precision matrix Ω. The standard linear discriminant rule thus fails completely. Sev-

eral regularized classification methods, including the regularized LDA (Wu et al., 2009),

covariance-regularized classification (Witten and Tibshirani, 2009), and hard thresholding

(Shao et al., 2011), have been proposed for classification of high-dimensional data. How-

ever, all these methods rely on the individual sparsity assumptions on Ω (or Σ) and δ. A

fundamental quantity in LDA is the discriminant direction β = Ωδ and a more flexible as-

sumption is the sparsity of β. In particular, Cai and Liu (2011); Mai et al. (2012) introduced

a direct estimation method for the high-dimensional LDA based on the key observation that

the ideal Fisher’s discriminant rule given in (2.1) depends on the parameters µ1,µ2 and

Σ primarily through β = Ωδ. They proposed to estimate the discriminant direction β

directly instead of estimating Σ and δ separately, under the assumption that β is sparse.

The proposed classification rule was shown to be consistent.

Despite much recent progress in methodological development on high-dimensional classifi-

cation problems, there has been relatively little fundamental study on the optimality theory

for the discriminant analysis. Minimax study of high-dimensional discriminant analysis has

been considered in Azizyan et al. (2013) and Li et al. (2017) in the special case where the

covariance matrix Σ = σ2I for some σ > 0. However, even in this relatively simple setting

there is still a gap between the minimax upper and lower bounds. It is unclear what the

optimal rate of convergence for the minimax misclassification risk is and which classification

rule is rate optimal under the general Gaussian distribution. The first major goal of the

present paper is to provide answers to these questions. Furthermore, although the problem

of missing data arises frequently in the analysis of high-dimensional data, compared to the

conventional low-dimensional setting, there is a paucity of methods for inference with in-
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complete high-dimensional data. The second goal of this paper is to develop an optimality

theory for high-dimensional discriminant analysis with incomplete data and to construct in

this setting a data-driven adaptive classifier with theoretical guarantees.

Given two random samples, X
(1)
1 , ...,X

(1)
n1

i.i.d.∼ Np(µ1,Σ) and X
(2)
1 , ...,X

(2)
n2

i.i.d.∼ Np(µ2,Σ),

we wish to construct a classifier Ĉ to classify a future data point Z drawn from these two

distributions with equal prior probabilities, into one of the two classes. Given the observed

data, the performance of the classification rule is measured by the misclassification error

Rθ(Ĉ) = Pθ(label(Z) 6= Ĉ(Z)), (2.2)

where θ = (µ1,µ2,Σ), Pθ denotes the probability with respect to Z ∼ 1
2Np(µ1,Σ) +

1
2Np(µ2,Σ) and Z is independent of the observed X’s. label(Z) denotes the true class of

Z. For a given classifier Ĉ, we use the excess misclassification risk relative to the oracle rule

(2.1), Rθ(Ĉ)−Ropt(θ), to measure the performance of the classifier Ĉ. Let n = min{n1, n2}.

We consider in this paper a collection of the parameter spaces G(s,Mn,p) defined by

G(s,Mn,p) = {θ = (µ1,µ2,Σ) : µ1,µ2 ∈ Rp,Σ ∈ Rp×p,Σ � 0,

‖β‖0 ≤ s,M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,Mn,p ≤ ∆ ≤ 3Mn,p}, (2.3)

where M > 1 is a constant, Mn,p > 0 can potentially grow with n and p, and λmax(Σ)

and λmin(Σ) are respectively the largest and smallest eigenvalue of Σ. The notation Σ � 0

means that Σ is symmetric and positive definite. Recall that ∆ =
√
δ>Ωδ and β = Ωδ. The

sparsity constraint ‖β‖0 ≤ s, according to the oracle rule (2.1), implies the belief that only a

limited number of covariates have discriminating power and contribute to the classification

task. In addition, our lower bound results in Theorem 7 show that this sparsity assumption

is necessary in general without further constraints of parameter space. Furthermore, we also

assume the eigenvalues of the covariance matrix Σ are bounded from below and above. This

assumption is commonly used in high-dimensional statistics, ranging from high-dimensional
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linear regression (Javanmard and Montanari, 2014), covariance matrix estimation (Cai and

Yuan, 2012), classification (Cai and Liu, 2011) and clustering (Cai et al., 2018a).

Combining the upper and lower bounds results given in Section 4.3 leads to the following

minimax rates of convergence for the excess misclassification risk.

Theorem 1. Consider the parameter space G(s,Mn,p), s and p approach infinity as n grows

to infinity, and Mn,p = o(
√

n
s log p) with n→∞,

1. If Mn,p is a fixed constant not depending on n and p, then for any constant α ∈ (0, 1),

we have

inf

{
r : inf

Ĉ
sup

θ∈G(s,Mn,p)
P
(
Rθ(Ĉ)−Ropt(θ) ≥ r

)
≤ 1− α

}
� s log p

n
.

2. If Mn,p →∞ as n→∞, then for sufficiently large n and any constant α ∈ (0, 1),

inf

{
r : inf

Ĉ
sup

θ∈G(s,Mn,p)
P
(
Rθ(Ĉ)−Ropt(θ) ≥ r

)
≤ 1− α

}
� s log p

n
· e−( 1

8
+o(1))M2

n,p .

It is worth noting that Mn,p represents the magnitude of ∆, which is interpreted as the

signal-to-noise ratio. As shown in the second case, when the signal-to-noise ratio grows,

the classification problem becomes easier and our result precisely characterizes that the

convergence rate is exponentially faster with an additional factor exp
(
− (1/8 + o(1))M2

n,p

)
.

Furthermore, we propose a three-step data-driven classification rule, called AdaLDA, by

using an adaptive constrained `1 minimization approach which takes into account the vari-

ability of individual entries. This classification rule is shown to be simultaneously rate

optimal over the collection of parameter spaces G(s,Mn,p). To the best of our knowledge,

this is the first optimality result for classification of high-dimensional Gaussian data. Fur-

thermore, in contrast to many classification rules proposed in the literature, which require

to choose tuning parameters, this procedure is data-driven and tuning-free.
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In addition, we also consider classification in the presence of missing data. As in the con-

ventional low-dimensional setting, the problem of missing data also arises frequently in the

analysis of high-dimensional data from in a range of fields such as genomics, epidemiology,

engineering, and social sciences (Libbrecht and Noble, 2015; White et al., 2011; Graham,

2009). Compared to the low-dimensional setting, there are relatively few inferential methods

for missing data in the high-dimensional setting. Examples include high-dimensional linear

regression (Loh and Wainwright, 2012), sparse principal component analysis (Lounici, 2013),

covariance matrix estimation (Cai and Zhang, 2016), and vector autoregressive (VAR) pro-

cesses (Rao et al., 2017). In this paper, following the missing mechanism considered in

the aforementioned papers, we investigate high-dimensional discriminant analysis in the

presence of missing observations under the missing completely at random (MCR) model.

We construct a data-driven adaptive classifier with theoretical guarantees based on incom-

plete data and also develop an optimality theory for high-dimensional linear discriminant

analysis under the MCR model. The technical analysis for the case of missing data is much

more challenging than that for the complete data, although the classification procedure

and the resulting convergence rates look similar. To facilitate the theoretical analysis, we

establish a key technical tool, which is a large deviation result for the generalized sample

covariance matrix. This is related to the masked covariance matrix estimator considered in

Levina and Vershynin (2012) and Chen et al. (2012), see further discussions in Section 2.2.3.

This technical tool can be of independent interest as it is potentially useful for other related

problems in high-dimensional statistical inference with missing data.

The proposed adaptive classification algorithms can be cast as linear programs and are

thus easy to implement. Simulation studies are carried out to investigate the numerical

performance of the classification rules. The results show that the proposed classifiers enjoy

superior finite sample performance in comparison to existing methods for high-dimensional

linear discriminant analysis. The proposed classifiers are also illustrated through an appli-

cation to the analysis of lung cancer and leukemia datasets. The results show that they
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outperform existing methods.

The rest of the paper is organized as follows. In Section 2.2, after basic notation and defi-

nitions are reviewed, we introduce an adaptive algorithm for high-dimensional discriminant

analysis with the complete data and then propose a more general procedure for the setting

of incomplete data. Section 4.3 studies the theoretical properties of these classification rules

and related estimators. In addition, minimax lower bounds are given. The upper and lower

bounds together establish the optimal rates of convergence for the minimax misclassifica-

tion risk. Numerical performance of the classification rules are investigated in Section 2.4

and an extension to the multiple-class LDA is discussed in Section 2.5. The proofs of the

main results are given in Section 4.8. Technical lemmas are proved in the Supplementary

Material (Cai and Zhang, 2018d).

2.2. Methodology

In this section, we firstly introduce an adaptive algorithm for high-dimensional linear dis-

criminant analysis with the complete data. This algorithm is called AdaLDA (Adaptive

Linear Discriminant Analysis rule). We then propose a data-driven classifier, called ADAM

(Adaptive linear Discriminant Analysis with randomly Missing data), for the incomplete

data under the MCR model.

2.2.1. Notation and definitions

We begin with basic notation and definitions. Throughout the paper, vectors are denoted

by boldface letters. For a vector x ∈ Rp, the usual vector `0, `1, `2 and `∞ norms are

denoted respectively by ‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞. Here the `0 norm counts the number

of nonzero entries in a vector. The support of a vector x is denoted by supp(x). The

symbol ◦ denotes the Hadamard product. For p ∈ N, [p] denotes the set {1, 2, ..., p}. For

j ∈ [p], denote by ej the j-th canonical basis in Rp. For a matrix Σ = (σij)1≤i,j≤p ∈ Rp×p,

the Frobenius norm is defined as ‖Σ‖F =
√∑

i,j σ
2
ij and the spectral norm is defined to be

‖Σ‖2 = sup‖x‖2=1 ‖Σx‖2. The vector `∞ norm of the matrix Σ is |Σ|∞ = maxi,j |σij |. For
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a symmetric matrix Σ, we use λmax(Σ) and λmin(Σ) to denote respectively the largest and

smallest eigenvalue of Σ. Σ � 0 means that Σ is positive definite. For a positive integer

s < p, let Γ(s) = {u ∈ Rp : ‖uSC‖1 ≤ ‖uS‖1, for some S ⊂ [p] with |S| = s}, where uS

denotes the subvector of u confined to S. For two sequences of positive numbers an and

bn, an . bn means that for some constant c > 0, an ≤ cbn for all n, and an � bn if an . bn

and bn . an. We say an event An holds with high probability if lim inf
n→∞

P(An) = 1. Finally,

c0, c1, c2, C, C1, C2, . . . denote generic positive constants that may vary from place to place.

The complete data X
(1)
1 , ...,X

(1)
n1 and X

(2)
1 , ...,X

(2)
n2 are independent realizations of X(1) ∼

Np(µ1,Σ) and X(2) ∼ Np(µ2,Σ). We assume n1 � n2 and define n = min{n1, n2}. In our

asymptotic framework, we let n be the driving asymptotic parameter, s and p approach

infinity as n grows to infinity. The missing completely at random (MCR) model assumes

that one observes samples {X(1)
1 , ...,X

(1)
n1 } and {X(2)

1 , ...,X
(2)
n2 } with missing values, where

the observed coordinates of X
(k)
t are indicated by an independent vector S

(k)
t ∈ {0, 1}p for

t = 1, ..., nk, k = 1, 2, that is,

X
(k)
tj is observed if S

(k)
tj = 1 and X

(k)
tj is missing if S

(k)
tj = 0; t ∈ [nk], j ∈ [p], k = 1, 2.

(2.4)

Here X
(k)
tj and S

(k)
tj are respectively the j-th coordinate of the vectors X

(k)
t and S

(k)
t .

Generally, we use the superscript “∗” to denote objects related to missing values. The

incomplete samples with missing values are denoted by X(1)∗ = {X(1)∗
1 , ...,X

(1)∗
n1 } and

X(2)∗ = {X(2)∗
1 , ...,X

(2)∗
n2 }.

Regarding the mechanism for missingness, the MCR model is formally stated as below.

This assumption is more general than the one considered previously by Loh and Wainwright

(2012) and Lounici (2013).

Assumption 1. (Missing Completely at Random (MCR)) S =
{
S

(k)
t ∈ {0, 1}p: t =

1, ..., nk, k = 1, 2
}

is independent of the values of X
(1)
t and X

(2)
t for t = 1, ..., nk, k = 1, 2.

Here S
(k)
t can be either deterministic or random, but independent of X

(1)
t and X

(2)
t .
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A major goal of the present paper is to construct a classification rule Ĉ in the high dimen-

sional setting where p� n for both complete and incomplete data.

2.2.2. Data-driven adaptive classifier for complete data

We first consider the case of complete data. In this setting, as mentioned in the intro-

duction, a number of high-dimensional linear discriminant rules have been proposed in the

literature. In particular, Cai and Liu (2011) introduced a classification rule called LPD

(Linear Programming Discriminant) rule by directly estimating the discriminant direction

β through solving the following optimization problem:

β̂LPD = arg min
β

{
‖β‖1 : subject to ‖Σ̂β − (µ̂2 − µ̂1)‖∞ ≤ λn

}
, (2.5)

where µ̂1, µ̂2, Σ̂ are sample means and pooled sample covariance matrix respectively, and

λn = C
√

log p/n is the tuning parameter with some constant C. Based on β̂LPD, the LPD

rule is then given by

ĈLPD(Z) =


1, (Z − µ̂1+µ̂2

2 )>β̂LPD < 0

2, (Z − µ̂1+µ̂2

2 )>β̂LPD ≥ 0

. (2.6)

The LPD rule is easy to implement and Cai and Liu (2011) proves the consistency of LPD

when the tuning parameter λn is appropriately chosen. However, it has three drawbacks.

One major drawback of the LPD rule is that it uses a common constraint λn for all coordi-

nates of a = Σ̂β− (µ̂2− µ̂1). This essentially treats the random vector a as homoscedastic,

while in fact a is intrinsically heteroscedastic and the coordinates could have a wide range

of variability. The resulting estimator β̂LPD obtained in (2.5) of the discriminant direction

β has yet to be shown as rate optimal; secondly, the procedure is not adaptive in the sense

that the tuning parameter λn is not fully specified and needs to be chosen through an em-

pirical method such as cross-validation. The third drawback is that the LPD rule ĈLPD

does not come with theoretical optimality guarantees.
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To resolve these drawbacks, we introduce an adaptive algorithm for high-dimensional LDA

with complete data, called AdaLDA (Adaptive Linear Discriminant Analysis rule), which

takes into account the heteroscedasticity of the random vector a = Σ̂β−(µ̂2−µ̂1). AdaLDA

is fully data-driven and tuning-free and will be shown to be minimax rate optimal later.

Before we describe the classifier in detail, it is helpful to state the following key technical

result which provides the motivation for the new procedure.

Lemma 1. Suppose {X(1)
t }

n1
t=1 and {X(2)

t }
n2
t=1 are i.i.d. random samples from Np(µ1,Σ)

and Np(µ2,Σ) respectively with Σ = (σij)1≤i,j≤p. Let δ = µ2 − µ1, β = Ωδ, ∆ =
√
β>δ

and a = Σ̂β − (µ̂2 − µ̂1), where µ̂1, µ̂2, Σ̂ are sample means and pooled sample covariance

matrix respectively. Then

Var(aj) =
n− 1

2n2
(σjj∆

2 + δ2
j ) +

2

n
σjj , j = 1, ..., p.

Furthermore, with probability at least 1− 4p−1,

|aj | ≤ 4

√
log p

n
· √σjj ·

(√
25∆2

2
+ 1

)
, j = 1, ..., p. (2.7)

A major step in the construction of the AdaLDA classifier is using Lemma 1 to construct

an element-wise constraint for Σ̂β − (µ̂2 − µ̂2), which relies on an accurate estimation of

the right hand side of (2.7). In (2.7), σjj can be easily estimated by the sample variances

σ̂jj , but ∆2 is harder to estimate. In the following, we begin by constructing a preliminary

estimator β̃, estimating ∆2 by |β̃>(µ̂2 − µ̂1)|, and then applying Lemma 1 to refine the

estimation of β. The data-driven adaptive classifier AdaLDA is constructed in three steps.
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Step 1 (Estimating ∆2). Fix λ0 = 25/2, we estimate β by a preliminary estimator

β̃ = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj · (λ0β

>(µ̂2 − µ̂1) + 1), j ∈ [p].

(2.8)

Then we estimate ∆2 by ∆̂2 = |β̃>(µ̂2 − µ̂1)|.

Step 2 (Adaptive estimation of β). Given ∆̂2, the final estimator β̂AdaLDA of β is con-

structed through the following linear optimization

β̂AdaLDA = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj(λ0∆̂2 + 1), j ∈ [p].

(2.9)

Step 3 (Construction of AdaLDA). The AdaLDA classification rule is obtained by

plugging β̂AdaLDA into Fisher’s rule (2.1),

ĈAdaLDA(Z) =


1,

(
Z − µ̂1+µ̂2

2

)>
β̂AdaLDA < 0,

2,
(
Z − µ̂1+µ̂2

2

)>
β̂AdaLDA ≥ 0.

(2.10)

Note that there is a square root on ∆2 (or ∆̂2) in both (2.7) and (2.9), but this square root

is removed in (2.8). Intuitively, by removing the square root in (2.8), Step 1 becomes a

linear program, which provides a computationally efficient but sub-optimal estimator. This

estimator is then refined to be rate-optimal in Step 2 by adding back the square root. This

two-step idea is in the similar spirit as that in Cai et al. (2016b) for adaptive estimation of

precision matrices. Despite this similarity in the ideas for the construction procedures, the

problem considered and the technical tools applied in the present paper are very different
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from those in Cai et al. (2016b).

This classification rule does not require a tuning parameter and the estimator β̂AdaLDA is

solved by optimizing a linear program with an element-wise constraint, adapting to indi-

vidual variability of Σ̂β − (µ̂2 − µ̂1). It will be shown in Section 4.3 that the AdaLDA

classification rule is adaptively minimax rate optimal. Our theoretical analysis also shows

that the resulting estimator β̂AdaLDA is rate optimally adaptive whenever λ0 is a sufficiently

large constant. In particular, it can be taken as fixed at λ0 = 25/2, which is derived from

the concentration inequality given in Lemma 1.

Remark 1. Note that the optimization problems (2.8) and (2.9) are both linear programs,

so the proposed AdaLDA rule is computationally easy to implement. In contrast, the

LPD uses a universal tuning parameter λn = C
√

log p/n, whose value is usually chosen

by cross-validation. This tuning procedure is computationally costly. In addition, cross-

validation tends to overfit (Friedman et al., 2001). Therefore, estimator obtained through

cross-validation can be variable and its theoretical properties are unclear, while the AdaLDA

procedure does not depend on any unknown parameter and the estimator will be shown to

be minimax rate optimal.

2.2.3. ADAM with randomly missing data

We now turn to the case of incomplete data under the MCR model. To generalize AdaLDA

to the incomplete data case, we proceed by firstly estimating µ1, µ2 and Σ. The following

estimators follow the idea in Cai and Zhang (2016), and for completeness, we present their

proposed estimators below. Let

n
(k)∗
ij =

nk∑
t=1

S
(k)
ti S

(k)
tj , 1 ≤ i, j ≤ p, k = 1, 2.
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Here n
(k)∗
ij is the number of vectors X

(k)
t in which the ith and jth entries are both observed.

In addition, we denote n
(k)∗
i = n

(k)∗
ii for simplicity and

n∗min = min
i,j,k

n
(k)∗
ij . (2.11)

In the presence of missing values, the usual sample mean and sample covariance matrix can

no longer be calculated. Instead, the “generalized sample mean” is proposed, defined by

µ̂1 = (µ̂∗1i)1≤i≤p with µ̂∗1i =
1

n
(1)∗
i

n1∑
t=1

X
(1)
ti S

(1)
ti , 1 ≤ i ≤ p;

µ̂2 = (µ̂∗2i)1≤i≤p with µ̂∗2i =
1

n
(2)∗
i

n2∑
t=1

X
(2)
ti S

(2)
ti , 1 ≤ i ≤ p.

The “generalized sample covariance matrix” is then defined by Σ̂ = (σ̂∗ij)1≤i,j≤p with

σ̂∗ij =
1

n
(1)∗
ij + n

(2)∗
ij

(
n1∑
t=1

(X
(1)
ti − µ̂

∗
1i)(X

(1)
tj − µ̂

∗
1j)S

(1)
ti S

(1)
tj +

n2∑
t=1

(X
(2)
ti − µ̂

∗
2i)(X

(2)
tj − µ̂

∗
2j)S

(2)
ti S

(2)
tj

)
.

For these generalized estimators, we have the following bound under the MCR model.

Lemma 2. Let δ = µ2 − µ1, β = Ωδ, ∆ =
√
δ>Ωδ and a∗ = Σ̂β − (µ̂2 − µ̂1). Then

conditioning on S, we have with high probability,

|a∗j | ≤ 4

√
log p

n∗min

· √σjj ·
(√

64∆2 + 1
)
, j = 1, ..., p. (2.12)

Remark 2. Although the above result has a form that is similar to Lemma 1, its derivation

is quite different and relies on a new technical tool, the large deviation bound for Σ̂. This

is of independent interest and is related to that of the masked sample covariance estimator

considered in Levina and Vershynin (2012) and Chen et al. (2012). In particular, the masked

sample covariance estimator considered in Chen et al. (2012) applies the mask matrix to the

sample covariance maxtrix, while our proposed estimator Σ̂ can be interpreted as applying
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the mask matrix to each i.i.d. sample, and thus is more general. The proof of Lemma 2 uses

the idea of Lemma 2.1 in Cai and Zhang (2016), but yields a sharper bound. The detailed

proof is given in Section A.3.2 in the supplement (Cai and Zhang, 2018d).

We propose to estimate β adaptively and construct ADAM (Adaptive linear Discriminant

Analysis with randomly Missing data) in the following way:

Step 1 (Estimating ∆2). Fix λ1 = 64. We estimate β by a preliminary estimator

β̃ = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n∗min
·
√
σ̂∗jj · (λ1β

>(µ̂2 − µ̂1) + 1), j ∈ [p].

(2.13)

Then we estimate ∆2 by ∆̂∗2 = |β̃>(µ̂2 − µ̂1)|.

Step 2 (Adaptive estimation of β). Given ∆̂∗2, the final estimator β̂ADAM of β is con-

structed by the following linear optimization problem

β̂ADAM = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n∗min
·
√
σ̂∗jj(λ1∆̂∗2 + 1), j ∈ [p].

(2.14)

Step 3 (Construction of ADAM). Given the estimator β̂ADAM of the discriminant di-

rection β, we then construct the following ADAM classification rule by plugging

β̂ADAM into the oracle rule (2.1):

ĈADAM(Z) =


1,

(
Z − µ̂1+µ̂2

2

)>
β̂ADAM < 0,

2,
(
Z − µ̂1+µ̂2

2

)>
β̂ADAM ≥ 0.

(2.15)
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As shown in Section 4.3, ĈADAM has the similar theoretical performance as ĈAdaLDA.

Remark 3. The ADAM algorithm is designed for the MCR model. Extensions to other

missing mechanism such as missing not at random (MNAR) is possible but challenging. In

such a setting even parametric models are often not identifiable (Miao et al., 2016; Robins

and Ritov, 1997). Several authors have studied the problem of identification under MNAR

with different conditions (Rotnitzky and Robins, 1997; Sun et al., 2016; Tchetgen Tchetgen

and Wirth, 2017). The consistency of our algorithm only relies on consistent estimation of

the mean vectors and the covariance matrix. Therefore, if the means and the covariance

matrix can be estimated consistently under some MNAR model, for example, by using EM

algorithm and imputing the missing values (Schneider, 2001), we can then construct a con-

sistent classification rule based on these estimators. However, such imputation techniques

are computationally intensive (Lounici, 2014).

2.3. Theoretical properties of AdaLDA and ADAM

In this section, we develop an optimality theory for high-dimensional linear discriminant

analysis for both the complete data and the incomplete data settings. We first investigate

the theoretical properties of the AdaLDA and ADAM algorithms proposed in Section 2.2

and obtain the upper bounds for the excess misclassification risk. We then establish the

lower bounds for the rate of convergence. The upper and lower bounds together yield

the minimax rates of convergence and show that AdaLDA and ADAM are adaptively rate

optimal.

2.3.1. Theoretical Analysis of AdaLDA

We begin by considering the properties of the estimator β̂AdaLDA of the discriminant di-

rection β. The following theorem shows that β̂AdaLDA attains the convergence rate of

Mn,p

√
s log p/n over the class of sparse discriminating directions G(s,Mn,p) defined in

(4.18). The matching lower bound given in Section 3.3 implies that this rate is optimal.

Therefore, AdaLDA adapts to both the sparsity pattern of β as well as the signal-to-noise
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ratio ∆.

Theorem 2. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0.

Suppose X
(1)
1 , ...,X

(1)
n1

i.i.d.∼ Np(µ1,Σ), X
(2)
1 , ...,X

(2)
n2

i.i.d.∼ Np(µ2,Σ) and n1 � n2. Assume

that Mn,p

√
s log p
n = o(1). Then

sup
θ∈G(s,Mn,p)

E[‖β̂AdaLDA − β‖2] .Mn,p

√
s log p

n
.

We then proceed to characterize the accuracy of the classification rule ĈAdaLDA, measured by

the excess misclassification risk Rθ(Ĉ)−Ropt(θ). Note that the conditional misclassification

rate of ĈAdaLDA given the two samples can be analytically calculated as

Rθ(ĈAdaLDA) =
1

2
Φ

− (µ̂− µ1)>β̂AdaLDA√
β̂>AdaLDAΣβ̂AdaLDA

+
1

2
Φ̄

− (µ̂− µ2)>β̂AdaLDA√
β̂>AdaLDAΣβ̂AdaLDA

 ,

where µ̂ = (µ̂1 + µ̂2)/2 and Φ̄(·) = 1− Φ(·).

We are interested in the excess misclassification risk Rθ(ĈAdaLDA) − Ropt(θ). That is, we

compare ĈAdaLDA with the oracle Fisher’s rule, whose risk is given by

Ropt(θ)
def
= Rθ(Cθ) = Φ

(
−1

2
∆

)
.

The following theorem provides an upper bound for the excess misclassification risk of the

AdaLDA rule.

Theorem 3. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0 and

assume the conditions in Theorem 2 hold.

1. If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈G(s,Mn,p)

P
(
Rθ(ĈAdaLDA)−Ropt(θ) ≤ C · s log p

n

)
≥ 1− 8p−1.
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2. If Mn,p → ∞ as n → ∞, then there exist some constant C > 0 and δn = o(1), such

that

inf
θ∈G(s,Mn,p)

P
(
Rθ(ĈAdaLDA)−Ropt(θ) ≤ C · e−( 1

8
+δn)M2

n,p · s log p

n

)
≥ 1− 8p−1.

Remark 4. The results in Theorem 3 improve the convergence rate of the misclassification

risk of the LPD rule given in Cai and Liu (2011). Consider the first case where Mn,p is

a constant not depending on n and p, Theorem 3 of Cai and Liu (2011) shows that the

convergence rate is Rθ(ĈLPD)−Ropt(θ) = OP ((s log p/n)1/2), while Theorem 3 here shows

a faster rate OP ((s log p/n)) when Mn,p is a constant. Indeed, this improvement is due to a

careful analysis of the misclassification error. In the proof of Theorem 3, it can be seen that

the first order approximation error is vanishing, and only the second order approximation

error, which has a faster convergence rate, remains. The lower bounds given in Section 3.3

show that both convergence rates in Theorem 3 are indeed optimal.

Similarly, upper bounds on the relative misclassification risk can be obtained.

Proposition 1. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0

and assume the conditions in Theorem 2 hold.

1. If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈G(s,Mn,p)

P

(
Rθ(ĈAdaLDA)−Ropt(θ)

Ropt(θ)
≤ C · s log p

n

)
≥ 1− 8p−1.

2. If Mn,p →∞ as n→∞, then there exist some constant C > 0, such that

inf
θ∈G(s,Mn,p)

P

(
Rθ(ĈAdaLDA)−Ropt(θ)

Ropt(θ)
≤ C ·M4

n,p ·
s log p

n

)
≥ 1− 8p−1.

Remark 5. The results in Proposition 3 show that the relative misclassification risk has

a worse convergence rate when the magnitude of signal-to-noise ratio Mn,p becomes larger.

This is expected as when Mn,p becomes larger, the classification problem itself becomes
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easier and the oracle misclassification risk is very small, making the oracle classification

rule harder to be mimicked.

2.3.2. Theoretical Analysis of ADAM

We now investigate the theoretical properties of the ADAM procedure in the presence of

missing data. Similar rates of convergence for estimation and excess misclassification risk

can be obtained, but the technical analysis is much more involved under the MCR model.

Under the MCR model, suppose that the missingness pattern S ∈ {0, 1}n1×p × {0, 1}n2×p

is a realization of a distribution F . We consider the distribution space Ψ(n0;n, p) given by

Ψ(n0;n, p) = {F : PS∼F (c1n0 ≤ n∗min(S) ≤ c2n0) ≥ 1− p−1},

for some constants c1, c2 > 0, and n∗min(S) is defined for S as in (2.11).

Remark 6. This distribution space includes the missing uniformly and completely at ran-

dom (MUCR) model considered in Loh and Wainwright (2012); Lounici (2013) and Lounici

(2014). More specifically, MUCR model assumes each entry X
(k)
i,j (k ∈ [2], i ∈ [nk], j ∈ [p])

is missing independently with probability ε. As shown in Section A.6 in the supplement,

when 1
(1−ε)2

√
log p
n = o(1) as n → ∞, the MUCR model is in the distribution space

Ψ(n(1− ε)2;n, p).

In addition, this distribution space allows a more general variant of MUCR model that

each entry X
(k)
i,j is missing independently with different probabilities ε

(k)
ij . If we assume

c̃1 · ε ≤ mini,j,k ε
(k)
ij ≤ maxi,j,k ε

(k)
ij ≤ c̃2 · ε for some constants c̃1, c̃2 > 0, then use the similar

technique, this missingness pattern is included in Ψ(n(1−ε)2;n, p) when 1
(1−ε)2

√
log p
n = o(1)

as n→∞.

The following two theorems provide respectively the convergence rates for the discrimi-

nating direction estimator β̂ADAM and the excess misclassification rate of ĈADAM over the

parameter space G(s,Mn,p) for θ and the distribution space Ψ(n0;n, p).
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Theorem 4. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0

and the distribution space Ψ(n0;n, p) with Mn,p

√
s log p
n0

= o(1). Suppose X
(1)
1 , ...,X

(1)
n1 and

X
(2)
1 , ...,X

(2)
n2 are i.i.d. samples from Np(µ1,Σ) and Np(µ2,Σ) respectively. Assuming that

X
∗(1)
1 , ...,X

∗(1)
n1 and X

∗(2)
1 , ...,X

∗(2)
n2 defined in (2.4) is observed and Assumption 1 with

S = {S(k)
t }t∈[nk],k∈[2] holds. Then the risk of estimating the discriminant direction β by

ADAM satisfies

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

E[‖β̂ADAM − β‖2] .Mn,p

√
s log p

n0
.

Theorem 5. Suppose the conditions of Theorem 4 hold.

1. If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0, such that

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P
(
Rθ(ĈADAM)−Ropt(θ) ≤ C · s log p

n0

)
≥ 1− 12p−1.

2. If Mn,p → ∞ as n → ∞, then there exist some constant C > 0 and δn = o(1), such

that

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P
(
Rθ(ĈADAM)−Ropt(θ) ≤ C · e−( 1

8
+δn)M2

n,p · s log p

n0

)
≥ 1− 12p−1.

In the complete data case, we have n0 = n, so the rates of convergence shown in Theorem

4 and 5 match those in Theorems 2 and 3.

Similarly, upper bounds for the relative misclassification risks can be obtained.

Proposition 2. Suppose the conditions of Theorem 4 hold.

1. If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P

(
Rθ(ĈADAM)−Ropt(θ)

Ropt(θ)
≤ C · s log p

n

)
≥ 1− 12p−1.
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2. If Mn,p →∞ as n→∞, then there exist some constant C > 0, such that

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P

(
Rθ(ĈADAM)−Ropt(θ)

Ropt(θ)
≤ C ·M4

n,p ·
s log p

n

)
≥ 1− 12p−1.

In addition, in the special case of MUCR model, Theorem 4 and 5 imply the following

result.

Corollary 1. Under the conditions of Theorem 3 and consider the MUCR model with

missing probability ε. If (M2
n,p

s log p
n ∨

√
log p
n ) · 1

(1−ε)2 = o(1), then the risk of estimating the

discriminant direction β by ADAM over the class G(s,Mn,p) satisfies

sup
θ∈G(s,Mn,p)

E[‖β̂ADAM − β‖2] .Mn,p

√
s log p

n(1− ε)2
.

Moreover, there exist constant C > 0 and δn = o(1), such that the excess misclassification

risk over the class G(s,Mn,p) satisfies

inf
θ∈G(s,Mn,p)

P
(
Rθ(ĈADAM)−Ropt(θ) ≤ C · e−( 1

8
+δn)M2

n,p · s log p

n(1− ε)2

)
≥ 1− 13p−1.

This result shows that, although the sample size only loses a proportion of ε, the convergence

rates for the estimation risk and misclassification rate shrunk at the rate of n(1− ε)2 under

the MUCR model.

2.3.3. Minimax lower bounds

To understand the difficulty of the classification problem and the related estimation problem

as well as to establish the optimality for the AdaLDA and ADAM classifiers, it is essential

to obtain the minimax lower bounds for the estimation risk and the excess misclassification

risk. In this section, we only state the results for the missing data setting as the complete

data setting can be treated as a special case. The following lower bound results show that

the rates of convergence obtained by AdaLDA and ADAM algorithms are indeed optimal,
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for both estimation of the discriminant direction β and classification.

Theorem 6. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0 and

the distribution space Ψ(n0;n, p) with Mn,p

√
s log p
n0

= o(1). For any n0 > 1, suppose 1 ≤

s ≤ o( n0
log p) and log p

log(p/s) = O(1). Then under MCR model, the minimax risk of estimating

the discriminant direction β over the class G(s,Mn,p) and Ψ(n0;n, p) satisfies

inf
β̂

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

E[‖β̂ − β‖2] &Mn,p

√
s log p

n0
.

Theorem 7. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0

and the distribution space Ψ(n0;n, p) with Mn,p

√
s log p
n0

= o(1). For any n0 ≥ 1, suppose

1 ≤ s ≤ o( n0
log p) and log p

log(p/s) = O(1). Then under the MCR model, the minimax risk of the

excess misclassification error over the class G(s,Mn,p) and Ψ(n0;n, p) satisfies that

1. If Mn,p ≤ Cb for some Cb > 0, then for any α > 0, there are some constants Cα > 0

such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα ·
s log p

n0
) ≥ 1− α.

2. If Mn,p → ∞ as n → ∞, then for any α > 0, there are some constants Cα > 0 and

δ̃n = o(1) such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα · e−( 1
8

+δ̃n)M2
n,p · s log p

n0
) ≥ 1− α.

Remark 7. In the complete data case, n∗min = min{n1, n2} = n, so Theorems 6 and 7

together with Theorems 1-4 imply that both AdaLDA and ADAM algorithms attain the

optimal rates of convergence in terms of estimation and classification error.

We should also note that the proof of Theorem 7 is not straightforward. This is partially

due to the fact that the excess risk Rθ(Ĉ)−Ropt(θ) does not satisfy the triangle inequality

that is required by standard lower bound techniques. A key technique here is to make a
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connection to an alternative risk function. For a generic classification rule Ĉ, we define

Lθ(Ĉ) = Pθ(Ĉ(Z) 6= Cθ(Z)), (2.16)

where Cθ(Z) is the Fisher’s linear discriminant rule in (2.1). The following lemma enables

us to reduce the loss Rθ(Ĉ)−Ropt(θ) to the risk function Lθ(Ĉ).

Lemma 3. Let Z ∼ 1
2Np(µ1,Σ)+ 1

2Np(µ2,Σ) with parameter θ = (µ1,µ2,Σ). If a classifier

Ĉ satisfying Lθ(Ĉ) = o(1) as n→∞, then for sufficiently large n,

Rθ(Ĉ)−Ropt(θ) ≥
√

2π∆

8
e∆2/8 · L2

θ(Ĉ).

Lemma 12 shows the relationship between the risk function Rθ(Ĉ) − Ropt(θ) and a more

“standard” risk function Lθ(Ĉ), who has the following property which served the same

purpose as the triangle inequality.

Lemma 4. Let θ = (µ,−µ, Ip) and θ̃ = (µ̃,−µ̃, Ip) with ‖µ‖2 = ‖µ̃‖2 = ∆/2. For any

classifier C, if ‖µ− µ̃‖2 = o(1) as n→∞, then for sufficiently large n,

Lθ(C) + Lθ̃(C) ≥ 1

∆
e−∆2/8 · ‖µ− µ̃‖2.

Using Lemmas 12 and 4, we can then use Fano’s inequality to complete the proof of Theorem

7. The details are shown in Section 4.8.

In addition, similar minimax lower bounds for estimating β and the excess misclassification

error can be established under the MUCR model. The following result shows that the

convergence rates in Corollary 1 are minimax rate optimal.

Theorem 8. Under the conditions of Theorem 6 and MUCR model with missing probability

ε, and further assume that ((M2
n,p

s log p
n ) ∨

√
log p
n ) · 1

(1−ε)2 = o(1), then the minimax risk

of estimating the discriminant direction β by ADAM over the class G(s,Mn,p) under the
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MUCR model satisfies

inf
β̂

sup
θ∈G(s,Mn,p)

E[‖β̂ − β‖2] &Mn,p

√
s log p

n(1− ε)2
.

Moreover, if Mn,p → ∞ and ε < 1 − cB for some cB ∈ (0, 1), the minimax risk of the

misclassification error over the class G(s,Mn,p) satisfies that for any α, δ > 0, there are

some constants Cα > 0, such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα · e−( 1
8

+δ)M2
n,p · s log p

n(1− ε)2
) ≥ 1− α.

2.4. Numerical results

The proposed AdaLDA and ADAM classifiers are easy to implement, and the MATLAB code

is available at https://github.com/linjunz/ADAM. We investigate in this section the

numerical performance of AdaLDA and ADAM using both simulated and real data.

2.4.1. Simulations

In all the simulations, the sample size is n1 = n2 = 100 while the dimension p varies from

400, 800 to 1200. The probability of being in either of the two classes is equal. We consider

the following six models for the covariance matrix Σ and the discriminating direction β.

Model 1 Erdős-Rényi random graph: Let Ω̃ = (ω̃ij) where ω̃ij = uijδij , δij ∼ Ber(ρ)

being the Bernoulli random variable with success probability ρ = 0.2 and uij ∼

Unif[0.5, 1] ∪ [−1,−0.5]. After symmetrizing Ω̃, set Ω = Ω̃ + {max(−φmin(Ω̃), 0) +

0.05}Ip to ensure the positive definiteness. Finally, Ω is standardized to have unit

diagonals and Σ = Ω−1. The discriminating direction β = (5/
√
s, . . . , 5/

√
s, 0, . . . , 0)>

is sparse such that only the first s entries are nonzero.

Model 2 Block sparse model: Ω = (B+ δIp)/(1 + δ) where bij = bji = 10×Ber(0.5) for

1 ≤ i ≤ p/2, i < j ≤ p; bij = bji = 10 for p/2 + 1 ≤ i < j ≤ p; bii = 1 for 1 ≤ i ≤ p.
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Here δ = max(−φmin(B), 0) + 0.05. The matrix Ω is also standardized to have unit

diagonals and Σ = Ω−1. The discriminating direction β = (2/
√
s, . . . , 2/

√
s, 0, . . . , 0)>

where the first s entries are nonzero.

Model 3 AR(1) model: (Σij)p×p with Σij = 0.9|i−j|. The discriminating direction β =

(2/
√
s, . . . , 2/

√
s, 0, . . . , 0)> where the first s entries are nonzero.

Model 4 Varying diagonals model: We first let (Σij)p×p with Σij = 0.9|i−j|. Then we

add d = (10, 10, 10, 10, 10, U6, ..., Up) to the diagonal entries of Σ, where U6, .U7, ..., Up

i.i.d. ∼ U(0, 1). The discriminating direction β = (1/
√
s, . . . , 1/

√
s, 0, . . . , 0)> where

the first s entries are nonzero.

Model 5 Approximately sparse β: Let (Σij)p×p with Σij = 0.9|i−j|. The discriminating

direction β = (0.75, (0.75)2, (0.75)3, . . . , (0.75)p)> being approximately sparse.

Model 6 Sparse δ and Σ: Let Ω = (B + δIp)/(1 + δ) where bij = bji = 10×Ber(0.2) for

1 ≤ i ≤ p/2, i < j ≤ p; bij = bji = 10 for p/2 + 1 ≤ i < j ≤ p; bii = 1 for 1 ≤ i ≤ p.

In other words, only the first p/2 rows and columns of Ω are sparse, whereas the rest

of the matrix is not sparse. Here δ = max(−φmin(B), 0) + 0.05. The matrix Ω is

also standardized to have unit diagonals and Σ = Ω−1. The mean difference vector

δ = (2/
√
s, . . . , 2/

√
s, 0, . . . , 0)> where the first s = 10 entries are nonzero. Finally,

let β = Ωδ.

Given the covariance matrix Σ and the discriminating direction β generated by the model

above, the means are µ1 = (0, . . . , 0)> and µ2 = µ1 − Σβ. The missing mechanism is

chosen such that each entry Xki is observed with probability p = 1− ε ∈ (0, 1). We change

the missing proportion ε from 0 to 0.2. We apply AdaLDA rule when the data is complete,

i.e. ε = 0, and apply ADAM rule when ε > 0. The AdaLDA rule is then compared with

the LPD (Cai and Liu, 2011), SLDA (Shao et al., 2011), FAIR (Fan and Fan, 2008), and

NSC (Tibshirani et al., 2002) rules whose tuning parameters are chosen by five-fold cross-

validation over the grid {
√

log p/n, 3
2

√
log p/n, 2

√
log p/n, ..., 5

√
log p/n}. We also note
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that one commonly used method, the Naive Bayes rule is a special case of the NSC rule

with tuning parameter λ∆ = 0, so it’s not included in the comparison. In the following

tables, the fitting times (in seconds) on a regular computer (Intel Core i7-3770, 3.40 GHz)

and misclassification errors (in %) of different algorithms are recorded. The misclassification

error of a classifier Ĉ is computed as

1

N

N∑
i=1

1{label(Zi) 6= Ĉ(Zi)},

where Zi’s are N fresh samples from the same distribution as the training data. Here we let

N = 200 and Zi are drawn from the two classes with the same probability. Due to different

signal-to-noise ratios across different models, the misclassification rates for the Fisher’s rule

vary in different models. For each setting, the number of repetition is set to 100.

According to the simulation results in Tables 1–5, the proposed AdaLDA algorithm, which is

purely data-driven and tuning-free, has a much shorter fitting time than that of LPD, which

requires choosing tuning parameters via cross-validation. In addition, due to the element-

wise constraints in the optimization, the AdaLDA algorithm adapts to the heteroscedasticity

of a in Lemma 1, and has a better, if not comparable, performance than that of the LPD

algorithm with optimally chosen tuning parameters and outperforms all the other methods.

This advantage is further demonstrated in Model 4, where the diagonals of covariance

matrices Σ vary significantly. According to Table 4, the AdaLDA algorithm has a significant

improvement over the LPD rule. Furthermore, we considered simulation settings where β

is not sparse. In Table 5, the AdaLDA algorithm still performs well and outperforms all

the other methods when β is approximately sparse in Model 5. Under Model 6 where δ and

Σ are individually sparse and Σ is diagonally dominant, which is a setting favoring SLDA

and FAIR. In this setting, the numerical performance of AdaLDA is not as good as SLDA

and FAIR, but the differences are small.

In addition, we also investigate the numerical performance of ADAM for incomplete data.

According to Table 6, which shows the performance of ADAM across different missing
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Table 1: Misclassification errors (%) and model fitting times for Model 1 with complete
data

(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 17.50(1.51) 18.50(0.42) 42.77(1.89) 30.42(1.34) 34.05(1.21) 12.60(0.51)

[0.58s] [55.02s] [2.18s] [1.40s] [42.56s]

(20,400) 19.73(0.54) 20.65(0.72) 41.60(2.10) 25.92(0.71) 26.87(0.75) 11.05(0.61)

[0.58s] [49.73s] [2.50s] [2.96s] [43.54s]

(10,800) 20.15(1.24) 25.37(1.62) 41.46(2.14) 29.55(0.81) 33.60(1.01) 15.13(0.42)

[3.39s] [187.03s] [8.74s] [5.15s] [111.60s]

(20,800) 28.30(1.07) 29.10(1.63) 43.68(2.49) 31.58(0.97) 31.62(0.86) 14.30(0.74)

[3.35s] [195.59s] [7.18s] [5.62s] [115.15s]

(10,1200) 26.10(0.73) 26.32(0.80) 42.26(2.45) 31.78(0.75) 34.73(0.71) 16.00(0.60)

[9.90s] [531.74s] [28.21s] [21.43s] [244.57s]

(20,1200) 32.96(1.72) 35.70(1.68) 44.23(2.65) 37.48(2.31) 36.67(1.01) 18.90(0.58)

[9.94s] [493.31s] [28.14s] [26.41s] [244.28s]

(10,1600) 24.40(0.52) 28.44(2.41) 43.14(3.16) 32.48(0.89) 34.55(0.99) 19.90(0.51)

[21.77s] [809.22s] [56.78s] [34.36s] [333.84s]

(20,1600) 26.20(0.71) 30.87(2.05) 44.24(2.49) 38.52(2.56) 35.15(0.92) 17.35(0.39)

[21.75s] [1019.35s] [54.92s] [34.64s] [421.86s]
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Table 2: Misclassification errors (%) and model fitting times for Model 2 with complete
data

(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 11.88(0.16) 12.57(0.15) 14.05(0.66) 17.52(0.70) 17.58(0.78) 11.35(0.56)

[0.59s] [66.8s] [3.12s] [1.56s] [38.52s]

(20,400) 10.53(0.94) 11.28(0.67) 12.03(0.43) 12.28(0.41) 12.25(0.40) 7.40(0.45)

[0.62s] [71.8s] [1.72s] [1.25s] [37.15s]

(10,800) 13.40(1.01) 16.60(1.78) 15.10(0.66) 18.48(0.72) 21.98(0.67) 13.35(0.64)

[3.44s] [232.64s] [9.52s] [5.77s] [114.5s]

(20,800) 13.45(0.98) 16.85(1.75) 14.48(0.68) 15.28(0.75) 16.53(0.68) 9.85(0.41)

[3.34s] [245.62s] [8.58s] [5.93s] [111.56s]

(10,1200) 15.20(0.21) 17.57(1.04) 18.20(0.26) 18.88(0.53 21.68(0.73) 12.93(0.50)

[9.87s] [577.16s] [17.16s] [11.08s] [243.50s]

(20,1200) 14.27(0.82) 15.20(0.87) 17.40(0.42) 15.93(0.71) 17.68(1.01) 9.72(0.28)

[9.90s] [600.76s] [18.72s] [9.67s] [245.75s]

(10,1600) 14.38(0.43) 15.74(1.01) 15.35(0.42) 16.08(0.73) 22.07(0.68) 11.77(0.42)

[21.87s] [1215.31s] [29.02s] [18.88s] [420.08s]

(20,1600) 15.74(0.65) 17.60(1.47) 16.46(0.53) 16.97(0.71) 19.90(0.81) 12.03(0.30)

[21.75s] [1212.03s] [30.26s] [17.16s] [413.55s]
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Table 3: Misclassification errors (%) and model fitting times for Model 3 with complete
data

(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 27.98(0.90) 29.65(1.12) 33.77(0.88) 37.15(1.16) 30.00(1.00) 23.12(0.82)

[0.61s] [79.42s] [3.43s] [0.62s] [38.22s]

(20,400) 35.17(0.82) 36.40(0.80) 40.45(0.71) 43.73(0.85) 37.78(0.90) 29.08(0.93)

[0.62s] [73.49s] [2.50s] [2.65s] [37.75s]

(10,800) 28.45(0.80) 34.75(0.79) 34.83(0.66) 42.18(1.10) 31.87(0.67) 22.50(0.50)

[3.36s] [255.77s] [10.14s] [5.77s] [112.40s]

(20,800) 34.25 (0.68) 41.52 (0.67) 41.85 (1.32) 44.98 (1.46) 39.13 (0.68) 29.83 (0.49)

[3.39s] [250.27s] [9.52s] [5.15s] [113.40s]

(10,1200) 28.23(0.59) 34.10(1.05) 34.53(0.83) 41.08(0.87) 30.15(0.56) 21.15(0.72)

[9.81s] [903.35s] [24.18s] [14.98s] [250.96s]

(20,1200) 34.65(0.95) 41.68(1.33) 41.53(1.48) 46.45(1.05) 38.07(1.42) 28.05(1.15)

[9.93s] [929.33s] [24.03s] [16.0s] [256.52s]

(10,1600) 27.88(0.89) 34.13(1.02) 35.57(1.23) 41.32(1.12) 30.73(0.78) 22.17(0.58)

[21.71s] [1321.28s] [27.92s] [17.78s] [414.58s]

(20,1600) 33.45(0.72) 37.82(0.50) 41.80(1.52) 46.05(1.13) 38.70(0.95) 27.65(0.42)

[21.06s] [1864.71s] [41.03s] [28.70s] [478.12s]
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Table 4: Misclassification errors (%) and model fitting times for Model 4 with complete
data

(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 10.80(0.45) 16.03(0.57) 23.87(1.04) 16.27(0.58) 12.33(0.77) 8.18 (0.40)

[0.59s] [77.95s] [5.30s] [2.34s] [38.02s]

(20,400) 16.42(0.68) 24.05(0.62) 32.27(0.90) 23.20(1.01) 20.50(0.80) 11.22(0.59)

[0.60s] [78.06s] [4.68s] [2.62s] [37.75s]

(10,800) 12.03(0.57) 21.17(0.70) 29.00(0.81) 23.95(0.40) 17.20(1.00) 10.05(0.33)

[3.41s] [252.72s] [7.33s] [6.08s] [111.58s]

(20,800) 18.48(0.85) 25.40(0.75) 36.20(0.71) 26.28(0.69) 26.22(0.53) 11.20(0.72)

[3.35s] [249.07s] [9.67s] [5.15s] [111.34]

(10,1200) 13.98(0.58) 21.90(0.82) 28.63(0.49) 25.52(0.48) 17.40(0.70) 9.27(0.42)

[9.89s] [630.88s] [15.91s] [12.32s] [244.53s]

(20,1200) 21.70(0.90) 29.77(0.46) 34.33(0.64) 28.40(0.88) 25.82(0.72) 10.70(0.61)

[9.95s] [631.24s] [14.82s] [9.67s] [245.78s]

(10,1600) 13.90(0.42) 22.07(0.65) 27.05(0.71) 28.73(0.90) 20.20(0.37) 11.67(0.49)

[21.29s] [1846.61s] [40.56s] [27.77s] [480.78s]

(20,1600) 23.95(1.03) 29.57(0.92) 34.60(0.78) 28.98(1.09) 23.05(0.45) 15.90(0.82)

[21.56s] [1215.36s] [27.46s] [17.47s] [414.57s]
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Table 5: Misclassification errors (%) and model fitting times for Model 5 (the first four
rows) and 6 (the last four rows) with complete data

Method AdaLDA LPD SLDA FAIR NSC Oracle

p = 400 27.98(0.66) 31.68(0.46) 46.72(0.83) 34.68(0.61) 31.90(0.60) 18.55(0.56)

[0.61s] [84.19s] [4.28s] [2.03s] [39.23s]

p = 800 29.50(0.73) 34.15(1.03) 46.30(0.64) 37.20(0.87) 33.63(0.96) 19.35(0.73)

[3.37s] [253.53s] [10.76s] [7.49s] [112.38s]

p = 1200 27.43(1.25) 36.40(0.78) 46.68(0.82) 39.20(0.74) 33.45(0.72) 18.53(0.88)

[10.00s] [642.98s] [15.76s] [12.01s] [248.86s]

p = 1600 27.38(0.64) 37.82(0.65) 47.30(0.80) 41.38(1.12) 35.98(1.11) 20.62(0.68)

[21.67s] [1314.69s] [26.83s] [17.94s] [424.20s]

p = 400 18.27(0.74) 28.52(0.70) 20.60(0.64) 18.98(0.68) 21.12(0.78) 4.77(0.25)

[0.60s] [56.94s] [4.84s] [4.62s] [37.66s]

p = 800 19.10(0.99) 26.68(2.06) 21.30(0.89) 18.82(0.73) 21.10(0.61) 4.30(0.23)

[3.34s] [202.69s] [7.18s] [5.62s] [111.74s]

p = 1200 18.50(0.83) 25.60(2.12) 18.90(0.60) 17.25(0.52) 20.18(0.73) 4.25(0.33)

[9.93s] [514.57s] [15.60s] [11.39s] [244.46s]

p = 1600 18.23(1.08) 24.65(1.94) 18.80(0.68) 17.32(0.60) 22.95(0.76) 4.62(0.24)

[21.65s] [1105.70s] [27.46s] [17.32s] [420.25s]
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Table 6: Misclassification errors (%) and model fitting times for Model 1 with missing
proportion ε

Method ADAM AdaLDA

(s, p)\ε 0.2 0.15 0.1 0.05 0

(10,400) 20.55(0.91) 19.70(1.11) 19.20(1.34) 18.40(0.78) 17.50(1.51)

[0.68s] [0.65s] [0.66s] [0.65s] [0.58s]

(20,400) 24.95(1.34) 23.60(0.26) 23.67(0.10) 21.28(0.91) 19.73(0.54)

[0.67s] [0.66s] [0.64s] [0.64s] [0.58s]

(10,800) 26.28(1.10) 25.30(0.72) 22.15(0.74) 21.18(1.08) 20.15(1.24)

[3.60s] [3.60s] [3.59s] [3.59s] [3.39s]

(20,800) 34.00(1.02) 33.55(1.56) 32.97(1.14) 31.90(0.95) 28.30(1.07)

[3.63s] [3.61s] [3.64s] [3.60s] [3.35s]

(10,1200) 30.62(1.12) 30.39(1.08) 29.65(1.72) 27.42(1.16) 26.10(0.73)

[10.56s] [10.73s] [10.56s] [10.53s] [9.90s]

(20,1200) 35.62(0.81) 34.10(1.62) 33.95(0.91) 33.77(1.04) 32.96(1.72)

[10.51s] [10.54s] [10.52s] [10.52s] [9.94s]

(10,1600) 33.47(1.59) 30.53(0.79) 27.40(1.61) 26.40(1.52) 24.40(0.52)

[23.01s] [22.94s] [23.11s] [23.12s] [21.77s]

(20,1600) 37.40(0.91) 33.79(0.74) 32.70(1.12) 31.77(1.01) 26.20(0.71)

[23.00s] [22.95s] [23.01s] [22.96s] [21.75s]

proportions ε under Model 1, ADAM does not lose much accuracy in the presence of missing

data when the missing proportion ε is small. As expected, the misclassification errors of

ADAM grows when ε increases. Since the pattern of the performances of ADAM are similar

across different models, the simulation results of ADAM under Models 2-6 are given in the

supplementary material.

2.4.2. Real data analysis

In addition to the simulation studies, we also illustrate the merits of the AdaLDA and

ADAM classifiers in an analysis of two real datasets to further investigate the numerical

performance of the proposed methods. One dataset, available at www.chestsurg.org, is the

Lung cancer data analyzed by Gordon et al. (2002). Another dataset is the Leukemia data

from high-density Affymetrix oligonucleotide arrays that was previously analyzed in Golub
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Table 7: Classification error of Lung cancer data by various methods

ADAM(ε=0.1) ADAM(ε=0.05) AdaLDA LPD SLDA FAIR NSC

Testing error 5.53% 3.22% 2.09% 2.11% 4.88% 3.64% 7.30%

et al. (1999), and is available at www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. These

two datasets were frequently used for illustrating the empirical performance of the classifier

for high-dimensional data in recent literature. We will compare AdaLDA and ADAM with

the existing methods.

Lung cancer data

We evaluate the proposed methods by classifying between malignant pleural mesothelioma

(MPM) and adenocarcinoma (ADCA) of the lung. There are 181 tissue samples (31 MPM

and 150 ADCA) and each sample is described by 12533 genes in the lung cancer dataset

in Gordon et al. (2002). This dataset has been analyzed in Fan and Fan (2008) using

FAIR and NSC. In this section we apply the AdaLDA and ADAM rules to this dataset for

disease classification. When ADAM rule is used, we make each entry in the dataset missing

uniformly and independently with probability ε. In the simulation, given the small sample

size, we choose ε = 0.05 and ε = 0.1.

The sample variances of the genes range over a wide interval. We first compute the sample

variances for each gene and drop the lower and upper 6-quantiles to control the condition

number of Σ̂. The average misclassification errors are computed by using 5-fold cross-

validation for various methods with 50 repetitions. To reduce the computational costs, in

each repetition, only 1500 genes with the largest absolute values of the two sample t statistics

are used. We then apply all the aforementioned methods to this reduced dimensional

dataset. As seen in the Table 7, the classification result of AdaLDA is better than existing

methods, including LPD (Cai and Liu, 2011), SLDA (Shao et al., 2011), FAIR (Fan and

Fan, 2008), and NSC (Tibshirani et al., 2002) methods, although only 1500 genes were used.

Moreover, in the incomplete data case, ADAM still has satisfactory accuracy.
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Table 8: Classification error of Leukemia data by various methods

ADAM(ε=0.1) ADAM(ε=0.05) AdaLDA LPD SLDA FAIR NSC

Testing error 8.47% 7.53% 2.94% 3.09% 5.76% 2.94% 8.82%

Leukemia data

Golub et al. (1999) applied gene expression microarray techniques to study human acute

leukemia and discovered the distinction between acute myeloid leukemia (AML) and acute

lymphoblastic leukemia (ALL). There are 72 tissue samples (47 ALL and 25 AML) and

7129 genes in the Leukemia dataset. In this section, we apply the AdaLDA rule to this

dataset and compare the classification results with those obtained by LPD (Cai and Liu,

2011), SLDA (Shao et al., 2011), FAIR (Fan and Fan, 2008), and NSC (Fan and Fan, 2008)

methods. Same as the analysis of lung cancer data, when ADAM rule is used, we make

each entry in the dataset missing independently with probability ε ∈ {0.05, 0.1}

As in the analysis of the lung cancer data, we first drop genes with extreme sample variances

out of lower and upper 6-quantiles. Similar to the analysis of the lung cancer data, the

average misclassification errors are computed by using two-fold cross-validation for various

methods with 50 repetitions, and to control the computational costs, we use 2000 genes

with the largest absolute values of the two sample t statistics in each repetition. After the

application of all methods to the same reduced dimensional dataset, classification results

are then summarized in Table 8. The AdaLDA has the similar performance as the LPD rule

and FAIR, as obtain the misclassification error of about 3%. In contrast, the navie-Bayes

rule misclassifies 20.59% testing samples and SLDA misclassifies 5.76% testing samples. Fan

and Fan (2008) report a test error rate of 2.94% for FAIR and a test error rate of 8.82%

for NSC proposed by Tibshirani et al. (2002). In the presence of missing data, ADAM

misclassifies 7.53% and 8.47% testing samples when the missing proportion is 0.05 and 0.1

respectively.
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2.5. Extension to multiple-class LDA

We have so far focused on the two-class high-dimensional LDA. The procedure can be

extended to the following K-class setting:

X
(k)
1 , ..., X(k)

nk

i.i.d.∼ Np(µk,Σ), for k = 1, ...,K.

For ease of presentation, we focus on the complete data case in this section. For a future

observation Z drawn from these K distributions with prior probabilities π1, ..., πK , the

oracle classification rule is given by

Cθ(Z) = arg max
k∈[K]

Dk, (2.17)

where D1 = 0 and Dk = (Z− µ1+µK
2 )>βk +log(πkπ1

) for k = 2, ...,K, with βk = Ω(µk−µ1).

A similar data-driven adaptive classifier, called K-class AdaLDA, can then be constructed

based on the estimation of β2, ...,βK and ∆k =
√
β>k Σβk, as follows.

Let µ̂k, k ∈ [K] and Σ̂ be the sample means and pooled sample covariance matrix respec-

tively.

Step 1 (Estimating ∆2
k). Fix λ0 = 25/2. For k = 2, ...,K, we estimate βk by a prelimi-

nary estimator

β̃k = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂k − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj · (λ0β

>(µ̂k − µ̂1) + 1), j ∈ [p].

(2.18)

Then we estimate ∆2
k by ∆̂2

k = |β̃>k (µ̂k − µ̂1)|, k = 2, ..,K.
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Step 2 (Adaptive estimation of βk). Given ∆̂2, the final estimator β̂k of βk is con-

structed through the following linear optimization

β̂k = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂k − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj(λ0∆̂2

k + 1), j ∈ [p].

(2.19)

Step 3 (Construction of K-class AdaLDA). The K-class AdaLDA classification rule

is obtained by plugging β̂k into Fisher’s rule (2.17),

ĈK−AdaLDA(Z) = arg max
k∈[K]

D̂k, (2.20)

where D̂1 = 0 and D̂k = (Z − µ̂1+µ̂K
2 )>β̂k + log(π̂k/π̂1) with π̂k = nk/

∑K
j=1 nj for

k = 2, ...,K.

For theoretical analysis, we consider the following parameter space GK(s,Mn,p) defined by

GK(s,Mn,p) = {θ = (π1, ...πK ,µ1, ...,µK ,Σ) : µk ∈ Rp, πk ∈ (c, 1− c),
K∑
k=1

πk = 1,Σ ∈ Rp×p,Σ � 0,

‖βk‖0 ≤ s,M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,Mn,p ≤ ∆ ≤ 3Mn,p},

where M > 1 and c ∈ (0, 1/2) are some constants, Mn,p > 0 can potentially grow with n

and p.

Theoretical properties ofK-class AdaLDA can be established by applying the same technical

argument as before.

Theorem 9. Consider the parameter space GK(s,Mn,p) with Mn,p > cL for some cL > 0.

Suppose X
(k)
1 , ...,X

(k)
nk

i.i.d.∼ Np(µk,Σ) for k = 1, ...,K. Assume that Mn,p

√
s log p
n = o(1).
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Then for k ∈ [K],

sup
θ∈G(s,Mn,p)

E[‖β̂k − βk‖2] .Mn,p

√
s log p

n
.

The following theorem provides an upper bound for the excess misclassification riskRθ(ĈK−AdaLDA)−

Ropt(θ) of the K-class AdaLDA rule.

Theorem 10. Consider the parameter space GK(s,Mn,p) with Mn,p > cL for some cL > 0

and assume the conditions in Theorem 2 hold.

1. If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈GK(s,Mn,p)

P
(
Rθ(ĈK−AdaLDA)−Ropt(θ) ≤ C · s log p

n

)
≥ 1− 8p−1.

2. If Mn,p → ∞ as n → ∞, then there exist some constant C > 0 and δn = o(1), such

that

inf
θ∈GK(s,Mn,p)

P
(
Rθ(ĈK−AdaLDA)−Ropt(θ) ≤ C · e−( 1

8
+δn)M2

n,p · s log p

n

)
≥ 1− 8p−1.

2.6. Proofs

In this section, we prove the main results, Theorem 2, 3, 4 5, 6 and 7. Theorem 1 follows

from Theorems 3 and 7. Since n1 � n2, without loss of the generality we shall assume

n1 = n2 = n in the proofs. For reasons of space, the proofs of the technical lemmas are

given in the Supplementary Material (Cai and Zhang, 2018d).

2.6.1. Proof of Theorem 2

To prove Theorem 2 we begin by collecting a few important technical lemmas that will be

used in the main proofs.
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Auxiliary Lemmas

Lemma 5. Suppose X1, ...,Xn i.i.d. ∼ Np(µ,Σ), and assume that µ̂, Σ̂ are the sam-

ple mean and sample covariance matrix respectively. Let Γ(s) = {u ∈ Rp : ‖uSC‖1 ≤

‖uS‖1, for some S ⊂ [p] with |S| = s}, then with probability at least 1− p−1,

sup
u∈Γ(s)

u>(µ̂− µ) .

√
s log p

n
;

sup
u,v∈Γ(s)

u>(Σ̂− Σ)v .

√
s log p

n
.

Lemma 6. Suppose x,y ∈ Rp. Let h = x − y and S = supp(y). If ‖x‖1 ≤ ‖y‖1, then

h ∈ Γ(s) with s = |S|, that is,

‖hSc‖1 ≤ ‖hS‖1.

Main proof of Theorem 2

Recall that β̂AdaLDA is constructed by the following two steps.

Step 1. Estimating ∆2

β̃ = arg min
β

{
|e>j

(
Σ̂β − (µ̂2 − µ̂1)

)
| ≤ 4

√
log p

n
·
√
σ̂jj · (λ0β

>(µ̂2 − µ̂1) + 1), j ∈ [p]

}
.

(2.21)

Then we estimate ∆2 by ∆̂2 = |〈β̃, µ̂2 − µ̂1〉|.

Step 2. Adaptive estimation of β. Given ∆̂2, the final estimator β̂AdaLDA of β is con-

structed by the following linear optimization problem

β̂AdaLDA = arg min
β

{
|e>j

(
Σ̂β − (µ̂2 − µ̂1)

)
| ≤ 4

√
log p

n
·
√
λ0σ̂jj∆̂2 + σ̂jj , j ∈ [p]

}
.

(2.22)

Firstly, let’s show the consistency of estimating ∆2. Recall the definition of β̃ and using
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Lemma 5, we have with high probability at least 1− 3p−1,

|(β̃ − β)>Σ(β̃ − β)| ≤|(β̃ − β)>(Σ̂β̃ − δ̂)|+ |(β̃ − β)>(Σ̂− Σ)β̃)|+ |(β̃ − β)>(δ − δ̂)|

≤‖β̃ − β‖1‖Σ̂β̃ − δ̂‖∞ + |(β̃ − β)>(Σ̂− Σ)(β̃ − β))|+ |(β̃ − β)>(Σ̂− Σ)β)|

+ |(β̃ − β)>(δ − δ̂)|

.
√
s‖β̃ − β‖2 · ‖Σ̂β̃ − δ̂‖∞ + ‖β̃ − β‖2 ·

√
s log p

n
· ‖β − β̃‖2

+ ‖β − β̃‖2

√
s log p

n
· ‖β‖2 + ‖β − β̃‖2

√
s log p

n
,

(2.23)

where the third inequality uses Lemma 5 and the fact that β, β̃ − β ∈ Γ(s). In fact, β is

a feasible solution to (2.8) due to Lemma 1 and thus ‖β̃‖1 ≤ ‖β‖1. Then by Lemma 7, we

have β̃ − β ∈ Γ(s). In addition, ‖β‖0 ≤ s, so we have β ∈ Γ(s).

In addition, by standard derivation of the accuracy of sample variance, since M−1 ≤

λmin(Σ) ≤ λmax(Σ) ≤ M , by using the union bound technique, we have with probabil-

ity at least 1− p−1,

max
i∈[p]
|σ̂ii − σii| .

√
log p

n
,

which implies with probability at least 1− p−1,

max
i∈[p]
|σ̂ii| ≤ 2M.
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In addition, since ∆ ≥Mn,p ≥ cL > 0, then with probability at least 1− 3p−1,

‖Σ̂β̃ − δ̂‖∞ ≤4

√
log p

n
·
√
σ̂jj · (λ0β̃

>(µ̂2 − µ̂1) + 1)

.

√
log p

n
· |(β̃ − β)>(µ̂2 − µ̂1) + 1|+

√
log p

n
· |β>(µ̂2 − µ̂1)|

≤
√

log p

n
· (|(β̃ − β)>(µ2 − µ1)|+ |(β̃ − β)>(µ̂2 − µ̂1 − µ2 + µ1)|+ 1)

+

√
log p

n
· (|β>(µ2 − µ1)|+ |β>(µ2 − µ1 − µ̂2 + µ̂1)|)

.

√
log p

n
∆‖β̃ − β‖2 +

√
s · log p

n
‖β̃ − β‖2 +

√
log p

n
∆2 +

√
s · log p

n
∆,

where the last inequality uses the fact that ‖µ2−µ1‖2, ‖β‖2 . ∆, since ∆ =
√

(µ2 − µ1)>Ω(µ2 − µ1) ≥
1√
M
‖µ2 − µ1‖2, and ∆ =

√
β>Σβ ≥ 1√

M
‖β‖2.

It follows that with probability at least 1− 6p−1,

|(β̃ − β)>Σ(β̃ − β)| .
√
s log p

n
∆‖β̃ − β‖22 +

s log p

n
‖β̃ − β‖22 +

√
s log p

n
∆2‖β̃ − β‖2

+
s log p

n
∆‖β̃ − β‖2 +

√
s log p

n
· ‖β̃ − β‖22

+

√
s log p

n
∆‖β̃ − β‖2 + ‖β̃ − β‖2 ·

√
s log p

n

.

√
s log p

n
∆‖β̃ − β‖22 +

√
s log p

n
∆2‖β̃ − β‖2,

where the last inequality uses the fact that ∆ ≥Mn,p ≥ cL > 0.

On the other hand, since

|(β̃ − β)>Σ(β̃ − β)| ≥ λmin(Σ)‖β̃ − β‖22 ≥
1

M
‖β̃ − β‖22.

We then have, with probability at least 1− 6p−1,

‖β̃ − β‖2 .

√
s log p

n

(
∆‖β̃ − β‖2 + ∆2

)
,
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Assuming Mn,p

√
s log p
n = o(1), which implies ∆

√
s log p
n = o(1), then we have

‖β̃ − β‖2 .
∆2
√

s log p
n

1−∆
√

s log p
n

.

Since ‖β̃‖1 ≤ ‖β‖1 and combining with Lemma 5, we then have with probability at least

1− 7p−1,

|∆̂
2 −∆2

∆2
| ≤ |β̃

>(δ − δ̂)|+ |δ>(β̃ − β)|
∆2

≤ ‖β‖1 · ‖δ − δ̂‖∞ + ‖δ‖2 · ‖β − β̃‖2
∆2

≤
√
s · ‖β‖2 · ‖δ − δ̂‖∞ + ‖δ‖2 · ‖β − β̃‖2

∆2

.

√
s ·∆

√
log p
n + ∆ ·

∆2
√
s log p
n

1−∆
√
s log p
n

∆2
= o(1),

given ∆ ≥ cL and ∆
√

s log p
n = o(1).

Secondly, let’s proceed to showing the accuracy of β̂AdaLDA. We use β̂ to denote β̂AdaLDA in

this subsection for simplicity. By Lemma 1, β lies in the feasible set of (2.9), so ‖β̂‖1 ≤ ‖β‖1.

By a similar argument as in (2.23), we have that with probability at least 1− 3p−1,

|(β̂ − β)>Σ(β̂ − β)|

≤|(β̂ − β)>(Σ̂β̂ − δ̂)|+ |(β̂ − β)>(Σ̂− Σ)β̂)|+ |(β̂ − β)>(δ − δ̂)|

.
√
s‖β̂ − β‖2 · ‖Σ̂β̂ − δ̂‖∞ + ‖β̂ − β‖2 ·

√
s log p

n
· ‖β − β̂‖2

+ ‖β − β̂‖2

√
s log p

n
· ‖β‖2 + ‖β − β̂‖2

√
s log p

n
.

(2.24)

Now since we have | ∆̂2−∆2

∆2 | = o(1) with probability at least 1 − 7p−1, this implies with

probability at least 1− 10p−1,

‖Σ̂β̂ − δ̂‖∞ ≤
√

log p

n
·
√
σ̂jj∆̂2 + 2σ̂jj . ∆

√
log p

n
.
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Then using the fact |(β̃−β)>Σ(β̃−β)| ≥ λmin(Σ)‖β̃−β‖22 again, we have with probability

at least 1− 10p−1,

‖β̂ − β‖22 . ∆

√
s log p

n
· ‖β̂ − β‖2 +

√
s log p

n
· ‖β̂ − β‖22.

This implies that there exists some constant C > 0, such that with probability at least

1− 10p−1,

‖β̂AdaLDA − β‖2 ≤ C∆ ·
√
s log p

n
.

In addition, since ‖β̂AdaLDA‖1 ≤ ‖β‖1 ≤
√
p‖β‖2 ≤

√
pM ·∆, we then have

E[‖β̂AdaLDA − β‖2]

≤E[‖β̂AdaLDA − β‖2 · 1{‖β̂AdaLDA−β‖2>C∆·
√
s log p
n
}
] + E[‖β̂AdaLDA − β‖2 · 1{‖β̂AdaLDA−β‖2≤C∆·

√
s log p
n
}
]

≤
√
pM ·∆ · 10p−1 + C∆ ·

√
s log p

n
. ∆ ·

√
s log p

n
.Mn,p ·

√
s log p

n
.

2.6.2. Proofs of Theorem 3

For a vector x ∈ Rp, we define ‖x‖2,s = sup‖y‖2=1,y∈Γ(s) |x>y|. We start with the following

lemma.

Lemma 7. For two vectors γ and γ̂, if ‖γ− γ̂‖2 = o(1) as n→∞, and ‖γ‖2 ≥ c for some

constant c > 0, then when n→∞,

‖γ‖2 · ‖γ̂‖2 − γ>γ̂ � ‖γ − γ̂‖22.

We postpone the proof of Lemma 14 to Section A.6 in the supplement, and continue the

proof of Theorem 3.
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Let δn = ‖β̂ − β‖2 ∨ ‖µ̂1 − µ1‖2,s ∨ ‖µ̂2 − µ2‖2,s. We are going to show

Rθ(Ĉ)−Ropt(θ) . e−∆2/8 ·∆ · δ2
n.

Given the estimators ω̂, µ̂k, and β̂, the sample Z is classified as

Ĉ(Z) =


1, (Z − (µ̂1 + µ̂2)/2)>β̂ ≥ 0

2, (Z − (µ̂1 + µ̂2)/2)>β̂ < 0.

Let ∆̂ =

√
β̂>Σβ̂ and µ̂ = µ̂1+µ̂2

2 . The misclassification error is

Rθ(Ĉ) =
1

2
Φ
(
− (µ̂− µ1)>β̂

∆̂

)
+

1

2
Φ̄
(
− (µ̂− µ2)>β̂

∆̂

)
,

with Ropt(θ) = 1
2Φ
(
−∆/2

)
+ 1

2 Φ̄
(

∆/2
)
. Define an intermediate quantity

R∗ =
1

2
Φ
(
− δ

>β̂/2

∆̂

)
+

1

2
Φ̄
(δ>β̂/2

∆̂

)
.

We first show that R∗ −Ropt(θ) . e−∆2/8 ·∆ · δ2
n. Applying Taylor’s expansion to the two

terms in R∗ at ∆
2 and −∆

2 respectively, we obtain

R∗ −Ropt(θ) =
1

2

(∆

2
− δ

>β̂

2∆̂

)
Φ′
(∆

2

)
+

1

2

(
− δ

>β̂

2∆̂
+

∆

2

)
Φ′
(
− ∆

2

)
+O

(
e−∆2/8 1

∆
· δ4
n

)
,

(2.25)

In fact, the remaining term can be written as

1

2

(δ>β̂
2∆̂
− ∆

2

)2
Φ′′(t1,n) +

(δ>β̂
2∆̂
− ∆

2

)2
Φ′′(t2,n),

where t1,n, t2,n are some constants satisfying |t1,n|, |t2,n| are between ∆
2 and δ>β̂/2

∆̂
.
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Therefore, the remaining term can be bounded by using the facts that

∣∣∣δ>β̂
2∆̂
− ∆

2

∣∣∣ = O(
1

∆
δ2
n), and Φ′′(tn) = O(e−∆2/8∆),

for |tn| is between ∆
2 and δ>β̂/2

∆̂
.

In fact, for the first term, we can obtain this inequality by letting γ = Σ1/2β and γ̂ = Σ1/2β̂

in Lemma 14. Then

∣∣∣∆− δ>β̂
∆̂

∣∣∣ =
∣∣‖γ‖2 − γ>γ̂‖γ̂‖2 ∣∣ =

∣∣‖γ‖2‖γ̂‖2 − γ>γ̂
‖γ̂‖2

∣∣ . 1

∆
‖γ̂ − γ‖22 .

1

∆
δ2
n.

In addition, since as δn → 0, (δ∗)>β̂/2

∆̂
→ ∆

2 , we then have |Φ′′(tn)| � ∆·e−
(∆/2)2

2 = ∆·e−∆2/8.

Then (4.30) can be further expanded such that

R∗ −Ropt(θ) �
(
− δ

>β̂

2∆̂
+

∆

2

)
e−

1
2

(
∆
2

)2

+
(
− δ

>β̂

2∆̂
+

∆

2

)
e−

1
2

(
−∆

2

)2

+O
(
e−∆2/8 1

∆
· δ4
n

)
= exp

(
− ∆2

8

)
·
(
− δ

>β̂

∆̂
+ ∆

)
+O

(
e−∆2/8 1

∆
· δ4
n

)
.e−∆2/8 · |δ

>β̂

∆̂
−∆|+O

(
e−∆2/8 1

∆
· δ4
n

)
. e−∆2/8 · δ2

n.

Eventually we obtain R∗ −Ropt(θ) . e−∆2/8∆ · δ2
n.

To upper bound Rθ(Ĉ)−R∗, applying Taylor’s expansion to Rθ(Ĉ),

Rθ(Ĉ) =
1

2

{
Φ
(δ>β̂/2

∆̂

)
+

(µ̂− µ1)>β̂ − δ>β̂/2
∆̂

Φ′
(δ>β̂/2

∆̂

)
+O

(
e−∆2/8∆ · δ2

n

)}

− 1

2

{
Φ̄
(−δ>β̂/2

∆̂

)
+

(µ̂− µ2)>β̂ + δ>β̂/2

∆̂
Φ′
(
− δ

>β̂/2

∆̂

)
+O

(
e−∆2/8∆ · δ2

n

)}
,

where the remaining term can be obtained similarly as (4.30) by using the fact

∣∣∣(µ̂− µ1)>β̂ − δ>β̂/2
∆̂

∣∣∣ = O(δn) and |Φ′′(·)| = O(e−∆2/8∆).
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In fact, when |∆̂−∆| ≤ |
√

(β̂ − β)Σ(β̂ − β)| . ‖β̂ − β‖2 . δn = o(1), we have

∣∣∣(µ̂− µ1)>β̂ − δ>β̂/2
∆̂

∣∣∣ ≤ 1

2∆
|(µ̂2 − µ̂1 − µ2 + µ2)β̂| . δn.

This leads to

|Rθ(Ĉ)−R∗| .
∣∣∣δ>β̂/2− (µ̂− µ1)>β̂

∆̂
Φ′(
δ>β̂/2

∆̂
)

+
δ>β̂/2 + (µ̂− µ2)>β̂

∆̂
Φ′(−δ

>β̂/2

∆̂
) +O

(
e−∆2/8∆ · δ2

n

)∣∣∣
=
∣∣∣δ>β̂/2− (µ̂− µ1)>β̂

∆̂
e−

1
2

{
δ>β̂/2

∆̂

}2

+
δ>β̂/2 + (µ̂− µ2)>β̂

∆̂
e−

1
2

{
δ>β̂/2

∆̂

}2

+O
(
e−∆2/8∆ · δ2

n

)∣∣∣.
Since

δ/2− (µ̂− µ1) + δ/2 + (µ̂− µ2) = δ − (µ2 − µ1) = 0,

then it follows that

|Rθ(Ĉ)−R∗| . e−∆2/8∆ · δ2
n.

Combining the pieces, we obtain

Rθ(Ĉ)−Ropt(θ) . e−∆2/8 ·∆ · δ2
n.

Finally, by Lemma 5 and the derivation in Theorem 2, with probability at least 1− 12p−1,

δn . Mn,p

√
s log p
n . In addition, ∆ ∈ [Mn,p, 3Mn,p], we then have with probability at least

1− 12p−1,

Rθ(Ĉ)−Ropt(θ) . e−M
2
n,p/8 ·M3

n,p ·
s log p

n
.
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Now we consider the two cases. On the one hand, when Mn,p is bounded by Cb, we have

Rθ(Ĉ)−Ropt(θ) . e−M
2
n,p/8 · s log p

n
.

On the other hand, when Mn,p →∞ as n grows,

Rθ(Ĉ)−Ropt(θ) . e
−( 1

8
− 3 logMn,p

M2
n,p

)M2
n,p ·M3

n,p ·
s log p

n
,

where
3 logMn,p

M2
n,p

is an o(1) term as n→∞.

2.6.3. Proofs of Theorems 4 and 5

We proceed to proving Theorems 4 and 5 under the event {c1n0 ≤ n∗min(S) ≤ c2n0} that

happens with probability at least 1− p−1. The results then rely on the following lemma.

Lemma 8. Consider the MCR model and assume that µ̂, Σ̂ are the generalized sample

mean and sample covariance matrix respectively. If c1n0 ≤ n∗min(S) ≤ c2n0. then with

probability at least 1− p−1,

sup
u∈Γ(s)

u>(µ̂− µ) .

√
s log p

n0
;

sup
u,v∈Γ(s)

u>(Σ̂− Σ)v .

√
s log p

n0
.

Given Lemma 8, the derivation of Theorems 4 is very similar to the case with AdaLDA in

Section 2.6.1, and 5 can be derived from Theorem 4 by using the same logic as in Section

2.6.2, and thus are omitted.

2.6.4. Proofs of the minimax lower bound results (Theorems 6 and 7)

In this section we are going to prove Theorems 6 and 7. We start with providing lemmas

that will be used in the proof.
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Auxiliary lemmas

The proof of Theorem 6 relies on the following Fano’s Lemma.

Lemma 9 (Tsybakov (2009)). Suppose Θp is a parameter space consisting of M parameters

θ0,θ1, ...,θM ∈ Θp for some M > 0, and d(·, ·) : Θp×Θp → R+ is some distance. Denote Pθ

to be some probability measure parametrized by θ. If for some constants α ∈ (0, 1/8), γ > 0,

KL(Pθi ,Pθ0) ≤ α logM/n for all 1 ≤ i ≤M , and d(θi,θj) ≥ γ for all 0 ≤ i 6= j ≤M , then

inf
θ̂

sup
i∈[M ]

Eθi [dθi(θ̂,θi)] & γ.

The proof of Theorem 7, however, is not straightforward, since the excess risk Rθ(Ĉ) −

Ropt(θ) is not a distance as required in Lemma 9. The key step in our proof of Theorem

7 is to reduce the excess risk Rθ(Ĉ) − Ropt(θ) to Lθ(Ĉ), defined in (2.16). The following

lemma suggests that it suffices to provide a lower bound for Lθ(Ĉ), and Lθ(Ĉ) satisfies an

approximate triangle inequality (Lemma 4).

Although Lθ(Ĉ) is not a distance function and does not satisfy an exact triangle inequality,

the following lemma provides a variant of Fano’s Lemma.

Lemma 10 (Tsybakov (2009)). Let M ≥ 0 and θ0,θ1, ...,θM ∈ Θp. For some constants

α0 ∈ (0, 1/8], γ > 0, and any classifier Ĉ, if KL(Pθi ,Pθ0) ≤ α0 logM/n for all 1 ≤ i ≤M ,

and Lθi(Ĉ) < γ implies Lθj (Ĉ) ≥ γ for all 0 ≤ i 6= j ≤M , then

inf
Ĉ

sup
i∈[M ]

Pθi(Lθi(Ĉ) ≥ γ) ≥
√
M√

M + 1
(1− 2α0 −

√
2α0

logM
).

Lemma 11 (Tsybakov (2009)). Define Ap,s = {u : u ∈ {0, 1}p, ‖u‖0 ≤ s}. If p ≥ 4s, then

there exists a subset {u0,u1, ...,uM} ⊂ Ap,s such that u0 = {0, ..., 0}>, ρH(ui,uj) ≥ s/2

and log(M + 1) ≥ s
5 log(ps ), where ρH denotes the Hamming distance.
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Proof of Theorem 6

In this section we prove the lower bound of estimation of β. First we construct a subset of

the parameter space Θ that characterizes the hardness of the problem. By Lemma 16, there

exist u0,u1, ...,uM ∈ Ap,s = {u ∈ {0, 1}p : ‖u‖0 ≤ s}, such that ρH(ui,uj) > s/2 and

log(M + 1) ≥ s
5 log(ps ), denote this collection of ui by Ãp,s. In addition, denote u0 = 0p.

Since log p
log(p/s) = O(1), so for sufficiently large p, we have s < p/2. Define b0 be the p-

dimensional vector with the last s entries being
Mn,p√

s
and the rest being 0, so we have

‖b0‖2 = Mn,p. Let r = dp/2e. For u ∈ Ãp,s = {u0,u1, ...,uM}, let Bu be the p × p

symmetric matrix whose i-th row and column are both ε · ui · b0
Mn,p

for i ∈ {1, ..., r}, where

ε is to be determined later. The parameter set we considered is

Θ0 = {θ = (µ1,µ2,Σ) : µ1 = b0,µ2 = −b0,Σ = (Ip +Bu)−1;u ∈ Ãp,s ∪ {0p}}.

For a given u, the corresponding discriminating direction is βu = −2(Ip + Bu)b0, which

implies

‖βu − βũ‖22 = 4‖(Bu −Bũ)b0‖22 ≥ 4ρH(u, ũ)ε2‖b0‖22 ≥ 2sM2
n,pε

2.

In addition, when ‖Bu‖2 = o(1), for sufficiently large n, we have ∆ =
√

4b>0 (Ip +Bu)b0 ∈

(Mn,p, 3Mn,p), which implies that Θ0 ⊂ G(s,Mn,p).

We then proceed to bound KL(Pθui ,Pθu0
) for i ∈ [M ], where Pθui ,Pθu0

denote the distri-

butions Np(b0, (Ip +Bui)
−1) and Np(b0, Ip) respectively. We then have

KL(Pθui ,Pθu0
) =

1

2
[− log |Ip +Bui | − p+ tr(Ip +Bui))] .

Note that b0
Mn,p

is a unit vector. If we take ε such that ‖Bui‖2 ≤ ‖Bu‖F ≤
√

2s · ε2 = o(1),

and denote the eigenvalues of Ip + Bui by 1 + ∆λ1 ,...,1 + ∆λp with ∆λj = o(1). We then

50



have

KL(Pθui ,Pθu0
) =

1

2

− p∑
j=1

log(1 + ∆λj )− p+

p∑
j=1

(1 + ∆λj )


�1

4

p∑
j=1

∆2
λj

=
1

4
‖Bu‖2F ≤

1

2
sε2

where we use the fact that log(1 +x) � x− x2

2 when x = o(1). Now let ε = 1
5
√

2

√
log p
n , then

KL(Pθui ,Pθu0
) ≤ α logM/n for α = 1/8.

In addition, let γ = 1
10Mn,p

√
s log p
n , then for 0 ≤ i 6= j ≤ M and any β̂ ∈ Rp, such that

‖β̂ − βui‖2 ≤ γ, we have

‖β̂−βuj‖2 ≥ ‖βuj−βuj‖2−‖β̂−βui‖2 ≥
1

5
Mn,p

√
s log p

n
− 1

10
Mn,p

√
s log p

n
=

1

10
Mn,p

√
s log p

n
= γ.

Then by Fano’s lemma (Lemma 9), we have inf β̂ supi∈[M ] E‖β̂ − βui‖2 &Mn,p

√
s log p
n .

For the incomplete data case with n0 ≥ 1, we consider a special pattern of missingness S0:

(S0)ij = 1{1≤i≤n0,1≤j≤p} with probability 1.

Under this missingness pattern, n∗min = n0 with probability 1, and the problem essentially

becomes complete data problem with n0 samples, which implies

inf
β̂

sup
θ∈G(s,Mn,p)

S∈Ψ(n0;n,p)

E[‖β̂ − β‖2] &Mn,p

√
s log p

n0
.

Proof of Theorem 7

We proceed by applying Lemma 15 to obtain the minimax lower bound for the excess mis-

classification error. We first construct a subset of the parameter space Θ that characterizes
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the hardness of the problem. Let e1 be the basis vector in the standard Euclidean space

whose first entry is 1 and zero elsewhere. By Lemma 16, there exist u1, ...,uM ∈ Ǎp,s = {u ∈

{0, 1}p :,u>e1 = 0, ‖u‖0 = s}, such that ρH(ui,uj) > s/2 and log(M + 1) ≥ s
5 log(p−1

s ).

Note the first entry in uj is 0 for all j = 1, . . . ,M .

Define the parameter space

Θ1 = {θ = (µ1,µ2,Σ) : µ1 = εu+ λe1,µ2 = −µ1,Σ = σ2Ip;u ∈ Ǎp,s},

where ε = σ
√

log p/n, σ2 = O(1) and λ is chosen to ensure θ ∈ G(s,Mn,p) such that

(µ1 − µ2)TΣ−1(µ1 − µ2) =
4‖εu+ λe1‖22

σ2
= Mn,p.

To apply Lemma 15, we need to verify two conditions: (i) the upper bound on the KL

divergence between Pθu and Pθv , and (ii) the lower bound of Lθu(Ĉ) +Lθv(Ĉ) for u 6= v ∈

Ǎp,s.

We calculate the KL divergence first. For u ∈ Ǎp,s, denote µu = εu + λe1. For θu =

(µu,−µu, σ2Ip) ∈ Θ1, we consider the distribution Np(µu, σ
2Ip).

Then, the KL divergence between Pθu and Pθv can be bounded by

KL(Pθu ,Pθv) ≤
1

2
‖µu − µv‖22 ≤ σ2 · s log p

n
. (2.26)

In addition, by applying Lemma 4, we have that for any u,v ∈ Ǎp,s,

Lθu(Ĉ) + Lθv(Ĉ) &
1

Mn,p
e−M

2
n,p/8

√
s log p

n
.

So far we have verified the aforementioned conditions (i) and (ii). Lemma 15 immediately
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implies that, there is some Cα ≥ 0, such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

P(Lθ(Ĉ) ≥ Cα
1

Mn,p
e−M

2
n,p/8

√
s log p

n
) ≥ 1− α. (2.27)

Finally combining (4.34) with Lemma 12, we obtain the desired lower bound for the excess

misclassficiation error

inf
Ĉ

sup
θ∈G(s,Mn,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα
1

Mn,p
e−M

2
n,p/8

s log p

n
) ≥ 1− α.

Under this missingness data case, we consider the same missingness pattern S0 as described

in Section 2.6.4 with nmin = n0. Then we have

inf
β̂

sup
θ∈G(s,Mn,p)

S∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα
1

Mn,p
e−M

2
n,p/8

s log p

n0
) ≥ 1− α.

This implies that

1. If Mn,p ≤ Cb for some Cb > 0, then

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cαe−
1
8
M2
n,p · s log p

n0
) ≥ 1− α.

2. If Mn,p →∞ as n→∞, then for any δ > 0,

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cαe−( 1
8

+δ)M2
n,p · s log p

n0
) ≥ 1− α.

53



CHAPTER 3 : A Convex Optimization Approach to High-dimensional Sparse

Quadratic Discriminant Analysis

3.1. Introduction

Discriminant analysis is a commonly used classification technique in statistics and ma-

chine learning. It has a wide range of applications, including, for example, face recogni-

tion (Wright et al., 2009), text mining (Berry and Castellanos, 2004), business forecasting

(Churchill and Iacobucci, 2006) and gene expression analysis (Jombart et al., 2010). In the

ideal setting of two known normal distributions Np(µ1,Σ1) (class 1) and Np(µ2,Σ2) (class

2), the goal of the discriminant analysis is to classify a new observation z, which is drawn

from one of the two distributions with prior probabilities π1 and π2 respectively, into one

of the two classes. In the ideal setting where all the parameters θ = (π1, π2,µ1,µ2,Σ1,Σ2)

are known, the optimal classifier is the quadratic discriminant rule is given by

G∗θ(z) =


1, (z − µ1)>D(z − µ1)− 2δ>Ω2(z − µ̄)− log( |Σ1|

|Σ2|) + 2 log(π1
π2

) > 0

2, (z − µ1)>D(z − µ1)− 2δ>Ω2(z − µ̄)− log( |Σ1|
|Σ2|) + 2 log(π1

π2
) ≤ 0,

(3.1)

where δ = µ2 − µ1, µ̄ = µ1+µ2

2 , and D = Ω2 − Ω1 with Ωi = Σ−1
i for i = 1, 2, see,

for example, Anderson (2003). When Σ1 = Σ2, the quadratic classification boundary in

(3.1) becomes linear, reducing the quadratic discriminant analysis (QDA) to the linear

discriminant analysis (LDA).

QDA has been an important technique for classification and is more flexible than the LDA

(Hastie et al., 2009). In practice, the parameters π1, π2,µ1,µ2,Σ1 and Σ2 are usually

unknown and instead one observes two independent random samples, X
(1)
1 , ...,X

(1)
n1

i.i.d.∼

Np(µ1,Σ1) and X
(2)
1 , ...,X

(2)
n2

i.i.d.∼ Np(µ2,Σ2). It is practically important to construct a

data-driven classification rule based on the two samples. In the low-dimensional setting

where the dimension p is small relative to the sample sizes, a natural approach is to simply

plug the sample means and sample covariance matrices into the oracle QDA rule (3.1).
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This approach has been well studied. See, for example, Anderson (2003). Thanks to the

explosive growth of big data, high-dimensional data, where the dimension p can be much

larger than the sample sizes, are now routinely collected in scientific investigations in a wide

range of fields. In such settings, the conventional LDA and QDA rules perform poorly.

For high-dimensional LDA, there already exist a number of proposals and theoretical studies.

In particular, assuming sparsity on the discriminating direction, direct estimation methods

have been introduced in Cai and Liu (2011) and Mai et al. (2012) and optimality theory is

developed in Cai and Zhang (2018a). In contrast, relatively few methods have been intro-

duced for regularized QDA in the high-dimensional setting and developing an optimality

theory is technically more challenging. Li and Shao (2015) studied high-dimensional QDA

by imposing sparsity assumptions on δ, Σ1, Σ2 and Σ1 − Σ2 separately, and then plugging

the estimates of these quantities into the oracle QDA rule (3.1). Jiang et al. (2015) intro-

duced a direct estimation approach by assuming that Ω1 − Ω2 and (Ω1 + Ω2)δ are sparse,

and proposed a consistent classification rule. However, it is unclear whether any of these

methods achieves the optimal convergence rate for the classification error.

In the present paper, we propose a sparse QDA rule using convex optimization and aim to

establish the optimal convergence rates for the classification error in the high-dimensional

settings. It is intuitively clear that QDA is a difficult problem in the high-dimensional

setting. For example, it can be seen easily from (3.1) that knowledge of the log-determinant

of the covariance matrices log( |Σ1|
|Σ2|) is essential for the QDA. However, as shown in Cai

et al. (2015), there is no consistent estimator for the log-determinant of the covariance

matrices in the high-dimensional setting even when they are known to be diagonal. We

begin by establishing rigorously minimax lower bound results, which demonstrate that

structural assumptions such as sparsity conditions on the discriminating direction β = Ω2δ

and differential graph D = Ω2−Ω1 are necessary for the possible construction of consistent

high-dimensional QDA rules. There are two key steps in obtaining the impossibility results:

One is the reduction of the classification error to an alternative loss and another is a careful
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construction of a collection of least favorable multivariate normal distributions.

We then propose a classification algorithm called SDAR (Sparse Discriminant Analysis

with Regularization) to solve the high-dimensional QDA problem under the sparsity as-

sumptions. The SDAR algorithm proceeds by first estimating β and D through constrained

convex optimization, and then using the estimators to construct a data-driven classification

rule. The first estimation step is in a similar spirit to that in Jiang et al. (2015) by directly

estimating the key quantities in the oracle QDA rule. The second classification step is

based on a simple but important observation that log(|Σ1|/|Σ2|) = log(|DΣ1 + Ip|). As a

result, we are able to derive an explicit convergence rate for the classification error of the

proposed SDAR algorithm. In addition, we establish a matching minimax lower bound, up

to a logarithm factor, that shows the near-optimality of the classifier. Both simulations and

real data analysis are carried out to study the numerical performance of the proposed algo-

rithm. The results show that the proposed SDAR algorithm outperforms existing methods

in the literature. The methodology and theory developed for high-dimensional QDA for

two groups in the Gaussian setting are also extended to multi-group classification and to

classification under the Gaussian copula model.

The contributions of the present paper are three-fold. Firstly, we address the necessity

of structural assumptions on the parameters for the high-dimensional QDA problem by

observing that consistent classification is impossible unless p = o(n) without any such

assumptions. Secondly, under the sparsity assumptions, we proposed the SDAR rule, and

established an explicit convergence rate of classification error. To the best of our knowledge,

this is the first explicit convergence rate for high-dimensional QDA. Lastly, we provide a

minimax lower bound, which shows that the convergence rate obtained by the SDAR rule

is optimal, up to a logarithmic factor.

The rest of the paper is organized as follows. In Section 3.2, minimax lower bounds are

established to show the necessity of imposing structural assumptions for high-dimensional

QDA. Section 3.3 presents in detail the data-driven classification procedure SDAR. Theo-
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retical properties of SDAR are investigated in Section 3.4 under certain sparsity conditions.

The upper and lower bounds together show that the SDAR rule achieves the optimal rate

for the classification error up to a logarithmic factor. Simulation studies are given in Sec-

tion 3.5 where we compare the performance of the proposed algorithm to other existing

classification methods in the literature. In addition, the merits of the SDAR classifier are

illustrated through an analysis of a prostate cancer dataset and a colon tissue dataset. Sec-

tion 3.6 discusses extensions to multi-group classification and to classification under the

Gaussian copula model. The proofs of main results are given in Section 3.7, and proofs of

other results are provided in the supplement.

Notation and definitions

We first introduce basic notation and definitions that will be used throughout the rest of

the paper. For an event A, 1{A} is the indicator function on A. For an integer m ≥ 1,

[m] denotes the set {1, 2, ...,m}. Throughout the paper, vectors are denoted by boldface

letters. For a vector u, ‖u‖, ‖u‖1, ‖u‖∞ denotes the `2 norm, `1 norm, and `∞ norm

respectively. We use supp(u) to denote the support of the vector u. 0p is a p-dimensional

vector with elements being 0, and 1p is a p-dimensional vector with elements being 1.

For i ∈ [p], ei is the i-th standard basis. For a matrix M ∈ Rp×p, ‖M‖, ‖M‖F , ‖M‖1

denote the spectral norm, Frobenius norm, and matrix l1 norm respectively. In addition,

|M |1 =
∑

i,j |Mi,j |, |M |∞ = maxi,j |Mi,j |, and |M | is the determinant of M . Let λi(M)

denote the i-th eigenvalue of M with λ1(M) ≥ ... ≥ λp(M). Let M � 0 denote M to be

a positive semidefinite matrix and Ip is the p × p identity matrix. In addition, M1 ⊗M2

denotes the Kronecker product and vec(M) is the p2 × 1 vector obtained by stacking the

columns of M . diag(M) is the linear operator that sets all the off diagonal elements of M

to 0. Ei,i is a p× p matrix whose (i, i)-th entry is 1 and 0 else. For a positive integer s < p,

let Γ(s; p) = {u ∈ Rp : ‖uSC‖1 ≤ ‖uS‖1, for some S ⊂ [p] with |S| = s}, where uS denotes

the subvector of u confined to S. For two sequences of positive numbers an and bn, an . bn

means that for some constant c > 0, an ≤ c · bn for all n, and an � bn if an . bn and
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bn . an. an � bn means that limn→∞ |an|/|bn| = 0. In our asymptotic framework, we let n

be the driving asymptotic parameter, s and p approach infinity as n grows to infinity. We

also use c, c1, c2, ..., C, C1, C2 to denote constants that does not depend on n, p, and their

values may vary from place to place.

3.2. The Difficulties of High-dimensional QDA

As mentioned in the introduction, high-dimensional QDA is a difficult problem. In this

section, we establish explicit minimax lower bounds that show the necessity of structural

assumptions on the discriminating direction β = Ω2δ and differential graph D = Ω2 − Ω1

for constructing consistent high-dimensional QDA rules.

3.2.1. The setup

Suppose we have random samples collected from

π1Np(µ1,Σ1) + π2Np(µ2,Σ2), among which n1 samples belong to class 1: x1, ...,xn1

i.i.d.∼

Np(µ1,Σ1), and n2 samples are in class 2: y1, ...,yn2

i.i.d.∼ Np(µ2,Σ2). The goal is to

construct a classification rule Ĝ, which is a function of xi’s and yi’s, to classify a fu-

ture data point z ∼ π1Np(µ1,Σ1) + π2Np(µ2,Σ2). This model is parametrized by θ =

(π1, π2,µ1,µ2,Σ1,Σ2). Let n = min{n1, n2}. For any classification rule Ĝ : Rp → {1, 2},

the accuracy is measured by the classification error

Rθ(Ĝ) = Eθ[1{Ĝ(z) 6= L(z)}], (3.2)

where L(z) denotes the true class label of z, that is, L(z) = 1 if z ∼ Np(µ1,Σ1), and 2

otherwise.

When θ = (π1, π2,µ1,µ2,Σ1,Σ2) is known in advance, the oracle classification rule in (3.1)

is the Bayes rule and achieves the the minimal classification error, see Anderson (2003). For

58



ease of presentation, let us define the discriminant function by

Q(z;θ) = (z − µ1)>D(z − µ1)− 2δ>Ω2(z − µ̄)− log(
|Σ1|
|Σ2|

) + 2 log(
π1

π2
). (3.3)

Then Q(z;θ) = 0 characterizes the classification boundary of the oracle QDA rule, and

(3.1) can be rewritten as

G∗θ(z) = 1 + 1{Q(z;θ) ≤ 0},

and Rθ(G∗θ) = minG∈G Rθ(G), where G is the set of all classification rules.

In the following the Bayes classification risk Rθ(G∗θ) is used as the benchmark and the excess

risk Rθ(Ĝ)−Rθ(G∗θ) is used to evaluate the performance of a data-driven classification rule

Ĝ. We say Ĝ is consistent, or G∗θ can be mimicked by Ĝ, if the excess risk Rθ(Ĝ)−Rθ(G∗θ)→

0 as the sample size n→∞.

3.2.2. Impossibility of QDA in high dimensions

We now characterize the fundamental limits of QDA by showing that, without structural

assumptions, G∗θ cannot be mimicked unless p � n, which precludes the framework in the

high-dimensional settings that motivates our study.

We first consider the simple case where Σ1 = Σ2 = Σ, and in which case the QDA is reduced

to the LDA problem. Under the LDA model in the high-dimensional regime, Bickel and

Levina (2004) and Cai et al. (2019a) proposed consistent classification rules under stringent

structural conditions on (µ1,µ2,Σ). In this paper, we demonstrate the the necessity of

these structural assumptions by showing that without structural assumptions, a consistent

classification rule is impossible in the high-dimensional LDA problem.

We firstly consider the parameter space

Θ(1)
p = {θ = (1/2, 1/2,µ1,µ2, Ip, Ip) : µ1,µ2 ∈ Rp, c1 ≤ ‖µ1 − µ2‖ ≤ c2},
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for some constant c1, c2 > 0.

Theorem 1. Suppose that Ĝ is any classification rule constructed based on the observations

x1, ...,xn
i.i.d.∼ Np(µ1, Ip), y1, ...,yn

i.i.d.∼ Np(µ2, Ip) with θ = (1/2, 1/2,µ1,µ2, Ip, Ip) ∈ Θ
(1)
p ,

then when n is sufficiently large,

inf
Ĝ

sup
θ∈Θ

(1)
p

E
[
Rθ(Ĝ)−Rθ(G∗θ)

]
&
p

n
∧ 1.

This theorem implies that even when the covariance matrices are equal and known to be

identity matrices, as long as the mean vectors µ1,µ2 are unknown, no data-driven method

is able to mimic G∗θ in the high dimensional setting where p & n. Structural assumptions

are µ1 and µ2 are necessary for a consistent classification rule.

However, for high-dimensional QDA, structural assumptions on µ1 and µ2 are not enough

and more assumptions are needed. To this end, we consider another scenario where µ1 and

µ2 are known exactly. Let µ∗1,µ
∗
2 ∈ Rp be two given vectors and define the parameter space

Θ(2)
p (µ∗1,µ

∗
2) = {θ = (1/2, 1/2,µ∗1,µ

∗
2,Σ1,Σ2) : Σ1,Σ2 are diagonal matrices}.

Theorem 2. Suppose Ĝ is constructed based on the observations x1, ...,xn
i.i.d.∼ Np(µ1,Σ1),

y1, ...,yn
i.i.d.∼ Np(µ2,Σ2). For any given µ∗1,µ

∗
2 ∈ Rp with ‖µ∗1 − µ∗2‖2 ≤ C where C > 0 is

some constant, when θ = (1/2, 1/2,µ1,µ2,Σ1,Σ2) ∈ Θ
(2)
p (µ∗1,µ

∗
2), we have for sufficiently

large n,

inf
Ĝ

sup
θ∈Θ

(2)
p (µ∗1,µ

∗
2)

E
[
Rθ(Ĝ)−Rθ(G∗θ)

]
&
p

n
∧ 1.

This theorem implies that even if we have the prior information that µ1,µ2 are known

and Σ1,Σ2 are both diagonal, the quadratic discriminant rule G∗θ cannot be mimicked

consistently if p & n. The construction of consistent classification rules requires stronger

assumptions.
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The main strategy of these proofs are discussed in Section 3.4.2, and the detailed proofs of

these lower bound results is provided in Section 3.7.1. In addition, the lower bounds are

tight, up to a logarithmic factor. Specifically, by using the techniques similar to that in

Theorem 4, the plug-in classification rule Ĝ, which is obtained by plugging in sample means

and sample covariance matrices in (3.1), satisfies that Rθ(Ĝ)−Rθ(G∗θ) . p log2 n
n ∧ 1. This

result is further discussed in the supplement.

3.3. Sparse Quadratic Discriminant Analysis

The inconsistency results in Theorems 1 and 2 imply the necessity of imposing structural

assumptions on both the mean vectors and covariance matrices. In this section, we consider

the QDA problem under the assumptions that the discriminating direction β = Ω2δ and

the differential graph D are both sparse. This sparsity assumption, according to (3.3),

implies that the classification boundary of the oracle rule depends only on a small number of

features in z. It is also worth noting that the differential graph D corresponds to the change

of interactions in two different graphs Ω1 and Ω2. The problem of interaction selection is

important in its own right and has been studied extensively recently in dynamic network

analysis under various environmental and experimental conditions, see Bandyopadhyay et al.

(2010); Zhao et al. (2014); Xia et al. (2015); Hill et al. (2016).

To see that these two sparsity assumptions are sufficent to obtain a consistent estimator for

the optimal classification rule G∗θ, we begin by rewriting Q(z;θ), defined in (3.3). Recall

that δ = µ2 − µ1, µ̄ = µ1+µ2

2 , D = Ω2 − Ω1 and β = Ω2δ, then

Q(z;θ) =(z − µ1)>D(z − µ1)− 2β>(z − µ̄)− log(
|Σ1|
|Σ2|

) + 2 log(
π1

π2
)

=(z − µ1)>D(z − µ1)− 2β>(z − µ̄)− log(|DΣ1 + Ip|) + 2 log(
π1

π2
). (3.4)

A simple but essential observation of (3.4) is that the first three quantities in the above

oracle QDA rule G∗θ depends on either D or β, and the forth term log(π1/π2) is easy to
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estimate. In the present paper, we shall show that under the sparsity assumptions on these

two quantities, D and β can be estimated directly and efficiently, and the classification rule

based on these two estimates enjoys desirable theoretical guarantees.

Remark 1. By symmetry, Q(z;θ) can also be rewritten in a form that depends on (Ω1 +

Ω2)δ and D. The reason that we consider (Ω2δ, D) as the key quantity is that this could

be easily extended to the case with K multiple groups. In this generalized setting, we

consider using the first group as a benchmark, and computing the likelihood ratio of other

groups versus the first one. As a result, the key quantity in the multiple classification case

is {(Ωk(µk − µ1),Ωk − Ω1)]}Kk=2. See more discussion in Section 3.6.

In the following, we proceed to estimate D and β through constrained convex optimization.

Let the first sample covariance matrix be Σ̂1 = n−1
1

∑n1
i=1(xi − µ̂1)(xi − µ̂1)>, where µ̂1 =

n−1
1

∑n1
i=1 xi and define Σ̂2 and µ̂2 similarly. Since D satisfies the equation Σ1DΣ2 = Σ1−Σ2

and Σ2DΣ1 = Σ1 −Σ2, a sensible estimation procedure is to solve Σ̂1DΣ̂2/2 + Σ̂2DΣ̂1/2−

Σ̂1 + Σ̂2 = 0 for D. We estimate D through the following constrained `1 minimization

approach

D̂ = arg min
D∈Rp×p

{
|D|1 : |1

2
Σ̂1DΣ̂2 +

1

2
Σ̂2DΣ̂1 − Σ̂1 + Σ̂2|∞ ≤ λ1,n

}
, (3.5)

where λ1,n = c1

√
log p
n is a tuning parameter with some constant c1 > 0 that will be specified

later.

Remark 2. The estimator D̂ defined in (3.5) is similar to that in Zhao et al. (2014),

but has better numerical performance due to symmetrization. In addition, we are able

to solve (3.5) in a more computationally efficient way. Zhao et al. (2014) vectorized D

and transformed the optimization problem (3.5) to a linear programming with a p2 × p2

constraint matrix Σ̂1⊗ Σ̂2, which is computationally demanding for large p. In contrast, we

solve (3.5) by using the primal-dual interior point method (Candes and Romberg, 2005), and

keep the matrix form of D in each step of conjugate gradient descent, by using the matrix

multiplications 1
2 Σ̂1DΣ̂2 + 1

2 Σ̂2DΣ̂1 instead of computing (1
2 Σ̂1 ⊗ Σ̂2 + 1

2 Σ̂2 ⊗ Σ̂1)vec(D)
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repeatedly. As a result, the computational complexity is reduced to O(p3) from O(p4), and

our method is able to handle the problem with larger dimension p. The code is available at

https://github.com/linjunz/SDAR.

We then proceed to estimating β. Similarly, since the true β satisfies that Σ2β = µ2 −µ1,

following Cai and Liu (2011), β can be estimated by the following procedure

β̂ = arg min
β∈Rp

{
‖β‖1 : ‖Σ̂2β − µ̂2 + µ̂1‖∞ ≤ λ2,n

}
, (3.6)

where λ2,n = c2

√
log p
n is a tuning parameter with some constant c2 > 0.

We estimate π1 and π2 by π̂1 = n1
n1+n2

and π̂2 = n2
n1+n2

respectively. Given the solutions

D̂ and β̂ to (3.5) and (3.6) and the estimates π̂1 and π̂2, we then propose the following

classification rule: classify z to class 1 if and and only if

(z − µ̂1)>D̂(z − µ̂1)− 2β̂>(z − µ̂1 + µ̂2

2
)− log(|D̂Σ̂1 + Ip|) + log(

π̂1

π̂2
) > 0.

We shall call this rule the Sparse quadratic Discriminant Analysis rule with Regularization

(SDAR), and denote it by ĜSDAR. Analytically, it’s written as

ĜSDAR(z) = 1+ (3.7)

1{(z − µ̂1)>D̂(z − µ̂1)− 2β̂>(z − µ̂1 + µ̂2

2
)− log(|D̂Σ̂1 + Ip|) + log(

π̂1

π̂2
) ≤ 0}.

The SDAR rule is easy to implement as both (3.5) and (3.6) can be solved by linear pro-

gramming. We shall show in the next sections that the SDAR rule has desirable properties

both theoretically and numerically.

3.4. Theoretical Guarantees

We now study the accuracy of the estimators D̂ and β̂ in (3.5) and (3.6), and the perfor-

mance of the resulting classifier ĜSDAR in (3.7). We first establish the rates of convergence

63



for the estimation and classification error and then provide matching minimax lower bounds,

up to logarithm factors. These results together show the near-optimality of the SDAR rule.

3.4.1. Upper bounds

To overcome the limitations illustrated in Section 3.2, we consider the following parameter

space of θ = (π1, π2,µ1,µ2,Σ1,Σ2). Especially, we assume here that both the discriminating

direction β and the differential graph D are sparse. Let fQ,θ be the probability density of

Q(z;θ) defined in (3.3), we consider the following parameter space.

Θp(s1, s2) = {θ = (π1, π2,µ1,µ2,Σ1,Σ2) : µ1,µ2 ∈ Rp,Σ1,Σ2 � 0, |D|0 ≤ s1, ‖β‖0 ≤ s2

‖D‖F , ‖β‖2 ≤M0,M
−1
1 ≤ λmin(Σk) ≤ λmax(Σk) ≤M1, k = 1, 2,

sup
|x|<δ

fQ,θ(x) < M2, c ≤ π1, π2 ≤ 1− c},

(3.8)

for some constants M0 > 0,M1 > 1, δ,M2 > 0 and c ∈ (0, 1/2).

Remark 3. Note that we assume sparsity on both the discriminant direction β and the

differential graph D, whose necessities are shown by Theorem 1 and 2. The upper bound on

‖β‖2 is a general assumption in LDA, see Cai and Liu (2011); Neykov et al. (2015); and Cai

et al. (2019a), and we assume the same on ‖vec(D)‖2 = ‖D‖F in the QDA setting. More-

over, the condition on the bounded density is commonly assumed in discriminant analysis,

see condition (C1) in Cai and Liu (2011), and discussions in Li and Shao (2015) and Jiang

et al. (2015). In the following we present a condition on θ such that this bounded density

assumption holds. Note that the term z>Dz + β>z is equal in distribution to a weighted

non-central chi-square distribution, by using the similar proof as that of Lemma 7.2 in Xu

et al. (2014), the condition sup|x|<δ fQ,θ(x) < M2 holds when either the two largest positive

eigenvalues of D λ1(D), λ2(D) or the two largest negative eigenvalues of D λ̃1(D), λ̃2(D)

are of the same order, that is 0 < lim infn→∞
λ1(D)

λ1(D)+λ2(D) < lim supn→∞
λ1(D)

λ1(D)+λ2(D) < 1 or

0 < lim infn→∞
λ̃1(D)

λ̃1(D)+λ̃2(D)
< lim supn→∞

λ̃1(D)

λ̃1(D)+λ̃2(D)
< 1.

At first, we show that over the parameter space Θp(s1, s2), the estimators D̂, β̂ obtained in
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(3.5) and (3.6) converge to the true parameters D and β. This theorem will then be used

to establish the consistency of the proposed classification rule.

Theorem 3. Consider the parameter space Θp(s1, s2), and assume that n1 � n2, s1 +

s2 . n
log p , where n = min{n1, n2}. In optimization problems (3.5) and (3.6), let λi,n =

ci
√

log p/n with ci > 0, i = 1, 2 being sufficiently large constants. Then as n goes to

infinity, the estimators obtained in (3.5) and (3.6) satisfies that, with probability at least

1− p−1,

‖D̂ −D‖F .

√
s1 log p

n
; ‖β̂ − β‖2 .

√
s2 log p

n
.

The above theorem shows that although our estimating procedure (3.6) is different from

Zhao et al. (2014), the same convergence rate can be obtained and requires milder theoretical

conditions. In fact, Zhao et al. (2014) assumes that ‖Ω1‖1 and ‖Ω2‖1 are both bounded, and

additionally requires that the off-diagonal elements of Σ1 and Σ2 are vanishing as n→∞,

which is much stronger than conditions in (4.18). In addition, the above bound implies that

when Σ1 = Σ2, that is, s1 = 0, we have D̂ = D = 0 when λ1,n is suitably chosen. This

implies that when the two covariance matrices are equal, SDAR rule (3.7) would adaptively

be reduced to the LPD rule in Cai and Liu (2011) designed for high-dimensional LDA.

We now turn to the performance of the classification rule ĜSDAR. The behavior of ĜSDAR is

measured by the excess risk Rθ(ĜSDAR)−Rθ(G∗θ), defined in (4.32). The following theorem

provides the upper bound for the excess classification error.

Theorem 4. Consider the parameter space Θp(s1, s2), and assume that n1 � n2, s1 + s2 .

n
log p·log2 n

. Then when n goes to infinity, the proposed SDAR classification rule in (3.7)

satisfies that, for sufficiently large n,

sup
θ∈Θp(s1,s2)

E
[
Rθ(ĜSDAR)−Rθ(G∗θ)

]
. (s1 + s2) · log p

n
· log2 n.
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The result in Theorem 4 shows that ĜSDAR is able to mimic G∗θ consistently over the param-

eter space Θp(s1, s2), and to the best of our knowledge, gives the first explicit convergence

rate of classification error for the high-dimensional QDA problem.

Remark 4. Related work studying the convergence of classification error includes Li and

Shao (2015) and Jiang et al. (2015), but both Theorem 3 in Li and Shao (2015) and

Theorem 4 in Jiang et al. (2015) only show the consistency of their proposed classification

rules instead of explicit convergence rates. Although in Corollary 3 of Jiang et al. (2015),

the authors showed a convergence rate for the classification error of order s1s
2
2

√
log p/n

under some regularity conditions, this result is based on the assumption that an intercept

term η, defined in their paper, is known. Jiang et al. (2015) proposed to estimate η based

on the idea of cross validation and in their theorem 3 they showed the consistency of

this estimation without explicit convergence rate. In contrast, our paper shows that the

convergence rate O((s1 + s2) log p · log2 n/n) is achievable, which is much faster than their

results. In addition, the assumptions here are weaker.

The major technical challenge of this improvement is the characterization of the distribution

of Q(z;θ), which involves the sum of weighted non-central chi-square random variables. In

the next section we will show that this convergence rate is indeed optimal up to logarithm

factors.

3.4.2. Minimax lower bound for sparse QDA

In this section we establish the minimax lower bound for the convergence rate of Rθ(Ĝ)−

Rθ(G∗θ), and thus show the optimality of ĜSDAR up to logarithm factors.

Theorem 5. Consider the parameter space Θp(s1, s2) defined in (4.18). Suppose n1 �

n2, 1 ≤ s1, s2 ≤ o( n
log p), and Ĝ is constructed based on the observations x1, ...,xn

i.i.d.∼

Np(µ1,Σ1), y1, ...,yn
i.i.d.∼ Np(µ2,Σ2). Then the minimax risk of the classification error

over Θp(s1, s2) satisfies

inf
Ĝ

sup
θ∈Θp(s1,s2)

E
[
Rθ(Ĝ)−Rθ(G∗θ)

]
& (s1 + s2) · log p

n
.
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The challenge of proving Theorem 5 is that the excess risk Rθ(Ĝ)−Rθ(G∗θ) does not satisfy

the triangle inequality (or subadditivity), which is essential to the standard minimax lower

bound techniques. To overcome this challenge, we define an alternative risk function Lθ(Ĝ)

as follows,

Lθ(Ĝ) := Pθ
(
Ĝ(z) 6= G∗θ(z)

)
. (3.9)

This loss function Lθ(Ĝ) is essentially the probability that Ĝ produces a different label than

G∗θ, and satisfies the triangle inequality, as shown in Lemma 13. The connection between

Rθ(Ĝ) − Rθ(G∗θ) and Lθ(Ĝ) is presented by the following lemma, which shows that it’s

sufficient to provide a lower bound for Lθ(Ĝ) to prove Theorem 5.

Lemma 1. Suppose θ ∈ Θp(s1, s2). There exists a constant c > 0, doesn’t depend on n, p,

such that for some classification rule G, if Lθ(G) < c, then,

L2
θ(G) . Pθ(G(z) 6= L(z))− Pθ(Gθ(z) 6= L(z)).

Based on Lemma 1, we use Fano’s inequality on a carefully designed least favorable mul-

tivariate normal distributions to complete the proof of Theorems 2 and 5. The details are

shown in Section 3.7.

3.5. Numerical Studies

In this section we firstly conduct simulation studies to investigate the impossibility results

shown in Section 3.2.2, and then study numerical properties of the proposed SDAR method

under various settings.

3.5.1. Impossibility results

We would like to illustrate the impossibility results Theorem 1 and Theorem 2 in a numerical

fashion in this subsection.

Let us start with Theorem 1, which shows the sparsity condition on β is necessary. In the
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simulation, we consider the simple case where both covariance matrices are known to be

identity but the means are unknown: x1, ...,xn ∼ Np(µ1, Ip) and y1, ...,yn ∼ Np(µ2, Ip)

and let µ1 = −µ2 = µ = 1√
p · 1p, satisfying ‖µ1 − µ2‖2 = 2.

We consider nine cases where (n, p) = (100, 200), (150, 200), (200, 200), (100, 300), (200, 300),

(300, 300), (200, 600), (400, 600), (600, 600). In each setting, we compare the oracle classifi-

cation rule G∗θ in (3.1) with the plug-in classification rule Ĝ where we estimate µ1,µ2 by

the sample means. The testing sample size is set to 100 and the simulation is repeated 100

times in each setting. The simulations results is summarized in the following table.

Table 9: Average classification errors (s.e.) based on n = 100 test samples from 100
replications under the setting where covariance matrices are known to be identity.

n Rθ(Ĝ) Rθ(Gopt)

100 0.242 (0.054) 0.155 (0.035)

p=200 150 0.232 (0.051) 0.155 (0.035)

200 0.219 (0.039) 0.155 (0.035)

100 0.265 (0.048) 0.149(0.032)

p=300 200 0.223 (0.047) 0.149(0.032)

300 0.208 (0.038) 0.149(0.032)

200 0.269 (0.045) 0.158 (0.035)

p=600 400 0.230 (0.035) 0.158 (0.035)

600 0.201 (0.035) 0.158 (0.035)

To illustrate Theorem 2, we consider a simple case where µ1 = −µ2 = (1, 0, 0, ..., 0)> and the

covariance matrices are known to be diagonal. Two classes are Np(µ1, Ip) and Np(µ2,Σ2),

where Σ2 = (Ip +
∑p/2

i=1
2√
pEi,i)

−1 and Ei,i is a p× p matrix whose (i, i)-th entry is 1 and 0

else.

We consider nine cases where (n, p) = (100, 200), (150, 200), (200, 200), (100, 300), (200, 300),

(300, 300), (200, 600), (400, 600), (600, 600). In each setting, we compare the oracle classifi-
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cation rule Gopt, that is (3.1), with the plug-in classification rule Ĝ where we estimate

Σ1,Σ2 by the diagonals of sample covariance matrices. The following table summarizes the

simulation results where the testing sample size is set to 100 and the simulation is repeated

100 times.

Table 10: Average classification errors (s.e.) based on n = 100 test samples from 100
replications under the setting where means are known to be 0p and covariance matrices are
known to be diagonal.

n Rθ(Ĝ) Rθ(Gopt)

100 0.274 (0.049) 0.193 (0.038)

p=200 150 0.260 (0.036) 0.193 (0.038)

200 0.252 (0.033) 0.193 (0.038)

100 0.271 (0.043) 0.151(0.034)

p=300 200 0.238 (0.048) 0.151(0.034)

300 0.224 (0.039) 0.151(0.034)

200 0.296 (0.032) 0.183 (0.046)

p=600 400 0.255 (0.055) 0.183 (0.046)

600 0.245 (0.037) 0.183 (0.046)

3.5.2. SDAR on synthetic data

In this section, we provide extensive numerical evidence to show the empirical performance

of SDAR by comparing it to its competitors, including the sparse QDA (SQDA, Li and

Shao (2015)), the direct approach for sparse LDA (LPD, Cai and Liu (2012)), the conven-

tional LDA (LDA), the conventional QDA (QDA) and the oracle procedure (Oracle). The

oracle procedure uses the true underlying model and serves as the optimal risk bound for

comparison. We evaluate all methods via three synthetic datasets.

In all simulations, the sample size is n1 = n2 = 200 while the number of variables p

varies from 100, 200, 400 to 600. The sparsity levels are set to be s1 = 10, s2 = 20. The

discriminating direction β = (1, . . . , 1, 0, . . . , 0)> is sparse such that only the first s1 = 10
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entries are nonzero. Given the inverse covariance matrix of the second sample Ω2, the mean

for class 1 is µ1 = (0, . . . , 0)> and the mean for class 2 is set to be µ2 = µ1 − Σ2β. In

addition, the differential graph D is a random sparse symmetric matrix with its nonzero

positions generated by uniform sample. Each nonzero entry on D is i.i.d. and from a

standard normal distribution N(0, 1). Lastly, we let Ω1 = D+Ω2, and Ω1 = Σ−1
1 ,Ω2 = Σ−1

2 .

We use the following three models to generate Ω2.

Model 1: Block sparse model: We generate Ω2 = UTΛU , where Λ ∈ Rp×p is a diagonal

matrix and its entries are i.i.d. and uniform on [1, 2], and U ∈ Rp×p is a random

matrix with i.i.d. entries from N(0, 1). In the simulation, the tuning parameters for

SDAR method are chosen over a grid {k2
√

log p
n }k=1:15.

Model 2: AR(1) model: Ω2 = (Ωij)p×p with Ωij = ρ|i−j|. In the simulation, the tun-

ing parameters for the SDAR method are chosen by cross validation over a grid

{k4
√

log p
n }k=1:15. The simulation results from 100 replications are summerized as

follows, with ρ = 0.5.

Model 3: Erdős-Rényi random graph: Let Ω̃2 = (ω̃ij) where ω̃ij = uijδij , δij ∼

Ber(1, ρ) being the Bernoulli random variable with success probability 0.05 and uij ∼

Unif[0.5, 1]∪ [−1,−0.5]. After symmetrizing Ω̃2, set Ω2 = Ω̃2 +{max(−φmin(Ω̃2), 0) +

0.05}Ip to ensure the positive definiteness. In the simulation, the tuning parameters

for SDAR method are chosen over a grid {k2
√

log p
n }k=1:15.

In each model, the number of repetition is set to be 100, and the classification errors are

evaluated based on the test data with size 100 that is generated from a Gaussian mixture

model 1
2Np(µ1,Σ1)+ 1

2Np(µ2,Σ2). We compare the proposed SDAR method with the oracle

QDA rule (3.1). The simulation results are summarized in Table 11.

This simulation result shows that the proposed SDAR algorithm outperforms the LPD al-

gorithm when there are strong interactions among features (D 6= 0). As expected, the

conventional LDA and QDA works poorly in the high-dimensional setting, and the perfor-

70



Table 11: Average classification errors (s.d.) based on n = 200 test samples from 100
replications under three different models

p 100 200 400 600

LDA 0.200(0.019) 0.224(0.028) 0.269(0.022) 0.302(0.024)
QDA 0.236(0.026) 0.274(0.023) 0.418(0.025) 0.432(0.027)

Model 1 SQDA (Shao et al.) 0.202(0.022) 0.231(0.027) 0.301(0.023) 0.347(0.025)
LPD 0.151(0.020) 0.163(0.021) 0.208(0.028) 0.256(0.025)

SDAR 0.075(0.019) 0.089(0.022) 0.091(0.029) 0.102(0.027)
Oracle 0.044(0.010) 0.023(0.007) 0.039(0.010) 0.047(0.009)

LDA 0.231(0.022) 0.214(0.021) 0.335(0.025) 0.378(0.027)
QDA 0.249(0.025) 0.296(0.029) 0.405(0.026) 0.446(0.028)

Model 2 SQDA (Shao et al.) 0.214(0.023) 0.243(0.024) 0.327(0.023) 0.376(0.025)
LPD 0.163(0.018) 0.156(0.019) 0.220(0.027) 0.253(0.024)

SDAR 0.065(0.015) 0.042(0.014) 0.081(0.020) 0.092(0.019)
Oracle 0.045(0.010) 0.025(0.007) 0.031(0.008) 0.045(0.008)

LDA 0.279(0.028) 0.305(0.032) 0.340(0.031) 0.387(0.029)
QDA 0.298(0.024) 0.356(0.025) 0.406(0.026) 0.457(0.025)

Model 3 SQDA (Shao et al.) 0.242(0.024) 0.294(0.029) 0.335(0.026) 0.374(0.026)
LPD 0.236(0.023) 0.205(0.020) 0.234(0.031) 0.252(0.027)

SDAR 0.078(0.022) 0.077(0.026) 0.096(0.028 ) 0.112(0.026)
Oracle 0.065(0.013) 0.039(0.009) 0.031(0.008) 0.048(0.010)

mance of conventional QDA is even worse due to overfitting. In the setting where D = 0,

the estimated D̂ would equal to D = 0 for properly chosen λ1, according to Theorem 3.

As we estimate β and D separately, the proposed SDAR rule in this case would adaptively

reduced to LPD. For reasons of space we do not present the detailed numerical results for

this case.

3.5.3. Real data

In addition to the simulation studies, we also illustrate the merits of the SDAR classifier

in the analysis of two real datasets to further investigate the numerical performance of the

proposed method. One is the prostate cancer data in Singh, et al. (2002), which is available

at ftp://stat.ethz.ch/Manuscripts/dettling/prostate.rda, and another dataset is

the colon tissues data analyzed in Alon et al. (1999) by using the Oligonucleotide microarray

technique, available at http://microarray.princeton.edu/oncology/affydata/index.

html. These two datasets were frequently used for illustrating the empirical performance of
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the classifier for high-dimensional data in recent literature, see Dettling (2004) and Efron

(2010). We will compare SDAR with the existing methods, including the sparse QDA

(SQDA, Li and Shao (2015)), the direct approach for sparse LDA (LPD, Cai and Liu

(2012)), the conventional LDA (LDA), the conventional QDA (QDA).

Prostate cancer data

The prostate cancer data consists of genetic expression levels for p = 6033 genes from

102 individuals (50 normal control subjects and 52 prostate cancer patients). The SDAR

classifier allows us to model the interactions among genes and thus improve the classification

accuracy. For this data, we follow the same data cleaning routine in Cai and Liu (2011),

retaining only the top 200 genes with the largest absolute values of the two sample t-

statistics. The average classification errors using 5-fold cross-validation for various methods

with 50 repetitions are reported in Table 12. The proposed SDAR method outperforms all

the other methods

Table 12: Classification error(%) with s.d. of prostate cancer data by various methods

SDAR SQDA (Shao et al.) LPD LDA QDA

Testing error 2.20 (1.11) 3.10 (1.26) 11.20 (1.87) 32.20 (3.67) 35.30 (4.18)

Colon tissues data

The colon tissues data analyzed gene expression difference between tumor and normal colon

tissues using the Oligonucleotide microarray technique, consisting 20 observations from

normal tissues and 42 observations from tumor tissues, measured in p = 2000 genes.

Similarly to the analysis of the prostate cancer data, to control the computational costs, we

use 200 genes with the largest absolute values of the two sample t-statistics. Classification

results by using 5-fold cross-validation with 50 repetitions are summarized in Table 13. In

this example, the SDAR is still the best among all classifiers.
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Table 13: Classification error(%) with s.d. of prostate cancer data by various methods

SDAR SQDA (Shao et al.) LPD LDA QDA

Testing error 19.05 (2.40) 23.20 (2.36) 26.67 (2.75) 38.20 (3.14) 39.30 (4.71)

3.6. Extensions

We have so far focused on high-dimensional QDA for two groups in the Gaussian setting.

The methodology and theory developed in the earlier sections can be extended to multi-

group classification and to classification under the Gaussian copula model.

3.6.1. Multi-group classification

We first turn to multi-group classification. Suppose there are K classes Np(µk,Σk) with

prior probability πk for 1 ≤ k ≤ K respectively, and an observation z is drawn from the

same distribution. In the ideal setting where all the parameters are known, the oracle rule

classifies z to class k if and only if

k = arg min
k∈[K]

{Qk(z)} ,

where the discriminating function Qk(z) is

Qk(z) =


1, k = 1

1
2(z − µk)>Dk(z − µk)− β>k (z − µ̄k)− 1

2 log |DkΣ1 + Ip|+ log πk, k ≥ 2,

with µ̄k = µ1+µk
2 , Dk = Ω1 −Ωk, βk = Ω1(µk −µ1), and Ωk = Σ−1

k . When the parameters

are unknown and random samples from K classes (with prior probabilities {πk}Kk=1) are

available: x
(k)
1 , ...,x

(k)
nk

i.i.d.∼ Np(µk,Σk), k = 1, ...,K, by assuming the sparsity on Dk’s and

βk’s, they can then be estimated by solving a similar linear programming as in (3.5) and
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(3.6). For k = 2, 3, ...,K, Dk and βk are estimated by

D̂k = arg min
D∈Rp×p

{
|D|1 : |1

2
Σ̂1DΣ̂k +

1

2
Σ̂2DΣ̂1 − Σ̂1 + Σ̂k|∞ ≤ λ1,n

}
, (3.10)

where λ1,n is a tuning parameter with constant c1 > 0.

β̂k = arg min
β∈Rp

{
‖β‖1 : ‖Σ̂1β − µ̂k + µ̂1‖∞ ≤ λ2,n

}
, (3.11)

where λ2,n is a tuning parameter with constant c2 > 0.

Given these estimators and π̂k = nk/(
∑K

k=1 nk), the discriminating function is then esti-

mated by

Q̂k(z) =


1, k = 1

1
2(z − µ̂k)>D̂k(z − µ̂k)− β̂>k (z − ˆ̄µk)− 1

2 log |D̂kΣ̂1 + Ip|+ log π̂k, k ≥ 2,

Then the SDAR classification rule for multi-group classification is constructed as

Ĝ(z) = arg min
k∈[K]

{Q̂k(z)}.

By applying the same techniques we developed for Theorems 3 and 4, similar convergence

rates can be obtained for both estimation and classification errors.

3.6.2. Classification under Gaussian copula model

The Gaussianity assumption can be related by incorporating semiparametric Gaussian cop-

ula model into the QDA framework. This larger semiparametric Gaussian copula model

enables robust estimation and classification, and has been studied widely in statistics and

machine learning, including linear discriminant analysis (Han et al., 2013; Mai and Zou,

2015), correlation matrix estimation (Han and Liu, 2017), graphical models (Liu et al.,

2012; Xue and Zou, 2012), and linear regression (Cai and Zhang, 2018c).
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The Semiparametric Discriminant Analysis (SeDA) model, introduced by Lin and Jeon

(2003), assumes that there are K groups of p-dimensional observations x
(1)
1 , ...,x

(1)
n1 ∼X(1),

x
(2)
1 , ...,x

(2)
n2 ∼ X(2), ..., x

(K)
1 , ...,x

(K)
nK ∼ X(K), and there are some unknown strictly in-

creasing functions f11, ..., f1p, ..., fK1, ..., fKp such that

fk(X
(k)) = (fk1(X

(k)
1 ), ..., fkp(X

(k)
p )) ∼ Np(µk,Σk) for k = 1, ...,K.

The linear SeDA model in the high-dimensional setting was recently studied by Han et al.

(2013) and Mai and Zou (2015) under the assumption that Σk’s are all equal. By applying

the LPD idea in Cai and Liu (2011), consistent classification rules were proposed under this

semiparametric linear discriminant analysis model.

The current paper presents a framework to extend the high-dimensional semiparametric

LDA to high-dimensional semiparametric QDA. Estimating the mean vectors and covari-

ance matrices similarly as in Han et al. (2013); Mai and Zou (2015) and then plugging

these estimators in (3.5) and (3.6) would lead to a generalized classification rule under the

semiparametric quadratic discriminant analysis model. We omit further detailed discussion

for reasons of space.

3.7. Proofs

We present the proofs of Theorems 1, 2, 3, 4 in this section. The proof of Theorem 5 is

similar to Theorems 1, 2, so we present its proof in the supplement.

3.7.1. Proof of Theorem 1 and 2

We prove Theorem 1 and 2 for the case where p . n. In the case where lim supn→∞ p/n =∞,

the right hand side of Theorem 1 (and 2) is of constant order and we can consider only the

first n-dimension of p-dimensional vector, and assume the rest is known.

We begin by collecting a few important technical lemmas that will be used in the proofs of

the minimax lower bounds.
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Technical lemmas

Lemma 2 (Azizyan et al. (2013)). For any θ, θ̃ ∈ Θp(s1, s2) and any classification rule Ĝ,

recall that G∗
θ̃

is the optimal rule w.r.t. θ̃. If

Lθ(G∗
θ̃
) + Lθ(Ĝ) +

√
KL(Pθ,Pθ̃)

2
≤ 1/2,

then

Lθ(G∗
θ̃
)− Lθ(Ĝ)−

√
KL(Pθ,Pθ̃)

2
≤ Lθ̃(Ĝ) ≤ Lθ(G∗

θ̃
) + Lθ(Ĝ) +

√
KL(Pθ,Pθ̃)

2
,

where the KL divergence of two probability density functions Pθ1 and Pθ2 is defined by

KL(Pθ1 ,Pθ2) =

∫
Pθ1(x) log

Pθ1(x)

Pθ2(x)
dz.

Lemma 3 (Tsybakov (2009)). Let M ≥ 0 and θ0,θ1, ...,θM ∈ Θp(s1, s2). For some con-

stants α ∈ (0, 1/8), γ > 0, and any classification rule Ĝ, if KL(Pθi ,Pθ0) ≤ α logM/n for

all 1 ≤ i ≤M , and Lθi(Ĝ) < γ implies Lθj (Ĝ) ≥ γ for all 0 ≤ i 6= j ≤M , then

inf
Ĝ

sup
i∈[M ]

Eθi [Lθi(Ĝ)] & γ.

To use Fano’s type minimax lower bound, we need a covering number argument, provided

by the following Lemma 16.

Lemma 4 (Tsybakov (2009)). Define Ap,s = {u : u ∈ {0, 1}p, ‖u‖0 = s}. If p ≥ 4s, then

there exists a subset {u0,u1, ...,uM} ⊂ Ap,s such that u0 = {0, ..., 0}>, ρH(ui,uj) ≥ s/2

and log(M + 1) ≥ s
5 log(ps ), where ρH denotes the Hamming distance.

76



Main proof of Theorem 1

At first we construct the following least favorable subset, which characterizes the difficulty

of the general QDA problem. Let’s consider the parameter space

Θ1 = {θu = (1/2, 1/2,µ1,µ2, Ip, Ip) :

µ1 = λ1e1 +

p∑
i=2

λ2√
n
· ui · ei,u ∈ Ap,p/4,µ2 = 0p},

where Ap,p/4 is defined in Lemma 16, and λ1, λ2 are of constant order and chosen later.

According to Lemma 16, there is a subset of Θ1 with logarithm cardinality being of order

p, such that for any θu,θu′ in this subset, we have ρH(u,u′) ≥ p/8. We are going to apply

Lemma 15 to this subset to complete the proof of Theorem 1.

For u ∈ Ap,p/4, let µu = λ1e1 +
∑p

i=2
λ2√
n
· ui · ei. Note that for two multivariate normal

distributions Pθu = Np(µu, Ip) and Pθu′ = Np(µu′ , Ip), the KL divergence between them

are upper bounded by

KL(Pθu ,Pθu′ ) =
1

2
‖µu − µu′‖22 ≤

λ2
2 · p
4n

.

To use Lemma 15 to prove Theorem 1, we further need to show that for any θu,θu′ ,

[Rθ(G)−Rθ(G∗θu)] + [Rθ(G)−Rθ(G∗θu′ )] &
p

n
.

By Lemma 1 and 13,

[Rθ(G)−Rθ(G∗θu)] + [Rθ(G)−Rθ(G∗θu′ )]

&L2
θu(G) + L2

θu′
(G) ≥ 1

2
(Lθu(G) + Lθu′ (G))2 ≥ 1

2
(Lθu(G∗θu′ )−

√
KL(Pθu ,Pθu′ )

2
)2.
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Since now that KL(Pθu ,Pθu′ ) ≤
λ2

2·p
4n , it’s then sufficient to show Lθu(G∗θu′

) ≥ c
√

p
n for

some c > λ2

2
√

2
.

Without loss of generality, we assume that the coordinates of u and u′ are ordered such

that ui = u′i = 1 for i = 2, ...,m1, ui = 1 − u′i = 1 for i = m1 + 1, ...,m2, ui = 1 − u′i = 0

for i = m2 + 1, ...,m3 and ui = u′i = 0 for i = m3 + 1, ..., p. We then have ρH(u,u′) =

m3 −m1 ≥ p
8 .

Recall that when Σ1 = Σ2 = Ip and µ2 = 0p, the oracle rule is given by

G∗θ(z) = 1 + 1{−µ>1 (z − µ1

2
) > 0}.

Then

G∗θu(z) = 1 + 1{− λ2√
n

(
m1∑
i=2

zi +

m2∑
i=m1+1

zi

)
− λ1z1 +

1

2
λ2

1 +
λ2

2(p− 1)

8n
> 0},

and

G∗θu′ (z) = 1 + 1{− λ2√
n

(
m1∑
i=2

zi +

m3∑
i=m2+1

zi

)
− λ1z1 +

1

2
λ2

1 +
λ2

2(p− 1)

8n
> 0}.

Let Z1 = −λ1z1− λ2√
n

∑m1
i=2 zi+

1
2λ

2
1+

λ2
2(p−1)

8n , Z2 = λ2√
n

∑m2
i=m1+1 zi and Z3 = λ2√

n

∑m3
i=m2+1 zi,

then

G∗θu(z) = 1 + 1{Z1 − Z2 > 0} and G∗θu′ (z) = 1 + 1{Z1 − Z3 > 0},
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and therefore

Lθu(G∗θu′ ) =Pθu(G∗θu′ (z) 6= G∗θu(z))

=Pθu(Z2 ≤ Z1 ≤ Z3) + Pθu(Z3 ≤ Z1 ≤ Z2)

≥Pθu(Z2 ≤ Z1 ≤ Z3)

=
1

2
Pz∼Np(µu,Ip) (Z2 ≤ Z1 ≤ Z3) +

1

2
Pz∼Np(0p,Ip) (Z2 ≤ Z1 ≤ Z3)

≥1

2
Pz∼Np(0p,Ip) (Z2 ≤ Z1 ≤ Z3) ,

Then, since Z1 ∼ N
(

1
2λ

2
1 +

λ2
2(p−1)

8n , λ2
1 + λ2

2p/(4n)
)

, the density of Z1, f(z) satisfies,

f(z) ≥ 1√
2π(λ2

1 + λ2
2p/(4n))

exp(−(z − λ2
1/2− λ2

2(p− 1)/(8n))2

2(λ2
1 + λ2

2p/(4n))2
),

leading to

f(z) ≥ c1(λ1, λ2), for z ∈ [−λ2

√
p/n, λ2

√
p/n],

for some constant c1(λ1, λ2) = 1√
2π(λ2

1+λ2
2p/(4n))

exp(− (λ2

√
p/n+λ2

1/2+λ2
2(p−1)/(8n))2

2(λ2
1+λ2

2p/(4n))2 ).

In addition, since m3 − m1 ∈ (p8 ,
p
2), Z3 − Z2 is normally distributed with mean 0 and

variance of order p
n , and therefore we claim that for some constant c2,

E[(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}] ≥ c2λ2

√
p

n
.
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In fact,

E[(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}]

≥E[(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < −

λ2

2

√
m2 −m1

n
,
λ2

2

√
m3 −m2

n
< Z3 < λ2

√
p

n
}]

≥λ2

√
p

n
· P(−λ2

√
p

n
< Z2 < −

λ2

2

√
m2 −m1

n
) · P(

λ2

2

√
m3 −m2

n
< Z3 < λ2

√
p

n
)

≥λ2

√
p

8n
· PZ∼N(0,1)(−

√
p

m2 −m1
< Z < −1

2
) · PZ∼N(0,1)(

1

2
< Z <

√
p

m3 −m2
)

≥λ2

√
p

8n
· PZ∼N(0,1)(−

√
2 < Z < −1

2
) · PZ∼N(0,1)(

1

2
< Z <

√
2) := c2λ2

√
p

n
,

where c2 =
√

1
8PZ∼N(0,1)(−

√
2 < Z < −1

2) ·PZ∼N(0,1)(
1
2 < Z <

√
2) is of constant order and

the inequality above uses
√
m2 −m1 +

√
m3 −m2 ≥

√
m3 −m1 ≥

√
p/8, m2 −m1,m3 −

m2 ≤ m3 −m1 ≤ p/2.

Then we have

Pz∼Np(0p,Ip) (Z2 ≤ Z1 ≤ Z3) ≥ Pz∼Np(0p,Ip)

(
Z2 ≤ Z1 ≤ Z3,−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

)
=EZ2 [

∫ Z3

Z2

f(z1) dz1 · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}]

≥c1(λ1, λ2) · ·EZ2 [(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}]

≥c1(λ1, λ2)c2λ2 ·
√
p

n
.

Since p . n, we have c1(λ1, λ2)→∞ when λ1, λ2 → 0. Therefore, we can choose λ1, λ2 to

be sufficiently small such that c1(λ1, λ2)c2λ2

√
p
n ≥

λ2

2
√

2

√
p
n . This completes the proof.

Proof of Theorem 2

At first we construct the following least favorable subset, which characterizes the difficulty

of the general QDA problem. For simplicity of notation, we use the letters λ1, λ2 in this

section, whose values are different from those in Section 3.7.1.
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Since the KL-divergence and `2 norm are invariant to translations and orthogonal trans-

formations, without loss of generality, we assume that µ∗1 = −µ∗2 = λ1e1 + λ̃1e2 for some

constants λ1, λ̃1 > 0 whose values are determined later, with 2
√
λ2

1 + λ̃2
1 = ‖µ∗1 − µ∗2‖2. In

addition, we assume that p/4 is an integer.

Now let’s consider

Θ2 = {θu = (1/2, 1/2, λ1e1 + λ̃1e2,−λ1e1 − λ̃1e2,Σ
u
1 ,Σ2) :

Σu1 = (Ip + λ̃2E2,2 +
λ2√
n

p/2∑
i=3

uiEi,i)
−1,u ∈ Ap,p/4,Σ2 = Ip + λ̃2E2,2},

where Ap,p/4 is defined in Lemma 16 .

According to Lemma 16, there is a subset of Θ1 with logarithm cardinality being of order

p, such that for any θu,θu′ in this subset, we have ρH(u,u′) ≥ p/8. We are going to apply

Lemma 15 to this subset to complete the proof of Theorem 2.

At first we note that for two multivariate normal distribution Np(µ
∗
1,Σ

u
1 ) and Np(µ

∗
1,Σ

u′
1 ),

using the fact that log(1 + x) � x− x2/2 + o(x2) for x = o(1), the KL divergence between

them are upper bounded by

KL =
1

2

[
log
|Σu′1 |
|Σu1 |

− p+ tr((Σu
′

1 )−1Σu1 )

]

=
1

2

[
p∑
i=3

log
1 + λ2√

n
u′i

1 + λ2√
n
ui
− ρH(u,u′) +

p∑
i=3

1 + λ2√
n
ui

1 + λ2√
n
u′i

]

=
1

2

[
−

p∑
i=3

log

(
1 +

λ2√
n

(ui − u′i)

1 + λ2√
n
u′i

)
+

p∑
i=3

λ2√
n

(ui − u′i)

1 + λ2√
n
u′i

]

=
1

4

p∑
i=3

1

n
(ui − u′i)2 + o(

p

n
) ≤ λ2

2p

16n
+ o(

p

n
) ≤ λ2

2p

8n
.

Therefore we have KL(Pθu ,Pθu′ ) ≤ λ2
2p/(8n). To use Lemma 15 to prove Theorem 2, we
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further need to show that for any θu,θu′ ,

[Rθ(G)−Rθ(G∗θu)] + [Rθ(G)−Rθ(G∗θu′ )] &
p

n
.

By Lemma 1 and 13,

[Rθ(G)−Rθ(G∗θu)] + [Rθ(G)−Rθ(G∗θu′ )]

≥L2
θu(Ĝ) + L2

θu′
(Ĝ) ≥ 1

2
(Lθu(Ĝ) + Lθu′ (Ĝ))2 ≥ 1

2
(Lθu(G∗θu′ )−

√
KL(Pθu ,Pθu′ )

2
)2.

Since now that KL(Pθu ,Pθu′ ) ≤ λ2
2
p

8n , it’s then sufficient to show Lθu(G∗θu′
) ≥ c

√
p
n for

some c > λ2/4.

Recall that

G∗θ(z) = 1{(z − µ1)>D(z − µ1)− 2δ>Ω2(z − µ1) + δ>Ω2δ − log(
|Σ1|
|Σ2|

) > 0},

where δ = µ2 − µ1, D = Ω2 − Ω1.

Without loss of generality, we assume that ui = u′i = 1 when i = 3, ...,m1, ui = 1− u′i = 1

when i = m1 + 1, ...,m2, ui = 1 − u′i = 0 when i = m2 + 1, ...,m3 and ui = u′i = 0 when

i = m3 + 1, ..., p.

Then with a little abuse of notation, we have z ∼ 1
2Np(µ1,Σ

u
1 )+ 1

2Np(µ2,Σ2) with µ!1−µ2 =

λ1e1 + λ̃1e2. Using the fact that log(1 + λ2√
n

) = λ2√
n
− λ2

2
2n + o( 1

n), we have

G∗
θu

(z) = 1 + 1{ λ2√
n

(
m1∑
i=3

(z2i − 1) +

m2∑
i=m1+1

(z2i − 1)

)
+ 4λ1z1 + 4

λ̃1

1 + λ̃2
z2 +

p

8n
+ o(

p

n
) > 0},
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and

G∗
θu′ (z) = 1 + 1{ λ2√

n

(
m1∑
i=3

(z2i − 1) +

m3∑
i=m2+1

(z2i − 1)

)
+ 4λ1z1 + 4

λ̃1

1 + λ̃2
z2 +

p

8n
+ o(

p

n
) > 0}.

Let Z1 = −(4λ1z1 + 4 λ̃1

1+λ̃2
z2 + λ2√

n

∑m1
i=3(z2

i − 1) + p
8n), Z2 = λ2√

n

∑m2
i=m1+1(z2

i − 1), Z3 =

λ2√
n

∑m3
i=m2+1(z2

i − 1), then

G∗θu(z) = 1{−Z1 + Z2 + o(
p

n
) > 0} and G∗θu′ (z) = 1{−Z1 + Z3 + o(

p

n
) > 0},

and

Lθu(G∗θu′ ) =Pθu(G∗θu′ (z) 6= G∗θu(z))

≥1

2
Pz∼Np(µ1,Σu1 )

(
Z2 + o(

p

n
) ≤ Z1 ≤ Z3 + o(

p

n
)
)

+
1

2
Pz∼Np(µ2,Σ2)

(
Z3 + o(

p

n
) ≤ Z1 ≤ Z2 + o(

p

n
)
)

≥1

2
Pz∼Np(µ1,Σ2) (Z2 ≤ Z1 ≤ Z3) + o(

p

n
).

By central limit theorem,
√
n

λ2
√
m2−m1

Z2,
√
n

λ2
√
m3−m2

Z3 converges to the standard normal

distribution N(0, 1). Since m3 −m2 = ρH(u,u′) ≥ p/8, and lim supn,p→∞
p
n ≤ C1, similar

as the derivation in Section 3.7.1, there exists a constant c2, such that n, p are sufficiently

large,

E[(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}]

≥E[(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < −

λ2

2

√
p

n
,
λ2

2

√
p

n
< Z3 < λ2

√
p

n
}]

≥λ2

√
p

n
· P(−λ2

√
p

n
< Z2 < −

λ2

2

√
m2 −m1

n
) · P(

λ2

2

√
m3 −m1

n
< Z3 < λ2

√
p

n
)

≥λ2

√
p

8n
· PZ∼N(0,1)(−

√
p

m2 −m1
< Z < −1

2
) · PZ∼N(0,1)(

1

2
< Z <

√
p

m3 −m2
)

≥λ2

√
p

8n
· PZ∼N(0,1)(−

√
2 < Z < −1

2
) · PZ∼N(0,1)(

1

2
< Z <

√
2) ≥ c2λ2

√
p

n
.
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Similar to that in Section 3.7.1, let’s denote the probability density function of Z1 by f .

Use central limit theorem again, when z ∼ Np(µ1,Σ2), p . n, and n, p are sufficiently large,

Z1 ≈ N(−4λ2
1−

4λ̃2
1

1+λ̃2
+ p

8n , λ
2
1+

λ̃2
1

1+λ̃2
+

2(m1−2)λ2
2

n ) if m1 →∞. Therefore, there exists constant

c1(λ1, λ̃1, λ2, λ̃2), such that inf |x|<λ2

√
p/n

f(x) > c1(λ1, λ̃1, λ2, λ̃2), and c1(λ1, λ̃1, λ2, λ̃2) goes

to infinity when λ1, λ2 → 0, λ̃2 →∞, and λ̃1 is chosen such that
√
λ2

1 + λ̃2
1 = ‖µ∗1−µ∗2‖2/2.

Pz∼Np(µ1,Σ2) (Z2 ≤ Z1 ≤ Z3) ≥ Pz∼Np(µ1,Σ2)

(
Z2 ≤ Z1 ≤ Z3,−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

)
=EZ2 [

∫ Z3

Z2

f(z1) dz1 · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}]

≥c1(λ1, λ̃1, λ2, λ̃2) · ·EZ2 [(Z3 − Z2) · 1{−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n
}]

≥c1(λ1, λ̃1, λ2, λ̃2)c2λ2 ·
√
p

n
.

Therefore, by choosing sufficiently small λ1, λ2 and large λ̃2 (doesn’t depend on n, p), we

have c2c1(λ1, λ̃1, λ2, λ̃2) · λ2

√
p
n ≥

λ2
4

√
p
n .

3.7.2. Proof of the Theorem 3

To prove Theorem 3 we begin by collecting a few important technical lemmas that will be

used in the main proofs.

Auxiliary Lemmas

Lemma 5. Suppose X1, ...,Xn i.i.d. ∼ Np(µ,Σ), and assume that µ̂, Σ̂ are the sam-

ple mean and sample covariance matrix respectively. Let Γ(s; p) = {u ∈ Rp : ‖u‖2 =

1, ‖uSC‖1 ≤ ‖uS‖1, for some S ⊂ [p] with |S| = s}, then with probability at least 1− p−1,

sup
u∈Γ(s;p)

u>(µ̂− µ) .

√
s log p

n
;

sup
u,v∈Γ(s;p)

u>(Σ̂− Σ)v .

√
s log p

n
; sup

a∈Γ(s;p2)

a>vec(Σ̂− Σ) .

√
s log p

n
.
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Lemma 6. Suppose X1, ...,Xn1 i.i.d. ∼ Np(µ1,Σ1), Y1, ...,Yn2 i.i.d. ∼ Np(µ2,Σ2), n =

min(n1, n2) and assume that µ̂1, µ̂2, Σ̂1, Σ̂2 are the sample means and sample covariance

matrices. Denote V = 1
2Σ1 ⊗ Σ2 + 1

2Σ2 ⊗ Σ1 and V̂ = 1
2 Σ̂1 ⊗ Σ̂2 + 1

2 Σ̂2 ⊗ Σ̂1. Assume that

β = Ω2(µ2 − µ1) and vec(D)has bounded `2 norm, then with probability at least 1− p−1,

‖µ̂k − µk‖∞ .

√
log p

n
, ‖(Σ̂k − Σk)β‖∞ .

√
log p

n
, k = 1, 2;

‖vec(Σ̂− Σ)‖∞ .

√
log p

n
; ‖(V̂ − V )vec(D)‖∞ .

√
log p

n
.

Lemma 7. Suppose x,y ∈ Rp. Let h = x − y. Denote S = supp(y) and s = |S|. If

‖x‖1 ≤ ‖y‖1, then h ∈ Γ(s; p), that is,

‖hSc‖1 ≤ ‖hS‖1.

Lemma 8. For any two matrices A,B ∈ Rp×p with non-negative eigenvalues,

∣∣ log |A| − log |B|
∣∣ ≤ max{|tr(B−1(A−B))|, |tr(A−1(B −A))|}.

Main proofs

We prove the consistency of estimation of D first. The consistency of estimating β can be

derived similarly.

Recall that

D̂ = arg min
D∈Rp×p

{
|D|1 : ‖(1

2
Σ̂1 ⊗ Σ̂2 +

1

2
Σ̂2 ⊗ Σ̂1)vec(D)− vec(Σ̂1) + vec(Σ̂2)‖∞ ≤ λ1,n

}
.

(3.12)

By Lemma 6, D is a feasible solution to (3.12) with λ1,n = c1

√
log p
n when c1 is a sufficiently

large constant. Then using Lemma 7, we have vec(D − D̂) ∈ Γ(s1; p2).
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Denote V = 1
2Σ1⊗Σ2 + 1

2Σ2⊗Σ1, vΣ = vec(Σ1)− vec(Σ2) and V̂ = 1
2 Σ̂1⊗ Σ̂2 + 1

2 Σ̂2⊗ Σ̂1,

v̂Σ = vec(Σ̂1)− vec(Σ̂2).

We have

V vec(D) =(
1

2
Σ1 ⊗ Σ2 +

1

2
Σ2 ⊗ Σ1)vec(D) = vec(

1

2
Σ1DΣ2 +

1

2
Σ2DΣ1)

=vec(Σ1 − Σ2) = vΣ.

In addition, over the parameter space Θp(s1, s2),

‖V −1‖2 = ‖Ω1 ⊗ Ω2‖2 = ‖Ω1‖2 · ‖Ω2‖2 ≤M2
1 .

which is followed by λmin(V ) ≥M−2
1 .

As a consequence, by Lemma 5, with probability at least 1− 3p−1,

|(vec(D̂)− vec(D))>V (vec(D̂)− vec(D))|

≤|(vec(D̂)− vec(D))>(V̂ vec(D̂)− v̂Σ)|+ |(vec(D̂)− vec(D))>(V̂ − V )vec(D̂))|

+ |(vec(D̂)− vec(D))>(vΣ − v̂Σ)|

.
√
s1‖vec(D̂)− vec(D)‖2 · ‖V̂ vec(D̂)− v̂Σ‖∞

+ ‖vec(D̂)− vec(D)‖2 ·
√
s1 log p

n
· ‖vec(D)− vec(D̂)‖2

+ ‖vec(D̂)− vec(D̂)‖2

√
s1 log p

n
· ‖vec(D)‖2 + ‖vec(D)− vec(D̂)‖2

√
s1 log p

n
.

(3.13)

In addition, since |(vec(D̂)−vec(D))>V (vec(D̂)−vec(D))| ≥ λmin(V )‖vec(D̂)−vec(D)‖22 ≥

M−2
1 ‖vec(D̂)− vec(D)‖22, we then have

‖D − D̂‖F = ‖vec(D̂)− vec(D)‖2 .

√
s1 log p

n
.
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The estimation error of β can be derived similarly. By Lemma 6, β is a feasible solution

to (3.6) with λ2,n = c2

√
log p
n when c2 is sufficiently large. Then using Lemma 7, we have

β − β̂ ∈ Γ(s2; p).

Then with probability at least 1− 3p−1,

|(β̂ − β)>Σ2(β̂ − β)|

≤|(β̂ − β)>(Σ̂2β̂ − δ̂)|+ |(β̂ − β)>(Σ̂2 − Σ2)β̂)|+ |(β̂ − β)>(δ − δ̂)|

.
√
s2‖β̂ − β‖2 · ‖Σ̂β̂ − δ̂‖∞ + ‖β̂ − β‖2 ·

√
s2 log p

n
· ‖β − β̂‖2

+ ‖β − β̂‖2

√
s2 log p

n
· ‖β‖2 + ‖β − β̂‖2

√
s2 log p

n
.

(3.14)

Similarly, since λmin(Σ2) ≥M−1
1 , we have with probability at least 1− p−1,

‖β − β̂‖2 .

√
s2 log p

n
.

3.7.3. Proof of Theorem 4

We note here that the notation c, C denote generic constants and their values might vary

line by line. Recall that the QDA rule is

1 + 1{(z − µ1)>D(z − µ1)− 2β>(z − µ̄)− log(|DΣ1 + Ip|) + 2 log(
π1

π2
) > 0}.

Let µ̄ = (µ1 +µ2)/2, Q(z) = (z−µ1)>D(z−µ1)−2β>(z−µ̄)− log(|DΣ1 +Ip|)+2 log(π1
π2

),

Q̂(z) = (z − µ̂1)>D̂(z − µ̂1) − 2β̂>(z − µ̂1+µ̂2

2 ) − log(|D̂Σ̂1 + Ip|) + log( π̂1
π̂2

), and M(z) =

Q(z)− Q̂(z), we are going to show that there exist some constants c, C > 0, such that for

any M > 0,

Pz∼Np(µ1,Σ1)

(
|M(z)| > M

√
(s1 + s2) log p

n

)
≤ e−cM + Cp−1,
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note that the above probability is taken with respect to the random samples X1, ...,Xn1

i.i.d. ∼ Np(µ1,Σ1), Y1, ...,Yn2 i.i.d. ∼ Np(µ2,Σ2), and z ∼ Np(µ1,Σ1). We will later see

how we reduce the mixed distribution of the test sample to the single distribution when we

calculate the classification error.

Rewrite the QDA rule as

1{(z − µ1)>D(z − µ1)− 2β>(z − µ1) + β>(µ2 − µ1)− log(|DΣ1 + Ip|) + 2 log(
π1

π2
) > 0}.

We firstly bound the estimation error of the constant term β>(µ2 − µ1). We have with

probability at least 1− p−1,

|β>(µ2 − µ1)− β̂>(µ̂2 − µ̂1)| ≤ |β̂>(µ2 − µ1 − µ̂2 + µ̂1)|+ ‖(β̂ − β)>(µ2 − µ1)‖2

≤‖β̂‖1 · ‖µ2 − µ1 − µ̂2 + µ̂1‖∞ + ‖β̂ − β‖2‖µ2 − µ1‖2

≤‖β‖1 · ‖µ2 − µ1 − µ̂2 + µ̂1‖∞ + ‖β̂ − β‖2‖µ2 − µ1‖2

≤
√
s2‖β‖2 · ‖µ2 − µ1 − µ̂2 + µ̂1‖∞ + ‖β̂ − β‖2‖µ2 − µ1‖2 .

√
s2 log p

n
.

For log |DΣ1+Ip|, notice that DΣ1+Ip = Ω2Σ1 and the product of two positive semidefinite

and symmetric matrices has non-negative eigenvalues, followed by (DΣ1 + Ip)
−1 = Ω1Σ2 =

(Ω2 −D)Σ2 = Ip −DΣ2, then

log |DΣ1 + Ip| − log |D̂Σ̂1 + Ip| ≤ tr((DΣ1 + Ip)
−1(DΣ1 − D̂Σ̂1))

=tr((−DΣ2 + Ip)(DΣ1 − D̂Σ̂1))

=tr((−DΣ2)(DΣ1 − D̂Σ̂1)) + tr(DΣ1 − D̂Σ̂1)

≤‖DΣ2‖F · ‖DΣ1 − D̂Σ̂1‖F + tr(DΣ1 − D̂Σ̂1)

≤‖D‖F ‖Σ2‖2 · ‖DΣ1 − D̂Σ̂1‖F + tr(DΣ1 − D̂Σ̂1)

≤‖D‖F ‖Σ2‖2 · ‖DΣ1 − D̂Σ̂1‖F + |tr(D̂Σ1 − D̂Σ̂1)|+ tr(DΣ1 − D̂Σ1). (3.15)
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In addition, with probability at least 1− p−1,

‖DΣ1 − D̂Σ̂1‖F ≤ ‖DΣ1 − D̂Σ1‖F + ‖D̂(Σ1 − Σ̂1)‖F

≤‖Σ1‖2‖D − D̂‖F + ‖Σ1 − Σ̂1‖2,s1‖D̂‖F

.

√
s1 log p

n
+ ‖Σ1 − Σ̂1‖2,s1(‖D‖F +

√
s1 log p

n
)

≤
√
s1 log p

n
+

√
s1 log p

n
(‖D‖F +

√
s1 log p

n
) .

√
s1 log p

n
,

where ‖Σ1 − Σ̂1‖2,s1 is defined as

‖Σ1 − Σ̂1‖2,s1 := sup
‖u‖0≤s1,‖u‖2=1

‖(Σ1 − Σ̂1)u‖2 .

√
s1 log p

n
,

where the last inequality is similarly proved as Lemma 5, by using the packing number

argument.

In addition, with probability at least 1− p−1,

|tr(D̂Σ1 − D̂Σ̂1)| ≤
√
s1|Σ1 − Σ̂1|∞‖D̂‖F .

√
s1 log p

n
.

There is still a remaining term tr(DΣ1−D̂Σ1) in (3.15), we will leave it there and use it when

we derive the distribution of the term involving z. The other direction, the upper bound of

tr(DΣ1 − D̂Σ1)− (log |DΣ1 + Ip| − log |D̂Σ̂1 + Ip|), can be derived similarly. Therefore by

symmetry, we have with probability at least 1− p−1

∣∣∣(log |DΣ1 + Ip| − log |D̂Σ̂1 + Ip|)− (tr(DΣ1 − D̂Σ1))
∣∣∣ .√s1 log p

n
.
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For the term involving z, when z ∼ Np(µ1,Σ1), we have

(z − µ1)>D(z − µ1)− (z − µ1)>D̂(z − µ1)− (tr(DΣ1 − D̂Σ1))

=(z − µ1)>(D̂ −D)(z − µ1)− (tr(DΣ1 − D̂Σ1))

d
=z>0 Σ

1/2
1 (D̂ −D)Σ

1/2
1 z0 − tr(Σ

1/2
1 (D̂ −D)Σ

1/2
1 )

def
=

p∑
i=1

λi(z
2
0i − 1),

where λi’s are the eigenvalues of Σ
1/2
1 (D̂ −D)Σ

1/2
1 .

Since with probability at least 1− p−1,

√√√√ p∑
i=1

λ2
i = ‖Σ1/2

1 (D̂ −D)Σ
1/2
1 ‖F ≤ ‖Σ1‖2‖D̂ −D‖F .

√
s1 log p

n
,

and with probability at least 1− p−1,

max
i
|λi| ≤ ‖Σ1/2

1 (D̂ −D)Σ
1/2
1 ‖2 ≤ ‖Σ1‖2‖D̂ −D‖2 .

√
s1 log p

n
,

by Bernstein type inequality for sub-exponential random variables, see Vershynin (2011),

we have for some c̃1 > 0,

P(|
p∑
i=1

λi(z
2
0i − 1)| ≥ t) ≤ 2 exp{−c̃1 min{ t2

s1 log p/n
,

t√
s1 log p/n

}},

which implies that for some c1 > 0,

P(|
p∑
i=1

λi(z
2
0i − 1)| ≥M

√
s1 log p

n
) ≤ e−c1M + Cp−1.

For (β̂ − β)>z, when z ∼ Np(µ1,Σ1), we have

(β̂ − β)>z ∼ N((β̂ − β)>µ1, (β̂ − β)>Σ1(β̂ − β)).
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Since with probability at least 1− p−1,

|(β̂ − β)>µ1| ≤ ‖β̂ − β‖2 · ‖µ1‖2 .

√
s2 log p

n
,

and with probability at least 1− p−1,

|(β̂ − β)>Σ1(β̂ − β)| ≤ ‖Σ1‖2 · ‖β̂ − β‖22 ≤
s2 log p

n
,

we have for some c2 > 0,

P(|(β̂ − β)>z| > M

√
s2 log p

n
) ≤ e−c2M2

+ Cp−1.

Lastly,

|2 log(
π1

π2
)− log(

π̂1

π̂2
)| . |π̂1 − π1|+ |π̂2 − π2|.

and by Hoeffding inequality, for k ∈ [2], there are some constant cH > 0, such that

P(|π̂k − πk| > t) ≤ exp(−cH · nt2).

We have for some constant c,MH > 0,

P(|2 log(
π1

π2
)− log(

π̂1

π̂2
)| > MH

√
1

n
) ≤ e−cMH .

Therefore, there exists some c > 0, such that for any M > 0,

Pz∼Np(µ1,Σ1)(M(z) > M

√
(s1 + s2) log p

n
) ≤ e−cM + Cp−1.
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Then it follows that

R(ĜSDAR)−Rθ(G∗θ)

=
1

2

∫
Q(z)>0

π1

(2π)p/2|Σ1|1/2
e−1/2·(z−µ1)>Ω1(z−µ1)dz

+
1

2

∫
Q(z)≤0

π2

(2π)p/2|Σ2|1/2
e−1/2·(z−µ2)>Ω2(z−µ2)dz

− 1

2

∫
Q̂(z)>0

π1

(2π)p/2|Σ1|1/2
e−1/2·(z−µ1)>Ω1(z−µ1)dz

− 1

2

∫
Q̂(z)≤0

π2

(2π)p/2|Σ2|1/2
e−1/2·(z−µ2)>Ω2(z−µ2)dz.

R(ĜSDAR)−Rθ(G∗θ)

=
1

2

∫
Q(z)>0

1

(2π)p/2
e−1/2·(z−µ1)>Ω1(z−µ1)−log |Σ1|/2+log π1

− 1

(2π)p/2
e−1/2·(z−µ2)>Ω2(z−µ2)−log |Σ2|/2+log π2dz

− 1

2

∫
Q̂(z)>0

1

(2π)p/2
e−1/2·(z−µ1)>Ω1(z−µ1)−log |Σ1|/2+log π1

− 1

(2π)p/2
e−1/2·(z−µ2)>Ω2(z−µ2)−log |Σ2|/2+log π2dz

=
1

2

∫
Q(z)>0

1

(2π)p/2
e−1/2·(z−µ1)>Ω1(z−µ1)−log |Σ1|/2(1− e−Q(z))dz

− 1

2

∫
Q̂(z)>0

1

(2π)p/2
e−1/2·(z−µ1)>Ω1(z−µ1)−log |Σ1|/2(1− e−Q(z))dz
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Then it follows

R(ĜSDAR)−Rθ(G∗θ)

≤1

2

∫
Q(z)>0,Q̂(z)≤0

1

(2π)p/2
e−1/2·(z−µ1)>Ω1(z−µ1)−log |Σ1|/2(1− e−Q(z))dz

=
1

2

∫
Q(z)>0,Q(z)≤Q(z)−Q̂(z)

1

(2π)p/2
e−1/2·(z−µ1)>Ω1(z−µ1)−log |Σ1|/2(1− e−Q(z))dz

=
1

2
Ez∼Np(µ1,Σ1)[(1− e−Q(z))1{0 < Q(z) ≤M(z)}]

=
1

2
Ez∼Np(µ1,Σ1)

[
(1− e−Q(z))1{0 < Q(z) ≤M(z)} · 1{M(z) < M log n

√
(s1 + s2) log p

n
}

]

+
1

2
Ez∼Np(µ1,Σ1)

[
(1− e−Q(z))1{0 < Q(z) ≤M(z)} · 1{M(z) ≥M log n

√
(s1 + s2) log p

n
}

]

≤1

2
Ez∼Np(µ1,Σ1)

[
(1− e−Q(z))1{0 < Q(z) ≤M(z)} · 1{M(z) < M log n

√
(s1 + s2) log p

n
}

]

+ Pz∼Np(µ1,Σ1)(M(z) ≥M log n

√
(s1 + s2) log p

n
)

.Ez∼Np(µ1,Σ1)

[
(1− e−Q(z))1{0 < Q(z) ≤M(z)} · 1{M(z) < M log n

√
(s1 + s2) log p

n
}

]

+ n−1 + p−1

. log n ·
√

(s1 + s2) log p

n
· Ez∼Np(µ1,Σ1)

[
1{0 < Q(z) ≤M log n

√
(s1 + s2) log p

n
}

]
+ n−1 + p−1

. log2 n · (s1 + s2) log p

n
,

where the last inequality uses the assumption that sup|x|<δ fQ,θ(x) < M2.
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CHAPTER 4 : CHIME: Clustering of High-Dimensional Gaussian Mixtures with

EM Algorithm and Its Optimality

4.1. Introduction

Clustering analysis, which aims to partition unlabeled data into homogeneous groups, is an

ubiquitous problem in statistics and machine learning with a broad range of applications,

including pattern recognition, disease diagnostics, and information retrieval (see Bishop,

2006; Hastie et al., 2009, and the references therein). A number of clustering algorithms

have been proposed in the literature. The well-known k-means and k-medians algorithms

Bradley et al. (1999) are centroid-based. Hierarchical clustering Ward Jr (1963) builds a

hierarchy of clusters based on the empirical measures of dissimilarity among sets of observa-

tions. Clustering algorithms have also been developed and analyzed under the probabilistic

mixture model framework Scott and Symons (1971); Duda and Hart (1973). Among the

possible probability distributions for the mixture components, the Gaussian distribution

is the most commonly used for both theoretical and computational considerations Everitt

(1981); Lindsay (1995); Bouveyron and Brunet-Saumard (2014), and has been widely used

in a range of applications for clustering and discriminant analysis Fraley and Raftery (2002);

Reynolds (2015).

In the present paper, we consider clustering of data generated from Gaussian mixtures with

the focus on the high-dimensional setting. We begin with the following mixture of two

p-dimensional Gaussian distributions with equal covariance matrices:

Y ∼


1, with probability 1− ω∗

2, with probability ω∗
and Z | Y = k ∼ Np(µ

∗
k,Σ

∗), k = 1, 2. (4.1)

In clustering, Z is observable and Y is not. For identifiability, we assume ω∗ ∈ (0, 1/2].

Suppose we have n unlabeled observations z(i) (i = 1, . . . , n) generated independently and
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identically from the mixture in (4.1), that is,

z(1), z(2), ..., z(n) i.i.d.∼ (1− ω∗)Np(µ
∗
1,Σ

∗) + ω∗Np(µ
∗
2,Σ

∗). (4.2)

The goal is to cluster z(i) (i = 1, . . . , n) into two groups. Although the conventional low-

dimensional setting will also be considered later, we are particularly interested in the high-

dimensional setting where the dimension p can be much larger than the sample size n.

Clustering analysis is closely connected to classification analysis where the goal is to con-

struct a classifier for future unlabeled observations based on the observed labeled data. In

the ideal case where the parameter θ∗ = {ω∗,µ∗1,µ∗2, Σ∗} is known, the optimal classification

procedure is the Fisher’s linear discriminant rule

Gθ∗(z) =


1, (z− µ∗1+µ∗2

2 )>β∗ ≥ log( ω∗

1−ω∗ )

2, (z− µ∗1+µ∗2
2 )>β∗ < log( ω∗

1−ω∗ ),

(4.3)

where β∗ = Ω∗δ∗, Ω∗ = (Σ∗)−1 and δ∗ = µ∗1 − µ∗2. Let Φ be the cumulative distribution

function of the standard normal distribution. Fisher’s rule given in (4.3) achieves the

optimal mis-classification error

Ropt(Gθ∗) :=E[I(Gθ∗(Z) 6= Y )]

=(1− ω∗)Φ
(

1

∆
log

ω∗

1− ω∗
− 1

2
∆

)
+ ω∗Φ̄

(
1

∆
log

ω∗

1− ω∗
+

1

2
∆

)
, (4.4)

where ∆ =
√

(δ∗)>Ω∗δ∗ and Φ̄(·) = 1− Φ(·). See, for example, Anderson (2003).

In practice, the parameters ω∗,µ∗1,µ
∗
2 and Σ∗ are unknown and a data driven method

is needed. In the supervised case where the sample labels of z(i) are known, a common

approach in the low-dimensional setting is to simply plug the sample values in (4.3). Driven

by a wide range of applications, recent focus in clustering and classification has shifted

to the high-dimensional setting where p can be much larger than n. In this case, the
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sample covariance matrix may not even be invertible and it is difficult to estimate the

precision matrix Ω∗. Cai and Liu (2011); Mai et al. (2012) proposed to directly estimate

the discriminant direction β∗ = Ω∗δ∗. More specifically, let µ̂k be the sample mean for class

k (k = 1, 2) and Σ̂ be the pooled sample covariance matrix. Assuming that β∗ is sparse,

one can estimate β∗ directly through the regularized `1 minimization

β̂ = arg min
β∈Rp

{1

2
β>Σ̂β − β>(µ̂1 − µ̂2) + λn‖β‖1}, (4.5)

where λn is a tuning parameter. The classification rule is obtained by using (4.3) with β∗

replaced by β̂, µ∗k replaced by µ̂k for k = 1, 2, and ω∗ replaced by the sample proportion.

This algorithm is easy to implement and avoids estimation of Ω∗.

For unsupervised learning, the class labels are not observed. Compared with the classifica-

tion analysis, clustering high-dimensional Gaussian mixtures is significantly more compli-

cated, both in terms of the algorithm and in terms of the theoretical analysis. It is not easy

to estimate the parameters ω∗,µ∗1,µ
∗
2 and Σ∗ in the high-dimensional case. In the classi-

cal low-dimensional setting, commonly used methods for estimating the parameters include

the method of moments Pearson (1894), spectral method Jin et al. (2017), the maximum

likelihood, and the Expectation-Maximization (EM) algorithm Redner and Walker (1984);

Balakrishnan et al. (2017).

In this paper, we introduce CHIME, a clustering procedure for high-dimensional Gaussian

mixtures based on the EM algorithm together with the direct estimation idea introduced

in Cai and Liu (2011). The method uses the posterior probability of z(i) in class k as the

‘sample label’ of z(i) and efficiently estimates the parameters via the EM algorithm. A

key component of the proposed method is to directly estimate and update the discriminant

direction β∗ in each iteration through the regularized `1 minimization algorithm (4.5). The

resulting estimates are subsequently used to yield the discriminant rule as in (4.3). Instead

of restricting both the mean vectors and the precision matrix to be sparse, CHIME only

requires sparsity of the discriminant vector β∗.
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Both theoretical and numerical properties of the CHIME algorithm are studied. Our anal-

ysis first obtains the rate of convergence for estimating β∗ under the `2 norm loss, and the

convergence rate of the expected excess mis-clustering error R(ĜCHIME)−Ropt(Gθ∗) (the

mis-clustering error is defined later in (4.6)). Furthermore, minimax lower bounds are ob-

tained. The upper and lower bounds together establish the rate optimality of the estimator

β̂ and the CHIME procedure. Specifically, we show that

R(ĜCHIME)−Ropt(Gθ∗) �
s log p

n
,

where s is the sparsity of the discriminant vector β∗, and prove that this rate is optimal. To

the best of our knowledge, this is the first optimality result for clustering of high-dimensional

Gaussian mixtures and the first construction of a rate-optimal clustering procedure.

In addition to its theoretical optimality, CHIME is computationally easy to implement. The

updates of ω̂ and µ̂k in the M-step of the EM algorithm can be calculated analytically, and

the update of β̂ can be implemented via linear programming. Simulation results show that

CHIME outperforms existing clustering methods and achieves performance comparable to

that of (4.5), which requires the additional label information. The effectiveness of CHIME is

also illustrated through an analysis of a glioblastoma gene expression data set, and CHIME

yields the smallest error when clustering heterogeneous patients into two distinct subtypes

of glioblastoma.

Although the focus of the present paper is on the high-dimensional setting, we also consider

clustering of low-dimensional Gaussian mixtures via the CLOME procedure. The technical

tools developed for the high-dimensional setting can be used to establish the optimality

for the general low-dimensional setting where the covariance matrix is not necessarily the

identity matrix.

Our proposed clustering method together with its theoretical optimality guarantees extends

the literature on clustering of high-dimensional Gaussian mixtures. Azizyan et al. (2013)
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considered a special case of (4.1) with Σ∗ = σ2Ip, ω
∗ = 1/2, and provided both lower and

upper bounds, on the mis-clustering error for sparse δ∗, but the upper bound is not tight.

Wang et al. (2014) also focused on the special case Σ∗ = σ2Ip and ω∗ = 1/2, studied the

performance of the high-dimensional EM algorithm and established the convergence rate

for the estimator of the sparse mean vector. Jin et al. (2017) considered the special case

where Σ∗ = Ip and studied the statistical limits of clustering when the signals are ”rare and

weak”. A phase transition diagram for the IF-PCA method is given in Jin et al. (2016b).

Azizyan et al. (2015) extended the results in Azizyan et al. (2013) to allow for a general

covariance matrix Σ∗ and directly estimated the discriminant vector β∗ via the LPD rule Cai

and Liu (2011). Using the initial estimates of µ∗1,µ
∗
2 and Σ∗ provided by Hardt and Price

(2014), they established an upper bound for the mis-clustering error as well as recovery

of the support of sparse β∗ under regularity conditions. Compared to the procedure in

Wang et al. (2014), our proposed CHIME yields a sparse estimate of β∗ without the need

of truncation, nor does it require sample splitting across iterations.

The rest of the paper is organized as follows. The proposed procedure, CHIME, for cluster-

ing high-dimensional Gaussian mixtures is described in detail in Section 4.2. The theoretical

properties are analyzed in Section 4.3. Both upper and lower bounds are obtained. Together

they establish the optimality of CHIME as well as the estimator of discriminant vector β∗.

Section 4.4 considers clustering low-dimensional Gaussian mixtures based on the classical

EM algorithm and establishes the optimality of the clustering procedure by modifying our

analysis for the high-dimensional setting. A simulation study is given in Section 4.5 where

we compare the performance of CHIME to other existing clustering methods in the liter-

ature. Section 4.6 uses a real data application to illustrate the merit of CHIME. Section

4.7 discusses extensions to the multi-class setting. The proofs of the main results are given

in Section 4.8. Proofs of other results together with additional technical details as well as

additional simulations are provided in Cai et al. (2018b).
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4.2. Methodology

In this section, we present in detail the clustering procedure CHIME under the two-

component Gaussian mixture model (4.2).

We begin with notations. Throughout the paper, X,Y, Z, . . . denote random vectors and

x,y, z, . . . denote their realizations. For a, b ∈ R, we denote by a ∧ b = min{a, b} and

a ∨ b = max{a, b}. For n ∈ N, [n] denotes the set {1, 2, ..., n}. For a vector x ∈ Rp,

the usual vector `0, `1, `2 and `∞ norms are denoted respectively by ‖x‖0, ‖x‖1, ‖x‖2 and

‖x‖∞. Here the `0 norm counts the number of nonzero entries in a vector. We use supp(x)

to denote the support of the vector x. The Frobenius norm of a matrix A = (aij) is

defined as ‖A‖F =
√∑

i,j a
2
ij . The matrix `1 and `2 norms are defined, respectively, as

‖A‖1 = sup‖x‖1=1 ‖Ax‖1 and ‖A‖2 = sup‖x‖2=1 ‖Ax‖2. The matrix `0 norm is defined

similarly to the vector `0 norm as ‖A‖0 = |{(i, j) : aij 6= 0}|, where |·| denotes the cardinality

here. The vector `∞ norm on matrix A is |A|∞ = maxi,j |Aij |. For a symmetric matrix

A, we use λmax(A) and λmin(A) to denote respectively the largest and smallest eigenvalue

of A. We say A � 0 if A is positive definite. The inner product between two matrices A

and B is defined as 〈A,B〉 = tr(A>B). For a set A, we use Ac to denote its complement,

and use I(A) to denote its corresponding indicator function. For a positive integer s < p,

let Γ(s) = {u ∈ Rp : 2‖uSC‖1 ≤ 4‖uS‖1 + 3
√
s‖u‖2, for some S ⊂ [p] with |S| = s}. For

a vector x ∈ Rp and a matrix A ∈ Rm×p, we define ‖x‖2,s = sup‖y‖2=1,y∈Γ(s) |x>y| and

‖A‖2,s = sup‖y‖2=1,y∈Γ(s) ‖Ay‖2. For two sequences of positive numbers an and bn, an . bn

means that for some constant c > 0, an ≤ cbn for all n, and an � bn if an . bn and bn . an.

Finally, we use c0, c1, c2, C1, C2, . . . to denote generic positive constants that may vary from

place to place.

4.2.1. The Gaussian mixture model

Suppose we have n observations {z(1) . . . , z(n)} generated independently and identically

from the p-dimensional Gaussian mixture model in (4.2) without knowing labels (y1, ..., yn),
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and wish to cluster the observations {z(1) . . . , z(n)} into two groups. The accuracy of a

clustering rule G : z(i) → {1, 2}, i = 1, ..., n, is measured by the expected mis-clustering

error,

R(G) = min
π∈P2

E[I(G(z) 6= π(y))], (4.6)

where P2 = {π : [1, 2]→ [1, 2]} is a set of permutation function, and y is the latent label of

a future observation z.

As mentioned in the introduction, for this clustering problem, it is important to first esti-

mate the parameters ω∗,µ∗1,µ
∗
2 and Σ∗ in (4.2). In the classical setting where p is much

smaller than n, it has been shown that the maximum likelihood estimator (MLE) performs

well under mild conditions Balakrishnan et al. (2017). The joint log-likelihood of the data

z(i) (i = 1, . . . , n) can be written as

L(ω,µ1,µ2,Σ; z) =
1

n

n∑
i=1

log
{

(1− ω)f(z(i) | µ1,Σ) + ωf(z(i) | µ2,Σ)
}
, (4.7)

where f(· | µk,Σ) represents the density function of Np(µk,Σ). The MLE maximizes the

joint log-likelihood function L(ω,µ1,µ2,Σ; z).

When p is large, direct optimization of the log-likelihood in (4.7) becomes infeasible due to

the nonconvexity of the objective function L(ω,µ1,µ2,Σ; z). Moreover, the MLE does not

even exist in the high-dimensional setting where p� n. In this paper, we propose to explore

the sparsity of the discriminant vector β∗ as in Cai and Liu (2011) for the supervised case

by noting that the discriminant rule in (4.3) depends on Σ∗ only through β∗. Further, we

adopt the EM algorithm Dempster et al. (1977) to address the nonconvexity of the joint

log-likelihood.

4.2.2. A clustering procedure based on the EM algorithm

To simplify the notation, under the mixture model (4.2), we denote θ = (ω,µ1,µ2,Σ),

and let β = Ω(µ1 − µ2) with Ω = Σ−1. For a given θ, we use Eθ and Pθ to denote the
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expectation and probability under the model (4.2) with respect to the parameter θ. In

addition, sometimes we write Eθ∗ , Pθ∗ as E and Pr when there is no ambiguity.

Note that if the true labels y = {yi}ni=1 ∈ {1, 2}n were observed together with z = {z(i)}ni=1,

the log-likelihood of the complete data is given by

LC(θ; y, z) =
1

n

n∑
i=1

2∑
k=1

I(yi = k)
{

log f(z(i) | µk,Σ) + logPθ(yi = k)
}
.

To address the nonconvexity of the joint log-likelihood, we use the EM algorithm, which

iterates between two goals: classification given the parameters, and estimation given the

labels. In the t-th iteration, given the estimated θ̂(t) = (ω̂(t), µ̂
(t)
1 , µ̂

(t)
2 , Σ̂(t)) from the pre-

vious step, the E-step can be interpreted as classifying the observed data z(i) by assuming

the true parameter is θ̂(t). The posterior probability of the i-th sample in class 2 given the

observed data z(i) can be calculated as

γθ̂(t)(z
(i)) =Pθ̂(t)(yi = 2|z(i))

=
ω̂(t)

ω̂(t) + (1− ω̂(t)) exp
{

(Ω̂(t)(µ̂
(t)
2 − µ̂

(t)
1 ))>

(
z(i) − µ̂

(t)
1 +µ̂

(t)
2

2

)} . (4.8)

We then calculate the expectation of the log-likelihood, with respect to the conditional

distribution of y given z under the current estimate of the parameters θ̂(t), as

Qn(θ | θ̂(t)) = Eθ̂(t) [logLC(θ; y, z) | z]

=− 1

2n

n∑
i=1

{
(1− γθ̂(t)(z

(i)))(z(i) − µ1)>Ω(z(i) − µ1)

+ γθ̂(t)(z
(i))(z(i) − µ2)>Ω(z(i) − µ2)

}

+
1

n

n∑
i=1

{
(1− γθ̂(t)(z

(i))) log(1− ω) + γθ̂(t)(z
(i)) logω

}
+

1

2
log |Ω|.

The M-step proceeds by maximizing Qn(θ | θ̂(t)) given γθ̂(t)(z
(i)), and is interpreted as
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parameter estimation given the labels. The maximizer,

θ̂(t+1) = Mn(θ̂(t)) = arg max
θ

Qn(θ | θ̂(t)), (4.9)

can be calculated analytically. We now derive the exact analytic form for the M-step in the

t-th iteration, which is used to obtain updates of ω,µ1,µ2 and Σ. It is straightforward to

define and calculate

ω̂(t+1) = ω̂(θ̂(t)) =
1

n

n∑
i=1

γθ̂(t)(z
(i)), (4.10)

µ̂
(t+1)
1 = µ̂1(θ̂(t)) =

{
n−

n∑
i=1

γθ̂(t)(z
(i))
}−1{ n∑

i=1

(1− γθ̂(t)(z
(i)))z(i)

}
, (4.11)

µ̂
(t+1)
2 = µ̂2(θ̂(t)) =

{ n∑
i=1

γθ̂(t)(z
(i))
}−1{ n∑

i=1

γθ̂(t)(z
(i))z(i)

}
. (4.12)

This leads to a solution for Σ̂(t+1) given by

Σ̂(t+1) = Σ̂(θ̂(t)) =
1

n

n∑
i=1

{
(1− γθ̂(t)(z

(i)))(z(i) − µ̂(t+1)
1 )(z(i) − µ̂(t+1)

1 )> +

γθ̂(t)(z
(i))(z(i) − µ̂(t+1)

2 )(z(i) − µ̂(t+1)
2 )>

}
. (4.13)

Note that in the high-dimensional setting where p � n, Σ̂(t+1) is singular and cannot be

used directly in (4.3) and (4.8) to obtain a clustering rule and γ(z(i)). Instead of estimating

the covariance matrix Σ∗, we estimate the discriminant vector β∗ directly. The update

β̂(t+1) can be obtained through the regularized `1 minimization

β̂(t+1) = arg min
β∈Rp

{1

2
β>Σ̂(t+1)β − β>(µ̂

(t+1)
1 − µ̂(t+1)

2 ) + λ(t+1)
n ‖β‖1}, (4.14)

where λ
(t+1)
n is the tuning parameter. It is shown in the supplement Cai et al. (2018b) that

the sequence λ
(t+1)
n = κt ·C1

d2,s(θ̂(0),θ∗)√
s

+ (1−κt+1

1−κ )Cλ

√
log p
n , for some constants C1, Cλ > 0,

d2,s is defined later in (4.17) and κ ∈ (0, 1/2) is an appropriate choice for tuning parameters.
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In practice, λ
(t+1)
n can be chosen by cross validation.

As a result, in the high-dimensional setting, the update of γθ̂(t)(z
(i)) in the E-step is different

from (4.8) and proposed to be

γθ̂(t)(z
(i)) := Pθ̂(t)(yi = 2|z(i)) =

ω̂(t)

ω̂(t) + (1− ω̂(t)) exp
{

(β̂(t))>
(
z(i) − µ̂

(t)
1 +µ̂

(t)
2

2

)} . (4.15)

Given a suitable initialization, the EM algorithm iterates between the E-step and M-Step

as described above, and terminates in, say T0, steps. Once the final estimates of θ∗ and

β∗ are obtained, the clustering rule can be constructed by plugging them into the Fisher’s

rule (4.3). We call this procedure CHIME for Clustering of HIgh-dimensional Gaussian

Mixtures with the EM, which is summarized in Algorithm 1.

Remark 5. CHIME requires the initialization θ̂(0) to be reasonably good to ensure the

convergence of θ̂(t) to an optimum near the true parameters θ∗. We address the issue of

initialization in Section 4.3. The total number of iterations T0 needs to be specified. It

is shown in Section 4.3 that T0 � log n is sufficient to yield the optimal convergence rate

for β̂(T0). In practice, it is recommended to run Algorithm 1 until the distance between

θ̂(t+1) and θ̂(t) is less than a pre-specified tolerance level. In addition, Algorithm 1 requires

specifying the contraction constant κ as well as constants C1 and Cλ. The choice of the

tuning parameter in the form of λ
(0)
n and (4.16) is necessary for establishing convergence of

β̂(T0) to the true parameter β∗, and will be discussed in detail in Section 4.3.

4.3. Theoretical Analysis

In this section, we study the properties of the estimator β̂(T0) and the performance of the

CHIME clustering rule ĜCHIME proposed in Algorithm 1. We first establish the rates of

convergence for the estimation and mis-clustering error and then provide matching minimax

lower bounds. These results together show the optimality of CHIME as well as the proposed

estimator of the discriminant vector β∗.
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Algorithm 1 Clustering of HIgh-dimensional Gaussian Mixtures with the EM (CHIME)

1: Inputs: Initializations ω̂(0), µ̂
(0)
1 , µ̂

(0)
2 and Σ̂(0), maximum number of iterations T0, and

a constant κ ∈ (0, 1). Set

β̂(0) = arg min
β∈Rp

{
1

2
β>Σ̂(0)β − β>(µ̂

(0)
1 − µ̂

(0)
2 ) + λ(0)

n ‖β‖1
}
,

where the tuning parameter λ
(0)
n = C1 · (|ω̂| ∨ ‖µ̂(0)

1 − µ̂(0)
2 ‖2,s ∨ ‖Σ̂(0)‖2,s)/

√
s +

Cλ
√

log p/n.
2: for t = 0, 1, . . . , T0 − 1 do
3: E-Step: Evaluate Qn(θ | θ̂(t)) with γθ̂(t)(z

(i)) defined in (4.15).

4: M-Step: Update ω̂(t+1), µ̂
(t+1)
1 , µ̂

(t+1)
2 , and Σ̂(t+1) via (4.10), (4.11), (4.12) and

(4.13), and β̂(t+1) via

β̂(t+1) = arg min
β∈Rp

{
1

2
β>Σ̂(t+1)β − β>(µ̂

(t+1)
1 − µ̂(t+1)

2 ) + λ(t+1)
n ‖β‖1

}
,

with

λ(t+1)
n = κλ(t)

n + Cλ

√
log p

n
. (4.16)

5: end for
6: Output ω̂(T0), µ̂

(T0)
1 , µ̂

(T0)
2 and β̂(T0).

7: Construct the clustering rule

ĜCHIME(z) =

1,
{
z− µ̂

(T0)
1 +µ̂

(T0)
2

2

}>β̂(T0) ≥ log( ω̂(T0)

1−ω̂(T0) ),

2,
{
z− µ̂

(T0)
1 +µ̂

(T0)
2

2

}>β̂(T0) < log( ω̂(T0)

1−ω̂(T0) ).

We first introduce the parameter space. For parameters θ = (ω,µ1,µ2,Σ) and θ̃ =

(ω̃, µ̃1, µ̃2, Σ̃), define their `2,s distance by

d2,s(θ, θ̃) = |ω − ω̃| ∨ ‖µ1 − µ̃1‖2,s ∨ ‖µ2 − µ̃2‖2,s ∨ ‖(Σ− Σ̃)β̃‖2,s. (4.17)

We shall write d2,s(θ) for d2,s(θ,0), and consider the following parameter space

Θp(s, cω,M,Mb) = {θ = (ω,µ1,µ2,Σ) : µ1,µ2 ∈ Rp,Σ ∈ Rp×p,Σ � 0, ‖β‖0 ≤ s,

ω ∈ (cω, 1− cω),M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M, ‖β‖1 ≤Mb}. (4.18)
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This is a natural parameter space to consider. The condition on the eigenvalues of Σ is

standard. For example, it has been used in Cai et al. (2011), Bickel and Levina (2008)

and Cai and Zhang (2017) for estimation of precision matrices, covariance matrices, and

regression coefficients, respectively. Condition on ‖β‖1 were also similarly used in Neykov

et al. (2015) and Tian and Gu (2017) for discriminant analysis.

4.3.1. Upper bounds

We need two technical conditions before stating the properties of the clustering algorithm.

Recall that in (4.4), ∆ =
√

(µ∗1 − µ∗2)>(Σ∗)−1(µ∗1 − µ∗2) is the Mahalanobis distance be-

tween µ∗1 and µ∗2 with covariance matrix Σ∗, and can be interpreted as the Signal-to-

Noise Ratio. For constants c0, c1, Cb > 0 and c0 ≤ cω, c1 < 1, the contraction basin

Bcon(θ∗; c0, c1, Cb, s) is defined as

Bcon(θ∗; c0, c1, Cb, s) =
{
θ = (ω,µ1,µ2,Σ) : µ1,µ2 ∈ Rp,Σ ∈ Rp×p,Σ � 0, (4.19)

ω ∈ (c0, 1− c0), (1− c1)∆2 < |δ1(β)|, |δ2(β)|, σ2(β) < (1 + c1)∆2,

β − β∗ ∈ Γ(s), ‖β − β∗‖1 ≤ Cb∆, ‖µ1 − µ∗1‖2,s, ‖µ2 − µ∗2‖2,s ≤ Cb∆
}
,

where δ1(β) = β>(µ∗1 −
µ1+µ2

2 ), δ2(β) = β>(µ∗2 −
µ1+µ2

2 ), and σ(β) =
√
β>Σ∗β.

The following conditions are needed to establish the convergence of β̂(T0).

(C1) The initial value θ̂(0) satisfies that

d2,s(θ̂
(0),θ∗) ∨ ‖β̂(0) − β∗‖2 ≤ r∆, β̂(0) − β∗ ∈ Γ(s)

with r < |c0−cω |
∆ ∧

√
9M+16c1−

√
9M

4 ∧
√

c1
M ∧

Cb
5
√
s
.

In fact, condition (C1) guarantees that θ(t) ∈ Bcon(θ∗; c0, c1, Cb, s) for t ≥ 0 in Algorithm

1, which is shown in Lemma A.2 and proved in the supplement Cai et al. (2018b). We will

discuss in Section 4.3.2 an initialization algorithm whose output satisfies Condition (C1).
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(C2) The Signal-to-Noise Ratio ∆ satisfies that

∆ > C(c0, c1,M,Cb), (4.20)

where C(c0, c1,M,Cb) is a constant that only depends on the c0, c1, M , and Cb, and is given

in (C.24) in the supplement Cai et al. (2018b).

Before we state the main results, we introduce two technical lemmas that characterize the

properties of the population version of the proposed CHIME algorithm under Conditions

(C1) and (C2). We define the respective population version of M-step as follows.

Let M(θ) = (ω(θ),µ1(θ),µ2(θ),Σ(θ)) denote the population version of Mn(θ), the esti-

mator evaluated in (4.9). More specifically,

M(θ) = arg max
θ̃

Q(θ̃ | θ) := arg max
θ̃

Eθ∗ [Qn(θ̃ | θ)]. (4.21)

By definition, M(θ) can be analytically expressed as

ω(θ) = E[γθ(Z)], µ1(θ) =
E[(1− γθ(Z))Z]

E[1− γθ(Z)]
, µ2(θ) =

E[γθ(Z)Z]

E[γθ(Z)]
, (4.22)

Σ(θ) = E
[
(1− γθ(Z))(Z − µ1(θ))(Z − µ1(θ))> + γθ(Z)(Z − µ2(θ)(Z − µ2(θ))>

]
. (4.23)

Using the above definition of the population version updates, we then introduce the following

two lemmas, Lemma 9 characterizes the linear convergence of the population EM updates,

and Lemma 10 captures the distance between the sample and population version estimates.

These two lemmas are the key steps in the proof of the main result Theorem 6.

Lemma 9 (Contraction on the population iteration). Suppose θ∗ ∈ Θp(s, cω,M,Mb). If

∆ > C(c0, c1,M,Cb), where C(c0, c1,M,Cb) is given in (C.24) in the supplement Cai et al.

(2018b). Then there exists 0 < κ0 <
1

2∨(16M) , such that for θ ∈ Bcon(θ∗; c0, c1, Cb, s),

d2(M(θ),θ∗) ≤ κ0 · (d2,s(θ,θ
∗) ∨ ‖β − β∗‖2), (4.24)
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where d2(θ, θ̃) = |ω − ω̃| ∨ ‖µ1 − µ̃1‖2 ∨ ‖µ2 − µ̃2‖2 ∨ ‖(Σ− Σ̃)β̃‖2.

Remark 6. This theorem implies that

d2,s(M(θ),θ∗) ≤ κ0 · (d2,s(θ,θ
∗) ∨ ‖β − β∗‖2).

Lemma 10 (Uniform concentration inequality). Suppose θ∗ ∈ Θp(s, cω,M,Mb) with cω ∈

(0, 1) and M,Mb universally bounded. Under the condition (C1), there exists a constant

Ccon > 0, such that with probability at least 1− o(1),

sup
θ∈Bcon(θ∗;c0,c1,Cb,s)

d2,s(Mn(θ),M(θ)) ≤ Ccon

√
s log p

n
;

sup
θ∈Bcon(θ∗;c0,c1,Cb,s)

‖(Σ̂(θ)− Σ(θ))β∗‖∞ ≤ Ccon

√
log p

n
.

The above two lemmas imply that at each iteration, θ̂(t) converges geometrically to the

truth θ∗, until their distance is indistinguishable with the statistical error, whose rate is

characterized by Lemma 10.

In addition, we point out that the inequality in (4.24) quantifies the contraction w.r.t the

`2,s-norm of the distance between the population EM update and the true parameter θ∗.

This contraction property is different from the ones used in Balakrishnan et al. (2017); Wang

et al. (2014); Yi and Caramanis (2015). Consequently, our subsequent analysis differs from

theirs. Indeed, existing works use the `2 or `∞-norm of the distance between the EM

update and the true parameter to define the contraction. The advantage with the `2,s-norm

is that it characterizes a more refined sparsity-based difference, which converges at the

rate
√
s log p/n by Lemma 10. The `2 or `∞-norm used in previous works is not suitable

for our purpose and requires stronger assumptions to obtain the same convergence rate in

Theorem 6. Lastly, the establishment of Lemma 9 is based on the key observation that each

term of M(θ̂) and its corresponding Taylor expansion around the truth θ∗ involves either

β̂ or β∗ − β̂, both of whom lie in the region Γ(s), leading to a sharper Cauchy-Schwartz
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inequality by using the `2,s norm.

We are now ready to state the first main result. The following theorem shows that under

Conditions (C1) and (C2), the estimate β̂(T0) provided by Algorithm 1 converges to the

true parameter β∗.

Theorem 6. Suppose we observe n i.i.d. samples {z(1) . . . , z(n)} from model (4.2) with the

true parameter θ∗ ∈ Θp(s, cω,M,Mb), for some constant cω ∈ (0, 1) and universally bounded

constants M,Mb > 0 and s = o(
√
n/ log p). Assume that conditions (C1) and (C2) hold

with r satisfying
√
s log p/n = o(r). Then there exist constants Cd, Cλ > 0, κ ∈ (0, 1/2),

such that the output β̂(T0) of Algorithm 1 with tuning parameters Cd, Cλ, κ satisfies, with

probability 1− o(1),

‖β̂(T0) − β∗‖2 . κT0d2,s(θ̂
(0),θ∗) +

√
s log p

n
.

Consequently, if T0 & (− log(κ))−1 log(n · d2,s(θ̂
(0),θ∗)), then

‖β̂(T0) − β∗‖2 .

√
s log p

n
. (4.25)

The proof of Theorem 6 relies on Lemmas 9 and 10. The idea of proving Theorem 6 by

establishing the contraction and uniform concentration properties is similar to that in Bal-

akrishnan et al. (2017) for the conventional low-dimensional setting. However, establishing

such results in the high-dimensional setting is quite challenging. The proof of Lemmas 9

and 10 are involved and are given in the supplement Cai et al. (2018b).

Remark 7. In comparison with the results in Wang et al. (2014); Yi and Caramanis (2015),

which consider the high-dimensional EM algorithm under the special Gaussian mixture

model 1
2Np(−µ∗, σ2Ip) +1

2Np(µ
∗, σ2Ip), Theorem 6 establishes a faster convergence rate

under a more general model. In fact, Wang et al. (2014) and Yi and Caramanis (2015) show

the convergence rate ‖µ̂−µ∗‖2 .
√
s log p log n/n for their estimator µ̂ and require sample

splitting. In the present paper, we remove the log n factor and establish that ‖β̂(T0)−β∗‖2 .
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√
s log p/n by using a uniform concentration inequality (Lemma 10) and thus avoid the need

for sample splitting. The idea of using uniform concentration results is similar to that in

Balakrishnan et al. (2017), but the techniques to prove this uniform concentration is much

more involved in the high-dimensional setting.

We now turn to the performance of the clustering rule given by Algorithm 1. For ease

of presentation, we denote the final output θ̂(T0) and β̂(T0) of Algorithm 1 by θ̂ and β̂

respectively. Recall that in Algorithm 1, after obtaining the final estimates ω̂, µ̂1, µ̂2 and

β̂, we construct the following clustering rule

ĜCHIME(z) =


1, (z− µ̂)>β̂ ≥ log( ω̂

1−ω̂ ),

2, (z− µ̂)>β̂ < log( ω̂
1−ω̂ ),

(4.26)

where µ̂ = (µ̂1 + µ̂2)/2. By (4.6), we obtain

R(ĜCHIME) = (1− ω∗)Φ
( log( ω̂

1−ω̂ ) + (µ̂− µ∗1)>β̂√
β̂>Σ∗β̂

)
+ ω∗Φ̄

( log( ω̂
1−ω̂ ) + (µ̂− µ∗2)>β̂√

β̂>Σ∗β̂

)
.

The following theorem shows the convergence rate of R(ĜCHIME) to Ropt(Gθ∗), where

Ropt(Gθ∗) is defined in (4.4).

Theorem 7. Under the conditions of Theorem 6, if T0 ≥ (− log(κ))−1 ·log(n·d2,s(θ̂
(0),θ∗)),

the mis-clustering error R(ĜCHIME) for the classifier ĜCHIME(z) defined in (4.26) satisfies

R(ĜCHIME)−Ropt(Gθ∗) .
s log p

n
,

with probability at least 1− o(1).

The result in Theorem 7 pushes forward the convergence rate of the mis-classification error

of the LPD rule Cai and Liu (2011). In fact, Theorem 3 in Cai and Liu (2011) implies that

the convergence rate is R(ĜLPD)−Ropt(Gθ∗) = O((s log p/n)1/2), over the parameter space

Θp(s, cω,M1,M2). Theorem 7 shows a faster rate and later in Section 4.3.3 we will show
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that this convergence rate in the order of (s log p)/n is indeed optimal.

4.3.2. Initialization

As mentioned earlier, CHIME requires a good initialization θ̂(0) that lies in the contraction

basin Bcon(θ∗; c0, c1, Cb, s), defined in (4.19). This contraction basin forces the two inner

products, δ>β∗ and (δ∗)>β to be of the same order as ∆2 = (δ∗)>β∗. In the special case

where Σ∗ = Ip, this constraint reduces to the boundedness condition on the relative error of

δ. The latter condition was used in Balakrishnan et al. (2017); Wang et al. (2014); Yi and

Caramanis (2015), where they focused on the specialized mixture model 1
2Np(−µ∗, σ2Ip) +

1
2Np(µ

∗, σ2Ip). From a theoretical perspective, this condition guarantees that the weights

γθ̂(t)(z
(i)) assigned in the E-step are close to the truth.

In the following, we introduce the initialization condition (IC), which ensures that θ̂(0) ∈

Bcon(θ∗; c0, c1, Cb, s).

(IC) For some permutation π : {1, 2} → {1, 2}

max
k=1,2

{‖µ̂(0)
k − µ

∗
π(k)‖∞} .

1

s
, |Σ̂(0) − Σ∗|∞ .

1

s
.

The estimator θ̂(0) satisfying (IC) can be obtained by the Hardt-Price algorithm. The

Hardt-Price algorithm was proposed by (Hardt and Price, 2014, see algorithm B), which

first established tight bounds for learning the parameters of a mixture of two univariate

Gaussians using a variant of the method of moments Pearson (1894). They then extended

the univariate result to the multivariate Gaussian mixture model and obtained the following

theorem.

Proposition 1 (Hardt and Price (2014)). Suppose we observe n i.i.d. samples z(i) from

model (4.2). Given ε, ν > 0, if n = Ω( 1
ε6

log( pν log(1
ε ))), then with probability at least

1− ν, the Hardt-Price algorithm produces estimates µ̂
(0)
1 , µ̂

(0)
2 and Σ̂(0) such that for some
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permutation π : {1, 2} → {1, 2},

max
{
‖µ̂(0)

1 − µ
∗
π(1)‖

2
∞, ‖µ̂

(0)
2 − µ

∗
π(2)‖

2
∞, |Σ̂(0) − Σ∗|∞

}
≤ ε(1

4
‖µ∗1 − µ∗2‖2∞ + |Σ∗|∞).

Using Proposition 1, the following lemma shows that θ̂(0) given by the Hardt-Price algorithm

satisfies (IC), and thus guarantees that the subsequent estimators θ̂(t) in Algorithm 1 are

contained in the contraction basin.

Lemma 11. Let θ̂(0) be the estimator constructed by the Hardt-Price algorithm. Under the

conditions of Theorem 6, if s( log p
n )1/12 = o(1), then for sufficiently large n, with probability

1− o(1), θ̂(0) satisfies (IC) and thus (C1) holds.

Remark 8. The conditions in Lemma 11 implies that the sample size n & s12 log p. To the

best of our knowledge, the rate n & s12 log p is so far the best for general Gaussian mixture

models (without assuming spherical covariance matrix) in the literature (see, e.g., Hardt

and Price (2014)). The optimality for the required sample size is an interesting problem for

future work.

4.3.3. Lower bounds

We now turn to the minimax lower bounds for the estimation of β∗ and the mis-clustering

error. Our results show that CHIME yields optimal results in the minimax sense, both for

estimating the discriminating direction β∗ and for clustering.

Theorem 8. Under the conditions of Theorem 6, let C be the set of all clustering rules

based on n i.i.d. samples {z(1), ..., z(n)} from model (4.2) with the true parameter θ∗ ∈

Θp(s, cω,M1,M2), for some constants cω,M1,M2 > 0. If log p = O(log(p/s)), then

(1).

inf
β̂

sup
θ∗∈Θp(s,cω ,M,Mb)

E‖β̂ − β∗‖2 &

√
s log p

n
,
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(2).

inf
Ĝ∈C

sup
θ∗∈Θp(s,cω ,M,Mb)

E[R(Ĝ)−Ropt(Gθ∗)] &
s log p

n
.

Theorems, 6, 7 and 8 together show that our proposed estimator of β∗ and the clustering

rule attain the optimal rates of convergence.

Remark 9. Although a sparsity assumption on µ∗1−µ∗2 seems to be more appealing in the

Gaussian mixture model (4.2), Theorem 8 demonstrates that sparsity on µ∗1−µ∗2 alone is not

sufficient as the precision matrix Ω∗ also plays an important role. Indeed, Theorem 8 shows

that the difficulty of the problem depends on the sparsity of the product β∗ = Ω∗(µ∗1−µ∗2).

Therefore, a structural assumption directly on β∗ is the most natural.

In the proof of Theorem 8, while the construction of the lower bound for the estimation of

β∗ is standard, that of the mis-clustering error is not straightforward. This is partially due

to the fact that the risk function R(Ĝ)−Ropt(Gθ∗) does not satisfy the triangle inequality.

A key step is to reduce the above loss to an alternative risk function.

Let Gθ be the optimal Fisher’s classification rule defined with the parameter θ. For some

generic classification rule G, we rewrite the risk function R(G) − R(Gθ) = Pθ(G(Z) 6=

Y )− Pθ(Gθ(Z) 6= Y ) and define Lθ(G) by

Lθ(G) = min
π∈P2

Pθ(G(Z) 6= π(Gθ(Z))).

The following lemma enables us to reduce the loss R(Ĝ) − Ropt(Gθ∗) to the risk function

Lθ∗(Ĝ).

Lemma 12. Let Z ∼ 1
2Np(µ1,Σ) + 1

2Np(µ2,Σ) with parameter θ = (1/2,µ1,µ2,Σ). Sup-

pose θ satisfies (µ1 − µ2)TΣ−1(µ1 − µ2) ≥ cL for some cL > 0. Then there exists some

constant m > 0, such that if Lθ(G) ≤ 1/m for some classifier G, then

1

2m
L2
θ(G) ≤ Pθ(G(Z) 6= Y )− Pθ(Gθ(Z) 6= Y ).
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Lemma 12 shows the relationship between the risk function R(Ĝ)−Ropt(Gθ∗) and a more

‘standard’ risk function Lθ∗(Ĝ). With Lemma 12, Theorem 8 can be proved by providing

a lower bound for Lθ∗(Ĝ). The risk function Lθ∗(Ĝ) has been studied in Azizyan et al.

(2013) for a specialized model 1
2N(µ1, σ

2Ip) + 1
2N(µ2, σ

2Ip). Although no matching upper

and lower bounds were provided, the following lemma in Azizyan et al. (2013) is crucial to

our analysis, which shows the triangle inequality property of the risk function Lθ∗(Ĝ). For

two probability density functions Pθ1 and Pθ2 , denote their KL divergence by

KL(Pθ1 ,Pθ2) =

∫
Pθ1(z) log

Pθ1(z)

Pθ2(z)
dz.

Lemma 13 (Azizyan et al. (2013)). For any θ, θ̃ ∈ Θp(s, cω,M,Mb) and any clustering Ĝ,

if Lθ(Gθ̃) + Lθ(Ĝ) +

√
KL(Pθ ,Pθ̃)

2 ≤ 1/2, then

Lθ(Gθ̃)− Lθ(Ĝ)−
√

KL(Pθ,Pθ̃)

2
≤ Lθ̃(Ĝ) ≤ Lθ(Gθ̃) + Lθ(Ĝ) +

√
KL(Pθ,Pθ̃)

2
.

After applying Lemmas 12 and 13, we then use Fano’s inequality to complete the proof of

Theorem 8. The details are shown in Section 4.8.

4.4. Low-dimensional Gaussian Mixtures

Although the focus of the present paper is on the high-dimensional setting, our analy-

sis can be modified to establish the optimality of the clustering procedure for the low-

dimensional Gaussian mixtures that is based on the classical EM algorithm. In the general

low-dimensional setting, we consider the model

z(1), z(2), ..., z(n) i.i.d.∼ (1− ω∗)Np(µ
∗
1,Σ

∗) + ω∗Np(µ
∗
2,Σ

∗), (4.27)

without imposing any assumption on the sparsity of the discriminant direction. In such

case, direct estimation of β∗ is not needed. The clustering procedure under model (4.27),

which uses the classical EM algorithm to estimate ω∗,µ∗1, µ∗2 and Σ∗, is summarized in
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Algorithm 2. We call it CLOME for Clustering of LOw-dimensional Gaussian Mixtures

with the EM.

Algorithm 2 Clustering of LOw-dimensional Gaussian Mixtures with the EM (CLOME)

1: Inputs: Initializations ω̂(0), µ̂
(0)
1 , µ̂

(0)
2 and Σ̂(0), maximum number of iterations T0.

2: for t = 0, 1, . . . , T0 − 1 do
3: E-Step: Evaluate Qn(θ | θ̂(t)) with γθ̂(t)(z

(i)) defined in (4.8).

4: M-Step: Update ω̂(t+1), µ̂
(t+1)
1 , µ̂

(t+1)
2 , and Σ̂(t+1) via (4.10), (4.11), (4.12) and

(4.13).
5: end for
6: Output ω̂(T0), µ̂

(T0)
1 , µ̂

(T0)
2 and Σ̂(T0).

7: Construct the clustering rule

ĜEM (z) =

1,
{
z− µ̂

(T0)
1 +µ̂

(T0)
2

2

}>(Σ̂(T0))−1(µ̂
(T0)
1 − µ̂(T0)

2 ) ≥ log( ω̂(T0)

1−ω̂(T0) ),

2,
{
z− µ̂

(T0)
1 +µ̂

(T0)
2

2

}>(Σ̂(T0))−1(µ̂
(T0)
1 − µ̂(T0)

2 ) < log( ω̂(T0)

1−ω̂(T0) ).

The technical tools developed for the proofs of Theorems 6, 7 and 8 can be used to establish

the optimality of CLOME in Algorithm 2. We consider the theoretical performance of

estimation and the CLOME clustering procedure over the parameter space Θp(cω,M1,M2),

defined by

Θp(cω,M1,M2) = {θ = (ω,µ1,µ2,Σ) : µ1,µ2 ∈ Rp,Σ ∈ Rp×p,Σ � 0,

ω ∈ (cω, 1− cω), ‖Σ‖2 ≤M1, ‖µk‖2 ≤M2, k = 1, 2}.

Similar to the high-dimensional setting, CLOME requires a good initialization. The initial

value θ̂(0) should lie in the contraction basin B̃con(θ∗; c0),

B̃con(θ∗; c0) = {θ = (ω,µ1,µ2,Σ) : ω ∈ (c0, 1− c0),µ1,µ2 ∈ Rp,Σ ∈ Rp×p,

Σ � 0, ‖Σ− Σ∗‖2 ≤
1

4
φmin(Σ∗), ‖µk − µ∗k‖2 ≤

1

4‖Σ‖2
‖µ∗1 − µ∗2‖2, k = 1, 2}.

Indeed, in the low-dimensional regime, the algorithm proposed by Ge et al. (2015), which is

based on the method of moments, was proved to satisfy the above condition (see Theorem
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3.4 of Ge et al., 2015).

We are ready to provide the upper bound results of CLOME under the low-dimensional

Gaussian mixture model (4.27). For any θ, θ̃ ∈ Θp(cω,M1,M2), define the `2 distance

between θ and θ̃ by

d2(θ, θ̃) = |ω − ω̃|+ ‖µ1 − µ̃1‖2 + ‖µ2 − µ̃2‖2 + ‖Σ− Σ̃‖2.

Theorem 9. Consider the model (4.27) over the parameter space

Θp(cω,M1,M2) where p = o(n). Suppose the initialization θ̂(0) ∈ B̃con(θ∗; c0) and ∆2 >

log(16M1/3 + 64M2/3). Then there exist constants κ ∈ (0, 1), C1, C2 > 0, such that with

probability at least 1− n−1, the outputs µ̂
(T0)
1 , µ̂

(T0)
2 and Σ̂(T0) of Algorithm 2 satisfy

‖µ̂(T0)
k − µ∗k‖2 ≤ κT0d2(θ∗, θ̂(0)) + C1

√
p

n
, k = 1, 2;

‖Σ̂(T0) − Σ∗‖2 ≤ κT0d2(θ∗, θ̂(0)) + C2

√
p

n
.

In particular, if T0 ≥ 2(− log(κ))−1 log(nd2(θ∗, θ̂(0))/p), then there exists a constant C3 > 0,

such that

d2(θ∗, θ̂(T0)) ≤ C3

√
p

n
and R(ĜEM )−Ropt(Gθ∗) ≤ C3

p

n
.

Remark 10. Theorem 9 provides upper bound results for the estimators given in Algo-

rithm 2 under a general Gaussian mixture model in (4.27), and shows that CLOME is

consistent if the initialization θ̂(0) lies in the contraction basin B̃con(θ∗; c0). Applying The-

orem 9 to the special case 1
2Np(−µ∗, σ2Ip) + 1

2Np(µ
∗, σ2Ip) leads to the same result as that

in Balakrishnan et al. (2017).

We establish the optimality of Algorithm 2 for both the estimators and the clustering rule

by providing the following lower bound results.
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Theorem 10. Under the conditions of Theorem 9, we have

inf
µ̂k

sup
θ∗∈Θp(cω ,M1,M2)

E‖µ̂k − µ∗k‖2 &

√
p

n
, k = 1, 2;

inf
Σ̂

sup
θ∗∈Θp(cω ,M1,M2)

E‖Σ̂− Σ∗‖2 &

√
p

n
,

inf
Ĝ∈C

sup
θ∗∈Θp(cω ,M1,M2)

R(Ĝ)−Ropt(Gθ∗) &
p

n
.

Theorems 9 and 10 together characterize the optimality of CLOME. Note that in the low-

dimensional case the estimators µ̂
(T0)
k and Σ̂(T0) achieve the same convergence rate as the

MLE obtained with known sample labels.

4.5. Simulations

The proposed CHIME procedure is easily implementable. In this section we conduct simu-

lation studies to investigate the numerical properties of CHIME under various settings.

We compare the performance of CHIME with the k-means (KM), sparse k-means (SKM,

Witten and Tibshirani, 2010), Influential Feature PCA (IF-PCA, Jin et al., 2016b), penal-

ized model-based clustering with common covariance matrices (PCCM, Zhou et al., 2009),

sparse clustering via HardtPrice (SHP, Azizyan et al., 2015), the linear programming dis-

criminant rule (LPD, Cai and Liu, 2011) and the oracle Fisher’s rule obtained by plugging in

the true parameters (Oracle) on a suite of three simulated examples. Three methods includ-

ing SKM, PCCM and SHP were implemented in R, whereas the others were implemented in

MATLAB. We refer readers to Cai et al. (2018b) for additional simulation scenarios–including

unequal mixing proportion case and settings with discriminant vectors of different sparsity

levels–and subsequent discussion.

In all simulations, the sample size is n = 200 while the number of variables p varies from

100, 200, 500 to 800. The probability of being in either of the two classes is equal, i.e.

ω∗ = 0.5. The discriminant vector β∗ ∝ (1, . . . , 1, 0, . . . , 0)> is sparse such that only the
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first s = 10 entries are nonzero. We consider the following three models for the inverse

covariance matrix Ω∗.

Model 1 Erdős-Rényi random graph: Let Ω̃ = (ω̃ij) where ω̃ij = uijδij , δij ∼ Ber(1, 0.05)

being the Bernoulli random variable with success probability 0.05 and uij ∼ Unif[0.5, 1]∪

[−1,−0.5]. After symmetrizing Ω̃, set Ω∗ = Ω̃+{max(−φmin(Ω̃), 0)+0.05}Ip to ensure

the positive definiteness. Finally, Ω∗ is standardized to have unit diagonals.

Model 2 Block sparse model: Ω∗ = (B + δIp)/(1 + δ) where bij = bji = 0.5 ∗Ber(1, 0.3)

for 1 ≤ i ≤ s, i < j ≤ p; bij = bji = 0.5 for s+ 1 ≤ i < j ≤ p; bii = 1 for 1 ≤ i ≤ p. In

other words, only the first s rows and columns of Ω∗ are sparse, whereas the rest of

the matrix is not sparse. Here δ = max(−φmin(B), 0) + 0.05. The matrix Ω∗ is also

standardized to have unit diagonals.

Model 3 AR(1) model: Ω∗ = (Ω∗ij)p×p with Ω∗ij = 0.8|i−j|.

In both Model 1 and Model 2, the vector β∗ = (1, . . . , 1, 0, . . . , 0)>. To ensure sufficiently

strong signals in Model 3, we increase the magnitude of nonzero entries in β∗ such that

β∗ = 2.5 · (1, . . . , 1, 0, . . . , 0)>. Given the inverse covariance matrix Ω∗, the mean of class 1

is µ∗1 = 0 and mean of class 2 is µ∗2 = µ∗1 − (Ω∗)−1β∗.

To find initializations for use in CHIME, we first run the k-means algorithm to find the initial

class labels, and calculate µ
(0)
1 and µ

(0)
2 . The pooled sample covariance matrices Σ̂(0) is used

as the initial value for the covariance matrix. We recommend running CHIME with multiple

random initial class labels to obtain the best possible clustering and estimation results. In

the case of Model 3, class labels estimated from SKM are sometimes more accurate than

those from the k-means algorithm, and are thus used as candidates for initializing the

parameters needed in CHIME.

As with any other penalization-based methods, CHIME, SKM, SHP, PCCM and LPD all

require selecting a tuning parameter. To this end, we generated independently training
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Figure 1: Average mis-clustering errors based on n = 200 test samples from 100 replications
under Model 1 (left), Model 2 (middle) and Model 3 (right). CHIME performs well in all
three models.

data and test data from the same distribution. For a given λ, the training data were first

used to estimate the parameters, with mis-clustering error evaluated based on the test data.

The optimal λ was selected as the one that minimizes the mis-clustering errors over the test

data. If there are multiple λ’s that yield the same mis-clustering error, then the largest one

will be selected. The tuning for SKM follows a slightly different procedure as the penalty

parameter is specified in terms of an upper bound for a sequence of weights. The training

data were first used to find the optimal upper bound, with mis-clustering error further

evaluated on the test data under the optimal upper bound.

Figure 1 summarizes the average mis-clustering errors for different methods under the three

aforementioned settings, with respective standard errors (s.e.) presented in Table 14. All

comparisons were evaluated from 100 replications based on n = 200 test samples. Note

the LPD rule is a supervised method for classification and is included as a benchmark

comparison with the proposed method CHIME.

CHIME outperforms all other unsupervised clustering methods in both Models 1 and 2.

Moreover, the mis-clustering errors from CHIME are comparable to those from LPD for p =

500, 800 in Model 1 and p = 200, 500, 800 in Model 2. In comparison, KM, SKM and PCCM

yield rather similar performances, with IF-PCA showing the worst performances in all three

models, since IF-PCA is designed for the case of “rare and weak” signal Jin et al. (2016b)
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Table 14: Average mis-clustering errors (s.e.) based on n = 200 test samples from 100
replications under three different models

p 100 200 500 800

KM 42.53(6.81) 59.07(7.67) 23.94(6.53) 18.72(4.32)
PCCM 41.43(5.63) 55.53(7.41) 22.31(5.60) 17.87(3.93)
SHP 64.33(16.38) 72.34(13.91) 58.28(18.79) 51.33(16.78)

Model 1 SKM 44.20(6.02) 65.30(8.87) 19.29(6.42) 17.59(3.91)
IF-PCA 92.73(5.87) 94.50(4.58) 94.98(4.59) 94.03(3.94)
CHIME 16.21(6.21) 15.37(9.97) 5.21(3.03) 4.79(1.99)

LPD 6.94(2.49) 5.67(2.22) 3.51(2.02) 2.94(1.58)
Oracle 5.92(2.46) 4.92(2.13) 2.44(1.64) 1.79(1.24)

KM 37.33(5.82) 19.54(4.33) 15.71(3.57) 0.54(0.72)
PCCM 36.59(6.26) 18.05(4.23) 15.20(3.34) 0.60(0.75)
SHP 51.54(20.14) 20.07(16.71) 14.98(9.84) 7.16(6.75)

Model 2 SKM 38.23(6.18) 23.28(4.89) 15.78(3.67) 0.60(0.72)
IF-PCA 75.25(22.16) 82.65(15.99) 87.55(10.40) 91.15(8.94)
CHIME 9.62(4.92) 3.35(2.18) 2.07(1.46) 0.03(0.21)

LPD 4.80(2.42) 2.04(1.39) 1.09(0.96) 0.03(0.17)
Oracle 4.14(2.20) 1.53(1.23) 0.81(0.86) 0.01(0.10)

KM 15.08(4.49) 19.39(9.47) 47.68(22.73) 65.19(20.57)
PCCM 48.52(36.81) 79.38(18.67) 85.72(3.47) 86.37(3.64)
SHP 24.13(20.92) 24.96(19.90) 35.37(22.17) 37.34(24.64)

Model 3 SKM 12.00(3.17) 12.32(3.28) 12.21(3.28) 18.66(20.99)
IF-PCA 88.17(11.19) 93.00(6.50) 92.98(7.22) 93.83(5.2456)
CHIME 8.96(2.89) 9.75(2.87) 12.94(3.76) 19.97(20.14)

LPD 5.08(2.41) 7.77(2.69) 8.98(2.85) 9.65(2.76)
Oracle 1.53(1.34) 1.52(1.29) 1.73(1.24) 1.69(1.19)

and requires a diagonal covariance matrix. Clustering with SHP generally returns large mis-

clustering errors and large standard errors, including in Model 3. This is due to its use of

the moment-based estimator from the Hardt-Price algorithm for parameter initializations.

The Hardt-Price algorithm requires a good pivot, i.e. one out of the p variables that shows

the largest difference between the two cluster centers, to get a reasonable initialization.

Such a pivot might be especially difficult to find in Model 1 as a majority of entries in µ∗2

are randomly distributed around zero.

Clustering with Model 3 is more challenging due to the special structure of the inverse

covariance matrix. Indeed, Ω∗ in Model 3 is not sparse. Nonetheless CHIME maintains
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its good performance and achieves mis-clustering errors that are comparable to those from

SKM and smaller than those from other clustering methods. On the other hand, since

µ∗2 is exactly sparse with s + 1 nonzero entries by construction, SKM shows significant

improvement over KM, especially for large p, by taking advantage of sparsity in the true

mean parameters. PCCM performs poorly in Model 3 and worse than KM for p = 500, 800,

mainly because of its poor performance in estimating the non-sparse precision matrix. In

the case of large p, it also suffers from poor initializations with the k-means algorithm.

4.6. Applications to Glioblastoma Gene Expression Data

To illustrate the proposed CHIME procedure, we consider in this section an application

based on glioblastoma gene expression data. Glioblastoma (GBM) is the most common

and aggressive form of brain cancer in adults. In order to provide the best treatments for

patients with glioblastoma, an important question is classification of GBM subtypes, as

different subtypes may respond to treatments differently. In a well-known paper, Ver-

haak et al. (2010) introuced a robust gene expression-based molecular classification of

GBM into Proneural, Neural, Classical and Mesenchymal subtypes. The data are avail-

able at https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/. In this study,

200 GBM and two normal brain samples assayed across three gene expression platforms were

first integrated into a single unified dataset. After further filtering, there remain 1740 genes

with consistent but highly variable expression across the platforms. The 202 samples were

hierarchically clustered using the consensus average linkage. Based on the silhouette width,

173 of the 202 samples were selected as the “core samples” for being most representative of

the clusters. Thus our following analysis was based solely on the core samples.

To validate the performance of CHIME in recovering the labels of a two-component Gaussian

mixture, we focused on two of the four identified GBM subtypes: Mesenchymal and Neural,

yielding a total of 82 samples among which 56 are from the Mesenchymal group. For the

purpose of clustering, one can use the full set of 1740 genes, or select a subset of them.

As the samples are pre-selected, direct application of any clustering methods on the full
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set yields almost perfect match between the estimated clusters and the true ones. We thus

followed the latter approach and chose p = 200 genes from the full set of 1740 genes. In

particular, we considered gene selection as follows. First we calculated the variances of all

the genes and ranked them in a decreasing order. The top 20 genes with the largest variances

and the last 180 genes with the smallest variances were then selected as the training set.

We anticipate that the high variance genes are more informative than low variance genes,

although this is not always true as the results below show.

Since we do not have a separate test data with labels, we propose to select the tuning pa-

rameter required in CHIME via a stability approach, motivated by Tibshirani and Walther

(2005). The idea is to first randomly split the data into the training set and the test set.

For a given λ, we run CHIME on the test data and obtain class labels of the test data,

run CHIME on the training data, and finally measure how well the parameters estimated

from the training data predict the class labels of the test data. Formally, let f(X) be a

clustering operation learned from data X and G[f(·), X] be the class labels estimated on X

based on the clustering operation f(·). The prediction strength is then defined as the av-

erage adjusted random index when comparing G[f(Xtrain), Xtest] to G[f(Xtest), Xtest] over

B replications:

ps(λ) =
1

B

B∑
i=1

ARI(G[f(Xi
train), Xi

test], G[f(Xi
test), X

i
test]). (4.28)

The optimal λ∗ is selected as arg maxλ ps(λ). Note the adjusted rand index is preferred

over the rand index as the former has the advantage of being corrected-for-chance. This

is especially important since if β̂ = 0 due to the large penalty, G[f(Xtrain), Xtest] can

randomly coincide with G[f(Xtest), Xtest], resulting in a large value in rand index, but not

in terms of the adjusted rand index. In addition, we define the prediction strength in terms

of the adjusted rand index rather than the original one proposed in Tibshirani and Walther

(2005), as the former favors a larger penalty parameter and thus returns a sparser estimate

that is more interpretable.
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To apply CHIME, SHP and PCCM, we first selected the tuning parameters by maximizing

the prediction strength defined in (4.28). The tuning parameter required in SKM was

selected via criteria defined in Witten and Tibshirani (2010). Sparse clustering of the 200

genes with CHIME at the optimal λ yields 2 errors. A comparison with other clustering

methods reveals that CHIME performs the best in recovering the correct sample labels, as

shown in Table 15. Among all other methods, SHP yields the largest error, possibly due to

incorrect parameter initializations with the Hardt-Price algorithm.

Table 15: Clustering results for the GBM gene expression data with p = 200 genes and 82
samples

CHIME KM PCCM SHP SKM

Class 1 2 1 2 1 2 1 2 1 2

Neural 26 0 26 0 26 0 12 14 25 1
Mesenchymal 2 54 7 49 5 51 10 46 6 50

To understand the performance of CHIME better, we also looked at the selected informative

variables, i.e. genes with nonzero coefficients in β̂. Figure 2 shows that large marginal

variances do not necessarily imply large coefficients in |β̂|. In fact, a significant number of

the low variance genes (59 of 180) turn out to be informative for the clustering. This again

confirms that direct estimation of the discriminant vector with CHIME yields a better

characterization of the clustering boundary than estimating separately the cluster mean

differences and (partial) correlations among variables.

4.7. Extensions to Multi-class Gaussian Mixtures

The proposed method can be readily extended to Gaussian mixtures with K (K ≥ 2)

components. Consider the model

Pr(Y = k) = ω∗k, Z | Y = k ∼ Np(µ
∗
k,Σ

∗), k = 1, . . . ,K.
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Figure 2: The discriminant vector |β̂| is plotted against the marginal variances.

Here
∑K

k=1 ω
∗
k = 1. We assumeK is fixed and known. In the ideal case where the parameters

are known, the oracle Bayes rule yields the label assignment

Ŷ = arg max
k=1,...,K

{
β∗>k (Z − (µ∗k + µ∗1)/2) + logω∗k

}
, (4.29)

where β∗k = (Σ∗)−1(µ∗k−µ∗1) (k = 1, 2, . . . ,K) are the discriminant directions. By definition,

the vector β∗1 is trivial.

When neither the parameters nor the sample labels are known, under the assumption that

the discriminant directions β∗k (k = 2, . . . ,K) are sparse, CHIME can be generalized for

clustering multi-class Gaussian mixtures. Specifically, denote the posterior probability of

the i-th sample in class k by

γ̂
(t)
ik := Pr(yi = k|z(i), θ̂(t)) =

ω̂
(t)
k f(z(i) | µ̂(t)

k , β̂
(t))∑K

`=1 ω̂
(t)
` f(z(i) | µ̂(t)

` , β̂
(t))

.

The conditional log-likelihood at the t-th step becomes

Qn(θ | θ̂(t)) = − 1

2n

∑
i∈[n]

k∈[K]

γ̂
(t)
ik (z(i) − µ̂(t)

k )TΩ(z(i) − µ̂(t)
k ) +

1

n

∑
i∈[n]

k∈[K]

γ̂
(t)
ik log ω̂

(t)
k +

1

2
log |Ω|.
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The updates of ωk,µk and Σ in the M-step are respectively,

ω̂
(t+1)
k =

1

n

n∑
i=1

γ̂
(t)
ik , µ̂

(t+1)
k =

∑n
i=1 γ̂

(t)
ik z(i)∑n

i′=1 γ̂
(t)
i′k

,

Σ̂(t+1) =
1

n

n∑
i=1

K∑
k=1

γ̂
(t)
ik (z(i) − µ̂(t+1)

k )(z(i) − µ̂(t+1)
k )>.

Finally, β̂k’s are updated by solving the following optimizations:

β̂(t+1) = arg min
β∈Rp

{
1

2
β>Σ̂(t+1)β − β>(µ̂

(t+1)
k − µ̂(t+1)

1 ) + λ(t+1)
n ‖β‖1

}
, k = 2, . . . ,K.

This algorithm assumes sparsity of each discriminant direction β∗k (k = 2, . . . ,K), but no

conditions on their joint support. If it is believed that the discriminant vectors have similar

support, one might impose a group lasso penalty for their estimation, as done in Mai et al.

(2015).

The final clustering rule is constructed by plugging the estimates ω∗,µ∗k (k = 1, . . . ,K)

and β∗k (k = 2, . . . ,K) into the optimal rule (4.29). Provided with a good initialization,

similar techniques introduced in previous sections can be used to establish the convergence

rate of β̂k as well as the upper and lower bounds of the mis-clustering error under suitable

regularity conditions. The initialization for clustering multi-class Gaussian mixtures can

be obtained by algorithms in Moitra and Valiant (2010) or Ge et al. (2015). It was shown

that the estimate lies in Bcon with probability at least 1− δ when n > poly(p, 1
δ ,

1
∆), where

poly(·) denotes the polynomial dependence. We also note here that the initialization step is

of much importance in the multi-class setting, since it has been shown in Jin et al. (2016a)

that the EM algorithm could stuck at a local optimum without a good initialization.

4.8. Proofs

In this section, we prove the optimality for the mis-clustering error, i.e. Theorem 7 and the

part (2) of Theorem 8. The proof of the optimality for the estimation error, Theorem 6

and part (1) of Theorem 8, is given in the supplement Cai et al. (2018b). A few technical
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lemmas are needed for the proof of the main results. These technical lemmas as well as

some other minor results are proved in the supplement Cai et al. (2018b).

4.8.1. Proof of Theorem 7

We start with the following lemma.

Lemma 14. For two vectors γ∗ and γ̂, if ‖γ∗ − γ̂‖2 ≤ ‖γ∗‖2, and ‖γ∗‖2 ≥ c for some

constant c > 0, then

(γ∗)>γ̂ − ‖γ∗‖2 · ‖γ̂‖2 � ‖γ∗ − γ̂‖22.

Consider the model (4.2). Given the estimators ω̂, µ̂k, and β̂, the sample z is classified as

Ĝ(z) =


1, (z− (µ̂1 + µ̂2)/2)>β̂ ≥ log( ω̂

1−ω̂ )

2, (z− (µ̂1 + µ̂2)/2)>β̂ < log( ω̂
1−ω̂ ).

Let τ∗ = ω∗

1−ω∗ , τ̂ = ω̂
1−ω̂ and ∆̂ =

√
β̂>Σ∗β̂. The mis-clustering error is

R(Ĝ) = (1− ω∗)Φ
( log τ̂ + (µ̂− µ∗1)>β̂

∆̂

)
+ ω∗Φ̄

( log τ̂ + (µ̂− µ∗2)>β̂

∆̂

)
,

with Ropt(Gθ∗) = (1−ω∗)Φ
(

log τ∗−∆2/2
∆

)
+ω∗Φ̄

(
log τ∗+∆2/2

∆

)
. Define an intermediate quan-

tity

R∗ = (1− ω∗)Φ
( log τ∗ − (δ∗)>β̂/2

∆̂

)
+ ω∗Φ̄

( log τ∗ + (δ∗)>β̂/2

∆̂

)
.

We first show that R∗ −Ropt(Gθ∗) .
s log p
n . Applying Taylor’s expansion to the two terms

in R∗ at log τ∗

∆ − ∆
2 and log τ∗

∆ + ∆
2 respectively, we obtain

R∗ −Ropt(Gθ∗) = (1− ω∗)
( log τ∗

∆̂
− (δ∗)>β̂

2∆̂
− log τ∗

∆
+

∆

2

)
Φ′
( log τ∗

∆
− ∆

2

)
− ω∗

( log τ∗

∆̂
+

(δ∗)>β̂

2∆̂
− log τ∗

∆
− ∆

2

)
Φ′
( log τ∗

∆
+

∆

2

)
+OP

(s log p

n

)
, (4.30)
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where the remaining term is bounded by using the facts that

( log τ∗

∆̂
+

(δ∗)>β̂

2∆̂
− log τ∗

∆
− ∆

2

)2
= Op

(s log p

n

)
, and Φ′′ = O(1).

In fact,

| log τ∗

∆̂
+

(δ∗)>β̂

2∆̂
− log τ∗

∆
− ∆

2
| ≤ | log τ∗

∆̂
− log τ∗

∆
|+ |(δ

∗)>β̂

2∆̂
− ∆

2
|

≤| log τ∗

∆̂
− log τ∗

∆
|+ |(δ

∗)>β̂

2∆̂
− ∆2

2∆̂
|+ |∆

2

2∆̂
− ∆

2
| . |∆̂−∆|+ |(δ∗)>β̂ − (δ∗)>β∗|

≤|
√

(β̂ − β∗)Σ∗(β̂ − β∗)|+ |(δ∗)>β̂ − (δ∗)>β∗| . ‖β̂ − β∗‖ .
√
s log p

n
. (4.31)

Recall that τ∗ = ω∗

1−ω∗ , (4.30) can be further expanded such that

R∗ −Ropt(Gθ∗)√
(1− ω∗)ω∗

�
( log τ∗

∆̂
− (δ∗)>β̂

2∆̂
− log τ∗

∆
+

∆

2

)
e−

1
2

(
log τ∗

∆
−∆

2

)2
− log τ∗

2

−
( log τ∗

∆̂
+

(δ∗)>β̂

2∆̂
− log τ∗

∆
− ∆

2

)
e−

1
2

(
log τ∗

∆
+ ∆

2

)2
+ log τ∗

2

= exp
(
− log2 τ∗

2∆2
− ∆2

8

)
·
(

∆− (δ∗)>β̂

∆̂

)
. |∆− (δ∗)>β̂

∆̂
|

.‖β∗ − β̂‖22.

In fact, for the last step, we can obtain this inequality by letting γ = (Σ∗)1/2β∗ and

γ̂ = (Σ∗)1/2β̂. Then

∣∣∣∆− (δ∗)>β̂

∆̂

∣∣∣ =
∣∣‖γ‖2 − γ>γ̂‖γ̂‖2 ∣∣ =

∣∣‖γ‖2‖γ̂‖2 − γ>γ̂
‖γ̂‖2

∣∣.
By Lemma 14, eventually we obtain R∗ −Ropt(Gθ∗) . ‖β∗ − β̂‖22.
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To upper bound R(Ĝ)−R∗, applying Taylor’s expansion to R(Ĝ),

R(Ĝ) = (1− ω∗)

{
Φ
( log τ∗ − (δ∗)>β̂/2

∆̂

)
+

log τ̂ − log τ∗ + (µ̂− µ∗1)>β̂ + (δ∗)>β̂/2

∆̂
Φ′
( log τ∗ − (δ∗)>β̂/2

∆̂

)
+OP (

s log p

n
)

}

+ ω∗

{
Φ̄
( log τ∗ + (δ∗)>β̂/2

∆̂

)
− log τ̂ − log τ∗ + (µ̂− µ∗2)>β̂ − (δ∗)>β̂/2

∆̂
Φ′
( log τ∗ + (δ∗)>β̂/2

∆̂

)
+OP (

s log p

n
)

}
,

where the remaining term OP ( s log p
n ) can be obtained similarly as (4.30).

This leads to

R∗ −R(Ĝ)√
(1− ω∗)ω∗

.

√
1− ω∗
ω∗

· log τ∗ − log τ̂ − (δ∗)>β̂/2− (µ̂− µ∗1)>β̂

∆̂
Φ′(

log τ∗ − (δ∗)>β̂/2

∆̂
)

−
√

ω∗

1− ω∗
· log τ∗ − log τ̂ + (δ∗)>β̂/2− (µ̂− µ∗2)>β̂

∆̂
Φ′(

log τ∗ + (δ∗)>β̂/2

∆̂
)

=
log τ∗ − log τ̂ − (δ∗)>β̂/2− (µ̂− µ∗1)>β̂

∆̂
e−

1
2

{
log τ∗−(δ∗)>β̂/2

∆̂

}2
− log τ∗

2

− log τ∗ − log τ̂ + (δ∗)>β̂/2− (µ̂− µ∗2)>β̂

∆̂
e−

1
2

{
log τ∗+(δ∗)>β̂/2

∆̂

}2
+ log τ∗

2 .
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Then it follows that

R∗ −R(Ĝ)√
(1− ω∗)ω∗

.
∣∣∣ log τ∗ − log τ̂ − (δ∗)>β̂/2− (µ̂− µ∗1)>β̂

∆̂

∣∣∣
·
∣∣∣e− (log τ∗−(δ∗)>β̂/2)2

2∆̂2 − log τ∗
2 − e−

(log τ∗+(δ∗)>β̂/2)2

2∆̂2 + log τ∗
2

∣∣∣
=
∣∣∣ log τ∗ − log τ̂ − (δ∗)>β̂/2− (µ̂− µ∗1)>β̂

∆̂

∣∣∣︸ ︷︷ ︸
(i)

· e−
log2 τ∗+(δ∗>β̂/2)2

2∆̂2︸ ︷︷ ︸
(ii)

·
∣∣∣e log τ∗·(δ∗)>β̂

2∆̂2 − log τ∗
2 − e−

log τ∗·(δ∗)>β̂
2∆̂2 + log τ∗

2

∣∣∣︸ ︷︷ ︸
(iii)

.

√
s log p

n
·Op(1) ·

√
s log p

n
.
s log p

n
,

where the last inequality uses the following facts

(i) .

√
s log p

n
, (ii) = OP (1), and (iii) .

√
s log p

n
.

In fact, the bound on (i) follows the same idea of (4.31). (ii) uses the fact that e−x ≤ 1

when x ≥ 0. (iii) uses the fact that |ex−e−x| . x when x = o(1), and thus can be bounded

as

|e
log τ∗·(δ∗)>β̂

2∆̂2 − log τ∗
2 − e−

log τ∗·(δ∗)>β̂
2∆̂2 + log τ∗

2 | . |(δ
∗)>β̂

∆̂2
− 1| .

√
s log p

n
,

where the last inequality also follows the same idea as (4.31). Combining the pieces, we

obtain

R(Ĝ)−Ropt(Gθ∗) .
s log p

n
.

4.8.2. Proof of Theorem 8

We focus on mis-classification error. Consider the model 1
2Np(µ1,Σ) + 1

2Np(µ2,Σ) with

θ = (1/2,µ1,µ2,Σ) ∈ Θp(s, cω,M,Mb). Let Gθ be the Fisher’s rule defined in (4.3) with

parameter θ, and the risk function for a generic parameter θ and classification rule G is
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defined as

Lθ(G) = Pr
θ

(G 6= Gθ). (4.32)

The proof of lower bound requires the generalized version of Fano’s lemma.

Lemma 15 (Tsybakov (2009)). Let M ≥ 0 and θ0,θ1, ...,θM ∈ Θp(s, cω,M,Mb). For some

constants α ∈ (0, 1/8), γ > 0, and any classifier Ĝ, if KL(Prθi ,Prθ0) ≤ α logM/n for all

1 ≤ i ≤M , and Lθi(Ĝ) < γ implies Lθj (Ĝ) ≥ γ for all 0 ≤ i 6= j ≤M , then

inf
Ĝ

sup
i∈[M ]

Eθi [Lθi(Ĝ)] & γ.

Lemma 16 (Tsybakov (2009)). Let As = {u : u ∈ {0, 1}p, ‖u‖0 ≤ s}. If p ≥ 4s,

then there exists {u0,u1, ...,uM} ⊂ As such that u0 = {0, ..., 0}>, ρH(ui,uj) ≥ s/2 and

log(M + 1) ≥ s
5 log(ps ), where ρH is the Hamming distance.

Lemma 17. For any θ, θ̃ ∈ Θp(s, cω,M,Mb), let Prθ = (1−ω)Np(−µ/2, Ip)+ωNp(µ/2, Ip)

and Prθ̃ = (1 − ω)Np(−µ̃/2, Ip) + ωNp(µ̃/2, Ip) with ‖µ‖2 = ‖µ̃‖2. Then KL(Prθ,Prθ̃) ≤

(‖µ‖22 + log τ/2)(‖µ‖22 − |µ>µ̃|), where τ = ω
1−ω . In particular, if ω = 1/2, we have

KL(Pr
θ
,Pr
θ̃

) ≤ ‖µ‖42 ·
(

1− |µ
>µ̃|
‖µ‖2

)
.

Define the function g(x) = φ(x){φ(x) − xΦ(−x)}, where φ(x) is the probability density

function of the standard normal distribution, i.e. φ(x) = Φ′(x).

Lemma 18 (Azizyan et al. (2013)). For any θ, θ̃ ∈ Θp(s, cω,M,Mb) and cosψ = |µ>µ̃|/‖µ‖2,

we have

2g
(‖µ‖

2σ

)
sinψ cosψ ≤ Lθ(Gθ̃).

Proof of Theorem 8. First we construct a subset of the parameter space Θ that characterizes

the hardness of the problem. Let e1 = {1, 0, ..., 0}> ∈ Rp. By Lemma 16, there exist

u1, ...,uM ∈ Ãs = {u ∈ {0, 1}p :,u>e1 = 0, ‖u‖0 = s}, such that ρH(ui,uj) > s/2 and

log(M + 1) ≥ s
5 log(p−1

s ). Note the first entry in uj is 0 for all j = 1, . . . ,M .
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Define the parameter space

Θ1 = {θ = (1/2,µ1,µ2,Σ) : µ1 = εu+ λe1,µ2 = −µ1,Σ = σ2Ip;u ∈ Ãs}.

Here ε = σ
√

log p/n, σ2 = O(1) and λ = O(1) are chosen to ensure θ ∈ Θp(s, cω,M,Mb) and

(µ1 −µ2)TΣ−1(µ1 −µ2) =
4‖εu+λe1‖22

σ2 ≥ c1, as required in Lemma 12.To apply Lemma 15,

we need to verify two conditions: (i) the upper bound on the KL divergence between Prθu

and Prθv , and (ii) the lower bound of Lθu(Ĝ) + Lθv(Ĝ) for u 6= v.

We calculate the KL divergence first. For u ∈ Ãs, denote µu = εu + λe1. For θu =

(1/2,µu,−µu, σ2Ip) ∈ Θ1, the model parameterized by µu is 1
2Np(µu, σ

2Ip)+
1
2Np(−µu, σ2Ip).

For u,v ∈ Ãs, since

ε2 · ρH(u,v) =〈µu − µv,µu − µv〉 = ‖µu‖22 + ‖µv‖22 − 2µ>uµv = 2‖µu‖22 − 2µ>uµv,

we have ‖µu‖22 − µ>uµv = 1
2ε

2 · ρH(u,v) � s log p
n . Lemma 17 then yields

KL(Pr
θu
,Pr
θv

) ≤ ‖µu‖22(‖µu‖22 − µ>uµv) .
s log p

n
. (4.33)

Consider Lθ(G) defined in (4.32). Recall that in Lemma 18, cosψ = µ>uµv/‖µu‖22. For the

choice of ε and µu, we have ‖µu‖22σ = O(1), which implies that 2g(‖µu‖22σ ) = O(1) under the

condition s = o(n/ log p). Also,

1− cosψ = 1− µ
>
uµv
‖µu‖22

=
‖µu‖22 − µ>uµv
‖µu‖22

=
ρH(u,v)ε2

2(λ2 + sε2)
� s log p

n
.

Therefore, by Lemma 18,

Lθu(Gθv) ≥ 2g
(‖µ‖2

2σ

)
sinψ cosψ ≥ g

(‖µ‖2
2σ

)√
1 + cosψ

√
1− cosψ ≥

√
s log p

n
.
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Applying Lemma 13 with a proper choice of ε, we have, for any u,v ∈ Ãs,

Lθu(Ĝ) + Lθv(Ĝ) ≥ Lθu(Gθv)−
√

KL(Prθu ,Prθv)

2
&

√
s log p

n
.

So far we have verified the aforementioned conditions (i) and (ii). Lemma 15 immediately

implies that

inf
Ĝ∈C

sup
θ∈Θp(s,cω ,M,Mb)

Lθ(Ĝ) &

√
s log p

n
. (4.34)

Finally combining (4.34) with Lemma 12, we obtain the desired lower bound for the mis-

clustering error.
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CHAPTER 5 : The Cost of Privacy: Optimal Rates of Convergence for Parameter

Estimation with Differential Privacy

5.1. Introduction

With the unprecedented availability of datasets containing sensitive personal information,

there are increasing concerns that statistical analysis of such datasets may compromise

individual privacy. These concerns give rise to statistical methods that provide privacy

guarantees at the cost of statistical accuracy, but there has been very limited understanding

of the optimal tradeoff between statistical accuracy and privacy cost.

A rigorous definition of privacy is a prerequisite for such an understanding. Differential

privacy, introduced in Dwork et al. (2006), is arguably the most widely adopted definition

of privacy in statistical data analysis. The promise of a differentially private algorithm is

protection of any individual’s privacy from an adversary who has access to the algorithm

output and even sometimes the rest of the data. Differential privacy has gained significant

attention in the machine learning communities over the past few years (Dwork et al., 2014a;

Abadi et al., 2016; Dwork et al., 2017; Dwork and Feldman, 2018) and found its way into

real world applications developed by Google (Erlingsson et al., 2014), Apple (Differential

Privacy Team, 2017), Microsoft (Ding et al., 2017), and the U.S. Census Bureau (Abowd,

2016).

A usual approach to developing differentially private algorithms is perturbing the output

of non-private algorithms by random noise. When the observations are continuous, dif-

ferential privacy can be guaranteed by adding Laplace/Gaussian noise to the non-private

output (Dwork et al., 2014a). For discrete data, differential privacy can be achieved by

adding Gumbel noise to utility score functions (also known as the exponential mechanism).

Naturally, the processed output suffers from some loss of accuracy, which has been observed

and studied in the literature, see, for example, Wasserman and Zhou (2010); Smith (2011);

Lei (2011); Bassily et al. (2014); Dwork et al. (2014b). However, given a certain privacy
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constraint, it is still unclear what the best achievable statistical accuracy is, or in other

words, what the optimal tradeoff between privacy cost and statistical accuracy is.

The goal of this paper is to provide a quantitative characterization of the tradeoff between

privacy cost and statistical accuracy, under the statistical minimax framework. Specifically,

we consider this problem for mean estimation and linear regression models in both classical

and high-dimensional settings with (ε, δ)-differential privacy constraint, which is formally

defined as follows.

Definition 1 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm M is

(ε, δ)-differentially private if and only if for every pair of adjacent datasets X1:n and X ′1:n,

and for any set S,

P(M(X1:n) ∈ S) ≤ eε · P(M(X ′1:n) ∈ S) + δ,

where we say two datasets X1:n = {xi}ni=1 and X ′1:n = {x′i}ni=1 are adjacent if and only if∑n
i=1 1(xi 6= x′i) = 1.

According to the definition, the two parameters ε and δ control the level of privacy against an

adversary who attempts to detect the presence of a certain subject in the sample. Roughly

speaking, ε is an upper bound on the amount of influence an individual’s record has on the

information released and δ is the probability that this bound fails to hold, so the privacy

constraint becomes more stringent as ε, δ tend to 0.

We establish the necessary cost of privacy by first providing minimax lower bounds for

the estimation accuracy under this (ε, δ)-differential privacy constraint. The results show

that the estimators with privacy guarantees generally exhibit very different rates of con-

vergence compared to their non-private counterparts. As a first example, we consider the

d-dimensional mean estimation under the `2 loss: Theorem 12 in Section 5.2 shows that,

when the sample size is n, for any (ε, δ)-differentially private algorithm, in addition to

the standard
√
d/n statistical error, there must be an extra error of at least the order of

d
√

log(1/δ)/nε. This lower bound is established by using a general technique presented in
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Theorem 11, which reduces the establishing minimax risk lower bounds to designing and

analyzing a tracing adversary that aims to detect the presence of an individual in a dataset

via the output of a differentially private procedure that is applied to the dataset. The

design and analysis of tracing adversary makes use of a novel generalization of the finger-

printing lemma, a concept from cryptography (Boneh and Shaw, 1998). The connections

between tracing adversaries, the fingerprinting lemma and differential privacy have been

observed in Tardos (2008), Bun et al. (2014) and Dwork et al. (2015), but their discussions

are primarily concerned with discrete distributions. In this paper, we provide a continuous

version of the fingerprinting lemma that enables us to establish minimax lower bounds for

a greater variety of statistical problems; more discussions are given in Section 5.2 as well as

the Supplementary Material (Cai et al., 2019c).

Further, we argue that these necessary costs of privacy, as shown by lower bounds for the

minimax rates, are in fact sharp in both mean estimation and linear regression problems.

We construct efficient algorithms and establish matching upper bounds up to logarithmic

factors. These algorithms are based on several differentially private subroutines, such as the

Gaussian mechanism, reporting noisy top-k, and their modifications. In particular, for the

high-dimensional linear regression, we propose a novel private iterative hard thresholding

pursuit algorithm, based on a privately truncated version of stochastic gradient descent.

Such a private truncation step effectively enforces the sparsity of the resulting estimator

and leads to optimal control of the privacy cost (see more details in Section 5.4.2). To

the best of our knowledge, these algorithms are the first results achieving the minimax

optimal rates of convergence in high-dimensional statistical estimation problems with the

(ε, δ)-differential privacy guarantee. Our Theorems 13, 14, 16, and 18 together provide

matching upper and lower bounds for both mean estimation and linear regression problems

in high-dimensional and classical settings, up to logarithmic factors.
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Related literature

There are previous works studying how the privacy constraints compromise estimation ac-

curacy. In theoretical computer science, Smith (2011) showed that under strong conditions

on privacy parameters, some point estimators attain the statistical convergence rates and

hence privacy can be gained for free. Bassily et al. (2014); Dwork et al. (2014b); Talwar

et al. (2015) proposed differentially private algorithms for convex empirical risk minimiza-

tion, principal component analysis, and high-dimensional regression, and investigated the

convergence rates of excess risk. In addition, Bun et al. (2014); Ullman (2016); Bafna

and Ullman (2017) considered the optimal estimation of sample quantities such as k-way

marginals and top-k selection with privacy constrain. Unlike most prior works that focused

on excess risks or the release of sample quantities, our focus is the population parameter

estimation. Theoretical properties of excess risks or sample quantities can be very different

from those of population parameters; see more discussions in Duchi et al. (2013).

More recent works aimed to study differential privacy in the context of statistical estimation.

Wasserman and Zhou (2010) observed that, (ε, δ)-local differentially private schemes seem to

yield slower convergence rates than the optimal minimax rates in general; Duchi et al. (2018)

developed a framework for statistical minimax rates with the α-local privacy constraint;

in addition, Rohde and Steinberger (2018) showed minimax optimal rates of convergence

under α-local differential privacy and exhibited a mechanism that is minimax optimal for

nearly linear functionals based on randomized response. However, α-local privacy is a much

stronger notion of privacy than (ε, δ)-differential privacy that is hardly compatible with

high-dimensional problems (Duchi et al., 2018). As we shall see in this paper, the cost of

(ε, δ)-differential privacy in statistical estimation behaves quite differently compared to that

of α-local privacy.
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Organization of the paper

The rest of the paper is organized as follows. Section 5.2 introduces a general technical

tool for deriving lower bounds of the minimax risk with differential privacy constraint. The

new technical tool is then applied in Section 3 to the high-dimensional mean estimation

problem. Both minimax lower bound results and algorithms with matching upper bounds

are obtained. Section 4 further applies the general lower bound technique to investigate the

minimax lower bounds of the linear regression problem with differential privacy constraint,

in both low-dimensional and high-dimensional settings. The upper bounds are also obtained

by providing novel differentially private algorithms and analyzing their risks. The results

together show that our bounds are rate-optimal up to logarithmic factors. Simulation

studies are carried out in Section 5 to show the advantages of our proposed algorithms.

Section 6 applies our algorithms to real data sets with potentially sensitive information

that warrants privacy-preserving methods. Section 7 discusses extensions to other statistical

estimation problems with privacy constraints. The proofs are given in Section 8.

Definitions and notation

We conclude this section by introducing notations that will be used in the rest of the paper.

For a positive integer n, [n] denotes the set {1, 2, ..., n}. For a vector x ∈ Rd, we use

‖x‖0, ‖x‖p = (
∑

j∈[d] x
p
j )

1/p and ‖x‖∞ = maxj∈[d] |xj | to denote the usual vector `0, `p and

`∞ norm, respectively, where the `0 norm counts the number of nonzero entries in a vector.

For any set A ⊆ [d] and v ∈ Rd, let vA denote the |A|-dimensional vector consisting of vi such

that i ∈ A. The Frobenius norm of a matrix Ω = (ωij) is denoted by ‖Ω‖F =
√∑

i,j ω
2
ij ,

and the spectral norm of Ω is ‖Ω‖2. In addition, we use λmin, λmax to denote the smallest

and the largest eigenvalues of Ω. The matrix `0 norm is defined similarly as the vector `0

norm, i.e. ‖Ω‖0 = #{(i, j) : ωij 6= 0}. In addition, |Ω| denotes the determinant of Ω. The

empirical measure is denoted by En = n−1
∑n

i=1 δxi for a sample x1, . . . ,xn. For a set A,

we use Ac to denote its complement, and 1(A) denotes the indicator function on A. We use

C, C1, C2, ..., and c1, c2, ... to denote generic constants which may vary line by line.
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5.2. A General Lower Bound for Minimax Risk with Differential Privacy

This section presents a general minimax lower bound technique for statistical estimation

problems with differential privacy constraint. As an application, we use this technique to

establish a tight lower bound for differentially private mean estimation in this section.

Our lower bound technique is based on a tracing adversary that attempts to detect the

presence of an individual data entry in a data set with the knowledge of an estimator

computed from the data set. If one can construct a tracing adversary that is effective at

this task given an accurate estimator, an argument by contradiction leads to a lower bound

of the accuracy of differentially private estimators: suppose a differentially private estimator

from a data set is sufficiently accurate, the tracing adversary will be able to determine the

presence of an individual data entry in the data set, thus contradicting with the differential

privacy guarantee. In other words, the privacy guarantee and the tracing adversary together

ensure that a differentially private estimator cannot be “too accurate”.

5.2.1. Background and problem formulation

Let P denote a family of distributions supported on a set X , and let θ : P → Θ ⊂ Rd

denote a population quantity of interest. The statistician has access to a data set of n i.i.d.

samples, X = (x1, ...,xn) ∈ X n, drawn from a statistical model P ∈ P.

With the data, our goal is to estimate a population parameter θ(P ) by an estimator M(X) :

X n → Θ that belongs to Mε,δ, the collection of all (ε, δ)-differentially private procedures.

The performance of M(X) is measured by its distance to the truth θ(P ): formally, let

ρ : Θ × Θ → R+ be a metric induced by a norm ‖ · ‖ on Θ, namely ρ(θ1,θ2) = ‖θ1 − θ2‖,

and let l : R+ → R+ be a loss function that is monotonically increasing on R+, this paper

studies the minimax risk for differentially-private estimation of the population parameter

θ(P ):

inf
M∈Mε,δ

sup
P∈P

E [l(ρ(M(X),θ(P )))] .
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In this paper, our setting of the privacy parameters are ε = O(1) and δ = o(1/n). This is

essentially the most-permissive setting under which (ε, δ)-differential privacy is a nontrivial

guarantee: Steinke and Ullman (2017) shows that δ < 1/n is essentially the weakest privacy

guarantee that is still meaningful.

5.2.2. Lower bound by tracing

Consider a tracing adversary aP (x,M(X)) : X × Θ → {IN,OUT} that outputs IN if it

determines a certain sample x is in the data set X after seeing M(X), and outputs OUT

otherwise. We define T R(X,M(X)) := {i ∈ [n] : aP (xi,M(X)) = IN}, the index set of

samples that are determined as IN by the adversary aP . A survey of tracing adversaries

and their relationship with differential privacy can be found in Dwork et al. (2017) and the

reference therein.

Our general lower bound technique requires some regularity conditions for P and θ : P →

Θ ⊂ Rd: for every P ∈ P, we assume that there exists a P0 ∈ P such that for every

α ∈ [0, 1], (1 − α)P0 + αP ∈ P, and θ ((1− α)P0 + αP ) = αθ(P ). The two statistical

problems investigated in this paper, mean estimation and linear regression, satisfy the

property.

The following theorem shows that minimax lower bounds for statistical estimation problems

with privacy constraint can be constructed if there exist effective tracing adversaries:

Theorem 11. Suppose X = {x1, ...,xn} is an i.i.d. sample from a distribution P ∈ P,

and assume that P and θ satisfy the regularity conditions described above. Given a tracing

adversary aP (x,M(X)) that satisfies the following two properties when n . ψ(P, δ),

1. completeness: P({T R(X,M(X)) = ∅} ∩ {ρ(M(X),θ(P )) . λ(P, δ)}) ≤ δ,

2. soundness: P(aP (xi,M(X ′i)) = IN) ≤ δ, where X ′i is an adjacent dataset of X with

xi replaced by x′i ∼ P ,

then if ε = O(1), n−1e−3εn/2 ≤ δ ≤ n−(1+τ) for some τ > 0, and n & ψ(P, δ) log(1/δ)/ε,

138



we have

inf
M∈Mε,δ

sup
P∈P

E [l (ρ(M(X),θ(P )))] & l

(
ψ(P, δ) · λ(P, δ) · log(1/δ)

nε

)
.

Completeness and soundness roughly correspond to “true positive” and “false positive” in

classification: completeness requires the adversary to return some nontrivial result when

its input M(X) is accurate; soundness guarantees that an individual is unlikely to be

identified as IN if the estimator that aP used is independent of the individual. When a

tracing adversary satisfies these properties, Theorem 11 conveniently leads to a minimax

risk lower bound; that is, Theorem 11 is a reduction from constructing minimax risk lower

bounds to finding complete and sound tracing adversaries.

In the next section, we illustrate this technique by designing a complete and sound tracing

adversary for the classical mean estimation problem.

5.2.3. A first application: private mean estimation in the classical setting

Consider the d-dimensional sub-Gaussian distribution family P(σ, d), defined as

P(σ, d) =
{
P
∣∣∣Ex∼P [eλe>k (x−µP )

]
≤ eσ2λ2/2, ∀λ ∈ R, k ∈ [d]

}
,

where µP = EP [x] ∈ Rd is the mean of P , and ek denotes the kth standard basis vector of

Rd.

Following the notation introduced in Section 5.2.1, X = Rd and θ(P ) = µP . Further we

take l(t) = t and ρ(θ,θ′) = ‖θ − θ′‖2, so that our risk function is simply the `2 error. The

minimax risk is then denoted by

inf
M(X)∈Mε,δ

sup
P∈P(σ,d)

E [‖M(X)− µP ‖2] .
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We propose a tracing adversary:

aP (x,M(X)) =

 IN 〈x− x̃,M(X)〉 > σ2
√

8d log(1/δ),

OUT otherwise,

where x̃ is a fresh independent draw from P . The adversary is indeed complete and sound,

as desired:

Lemma 12. If n .
√
d/ log(1/δ), there is a distribution P ∈ P(σ, d), such that

1. P({T R(X,M(X)) = ∅} ∩ {‖M(X)− µP ‖2 . σ
√
d}) ≤ δ,

2. P(A(xi,M(X ′i) = IN)) ≤ δ, where X ′i is an adjacent dataset of X with xi replaced by

x′i ∼ P .

Intuitively, this adversary is constructed as follows. Without privacy constraints, a natural

estimator for µP is the sample mean M(X) = 1
n

∑n
i=1 xi. On one hand, when x does

not belong to X = {xi}ni=1, 〈x − x̃,M(X)〉 is a sum of d independent zero-mean random

variables and we have E[〈x− x̃,M(X)〉] = 0. On the other hand, when x belongs to X, we

will have E[〈x− x̃,M(X)〉] = E[ 1
n‖x‖

2
2] > 0, and aP (x,M(X)) is more likely to output IN

than OUT.

In view of Theorem 11, λ(P, δ) = σ
√
d and ψ(P, δ) =

√
d/ log(1/δ); it follows that

inf
M∈Mε,δ

sup
P∈P(σ,d)

EP [‖M(X)− µP ‖2] = σ
d
√

log(1/δ)

nε
.

Combining with the well-known statistical minimax lower bound, see for example, Lehmann

and Casella (2006), namely

inf
M

sup
P∈P(σ,d)

E [‖M(X)− µP ‖2] & σ

√
d

n
,

we arrive at the minimax lower bound result for differentially private mean estimation.
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Theorem 12. Let Mε,δ denote the collection of all (ε, δ)-differentially private algorithms,

and let X = (x1,x2, · · · ,xn) be an i.i.d. sample drawn from P ∈ P(σ, d). Suppose that

ε = O(1), n−1e−3εn/2 ≤ δ ≤ n−(1+τ) for some τ > 0 and

√
d log(1/δ)

nε = O(1), then

inf
M∈Mε,δ

sup
P∈P(σ,d)

E [‖M(X)− µP ‖2] & σ

(√
d

n
+
d
√

log(1/δ)

nε

)
.

Remark 11. In comparison, applying Barber and Duchi (2014)’s lower bound argument to

our current model yields

inf
M∈Mε,δ

sup
P∈P(σ,d)

E [‖M(X)− µP ‖2] & σ

(√
d

n
+

√
d · (d ∧ log(1/δ))

nε

)
.

Remark 12. The minimax lower bound characterizes the cost of privacy in the mean esti-

mation problem: the cost of privacy dominates the statistical risk when
√
d log(1/δ)/

√
nε &

1.

5.3. Privacy Cost of High-dimensional Mean Estimation

In this section and the subsequent Section 5.4, we consider the high-dimensional setting

where d & n and the population parameters of interest, such as the mean vector µP or the

regression coefficient β, are sparse. In each statistical problem investigated, we present a

minimax risk lower bound with differential privacy constraint, as well as a procedure with

differential privacy guarantee that attains the lower bound up to factor(s) of log n.

5.3.1. Private high-dimensional mean estimation

We first consider the problem of estimating the sparse mean vector µP of a d-dimensional

sub-Gaussian distribution, where d can possibly be much larger than the sample size n. We

denote the parameter space of interest by

P(σ, d, s) =
{
P
∣∣∣EP [eλe>k (x−µP )

]
≤ eσ2λ2/2,∀λ ∈ R, k ∈ [d]; ‖µP ‖0 ≤ s

}
,
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where the sparsity level is controlled by the parameter s.

The tracing adversary for this problem is given by

aP (x,M(X)) =

 IN
∑

j:j∈S(M(X))(xj − x̃j) > σ
√

8s log(1/δ),

OUT otherwise,

where x̃ is an independent draw from P , and

S(M(X)) := {j ∈ [d] : M(X)j is among the top s largest coordinates of M(X)} .

Given M(X) computed from a data set X, the tracing adversary attempts to identify

whether an individual x belongs to X, by calculating the difference of
∑

j xj and
∑

j x̃j

over those coordinates j where M(X) has a large value. If x belongs to X, the former

should be correlated with M(X) and is likely to be larger than the latter.

Formally, the tracing adversary is complete and sound under appropriate sample size con-

straint:

Lemma 13. If n .
√
s/ log(1/δ) log(d/s), there is a distribution P ∈ P(σ, d, s) such that

1. P({T R(X,M(X)) = ∅} ∩ {‖M(X)− µP ‖2 . σ
√
s}) ≤ δ,

2. P(aP (xi,M(X ′i)) = IN) ≤ δ, where X ′i is an adjacent data set of X with xi replaced

by x′i ∼ P .

In conjunction with our general lower bound result Theorem 11, we have

Theorem 13. Let Mε,δ denote the collection of all (ε, δ)-differentially private algorithms,

and let X = (x1,x2, · · · ,xn) be an i.i.d. sample drawn from P ∈ P(σ, d, s). Suppose that

ε = O(1), n−1e−3εn/2 ≤ δ ≤ n−(1+τ) for some τ > 0, and

√
s log(1/δ) log(d/s)

nε = O(1), then

inf
M∈Mε,δ

sup
P∈P(σ,d,s)

E [‖M(X)− µP ‖2] & σ

(√
s log d

n
+
s log(d/s)

√
log(1/δ)

nε

)
.
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The first term is the statistical minimax lower bound of sparse mean estimation (see, for

example, Johnstone (1994)), and the second term is due to the privacy constraint. Com-

paring the two terms shows that, in high-dimensional sparse mean estimation, the cost of

differential privacy is significant when

√
s log(1/δ)/ log d log(d/s)√

nε
& 1.

In the next section, we present a differentially private procedure that attains this conver-

gence rate up to a logarithmic factor.

5.3.2. Rate-optimal procedures

The rate-optimal algorithms in this paper utilize some classical subroutines in the differential

privacy literature, such as the Laplace and Gaussian mechanisms and reporting the noisy

maximum of a vector. Before describing our rate-optimal algorithms in detail, it is helpful to

review some relevant results, which will also serve as the building blocks of the differentially

private linear regression methods in Section 4.

Basic differentially private procedures

It is frequently the case that differential privacy can be attained by adding properly scaled

noises to the output of a non-private algorithm. Among the most prominent examples are

the Laplace and Gaussian mechanisms.

The Laplace and Gaussian mechanisms

As the name suggests, the Laplace and Gaussian mechanisms achieve differential privacy by

perturbing an algorithm with Laplace and Gaussian noises respectively. The scale of such

noises is determined by the sensitivity of the algorithm:
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Definition 2. For any algorithm f mapping a dataset X to Rd, The Lp-sensitivity of f is

∆p(f) = sup
X,X′ adjacent

‖f(X)− f(X ′)‖p.

For algorithms with finite L1-sensitivity, the differential privacy guarantee can be attained

by adding noises sampled from a Laplace distribution.

Lemma 14 (The Laplace mechanism (Dwork et al., 2014a)). For any algorithm f mapping

a dataset to Rd such that ∆1(f) <∞, the Laplace mechanism, given by

M1(X, f, ε) := f(X) + (ξ1, ξ2, · · · , ξd)

where ξ1, ξ2, · · · , ξd is an i.i.d. sample drawn from Laplace(∆1f/ε), achieves (ε, 0)-differential

privacy.

Similarly, adding Gaussian noises to algorithms with finite L2-sensitivity guarantees differ-

ential privacy.

Lemma 15 (The Gaussian mechanism (Dwork et al., 2014a)). For any algorithm f mapping

a dataset to Rd such that ∆2(f) <∞, the Gaussian mechanism, given by

M2(X, f, ε) := f(X) + (ξ1, ξ2, · · · , ξd)

where ξ1, ξ2, · · · , ξk is an i.i.d. sample drawn from N{0, 2(∆2f/ε)
2 log(1.25/δ)}, achieves

(ε, δ)-differential privacy.

An important application of these mechanisms is differentially private selection of the max-

imum/minimum, which also plays a crucial role in our high-dimensional mean estimation

algorithm. Next we review some algorithms for differentially private selection, to provide

some concrete examples and prepare us for stating the main algorithms.
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Differentially private selection

Selecting the maximum (in absolute value) coordinate of f(x) := f(x1, x2, · · · , xn) ∈ Rd is

a straightforward application of the Laplace mechanism, as follows:

Algorithm 1: PrivateMax(f(x), B, ε):

1: Sample ξ1, · · · , ξd
i.i.d.∼ Laplace(2B/ε).

2: For i ∈ [d], compute the noisy version
∣∣fi(x)

∣∣+ ξi.

3: Return imax = arg maxj |fj(x)+ξj | and fimax(x)+w, where w is an independent draw

from Laplace(2B/ε).

Lemma 16 ((Dwork et al., 2018)). If supx,x′adjacent ‖f(x)−f(x′)‖∞ ≤ B, then PrivateMax

(f(x), B, ε) is (ε, 0)-differentially private.

In applications, we are often interested in finding the top-k numbers with k > 1. There

are two methods for this task: an iterative “Peeling” algorithm that runs the PrivateMax

algorithm k times, with appropriately chosen privacy parameters in each iteration.

Algorithm 2: Peeling(f(x), k, B, ε, δ):

1: Set z = f(x).

2: for j = 1 to k do

3: Run PrivateMax

(
z, B, ε

2
√

3k log(1/δ)

)
to obtain (ij , fij (x) + w′j).

4: Remove fij (x) from z.

5: end for

6: Report the k selected pairs.

Lemma 17 ((Dwork et al., 2018)). If supx,x′adjacent ‖f(x) − f(x′)‖∞ ≤ B, then Peeling

(x, k, B, ε, δ) is (ε, δ)-differentially private.

With these differentially private selection subroutine, we are ready to present the high-

dimensional mean estimation algorithm in the next section.
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Differentially-private mean estimation in high dimensions

Let fT (·) denote projection onto the `∞ ball of radius T > 0 in Rd, where T is a tuning

parameter for the truncation level. With suitably chosen T , the following algorithm attains

the minimax lower bound in Theorem 13, up to at most a logarithmic factor in n.

Algorithm 3: Private High-dimensional Mean Estimation

1: Compute µ̂T = 1
n

∑n
i=1 fT (Xi)

2: Find the top ŝ components of µ̂T by running Peeling (µT , ŝ, 2T/n, ε, δ) and set the

remaining components to 0. Denote the resulting vector by µ̂T,ŝ.

3: Return µ̂T,ŝ.

In view of Theorem 13, the theorem below shows that the high-dimensional mean esti-

mation algorithm is rate-optimal up to a factor of
√

log n.

Theorem 14. For X1, X2, · · · , Xn ∼ P ∈ P(σ, d, s) with EPX = µ, if ‖µ‖∞ = O(1) ŝ � s

and ŝ > s, then Algorithm 3 is (ε, δ)-differentially private, and

1. if there exists a constant M <∞ such that P(‖X‖∞ < M) = 1, when T ≥M ,

E‖µ̂T,ŝ − µ‖2 . σ

(√
s log d

n
+
s log d

√
log(1/δ)

nε

)
;

2. otherwise, with the choice of T ≥ Cσ
√

log n for a sufficiently large constant C > 0,

E‖µ̂T,ŝ − µ‖2 . σ

(√
s log d

n
+
s log d

√
log(1/δ) log n

nε

)
.

Remark 13. Duchi et al. (2018) introduced the notion of α-local privacy and shows that

high-dimensional estimation is effectively impossible with α-local privacy constraint. In con-

trast, Theorem 14 shows that sparse mean estimation is still possible with (ε, δ)-differential

privacy constraint.

Remark 14. The role of the truncation parameter T is to control the sensitivity of the

sample mean so that the Laplace/Gaussian mechanisms are applicable. T can be replaced by
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a differentially-private estimator that consistently estimates the sample’s range. Examples

of such an estimator can be found in Lei (2011). This remark is applicable to all truncation

tuning parameters in algorithms that appear in Sections 3 and 4.

Differentially private algorithms in the classical setting

In the classical setting of d � n, the optimal rate of convergence of the mean estimation

problem can be achieved simply by a noisy, truncated sample mean: given an i.i.d. sample

X1, X2, · · · , Xn, the estimator is defined as

µ̂T :=
1

n

n∑
i=1

fT (Xi) +W,

where fT (·) denotes projection onto the L∞ ball of radius T > 0 in Rd, and W is an inde-

pendent draw from Nd

(
0, dT

2 log(1.25/δ)
n2ε2

Id

)
. The theoretical guarantees for this estimator

are summarized in the theorem below.

Theorem 15. For an i.i.d. sample X1, X2, · · · , Xn ∼ P ∈ P(σ, d) with EPX = µ satisfying

‖µ‖∞ = O(1), µ̂T is an (ε, δ)-differentially private procedure, and:

1. if there exists a constant M <∞ such that P(‖X‖∞ < M) = 1, when T ≥M ,

E‖µ̂T − µ‖2 . σ

(√
d

n
+
d
√

log(1/δ)

nε

)
;

2. otherwise, with the choice of T ≥ Cσ
√

log n for a sufficiently large constant C > 0,

E‖µ̂T − µ‖2 . σ

(√
d

n
+
d
√

log(1/δ) log n

nε

)
.

By comparing with Theorem 12, we see that the noisy truncated sample mean achieves the

optimal rate of convergence up to a factor of
√

log n.
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5.4. Privacy Cost of Linear Regression

In this section, we investigate the cost of differential privacy in linear regression problems,

with primary focus on the high-dimensional setting where d & n and the regression coef-

ficient β is assumed to be sparse; the classical, low-dimensional case (d � n) will also be

covered. Through the general lower bound technique described in Section 5.2, we are able

to establish minimax lower bounds that match the minimax rate of our differentially private

procedures up to factor(s) of log n.

5.4.1. Lower bound of high-dimensional linear regression

For high-dimensional sparse linear regression, we consider the following distribution space

PX,Y (σ, d, s)

= {P (x, y) | ‖x‖∞ . 1, ε := y − x>β ∼ Pε ∈ P(σ, 1), ‖β‖0 ≤ s, ‖β‖2 ≤ C},

where the parameter of interest is β = E[x>x]−1E[x>y] ∈ Rd is defined such that Xβ is

the best linear approximation of y, and C is a generic constant. For brevity, we use P to

denote P (x, y).

Let D = {(xi, yi)}ni=1 denote an i.i.d. sample drawn from some P ∈ PX,Y (σ, d, s), we

propose the tracing adversary

aP ((x, y),M(D)) =

 IN
∑

j∈S(M(D)) xj(y − ỹ) > σ
√

2s log(1/δ),

OUT otherwise,

where S(M(D)) = {j : M(D)j is among the top s largest coordinates of M(D)}, and ỹ is

a fresh independent sample with covariates x.

This adversary satisfies the following properties:

Lemma 18. Suppose that ‖M(D) − β‖∞ < σ/2, then when n .
√
s/ log(1/δ) log(d/s),

there is a distribution P ∈ PX,Y (σ, d, s) such that
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1. P({T R(D,M(D)) = ∅} ∩ {‖M(D)− β‖2 . σ
√
s}) ≤ δ,

2. P(aP ((xi, yi),M(D′i)) = IN) . δ, where D′i is an adjacent dataset of D with (xi, yi)

replaced by (x′i, y
′
i) ∼ P .

The proof of this lemma, which appears in the supplementary material, includes a novel

generalization of the fingerprinting lemma (see Tardos (2008), Bun et al. (2014), and Dwork

et al. (2015)) to Gaussian random variables, which may be of independent interest.

We note that the extra assumption in Lemma 18 that ‖M(D)− β‖∞ < σ/2 can be gained

“for free”: when it fails to hold, there would be an automatic lower bound that E‖M(D)−

β‖2 & σ. On the other hand, when ‖M(D)−β‖∞ < σ/2, the general lower bound result in

Theorem 11 is applicable, and we obtain the following lower bound result.

Theorem 16. Let Mε,δ denote the collection of all (ε, δ)-differentially private algorithms,

and suppose the dataset D = {(xi, yi)}ni=1 consists of i.i.d. entries drawn from PX,Y (σ, d, s).

Suppose that ε = O(1), n−1e−3εn/2 ≤ δ ≤ n−(1+τ) for some τ > 0, and

√
s log(1/δ) log(d/s)

nε =

O(1), then

inf
M∈Mε,δ

sup
P∈PX,Y (σ,d,s)

E [‖M(D)− β‖2] & σ

(√
s log d

n
+
s log(d/s)

√
log(1/δ)

nε
∧ 1

)
.

Specifically, the second term in the lower bound is a consequence of Lemma 18 and Theorem

11. The first term is due to the statistical minimax lower bound for high-dimensional linear

regression (see, for instance, Raskutti et al. (2009) and Ye and Zhang (2010)).

5.4.2. Upper bound of high-dimensional linear regression

For high-dimensional sparse linear regression, we propose the following differentially private

LASSO algorithm, which splits the sample of size n into subsamples of size O(log n) and

iterates through the subsamples by a truncated gradient descent with random perturbation.
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Algorithm 4: Differentially Private LASSO

1: Inputs: privacy parameters δ, ε, deign matrix X,response vector y, step size η, spar-

sity tuning parameter ŝ, truncation tuning parameter T and the number of iterations

N0.

2: Randomly split (X,y) into N0 subsets (X(0),y(0)), (X(1),y(1)), · · · , (X(N0−1),y(N0−1))

of size n/N0 each.

3: Initialize the algorithm with an ŝ-sparse vector β̂(0).

4: for t = 0, 1, 2, ..., N0 − 1 do

5: β̂(t+0.5) = β̂(t)−η · 1
n/N0

(X>(t)X(t)β̂
(t)−X>(t)fT (y(t))), where fT (·) denotes projection

onto the `∞ ball of radius T > 0 in Rd.

6: β̂(t+1) = Peeling
(
β̂(t+0.5), ŝ, 4T/(n/N0), ε, δ

)
.

7: end for

8: Output β̂ := β̂(N0).

Theorem 17. Let (x1, y1), (x2, y2), · · · , (xn, yn) be an i.i.d. sample drawn from P (x, y) ∈

PX,Y (σ, d, s). If we have that

• ΣX , the covariance matrix of x, satisfies 0 < 1/Λ < λmin(ΣX) ≤ λmax(ΣX) < Λ for

some constant Λ > 0,

• ‖β̂(0) − β‖2 ≤ κ‖β‖2 for some κ ∈ (0, 1), and

• the tuning parameters satisfy T ≥ Kσ
√

log n for a sufficiently large constant K > 0,

N0 � log n, ŝ � s and for ρ := λmax(ΣX)−λmin(ΣX)
λmax(ΣX)+λmin(ΣX) , it holds that

ŝ ≥ max

{
4(1 + κ)2

(1− κ)2
,

(
4ρ

1− ρ

)2
}
s

then β̂ is (ε, δ)-differentially private, and it holds with high probability that

‖β̂ − β‖2 . σ

(√
s log d log n

n
+
s
√

log(1/δ)

nε
log d · log3/2 n

)
.
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To the best of our knowledge, this is the first differentially private LASSO algorithm with

parameter estimation consistency guarantees. In addition, in view of Theorem 16, we see

that the proposed algorithm achieves the optimal convergence rate up to a logarithm term

log3/2 n.

5.4.3. Linear regression in the classical setting

In the classical linear regression problem, we have i.i.d. observations D = {(xi, yi)}ni=1

drawn from some P that belongs to the distribution space

PX,Y (σ, d) = {P (x, y) | ‖x‖∞ . 1, ε := y − x>β ∼ Pε ∈ P(σ, 1), ‖β‖2 ≤ C},

where the parameter of interest is β = E[x>x]−1E[x>y] ∈ Rd is defined such that Xβ is

the best linear approximation of y, and C is a generic constant.

To apply Theorem 11 to deriving the lower bound for the linear regression model, we

consider the following tracing adversary:

aP ((x, y),M(D)) =

 IN 〈xy − xỹ,M(D)〉 > σ2
√

8d log(1/δ),

OUT otherwise,

where ỹ is a fresh independent draw with the same covariates x as y.

The next lemma summarizes the soundness and completeness properties of the tracing

adversary.

Lemma 19. If n .
√
d/ log(1/δ) and ‖M(D) − β‖∞ ≤ σ/2, there is a distribution P ∈

PX,Y (σ, d), such that

1. P({T R(D,M(D)) = ∅} ∩ {‖M(D)− β‖2 . σ
√
d}) ≤ δ,

2. P(aP ((xi, yi),M(D′i) = IN)) ≤ δ, where D′i is an adjacent dataset of D with (xi, yi)

replaced by (x′i, y
′
i) ∼ P .
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As in the high-dimensional setting, the extra assumption in this lemma that ‖M(D)−β‖∞ <

σ/2 can be gained “for free”.

Our minimax lower bound for private linear regression in the classical setting is presented

in the theorem below:

Theorem 18. Let Mε,δ denote the collection of all (ε, δ)-differentially private algorithms,

and suppose that ε = O(1), n−1e−3εn/2 ≤ δ ≤ n−(1+τ) for some τ > 0 and

√
d log(1/δ)

nε =

O(1), then

inf
M∈Mε,δ

sup
P∈PX,Y (σ,d)

E [‖M(D)− β‖2] & σ

(√
d

n
+
d
√

log(1/δ)

nε
∧ 1

)
.

Similar to the other lower bound results, the two terms in this minimax lower bound cor-

respond to the statistical risk and the risk due to privacy constraint respectively.

Differentially private algorithms in the classical setting

In the classical setting of d � n, the optimal rate of convergence for differentially private

linear regression can be directly achieved by perturbing the OLS estimator with suitably

chosen noises.

Let β̂ = β̂(X,y) := (X>X)−1X>y denote the OLS estimator, we consider the noisy esti-

mator

β̂T := β̂(X, fT (y)) +W,

where fT (·) denotes projection onto the `∞ ball of radius T > 0 in Rd, and W is an

independent draw from Nd

(
0, dT

2 log(1.25/δ)
n2ε2

Id

)
.

Theorem 19. Let (x1, y1), (x2, y2), · · · , (xn, yn) be an i.i.d. sample drawn from P (x, y) ∈

PX,Y (σ, d). If we have that

• ΣX , the covariance matrix of x, satisfies 0 < 1/Λ < λmin(ΣX) ≤ λmax(ΣX) < Λ for

some constant Λ > 0, and
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• T ≥ Kσ
√

log n for a sufficiently large constant K > 0,

then with high probability, β̂T is (ε, δ)-differentially private, and

E‖β̂T − β‖2 . σ

(√
d

n
+
d
√

log(1/δ) log n

nε

)
.

This risk upper bound shows that the lower bound in Theorem 18 is optimal up to a factor

of
√

log n.

5.5. Simulation Studies

The proposed private algorithms can be implemented efficiently. In this section, we perform

simulation studies of these algorithms to demonstrate the cost of privacy in different statis-

tical estimation schemes, as well as the merits of the proposed algorithms. More specifically,

we study the following four different problems.

Conventional mean estimation The data x1, ...,xn is an i.i.d. sample drawn from

Nd(µ, σ
2Id), where µ1 = ... = µd = 1 and σ = 0.5.

High-dimensional mean estimation The data x1, ...,xn is an i.i.d. sample drawn from

Nd(µ, σ
2Id), where σ = 0.5 and µ is an s-sparse vector with the first s entries being

1 and the rest being 0.

Conventional linear regression The data (x1, y1), ..., (xn, yn) are generated from the

model y = Xβ + ε. In the simulation, the entries of design matrix are independently

generated from Bernoulli(0.15), and ε1, ...εn is an i.i.d sample from N(0, σ2) with

σ = 0.5. The coefficients β is set to β1 = ... = βd = 1.

High-dimensional linear regression The data (x1, y1), ..., (xn, yn) are generated from

the model y = Xβ + ε. In the simulation, we set σ = 0.5 and the design matrix is

generated the same way as in the conventional setting. The coefficients β is set to be

s-sparse with β1 = ... = βs = 1, and the rest are set to 0.
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In all simulations, the privacy parameters (ε, δ) take values among (0.5, 0.5), (0.5, 0.1),

(0.5, 0.01), (0.2, 0.01), and (0.2, 0.001). In the low-dimensional problems, sample size and

dimension (n, d) take values among (10000, 50), (50000, 50), (10000, 100) to (50000, 100);

in the high-dimensional problems, sample size, dimension and sparsity (n, d, s) take values

among (2000, 2000, 20), (4000, 2000, 20), (2000, 4000, 20), (4000, 4000, 20), (2000, 2000, 30),

(4000, 2000, 30), (2000, 4000, 30), and (4000, 4000, 30).

In these simulation studies, we also compare the performance of (ε, δ)-differentially private

methods with the optimal mechanisms under α-local differential privacy proposed in Duchi

et al. (2018), where we set the local privacy parameter to be α = 10, corresponding to a

weak local privacy constraint. As there is no high-dimensional linear regression algorithms

with α-local differential privacy in Duchi et al. (2018), we compare our algorithm with the

locally private (low-dimensoinal) linear regression algorithm proposed in Duchi et al. (2018).

The locally private linear regression algorithm is implemented with the knowledge of β’s

support, which is not usually available in applications.

Tables 1-4 summarize the estimation errors with respect to `2 error (‖µ̂ − µ‖2 in mean

estimation problems and ‖β̂ − β‖2 in regression problems) for various methods. In the

tables, NP, DP, LDP stand for the non-private algorithms, differentially private algorithms,

and locally differentially private algorithms respectively. Each estimation error reported

is the average over 100 replications of a given method; the standard error of each case is

reported in parentheses. Our proposed differentially private algorithms outperform their

locally private counterparts in Duchi et al. (2018), especially in high-dimensional problems.

This is expected as Duchi et al. (2018) shows that it is impossible to construct consistent

estimators in the high-dimensional problems with α-local differential privacy constraint.
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Table 16: Conventional Mean Estimation

NP DP LDP

(n, d) (.5, .5) (.5, .1) (.5, .01) (.2, .01) (.2, .001) α = 10

(10000,50) .014(.001) .050(.007) .084(.011) .115(.012) .311(.043) .367(.058) 5.435(.507)

(50000,50) .006(.001) .011(.001) .018(.002) .025(.004) .063(.010) .074(.010) 4.260(.213)

(10000,100) .020(.001) .095(.001) .168(.020) .240(.026) .591(.073) .741(.088) 9.523(.645)

(50000,100) .009(.001) .020(.002) .035(.003) .050(.005) .121(.013) .150(.015) 5.411(.201)

Table 17: High-dimensional Mean Estimation

NP DP LDP

(n, d, s) (.5, .5) (.5, .1) (.5, .01) (.2, .01) (.2, .001) α = 10

(2000,2000,20) .154(.010) .179(.024) .277(.059) .380(.074) .882(.162) 1.173(.271) 309.999(1.504)

(4000,2000,20) .110(.005) .121(.015) .155(.025) .172(.027) .452(.100) .549(.102) 218.269(1.805)

(2000,4000,20) .162(.009) .183(.024) .276(.044) .361(.085) .860(.164) 1.537(.412) 613.808(4.187)

(4000,4000,20) .117(.006) .124(.017) .143(.023) .191(.035) .459(.083) .524(.091) 432.422(3.070)

(2000,2000,30) .154(.007) .206(.029) .347(.049) .464(.085) 1.195(.204) 2.097(.405) 311.486(2.556)

(4000,2000,30) .110(.006) .135(.020) .178(.027) .238(.034) .578(.101) .749(.180) 220.502(1.761)

(2000,4000,30) .166(.008) .227(.030) .361(.074) .466(.092) 1.388(.302) 2.931(.496) 613.703(4.272)

(4000,4000,30) .117(.007) .136(.199) .182(.0259) .245(.043) .600(.107) .731(.122) 439.823(1.533)

Table 18: Conventional Linear Regression

NP DP LDP

(n, d) (.5, .5) (.5, .1) (.5,.01) (.2, .01) (.2, .001) α = 10

(10000,50) .061(.014) .111(.017) .179(.028) .233(.042) .624(.108) .747(.109) 85.394(5.441)

(50000,50) .030(.006) .032(.005) .044(.006) .056(.008) .120(.020) .148(.018) 58.412(5.511)

(10000,100) .087(.012) .206(.022) .350(.039) .499(.045) 1.200(.126) 1.508(.133) 297.885(13.325)

(50000,100) .041(.006) .055(.006) .079(.008) .102(.010) .245(.026) .294(.028) 250.424(17.333)
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Table 19: High-dimensional Linear Regression

NP DP LDP

(n, d, s) (.5, .5) (.5, .1) (.5, .01) (.2, .01) (.2, .001) α = 10

(2000,2000,20) .032(.006) .033(.004) .052(.006) .076(.010) .176(.023) .233(.024) 19.278(1.518)

(4000,2000,20) .022(.002) .022(.003) .035(.006) .043(.007) .099(.013) .110(.023) 18.730(1.741)

(2000,4000,20) .033(.005) .034(.005) .052(.005) .080(.011) .199(.025) .206(.190) 18.899(2.239)

(4000,4000,20) .022(.003) .023(.004) .034(.004) .038(.005) .096(.011) .118(.013) 18.797(2.098)

(2000,2000,30) .037(.006) .037(.007) .058(.006) .104(.012) .239(.038) .283(.032) 38.918(3.224)

(4000,2000,30) .026(.004) .027(.004) .035(.004) .053(.005) .118(.016) .130(.021) 34.552(1.982)

(2000,4000,30) .039(.004) .040(.005) .061(.006) .104(.014) .238(.038) .308(.028) 36.124(3.361)

(4000,4000,30) .027(.003) .028(.003) .035(.005) .055(.005) .116(.023) .147(.018) 32.970(1.947)
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Figure 3: Errors (in log10-scale) plotted against sample size n, with (0.5, 10/n1.1)-differentially
privacy guarantee. Top-left: conventional mean estimation with sample size ranging from 1000 to
1000×20; top-right: conventional linear regression with sample size ranging from 1000 to 1000×20;
bottom-left: high-dimensional mean estimation with sample size ranging from 200 to 200 × 20;
bottom-right: high-dimensional linear regression with sample size ranging from 200 to 200×20. The
local differentially private algorithms (LDP), differentially private (DP) algorithms and non-private
(NP) algorithms are colored in green, red and blue respectively.

As seen in Figure 1 (error in log10-scale), the gap in estimation errors between the non-

private algorithms and differentially private algorithms diminishes as the sample size n

increases.

5.6. Data Analysis

5.6.1. SNP array of adults with schizophrenia

We analyze the SNP array data of adults with schizophrenia, collected by Lowther et al.

(2017), to illustrate the performance of our high-dimensional sparse mean estimator. In the
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dataset, there are 387 adults with schizophrenia, 241 of which are labeled as “average IQ”

and 146 of which are labeled as “low IQ”. The SNP array is obtained by genotyping the

subjects with the Affymetrix Genome-Wide Human SNP 6.0 platform. For our analysis, we

focus on the 2000 SNPs with the highest minor allele frequencies (MAFs); the full dataset

is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106818.

Privacy-perserving data analysis is very much relevant for this dataset and genetic data

in general, because as Homer et al. (2008) demonstrates, an adversary can infer the ab-

sence/presence of an individual ’s genetic data in a large dataset by cross-referencing sum-

mary statistics, such as MAFs, from multiple genetic datasets. As MAFs can be easily

calculated from the mean of an SNP array, differentially-private estimators of the mean can

effectively allow reporting the MAFs without compromising any individual’s privacy.

The data set takes the form of a 387× 2000 matrix. The entries of the matrix take values

0, 1 or 2, representing the number of minor allele(s) at each SNP, and therefore the MAF

of each SNP location in this sample can be obtained by computing the mean of the rows

in this matrix. Sparsity is introduced by considering the difference in MAFs of the two IQ

groups: the MAFs of the two groups are likely to differ at a small number of SNP locations

among the 2000 SNPs considered.

For m ranging from 10 to 120, we subsample m subjects from each of the two IQ groups, say

{x11,x12, · · ·x1m} and {x21,x22, · · ·x2m}, and apply our sparse mean estimator to {x11 −

x21,x12−x22, · · ·x1m−x2m} with ŝ = 20 and privacy parameters (ε, δ) = (0.2, n−1.1). The

error of this estimator is then calculated by comparing with the mean of the entire sample.

This procedure is repeated 100 times to obtain Figure 4, which displays the bootstrap

estimate of E[‖µ̂ − µ‖2]/d as m increases from 10 to 120. The performance of the sparse

mean estimator in Duchi et al. (2018), with privacy parameter α = 10, is also plotted for

comparison.
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Figure 4: The bootstrap estimate of E[‖µ̂ − µ‖2]/d for the differentially private sparse
mean estimator, compared with its locally differentially private counterpart, as sample size
increases from 10 to 120.

5.6.2. Housing prices in California

For the linear regression problem, we analyze a housing price dataset with economic and

demographic covariates, constructed by Pace and Barry (1997) and available for download at

http://lib.stat.cmu.edu/datasets/houses.zip. In this dataset, each subject is a block

group in California in the 1990 Census; there are 20640 block groups in this dataset. The

response variable is the median house value in the block group; the covariates include the

median income, median age, total population, number of households, and the total number

of rooms of all houses in the block group. In general, summary statistics such as mean

or median do not have any differential privacy guarantees, so the absence of information

on individual households in the dataset does not preclude an adversary from extracting

sensitive individual information from the summary statistics. Privacy-preserving methods

are still desirable in this case.

For m ranging from 100 to 20600, we subsample m subjects from the dataset to compute

the differentially private OLS estimate, with privacy parameters (ε, δ) = (0.2, n−1.1). The

error of this estimator is then calculated by comparing with the non-private OLS estimator

computed using the entire sample. This procedure is repeated 100 times to obtain Figure

5, which displays the trend of the bootstrap estimate of E[‖β̂−β‖2]/d as m increases from
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100 to 20600. The performance of the linear regression method in Duchi et al. (2018), with

privacy parameter α = 10, is also plotted for comparison.

Figure 5: The bootstrap estimate of E[‖β̂ − β‖2]/d for the differentially private OLS esti-
mator, compared with its locally differentially private counterpart, as sample size increases
from 100 to 20600.

5.7. Discussion

In summary, this paper characterizes the tradeoff between statistical accuracy and privacy

guarantees, by providing information-theoretic lower bounds for estimation with differential

privacy constraint and differentially private algorithms that has matching upper bounds.

For the lower bounds, as standard packing arguments fail to establish sharp results under

privacy constraints, we have developed a novel lower bound technique based on tracing ad-

versary. The utility of the new technique is illustrated by establishing minimax lower bounds

for differentially private mean estimation and linear regression, in both low-dimensional and

high-dimensional settings. We have also proposed computationally efficient algorithms with

matching upper bounds up to logarithmic factors.

This line of work can be extended to designing rate-optimal algorithms with (ε, δ)-differential

privacy guarantee for a greater variety of statistical problems. For instance, the results in

the current paper are applicable to estimation of moment-based statistics, such as mean

and covariance matrices estimation. It would also be interesting to generalize the results
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further to (high-dimensional) empirical risk minimization, (high-dimensional) classification,

and nonparametric estimation such as density estimation and nonparametric regression. We

are also interested in studying the statistical cost of other notions of privacy, such as con-

centrated differential privacy (Dwork and Rothblum, 2016) and Renyi differential privacy

(Mironov, 2017). These notions of privacy have found many applications such as stochastic

gradient Langevian dynamics and stochastic Monte Carlo sampling (Wang et al., 2015).

In addition, as we deepen our understanding of statistical estimation problems with privacy

constraints, the next goal should ideally be uncertainty quantification, i.e. statistical infer-

ence, with privacy constraints, which is largely unexplored in the statistics literature. We

hope to investigate the rate-optimal length of a confidence interval, and the optimal power

in hypothesis testing with the constraint of (ε, δ)-differential privacy.

5.8. Proofs

In this section, we prove the main results, Theorem 11, the general lower bound argument,

and Theorem 17, the minimax risk upper bound of the private high-dimensional linear

regression. For reasons of space, the proofs of other results and technical lemmas are

provided in the supplementary material (Cai et al., 2019c).

5.8.1. Proof of Theorem 11

In this section, we prove Theorem 11, the general approach to obtain lower bound with

privacy constraint. The applications of Theorem 11 to different models to obtain lower

bounds are discussed in the supplementary material (Cai et al., 2019c).

The proof of Theorem 11 consists of three steps, as follows.
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Step 1: A preliminary lower bound

For every (ε, δ)-differentially private M , the tracing adversary aP (·,M(X)) that post-

processes M is (ε, δ)-differentially private as well. It follows that for every i ∈ [n],

P (aP (xi,M(X)) = IN) ≤ eε · P
(
aP (xi,M(X ′i)) = IN

)
+ δ ≤ (eε + 1) δ.

Then for T R(X,M(X)) := {i ∈ [n] : aP (xi,M(X)) = IN}, the union bound leads to

P (T R(X,M(X)) 6= ∅) ≤
∑
i∈[n]

P(aP (xi,M(X)) = IN) ≤ n (eε + 1) δ.

This inequality and the completeness property together imply that

P(ρ(M(X),θ(P )) . λ(P, δ))

≤ P({T R(X,M(X)) = ∅} ∩ {ρ(M(X),θ(P )) . λ(P, δ)})

+ P(T R(X,M(X)) 6= ∅)

≤ δ + n (eε + 1) δ.

We have δ < n−(1+τ) by assumption, so P(ρ(M(X),θ(P )) . λ(P, δ)) ≤ δ + n (eε + 1) δ is

bounded away from 1. Markov’s inequality and the monotonicity of l immediately yield a

preliminary lower bound for n . ψ(P, δ):

E[l(ρ(M(X),θ(P ))] & l(λ(P, δ)).

Step 2: An improvement by group privacy

In this step, we show that the preliminary lower bound found in Step 1 is valid for n .

ψ(P, δ) log(1/δ)/ε.

Consider the following construction: let k = C log( 1
nδ )/ε and assume that k divides n
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without the loss of generality. Since 1
ne
−3εn/2 ≤ δ < n−(1+τ), we have (Cτ/ε) log n < k ≤ n.

The value of C is to be specified later.

We first draw an i.i.d. sample of size n/k, denoted by X̃ = {x̃1, x̃2, · · · , x̃n/k}, from P ,

then sample with replacement from X̃ for n times to obtain X = {x1,x2, · · · ,xn}. For any

M ∈Mε,δ, we define Mk(X̃) ≡M(X). Because M is (ε, δ)-differentially private, Mk is also

differentially private, thanks to the following group privacy lemma:

Lemma 20 (group privacy, Steinke and Ullman (2017)). For every m ≥ 1, if M is (ε, δ)-

differentially private, then for every pair of datasets X = {xk}k and Z = {zk}k satisfying∑
k 1(xi 6= zi) ≤ m, and every event S,

PM,X(S) ≤ eεmPM,Z(S) +
eεm − 1

e− 1
· δ.

The group privacy lemma means that, to characterize the privacy parameters of Mk, it

suffices to upper-bound the number of changes in X incurred by replacing one element of

X̃: let mi denote the number of times that x̃i appears in a sample of size n drawn with

replacement from X̃, then our quantity of interest here is simply maxi∈[n]mi. We shall an-

alyze maxi∈[n]mi under two separate scenarios: (1). (1 + τ) log n ≤ log
(

1
δ

)
≤ (1 + 2τ) log n

for some τ > 0, and (2). log
(

1
δ

)
� (1 + τ) log n for all τ > 0.

(1). (1 + τ) log n ≤ log
(

1
δ

)
≤ (1 + 2τ) log n: under this setting, we have k = C log( 1

nδ )/ε �

(Cτ/ε) log n. The analysis makes use of a result from Raab and Steger (1998), stated below:

Lemma 21 (Raab and Steger (1998)). If (x1, x2, · · · , xd) follows a uniform multinomial(`)

distribution, and `
d log d � c for some constant c, then for every ζ > 0,

P
(

max
i∈[d]

xi > (rc + ζ) log d

)
= o(1),

where rc is the unique root of 1 + x(log c− log x+ 1)− c = 0 that is strictly greater than c.
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We apply the lemma to obtain that, for any ζ > 0,

P(max
i
mi > (r + ζ) log n) = o(1),

where r is the unique root of 1 +x(log(Cτ/ε)− log x+ 1)− (Cτ/ε) = 0 that is greater than

Cτ/ε. To see the existence of such a root, note that fC,τ,ε(x) := 1 + x(log(Cτ/ε)− log x+

1)− (Cτ/ε) is strictly concave and achieves the global maximum value of 1 at x = Cτ/ε.

It follows from Lemma 20 that, with high probability, Mk is an (ε(r+ζ) log n, δeε(r+ζ) logn)-

differentially private algorithm. Then we repeat the lower bound argument in Step 1, the

key ingredient of which is showing that P
(
T R(X̃,Mk(X̃)) 6= ∅

)
is bounded away from 0.

First, for every i ∈ [n/k],

P
(
aP (x̃i,Mk(X̃)) = IN

)
≤ eε(r+ζ) lognP

(
aP (x̃i,Mk(X̃

′
i)) = IN

)
+ δeε(r+ζ) logn

≤ 2δeε(r+ζ) logn = 2n−(1+τ)+ε(r+ζ).

By the union bound,

P
(
T R(X̃,Mk(X̃)) 6= ∅

)
≤
∑

i∈[n/k]

P
(
AP (x̃i,Mk(X̃)) = IN

)
≤ 2n−τ+ε(r+ζ).

We claim that this probability is always bounded away from 1, because εr < τ with ap-

propriately chosen C: since fC,τ,ε(τ/ε) = (τ/ε)(1 + logC − C) + 1 and ε = O(1), for every

τ > 0 there is a sufficiently small C > 0 such that fC,τ,ε(τ/ε) < 0. Since fC,τ,ε(Cτ/ε) = 1

is the global maximum, we have r < τ/ε, or equivalently εr < τ , as desired.

(2). log
(

1
δ

)
� (1 + τ) log n: under this setting, we have k = C log( 1

nδ )/ε� log n.
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Each mi is a sum of n independent Bernoulli(k/n) random variables. We apply Chernoff

inequality: since Emi = k, we have

P(mi ≥ 3k/2) ≤ exp (−k/12) .

The union bound yields

P(maxmi > 3k/2) ≤
∑

i∈[n/k]

P(mi ≥ 3k/2) ≤ n exp(−k/12) = o(1),

since k � log n.

By Lemma 20, Mk is a
(
3εk/2, δe3εk/2

)
-differentially private algorithm with high probabil-

ity: for every i ∈ [n/k],

P
(
aP (x̃i,Mk(X̃)) = IN

)
≤ e3εk/2P

(
aP (x̃i,Mk(X̃

′
i)) = IN

)
+ δe3εk/2

≤ 2δe3εk/2.

It follows that

P
(
T R(X̃,Mk(X̃)) 6= ∅

)
≤
∑

i∈[n/k]

P
(
aP (x̃i,Mk(X̃)) = IN

)
≤ 2nδe3εk/2.

Choosing k < 2
3 log( 1

2nδ )/ε guarantees that the probability is bounded away from 1.

To summarize, in both settings of δ, we have P
(
T R(X̃,Mk(X̃)) 6= ∅

)
bounded away from

1. A similar argument via Markov’s inequality as in Step 1 shows, when n/k . ψ(P, δ),

equivalently n . kψ(P, δ) � ψ(P, δ) log(1/δ)/ε, we have

P(ρ(Mk(X̃),θ(P )) . λ(P, δ))

≤ P({T R(X̃,Mk(X̃)) = ∅} ∩ {ρ(Mk(X̃),θ(P )) . λ(P, δ)})

+ P(T R(X̃,Mk(X̃)) 6= ∅) < 1.
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Since Mk(X̃) = M(X) by construction, we have extended the range over which the lower

bound of E[l(ρ(M(X),θ(P ))] ≥ l(λ(P, δ)) is valid by an extra factor of log(1/δ)/ε.

Step 3: Establishing the lower bound for large n

If n & ψ(P, δ) log(1/δ)/ε, we can choose 0 < α < 1 such that nα � ψ(P, δ) log(1/δ)/ε.

Consider x1,x2, · · · ,xn independently drawn from the mixture distribution P̃ = αPθ̃ +

(1 − α)P0 ∈ P, which is assumed to satisfy θ(P̃ ) = θ(αPθ̃ + (1 − α)P0) = αθ̃, by our

regularity conditions on P and θ.

We then claim that with high probability,
∑n

i=1 1(θ(xi) = θ̃)) � nα: by Chernoff inequality

P

(∣∣∣∣∣
n∑
i=1

1(θ(xi) = θ̃))− nα

∣∣∣∣∣ > nα

2

)
≤ 2 exp(−nα/10) = o(1).

Let A = {i ∈ [n] : θ(xi) = θ̃}; for every M(X) ≡ M(x1, · · · ,xn), we define M̃(XA) =

1
αEX[n]\AM(X).

As ρ is induced by a norm, it must be convex in its first argument: for every λ ∈ [0, 1],

ρ(λx+ (1− λ)y, a) = ‖λx+ (1− λ)y − a‖

≤ λ‖x− a‖+ (1− λ)‖y − a‖

= λρ(x, a) + (1− λ)ρ(y, a).

By convexity, Jensen’s inequality implies that

E[ρ(M(X),θ(P̃ )] ≥ EXA [ρ(EX[n]/A
M(X), αθ̃)] = EXA [ρ(αM̃(XA), αθ̃)]

& αλ(P, δ).

The last inequality follows from the lower bound developed in the previous steps, since
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card(A) = Θ(nα) . ψ(P, δ) log(1/δ)/ε. Because nα � ψ(P, δ) log(1/δ)/ε, we have

E[ρ(M(X),θ(P̃ ))] & αλ(P, δ) � λ(P, δ)ψ(P, δ) log(1/δ)

nε
.

5.8.2. Proof of Theorem 17

Proof. First, we introduce some useful notation: for a vector v ∈ Rk and a set S ⊆ [k],

let trunc(v,S) denote the vector obtained by setting vi = 0 for i 6∈ S. We also denote

n/N0 ≡ n0 for brevity.

Privacy Guarantee: Because of sample splitting, for (x, y) ∈ (X(t),y(t)) for some 0 ≤

t ≤ N0− 1, it suffices to prove the privacy guarantee for the t-th iteration of the algorithm:

any iteration prior to the t-th does not depend on (x, y), while any iteration after the t-th

is differentially private by post-processing.

At the t-th iteration, the algorithm first updates the non-sparse estimate of β:

β̂(t+0.5) = β̂(t) − η · 1

n0
(X>(t)fT (X(t)β̂

(t))−X>(t)fT (y(t)))

We observe that β̂(t) does not depend on (X(t),y(t)), so the Peeling step applied to β̂(t+0.5)

would be (ε, δ)-differentially private if it can be shown that: for every (X̃(t), ỹ(t)) obtained

by replacing one individual in (X(t),y(t)), we have

∥∥∥(X>(t)fT (X(t)β̂
(t))−X>(t)fT (y(t)))− (X̃>(t)fT (X̃(t)β̂

(t))− X̃>(t)fT (ỹ(t)))
∥∥∥
∞

. T.

This fact is straightforward to show thanks to the `∞ truncations applied to X(t)β̂
(t) and

y(t). Without the loss of generality, assume that (X̃(t), ỹ(t)) and (X(t),y(t)) differ by (x, y)

and (x̃, ỹ), we calculate:

‖(fT (y)− fT (x>β))x− (fT (ỹ)− fT (x̃>β))x̃‖∞ ≤ 2T (‖x‖∞ + ‖x̃‖∞) . T.
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Then the privacy guarantee is proved by Lemma 17.

Statistical Accuracy : We define

β̄(t+0.5) = β̂(t) − η ·
(
EX,y

[
1

n0
X>(t)X(t)β̂

(t)

]
− EX,y

[
1

n0
X>(t)y(t)

])
,

β̂(t+0.5) = β̂(t) − η · 1

n0

(
X>(t)fT (X(t)β̂

(t))−X>(t)fT (y(t))
)
,

β̄(t+1) = trunc(β̄(t+0.5), Ŝ(t+0.5)),

where Ŝ(t+0.5) is the index set selected by applying Peeling to β̂(t+0.5). Let β∗ := Ex,y[x>x]−1Ex,y[x>y]

be the true parameter. Throughout our calculations below, we treat β̂(t) as a deterministic

quantity, because it does not depend on (X(t),y(t)) by the design of our algorithm.

We have

‖β̂(t+1) − β∗‖2 ≤ ‖β̂(t+1) − β̄(t+1)‖2 + ‖β̄(t+1) − β∗‖2.

We shall provide upper bounds for the two terms on the right hand side separately.

For ‖β̂(t+1)−β̄(t+1)‖2, letW denote the vector of Laplace noises of |Ŝ(t+0.5)| = ŝ dimensions

that is generated when the Peeling algorithm outputs the noisy top ŝ coordinates of β̂(t+0.5),

we have

E‖β̂(t+1) − β̄(t+1)‖2

≤ E‖trunc(β̂(t+0.5), Ŝ(t+0.5))− trunc(β̄(t+0.5), Ŝ(t+0.5))‖2 + ‖W ‖2

.
√
ŝE‖β̂(t+0.5) − β̄(t+0.5)‖∞ +

√
ŝE‖W ‖∞

.
√
ŝE‖β̂(t+0.5) − β̄(t+0.5)‖∞ +

√
ŝ · T
n0
·

(
ε√

ŝ log(1/δ)

)−1

· log d

.
√
ŝE‖β̂(t+0.5) − β̄(t+0.5)‖∞ +

Ts
√

log(1/δ)

n0ε
log d.

E‖β̂(t+0.5) − β̄(t+0.5)‖∞ is controlled by the following lemma.
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Lemma 22. Under the same conditions as

E‖β̂(t+0.5) − β̄(t+0.5)‖∞ . σ

√
log d

n0
, (5.1)

Lemma 22 implies that

E‖β̂(t+1) − β̄(t+1)‖2 . σ

√
s log d

n0
+
T
√
s log(1/δ)

n0ε
log d. (5.2)

The next step is bounding ‖β̄(t+1) − β∗‖2. We begin with introducing constants µ =

2λmax(ΣX), ν = 2λmin(ΣX), such that:

ν/2 · ‖β1 − β2‖2 ≤ EX,y
[
(β1 − β2)>

1

n
X>X(β1 − β2)

]
≤ µ/2 · ‖β1 − β2‖2

By invoking standard optimization results for minimizing strongly convex and smooth ob-

jective functions, e.g., in Nesterov (2004), for stepsize η = 2/(ν + µ),

‖β̄(t+0.5) − β∗‖2 ≤ (
µ− ν
µ+ ν

) · ‖β̂(t) − β∗‖2. (5.3)

Then we use the Lemma 5.1 from Wang et al. (2014).

Lemma 23. Suppose that we have

‖β̄(t+0.5) − β∗‖2 ≤ κ · ‖β∗‖2,

for some κ ∈ (0, 1). Assuming that we have

ŝ ≥ 4(1 + κ)2

(1− κ)2
s, and

√
ŝ‖β̂(t+0.5) − β̄(t+0.5)‖∞ ≤

(1− κ)2

2(1 + κ)
· ‖β∗‖2,
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then it holds that

‖β̄(t+1) − β∗‖2 ≤
C
√
s√

1− κ
‖β̂(t+0.5) − β̄(t+0.5)‖∞ + (1 + 4

√
s/ŝ)1/2 · ‖β̄(t+0.5) − β∗‖2.

The lemma enables us to establish the following result:

Lemma 24. For t = −1, 0, 1, 2, ...n0 − 1 and ρ := µ−ν
µ+ν , it holds with high probability that

‖β̂(t+1) − β∗‖2 ≤ κ‖β∗‖2,

‖β̄(t+1) − β∗‖2 ≤ ρt/2‖β̂(0) − β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)
. (5.4)

Finally, with t � log n (namely n0 � n/ log n), T � σ
√

log n, (5.2) and (5.4) together imply

the desired upper bound.

Proof of Lemma 22

Proof.

E‖β̂(t+0.5) − β̄(t+0.5)‖∞

=
1

n0
E
∥∥∥(EX,y [X>(t)X(t)β̂

(t) −X>(t)y(t)

])
−
(
X>(t)fT (X(t)β̂

(t))−X>(t)fT (y(t))
)∥∥∥
∞

≤ E
∥∥∥∥(EX,y [ 1

n0
X>(t)X(t)β̂

(t) − 1

n0
X>(t)y(t)

])
− 1

n0

(
X>(t)X(t)β̂

(t) −X>(t)y(t)

)∥∥∥∥
∞

+ E
∥∥∥∥ 1

n0

(
X>(t)X(t)β̂

(t) −X>(t)y(t)

)
− 1

n0

(
X>(t)fT (X(t)β̂

(t))−X>(t)fT (y(t))
)∥∥∥∥
∞
.
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The first term is at most the order of σ
√

log d
n0

, as follows:

E
∥∥∥∥(EX,y [ 1

n0
X>(t)X(t)β̂

(t) − 1

n0
X>(t)y(t)

])
− 1

n0

(
X>(t)X(t)β̂

(t) −X>(t)y(t)

)∥∥∥∥
∞

≤ E
∥∥∥∥ 1

nT
X>(t)y(t) − EX,y

[
1

n0
X>(t)y(t)

]∥∥∥∥
∞

+ E
∥∥∥∥EX,y [ 1

n0
(X>(t)X(t))β̂

(t)

]
− 1

n0
(X>(t)X(t))β̂

(t)

∥∥∥∥
∞

≤ E
∥∥∥∥ 1

n0
X>(t)(X(t)β

∗ + ε)− EX,y
[

1

n0
X>(t)(X(t)β

∗ + ε)

]∥∥∥∥
∞

+ E
∥∥∥∥EX,y [ 1

n0
(X>(t)X(t))β̂

(t)

]
− 1

n0
(X>(t)X(t))β̂

(t)

∥∥∥∥
∞

≤ E
∥∥∥∥EX,y [ 1

n0
(X>(t)X(t))β̂

(t)

]
− 1

n0
(X>(t)X(t))β̂

(t)

∥∥∥∥
∞

+ E
∥∥∥∥( 1

n0
X>(t)X(t) − E

[
1

n0
X>(t)X(t)

])
β∗
∥∥∥∥
∞

+ E
∥∥∥∥ 1

n0
X>(t)ε− EX,y

[
1

n0
X>(t)ε

]∥∥∥∥
∞
.

For the first two terms, we note that for a fixed vector a ∈ Rd and X consisting of sub-

Gaussian entries, by the standard Bernstein-type inequality for sub-exponential random

variables, we have

E
∥∥∥∥ΣXa−

1

n
(X>X)a

∥∥∥∥
∞
≤ E

(
max
j

1

n

n∑
i=1

zijz
>
i a

)
. σ

√
log d

n
,

where zij denotes the centered version of xij . Similarly, by our assumption that ε := y −

x>β∗ is subgaussian, the same bound holds for the third term E
∥∥∥ 1
n0
X>(t)ε− EX,y

[
1
n0
X>(t)ε

]∥∥∥
∞

as well. So we obtain

1

n0
E
∥∥∥(EX,y [X>(t)X(t)β̂

(t) −X>(t)y(t)

])
−
(
X>(t)X(t)β̂

(t) −X>(t)y(t)

)∥∥∥
∞

. σ

√
log d

n0
.
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Finally, it remains to bound

E
∥∥∥∥ 1

n0

(
X>(t)X(t)β̂

(t) −X>(t)y(t)

)
− 1

n0

(
X>(t)fT (X(t)β̂

(t))−X>(t)fT (y(t))
)∥∥∥∥
∞

≤ 1

n0
E‖X>(t)(X(t)β̂

(t) − fT (X(t)β̂
(t)))‖∞ +

1

n0
E‖X>(t)(y(t) − fT (y(t)))‖∞

In general, for an n0-dimensional sub-Gaussian(σ) random vector z satisfying ‖Ez‖∞ =

O(1), since |xij | ≤ 1, we have

E‖X>(t)(z − fT (z))‖∞ ≤
n0∑
i=1

E [|zi|1(|zi > T )] .

For each i ∈ [n0], since ‖Ez‖∞ = O(1), for sufficiently large constant K,

P(|zi| > t)dt ≤ Ke−t2/(2σ2).

Hence,

E [zi1 (|zi| > T )] ≤
∫ ∞
T

P(|zi| > t)dt ≤
∫ ∞
T

Ke−t
2/σ2

dt.

At last, by a standard tail estimate of the Gaussian integral, with T > σ
√

2 log n,

∫ ∞
T

Ke−t
2/σ2

dt . e−T
2/σ2

.
1

n0
.

It then follows that

1

n0
E‖X>(t)(z − fT (z))‖∞ ≤

1

n0

n0∑
i=1

E [|zi|1(|zi > T )] .
1

n0
,

which is negligible compared to the σ
√

log d
n0

terms above.

172



Proof of Lemma 24

Proof. In this proof, C refers to a numerical constant that may take different values in

different contexts.

We prove the lemma by induction. When t = −1, the two inequalities trivially hold. In

particular, the first inequality is exactly our condition on the initialization of the algorithm.

For the inductive step, we suppose that with high probability,

‖β̂(t) − β∗‖2 ≤ κ‖β∗‖2,

‖β̄(t) − β∗‖2 ≤ ρ(t−1)/2‖β̂(0) − β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)
.

The goal is to prove these statements with t replaced by t+ 1.

To apply Lemma 23, we shall first verify that its conditions are satisfied. We have,

‖β̄(t+0.5) − β∗‖2 ≤ ρ‖β̂(t) − β∗‖2 ≤ ρκ · ‖β∗‖2 ≤ κ‖β∗‖2.

The first inequality is due to (5.3); the second equality is due to our inductive hypothesis.

The condition on ŝ in Lemma 23 is satisfied by our choice of the tuning parameter, while

the third condition

√
ŝ‖β̂(t+0.5) − β̄(t+0.5)‖∞ ≤

(1− κ)2

2(1 + κ)
· ‖β∗‖2

holds with high probability, thanks to Lemma 22.
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Then, we use Lemma 23 and (5.3) to obtain that

‖β̄(t+1) − β∗‖2

≤ C
√
s√

1− κ
‖β̂(t+0.5) − β̄(t+0.5)‖∞ + (1 + 4

√
s/ŝ)1/2 · ‖β̄(t+0.5) − β∗‖2

≤ C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

(n0)ε
log d

)
+ (1 + 4

√
s/ŝ)1/2 · ρ‖β̂(t) − β∗‖2,

where the last inequality makes use of (5.1) and (5.3).

When (1 + 4
√
s/ŝ)1/2 < ρ−1/2, that is, ŝ > ( 4ρ

1−ρ)2s, we have

‖β̄(t+1) − β∗‖2 ≤ ρ1/2‖β̂(t) − β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)
.

It follows that

‖β̄(t+1) − β∗‖2

≤ ρ1/2‖β̂(t) − β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)

≤ ρ1/2
(
‖β̂(t) − β̄(t)‖2 + ‖β̄(t) − β∗‖2

)
+ C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)

≤ ρt/2‖β̂(0) − β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)
.

The last inequality is a consequence of the inductive hypothesis and (5.2). To complete the

induction, the inequality above and (5.2) imply that

‖β̂(t+1) − β∗‖2 ≤ E‖β̂(t+1) − β̄(t+1)‖2 + ‖β̄(t+1) − β∗‖2

≤ ρt/2‖β̂(0) − β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)

≤ ρt/2κ‖β∗‖2 + C

(
σ

√
s log d

n0
+
Ts
√

log(1/δ)

n0ε
log d

)

≤ κ‖β∗‖2.
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APPENDIX

Due to the limit of the space, we don’t include the supplements in this thesis. Please refer

the supplements of Chapter 2-5 to Cai and Zhang (2018d); Cai et al. (2016a, 2018b, 2019c)

respectively.
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