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Visual Perception For Robotic Spatial Understanding

Abstract
Humans understand the world through vision without much effort. We perceive the structure, objects, and
people in the environment and pay little direct attention to most of it, until it becomes useful. Intelligent
systems, especially mobile robots, have no such biologically engineered vision mechanism to take for granted.
In contrast, we must devise algorithmic methods of taking raw sensor data and converting it to something
useful very quickly. Vision is such a necessary part of building a robot or any intelligent system that is meant to
interact with the world that it is somewhat surprising we don't have off-the-shelf libraries for this capability.

Why is this? The simple answer is that the problem is extremely difficult. There has been progress, but the
current state of the art is impressive and depressing at the same time. We now have neural networks that can
recognize many objects in 2D images, in some cases performing better than a human. Some algorithms can
also provide bounding boxes or pixel-level masks to localize the object. We have visual odometry and
mapping algorithms that can build reasonably detailed maps over long distances with the right hardware and
conditions. On the other hand, we have robots with many sensors and no efficient way to compute their
relative extrinsic poses for integrating the data in a single frame. The same networks that produce good object
segmentations and labels in a controlled benchmark still miss obvious objects in the real world and have no
mechanism for learning on the fly while the robot is exploring. Finally, while we can detect pose for very
specific objects, we don't yet have a mechanism that detects pose that generalizes well over categories or that
can describe new objects efficiently.

We contribute algorithms in four of the areas mentioned above. First, we describe a practical and effective
system for calibrating many sensors on a robot with up to 3 different modalities. Second, we present our
approach to visual odometry and mapping that exploits the unique capabilities of RGB-D sensors to
efficiently build detailed representations of an environment. Third, we describe a 3-D over-segmentation
technique that utilizes the models and ego-motion output in the previous step to generate temporally
consistent segmentations with camera motion. Finally, we develop a synthesized dataset of chair objects with
part labels and investigate the influence of parts on RGB-D based object pose recognition using a novel
network architecture we call PartNet.
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ABSTRACT

VISUAL PERCEPTION FOR ROBOTIC SPATIAL UNDERSTANDING

Jason Owens

Kostas Daniilidis

Humans understand the world through vision without much effort. We perceive the
structure, objects, and people in the environment and pay little direct attention to
most of it, until it becomes useful. Intelligent systems, especially mobile robots, have
no such biologically engineered vision mechanism to take for granted. In contrast,
we must devise algorithmic methods of taking raw sensor data and converting it to
something useful very quickly. Vision is such a necessary part of building a robot or
any intelligent system that is meant to interact with the world that it is somewhat
surprising we don’t have off-the-shelf libraries for this capability.

Why is this? The simple answer is that the problem is extremely difficult. There
has been progress, but the current state of the art is impressive and depressing at
the same time. We now have neural networks that can recognize many objects in
2D images, in some cases performing better than a human. Some algorithms can
also provide bounding boxes or pixel-level masks to localize the object. We have
visual odometry and mapping algorithms that can build reasonably detailed maps
over long distances with the right hardware and conditions. On the other hand, we
have robots with many sensors and no efficient way to compute their relative extrinsic
poses for integrating the data in a single frame. The same networks that produce good
object segmentations and labels in a controlled benchmark still miss obvious objects
in the real world and have no mechanism for learning on the fly while the robot is
exploring. Finally, while we can detect pose for very specific objects, we don’t yet
have a mechanism that detects pose that generalizes well over categories or that can
describe new objects efficiently.

We contribute algorithms in four of the areas mentioned above. First, we describe a
practical and effective system for calibrating many sensors on a robot with up to 3 dif-
ferent modalities. Second, we present our approach to visual odometry and mapping
that exploits the unique capabilities of RGB-D sensors to efficiently build detailed
representations of an environment. Third, we describe a 3-D over-segmentation tech-
nique that utilizes the models and ego-motion output in the previous step to generate
temporally consistent segmentations with camera motion. Finally, we develop a syn-
thesized dataset of chair objects with part labels and investigate the influence of parts
on RGB-D based object pose recognition using a novel network architecture we call
PartNet.
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Chapter 1

Introduction

The story I tell here extends all the way back to my childhood. Robots and artificial

intelligence fascinated me. I had already been exposed to computers (an Apple IIc

and an Apple Macintosh 512K), and wondered how they worked. When I learned of

the concept of programming, the ability to make a computer do what you told it to

do, I knew I wanted to do it. Some years later, I saw some robots in a magazine—they

were Rodney Brooks’ and his students’ creations—and on a particularly nice day in

SoCal I wondered how it would be possible to make an engineered machine behave

intelligently. Of course, I really had no idea of the complexity and state-of-the-art at

the time, but it looked like Brooks had done something amazing1. The question has

remained fixed in my mind since that particular sunny day in front of my parents’

house.

When I first started doing research related to robots, I was, therefore, particularly

interested in how one might get them to have intelligent behavior. What that really

meant was unclear, but it involved some combination of “moving around without run-

ning into things” and actually “accomplishing useful goals for humans and Soldiers.”

My initial conception developed into an interest in the topic of autonomous mental

development: i.e., the capability of a robot to learn how to function for one or more

tasks through interaction with the environment and without explicit programming

1I do believe Brooks (and his students) did accomplish something amazing, but it wasn’t exactly
what I was thinking about.

1



for any specific task. I wanted to (ultimately) develop a general “robot brain2.”

As I began to investigate this line of research, I became frustrated with the state of

the art in robot perception and, for lack of a better word, a robot’s understanding

of the world. My concept of a robotic brain (at the time) hinged on the idea that the

world would be mostly observable and symbolic. This belief showed my utter naiveté

at the time. The more I studied the literature, the more I came to understand that

getting an embodied robot to function the way I envisioned would require some signif-

icant improvement to how it could use vision (as well as other modalities) to interpret

the environment in a useable way. Again, I use another imprecise notion: “usability.”

I knew of the symbol grounding problem, and this was the exact embodiment of it.

To really be able to become intelligent, the things and stuff in the environment must

effectively become symbols that can be manipulated by an algorithm, and the symbols

must not stand alone (to borrow Harnad’s nomenclature [80], they should be related

to both iconic and categorical representations that themselves can be manipulated).

I assumed this algorithm would be complex, and the symbols would also be complex,

but I had no clue how to get from pixels or point clouds to symbols. Perhaps needless

to say, the goal of developing any version of a robot brain during my studies was

postponed, as it became apparent that we (as researchers, and as a field) had more

pressing problems on our hands.

Why is perception so important for robotics? First, I want to be precise about my

use of the term“robotics.” Robotics is a giant field, and covers many areas from what

I would call unintelligent automation through human-like embodied intelligent agents.

Throughout this document, I will use the terms ’robot’, ’agent’, and ’embodied in-

telligent agent’ interchangeably, but in all cases I am referring to the latter unless

explicitly stated. So, why is perception so important to embodied intelligent agents?

They need the ability to intelligently see and understand the environment in order to

participate effectively in the kinds of activities most useful to humans3. This desired

ability is usually called perception, and is in contrast to some other vision tasks that

2Yes, I have very ambitious and often unrealistic goals. It is a problem I’m trying to work on.
3Especially the dirty, dangerous and/or defensive kind, but also the assistive, supportive and/or

dull kind.
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may not strive to enable the same level of intelligence. I also happen to believe that

a robot with sufficient perception capabilities is a prerequisite to an intelligent robot,

and that intelligence is required to have effective perception. They really go hand in

hand. While it is not the case that perception is the only thing holding us back, it

is an integral part of even the simplest system, and we must do everything we can to

enable this capability.

What do I mean by perception? As I mentioned already, a robot capable of

perception must “see and understand the environment.” This is a very compact way

to express a lot of ideas, so let’s unpack it. Seeing is the ability to separate, pick

out, and represent in some way or another, the important things in the environment.

Understanding is harder to define, but we interpret it as the ability to transform what

is seen into a meaningful and useful representation of the world. By “meaningful”,

we demand that the robot does more than determine a simple 1-1 mapping between

sensed data (e.g., pixels) and labels; instead, it implies the association of related

information such as experiences, similarities, differences and affordances as well as

a deeper recognition of structure (hierarchical, spatial, temporal) and the ability

to reason about what is sensed. All of this is necessary to make inferences about

the nature and purpose of the environment and the objects in it on a level similar

to a human. By “useful representation” we imply that there is more to the set of

pixels or points or n-dimensional vectors that are output by an algorithm. Certainly,

these elements may be part of the output, or even an integral component in the

representation itself, but they must be part of a larger whole that can be operated on

at multiple symbolic levels. Finally, the environment is everything around the robot,

including everything that can change over time and space.

To go beyond data transformation and interpret information in relation to past

experience and knowledge implies the need for reasoning capabilities typically con-

sidered outside the realm of computer vision (thus, my assertion that intelligence and

perception are tightly related). However, I believe the following high-level capabilities

are necessary for the task:

1. perceiving self motion, the motion of other entities in the environment, as well
3



as the structure of the environment;

2. separating things from stuff [85];

3. learning object instances and categories, as well as perceiving the context in-

duced by the spatial relationships and configurations of the objects;

4. generalizing perceptual capability from previous experience.

These are not new ideas. However, they do provide the goals that motivate the

development of algorithms we can use to compose behaviors to achieve this function-

ality.

Most of the approaches in this dissertation involve an abstraction that raises the

level of semantic meaning of data, which corresponds well with the long-term goal

of pursuing intelligent perception. For example, the multi-sensor graph calibration

utilizes geometric representation and relationships between the sensed calibration

object from multiple sensors in order to relate the data and perform the optimization.

The primary goal of ego-motion estimation and the environment mapping was to use

surfels that contain more information than just points in order to aid the alignment

and mapping process. In temporal segmentation, we take point clouds and turn them

into segments using similarities in their spatial structure so that you could work with

larger logical chunks of the cloud instead of individual points or surfels within the

cloud. Finally, we tackle parts of objects. Here, it apparently looks like we’re taking

a step down, and it is true in one sense; however, we are really interested in gaining

more information about objects by understanding their composition and recognizing

their pose.

1.1 Motion and the environment

To learn in the way I have described, I believe intelligent systems that are meant

to interact with humans and the real world must actually be embedded in the real

world. Successfully learning to understand the environment and the objects in it
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will not happen by just looking at static pictures4. There must be understanding of

how the world changes through differing viewpoints, how objects move and can be

manipulated, and how the environment is structured by nature and humans (Grauman

speaks directly of these topics in her latest talks on “Embodied Visual Perception”

[75]). To address capability 1 above, sensors must be mounted on a mobile platform

and must capture the true dynamic nature of the environment. This is in contrast to

much of the work in simultaneous localization and mapping (SLAM) and environment

mapping that tends to ignore the dynamic nature of the world. It is a hard problem,

but all the more important on account of that. A dynamic world gives significant

cues for object segmentation, 3 dimensional structure, and deformable objects.

We encounter our first obstacle after mounting multiple sensors on a robot. To

process the data in a coherent manner, or more specifically, in the same coordinate

frame of reference (usually with one sensor or the robot platform serving as the

origin), we must know where the sensors are with respect to one another. This seems

like it should be a trivial problem: we mounted them on the robot, therefore we

should know where they are! Unfortunately, it is not that simple; first, every sensor

is different and every mounting configuration is different; second, we do not always

know the sensor’s origin, even if we assume or know it is intrinsically calibrated5. To

begin to collect data from a robot with multiple sensors, whether all of one type (e.g.,

all cameras) or of multiple modalities (e.g., a camera, a two-dimensional (2D) laser

scanner, and a three-dimensional (3D) sensor), we must find the extrinsic calibration

of the entire system: the relative pose of each sensor with respect to some origin.

Chapter 4 discusses one approach to this challenge, and presents the only system

we are aware of that solves the problem for a statically mounted set of sensors with

multiple modalities and with very few requirements.

Having a robot with calibrated sensors means we can collect the sensor data into

4I’m looking at you, ImageNet. While this challenge has done much to spur development in
algorithms for large scale recognition, it’s applicability to intelligent embodied systems is limited
by it’s lack of focus on actually understanding the visual world; instead it focuses on generating
mappings between pixels and labels without any accessible, underlying model.

5Third, I only consider rigidly mounted sensors in this dissertation. We are contemporane-
ously beginning to consider actuated sensors as an extension of the graph optimization framework
presented in Chapter 4.
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a common coordinate frame. Now we encounter a second obstacle: it would be

difficult for our embodied system to move around and manipulate the world without

understanding how it is structured and how it operates, at least at the local level (i.e.,

the portions of the environment it can currently see with the sensors). While I strongly

believe much of this knowledge needs to be represented in a shared and consistent

fashion, I also believe that larger problems must be broken down into chunks; therefore

I separate the structure from the operation, and examine algorithms for ego-motion

estimation and detailed environment mapping. Chapter 5 discusses our approach for

using RGB-D cameras to capture accurate ego-motion and Chapter 6 uses the ego-

motion estimates to build up maps of the environment. In these chapters, we will also

discuss how these components may be used for extending the capability of robots in

the future.

1.2 Things and stuff

Knowing the structure of the world is only one part of the challenge. Efficient map

representations and planning algorithms may allow a robot to navigate the world, but

how will it begin to learn about the objects in the world? There must be some way

to partition the world into separate objects (usually the things we are interested in)

and the other stuff that the world is made of (e.g., walls, floors, grass, sky). Achiev-

ing capability 2 above is the job of a segmentation and object proposal algorithm.

While humans respond well to Gestalt cues (such as symmetry, continuity, common

fate) [108] and some have made efforts to incorporate these cues into algorithms for

object segmentation [101], [111]–[114], we focus on the under-explored topic of over-

segmenting a scene in a temporally consistent way. An over-segmentation is often

used as a pre-processing step, and helps later algorithms by clustering primitive per-

ceptual data into larger chunks that are typically spatially, visually, and geometrically

coherent. While many over-segmentation algorithms operate in image space only, in

Chapter 7, we modify an existing algorithm that operates on 3D point clouds to sup-

port extending segmentations to neighboring frames based on an accurate ego-motion
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Figure 1.1 A near-ideal segmentation of a street scene.

estimation and frame integration algorithm. This builds on the work from the pre-

vious section, and would not be possible without a good estimation of the sensor

motion.

Segmenting a scene (or the environment), the particular partitioning of what is

seen into chunks (hopefully as close to an ideal segmentation as possible, see Fig. 1.1),

is a prerequisite to being able to discover and learn about objects. While there are

attempts to do this in concert with object recognition [26], [82], [174], we believe

the best approach is to separate the task of segmentation and object proposals from

recognition, and ultimately focus on an iterative interplay between the algorithms.

Without this, it is not clear how to dynamically extend a recognition system with

new information on the fly.

1.3 Objects

It is clear that a robot cannot do much useful work without being able to first detect,

identify, and describe objects, and second, manipulate those objects. Objects are

a fundamental aspect of the world. They are the things we want to manipulate or

observe as well as the stuff that surrounds us. An intelligent embodied system must

be able to see objects in such a way as to determine their location, identity (up to

some extent), and category as well as whether and how they can be manipulated (i.e.,

their affordances). If a robot did not possess such a capability, most things would

simply be implictly classified as an obstacle, or otherwise occupied space.

Objects may be recognized in two distinctly different ways: as particular instances
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of a specific object (e.g., a box of one kind of cereal), or as an instance of category,

whether specific or general. The first kind of recognition is used extensively in robots,

to handle a small sampling of real-world objects in a very specific way, by both

representing appearance and geometry of the object in order to detect presence and

pose simultaneously. However, this means that if it recognizes one cereal box, then it

may not recognize another, even if they are very similar in many ways: size, geometry,

general appearance (e.g., a lot of bright colors). The second kind of recognition, on

the other hand, is, by definition, more general, and refers to the ability to recognize

that a box of any brand of cereal is, in fact, a box of cereal. In many cases, however,

categorical object recognition (the most common type) is unable to recognize specific

instances, or even determine that box A and box B are the same kind of cereal.

Interestingly, humans perform both of these tasks pretty well, and it may prove to be

hard for robots to interact seamlessly and efficiently with their biological collaborators

without a similar level of proficiency.

The question remains: how do we induce an algorithm to “recognize” anything?

Research to address this question has been going on for over 50 years and we have

developed specific algorithms for detection (“am I looking at an object of instance i or

category k?”), localization (“where is the object and what is its pose”), and recognition

(“find and identify all known objects”) [3]. Detection, localization and recognition all

rely on some form of matching input data to previously learned models. As part of

that input data, we have strong evidence that the human visual system does extract

low level features early in the visual process [137], [207]. One of the basic ideas behind

the use of features is to find regions of interest in order to use them as descriptions

in a model of the object or environment such that it is possible to match the input

data to previously learned models, hopefully without a linear search.

While deliberately leaving the definitions of “feature”, “match”, “description”, and

“concept” vague, imagine we want to create a database of known objects for use in a

robotic vision task. We would like to extract salient features that could be used to

recognize these objects in new environments, where they may be seen in a variety of

poses and distances from the sensor. In what ways can we detect and extract these

8



features to make the object detection and recognition task more effective? If we want

to detect local features, we must consider a neighborhood surrounding a point to

determine whether that point actually represents the location of a feature. How do

we select the size of the neighborhood?

To answer some of these questions and work to address our previously stated ca-

pability 3, we propose to investigate convolutional networks that perceive additional

information about objects in the form of parts and pose. Most objects are composed

of more than one part, and often the parts may be individually recognizable compo-

nents. If not individually recognizable, then the collection of parts may still provide

additional useful information about the structure and pose of the object. While this

approach may not directly address the instance recognition task mentioned above, if

successful it could represent a significant improvement in pose estimation capability

for general object categories. We describe our initial approach and results in Chapter

8.

1.4 Generalization

Generalization is, in some ways, the holy grail of artificial intelligence, and therefore

most of its sub-fields, like robotic perception. We interpret the concept in this very

simplified sense: the agent experiences something, extracts some useful information or

knowledge . . . then experiences something else partly related and applies the previous

information or knowledge to the new situation. In computer vision, a version of

this is directly seen in the ability of a recognition system to train (experience) on

many different instances of a particular category, say, chairs, and then recognize chair

instances it has never seen before. In these cases, we would really like the system to

be able to explain why this new object might be a chair, but we will hold off on that

for now.

Another example of generalization capability is demonstrated in the areas of few-

shot, one-shot, and even zero-shot learning. The idea here is that if you can teach

a system how to learn within a domain, then showing it very few examples, or even
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one example, should allow it to generalize to new instances. In the zero-shot case,

no examples are shown, but instead some kind of semantic description (“large, white

animal that lives in snowy regions”) should be sufficient to recognize visual images of

the object.

While this thesis does not directly address this specific capability directly, we

believe the efforts towards part-based recognition systems and the increasing interest

in symbol grounding and online learning from experience will make generalization an

important aspect for every robotic system.
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Chapter 2

Related Work

In this section, I provide an overview of the related work for each algorithm I present in

this thesis. While it is not meant to be an exhaustive exposition, I provide summaries

and short discussions of the most relevant literature that have informed my work.

2.1 Multi-sensor calibration

The fundamental challenge in sensor calibration is determining associations between

each sensor’s data1. Recent calibration approaches use either known scene geome-

try (including specialized calibration targets), or attempt to calibrate in arbitrary

environments. Systems that calibrate with no special scene geometry or calibration

object, such as [125] and [134], require high quality inertial navigation systems (INS)

to compute trajectory. Scaramuzza et al. are able to calibrate a 3D laser and a

camera without a calibration object or inertial sensors, by having a human explicitly

associate data points from each sensor [182]. In contrast, our calibration framework

(Chapter 4) uses only the data coming from the sensors we wish to calibrate, and

does not require human assisted data association.

Similar to the work of [127], [143], [154], [204], [233] and others, we also use a

calibration object to facilitate automatic data association. To our knowledge, there

has been little work in the calibration of an arbitrary number of various types of

1Content in this section has been adapted from the author’s contribution in [158], ©2015 IEEE.
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Figure 2.1 Scaramuzza et al. finds the extrinsic calibration between a 3D laser range
finder and a camera, but requires a human to label correspondences. Image reproduced
from [182], ©2007 IEEE.

sensors. Most work on calibration has been limited to either a single pair of different

sensor types ([125], [127], [143], [154], [182], [204], [205], [233]), or multiple instances

of a single type ([134], [142]). An exception is the work of Le and Ng [121], who

also present a framework for calibrating a system of sensors using graph optimiza-

tion, though their graph structure differs fundamentally from ours; they require that

each sensor in the graph be a 3D sensor. Therefore, neither individual cameras nor

2D laser scanners are candidates in their calibration. Instead they must be coupled

with another sensor (e.g., coupling two cameras into a stereo pair) that will allow the

new virtual sensor to directly measure 3D information. Their results agree with ours,

that using a graph formulation reduces global error when compared with incremen-

tally calibrating pairs of sensors. Our approach is related to the graph optimization

proposed in [208] where the focus is on solving non-linear least squares systems on

a manifold. Our system generates initial estimates from pairwise solutions, and we

report the results of calibrating a graph of five sensors with three different modalities.

One of the fundamental challenges in sensor calibration is determining associa-

tions between the sensors’ data. Calibration approaches generally use one of two

methodologies: using known scene geometry (including specialized calibration tar-

gets), or using arbitrary environments. Systems that calibrate multiple sensors using

no special scene geometry or calibration objects, such as [125] and [134], require a

high quality inertial navigation system (INS) to compute trajectory.
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Figure 2.2 Le and Ng’s work on calibration seems to be closest to ours (see Chapter
4). They calibrate multiple sensors in a graph; however, they require pairs of sensors
to generate a single 3D observation. Image reproduced from [121], ©2009 IEEE.

Our work falls into the category of using a specialized calibration object to generate

managed observations from sensors. This is similar to the work of [127], [143], [154],

[204], [233] and others. To our knowledge, there has been little work in the calibration

of an arbitrary number of multiple types of sensors.

2.2 Ego-motion and Mapping

Fundamentally, ego-motion from visual odometry is concerned with computing the

motion of a sensor using visual data streaming from that sensor2. But what data

from the sensor are we using? Following the classification of Engel et al. [46], the

computational method for solving for incremental pose transformation between sensor

frames can be described using 2 dimensions: the nature of the input and the density

of the input. The first dimension describes what values are used in the computa-

tion; in visual odometry, the data provided by the sensor(s) are spatially organized

2Content from this section has been adapted from the author’s contribution to [161].
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Figure 2.3 The calibration work of Maddern et al. calibrates 2D and 3D laser range
finders to the robot frame using a point cloud quality metric, uses no calibration object,
but relies on locally accurate ego-motion estimation. Image reproduced from [134],
©2012 IEEE.

photometric measurements of the amount of light registered by the sensor (i.e., the

pixel values). If an algorithm uses this photometric information, then it is called a

direct method. Alternatively, if there are derived values computed from the image,

(e.g., keypoints, descriptors, and/or vector flow fields), then we call the method in-

direct. Note that since direct methods use the photometric information directly, the

optimization models photometric noise, while the derived values in the indirect case

are geometric in nature (points and vectors), and therefore the optimization models

geometric noise.

The second dimension indicates how much information is used for the computation.

If an algorithm attempts to use all the pixels (or as many as possible) from the input,

then it is called a dense method. In contrast, a sparse method specifically uses a small

subset of the pixels/points available, usually around 2 orders of magnitude less than

than the number of pixels. Dense methods do not extract a discrete set of features, but

instead rely directly on the data itself to compute an estimate of motion. The main

idea is to use more of the image data than sparse methods with the goal of improving

the camera and environment model motion estimates. In contrast, sparse methods
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often use discrete feature keypoints (e.g., Scale Invariant Feature Transform (SIFT)

[132], Oriented Rotated BRIEF (ORB) [177]). These keypoints, along with the data,

serve as input to an algorithm that will produce a set of descriptors. The descriptors

are representations of the input, designed to enable feature matching between frames

by comparing the distance between pairs of descriptors.

For simplicity, we primarily focus on stereo, red, green, blue, and depth (RGB-D),

and laser-based modalities that can directly compute 3D features within the envi-

ronment, as they are the most useful for enabling accurate, scale drift-free maps and

motion estimates. Monocular algorithms, while powerful and efficient, cannot com-

pute the scale of the environment (although they can be filtered with other odometry

methods that can). 2D laser scan-matching algorithms, while very popular on experi-

mental robotic systems, are also insufficient for our needs, since they cannot compute

full 6-DOF pose estimates and are easily confused by nonflat environments.

libviso2 by Geiger et al. [70] is a simple but effective stereo visual odometry

algorithm created by the group responsible for the KITTI benchmark suite [69]. It

is a prime example of sparse indirect visual odometry methods (see Scaramuzza and

Fraundorfer [181] for a nice overview of the approach). Ego-motion is computed using

simple blob and corner-like features distributed over the full image, which are stereo

matched between the left and right frame to compute 3D pose, and then temporally

matched between successive frames to estimate motion (Fig. 2.4). Complex feature

descriptors are not needed since there is an assumption that frames are temporally

and spatially close (i.e., from a 30-Hz camera). Instead, a simple sum of absolute

differences of an 11×11 pixel block around the keypoint is used as a descriptor distance

method. Ego-motion estimation is implemented as a Gauss-Newton minimization of

reprojection error:

N∑
i=0

∥∥xi
(l) − π(l)(Xi, r, t)

∥∥2
+
∥∥xi

(r) − π(r)(Xi, r, t)
∥∥2
, (2.1)

where Xi are the 3D points corresponding to the features x
(l)
i ,x

(r)
i in the left and

right images, π(l), π(r) are the corresponding left and right projection functions, based
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Figure 2.4 libviso2 visual odometry system, an example of a sparse, indirect visual
odometry (VO) method. The left image illustrates the overall operation of the system
(temporal ego-motion estimation, stereo matching and 3D reconstruction). The right
image shows the matched features and their motion in 2 situations: (a) moving camera
and (b) static camera. Reproduced from Geiger et al. [70], ©2011 IEEE.

on intrinsic and extrinsic calibration of the cameras, and r, t are the rotation and

translation parameters being estimated.

Steinbrucker et al. [192] present DVO, a VO algorithm that is based on RGB-D

sensors instead of stereo cameras. DVO eschews feature extraction in favor of a dense

model in order to take advantage of as much of the image as possible. The algorithm

utilizes a photometric consistency assumption to maximize the photoconsistency be-

tween 2 frames. Photometric consistency means that 2 images of the same scene from

slightly different views should have the same measurements for pixels corresponding

to a given 3D point in the scene. Steinbrucker et al. minimize the least-squares

photometric error:

E(ξ) =

∫
Ω

[I(wξ(x, t1), t1)− I(wξ(x, t0), t0)]
2 dx, (2.2)

where ξ is the twist representing the estimated transformation, and the w(x, t) func-

tion warps the image point x to a new image point at time t using the transformation

ξ and the associated depth map. I(x′, t) is a function that returns the image intensity

value at position x′ at time t. Note how this represents a dense direct approach, in-

tegrating over the entire image domain (Fig. 2.5), while the sparse indirect approach

in libviso2 is a sum over only the extracted features. The 3D points in an RGB-D
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Figure 2.5 An example of RGB-D image warping in DVO. (a-b) show the input images
separated by time, while (c) shows the second image warped to the first, using the
photometric error and the depth map to compute how the pixels should be projected
into the warped frame. (d) illustrates the small error between (a) and (c). Reproduced
from Steinbrucker et al. [192], ©2011 IEEE.

approach come directly from the produced depth map and do not require any ex-

plicit stereo computations. In practice, dense approaches vary in their actual density:

RGB-D based dense approaches can be much more dense than monocular or stereo

approaches, although in both cases they use more image data than a sparse approach.

Unfortunately, the cost of higher density is more computation, so the tradeoff often

depends on the accuracy required in the motion estimation.

The use of current RGB-D sensors has benefits and drawbacks: as active stereo

devices, they do not require strong features in the environment to compute depth

values, yielding dense depth images; however, they usually have relatively short range

(relying on a pattern or measured time of flight from an infrared (IR) projector) and

do not work well (if at all) in outdoor conditions3.

Lidar odometry and mapping (LOAM [231]) and visual odometry-aided LOAM

(V-LOAM [232]) are related ego-motion algorithms by Zhang and Singh that use 3D

laser scanners (e.g., the Velodyne HDL-32 [206]) to compute both maps and motion

estimates4. LOAM works (and works very well, see the KITTI [69] odometry bench-

3Newer RGB-D sensors seem to address this problem, with slightly longer ranges and claims of
outdoor operation. We do not yet have direct experience to comment on these claims.

4LOAM and V-LOAM are not full SLAM algorithms, since they do not include loop closure and
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marks) by carefully registering 3D point cloud features to estimate sensor motion at

a high frame rate, and then integrating full undistorted point clouds into the map at

lower frame rates while adjusting the sensor pose estimates. This algorithm can work

with sweeping single-line laser scanners as well as full 3D scanners by estimating the

pose transform between each line scan. If such a sensor is available, this algorithm

produces some of the lowest error motion and pose estimates over large-scale paths.

The primary drawback is that the code is no longer available in the public domain,

since it has been commercialized as a stand-alone metrology product.5

Monocular visual odometry algorithms have recently become more popular on

small robotic platforms due their extremely simple sensor arrangement (i.e., a single

camera) and their ability to operate on mobile computing hardware [43], [184]. Sev-

eral recent monocular algorithms (semi-dense visual odometry [49], Semi-direct Visual

Odometry [SVO] [64], and Direct Sparse Odometry [DSO] [46]) demonstrate impres-

sive mapping performance with low drift, all within a direct VO paradigm (i.e., they

directly make use of the values from the camera and therefore optimize a photometric

error). These algorithms operate by estimating semi-dense depth maps using strong

gradients in the image along with temporal stereo (comparing 2 frames that differ

in time, with the assumption that the camera was moving during the time period),

and make extensive use of probabilistic inverse depth estimates. DSO is particularly

interesting since it is a direct method using sparse samples (but no feature detection)

and it exploits photometric sensor calibration to improve the robustness of the motion

estimation over existing methods.

However, for monocular algorithms to be useful for typical robotics applications,

there must be some way to estimate the scale of the observed features for map gen-

eration and motion control. A typical (but not singular) method for accomplishing

this is by filtering the visual features with some other metric sensor such as an iner-

cannot perform global localization.
5Although the code was originally available as open source on Github and documented on the

Robot Operating System (ROS) wiki [230], the repositories have since been removed. Fortunately,
some forks of the repositories still exist, but the full ROS integration does not seem to exist. In
addition, the code is undocumented, has hard coded transformation assumptions, and is not written
for modularity or future programmers. However, it may provide sufficient guidance to those who
wish to adapt and extend the algorithm in the future.
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tial measurement unit (IMU). This can be considered a sub-field of visual odometry,

typically called visual-inertial navigation. Since we assume we will have access to

stereo, RGB-D, or 3D laser information, reviewing this topic is out of scope for this

document. However, for more information, see Weiss’ tutorial on“Dealing with Scale”

presented at Conference on Computer Vision and Pattern Recognition (CVPR) 2014

[212].

2.2.1 Mapping

Many of the VO algorithms we discuss create local models of the environment to

achieve more accurate motion estimates (i.e., odometry with less drift). It might be

natural to assume these algorithms could be included as the front-end in a SLAM

framework, and that assumption would be correct (see Cadena et al. [21] for a great

overview of SLAM with a look toward the future). A SLAM front-end provides

motion estimates (like what we get from VO), while a SLAM back-end optimizes a

map given local constraints between sensor poses, observed landmarks, and global

pose relationships detected as “loop closures”. A loop closure is the detection of 2 or

more overlapping observations, often separated considerably in time but not in space;

see Fig. 2.6 for a simple illustration. For example, if a robot maps a room, exits to

map another room or hallway, and then re-enters the first room, it should detect a

loop closure by virtue of being in the same place it was before and therefore seeing

the same landmarks. The term“loop”comes from the fact that the pose graph (where

sensor poses are vertices, and edges represent temporal or co-observation constraints)

forms a cycle or loop of edges and vertices when a revisitation occurs.

Stereo LSD-SLAM [48] is a camera-based algorithm that represents an extension

of the LSD-SLAM [47] monocular algorithm to a stereo setting. LSD stands for large-

scale direct SLAM and, as the name indicates, represents a direct, dense image-based

VO algorithm integrated into a SLAM system handling mapping and loop closure.

They build on the original algorithm by adding support for static stereo to estimate

depth, requiring no initialization method (typically required for monocular VO al-

gorithms) and obviating the need for the original scale-aware similarity transform
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Figure 2.6 An example of the loop-closing concept in a simplified hallway. The left
image shows a camera that has computed visual odometry and revisited both point A
and point B without closing the loop. The right image, on the other hand, is the map
result from a SLAM algorithm after detecting the loop closure and optimizing the map.
Reproduced from Cadena et al.[21], ©2016 IEEE.

estimation. In addition, they add in a simple exposure estimation procedure to help

counteract the effects of lighting changes in real-world environments. Their results

are impressive but a little slow for larger image sizes (640×480 runs at only 15 Hz) if

one is concerned about running in real-time on a robot. Currently, code is available

for only the monocular version.

As an example of a hybrid-indirect VO methodology used in a SLAM framework,

Henry et al. [87] was one of the first high-quality dense mapping algorithms to make

use of RGB-D sensors like the Microsoft Kinect. The core algorithm is composed

of a frame-frame iterative closest point (ICP) algorithm on the point cloud derived

from the depth image, which is jointly optimized with sparse feature correspondences

derived from the red, green, and blue (RGB) images. It uses both sparse and dense

data, thus forming what we call a “hybrid”methodology. The ICP and sparse feature

alignment are complementary: the former performs better with significant geometry

complexity in the environment, even when featureless, while the latter supports align-

ment when there are features, but little to no geometry (e.g., walls and floors with

posters or other textured objects). To generate higher-resolution clouds, they post-

process the optimized map by integrating depth frames using a surfel-based approach

[167] to better adapt regions with differing point density.

Another sparse-indirect VOmethod applied in a SLAM framework is ORB-SLAM2

[149], an extension of the original ORB-SLAM framework [148] to stereo and RGB-D

cameras for metric scale. ORB-SLAM2 is a combination of existing techniques that
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Figure 2.7 ORB-SLAM feature and map density. Note the sparsity of the feature-based
map. Image reproduced from Mur-Artal et al. [148], ©2015 IEEE.

provide a robust SLAM system with the rare capability of reusing maps for localiza-

tion in previously visited areas. As the name implies, Mur-Artal and Tardós make

use of the ORB [177] feature detector/descriptor to detect and describe features in

each frame (Fig. 2.7). Several aspects of this algorithm make it stand out: (1) both

near and far features are included in the map, (2) the map is reusable for localiza-

tion without mapping, and (3) there is no dependence on a graphics processing unit

(GPU). While aspect (3) has obvious benefits (i.e., it can be adapted to run on sys-

tems without a GPU), the first 2 require some additional explanation. In most recent

monocular VO approaches, feature depth (within a given keyframe) is parameterized

as inverse depth. This makes it easy to incorporate points at larger distances, since

1
d
for infinite d is just 0. Points at infinity or with uncertain depth are still useful for

computing accurate rotations, even if they cannot be used to estimate translation.

By incorporating near (i.e., depth computable from stereo or RGB-D) and far points,

ORB-SLAM2 can generate better pose estimates using more information. Finally,

while SLAM algorithms are used to build maps, many are unable to localize within

those maps without generating new map data. This feature is particularly useful for a

robotic system that may encounter new areas over time, but still navigate previously

mapped regions repeatedly.

In the popular subfield of 3D reconstruction using RGB-D sensors, 2 recent meth-

ods exemplify the volumetric integration approach. Ever since the influential Kinect-

Fusion papers [100], [152] demonstrated the use of on-GPU truncated signed distance
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function (TSDF) volumes, many researchers have expanded on and refined the ap-

proach [86], [122], [128], [193], [213], [215], [217]. We highlight 2 recent examples,

both capable of extended model reconstruction (i.e., a larger volume than can fit in

GPU memory) and both utilizing full RGB-D frame information.

ElasticFusion [216] computes a dense surfel model of environments, notably with-

out using pose graph optimization. Instead, the system relies on frequent registration

with both active (recently acquired and currently used for pose estimation) and in-

active (local but older observations) portions of the map, the latter reflecting loop

closures. Upon registration with inactive portions of the map, the algorithm induces

a nonrigid deformation that helps to bring that portion of the map into alignment

with the currently active version. It is this deformation process that obviates the

need for a global graph optimization phase, with the assumption that the registration

reduces the error in the model enough to not require the optimization. Indeed, the

results reported show some of the lowest reconstruction errors on popular benchmark

datasets. However, it should be noted that they do not show spaces larger than a

large office environment, while previous approaches such as Kintinuous [213] show

larger outdoor scenes and multiple indoor floors.

BundleFusion [38] aims to provide an all-around solution to real-time 3D recon-

struction, with the unique capability of real-time frame deintegration and reintegra-

tion in the global volumetric model. A sparse to dense local pose alignment algorithm

is used to improve the pose estimation (utilizing SIFT features for sparse correspon-

dence) between the frames, while a global optimization is performed after scanning

has ended. Like the previous approach, this algorithm produces very good dense scene

models, but suffers from 2 main limitations: scene size (or recording time) is limited

to a maximum of 20,000 frames (due the nature of their on-GPU data structures), and

they require 2 powerful GPUs in parallel to achieve real-time performance, limiting

application to larger robotic systems capable of carrying and powering twin GPUs.
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2.2.2 Attributes

In this subsection, we identify salient properties of the algorithms reviewed in the

egomotion survey. Table 2.1 compares selected algorithms according to the following

attributes:

Input What is the input modality? ([Mono]cular camera, [Stereo] camera, [RGB-D],

[2D] light detection and ranging (LIDAR), [3D] LIDAR)

Direct Direct versus indirect parameter estimation (i.e., photometric versus geomet-

ric optimization)

Dense Is the representation dense (versus sparse)?

Mapping Does the system generate maps?

Loop Closing Does the method handle place recognition for closing loops (revisited

locations) in maps?

Known Scale Does the method produce maps with known scale (related to sensor

modality)?

Persistent Can the existing implementation store new maps, and load and modify

previously generated maps?

GPU Does the algorithm utilize/require a GPU?

Scalability Color saturation represents a comparative and qualitative estimation of

the scalability of the algorithm.

Code Do the authors make source code available?

2.2.3 Challenges

These sections have covered the state of the art in ego-motion estimation, and map-

ping algorithms for a variety of tasks. Some of them perform very well in the envi-

ronments (or datasets) they are tested in, but our primary concern is how they will
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Table 2.1 An overview of selected ego-motion algorithms reviewed in this section and their attributes.
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viso2 [70] Stereo 7 7 7 7 3 7 7 3

DVO [192] RGB-D 3 3 7 7 3 7 7 3

LOAM [231] 2D/3D 7 7 3 7 3 7 7 3a

vLOAM [232] 2D/3D + Mono 7 7 3 7 3 7 7 7

SDVO [49] Mono 3 3b 7 7 7 7 7 7

SVO [64] Mono 3c 7 7 7 7 7 7 3

DSO [46] Mono 3 7 7 7 7 7 7 3

SLSD-SLAM [48] Stereo 3 3 3 3 3 7 7 7

LSD-SLAM [47] Mono 3 3 3 3 7 7 7 3

RGBD-Mapping [87] RGB-D 7 7 3 3 3 7 7 7

ORB-SLAM2 [149] RGB-D or Stereo or Mono 7 7 3 3 3 3 7 3

ORB-SLAM [148] Mono 7 7 3 3 3 7 7 3

KinectFusion [100], [152] RGB-D 3 3 3 7 3 7 3 7d

VolRTM [193] RGB-D 3 3 3 7 3 7 7 3

PatchVol [86] RGB-D 7 3 3 3 3 7 3 7

Kintinuous [213], [217] RGB-D 3 3 3 7 3 7 3 3

HDRFusion [128] RGB-D 3 3 3 7 3 7 3 3

ElasticFusion [216] RGB-D 3 3 3 7 3 7 3 3

BundleFusion [38] RGB-D 3 3 3 7 3 7 3 3

a
There are forked repositories, but the original has been removed.

b
Only image regions with strong gradient in the motion direction are used.

c
Semi-direct: direct methods are used for motion estimation, but features are extracted for keyframes and used for bundle adjustment.

d
KinectFusion does not seem to have the original MS code published, but there is at least one open source implementation available through the Point Cloud Library

(PCL).

perform in the context of an intelligent embodied agent. Our view of these agents

places them along with other “life-long” learning systems; these are systems that

should learn incrementally and adapt online over long periods of time. How will ego-

motion estimation and mapping scale to handle experiences that range over larger

and larger distances and more complicated, unstructured terrain? This section high-

lights some of the challenges we see when considering the integration of ego-motion

estimation for a continuous object learner.

Many existing ego-motion algorithms can run continuously, specifically those based

on visual odometry, providing information about motion within the local environment.

However, the longer they run, the larger the pose error relative to ground truth will

be without measuring against some external source. We take the position that objects
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are not independent of their context (i.e., where they are, how they are used, and their

relationship with other nearby objects). Therefore, it is important to place objects

within an environmental context so they can be reobserved with confidence. Accurate

local metric representations can provide this confidence, and visual odometry methods

without this kind of mapping capability may not suffice.

SLAM, on the other hand, may provide the facilities needed to produce accurate

local maps (see examples of this in section 6.2). However, many of these algorithms

operate indoors (due to sensor or memory limitations) or on city streets; while they

may be cluttered and complex, there is still significant structure in the environment.

Army systems meant to operate in a variety of environments may need to adapt

to unstructured environments (jungles or forests), or environments with few obvious

features (like underground tunnels and sewers). Since we have seen no evidence of

SLAM being evaluated in arbitrary environments, it is hard to predict how these

algorithms will generalize to these situations.

From the perspective of a intelligent embodied agent modeling the world with

objects, we predict things will go one of 2 ways: long-term mapping and localization

(1) with accurate local metric representations, or (2) without accurate local metric

maps. It is relatively clear how objects can be contextually represented in the case of

accurate local maps (1), but we then face the following challenges: How does a robot

recognize places when they are not exactly the same as the original observation? How

can the map adapt over time to changes in object position and lighting? How can these

local maps be effectively stored and retrieved? Long-term localization and mapping is

a field in itself [9], [15], [32], [103], [110], [116], [146], [199], and while it is outside the

overall scope of our current work, it is relevant to the effective functioning of future

embodied systems aiming for long-term operation in many different environments.

On the other hand, it may be possible to represent objects in context without

representing them in a larger metric space, as in case (2). In this case, relative spatial

relationships could be stored for object instances, while the global pose of the instance

itself is much less important (or unknown). This implies that object instance recog-

nition would become more important than ego-motion estimation over longer time
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periods, since it would be required to aid in localization. This approach is more closely

related to human cognitive mapping, which focuses on significant landmarks, envi-

ronment structure, and their inter-relationships over direct metric representations.

Unfortunately, many existing robotic algorithms assume metric representations for

planning, and combining the capabilities of topological and metric mapping to simul-

taneously support existing planning algorithms is a new research area.

Recognizing and handling dynamic objects and environments is particularly im-

portant for intelligent embodied systems. Unfortunately, many VO and SLAM algo-

rithms do not support dynamic objects effectively. For example, KinectFusion and

other TSDF-based algorithms rely on the stability of surfaces in the map volume to

integrate enough values to represent the surface. A dynamic object moving through

the map volume will therefore not create a surface. DynamicFusion[153] does handle

dynamic objects, but ignores the environment in the process. It is not immediately

clear how to generate and represent a static map with dynamic objects, but it will

probably rely on a careful combination of the existing approaches and a flexible world

representation.

2.3 Segmentation

Segmentation is a well-known preprocessing step for many algorithms in computer

vision [67], [123], [189], [191], [198] and robotics [2], [34], [51], [94], [226] 6. However,

as discussed in the first section, it is exteremely difficult to get an automatic segmen-

tation that captures what we want [16], [138]. Therefore we tend to generate more

segments than objects, i.e. over-segment the scene, and then design algorithms to

group these segments back together for some particular application. These segments

are often called superpixels, since they tend to group many pixels of similar color,

texture, normal and/or depth together. Superpixels are useful to help reduce the

complexity of scene parsing and object recognition algorithms by considering fewer

pairwise similarities or classification evaluations [145], [175].

6This section contains content from the author’s contribution in [157].
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Figure 2.8 Levinshtein et al. develop the TurboPixels oversegmentation algorithm (im-
age (a) above). TurboPixels is a form of superpixel algorithm, used to group individual
pixels into larger (and easier to compute with) groups. Normalized cuts [187] output
is shown in image (b). Image reproduced from [124], ©2009 IEEE.

There are multiple well-known methods that automatically compute superpixel-

like segmentations (see Fig. 2.8). Normalized cuts [188], a spectral graph-based seg-

mentation method that generates partitions that approximately maximize the simi-

larity within a segment and minimize the similarity between segments, is a common

choice for generating superpixels. The method by Felzenszwalb and Huttenlocher

[55] (FH) is also used by many algorithms due to its comparitively low computational

complexity. Turbopixels [124], a method due to Levinshtein et al., utilizes geometric

flow from uniformly distributed seeds in order to maintain compactness and preserve

boundaries. Simple linear iterative clustering (SLIC) [1] is an extension to $k$-means

for fast superpixel segmentation. Like Turbopixels, it’s initialized with uniformly dis-

tributed seeds which are then associated and updated in a manner similar to k-means

clustering.

While the previous methods originally operated on images, there have been exten-

sions to point clouds, including the algorithm we extend in this paper. Depth-adaptive

superpixels (DASP) [210] is an algorithm for generating superpixels on RGB-D image

pairs where each segment covers roughly the same surface area, independent of the

distance from the camera. A more recent paper directly modifies the SLIC algorithm
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Figure 2.9 Hu et al. apply a fixed volumetric discretization to generate an efficient
over-segmentation in streaming point clouds. Their approach focuses on producing
usable segments for their semantic labeling algorithm. Image reproduced from [97],
©2013 IEEE.

to include depth in order to reduce undersegmentation error over depth discontinuities

[147].

Incremental segment generation has primarily been applied in the video segmen-

tation and analysis realm. Segmentation of video [25], [65], [76], [224], [225] comes

in many forms, but the main focus is foreground/background segmentation, moving

object tracking (often non-rigid), and multi-class semantic labeling. The common

thread in these approaches is to generate segmentations that are consistent across the

video frames; i.e. if a pixel belonged to one class at time T1, then the corresponding

pixel (if still visible) at time Tn belongs to the same class. While these algorithms aim

for the same consistency constraints, they are only able to utilize images and there-

fore their techniques are necessarily more time consuming. On the other hand, they

try to propagate and constrain higher level features within both static and dynamic

scenes, while we explicitly take advantage of estimated camera motion and leave the

semantic processing to a higher-level component.

Other research related to segmentation in streaming point clouds includes a si-

multaneous localization and mapping (SLAM) algorithm for outdoor multi-line laser

scanners that directly incorporates segmentation and moving object detection with

spatial and temporal constraints [226]. In a similar vein (although not integrated with

SLAM), Hu et al. [97] apply a fixed volumetric segmentation scheme and 2.5D spatial
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Figure 2.10 Finman et al. apply a modified version of Felzenszwalb and Huttenlocher
efficient graph based segmentation to slices of a TSDF model volume, then merge the
segments as additional slices are output. Image reproduced from [59], ©2014 IEEE.

data structure to aid in incremental scene classification in streaming point clouds. In

that work, they are less concerned about the segmentation being proper (i.e. segments

can overlap, and do not directly correspond to a distance or similarity function) and

rather more concerned about efficient access and subdivision of the cloud in order to

apply their scene labeling algorithm. Henry et al. [86] also apply FH segmentation

to point clouds during ego-motion estimation and model building, however their goal

is to use the segments as swappable and manipulable components for the purpose of

generating a graph for loop closing and GPU memory management.

The work of Finman et al. [59] is closest to ours, applying a modified version
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of FH segmentation to slices of a model output by the latest Kintinuous ego-motion

estimation and model generation algorithm. In this case, non-overlapping segments

of the world are generated by the modeling algorithm and they are segmented using

the FH graph-based method. Segments are merged and recomputed as necessary

according to the segment border set and the computed segment thresholds using an

iterative voting scheme. The main difference in our work is our goal of consistent

over-segmentation and the capability of handling overlapping clouds without a TSDF

volume.

2.4 Objects and their Pose

Much of the existing work on object pose estimation focuses on using a single RGB or

RGB-D frame for a known set of object instances. This is in contrast to generating

pose estimates for a general class of objects, which may have significant intra-class

appearance variation. Therefore, we divide the literature into two groups: those that

focus on pose estimation for a set of object instances, and those that focus on more

general pose estimation for object classes.

2.4.1 Pose for Object Instances

Pose estimation for object instances has been done for both 2D images as well as image

and depth pairs (or generated 3D point clouds). While there are almost as many ap-

proaches as papers on the topic, we highlight a few salient points before summarizing

some example approaches. A rather obvious observation is the prevalent use of con-

volutional neural networks (CNNs) in more recent work; this is to be expected given

the popularity and the demonstrated power of the deep learning approach. However,

this comes with a corresponding lack of flexibility as compared to a more traditional

approach (e.g., 2D or 3D feature extraction and energy minimization); once trained

for a specific set of instance “classes,” adding another instance class is not as easy

as adding a new set of features, at least without careful re-training. A slightly less

obvious observation is that object-instance based pose estimation amounts to not
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Figure 2.11 PoseCNN architecture from Xiang et al.; they train a CNN to recognize
object instance pose from single RGB images. Image reproduced from [223].

much more than memorization of the instances; i.e., since each instance needs to

be identified along with its pose, there is very little (if any) generalization occuring

in the learning mechanism. The best performing algorithm will effectively be the

best at memorization (and maybe pose interpolation, depending on the estimation

paradigm). This is in contrast to some of the algorithms we discuss in the following

section on pose estimation for object classes.

The pose estimation work we discuss in the remainder of this section fits in one

of the following approaches: (1) single image, CNN-based regression or classification,

(2) multiple image, CNN-based segmentation plus ICP, (3) single image with segmen-

tation and RANSAC, (4) 3D geometric descriptors or dense feature correspondence

and energy minimization, (5) search or reinforcement learning (rare).

Xiang et al. develop a convolutional neural network they call PoseCNN [222] for

6D instance pose estimation in cluttered scenes (see Fig. 2.11). The main contri-

bution of the paper is a CNN architecture that decomposes the detection and pose

estimation task into three main components: segmentation (pixel labeling of the ob-

ject instances), translation estimation (each pixel generates a vote a direction to the

centroid to regress the 2D centroid of the object in the images as well as the estimated

distance from the camera), and rotation estimation where the object features regress

to a quaternion representation of the rotation. The instance segmentation narrows
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the input image to the rotation network to the specific region of the image where each

detected object resides. These subregions are then extracted using the ROIAlign tech-

nique from Mask R-CNN [82], and fed individually to a rotation regression network

that outputs a quaternion for the estimated rotation.

In related work using CNNs, Zeng et al. propose a multi-view approach to label-

ing and determining pose for a known set of 39 objects in a pick and place context

[229]. The authors train a CNN based on VGG [24] to generate image-sized labeled

segmentations of multiple views of their target scene. They obtain multiple views

by using a commercial RGB-D sensor attached to the manipulator arm of the pick

and place robot. The labeled segments from these views are then back projected into

the scene using the depth and fused together to form a final point cloud. Models for

each object are then fit to this point cloud using a slightly modified ICP algorithm

to account for partial views (i.e. the model centroid is initially translated along the

optical axis by half the estimated dimension to better align the surface points). In

addition, they make use of the available knowledge in the hardware setup to auto-

matically generate a large labeled dataset with minimal human intervention through

automatic background subtraction and known camera and object poses.

Li et al. [126] present another CNN based method for multi-class object instance

pose estimation that provides several innovations over prior work. First, pose classi-

fication and regression (we diagram a rotation estimation hierarchy in Fig. 8.6) are

combined to improve on either approach applied in isolation; this is accomplished by

selecting an almost-uniform bin in SO(3) for rotation and then computing an esti-

mated delta rotation (as a quaternion). Second, the class label is included during

training by concatenating the output feature tensor with a one-hot class “image” they

call a “tiled class map.” Finally, they provide supervision to the feature extraction

network through object segmentation. They show all three components provide im-

provements to estimation accuracy, while their combined classification and regression

approach yields the most effective change.

The typical alternative to a CNN-based approach is learning sparse features for ob-

ject instances and then minimizing some objective function over the features in order
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to determine the 6-DoF object pose. Brachmann et al. [17], introduce a modification

to this two-step approach by using random forests to predict both class and object

coordinates for each pixel in an image, and then use a RANSAC-based approach to

minimize a three part energy function incorporating depth, object, and coordinate

penalties to determine the pose. The authors report that the approach performs

better than template-based methods (specifically Linemod [90] and DTT-3D [176])

but admits some of the benefits of feature-based systems, in particular, improved

robustness to occlusions.

Krull et al. explore an extension to the previous work by Brachmann et al. that

employs a CNN to serve as the energy function evaluator [117]. The input to the

CNN is a set of images consisting of two distinct subsets: the first subset includes

the synthesized rendered view and depth image generated from the hypothesized pose

(input from the RANSAC optimization method), while the second subset consists of

images derived from the observed depth plus the feature images generated by the

random forests. The CNN is then trained to compute an energy value representing

how well the hypothesized pose matches the actual data. At inference time, the same

RANSAC method (with the energy function replaced by the CNN) computes the final

maximum a posteriori estimate of the object pose. Most interestingly, they show that

the learned CNN is generic and is able to compute reasonable energy functions for

objects that were not in the training set (although the framework does assume those

object instances are known a priori and the object model is also available).

Simliar to the “analysis by synthesis” approach of Krull et al., Naryanan and

Likhachev improve on the “perception by search” (PERCH) generative approach to

recognizing object instance and pose in a cluttered scene [150]. As in many methods,

the object model is required a priori, but in addition, the number of objects must

also be supplied and the pose model is restricted to 3 dimensional space (x, y, and

yaw) to make the search space more tractable. In constrast to previous PERCH

approaches, this version of the algorithm handles extraneous clutter points. They

use combinatorial search to construct rendered scenes of the objects, taking into

considering the occlusion ordering, and then compare the rendered scene to the actual
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scene. The optimization includes functions that account for labeling points as clutter,

and is solved using a discrete tree search under the constraint that the objects are

added in non-occluding order. While the algorithm performs well compared to other

generative pose estimation schemes and supports significant occlusion and clutter

for the objects, it is not clear that it is better than other discriminative algorithms,

especially where efficiency is concerned. On the other hand, the algorithm does return

an estimate of the object pose uncertainty, determined by incrementally evaluating

the penalty on the clutter term of the optimization, which allows them to compute

the certainty of the estimated poses.

Choi and Christensen take a more traditional approach to pose estimation, focus-

ing on extracting 3D geometric descriptors to enable robust operation in unstructured

environments [28] without the need to generate a segmentation before pose estima-

tion. The authors describe the color point pair feature (CPPF), which is an extension

to the point pair feature and contains the distance between two points, the angles

between the point normals and the line between the points, and the colors at the

points. To enable efficient feature lookup, the CPPFs must be quantized to gener-

ate a hash key. Object learning is just the memorization of all possible quantized

CPPFs for an instance based on an object model mesh. The quantization parameters

for the features are learned to maximize discrimination while minimizing sensitivity

to noise. Object and pose detection are implemented by computing the CPPFs for

the query scene, generating candidate matches and using an efficient voting scheme

with agglomerative pose clustering to select the most likely pose hypotheses. The

whole approach is optimized on GPU and yields detections in about 1 second. Their

approach significantly improves the average precision over contemporary algorithms

[42], [90], [162].

Hinterstoisser et al. also work with the point pair feature [92], attempting to

improve its robustness to noise and clutter through several algorithm modifications.

Sub-sampling the point cloud intelligently reduces the number of features for an object

while retaining the most dicriminative point pairs, specifically keeping pairs with

larger normal angles. During pose voting, better sampling of point pairs based on
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Figure 2.12 PoseAgent from Krull et al. trains a reinforcement learning agent to select
pose hypotheses to refine until an acceptable pose is found. Image reproduced from
[118], ©2017 IEEE.

the size of the object helps reduce noise from background clutter. Finally, spreading

the distribution of quantized features into neighboring bins adds robustness to sensor

noise. To avoid double counting the votes, PPFs are indexed with bit flags when

they first vote. The votes are clustered in a more flexible way to account for the vote

spreading, and verification is performed with synthesized depth images. While this

work does not directly compare results with the CPPF work of Choi and Christensen,

they do compare with Krull et al. [117] and Brachmann et al. [17], and achieve

improved accuracy with lower computation times.

Do et al. present a recent approach for recovering 6D object pose [41] based

on the high-performance Mask R-CNN architecture [82]. Their approach is simple;

they add an additional parallel head network to estimate 6-DOF pose at the same

time that the mask, bounding box, and class are being estimated. The output of

the pose network is a 4 parameter vector, where 3 parameters represent an element

of the Lie algebra so(3) for rotations, and the fourth parameter is the translation

depth; the other translation parameters are estimated using the bounding box image

coordinates. They utilize a naive loss function that simply penalizes the norm of

the difference between the rotation and depth parameters from ground truth rotation

and depth. While they show competitive but not always superior performance to

several competing systems, they do operate more efficiently based on their use of the

Mask-RCNN model.

An uncommon approach to pose estimation is presented by Krull et al. in [118].

Instead of learning a specific function that maps inputs (e.g., RGB and depth) to
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an output (an object class and pose), they propose to train a reinforcement learning

agent to make sequential decisions about which candidate pose hypotheses to pursue

for refinement within a limited budget of refinement steps. Based on the work by Krull

et al. in [117], they train a CNN to learn a policy for choosing an action (selecting

the next candidate to refine) given the state space. The state space contains the

current available set of hypotheses, including information about how many times

the hypothesis has already been refined, the original image, and the output from

the random forest for every pixel. Therefore, most of the computational approach

is based on their previous work, using RANSAC to select a small set of pose and

object candidates. Pose refinement also proceeds as before, but is directed by the

output of the specialized CNN that determines the next action through the learned

policy. Learning efficiency is improved through a pre-computation step that allows

the algorithm to evaluate many more policies during a single backward pass during

training. The output of the CNN is a pair of energies for the set of possible actions.

Note that the formulation as a sequential decision process means the algorithm can

learn to recognize which candidates have a better chance of achieving the correct

pose and therefore can achieve better output with less work; however, the approach

as presented is rather expensive (between 17 and 34 seconds per image) even though

the accuracy was improved over their previous method.

Wohlhart and Lepetit present an object classification and pose estimation ap-

proach using a CNN to learn descriptors that can be used in a simple nearest neighbor

lookup [219]. The loss function for the network is based on triplets of samples where

the first two elements should have a lower Euclidean descriptor distance than the first

and third element. The loss function enforces a margin for dissimilar samples (whether

class or pose) designed to induce larger distances for different objects but distances

proportional to the difference in pose for the same object seen from a different pose.

Variations in appearance due to environmental parameters are handled by a pairwise

loss that takes pairwise samples of the same object with very similar pose but with

different viewing conditions and penalizes non-zero descriptor distances. Training is

done on both samples from the LineMOD dataset [89] as well as synthetic data. At
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inference time, the CNN produces descriptors used to retrieve the nearest neighbor

samples from the training set and exhibits a pose error below 20°for 96.2% of the test

samples, which outperforms LineMOD and HOG-based descriptors.

In a variation on the descriptor learning approach, Balntas et al. describe a CNN-

based system for learning a feature embedding for descriptors that mimic the metric

distance between object poses [6]. In other words, the distance between descriptors

for random image patches between two RGB-D images of an object should be similar

to the metric distance between the poses of the object. The authors also recognize

the challenge of determining the pose of symmetric objects, and propose a modified

loss function that considers the view similarity between different poses of an object

(e.g., changing the yaw of a rotationally symmetric object like a cup or bowl yields

no observable depth difference) and uses this as a weight for determining the loss.

Finding the best pose of a test image reduces to a nearest-neighbor lookup, where

they show improved performance as compared to both Linemod [91] and the approach

of Wohlhart and Lepetit [219].

While many pose estimation algorithms generate a pool of hypotheses for testing

and refinement, the typical generation approach utilizes local information based on

feature extraction. Michel et al. present an interesting approach for single-object

pose detection that, instead, constructs a conditional random field over the features

to produce a small number of globally-defined hypotheses [141]. After computing the

estimated object coordinates for the image using random forests (following [117]), the

algorithm constructs a fully connected graph with unary and pairwise terms over a

quarter-size image. Unfortunately, a problem of that size would still take too long to

solve, so the authors separate inference into 2 stages: the first solves a sparse non-

global problem that determines the inliers to the global problem, reducing the size of

the graph. In the second stage, the resulting fully-connected graph is optimized, but

they further reduce the size of the problem by solving for partial optimal solutions by

removing edges that exceed a thresholded distance D, which is the estimated object

size. It’s unclear whether the solutions are generated from anything more global than

any of the other methods that restrict the search space to locally consistent feature
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Figure 2.13 The approach of Gupta et al. first generates an instance segmentation from
RGB-D images, estimates a coarse pose estimation for each instances, then searches
for the best matching model to align to the instance. Image reproduced from [78].

sets, since the object will never be bigger than D anyway. While the results show it

outperforming some of the authors’ previous work, it is not a significant improvement

over Hinterstoissers PPF work [92].

2.4.2 Pose for Object Classes

In contrast to pose estimation for object instances, estimating pose for object classes

requires more generalization from the algorithm. Intuitively, this would require, at

the very least, an implicit understanding of general object features, and their relation

to the whole. In this section, we highlight research that de-emphasizes the focus on

specific instances and attempts to recognize an object pose, even when the particular

instance may not have been seen before.

Using an approach based on aligning CAD models to RGB-D scene elements, the

work by Gupta et al. [78] makes the statement: “understanding such a scene requires

replacing all the objects present in the scene by 3D models.” I’m quite sure that is not

a requirement for understanding scenes, but is certainly one way to do it, especially

if there is additional semantic information attached to the matched CAD model (see

Fig. 2.13). Most of the work for this paper occurs in a previous paper by the authors

[79] which generates contours, hierarchical segmentations, and scene labels. They
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use the output from this work to detect objects and their segments in the image.

To generate pose estimates, they train a CNN on CAD models of the object classes

to estimate the pose, making the assumption that the objects are supported in a

canonical way (i.e. on the ground or the table) to reduce the parameter space to a

single value for the object yaw. After finding the estimated floor plane and direction

of gravity, they estimate the object pose and find a subset of hypothesized CAD

models that match, using ICP to fit the models to the depth data.

Using a different approach, the main idea in Barnea and Ben-Shahar’s work [7] is to

use reflective symmetry to derive a reference frame (and partial pose) for the potential

object. Using this reference frame, they build an object descriptor by collecting the

surface normal values into a histogram where the normals are binned by their angle

relative to the symmetry plane. This histogram is then fed to an SVN for pose

classification. Their approach relies heavily on symmetry estimation, but generating

reliable estimates from a single partial view is not straightforward and they do not

discuss the difficulties of this task7.

Li et al. describe a method that uses an iterative refinement approach to find an

object’s pose based on an initial estimate [129]. Interesting aspects of this method

include the use of a deep network (FlowNetSimple [60]) for generating the pose re-

finements and the decoupling of the rotation and translation esimates. The algorithm

is meant to be general and applicable to objects that it has not seen before. Unfortu-

nately, this requires knowledge of the object model (or estimated model) as well as an

initial estimate from another pose estimation routine. The authors do not describe

how well the algorithm can converge based on the error of the initial estimates.

Finally, recent work by Grabner et al. [74] approaches the problem of pose esti-

mation and model retrieval for object categories by first estimating the pose and then

matching CAD models to the object (see the architecture in Fig. 2.14). The approach

7I have personally done some work on extracting reflective symmetry planes from CAD models
(not even partial views) and found that finding a strong reflective plane can be quite problematic
even when the full model information is present. The authors specifically show objects that have a
single reflective plane (chairs) but one exemplar is shown with an incorrect plane of symmetry. They
do not include objects that have multiple planes of symmetry or those with rotational symmetry. I
think symmetry is an important property and has the potential to play a significant role in object
and pose recognition, but this paper only just touches on the challenges inherent in the task.
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Figure 2.14 The approach of Grabner et al. estimates the 3D bounding box based on
an image of an object, and then tests a single model per object category to find the
best fit. Image reproduced from [74], ©2018 IEEE.

is based on virtual control points that are similar but simpler than Zhus keypoints

[236]. The CNN predicts the 2D projections of a 3D oriented bounding box along

with the box dimensions, allowing the algorithm to determine the pose in either a

category specific or category agnostic fashion (simply by training a network on object

images without distinguishing the output per category). Having the 3D keypoints for

the pose estimate allows them to test a single model per class for retrieval matching.

To do the retrieval efficiently, they train RGB to depth feature matches; i.e., they

generate descriptors in both modalities from two different CNNs and then match the

descriptors to find the best model.

2.5 Objects and their Parts

Hierarchies are an important way humans structure the world. Whole-part relation-

ships as well as class-subclass relationships form two very important hierarchies we

can use to understand relationships in the natural world as well as our “engineered”

world. For example, in a company, individual employees are parts of a team, a team is

a part of a department, and a department is a part of the company. Each component

part often has a specific purpose or function and a corresponding name.

It is not surprising then, that we can come up with parts to describe compositional

relationships in the natural world, or that we use parts to build up whole man-

made objects. From a vision perspective, recognizing and understanding parts is a

40



useful way to describe the whole object, especially when parts move. However, even

more interestingly, the concept of learning and representating object parts may help

provide a basis for inferring affordances (the things you can do with an object), the

intra-class variations between instances in a single class, and perhaps even functional

relationships between different object classes.

In the vision community, we can call out two distinct uses of parts: semantic and

explicit parts versus latent and implicit. The first usage is easily recognizable; we

talk about legs, seats, arm rests, and backs as parts of chairs. We can describe their

purpose and typical location, and even draw a prototypical chair using prototypical

representations of the parts. On the other hand, a recognition algorithm may repre-

sent an object as a collection of latent variables laid out in space, where the variables

are meant to represent the most distinctive features that allow the algorithm to rec-

ognize the object class. Where the explicit and semantic parts are easier for humans

to understand and have obvious meaning, the latent parts are more for the machine;

they may or may not correspond to portions of an object that we would label as a

meaningful part, but instead are simply the best recognized parts according to the

training data set and the nature of the features and the learning algorithm.

One might ask why the latter approach is interesting. There are two reasons: rec-

ognizing and detecting parts improves the detection of the whole object; and because

learning parts automatically means there is no need for human part annotations.

However, the really exciting part is when latent and implicitly detected parts provide

the basis for semantic annotations (i.e., a learning system can learn about the explicit,

semantic parts without human annotations.)

Some of the earliest part detection work started with a paper by Fischler and

Elschlager [63]. They conceived of a visual detection problem within a general pictorial

framework that represented the object of interest as a set of “coherent, or primitive,

pieces.” These parts could be arranged in a graph with spring edges between them, and

used to determine whether the object is present in an image using a heuristic-based

dynamic programming technique. Part representations could be pictures themselves,

or more general functions that compute a value for how well the part fits at a given
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Figure 2.15 Fischler and Elschlager used ”coherent, or primitive, pieces” to construct
templates based on explicit and semantic parts. Image reproduced from [62], ©1973
IEEE.

location. While the parts represented the local information, the relationships between

the parts defined the global structure of the object and how it should appear. The

authors recognized the general utility of the approach, and showed experiments on

both human face images as well as terrain recognition. This is an example of a

method based on explicit and semantic parts. Specifically, facial objects such as the

eyes, hair, nose and mouth are used as templates to explicitly detect the whole the

face (see Fig. 2.15). In addition, the parts were not random components or portions

of a face (e.g., a bag-of-words representation) but we instead semantic; when the eyes

are detected, it is possible to make a meaningful statement about where the eyes were

in relation to the other parts in the image.

In the 3D realm (i.e. working with a range image obtained from a laser scanning

system), Navatia and Binford describe a method of recognizing an object by parts

where the parts are generalized cylinders, derived from the depth discontinuities found

in the range image [151]. The relationship between these generalized cylinders form

the basis of the object’s structural description. In this case, while the parts are explicit

and (depending on the object) may correspond to semantic portions of the object,

the recognition process does not start from a semantic description of the object.

In a slightly different, non-computational context, Biederman proposes a theory

of human recognition that is explicitly based on recognizing objects based on parts

(or components, in his words) [14]. In this framework, he describes a small set of

shapes that we recognize as components of the larger object, and the way they are
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Figure 2.16 Felzenszwalb and Huttenlocher extend the framework of Fischler and
Elschlager and learn the parameters for the pictorial structures model directly from
data. Reprinted by permission from Springer Nature: Springer International Journal
of Computer Vision, [56], ©2005.

combined helps us recognize the particular object we’re looking at. While Bieder-

man proposes no algorithmic mechanism for performing recognition by parts, the

concept is obviously closely related to both of the previously discussed works. It is

distinguished by having no implementation, but supports the concept through a user

study that deletes portions of edges and intersections to form both recoverable and

non-recoverable images of line-drawn objects. The results imply that recoverable im-

ages are those where the components are recognizable, even with degradation (e.g.,

through contour completion as in Gestalt psychology [108]).

In more recent work, Felzenszwalb and Huttenlocher extend the work of Fischler

and Elschlager by modeling the energy minimization problem in a statistical frame-

work [54], [56]. This allows them to learn the parameters of a pictorial structure

model directly from data. They also specify a particular kind of deformation cost for

efficient computation; in their case, they note that the likelihood of the part locations

given the connection parameters can be modeled by a Gaussian distribution. They

mirror the original face detection experiment as well as a deformable model for es-

timating human body pose, based on figure ground segmentation using background

subtraction (see Fig. 2.16).

Another method of recognizing an object and its constituent parts was described

by Cour and Shi [35]. They began with an oversegmentation of the image, and used

an efficient search method based on a clever matching scheme that decomposed the
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template distance function into distances for each segment. The overlap between

each segment and the template is computed efficiently by exploiting Green’s theorem,

using the signed boundaries of the segment and the pre-computed integral image

transform of the template. Deformable parts (i.e. parts that can move relative to

each other) are supported by using the supervised template part decomposition and

allowing the parts to be transformed within a small tolerance of the original junction

point. Overall, given a set of labeled templates for a single class (horses from the

Weizmann dataset), they can detect the objects and determine part poses within 10

ms per image.

Felzenszwalb and colleagues update the deformable part model (DPM) again to

support a more general, and learnable, approach. However, the tradeoff in the new

approach is that parts are no longer explicit and semantic [52], [53]. Instead, parts are

latent models to be learned while being exposed to objects within a class; however,

with this tradeoff comes the benefit of no longer needing to produce labeled parts. In

this case, a single part model (represented as a learned histogram of oriented gradients

(HOG) template) may correspond to a semantic part, but the model itself cannot

associate labels to the parts. The algorithm is quite robust and was state of the art

(until deep learning and convolutional neural networks took over); the user specifies

the number of parts, and the system is carefully trained to find the best discriminating

part models as well as the deformability parameters (modeled as Gaussians) to detect

the target objects. While the deformability of the parts (based on a simple star graph

from a root part to the peripheral parts) handles some variations in the object shape,

the authors also describe a method to handle multiple poses as a collection of models.

Many variations on the approach have been proposed, including work in 3D [57],

[166], as well as work that shows DPMs can be interpreted as CNNs [73].

What if it were possible to learn common object parts without explicit human

labels. This would be one step along the road to Biederman’s theory of recognition

by components, and could aid autonomous systems with not only recognition tasks,

but also grasping and reasoning about affordances. Work by Tulsiani et al. takes this

first step using 3D object models from ShapeNet and learns to generate consistent
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Figure 2.17 Example part primitives generated using the volumetric primitives ap-
proach from Tulsiani et al. Reproduced from [203].

primitive components for several object classes [203]. In their approach, objects in a

canonical pose are discretized into a volumetric representation and provided as input

to a 3D CNN that outputs a regressed set of parameters defining up to k cuboid

primitives (i.e., 3 parameters for the cube scale along with 7 parameters describing

the cube’s transform to the part position). In order to handle variable numbers of

parts for intraclass variation, they additionally estimate an existence probabilty pk

for each part; during training, they minimize the average loss of a set of samples over

the induced shape distribution using the REINFORCE algorithm, adding in a small

reward for parsimony to help simplify the resulting shapes (see Fig. 2.17 for example

output).

In related work, Yi et al. learn a hierarchical part labeling from online shape repos-

itories by taking advantage of weakly supervised data [228]. In this case, they split the

task into two parts: (1) extracting hierarchical structure and labels common to human

models (by exploiting the geometry commonalities and the human-generated labels

embedded in the computer aided design (CAD) models), and (2) using a Markov ran-

dom field formulation over the mesh to classify the parts according to the previously

extracted data.

Very recently, Mo et al. presented PartNet [144], a benchmark dataset for fine-

45



grained and hierarchical part-level annotations8. In this massive work, the authors

use expert-defined hierarchies to guide professional annotators in generating fine-

grained segmentations for over 26,000 objects in 24 categories. They also propose

a part instance segmentation algorithm based on the PointNet++ algorithm [172],

extended to output semantic labels for each point, estimated part instance masks,

and a confidence for each instance. Their algorithm outperforms a state-of-the-art

point cloud segmentation algorithm trained using the PartNet dataset.

8In chapter 8, I describe my version of PartNet, which is a CNN designed to determine object
pose using part instance segmentation. This was developed concurrently with the PartNet described
in [144]; I found out about the work the very night of my dissertation defense!
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Chapter 3

Sensor Modalities and Data

Like many in the computer vision community, I would prefer to have a robot operate

with as few as two visual sensors, i.e., a stereo camera pair, mounted in whatever

serves as a head for the robot. This is attractive not only because it mimics nature,

but because it is simple and low-cost (from a hardware point of view). Having two

cameras allows stereo vision algorithms to compute the depth of the environment

where needed (most of the time), and cameras are passive devices that do not emit

radiation. This latter attribute not only reduces energy use, but makes it harder to

detect robots that may be used in sensitive situations (e.g., certain military, rescue,

or sensitive socio-political situations).

However, unlike many in the computer vision community, I also see the utility in

taking advantage of sensors that may give me more information to work with. While

I hope we eventually get to the point that binocular stereo cameras are sufficient

(perhaps with the capability of vergence), using 2D and 3D laser scanners can give

a robot enough accurate information about the environment that it can make good

decisions without hedging too many bets. The purpose of this chapter is to introduce

the sensor modalities often used for perception tasks on robots, and talk about some

of the fundamental ways we can capture data and perform computations on them.

We’ll look at sensors with increasing complexity, starting with a 2D laser line scanner,

moving to the pinhole camera model, and finally exploring 3D sensor configurations,

along with their benefits and drawbacks.
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Figure 3.1 A Hokuyo UTM-30 scanning laser rangefinder [93]. This sensor is quite
popular on many mobile robots.

3.1 2D Laser

Most 2D laser scanners (also called LIDAR sensors) in use on robots operate under

the principle of time-of-flight, i.e., they measure the time it takes for a laser pulse

to return from a distant object, and then compute the distance using the recorded

time and the speed of light. Since the laser beam is focused coherent light, it is

quite accurate and can estimate distances with low error, often less than 0.05% of the

distance measured. A 2D laser scanner rotates a laser beam in a plane, taking many

distance measurements over some active angular range covering half to three-quarters

of the circle.

One or more 2D laser scanners are often used for obstacle detection and avoidance,

as they return accurate distances to objects surrounding a robot at wheel level at high

rate (a popular sensor, the Hokuyo UTM-30 and its variants (see Fig. 3.1), scans a

270 degree portion of the circle at a rate of 40 Hz). Robots can use these sensors

with pre-generated maps of the building structure to localize (find out where they

are) themselves with a high degree of confidence. These sensors are often used for

mapping the local environment, or even a whole building floor using algorithms such

as simultaneous localization and mapping.

The immediate benefits of adding a 2D laser scanner to a robot are large: there are

off-the-shelf algorithms for localization, planning and obstacle avoidance in office-like

environments that directly use the output of these sensors. Many 2D laser sensors do

not take up much space, and can even be used on medium-sized aerial vehicles such
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as quadrotors for more advanced mapping tasks.

However, typical 2D scanners used on robots today are not inexpensive: the model

mentioned earlier is around $5,000. There are cheaper models available with lesser

capability, that may be sufficient depending on the requirements of the task. Lower

angular resolution, slower scan speed, and shorter ranging distance are among the

attributes you may trade off for lower cost hardware. That said, these sensors are

pretty standard inventory for most commercial and research-grade mobile robots you

can find on the market today.

3.2 Camera

Just about everyone is familiar with the operation and output of a typical digital

camera these days. In short, a camera produces a 2D image of a 3D world by recording

the projection of the light rays in the environment onto some kind of imaging surface.

The implications of this (which we discuss later) are important when we are trying

to understand the actual 3D structure of the world.

There are many ways to interpret the definition of an image. While an image may

be generated by a variety of mechanism, most can be categorized as either capturing

or rendering. Our own eyes capture images of the environment and cameras capture

images. From a robotics and computer vision point of view, we are mostly interested

in captured images of the environment. Therefore, we conceptually define an image

to be the projection of the light emanating from some volume of 3D space, through

a single focal point, onto a 2D plane from some point of view. This produces a

perspective projection of the 3D world. Given an object with fixed size, its image

appears larger the closer it is to the imaging device, and smaller the farther away it

is.

While film cameras have been around for a while, digital cameras have only been

around since 1975 [171] (perhaps earlier than you may have expected). Digital cam-

eras collect light through lenses just like any other camera, but instead of exposing

film with the light, an array of sensors is exposed with light. In this case, each picture
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element (i.e., pixel) records a value proportional to the amount of energy falling at

that location. The pixels are arranged in a 2D grid, and the sensor records the values

from the pixels either line by line (i.e., a rolling shutter) or all at once (i.e., global

shutter). This implementation detail affects the quality and content of the images

received from the camera, since the motion of the robot and the motion of dynamics

objects in the scene yield different results with different sensors. Most importantly,

rolling shutter cameras produce distorted images of moving objects, and therefore

global shutter cameras are the preferred choice for machine vision and robotics.

Digital cameras can provide a 2D image of the 3D environment directly to a

perception algorithm. However, it is still not (usually) possible to use that image

immediately due to other distortions that may be present. Like film cameras, digital

cameras still use one or more lenses to focus the incoming scene onto the imaging

sensor. These lenses can cause distortion of varying kinds that hinder our use of

cameras in perceiving the true geometry of the environment. For example, a lens

may produce a barrel effect (many wide angle lenses do this), or may introduce other

decentering effects based on the shape and manufacturing process of the lens. For

standard perspective lenses (the discussion of very wide angle “fisheye” lenses and

processing is outside the scope of this section), we are really aiming to reproduce the

pinhole camera model. This model is an idealized version of a camera that provides

straightforward geometric relationships that govern how the 3D scene is represented

on the image plane. Figure 3.2 illustrates the model visually.

The full relationship between a world point and an image point is governed by both

the intrinsic and extrinsic parameters of the camera. The intrinisic parameters include

the focal length f (shown in the figure), the coordinates (cx, cy) of the projection of

the optical center O on the image plane, and the coefficients (a1 . . . a5) for the radial

and tangential distortion models (due to Brown and Conrady [19], [20], [33]):
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Figure 3.2 A simple pinhole camera model. An image in the real world is projected
through the camera’s aperture (i.e., the pinhole) onto the image plane. The relationship
between world point P and the image point p is described by the projection function π
described in the text.


xd

yd

=(1 + a1r
2 + a2r

4 + a3r
6)

xn
yn


︸ ︷︷ ︸

radial part

+

2a4xnyn + a5(r
2 + 2x2n)

a4(r
2 + 2y2n) + 2a5xnyn


︸ ︷︷ ︸

tangential part

=fdist




xn

yn



 (3.1)

The full image generation equation is then:

px
py

 = fdist (π(KTP )) (3.2)

where π is the projection function that divides the point KTP by z. K is the intrinsic

camera matrix, and T is the extrinsic transform of the camera with respect to the

world. K is defined as:

K =


fx 0 cx

0 fy cy

0 0 1

 (3.3)

and T is:
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T =

[
Rc tc

]
(3.4)

where Rc ∈ SO(3) and tc ∈ R3. Since T is a 3 × 4 matrix, we use homogenized

world points P = (X,Y, Z, 1). fx and fy are really the product of the pixel scale

values and the focal length: fx = sxf and fy = syf (in case a sensor has a non-square

pixels).

3.2.1 The consquences of projection

Let us consider the consequence of turning the 3D world into a 2D image. We note

the obvious: we lose a dimension! Interestingly, the aspects of the environment we

no longer perceive are dependent on the pose of the camera in the world, which leads

us to wonder if we can obtain the missing information by moving the camera around.

The answer is yes, up to a point; the algorithm to do so is called “structure from

motion,” and uses multiple poses of a camera viewing a scene to reconstruct (some

of) the structure within the scene. The reconstruction has one drawback, howeer,

and that’s the fact that we cannot know the scale of the scene. How does one “unit”

in the reconstruction relate to a meter (for example) in the real world? It is not

possible to know this without additional information: if you recall the diagram of

the camera model and perspective projection function, it is easy to see that anything

along the line of the projection from a point in the world to the image plane yields

only the thing closest to the camera. This is not too surprising; we’re familiar with

this concept as our own human vision system generates images of the world in a very

similar way (with a single eye replacing the camera construct). However, what may

not be completely obvious is that the bit of the world we see at one point may also

occur at any point along the projection ray. This is where the scale ambiguity comes

from. Humans use the vergence of our binocular vision system to estimate depth and

we also use known relative sizes, foreground/background motion, and possibly other

cues to infer depth and structure, even without binocular vision (this is how people

with only one eye can still successfully drive vehicles).
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Unfortunately, this extra information is derived from the semantics of the image,

and not inherent in the image information itself. Knowing how the camera moves in

the real world could provide scale, and that is the approach some visual odometry

algorithms exploit when cameras are paired with an IMU to do visual-inertial navi-

gation. However, would it be more useful if the robot could just sense 3D in the first

place?

3.3 3D

Seeing the world “as it is,” that is, veridically, is one of the reasons 3D sensors are so

popular for robots. The purpose behind a 3D sensor is to produce measurements of the

world observed from the coordinate frame of the camera that correspond to distances

we, as humans, can directly measure in the world. Given enough measurements from

the sensor and knowledge of how the sensor moved within a static environment, we

could generate a 3 dimensional reconstruction of the environment in the memory of

a computer. This would be useful for a variety of robot tasks, including grasping

and manipulating recognized objects within the world, as well as navigation, motion

planning, and place recognition. This is the primary reason you may see the expensive

3D laser scanners on the roofs of self-driving vehicles: the scanners help provide

(mostly) unambiguous metric measurements of the world at a given time instant, and

these help the car localize itself within its known map as well as avoid obstacles that

may not have been recognized by the camera sensors.

We’ll talk about 3 sensor modalities for 3D in this section, two of which are image

based, while the third is point cloud based.

3.3.1 Stereo

A stereo vision system uses 2 or more extrinsically calibrated monocular (single eye)

cameras to enable the computation of depth for certain portions of their simultane-

ously captured images. Stereo systems do not directly observe the 3D point since they

don’t make direct measurements the same way a time-of-flight based laser sensor does.
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Instead, pixels are matched between the left and right images in order to compute

the disparity. Disparity refers to how far apart the matches pixels are in image space.

Since the cameras are viewing the scene from slightly different positions, a single point

in the world will be observed at slightly different locations on each camera’s imager.

Objects that are far from the camera will have smaller disparity, while objects closer

to the camera will have larger disparity. When we compute the extrinsic calibration

between the cameras in a stereo pair (i.e., determining the metric distance and rota-

tion between the camera views), we are able to use the metric distance to triangulate

the point in space. For a more technical discussion of this process, see the classic on

multi-view geometry, Hartley and Zisserman [81].

One of the primary challenges with stereo vision is finding the correspondences

between the pixels in the two images in order to compute the depth. Without correct

correspondences, you will get an incorrect depth value. This means reliable depth

computation using stereo cameras relies on distinguishing features in the scene and

minimal repeating structure. Repeating structures can cause problems by generating

matching in multiple positions along the epipolar line, making it difficult to determine

the correct disparity. Some algorithms use special techniques and heuristics to gen-

erate dense depth output [70], while other algorithms simply compute sparse points

based on strongly matching indirect features.

3.3.2 RGB-D

RGB-D sensors operate on a principle similar to stereo but can perceive depth even

when there are no observable features in the scene. How is this accomplished? For

RGB-D sensors based on structured light stereo, the sensor effectively projects a

texture onto the surface and uses what it knows about the texture to locate known

features. Then, observing how those features interact with the world relative to a

“canonical” view of the texture allows the algorithm to derive a disparity value. If we

project a known texture onto a wall from a fixed position relative to the observing

camera, then we can compute where the known features are observed in the camera

and find the disparity from which they were projected. As in a binocular stereo
54



system, we can use this disparity to compute depth.

Structured light stereo systems consist of a projector and a receiving camera. The

projector illuminates the environment with a texture image, often in the infrared

range, so it’s not observable to the naked eye. The receiving camera observes the

texture and its interaction with the world and uses it to compute depth with known

patterns within the texture. These two devices are often paired with a second color

camera that is extrinsically calibrated with the other camera, and the system together

can produce RGB-D images. A frame from an RGB-D sensor is actually a pair of

images, one color and the other depth, registered so that that pixel 42 in the color

image corresponds to pixel 42 in the depth image.

One of the first commercially available sensors of this kind was the Microsoft

Kinect. This device was originally developed as a controller or input system for the

Microsoft Xbox video game console, but was immediately recognized as an affordable

depth sensor by hobbyists as well as vision and robotics researchers. Because of

its onboard depth map computation at frame rate, you get a depth image and a

color image computed automatically by the hardware at 30 frames per second. This

produces a lot of information very quickly; the valid pixels in the depth map are

almost as dense as the resolution of the camera images directly, which yields denser

depth maps than most stereo camera pairs of the same resolution. Transforming the

depth map into a point cloud usually yielded around 262,000 or more points at frame

rate.

RGB-D sensors are still very popular, but they suffered from two drawbacks. First,

unlike regular monocular cameras, and unlike standard stereo vision systems, they

requires an active source of energy to illuminate the world with an artificial pattern

in order to perceive depth. This means that you’re limited in the depth you can

perceive both due to camera resolution but also because you must be able to discern

the texture. This is analogous to the problem you have likely experienced in real

life, when you are shining a relatively bright flashlight down the road at night, and

the effect of the light falls off with greater distance. The second problem is directly

related to the first, but probably more problematic; you cannot use most RGB-D
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sensors in the daytime because the sun’s energy saturates any information you might

get back from the structured light projector.

Finally, there is another way of generating RGB-D data: pairing a 2D color camera

generating RGB information with another 3D sensor (such as a laser scanner) that

does not observe color information. With the correct extrinsic calibration between

the sensors, it is possible to “paint” the resulting point cloud from the 3D sensor with

the colors from one or more color cameras. We demonstrate this in our later chapter

on multi-sensor graph calibration (see Fig. 4.1 in Chapter 4).

3.3.3 Laser

Finally, just like scanning laser range finders can directly measure depth in a single

three dimensional plane of the world, rotating the plane over time will cause the laser

to scan the world outside of the plane. Therefore, when we do this quickly (perhaps

many times a second) we can generate 3D point clouds. A common way of doing

this is to scan a vertical array of lasers around a vertical axis. Each laser maps out

a (truncated) cone in the world and generates depth measurements at some point

along the surface of that cone. When you put them all together, you get a 3D point

cloud of the world. This point cloud may be less dense in the vertical direction than

a stereo camera or an RGB-D camera depth based point cloud, but in many cases,

it has features that counter those drawbacks. For example, a popular sensor used in

many self driving vehicles and other robotic systems is the Velodyne [206] 3D laser

scanner. A sensor of this type may have up to 128 individual laser units arranged

in a vertical array that are rotated very quickly; this captures a point cloud around

10 times a second. While the individual scanlines are dense, the overall point cloud

can be sparse depending on the distance to objects and the motion of the scanner.

This makes it challenging to build up models of the environment from single scans.

However, the speed at which the system rotates is fast enough to effectively see 3D

dynamic objects in real time. This is especially useful for obstacle avoidance and

for high resolution localization. Given the accuracy of the LIDAR process, the point

clouds from laser scanner such as these can be used for very accurate localization and
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mapping (especially when paired with cameras) as in the work of Zhang et al. [231].

3.4 Representing surfaces

Depth images from RGB-D cameras (as discussed in section 3.3.2) are also known as

range images. A range image is an image where the values represent the depth from

the camera origin to the surface in the scene. Instead of recording intensity, the image

records a distance. However, due to the nature of the sensing device, it is common to

have unknown values present in the image (often indicated by 0, ∞ or NaN), where

no depth was measured or no surface was present up to the measuring limit of the

sensor. Range images are one form of data representing the 3D structure of the world

from a single point of view.

In contrast to an image containing projected 2D intensities, however, we know

the value z and given the intrinsic parameters of the device that generated the range

image, we can compute the world coordinates of the point P , up to the error in the

calibration and uncertainty of the range estimation. This allows us to construct an

organized point cloud using the range image data, such that each point is relative

to the pose (or frame) of the sensor and corresponds to a pixel in the range image.

Knowing z we solve for Px, Py with the following functions:

x =
z(u− cx)

f
y =

z(v − cy)
f

(3.5)

A point cloud that is unorganized does not have an image-based organization to

the points. In other words, it is not possible to look up point (i, j), and then trivially

find the view-dependent neighbors {(i+r, j+c)|r, c ∈ {−1, 1}}. This has implications

in both the efficiency of algorithms that use neighbors as well as preventing algorithms

that need to make use of the view-dependent structure of a organized point cloud.

The common methods of determining neighbors in an unorganized point cloud

depend on the construction of spatial data structures. These are data structures that
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store points in a structured way so as to make a neighborhood search more efficient

than a linear scan (i.e., calculating a distance function to every point in the dataset).

They accomplish this by analyzing the distribution of the input data along spatial

axes and subsequently partitioning space in some way to reduce the comparisons

required at each step by some factor (the usual aim is to eliminate as close to half of

the remaining points as possible). For example, a binary space partitioning tree splits

the volume at every internal node, such that at the first node, going left or right would

eliminate half the points in the volume that lie on the right or left, respectively. A k-d

tree (or k-dimensional tree) is a special case of binary space partitioning tree, where

every internal node splits the data set using a single dimension that best partitions

the volume. The complexity of a spatial data structure such is O(n log n), since, like

a sorted list, we must make log n steps to add a new datum to the tree, for all n data.

The loss of view-dependent structure brings another challenge: it’s not easy to

determine depth discontinuities. These are often an aid to segmentation algorithms,

and in some cases are used to help determine features. Even if one chose a viewpoint

pose within the space of an unorganized cloud, calculating the surface discontinuities

would still involve calculating the surfaces, another unsolved problem with a large

body of research for a solution!

To distinguish completely unorganized clouds from their triangulation- or graph-

based counterparts, we will call the latter a “surface-based” point cloud. While this

nomenclature is not the most evocative, it highlights the fact that view-based neighbor

lookup is not a simple indexing operation, and that we also have semantic information

regarding estimates of point connectivity for determining surface properties. In gen-

eral, there is no guaranteed maximum degree for each node in the point graph (even

triangulations may have triangle-fan structures). Not all surface-based point clouds

are graphs; some may be represented by lists of points with triangle indices, or slightly

more advanced representations using data structures such as half edges (which help

encode topological relationships between points, edges, and faces). Since we have not

(yet) created a sensor that can directly capture surface definitions from the environ-

ment, we must find some way to construct surface-based representations from point
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clouds. Surface inference is the process of recognizing surface properties from the

samples gathered from one or more observations of the surface. These properties can

include finding the bounds of the surface in the environment, the analytical form of

the surface for a given bounded region, as well as textures in both the geometric and

intensity domains. Knowing surface properties may help to:

� interpret the information in a sampled 3D scene,

� reduce or remove noise from the sampled representation,

� compress the sampled data (i.e. remove the samples) by replacing regions of

the scene with the surface properties,

� aid the grasping task by relating sampled data to known, graspable shapes,

� support the object recognition task by recognizing surface parts,

� and contribute to semantic definitions of the environment geometry (find walls,

floors, ceilings, horizontal and vertical support surfaces like chair backs and

bottoms).

The challenge is to take noisy, contradictory, non-uniform, and incomplete sets

of surface samples from multiple viewpoints and turn them into coherent, useful

representations of surfaces. While detailed descriptions are outside the scope of this

chapter, we highlight a couple algorithms of interest that provide food for thought

when considering the larger problem of visual understanding.

The first algorithm does not explicitly calculate a surface; instead, it makes the

assumption that points in a point cloud are noisy samples from a surface, and pro-

poses a family of likelihood maps that represent the probability of a surface passing

through a given point. Pauly et al. [165] compute surface fitting estimates (in this

case, weighted least squares plane estimation) for every point pi, and then use these

to calculate the likelihood that some point x has a surface passing through it and all

nearby points. The second algorithm from Kolluri et al. [109] computes a Delaunay

tetrahedralization of the cloud and then performs a classification of the tetrahedrons
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into “inside” and “outside” volumes, such that the boundary between the volumes de-

termines the surface of the cloud. The technique utilizes spectral partitioning to help

disambiguate outlier points from surface points, based on the method of normalized

cuts [187] (slightly modified to consider negative weights in their pole matrix, the

altered version of the graph Laplacian).
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Chapter 4

Extrinsic Multi-sensor Pose

Calibration

4.1 Introduction

Robots need to perceive the world in order to accomplish just about any task worth

performing; why have a robot if not to interact with the world? In this disserta-

tion, we focus almost entirely on the perception part of the interaction process (in

contrast with the manipulation part). Perception is almost always a necessary pre-

requisite before deliberation and action: the robot must interpret the state of the

environment to determine how it has changed since the last “look,” what objects and

obstacles are present, how the environment is configured, where it is in relation to any

goal locations, and how the environment state relates to any current ongoing tasks.

Some of these interpretations overlap, but the underlying principle is clear: the more

information the robot has about the world, the better it can perform its assigned

tasks.

For example, Table 4.1 lists some tasks a robot might perform in a military work

setting. This list is not at all exhaustive, but gives an idea of the variety of tasks a

military robot could perform. In some cases, specialized hardware may be required,

but in all cases, the robot must be aware of and understand important features of the

environment.
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Table 4.1 Examples of military work tasks for robots.

Logistics Troop Support Reconnaissance

material transport carry heavy equipment area overwatch

troop transport carry wounded troops map and search

guard duty support forward/rear surveillance enemy observation

resupply IED detection change detection

This is reasonable and intuitive. However, the details of how it accomplishes this

understanding, are harder to enumerate. In addition, robots are not humans. We

can mount a variety of sensors on a robot, and expect to use different sensors for

different tasks, or groups of sensors for any single task. We have previously discussed

useful, readily available sensor modalities. Let’s imagine that we mount these sensors

on an imaginary robot in a particular configuration. Many tasks may benefit from

fusing different sensor modalities; all perception tasks benefit from knowing the poses

of the sensors relative to the robot frame, and their poses relative to each other. For

example, say we mount a Velodyne 3D laser scanner and multiple color cameras on

the robot. If we know where the cameras are in relation to the Velodyne, then we

can project the laser points into the camera frames, and determine the color of the

points in the real world.

The question is: how do we know where the sensors are? Even if you have all the

engineering drawings for the sensors and the mounting hardware, it is not possible

to determine where the actual sensors are without some kind of extrinsic sensor pose

calibration process. This chapter discusses the algorithm we developed to compute

the relative sensor poses for multiple sensor modalities mounted rigidly on a robot

structure. In many ways this project began out of necessity: we had several sensors

on a robot we use for a variety of tasks and no way to determine their poses outside

of playing guessing games (suprisingly enough, this is a very commonly used tactic)!

Calibrating sensors (both intrinsically and extrinsically) is a tough and under-

appreciated problem. Most researchers who work with robots are familiar with the

requisite yet error-prone process of determining the poses of multiple sensors in order

to fuse the sensor data into a single reference frame. Most of the software used for
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calibration focuses on sensor intrinsics, and in some cases only pairs of sensors. What

do you do if you’re lucky enough to have a robot with more than two sensors, let

alone sensors with multiple modalities? In addition, current systems require careful

steps, and even some significant manual involvement. We would like an algorithm

and system that minimizes direct involvement from the user, handles as many sensors

and sensor types as possible, and makes it easy enough to collect data that it won’t

take all day.

Therefore, we aim to create a system in which a single data collection can au-

tomatically produce a globally optimized calibration of an (almost) arbitrary sensor

configuration. In this work we describe a method and system that computes the

relative poses for multiple environment sensors with differing modalities and varied

acquisition rates using graph optimization1.

Sensor fusion research in robotics would benefit from a calibration procedure that

is run interactively and online using only the capabilities of a mobile robot and its

current environment. While an algorithm that does not require a calibration object

would be ideal, the data association problem makes this difficult to achieve, which

is made even more challenging by differing sensing modalities. Therefore, we con-

strain the data association problem by making use of a custom calibration object,

shown in Fig. 4.4a, with the expectation that using the object will facilitate accurate

calibrations.

The system we present makes few assumptions about the number, relative pose

or fields of view of the sensors; in fact, the only requirement is that any single sensor

has a partially overlapping field of view with at least one other sensor, so that the

calibration object is always observed by at least one pair of sensors at the same

time2. The sensor type determines the representation of the object that is detected

and stored at each distinct pose of the target. We assume that the calibration target

is planar, which allows us to construct the geometric relationships between individual

sensor detections required for calibration. Finally, we assume that each sensor has

1Portions of this chapter are adapted from [158] ©2015 IEEE.
2This is why we say the algorithm can handle an “almost arbitrary” configuration of sensors.
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Figure 4.1 An example camera-colored 3D LRF frame from the calibration data collec-
tion.

been intrinsically calibrated, and do not include intrinsic parameters as part of the

problem formulation.

The full calibration procedure can be divided into four phases: data collection,

target detection, pairwise calibration, and graph-based global refinement. In short,

the data collection phase involves walking around the robot with the calibration

object, and using a remote trigger to indicate a frame capture. After the sensor data

is recorded, calibration object detections are performed for each sensor modality, and

the detections are associated into sensor pairs for the next phase. These detections

form a graph with a single connected component of sensors, where an edge represents

a sufficient number of co-occurring detections between a pair of sensors.

Given the data collected for each pair, the pairwise calibration phase proceeds by

coalescing all sensor detections for each pair into a single dataset. We then determine

the relative pose beteen each pair using an appropriate optimization routine embedded

in a RANSAC framework to automatically filter outliers.

Finally, these initial pairwise estimates are used to construct a hypergraph that

contains the sensors and calibration object detections as nodes as well as several types

of edges representing the geometric constraints between the sensor modalities. We

use non-linear optimization to minimize the error over the entire graph using the g2o

framework [119].

Through both simulated quantitative results and real-world qualitative results, we

64



show that the resulting framework successfully calibrates a number of different types

of sensors with minimal operator intervention, and the global optimization is shown

to be more accurate than the initial pairwise calibration.

4.1.1 Multiple modalities and other complications

Attempting to calibrate sensors with differing modalities is difficult since they produce

different kinds of data. Cameras generate 2D images, projecting what they see in

Euclidean three-space onto an image plane. 2D laser scanners generate an in-plane

scan of ranges from the laser origin, and 3D laser scanners generate point clouds (often

without additional information; we’ve found that the provided intensity information

is often not dense or reliable enough). Each sensor produces a different “view” of the

world. In order to determine the relative transform between any two sensors, each

sensor must be able to see some known object or set of features (let us conveniently

call it a calibration target) simultaneously and be able to reliably determine the pose

of the target.

All sensor modalities must be able to generate recognizable, measurable, and

preferably accurate observations of the target. Given the typical set of modalities

we observe on robots: 2D lasers, 3D lasers and other 3D cloud generating sensors

(e.g. ToF ranging, structured light stereo), and cameras, we need a calibration target

that can be reliably measured in a coordinate frame relative to the sensor as easily as

possible. Finally, the object must be distinguishable from the surrounding environ-

ment, in order to be able to associate the different observation modalities with each

other.

Depending on the nature of the target, we must observe it in multiple poses

to better constrain the relative transforms between pairs of sensors. For example,

imagine that two 3D sensors observe a planar calibration object from two different

viewpoints. Assume the sensors can reliably estimate the plane parameters for the

target (we interpret the observation as evidence of an imaginary infinite plane, this

helps to account for partial observations of the target, and can increase the amount

of evidence we can use to estimate a transform between the sensors). However, if
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the target only moves in the plane it represents (admittedly a low probability event),

then we only constrain 3 degrees of freedom, leaving 3 degrees unconstrained. While

one might make use of more detailed information about the structure of the target, it

is more flexible and reliable to simply ensure that the target is seen in multiple poses;

this adds slightly more time for the data collection phase, but ultimately improves

the calibration results with little effort.

Finally, different sensors have different sampling frequencies (even sensors of the

same modality). For example, one camera may run at a higher resolution but lower

frame rate, while another runs at lower resolution and higher frame rate, and a laser

scanner or 3D laser may run at an even lower rate depending on the implementation

(e.g., 0.1 Hz vs. 30-100 Hz). Dealing with varying time scales is not only a challenge

during run time, but also at calibration time! However, at calibration time, we have

more control over the situation. For example, we can tell the robot when to capture

the calibration object (i.e., by sending a trigger message), and this could give it enough

information to be able to record corresponding snapshots of data from each sensor.

Note that the time taken to capture a frame (we call the set of all participating sensor

readings captured after a trigger a “frame”) cannot be any shorter than the period of

the slowest sensor (let the slowest sensor period be Tslow). This is not the end of the

story though, since the reason for the sensor’s slow period is likely due to integrating

sensed data over time. This means that unless the trigger is given at exactly the start

of a sensing cycle, it’s only safe to take the second reported data packet, since the

first may have been incomplete and not even contain the calibration target. Therefore,

the capture rate is no faster than 2T−1
slow. For sensors with sub-second capture periods,

this is usually not a problem.

4.1.2 Summary

In this section, I have discussed why it is useful for robots to have as many sensors as

possible and how multiple sensor modalities can enhance the ability to perceive the

environment. I have also discussed the problem of fusing data from multiple sensors,

and how knowing their relative pose is paramount to the fusion process. In addition,
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I have explained why the problem is difficult yet of very practical importance.

In the rest of this chapter, I describe our flexible framework for accurately cal-

ibrating and fusing data from an (almost) arbitrary configuration of camera, laser,

and point cloud sensors, where initialization estimates are generated automatically

from the collected data. In addition, our system for collecting data requires only one

operator, who needs minimal domain-specific expertise and need not tediously asso-

ciate data points by hand. I describe a unique formulation of the calibration problem

as a hypergraph containing both sensors and observations as separate vertices, incor-

porating geometric constraints between the different detection modalities. Finally,

we developed a simulation system that produces all three types of data used for the

calibration and can be used to produce benchmark data sets for future calibration

research.

4.2 Solution

We call our solution the multi-sensor graph calibration (MSG-Cal) framework. MSG-

Cal handles cameras, 2D laser range finders, and 3D sensors that output point clouds.

It also handles any number of sensors, with the only constraints that: (1) every sensor

field of view overlaps at least one other sensor’s point of view enough to see the

calibration object simultaneously, and (2) that 2D lasers must interact with at least

one other modality (camera or 3D)3. These constraints are very reasonable, but do

imply that MSG-Cal cannot handle the extrinsic calibration of systems with non-

overlapping fields of view. However, MSG-Cal is a very modular system, and has the

capability of handling new sensors and data collection schemes, simply by initializing

the graph with the previous calibration and collecting calibration object observations

from the new sensor in concert with the existing system.

36-DoF 2D laser to 2D laser extrinsic pose calibration is difficult (at least when using a simple
planar calibration target). Since the laser intersects the plane as a line, the single observation does
not fully constrain the pose of the plane; there is a degree of freedom of rotation of the plane around
the line. Since we assume we know nothing about the transform between the sensors (indeed, this is
what we want to determine) and we cannot fix the plane pose relative to one of the sensors, we cannot
use multiple observations of the plane to constrain the pose (i.e., we have fewer constraints/equations
than unknowns).
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MSG-Cal conceptually simplifies the problem by interpreting sensor readings as

observations of one of two kinds of geometry: planes and lines. Cameras can detect

planes through the use of fiducial markers that have a known size (e.g. AprilTags

[155] or checkerboards), and 3D lasers and other point cloud sensing devices can

detect planes directly by grouping points together that support a specific model of

a plane. 2D lasers, on the other hand, can observe the lines that occur with the

intersection of the target plane with the plane of the laser scan. If we can associate

the observations of a single plane over two or more sensors, and we have multiple

observations of this plane in different poses, then we can compute the relative poses

of the pairs of sensors observing it. While we don’t know the actual pose of the

target object, this is not required; all we need to determine is the transform between

a pair of sensors. Each observation provides a new constraint on the relationship

between the sensors (usually; an observation may be removed as an outlier during the

RANSAC-based pairwise calibration procedure).

In addition, MSG-Cal also provides methods and tools to make it easy to configure

a system for calibration, collect data, and run the calibration process. The algorithm

proceeds in three stages: data collection, target detection, and calibration. The

first stage is obvious, but MSG-Cal provides two features that help make it more

robust for multiple-sensor, multiple time-scale configurations: background subtraction

and manual triggers. Background subtraction is used for the 2D and 3D lasers and

any other point cloud producing sensor. This greatly simplifies the data association

problem with very little cost: a small portion of the initial data collection is used to

collect the background (meaning the calibration object should not be in view), and

then the robot and background should stay relatively static during the remainder of

the collection process. Some dynamic objects are tolerated, with both the assumption

that they will not be as planar as the target object, and by using random sampling

consensus (RANSAC) to minimize outliers in the pairwise calibration stage. Triggers

are a particularly practical way to indicate to the system that it is time to collect

data across sensors with varying time scales. The trigger indicates that the calibration

object is ready to be recorded by all sensors, and the system captures the most recent
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complete observation for all sensors into a single sensor frame.

The second phase is target detection. In this phase, each frame collected previously

is processed to detect and compute the geometric properties of the target for each

sensor (plane or line), determining the sets of valid pairs for each frame. Imaging

sensors by default use the AprilTag detector for computing a plane estimate, 2D laser

scanners subtract the background from the scan to yield candidate a candidate line,

and the 3D lasers and other point cloud sensors run a standard RANSAC-based plane

estimation process after filtering the background-subtracted cloud to reduce noise

and lower the point count. The output of this phase is an organized set of pairwise

detections consisting of plane-to-plane observations or plane-to-line observations.

The third and final calibration phase is itself split into two sub-phases. The

first sub-phase uses each set of pairwise calibrations to estimate the sensor to sensor

transform using RANSAC to filter outliers. This occurs for each pair of sensors that

had a sufficient number of overlapping observations of the target object. The second

sub-phase constructs a global hypergraph consisting of the estimated sensor poses,

edges from sensors to observations, and constraints between cliques of sensors that

observed the target object at the same time. We use the graph to construct and solve

a non-linear optimization problem that yields optimized poses to minimize the error

over all sensors.

4.3 Implementation

In this section, we discuss the implementation of the extrinsic calibration of multiple

sensors with various modalities and acquisition timescales that are rigidly mounted

to a robotic vehicle.

In this context, calibration means the estimation of relative sensor poses such that

features detected by multiple sensors can be fused into a single coordinate frame.

Due to sensor noise and systematic feature estimation uncertainty, it’s unlikely that

features will align without error, so the process must be constructed to mimimize the

error across all sensors.
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Figure 4.2 The robot sensors we calibrate. The image highlights the three 2D Hokuyo
LRFs, the spinning Hokuyo 3D LRF, and the Flir Ladybug5 spherical camera.

In our case, we consider visible light cameras, 2D planar laser range finders

(LRFs) such as the Hokuyo�UTM-30, and 3D laser range scanners (such as the

Velodyne�HDL-32), or moving 2D LRFs such as the one shown in Fig. 4.2. We work

with two geometric objects over the three sensor types: 3D lines derived from 2D

LRFs and 3D planes derived from both the cameras and 3D LRFs. The calibration

target itself is a large planar poster (as seen in Fig. 4.4a) with fiducial tags for the

cameras. Section 4.3.1 describes the object detection methodology for each sensor

type.

The process proceeds in four steps, described in the following sections.

4.3.1 Data collection

Data collection proceeds by launching a capture process with access to the robot’s

sensor streams. The user physically places the calibration object in various positions

around the robot to capture sufficient views across all the sensors. Unfortunately,

the sensors we are calibrating do not all support time synchronization. Therefore,
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to effectively bypass the problem of temporal data association, we require the user

to hold or place the board in a fixed position until all sensors have taken at least

two measurements. The requirement for two measurements is for sensors with long

integration times (several seconds), where one cannot be assured the board was not

in motion during the capture of the first reading. This implies that the time the cali-

bration object must remain still is at most twice the period of the slowest integrating

sensor, which for most sensors will be less than one second. Thus, there is no need

to specify the data rates, or provide synchronization between the sensor acquisition

processes. Since the system receives messages at each datum from a sensor, it au-

tomatically provides an audible notification to the user when a frame is successfully

captured.

We use the term message to refer to a single logical datum from a sensor, i.e. an

image from a camera, a scan from a 2D LRF, or a point cloud from a 3D LRF. The

term frame is used to refer to a collection of messages from every sensor. When the

calibration object is in place for a new frame, the user sends a trigger to the system

and data collection begins.

Each frame collected contains all the sensor data. While it may be possible that

every sensor observes the calibration object, more likely only a subset of the sensors

see it at one time. We must detect and extract the calibration object geometry for

each sensor in order to correctly produce the edges in the sensor graph. At this stage,

the system has no knowledge of the relative sensor positions, nor of the location of the

calibration object in the environment, so given an image, point cloud or laser scan,

the system must automatically detect the object for each sensor if it is in view.

4.3.2 Target Detection

Background subtraction

Since we rely on explicit correspondences between calibration object detections across

sensors, we would like to have some assurance that the object we detect for each sensor

in a frame is in fact the calibration object. We solve this problem using a background
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subtraction approach, which practically eliminates the data association problem and

avoids constraints related to sensor modality.

At the very beginning of data collection, we allow the point cloud and line sensors

to build up a model of the background environment in order to subtract it from the live

dynamic data generated by the calibration target. This technique is typically used in

imaging systems for surveillance, object tracking, and background replacement [106].

In our algorithm, we use an analogous technique for 3D point clouds provided by PCL

[179] that takes advantage of a modified octree. This octree is a spatial data structure

that hierarchically subdivides volumes into octants and also provides efficient change

detection. We accumulate points from the 3D sensors over a short period of time,

and store the observations in the octree. When data collection begins we create

a new octree for each message from the sensors, and then subtract the accumulated

background, leaving only the calibration operator and target (and possibly a few other

noisy points) in the scene. Due to our usage of AprilTag fiducials on the calibration

object, we do not need any explicit technique for background subtraction for cameras,

since the tag detection automatically takes care of that.

Line and plane extraction from point clouds

Given a sparse point cloud from the background subtraction process, we use the fol-

lowing process to find the calibration object plane. First, sparse points are removed

using a statistical filter, normals are computed for each point using the local neighbor-

hood and then clusters are discovered by growing regions seeded by a point with local

minimum curvature. For each cluster, the largest plane is extracted using RANSAC.

The plane that best matches the known dimensions of the calibration object is se-

lected as the valid detection for this sensor. In practice, there are few clusters due to

the background extraction (usually related to the user’s body or other stray points in

the environment that may not have been captured by the background accumulation),

and all but one of these clusters is too small to be the object.

Line extraction from the 2D laser range finders proceeds in much the same way as

the plane extraction, however, instead of using a plane model, we use a line model with
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RANSAC. For each detected line, found using loose thresholds to enable high recall,

we ensure it is contiguous and within the required size bounds (given an approximate

size of the calibration object). Finally, we filter the egregious outliers, then refit a line

to the remaining points. The endpoints we use to define the detected line segment

are determined by projecting the actual scan endpoints to the closest point on the

model line. The resulting line segment is reported as the detection for this sensor.

Plane extraction using AprilTags

As described in section 4.3, the calibration target is primarily a planar object used to

induce lines and planes from 2D and 3D LRFs, but we need to also be able to detect

the plane from a camera. In the general case, cameras are projective devices, and

can only determine an object pose up to scale. Therefore, the AprilTag algorithm

utilizes the known size of the tag, planar homography, and the camera parameters to

determine the 3D pose of each tag [155], [194]. We utilize three tags for redundancy,

and use as many tags as are visible to determine the plane parameters. If more than

one tag is visible, we currently compute the average normal and distance to origin.

4.3.3 Pairwise calibration

The pairwise calibration phase estimates the SE(3) transforms between each pair

of sensors with co-occuring detections, using RANSAC to filter outliers. Since we

convert all detections into the geometric primitives of either planes or lines, then in

order to estimate the transform between each pair, we must solve one of the following

objective functions.

Plane to plane

We use the Hessian normal form of a plane Pi = {n̂i, di} where n̂T
i x = −di. Therefore,

if x is a point on plane Pi, then n̂T
i x+ di = 0. As in [202], we note that the rotation

and translation are separable problems. The normals are related by the rotation iRj

alone: n̂i =
iRjn̂j. Using the plane equation, we can define the relations:
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n̂T
i (

iRjxj +
itj) = −di

n̂T
i

iRj(−djn̂j) + n̂T
i

itj = −di

−djn̂T
i (

iRjn̂j) + n̂T
i

itj = −di (4.1)

n̂T
i

itj + di − dj = 0, (4.2)

where, in Equation 4.1 we utilize the fact the n̂T
i

iRjn̂j ≈ 1, since the corresponding

normals are unit vectors and iRj brings n̂j into the frame of n̂i.

We use these constraints in the following objective function:

min
(iRj ,itj)∈SE(3)

∑
(Pi,Pj)∈C

∥∥n̂i − iRjn̂j

∥∥+
∑

(Pi,Pj)∈C

[
n̂T
i

itj + di − dj
]2
, (4.3)

where C is the set of plane correspondences for a sensor pair. In our implementation,

we use the Kabsch algorithm [104] for estimating the rotation between the normal

sets. To determine the translation, we compute the least squares result of Equation

4.2. Initially, we treat all the normals with equal weight. However in the future we

plan to compute the uncertainty of the detected planes and use a variant of Wahba’s

algorithm to compute the optimal rotation as per the method discussed in [169].

Plane to line

In contrast to our previous work [202], we utilize an objective function that minimizes

the distance of the segment endpoints to the corresponding plane:

min
(R,t)∈SE(3)

∑
(Pi,`i)∈C

∑
xj
i∈`i

[
n̂T
i x

j
i + di

]2
(4.4)

While we provide no initial estimate, we have discovered that the line to plane

RANSAC algorithm performs best with a sample size of five in order to sufficiently
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constrain the degrees of freedom.

4.3.4 Global calibration

We now describe the graph optimization that achieves the global calibration. In the

previous phase, we compute a pairwise relative pose for every pair of sensors that

meet or exceed the minimum number of observations. In this phase, we construct a

hypergraph composed of several node and edge types that exploit the pairwise relative

transforms as an initialization for the global sensor pose graph. The distinction is

subtle but important: in the robot frame, we must pick one sensor as the root of the

transform hierarchy (most transform libraries, e.g. tf in ROS, require a transform

tree), and then connect the other sensors to this root, as per the pairwise connections

in the previous phase, effectively forming a spanning tree over the graph of sensors.

In addition, the pairwise calibration phase uses no additional information (e.g., other

co-occuring detections) in order to minimize the observation error over more than

one path in the graph. The goal of the global graph approach is to incorporate all

the information into a single optimization structure, courtesy of g2o [119]. In our

formulation, the sensor poses are the unknowns we wish to estimate simultaneously

in a global frame. We let the user pick one sensor that will act as the root of the

graph (e.g. a sensor with the largest FOV) and therefore become the origin of the

global frame. In order to estimate the initial poses relative to the root, we construct

a minimum spanning tree TS based on the edge weight between the sensors, defined

as the sum of the squared errors computed during the pairwise calibration.

We define our hypergraph G as a tuple of nodes V and hyperedges E. We include

three node types in V = S ∪ L ∪ P: sensor (S), line-observation (L), and plane-

observation (P). The sensor node set S ⊂ SE(3) contains elements xS ∈ S, the

unknown sensor poses, initialized as per the sensor-sensor transform computed from

the spanning tree TS. The line-observations and plane-observations correspond to

every inlier detection found during the pairwise calibration phase. Line-observations

L ⊂ R3 × R3 are elements xL ∈ L, the endpoints of the detected lines. Plane-

observations P ⊂ R4 are elements xP ∈ P, i.e. the normal and distance to the origin.
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Note that L and P nodes exist relative to their observing sensors, while the sensors

are the only entities in the global frame (where the root of TS is taken as the origin).

The objective of our graph optimization is to find the sensor pose set S that

minimizes the error over all edges in the graph. One can think of the nodes xα
i ∈

V, α ∈ {S,P,L} as providing the data values where i is the node identity and α

is the node type. The hyperedges eγ ∈ E provide relations on the data, where

γ ⊂ {i : xα
i ∈ V }. The edges are the observations from the sensors and we construct

functions Feγ that represent the noisy constraints in the system. Since the graph

contains three node types there are necessarily six corresponding binary edge types,

however, we currently only make use of five since we have not yet implemented a

line-to-line pairwise calibration procedure.

The functions Feγ compute the errors we wish to minimize, representing the degree

to which the parameters xα
i , . . . ,x

β
j satisfy the initial constraint µγ (computed as the

edge type-specific sensor observation). Ωα,β represents the information matrix of the

constraint.

E(G) = min
S

∑
eγ∈G

Feγ (x
α
i , . . . ,x

β
j , µγ)

>Ωα,βFeγ (x
α
i , . . . ,x

β
j , µγ) (4.5)

The graph optimization is implemented as a sparse non-linear least-squares min-

imization over the error values produced by the graph edges as shown in Eq. 4.5.

During optimization, the algorithm computes the Jacobians of the error functions,

and takes small linear steps in the tangent space of the sensor node manifold, in order

to distribute the error over the nodes as defined by their uncertainty. Each node type

provides an appropriate step operator in the tangent space, and uses the exponential

map as necessary to compute the corresponding point on the manifold.

In the following sub-sections, we define each error function Feγ given the edge type

defined by the set of observation types in each node.
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Sensor-sensor edge

The sensor-sensor edge represents the relative transform between the sensor nodes

it relates. Our error is defined as the difference of the relative transform from the

mean. We define the mean to be the initial relative transform we compute from the

pairwise calibration phase for this pair of sensors. If µij ∈ SE(3) is the initial relative

transform between sensor pair xS
i , x

S
j , then the edge error in the tangent space is

defined as:

logSE(3)(µ
−1
ij ((x

S
i )

−1xS
j )). (4.6)

Sensor-line edge

The sensor-line edge represents the measured line endpoints relative to the sensor’s

coordinate frame. This edge constrains the adjustment of the line in the sensor frame

with respect to the original observation. The edge uncertainty is related to the noise

inherent in the laser scan, i.e. we assume the points (r, θ) detected by the 2D LRF

are perturbed by two independent normally distributed variables a, b as in:

pi = (r + a, θ + b) (4.7)

a ∼ N (0, σr) (4.8)

b ∼ N (0, σθ). (4.9)

The error is defined in a six dimensional space (R3 × R3), with extremely low

uncertainty in the z coordinate for each point. If µij is the initially observed endpoints

of the line j from sensor i, then the error is xL
j − µij.

Sensor-plane edge

The sensor-plane edge is defined similarly to the sensor-line edge, but is parameterized

by the four dimensional space (R3×R) representing the plane parameters. Given µij

as the initially observed plane parameters, the error is xP
j − µij.
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Observation-observation edges

The following two hyperedges correspond to the unique constraints formed by the

interaction between the geometric primitives. Each hyperedge is structured in the

following manner:

where the squares are the observation nodes (line,plane) and the circles are the sensor

nodes. The black pentagon represents the hyperedge. In every case, the observations

are in the local frame of the corresponding sensor, which requires that we transform

one of the objects into the frame of the other sensor. This is achievable since the

sensor nodes represent their pose estimate in the global frame. We can compute the

relative transform between the sensors and use this to bring the second observation

into the frame of the first.

Line-plane edge

The line-plane edge connects a line and plane as detected by the respective sensor.

In this case, we use the plane definition to represent the error in R2 as the offset of

each of the line endpoints to the plane.

Plane-plane edge

Finally, the plane-plane edge connects the observations of the same plane from two

different sensors. Given the transform of P2 into the frame of P1, we define the error

in R4 as (a1, b1, c1, d1)− (a2, b2, c2, d2), where a, b, c, d are the plane parameters.

4.4 Evaluation

To evaluate the algorithm, we develop a simulation framework to provide ground truth

for evaluating the correctness of the algorithm, and we collect real data for qualitative

evaluation using color camera fusion with laser-generated 3D point clouds.
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4.4.1 Simulation

In order to provide a benchmark quantitative evaluation of the proposed calibration

procedure, we developed a simulation that generates the same raw sensor messages

as the robot yet allows us to specify the ground truth poses for the sensors. The

simulation includes a geometric representation of the calibration object derived from

the generating PostScript program and realistic implementations of the target sensors:

a pinhole camera that produces images of the object, a 2D laser range finder to

generate point clouds from the (r, θ) scan, and a spinning 2D laser range finder that

produces 3D point clouds. We briefly describe the data set generation process, then

follow with the implementation details of the sensors.

Data set generation

Similar to the collection procedure described in Section 4.3.1, we generate randomly

distributed poses for the calibration object, assuming the sensor system is situated

at the origin. The procedure allows one to specify the bearing θ, radius r, maximum

rotation around an axis φ and the number of random calibration object rotation

samples to generate at each pose (θ, r),

R(θ,r) ={(ψr, ψp, ψy)
i | ψr ∼ U(−φr, φr),

ψp ∼ U(−φp, φp), ψy ∼ U(−φy, φy)}.

For each sample, we“expose” the transformed calibration object to each simulated

sensor and record the observations in a bag file.

2D laser range finder

We implement the 2D LRF by intersecting rays cast from the origin of the sensor

with the plane of the calibration object. Assuming the origin of the sensor is po, we

construct a set of rays {ρi}N1 (normalized vectors) emanating from po with a configured

angular resolution, start, and end angle. For each scan, we perturb the angles used to

generate the rays, and once a valid intersection is found, we perturb the true radius
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according to Equation 4.9. We use the following ray intersection equation:

n̂ · (ρit+ po) + d = 0 (4.10)

n̂ · ρit = −n̂ · p0 − d (4.11)

t =
−n̂ · po − d

n̂ · ρi
, (4.12)

and discard intersections where t < 0, since that means the intersection is behind the

laser. With a value for t we can compute the point on the plane, and then determine

whether it is within the calibration object bounds. This is accomplished by testing

for negative intersections with all four half-planes defined by the boundary segment

normals. These normals lie orthogonal to the plane normal and boundary segment,

and emanate away from the centroid. Figure 4.4b shows an example laser scan in 3D.

3D laser range finder

The 3D LRF is implemented by “spinning” the 2D LRF around a vertical axis and

therefore generating multiple 2D laser scans from different poses. We mimic the

construction of the sensor shown in Fig. 4.2, with the following parameters: tilt, offset,

scans per degree, and scan angle. The first two parameters control the structure of

the sensor, while last two parameters determine the density of the scans and the field

of view (see Fig. 4.3 for an illustration of the geometry). If one sets the offset and tilt

both to zero, then the effect would be to simply rotate a 2D LRF with the forward

axis parallel to the z axis. Since the pose of the scan plane changes as the LRF rotates

around the axis, we must transform each scan into the frame of the origin. Doing so

generates the blue cross-hatched plane shown in Fig. 4.4b.
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Figure 4.3 The structure of the 3D laser range finder. θ indicates the tilt (away from
positive z), while d controls the offset from the axis of rotation, positive z. The shaded
region indicates the vertical scan pattern from the 2D LRF.

Pinhole camera

The camera is modeled by the width and height of the generated image and the

camera matrix:

K =


fx 0 cx

0 fy cy

0 0 1

 . (4.13)

We make the assumption that the camera is intrinsically calibrated, and do not gen-

erate any distortion. The image generation process is as follows: (1) a high resolution

image of the calibration object is generated (i.e. 3 pixels per mm) directly from the

metric specification of the poster size and embedded AprilTags. (2) Boundary coor-

dinates are extracted from the transformed points of the calibration object, and are

projected onto the image plane using the projection π : R3 → R2:

π(x) =

(
fxx1
x3
− cx,

fyx2
x3
− cy

)
. (4.14)

Given the real image coordinates, we compute the homography matrix H that

transforms the high-resolution model image to the planar deformation in the projected
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(a) (b)

Figure 4.4 (a) An image generated from a rotated calibration object at 2 m. (b) An
example laser scan and point cloud rendered in 3D before calibration, along with the
ground truth object

image. An example image is shown in Fig. 4.4a.

4.4.2 Experimental results

We evaluate the proposed system on two sets of sensors: one in which we know the

ground truth, and can provide quantitative error metrics with respect to computed

versus actual position, and a set of sensors mounted on a mobile robot, in which we

do not have ground truth. The calibration system is implemented as a set of C++

and Python packages based on the ROS ecosystem. The simulated and real datasets

contain 120 and 133 different calibration object poses corresponding to one frame per

pose, respectively.

The robot is a ClearPath Husky�with five primary sensors as shown in Fig. 4.2.

All three modalities are represented, including several 2D LRFs, one slowly rotating

3D LRF, and five cameras we use as one camera from the Ladybug5 spherical camera.

Error computation

We report our results using the following two metrics: error over the graph and

deviation from ground truth (for the simulation study). The graph error is currently

defined as the sum of the squared error over all edges other than the sensor-sensor

edges (i.e. every sensor-observation and observation-observation edge). Thus, this

error is related to all the data embedded in the graph. Every error is represented

82



in terms of meters, so the error unit is m2. For the simulation, we directly compare

the sensor pose model with the resulting poses from the optimization procedures. We

report these errors as the mean translational and angular offset (measured as the

smallest angle between the principal axes of two sensors, i.e. the angle subtending

the geodesic on the unit sphere S2) from ground truth over all sensors.

We also investigated several variations of the algorithm to determine performance

under different conditions. In particular, we were interested in the value of the pair-

wise calibration phase. First, we compared the global result when the sensors were

initialized from the pairwise spanning tree transform versus using the identity trans-

form, and discovered this yielded no significant difference. However, in both cases the

inlier set from the pairwise calibration was used. We wondered whether the results

would be the same if we used all the data in the graph (no filter) vs. using the pairwise

RANSAC inlier set (SAC filtered). The following two sections summarize our results

for the simulation and real-world robot sensors.

Simulation

We use the simulation to show the algorithm works with respect to ground truth,

given realistic simulated sensor data. Figures 4.5a and 4.5b show the benchmark

error of the simulation configuration against the known ground truth sensor poses.

One thing to note is that the variance of the graph solution is always lower than

just the pairwise pose results over multiple runs. In addition, it is interesting to

note that the mean of the pairwise angular error is lower than the graph (by 0.03

degrees), but this is not entirely unexpected given the error over the whole system:

the pairwise solution represents the best relative pose given the data, but the global

optimization has to correct for these errors across the entire graph. In Fig. 4.5c, we

see that the global graph error mean and variance are reduced as compared to the

best pairwise solution with no global optimization. Finally, Fig. 4.5e illustrates the

performance over multiple runs while comparing the global optimization performance

with and without filtering the outliers using the pairwise calibration phase. Note that

while the filtered error shows small variance, the error is significantly lower when the
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outliers are filtered.

Robot Sensors

To test the algorithm using real-world sensors, we collected data from the robot and

sensors shown in Fig. 4.2. Since we do not have ground truth, we report the results of

the graph error given the pose estimates from the pairwise calibration as compared to

the error after the global graph optimization (Fig. 4.5d). We also show the difference

between filtering the outliers and using all the data with no filtering (Fig. 4.5f). Note

the agreement between the relative values as compared to the simulation results; graph

optimization improves the error over the pairwise initialization, given the structure

of the edge constraints. In addition, filtering the outliers significantly improves the

error result.

However, we feel the qualitative results speak more clearly to the capability of the

algorithm, and we show two screen captures from the 3D visualization of the fused

data. Figure 4.6a shows a large indoor area captured with the system with an inset

of the corresponding image from the Ladybug’s cameras. Figure 4.6b shows another

scene from a highly cluttered machine shop in the same building, with small details

that reinforce the practical performance of the system.

4.5 Summary

We have presented an end-to-end system for calibrating a set of minimally constrained

multi-modal sensors rigidly mounted to a robot. Although many of the individual

concepts have been presented in previous works, as far as we are aware this is the

first algorithm to bring them together into a cohesive graph optimization framework

paired with a simplified data association process.

We have many plans to improve the capability of the MSG-Cal system as pre-

sented. In particular, some mobile robots may have sensors on dynamic joints (e.g.,

mounted on pan/tilt units) or wish to ensure a manipulator end effector is calibrated

with one or more sensors. Therefore, we are currently in the process of adding dynamic
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Figure 4.5 (a) Simulation mean translation benchmark error (poses computed against
ground truth). (b) Simulation mean rotational benchmark error (poses computed
against ground truth). (c) Simulation graph error comparing the best pairwise er-
ror result vs. global error. (d) Husky graph error comparing the best pairwise error
result vs. global error. (e) Simulation global graph error comparing results with and
without filtering the data using the sampling consensus. (f) Husky global graph error
comparing results with and without filtering the data using the sampling consensus.
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(a) Indoor, open area scan.

(b) Indoor, cluttered area scan.

Figure 4.6 Fused sensor output using the global calibration results for the Husky sensor
data collection. The Ladybug images are back-projected to the point cloud, given the
relative transform between the two sensors. Also note the blue, purple, and cyan points
that show the transformed 2D laser scan output. In particular, (b) shows how well the
laser scans align to the camera and 3D LRF, e.g. by their intersection on the handcart
on the left side of the image.
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joints to the graph and modifying the data capture process accordingly. Additionally

the current system is based completely on visual sensors; while certain processes may

have to change to support proprioceptive sensors such as IMUs, adding this func-

tionality to the system would be worth some of the compromises for the robots that

would benefit from it.

While we’ve already begun to evaluate the algorithm on a wider array of data

sets, we also plan to explore improvements to the camera plane estimation algorithm

and provide specific improvements to camera-camera pair calibrations.

Finally, my colleagues have begun the necessary work to make the code available

as an Open Source distribution for ROS so others can benefit and improve upon the

work.
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Chapter 5

Ego-motion Estimation Using

Vision

5.1 Introduction

A robot must know where it is and how it is moving for a variety of tasks, including

localization with respect to a known map, building a new map while localizing, and

determining its relationship to an object for manipulation e.g., opening a door, picking

up a tool, and shoving an object out of the way. The task of estimating the motion

of the robot’s body is called ego-motion estimation.

There are a variety of ways for a robot to estimate pose. First, a wheeled robot

may use knowledge of how the wheels turn to estimate how it is moving. This is

called dead reckoning, or odometry (odos - way, metron - measurement). This is a

very useful way to estimate motion, especially if the wheels have little slip and the

surfaces the robot drives on are not very complex. However, some robots may slip

on different surfaces, bump around, or use techniques for turning like skid steer that

cause motion estimation based on measuring wheel motion to fail or, at the minimum,

be inaccurate due to slippage and other un-sensed interactions with the ground (by

accumulating enough non-recoverable error the estimate pose no longer represents the

actual pose).

It would be useful to have a way of measuring motion based on how the robot pose

88



changes with respect to the environment, assuming large parts of the environment do

not themselves change while trying to take the measurement. Using vision is one

way to do this. Cameras are a relatively low cost sensor and they provide a lot of

information about the environment that the robot may use to estimate motion. The

basic operation of visual odometry (the approach of computing odometry using visual

sensors) is simple to explain but is considerably more complicated to implement.

Thinking generally, how could we reliably determine ego-motion? Imagine we

place a human or robot in the “construct,” the infinitely white artificial loading area

for the characters in the movie The Matrix. How would they recognize their motion?

Since there are no features or structures in any way (maybe a floor, maybe not), there

is no way to measure their motion with respect to the environment, because it doesn’t

really exist. While humans and robots can detect acceleration using their inertial

measurement units (i.e. accelerometers and gyroscopes for a robot and inner ear for

a human), without some kind of observable features in the environment, something

to “measure” distances by, there would be no motion.

Thus, computing the motion of a camera simply from the data it provides is not

a new concept. It has been called many things, often depending on the approach

taken, but the general term of visual odometry is apt here since we wish to measure

the motion of the robot system (which includes the camera) using the data produced

by the camera. In this dissertation, we use an RGB-D camera, because it has an

additional sensor and emitter that allow it to sense both color (red, green, blue:

RGB) and depth (D). The way it computes depth is through a process called stereo

disparity which computes the difference in location of an observed feature seen from

two different, but known, viewpoints. See section 3.3.2 for a slightly more in-depth

discussion.

When the color and IR camera are extrinsically calibrated with respect to each

other (which we include in the intrinsic calibration of the RGB-D sensor system),

it is possible to map a color to every depth pixel, and back-project the point into

the world to generate a point cloud for every frame seen by the camera. Sensors

such as the Microsoft Kinect and Asus Xtion Pro Live provide this capability over
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a USB connection, and can be operated using open source software from OpenNI

(conveniently integrated into ROS).

Point cloud generation is an ability most cameras do not possess, but in this case

it affords us with a straight-forward frame to frame alignment methodology, shown

in high-level pseudocode in Algorithm 1 [44].

Algorithm 1 Feature-based rigid motion estimation
1: compute features in query and model frame
2: compute correspondences between the features
3: Pq = point cloud of corresponding feature points in the query frame
4: Pm = point cloud of corresponding feature points in the model frame
5: cq = centroid(Pq)
6: cm = centroid(Pm)
7: C =

∑
q∈Pq ,m∈Pm

(q − cq)(m− cm)T

8: (U, s, V T ) = SVD(C)
9: S = [1, 1, det(V UT )]T

10: R = V diag(S)UT

11: t = cq −Rcm

This algorithm utilizes image feature correspondences between frames to compute

a rigid motion estimate that transforms the query cloud to the model frame. One

aspect to note about this formulation is the requirement for image features: distinctive

locations in the image that are robust to small changes in viewpoint and therefore can

be reliably detected from a different viewpoint. The best features are expensive to

compute yet still rely on having “interesting” image content. This can be problematic

when the image has repetitive textures, mildly textured regions, or high framerate

processing is required (e.g. for robot motion estimation).

The purpose of the descriptor is to provide a hopefully unique description of that

point within the image; usually this requires looking at a small area surrounding

that particular point in the image in order to derive enough context to provide a

usable and comparable description. The computation of correspondences, line 2 in

Algorithm 1, will not work well without eliminating outliers by embedding it in a

robust estimation framework like RANSAC. This implies evaluating many iterations

of the algorithm with random corresponding samples and choosing the correspondence

set that maximizes the number of inliers.
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While this algorithm utilizes both visual and structural features in turn, if enough

features are not found to generate sufficient correspondence between successive frames,

then the algorithm fails and loses tracking. For a purely visual system, this is unavoid-

able in some cases. For example, attempting to track motion against a blank wall

with no discernable features (often found indoors) will cause almost every algorithm

to fail; only systems that can rely on proprioceptive information like an IMU can

continue estimation during these failures. However, if we consider an algorithm that

uses both structural and visual information, we can handle many, if not all, situations

that would cause a feature-based algorithm trouble.

Following Whelan et al. [213], our approach merges two techniques that combine

structural alignment with photometric alignment in order to estimate the small cam-

era motion between frames. We combine an iterative closest point algorithm using

the point cloud data with a dense visual odometry algorithm that uses both the point

cloud and image intensities.

Each algorithm is independently executed on the frame pair to generate inter-

mediate constraints which are then combined to form a single set of weighted nor-

mal equations. We exploit the massively parallel SIMT (single instruction, multiple

threads) capability of the GPU to compute both the ICP and DVO steps. The output

of this portion of the algorithm is an estimate of the camera motion between frame t

and t+ 1.

5.2 RGB-D Sensors for Visual Odometry

RGB-D sensors are useful as a visual odometry modality since structured light or

laser ranging can generate features where there are none for computing depth. Also,

in contrast to most stereo algorithms (although it depends on the environment and

the amount of time you are willing to wait) RGB-D sensors typically generate dense

depth. Commodity RGB-D sensors provide color RGB images as well as depth, and

have internal calibration parameters that allow the color and depth to be aligned. We

discuss this in further detail in Chapter 3 on sensor modalities.
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We use structured-light RGB-D sensors because we wanted to take advantage of

the appearance information present in the color information, while also exploiting the

density and information inherent in the depth image. By combining an ICP algo-

rithm with dense visual odometry [107], [192] we can exploit the best complementary

features from both.

5.2.1 Feature-based Approach

In this section, we discuss our initial approach to this problem, based on the standard

frame to frame feature matching algorithm (see Alg. 1). We processed the RGB

images in several different ways to find features and compute descriptors. Using an

RGB-D camera, this approach provides some arguable improvements to monocular

visual odometry methods as the sensor itself provides metric measurements that (al-

most) immediately determine the actual position of the feature points in the world

relative to the camera pose. I qualify the statement with “almost,” since RGB-D

cameras still suffer from image noise and inaccuracies in stereo matching that don’t

always give the correct depth for a particular feature.

After finding feature points in the current image, the next step is to find corre-

spondences between these points and the points in the previous frame. To do this, we

compute a descriptor for each feature detected in the image. The aim of a descrip-

tor is to provide a hopefully unique numerical description of the detected location

within the image. Descriptors are often specified as some n-dimensional vector of

reals, so Di ∈ Rn. Usually this requires looking at the area surrounding the point

in the image in order to derive enough context to generate such a description. The

goal of a descriptor algorithm is to be robust to various changes in lighting, scale,

and rotation so that if Di and Dj are generated from the same world point, then

d(Di,Dj) < d(Di,Dk) for some distance metric d : Rn × Rn → R, and where Dk is a

descriptor for an unrelated feature in the image.

This is a whole field in itself; detailing the creation of efficient feature detectors

and effective feature descriptors for the primary goal of obtaining correspondences

between two or more images can fill a book. Feature detection and description are
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also useful for tasks outside of visual odometry whenever there is an interest in finding

relationships and correspondences between a set of images, e.g., stitching photos into

panoramas or localizing image location with respect to other cameras. In the case of

visual odometry, the descriptors are used to find the putative feature matches between

two images, by selecting matches that have the smallest descriptor distance between

them.

After generating an initial set of matches, it is quite likely there are some matches

that are not valid. In this case, we need to use one or more schemes to try and

find the best set of matches. One way of doing this is by randomly sampling the

correspondences and attempting to fit a model to the set of correspondences. For

ego-motion estimation, this model is the transformation T j
i =

(
Rj

i , t
j
i

)
that represents

the motion of the camera between frame i and frame j. This model is then used to

transform the feature locations from frame j to the coordinate frame for frame i, and

then use either a Euclidean distance or reprojection error metric to determine match

quality. Selecting a threshold for this metric allows us to exclude correspondences that

don’t meet the criteria while including correspondences that do meet the criteria. Note

that this step effectively disregards the descriptors computed initially, and provides

a geometric constraint on the feature match.

This process is called RANSAC [61]. In RGB-D visual odometry we can use a 3

point RANSAC, i.e., we can sample three point correspondences, since each one of our

feature points has depth, allowing us to back-project the image point to an [X,Y, Z]T

Cartesian position within the world. Thus, we only need three (non-colinear) points

to determine the full 6 degree of freedom (DoF) transformation between the corre-

sponding points. Using the transformation estimated from the sample, we transform

the entire feature point set and compare nearby points. This requires some care since

there is still error in the point positions as well as noise in the image contributing

to inaccuracies in the backprojected feature locations. Even small errors in feature

location are exacerbated during the back projection process if the point has a large

depth value, therefore some combination of Euclidean distance and reprojection error

can be used to mitigate this effect.
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We perform the sampling, estimation, and error computation for some number of

iterations, until we are confident we have found the best (or “good enough”) set of

correspondences. If you know (or estimate) the probability of finding a sample that

is part of a good model is pg, and the probability the algorithm will exit without

finding a good fit if one exists pfail given the size of the sample N , then you can

compute an estimate for the number of iterations L: L = log(pfail)
log(1−(pg)N )

. Data that

match the sampled model are called inliers, while the rejected correspondences are

called outliers.

When we find a model that has a high enough number of inliers, we can use the

estimated transformation directly, or refine the transformation estimate using the

full inlier set of correspondences. The camera motion is the inverse of the estimated

point transform. Setting the camera to the newly computed pose and capturing

another image, we can iteratively construct a path that represents the motion of the

camera through the scene. This is the simplest way of performing feature-based visual

odometry in RGB-D.

We would like to note several things about this approach. First, the success of

the approach is wholly dependent on the quality of the features and the ability to

match the features between successive frames. Therefore, if your features are not

well distributed over the image frame, if you do not have enough features or if your

descriptors are not distinctive enough to generate reliable matches then RANSAC

may fail. This means you may not have enough information to reliably compute

the transformation between the frames. Second, by using this kind of feature-based

method, we are ignoring a lot of additional information that is present within pairs

of RGB D frames. Recall from the sensor modality chapter the quantity of data that

we get from an RGB D frame; selecting even 1000 features is only a small fraction

of the total amount of depth and color data that is present in an RGB-D image.

This provides the motivation behind merging structure and texture information when

computing frame to frame alignment.

Assume, for example, that we are looking at a scene with very few image features.

In this case, features are intensity gradient configurations that trigger a particular
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feature detector. This scene contains a set of boxes with uniform color, placed in

the middle of the room with sufficient ambient lighting such that it is hard to obtain

more than a few 10s of features (similar to one of the Freiburg RGB-D datasets [195]).

Even still, those features may not be particularly distinctive enough to create reliable

matches between neighboring RGB-D frames. The structured light sensor, however,

would be generating a depth map that could otherwise provide enough information to

determine the relative poses between 2 neighboring RGB-D frames using an algorithm

such as ICP to align the dense point clouds from each frame.

A third problem with feature-based visual odometry is that feature extraction is

often too expensive to run at a camera’s frame rate, especially for the more reliable

features and descriptors (e.g., SIFT [132]). If we avoid computing feature descriptors

in the typical case, then we must make use of as much of the raw information as

possible, leading to the principles of the dense methods.

5.3 Methods for Dense Alignment

In the following sections, we discuss three methods for dense alignment appropriate

for RGB-D sensor use: ICP, DVO, and spherical harmonics. ICP specifically utilizes

point cloud information to iteratively minimize the distance between closest points,

while DVO warps an intensity image (i.e., the grayscale conversion of the RGB data)

based on depth in order to minimize the photometric error. Both methods are de-

scribed below, followed by the method we used to compute the joint model. Finally

we discuss the less well-known model of spherical harmonics and how it can be used

for ego-motion estimation.

5.4 ICP

In 1992 Besl and McKay describe a method for registering two shapes based on a

function that, given a point on one shape, computes the closest point on the other

shape [13]. The closest point correspondences are used to compute a transforma-
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tion between the query shape that moves the shapes into better registration; better

registration is defined as minimizing the squared distance between the closest point

correspondences. However, since a single iteration can change the closest point corre-

spondences, this is done iteratively until a termination criterion has been met. They

called this method the ICP algorithm. ICP will converge to the nearest local minimum

that optimizes a mean-squared distance metric between the point sets. While Besl

and McKay formulate the approach in a generic framework to handle many different

geometric representations, we focus exclusively on the 3D point cloud formulation

described next.

Given two clouds P1 and P2 of points in R3 and some distance metric d : R3×R3 →

R, finding the closest point pj ∈ P2 for each point pi ∈ P1 allows one to compute

the transform TP1→P2 to minimize the distance between each pair of corresponding

points. We define

TP1→P2 = [R | t] , (5.1)

where R ∈ SO(3) and is represented by a 3 × 3 rotation matrix and t is a 3 ×

1 translation vector. Besl and McKay’s algorithm then iteratively minimizes the

following energy function:

argmin
R,t

E(P1,P2) =
∑

pi∈P1,pj∈P2

[d(Rpj + t,pi)]
2 , (5.2)

where d is the Euclidean distance function between points.

However, unlike the goals for a typical feature matching algorithm, the correspond-

ing nearest points usually are not the actual point that would best match between the

clouds, i.e., they may not be points that would correspond given a globally optimal

transform. There is also a difference between aligning two clouds that are (almost)

exactly the same and just vary by their pose, and matching two clouds of a scene that

are generated from one or more sensors under different viewpoints. In the first case,

there is an “exact” correspondence between points in cloud P1 and cloud P2. In the

second case, there is likely no exact correspondence, which means that any transform

between point correspondences will ultimately contribute some error to the overall
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cloud transformation estimate. In addition, since the observation of the environment

from an RGB-D camera is inherently a discrete, noisy sampling of the surfaces in

view then it is highly unlikely that two corresponding points will match exactly. Is

there another, more effective way to compute the distance between the point clouds’

implicit surfaces?

Chen and Medioni described a similar method they developed for registering range

images for the purpose of constructing a 3D representation of an object [27]. They

minimize a very similar energy function, but instead of point to point distances, they

minimize the distance between a query point pj and the tangent plane ν(pi) of the

model point pi (defined by the point and its normal ν(pi)):

argmin
R,t

E(P1,P2) =
∑

pi∈P1,pj∈P2

[((Rpj + t)− pi) · ν(pi)]
2 . (5.3)

Intuitively, using the point to plane metric makes sense when considering two

different point clouds (since point locations will likely not match but the implicit

surfaces and their normal vectors should), and it has also been shown to converge more

quickly and reliably, especially when the surfaces are already nearby [170]. Therefore,

we choose to align two RGB-D point clouds from a moving sensor using the point to

plane function to compute the incremental ego-motion transformation.

Note that this does require an extra step to process the point cloud to generate

normal estimates at every point. Section 5.4 discusses how to do this.

A detailed account of ICP is not the purpose of this section; we refer the interested

reader to the reviews by Pomerleau, Colas and Siegwart [168] and Wang and Zhao

[209]. Instead, we highlight the important aspects of the algorithm relevant to aligning

nearby frames from a frame-rate RGB-D camera.

Algorithm initialization

Preparing an RGB-D frame for ICP requires several steps. First, we utilize a coarse-

to-fine processing approach to help handle larger transformations between camera

frames. We accomplish this by computing a pyramid of RGB and depth images. The
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original images are blurred and subsampled to generate the next layer in the pyramid,

and this is repeated until the desired number of levels are generated or the resolution

is smaller than some threshold. In this work, we use 3 additional levels (a total of

4 levels when considering the original resolution) that yields pyramid image sizes of

(80, 60), (160, 120), (320, 240), (640, 480).

Second, since raw depth data is often noisy, even for near-depth scenes, it is helpful

to reduce the noise through a filtering operation to help improve the normal generation

and point-plane matching. While this may eliminate smaller details in the depth map

and effectively blur small depth transitions, the details tend to be less important for

visual odometry since the larger surfaces on average are contributing more to the

alignment than many of the small details1. We do this through an algorithm called

bilateral filtering [200] applied to the depth image. This process smooths depth values

within a specified metric radius and depth threshold to avoid considering values that

are too far apart and artificially blurring sharp edges and depth discontinuities.

Finally, we generate normals for each point in the point cloud. This procedure is

described in the next section.

Normal computation

There is no sensor that can directly provide surface normals from the environment;

but surface normals are a useful way of summarizing the characteristics of a surface at

a given point, and they are integral for computing the point to plane metric in ICP.

Therefore, we approximate surface normals at a point by examining its neighbors

within the organized structure of the depth image. There are several different ways

to compute the neighbors, as well as several different ways of computing the normal

given the neighbors. We describe the two methods readily available to us, and why

we use one over the other.

Computing the neighbors To find a point’s neighbors in a general, unorganized

point cloud, one must utilize a spatial data structure. Given a set of points that have

1Although small details can be important in some situations, see [71].
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been processed into such a structure, one then has access to an efficient interface for

querying points within the structure with respect to several spatial attributes. For

example, one may wish to search for points that are nearby (i.e., are neighbors) of

a provided query point; this is usually accomplished by finding a set of k nearest

neighbors (and their distances) or by finding all points within a specified radius r of

query.

Two typical spatial data structures in use for point clouds (and provided by Point

Cloud Library (PCL)) are octrees and k-d trees. Octrees are an extension of the 2D

quadtree spatial data structure to 3 dimensions. In an octree, the total bounding

box of all points is considered and then split into 8 octants (imagine dividing a cube

into 8 equal parts by dividing each face into four equal squares). This first split

becomes the root of the tree. Then, for any occupied octant, another subtree is

added by recursively subdividing that octant, the recursion terminates when a depth

threshold is reached or no more points are found in any of the leaf nodes. If every

point is in a separate leaf, and the octree has depth d, then it takes no more than

d operations to find a point, and on average log8(n) operations where the cloud has

n points. Unfortunately, d may be larger than log8(n), since the depth depends on

the structure of the points in space; if many points are clustered tightly and each leaf

must contain no more than 1 point, then, like an unbalanced binary tree, the depth

may be worst-case O(n).

The other data structure, k-d trees, are meant to better account for this situation,

while still handling the tightly clustered case mentioned above [11]. In addition, a

k-d tree is able to handle dimensions higher than 3 by generalizing a binary tree to k

dimensions. It does this by recursively dividing the point set using the succession of

dimensions (e.g., for a cloud in R3, {1, 2, 3, 1, 2, 3, 1, 2 . . .}), and then attempting to

ensure that the number of points in each subtree are relatively balanced by splitting

on the median of the values for the selected dimension. This is only possible when

the points are known in advance; when points are inserted dynamically, there is often

nothing that can be done to guarantee the tree will be balanced. Instead, the client

can decide how much balance is required, and choose to periodically rebalance when
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the tree becomes sufficiently unbalanced.

In contrast, when a point cloud is organized, as in the case of the depth maps

provided by typical RGB-D cameras, looking up neighbors is much more directly

accomplished by simply indexing the points by the neighboring image coordinate

values. While this provides the ability to find potential neighbors, it still requires

looking at the distance between the points, since if it is greater than the target

radius, it should not be considered as a neighbor.

Computing the normal A simple, geometric way to compute the normal is by

finding the cross product of two vectors defined by the target point and two neighbors.

The three points determine a triangle, and the cross product provides the normal

direction of the triangle plane. Using only three points will likely produce a very

noisy normal map; therefore, a slightly more robust approach is to compute the mean

of all normals in the neighborhood.

A better and more prevalent approach, but also more expensive, is to find the best

plane that fits the neighborhood where the squared distance from each point to the

plane is minimized. Hoppe describes this in his paper on surface reconstruction [95].

Therefore, we estimate a normal at point pi using the following approach:

� find the points {pj : pj ∈ Npi
} in some neighborhood of pi

� compute the covariance matrix, where pi is assumed to be the centroid of the

neighborhood

� perform principal component analysis of the covariance matrix, finding the

eigenvector e0 corresponding to the smallest eigenvalue

� ni =
e0

‖e0‖

Computing normals is a challenging problem in itself and may involve tradeoffs

and specialized computations to handle the general case [178] (e.g., computing the

neighborhood size adaptively based on the density of points in the local neighbor-

hood). For an RGB-D camera with an “organized”point cloud, however, it is possible
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to compute estimated normals quickly and efficiently2, and this operation can be done

in parallel.

Normals can be used in a variety of computations, not just for ICP. . . For example:

segmentation (i.e. oversegmentation in Chapter 7, LCCP [31]) as well as rotation

estimation for cloud alignment using spherical harmonics (in the computation of the

extended Gaussian image, see section 5.7).

Finding Correspondences

The nature of the ICP algorithm requires correspondences between points on every

iteration. Correspondences are found intentionally in the basic feature-matching al-

gorithm, but in this case, we are not using features, and we’d like to avoid expensive

spatial data structure creation and lookup for each point in the query frame. We

solve this problem by making the assumption that when operating at frame rate, the

resulting clouds will be relatively close together3, and therefore it is feasible to project

the query points into the previous frame (initially with an identity transform) to find

the correspondences. This was first demonstrated in the work on Kinect Fusion [99],

[152].

We use the estimated model to query transformation in each iteration to compute

the corresponding point pairs and to compute the Jacobian used in the optimization:

� transform the model points into the query frame

� project the model points onto the depth image plane, discarding points outside

the viewing frustum

� for each projected point pi, compute the interpolated query point qj
2Although perhaps not as accurately as possible.
3Note that this assumption does not always hold, especially for commercial RGB-D cameras

with “low” framerates and faster motions; therefore for most of these algorithms, the robot or user
must move the camera slowly. While not a very practical restriction, this can be considered a
hardware problem; it could be addressed with higher framerate global shutter RGB-D cameras. One
may imagine that even these could hit motion limitations, and therefore research that investigates
effective low-cost dense correspondence algorithms would be relevant.
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Optimization

ICP is formulated as an iterative non-linear least squares problem for two reasons: the

true correspondences are not known ahead of time, and the transformation of points

involves non-linear functions of the rotation parameters. In practice, we linearize

around the identity at each iteration and formulate the problem as a linear least

squares problem.

Using the point-plane construct, the initial problem is formulated as:

Eicp =
∑

pt+1
n ∈It+1

[
(pt − ξ̂Tpt+1

n )T · nt
]2

(5.4)

where T is the current estimate of the transform, pt+1
n the current point in the query

frame, pt and nt are the corresponding point and normal in the model, and

ξ̂ =

[ω]× v

0 0

 (5.5)

is an element of the Lie algebra se(3), representing the differential transformation we

are estimating in this iteration. With some algebraic manipulations after linearizing

around the identity, we get the resulting Eq. 5.14.
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Eicp =
∑

pt+1
n ∈It+1

[
(pt − (I + ξ̂)Tpt+1

n ) · nt
]2

(5.6)

∑
pt+1
n ∈It+1

[
(pt −Tpt+1

n − ξ̂(Tpt+1
n )) · nt

]2
(5.7)

∑
pt+1
n ∈It+1

[
(pt −Tpt+1

n ) · nk − (ξ̂Tpt+1
n ) · nt

]2
(5.8)

∑
pt+1
n ∈It+1

(pt −Tpt+1
n ) · nk −


[ω]× v

0 0

Tpt+1
n

 · nt


2

(5.9)

∑
pt+1
n ∈It+1

[
(pt −Tpt+1

n ) · nk − ([ω]×Tpt+1
n + v) · nt

]2
(5.10)

∑
pt+1
n ∈It+1

[
(pt −Tpt+1

n ) · nk − (ω ×Tpt+1
n + v) · nt

]2
(5.11)

∑
pt+1
n ∈It+1

(pt −Tpt+1
n ) · nk −

Tpt+1
n × nt

nt


T ω

v




2

(5.12)

∑
pt+1
n ∈It+1

(pt −Tpt+1
n ) · nk −

Tpt+1
n × nt

nt


T

ξ


2

(5.13)

∑
pt+1
n ∈It+1

[−Jicpξ + ricp]
2 (5.14)

5.5 Dense Visual Odometry

While ICP focuses on aligning point clouds by minimizing the point to plane distance

between all point correspondences, Steinbrucker’s dense visual odometry algorithm

focuses on minimizing the photometric error between corresponding points[107], [192].

The algorithm is predicated on the photometric constancy assumption, i.e., that given

two nearby but different viewpoints of the same scene, a single point on a surface

reflects the same amount of light and therefore produces a similar intensity for the
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corresponding point in each view4. Whether this is a realistic assumption will depend

on the nature of the scene, including the lighting, surface materials, and the nature

of the transformation between the two views. Practically, and ignoring prevalent but

minimal specular effects, smaller camera motions support the assumption better. The

camera itself is also a complicating factor: most RGB-D cameras provide an automatic

exposure and automatic white balance function that can significantly change the

overall brightness of the scene and otherwise confuse the photometric function since

corresponding points no longer have the same intensity value between frames (more

recent5 direct VO methods take great pains to account for this effect by calibrating

and estimating online exposure parameters, for example, see [12], [50], [234]).

Why is this approach interesting, when the assumption is so tenous? Ultimately,

an ICP approach will only function on point clouds with enough geometry to constrain

the least squares optimization. DVO, on the other hand, is capable of using geometry

and appearance to compute the information needed to align frames. While this may

not be as effective at aligning individual pixels as using point features derived from

appearance (i.e., indirect methods with keypoints and descriptors), it is the dense

information over large regions of the image that allows the algorithm to compute a

transform even when there is no significant geometry; e.g., when looking at a poster

on a wall.

Dense visual odometry (DVO) exploits the depth / intensity pair produced by

RGB-D cameras, and operates using the following equation, where a point on a surface

is assumed to have the same appearance (i.e., intensity) when seen from two different

viewpoints:

It(x) = It+1(τ(x, θ)), (5.15)

where It and It+1 are consecutive images, θ ∈ SE(3) and τ(x, θ) is a warping function

that maps pixels from frame t to t + 1 such that the error derived from Eq. 5.15 is

4I would be inclined to call this the photometric constancy simplification, since there is rarely a
case where this would actually hold.

5At least, more recent than when this work was performed.
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minimized:

Edvo(θ) =

∫
x∈Ω

[It+1(τ(x, θ))− It(x)]2 dx. (5.16)

The warping function, in particular, enables us to compare frames by transform-

ing the points in frame t+ 1 to frame t using the currently estimated transformation

parameters, and subsequently projecting them to the image plane to determine their

intensity values. The DVO algorithm proceeds by iteratively computing the transfor-

mation that minimizes the Edvo energy. Each iteration computes the Jacobians based

on mapping the current frame intensity image onto the transformed point cloud from

the previous frame, then computes the difference between the expected intensity val-

ues and the mapped intensity values. A set of partial derivatives are computed at each

point, along with the residual, and each is accumulated into the normal equations for

the least squares optimization.

The DVO energy is optimized using an iteratively reweighted least squares ap-

proach in an inverse compositional formulation. The original formulation is the stan-

dard forward additive procedure proposed by Lucas and Kanade in their optical flow

paper [133]. The objective function is optimized with respect to the change in the

parameters of the warping function (θ ∈ SE(3)) and the parameters are updated by

simply adding the delta values. In the inverse compositional model [5], the objective

is modified to estimate the incremental warp (the composition of warps, θ = ∆θ+ θ)

as opposed to just the change in the parameters. While this is provably equivalent

to the forward additive method if the set of warp functions form a group, there is a

computational benefit: the Hessian may be computed once, as it becomes indepen-

dent of the parameters. For more details, we refer the reader to the overview paper

by Baker and Matthews [5].

To handle larger transformations between frames, particularly due to the photo-

metric constancy assumption, DVO uses a coarse to fine approach. An image pyramid

is generated using the pyramid down operator (Gaussian filter followed by a subsam-

pling). Then, starting from the lowest resolution of the pyramid, the algorithm is

run to determine the estimated transformation parameters for that level, followed
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by the optimization at the next level using an initialization from the previous level

parameters; this continues until the highest resolution pyramid level is used.

In practice, we found that when the photometric constancy assumption was vio-

lated or an image difference was too large that the algorithm diverged. Since DVO,

like ICP, is based on a non-linear least squares optimization approach, each step uses

a linearization of the gradient. Therefore, DVO is a local optimization, and may not

converge to a globally optimal solution.

5.6 Joint ICP-DVO

For ICP, not using feature descriptors derived from appearance means we are relying

on the nearness of the point cloud and its geometric structure to provide effective cues

for alignment. However, this is a often a faulty assumption. Either the camera may

move too quickly to make this assumption (i.e., the difference between the camera

poses is too large to support the projective data association), or perhaps there’s too

much noise in the depth image, or the point cloud geometry is not distinct enough

to provide constraints for performing alignment. For example, while an RGB camera

can effectively compute the points that lie on the surface of a wall, the wall has no

geometric features that allow us to align it with any other version of a wall; if we take

two snapshots of a wall, translationally moving in any direction parallel with the wall,

then there are likely no distinct geometric features to constrain the position between

the two frames. We can align the planes but then we still have three additional degrees

of freedom: rotation around the normal of the plane, as well as the x, y position in

the plane.

Dense visual odometry on the other hand, can make use of any visual features that

may reside on the surface of the wall as long as they generate a detectable gradient

in the image. For example, if there is a poster mounted on the wall, then it is likely

there are enough gradients in the image to allow us to generate the three additional

constraints on top of the plane alignment. Unfortunately, dense visual imagery comes

with its own set of challenges. For example, the photometric constancy assumption
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is often broken with cameras moving dynamically in a scene given just the effects

of specular reflection and shadows that may appear and disappear depending on

light sources within the environment, not to mention the dynamic white balance and

exposure algorithms enabled by default on many cameras (as well as the camera we

used). Imagine the DVO algorithm seeing the same image, possibly with very little

motion, but with a significantly different exposure that changes the observed intensity

at many points; instead of converging to the correct minimum, it will likely diverge;

this brings us to the idea of combining the two algorithms.

One of the central ideas of our work in this chapter is to combine the benefits

of geometry-based alignment with the benefits of appearance-based alignment. Since

both algorithms involve estimating the incremental transform between pairs of images,

we just need to formulate the optimization as the sum of the energy functionals, where

λ is a weight to balance the energy terms:

Ejoint = Edvo + λEicp. (5.17)

If Jicp ∈ Rn×6, Jdvo ∈ Rm×6, then

Jjoint ∈ R(n+m)×6 =

 Jdvo

λJicp

 , (5.18)

and we iteratively solve the following least squares normal equation for ∆θ:

JT
jointJjointδθ = r. (5.19)

5.6.1 Incremental versus keyframes

When one wishes to compute the incremental transformation between frames over

time, there are several ways it can be done. Two obvious possibilities are: (1) compute

the incremental transformation between frame Fi and Fi+1 as T i+1
i and then append
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to the global transformation as:

T i+1
0 = T i+1

i T i
0, (5.20)

or, alternatively, (2) compute a transformation relative to a keyframe, and only ap-

pend to the global transformation when the keyframe changes. Keyframes are a

well-known technique in visual odometry (derived from the process of keyframing in

animation) to help reduce error by minimizing the number of compositions performed

using a stable model source. A keyframe is a frame selected to be the model for some

time period, usually subject to some kind of validity test. In the case of visual odom-

etry, the keyframe may remain valid while the camera’s frustum overlaps a sufficient

portion of the keyframe frustum. Once this constraint is violated, a new keyframe

is selected (i.e., the current active frame) and the global transformation of the new

keyframe is computed as in 5.20 but where i represents the index of the keyframes, a

set often significantly smaller than all the original frames.

In many algorithms a small set of possibly overlapping or nearby keyframes re-

mains active in order to better compute a joint transformation (e.g., the active

keyframe set in [46]). In our implementation of the joint algorithm, we have found

that the keyframe method performs better that frame to frame accumulation.

5.6.2 GPU Acceleration

It is expensive to run this algorithm sequentially on a single processor. While there

are many ways to speed an algorithm up, splitting it into subtasks that can run con-

currently and then running them in parallel on multiple processors is often the most

effective. This does assume that you are already using the most efficient algorithm for

the task, but sometimes less efficient algorithms that can be split into concurrent sub-

algorithms can be more efficient than the more efficient sequential algorithm. This is

a complex topic, and not necessarily within the scope of this section. Suffice it to say,

there are several aspects of the ICP and DVO algorithm that can be run efficiently

in parallel, especially when considering the capabilities of modern GPUs.
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There are many computations of DVO and ICP that can be performed in an

embarrassingly parallel fashion. For each point, we can independently find its corre-

spondence and independently compute the distance and the point to plane algorithm.

Likewise, for dense visual odometry, we can warp the pixels in parallel, i.e., compute

the image derived from the point cloud with the image intensities, then find the cor-

respondences and compute the gradients independently per point. This makes these

algorithms prime candidates for parallelization and a massively parallel architecture

such as NVIDIA’s CUDA framework.

Briefly, NVIDIA’s CUDA framework is a general purpose GPU programming lan-

guage specifically designed to take advantage of the parallel hardware in GPUs. How-

ever, each one of these little units is a relatively general computing processor, and

they operate in parallel. In fact, they operate in a single instruction multiple thread

(SIMT) framework where multiple threads operate in lock-step on a fixed set of in-

structions. This set of instructions is called a kernel, and it is a program for single

parallel threads and describes how they operate on one or more independent data.

Depending on how you have partitioned the data, the kernel operates on those parti-

tions in parallel based on the number of processing cores available in your hardware

device. Whereas a desktop or laptop computer may have anywhere from 4 to 64 cores,

a GPU can have 768 to over 3000 cores. Granted, each core runs a more slowly and is

not as powerful or complex as a CPU core, but the primary benefit is in their massive

parallelism.

One of the biggest challenges in implementing the optimization algorithm for joint

DVO and ICP using the CUDA architecture was performing the reduction algorithms

on the GPU. While it is possible to implement the reduction algorithm on the CPU,

there are limits of host/device memory transfer, so that it is relatively expensive

to transfer data back and forth from the GPU to CPU. If we are determined to

keep both data and computation on the GPU, then we must handle the reduction

algorithms that are not inherently parallel. However, we can take advantage of as

much parallelism as possible.

What is a reduction algorithm? If you are familiar with map/reduce algorithms
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in distributed, parallel processing, then we can describe the entire set of GPU op-

erations for the joint DVO/ICP least squares algorithm as a map/reduce operation.

Specifically, we map the error computation to every single point in the query frame,

and then we reduce by combining all of the individual errors into a global error data

structure: the normal matrix (see Eq. 5.19). In general, the reduction phase can-

not be done completely in parallel, because part of the task is combining the values

from several individual data. Given the shared memory constraints of the parallel

CUDA hardware, we implemented a staged reduction algorithm to best exploit the

local cache of the GPU in order speed up the reduction operation.

The joint optimization framework is similar to the work of Whelen et al. in their

Kintinuous approach [217], with several differences. We use a surfel-based represen-

tation instead of TSDF (described in detail in the next chapter), and we optimize the

DVO computation on the GPU to avoid the data transfer.

In the following sections, we describe the methodology for converting the algorithm

described above into kernels for the CUDA parallel processing framework running on

NVIDIA GPUs.

Image Processing

Many image processing algorithms can be carried out quickly on the GPU since

they often operate in the neighborhood of a pixel and are therefore amenable to

parallelization at the pixel level. Since we need to perform several operations on the

incoming RGB-D image frames, therefore producing several images, it makes sense

to transfer the original images to the GPU and do the operations there; they will be

faster to compute and require fewer memory transfers between the CPU and GPU.

We implement the following image processes for use by the ICP and DVO portions

of the joint alignment algorithm:

� bilateral filtering (for depth image),

� normals (for ICP),

� pyramid downsampling (for DVO), and
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� horizontal and vertical derivatives (for DVO).

The core (or kernel) of the algorithms are the same whether on CPU or GPU, but

whereas the CPU algorithm will have the kernel operate within one or more loops to

process each pixel sequentially6, the GPU algorithm is expressed as a kernel that runs

on a single GPU core on the device, and a host-based function launches the kernel with

a specification indicating the requested parallelism for the kernel. This specification

includes information on the number of blocks and number of threads per block, as

well as how to spatially distribute the threads. For example, if you are processing

a 1 dimensional array of 100 values, then you may want to generate 10 blocks of 10

threads each, and if the GPU has the resources, each thread in each block will run in

parallel. The kernel itself is then run 100 times, and each time it receives (in special

variables) the block index and the thread index for that specific kernel execution.

Similarly, if you are processing a 2 dimensional array (e.g., an image), then you can

specify both the number of blocks in x, y and the number of x, y threads as well. The

benefit of processing images using 2D spatially organized blocks of threads is more

coherent memory access for algorithms that need to process neighboring pixels.

ICP Computation

We provide pseudocode for the ICP least squares reduction kernel in Algorithm 2. The

kernel is executed for every valid point in the model keyframe that falls in the query

frame frustum, and computes the contribution of the point in the least squares energy

functional. During our experimentation, we discovered a small bottleneck in the GPU

reduction: global memory access was slowing things down for each frame. Line 12

indicates our solution to this problem: after initializing the largest shared memory

region possible for our level of block parallelism7 in line 3, each thread has access

6CPU parallelism is also possible, and is easily done within loops using a compiler extension such
as OpenMP. However, the maximum number of usable threads (and therefore the level of parallelism)
is proportional to the number of cores; while some popular CPUs may have between 4 to 8 cores,
the number of (simpler) cores on a GPU typically numbers somewhere in the thousands.

7In CUDA programming on NVIDIA GPUs, the program can reserve the use of an amount of
shared memory that will be available to all threads in a block. Shared memory is a very limited
resource, but can be accessed around 100 times faster than local or global memory on the GPU.
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Algorithm 2 On-GPU ICP kernel implementation

1: function icp ls reduce( blocks,model, query, T )
2: initialize local variables
3: Ds ← init kernel shared data()
4: x, y ← kernel coords()
5: p, n←model(x, y) . Get the point and normal from the model given x, y
6: p′, n′ ← T̂ (p, n) . Transform the model point to query frame
7: u, v ← π(p′) . Project to find the query image coords
8: nq, dq ← interpolate(query, u, v) . Interpolate query image data
9: pq ← backproject(u, v, dq)

10: Jicp ←

[
−nq

p′ × nq

]
11: ricp ← (pq − p′) · nq

12: for i← 0 to 4 do . Phased normal eq. reduction over valid Jacobians
13: Ds ← normal eq6i...(6i+5)(Jicp, r)
14: blocks6i...(6i+5) ← reduce(Ds)
15: end for
16: end function

to 24 bytes of ultra-fast memory. This allowed us to implement a phased approach

to the least squares reduction, where in each phase up to 6 elements are computed

and reduced across all participating threads. By using the shared memory for the

reduction, we can avoid costly global memory accesses and improve the reduction

runtime.

DVO Computation

The DVO computation is slightly more complex than the ICP process. Whereas the

majority of the ICP algorithm can be implemented in a single kernel (as shown in

algorithm 2), the DVO algorithm is spread over multiple kernels to better represent the

logical distinction between the operations. Therefore, when describing this algorithm,

we describe the high-level operations (implemented on the host) and only show the

implementation of the DVO least squares reduction. The latter is very similar to the

ICP reduction, but requires different Jacobian computations (see lines 5-10). Note

that every operation in algorithm 3 occurs in parallel on the GPU, including the

In this case, due to our computed block level parallelism (i.e., how many blocks we request for the
kernel), we could reserve enough space for 6 floats per thread.
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Algorithm 3 Host-based DVO computation

1: function compute dvo( blocks,model, query, T )
2: V ← vertex map(model)
3: Iqw ← warp(T,V , query)
4: dx, dy ←

{
dIm

dx
, dI

m

dy

}
5: d′x, d

′
y ← {fxdx, fydy}

6: rdvo ← Iqw − Im
7: σ ← est scale(rdvo)
8: w← tdist(ν, σ, rdvo)
9: dvo ls reduce(blocks,V , rdvo,w, d′x, d′y)
10: end function

Algorithm 4 On-GPU DVO kernel implementation

1: function dvo ls reduce( blocks,V , rdvo,w, d′x, d′y )
2: Ds ← init kernel shared data()
3: x, y ← kernel coords()
4: vx, vy, vz ← Vx,y
5: J0 ← vzd

′
x

6: J1 ← vzd
′
y

7: J2 ← d′x(−vxv2z) + d′y(−vyv2z)
8: J3 ← d′x(−vxv2zvy) + d′y(−1 +−vyv2zvy)
9: J4 ← d′x(1 + vxv

2
zvx) + d′y(vxv

2
zvy)

10: J5 ← d′x(−vyvz) + d′y(vxvz)
11: Jdvo ← J0...5
12: for i← 0 to 4 do . Phased normal eq. reduction over valid Jacobians
13: Ds ← normal eq6i...(6i+5)(Jdvo, r)
14: blocks6i...(6i+5) ← reduce(Ds)
15: end for
16: end function

computation of the vertex map from the depth image (vertex map), the vertex

map warping (warp), the error scale estimation (est scale), and the Student’s t

distribution computation for generating weights (tdist).

5.7 Spherical Harmonics

In this section, we discuss the use of spherical harmonics as another approach to

dense alignment appropriate for RGB-D sensors. Spherical harmonics is a way to

represent functions on a sphere as the integral of a set of basis functions. They allow
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a generalization of Fourier analysis of periodic functions to functions defined on the

sphere, analogous to the use of circular functions as a basis for periodic functions on

a circle. An interesting aspect of Fourier analysis is that two periodic functions on

a sphere, when decomposed into their corresponding basis functions, have identical

frequency distributions if they are the same modulus a rotation. This leads to the

natural idea of considering spherical harmonics when representing and decomposing a

function of an environment as seen from different views of a camera. In other words, if

we can find some way to represent a static environment as a spherical function, then

it may be possible to compute the rotation between two different (but overlapping)

views of the same environment8.

This section describes the use of spherical harmonic functions derived from ex-

tended Gaussian images (EGIs) for online egomotion estimation, and compares the

performance to other methods, including an ego-motion estimation algorithm based

on an implementation of the frame to frame skeleton in Algorithma 1. An EGI pro-

vides a rotation-equivariant representation of dense depth maps that is completely

independent of appearance information and requires no explicitly computed sparse

features [96]. The implications are significant: like DVO, no explicit features need

to be extracted, but unlike DVO (and more like ICP), the rotation estimate only

depends on the normals in the structure of the environment.

The primary contributions are: 1) an implementation of online correspondence-

less egomotion estimation using spherical harmonic analysis, and 2) a comparison of

egomotion estimation methods using synchronized ground truth data. We use two

data sets for testing: one collected at our lab, the other available in publicly [196].

All algorithms are implemented using the Robot Operating System (ROS) [173], with

VO algorithms using OpenCV [18].

8The material in this section is adapted from [156], and is reprinted with permission of the
first author (©2012 IEEE). The spherical harmonics implementation and evaluation was done by
Philip Osteen, while I contributed the feature-based visual odometry implementation and some of
the analysis. This work was completed in 2011, chronologically before the joint DVO/ICP work.
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Figure 5.1 At left, an RGB-D point cloud and its associated EGI. At right, the 2D his-
togram is formed by discretizing the EGI, highlighting the distribution of local normals.
The correlation of consecutive EGIs yields a 3 DoF rotation estimate. Reproduced from
[156].

5.7.1 Method

Our process begins by representing a point cloud with its associated EGI. The EGI is

created by estimating the local normal at each point in a point cloud, using tools from

the Point Cloud Library (PCL) [180]. The normal direction at a point is estimated

as in §5.4. For our purposes, the EGI can be interpreted as a sampling of a function

defined on the unit sphere. Next, we discretize the sphere, and the EGI is converted

into a 2D histogram. Our work employs the equiangular discretization, as employed

in [84], to tesselate the sphere. The colatitude 0 ≤ θ ≤ π, measured down from the

z-axis (north pole), and longitude 0 ≤ φ ≤ 2π, measured from the x-axis, are the

angles used to discretize the sphere. Figure 5.1 illustrates the process of creating a

2D histogram from an input point cloud, as well as the corresponding EGI.

We use the fact that the rotation R ∈ SO(3) between functions on the unit

sphere can be directly determined by correlating two functions f and h and applying

an SO(3) Fourier Transform (SOFT) to the result.

From [115], the correlation of spherical functions f and h is itself a function defined

on L2(SO(3)), and the maximum value of the correlation will yield the desired rotation

g. The correlation can be represented as
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C(g) =
∑
l≥0

l∑
m=−l

l∑
m′=−l

f̂ l
m ĥ

l
m′ Dl

mm′(g), (5.21)

withDl
mm′ representing the complex conjugate ofDl

mm′ . The functions f, h ∈ L2(SO(3))

are decomposable using Fourier analysis, as:

f(α, β, γ) =
∑
J≥0

J∑
M=−J

J∑
M ′=−J

f̂J
MM ′DJ

MM ′(α, β, γ). (5.22)

Here, the orthonormal bases DJ
MM ′ are the Wigner-D functions, and f̂ are the coeffi-

cients of the SOFT.

Comparing (5.22) with (5.21), we see that the SO(3) Fourier coefficients of C are

directly related to the spherical Fourier coefficients f̂ and ĥ. With this, an inverse

SOFT yields values of C sampled on a 2B × 2B × 2B grid. The grid is discretized

according to αj = γj = 2πj
2B

and βj = π(2j+1)
4B

, showing the relationship of B to the

rotation estimate. The desired Euler angles are now known, given by the indices

which indicate the maximimum value of the correlation in the grid.

The spherical harmonics module is based on the SOFT routines provided by Kost-

elec and Rockmore [115]. We use a bandwidth of B = 64 in our experimental imple-

mentation.

5.7.2 Experimental setup

We compare two variants of a feature-based ego-motion estimation algorithms, two

ICP variants, and the spherical harmonics approach to evaluate their performance.

For the first feature-based approach, we use RGBDSLAM [45], a popular open-source

implementation of 3D SLAM built using the ROS framework. Since the algorithm

is a simultaneous localization and mapping algorithm and includes loop closing, we

run a version of the algorithm to isolate just the ego-motion estimation to make the

comparison more fair. The other algorithm is a custom in-house variation of the

same approach, based on the outline in Algorithm 1, described below. To highlight

the benefits of the spherical harmonics approach compared to plain ICP, we utilize
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two standard algorithms: the traditional point-to-point ICP of Besl and McKay [13],

as well as the probabilistic point-to-plane generalized ICP (GICP) of Segal et al.

[186].

The custom feature-based algorithm extracts features from the color images of the

RGB-D sensor. Matching features are found between two frames using an L2 distance

metric on the feature descriptors. We use SURF [8] keypoints and descriptors from

the OpenCV library [18]. These extracted keypoints are projected into a 3D point

cloud, and a RANSAC algorithm is used to estimate the best set of inliers corre-

sponding to the initial three point estimated transformation. We then apply singular

value decomposition (SVD) to solve the least-squares estimation of transformation

parameters to the inlier set, yielding the egomotion estimate.

5.7.3 Data sets

The first data set collected was designed to evaluate the performance of the spherical

harmonics algorithm independent of the ICP post-processing step (to account for

translation). To collect the data, a Kinect sensor was mounted to a pan/tilt unit,

which controlled just the rotation of the sensor. These experiments were carried

out in our indoor testing environment. The testbed is surrounded by a Vicon motion

capture system, giving time-synchronized ground truth data. The unit was controlled

to rotate at a continuous speed about the sensor frame y-axis.

To analyze more challenging data, we chose to test the algorithms using two of the

benchmark data sequences proposed in [196]. These two data sets, which are sampled

at 10 Hz, are also time synchronized with motion capture measurements for ground

truth. The data were taken in a real (cluttered) office environment, and the sensor is

moved by hand throughout the office. The resulting sensor motion is at times more

chaotic than it would be on a typical indoor robot, and these sets were expected

to prove particularly challenging to image feature matching algorithms. Figure 5.2

shows benign and challenging example images from one data set.

The algorithms were evaluated on a 2.5 GHz laptop.
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Figure 5.2 From the external benchmark data set, “360 10hz.bag”, the difference in
reliable feature matching between benign (top) and aggressive (bottom) sensor motion.

5.7.4 Results

In this section, we examine the performance of the spherical harmonics-based ego-

motion estimation with three other VO variants and ground truth. We use translation

and rotation error and runtime metrics for comparison. The following results ana-

lyze a measure of accumulated pose accuracy over time, a measure of the accuracy

between frames of data, and the runtimes for each algorithm. For the first data set,

we compare the value of the total rotation about the sensor y-axis, as well as the

corresponding frame to frame angular error. For the next two data sets, we compare

the total translation along an axis, along with the frame-to-frame pose error. The

total translation is signed error along a single axis, while the frame-to-frame pose

error is the magnitude of the vector between the estimated and ground truth pose

changes. Finally, we analyze the performance of the algorithms on additional data
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Figure 5.3 In-house data set testing results. While the in-house visual odometry takes
longer on average to run, its results are more accurate than any algorithm. ICP fails to
converge, resulting in large frame-to-frame errors, while RGBDSLAM uses correction
steps to reach the final total rotation estimate.

sets and summarize the results.

The results of the first data set isolating rotations are shown in Fig. 5.3. The

differences between a SLAM-based algorithm and pure egomotion algorithms are ap-

parent in the total rotation plot. The discrete steps in the RGBDSLAM plot indicate

a correction has taken place. While non-correction steps from SLAM yield incorrect

results, the correction step often achieves lower global error than the other algorithms.

The spherical harmonics approach runs fastest on average, while the custom feature-

based VO yields the lowest frame-to-frame error. Note that the point-to-point ICP

algorithm fails to converge in at least one frame, illustrating a weakness of ICP. Since

the GICP algorithm outperformed point-to-point ICP in all of our experiments, we

drop the standard ICP and only analyze GICP performance in the remaining results.
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Figure 5.4 From the external benchmark data set, ”room 10hz.bag”, consecutive frames
with a very sparse feature set will cause visual odometry estimation to fail.

The next data set (from Freiburg [196]) contains data yielding the weakest image

features, illustrated in Fig. 5.4, of all the data sets analyzed, implying the performance

of the feature-based algorithms derived from appearance should be reduced. The

custom VO algorithm failed in this case, and to overcome this, GICP was added to

the VO process, as well as a relaxation of the RANSAC constraints. The relaxation

led to improved runtimes but at the cost of reduced overall accuracy. Likewise, there

are frames in which the Spherical Harmonic process yields a completely incorrect

rotation. The reasons for this were discussed in [136], and are related to the fact

that the algorithm computes a single correlation based on noisy, weighted data in a

discretized grid. Our process currently uses multiple rotation hypotheses similar to

[136], and further work should investigate alternate methods of detecting and handling

incorrect results.

The results of the third data set, room_10hz.bag, are shown in Fig. 5.5, with total

translation measured along the sensor frame z-axis. The GICP process runs faster

than the others, but has the highest frame-to-frame error. The Spherical Harmonics

process has the highest frame-to-frame accuracy, and its total accuracy is approxi-

mately equal to that of the RGBDSLAM algorithm. The VO with GICP process and

the GICP process plots are quite similar, which may indicate that errors in GICP are

affecting the accuracy of the VO with GICP process.

We see similar results in the final data set, 360_10hz.bag, in which the sensor
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Figure 5.5 Results comparing the performance of the algorithms on the 10Hz room
benchmark data set. Spherical Harmonics+GICP has the highest frame-to-frame ac-
curacy, and comparable total translation value as RGBDSLAM.

is being rotated around a room and simultaneously tilted between ceiling and floor.

The sinusoidal motion can be seen in the results, shown in Fig. 5.6. The benefits of

the correction steps of RGBDSLAM are evident in the plot, and contrast with the

accumulating errors of the ego-motion algorithms.

To determine the effectiveness of the algorithms when presented with wider base-

line camera poses, the benchmark data sets were downsampled and re-analyzed. Fig-

ure 5.7 shows the results of sampling every other frame for the second and third data

sets. As with previous results, Spherical Harmonics achieves higher accuracy on one

data set, while visual odometry is more accurate on the other. Figure 5.7 also shows

the results of the second data set, sampled every third frame. Early in the data set,

RGBDSLAM fails to match new features to old features. Although frame-to-frame
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Figure 5.6 Results comparing the performance of the algorithms on the 360°10Hz bench-
mark data set. Spherical Harmonics+GICP again has the highest frame-to-frame ac-
curacy. RGBDSLAM is initally inaccurate, but eventually corrects to an accurate total
translation.

matches can be achieved in future frames, the features cannot be globally matched to

features from the initial frames, and as a result, RGBDSLAM does not recover after

the initial failure. The custom VO defaults to GICP as discussed, and can recover in

the presence of a failed attempt at feature matching.

To generalize the results, we ran the algorithms over eight additional data sets,

all obtained from [196]. The results are summarized in Table 5.1 and Table 5.2. As

expected, the combination of Spherical Harmonics and GICP is more accurate than

either algorithm alone, and the Spherical Harmonics algorithm alone achieves a very

consistent, low runtime. Finally, Fig. 5.8 shows example point cloud reconstructions

of the first three data sets using each algorithm.
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Table 5.1 Average Frame-to-Frame Rotational Error (radians)

SpHarm SpHarm GICP GICP VO GICP

mri downstairs 0.0177 0.0100 0.0115 0.0116

freiburg1 room 0.0679 0.0227 0.0945 0.0880

freiburg1 360 0.0444 0.0222 0.1208 0.1223

freiburg1 floor 0.0710 0.0136 0.0150 0.0154

freiburg1 xyz 0.0369 0.0105 0.0104 0.0104

freiburg1 rpy 0.0635 0.0237 0.0323 0.0268

freiburg1 desk2 0.0640 0.0261 0.0627 0.0539

freiburg2 xyz 0.0588 0.0090 0.0073 0.0073

freiburg2 rpy 0.0518 0.0132 0.0118 0.0104

freiburg2 desk 0.0592 0.0137 0.0151 0.0142

large no loop 0.0477 0.0205 0.0252 0.0209

Table 5.2 Average Runtime (seconds)

SpHarm SpHarm GICP GICP VO GICP RGBD SLAM

mri downstairs 0.3497 1.0451 0.6631 2.5931 1.1589

freiburg1 room 0.3423 0.7149 0.2987 1.5311 0.8076

freiburg1 360 0.3438 0.8661 0.4235 1.5384 0.9441

freiburg1 floor 0.3416 0.6764 0.2388 1.2115 1.1707

freiburg1 xyz 0.3410 0.7147 0.2931 1.3636 0.8787

freiburg1 rpy 0.3423 0.7735 0.3683 1.3719 1.1267

freiburg1 desk2 0.3440 0.7060 0.2715 1.1700 0.9940

freiburg2 xyz 0.3421 0.7182 0.2912 1.3888 1.3020

freiburg2 rpy 0.3433 0.9186 0.5154 1.6989 1.0834

freiburg2 desk 0.3444 0.8659 0.4693 1.7980 1.2435

large no loop 0.3506 1.3819 0.8920 3.0711 1.0411
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Figure 5.7 Results from the second and third data sets, after downsampling. At top,
the third data set is sampled every other frame. Below, the second data set is sampled
every other frame (middle) and third frame (bottom).

Figure 5.8 Reconstructed point clouds. Each column is the result of reconstructing
data from the three data sets analyzed in detail. From left to right, the algorithms
used for reconstruction are: Spherical Harmonics+GICP, Visual Odometry+GICP,
RGBDSLAM and GICP.
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5.8 Conclusion

We conclude this chapter with a summary of the various approaches, and a direction

for the future.

5.8.1 On joint optimization

The joint DVO-ICP optimization approach improved on each of the individual meth-

ods, and allowed the system to generate the accurate models shown in section 6.3.

However, it is certainly not the final answer. As I mentioned previously, the fact that

DVO is based on the photometric constancy assumption means that it is sensitive

to properties of the camera as well as the scene illumination, which can cause the

camera to adjust the exposure and white balance between frames enough to violate

the assumption. This was the largest source of failure for the algorithm, especially

in scenes with low lighting or larger variations in illumination intensity. In recent vi-

sual odometry papers using the direct approach, greater emphasis has been placed on

characterizing the camera lighting response and correcting for or controlling exposure

variations between frames, leading to greater accuracy in challenging conditions [12],

[50], [234]. This trend should continue, although it makes the process more complex,

and should bring additional methods into the fold as well; i.e., simple to compute in-

direct methods that may be more robust to lighting as well as the use of intermediate

or semantic features like contours and objects.

Another consideration, as mentioned in the discussion of Fig. 6.4, is that loop

closing processes for mapping need a secondary alignment algorithm to handle the

general case of matching two scenes from not only arbitrary viewpoints, but unknown

poses. This would likely require an indirect approach, or something like spherical

harmonics, to provide an approximate alignment at the minimum, followed up by the

joint optimization.
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5.8.2 On spherical harmonics

Ego-motion estimation using spherical harmonics has the potential to improve on

the performance of feature-based algorithms, especially in challenging environments

where there is geometry present but few features detected. This is similar to the

benefits of combining ICP with DVO, but where spherical harmonics can find the

rotation even when the near-frame projective assumption is violated. While spherical

harmonics also tended to be more efficient than some of the algorithms we compared

in section 5.7.4, it is not as efficient as the joint DVO-ICP algorithm we optimized

on the GPU. However, work such as that done by Schaeffer [183] to implement fast

spherical harmonics transforms on GPU could provide a route to integrating the

approach with the joint algorithm.

5.8.3 Looking to the future

I do not think it is contentious to assert that robots need highly accurate ego-motion

estimation, if only to integrate local views of their environment into a coherent model

(this is discussed in the next chapter). While the algorithms discussed in this chapter

present viable options, they each have benefits and drawbacks, and not one provides a

robust enough solution in and of itself. Instead, the way forward will be to continue to

integrate: specifically, we must find ways to efficiently make use of all the information

available to us: environment appearance and structure as well as proprioception (e.g.,

IMUs and wheel or limb actuation). We cannot tolerate failure in this task; the

system must be robust to any condition, and operate to at least human-level standards

in challenging environments. I propose the following requirements for ego-motion

estimation: in any 4× 4 meter environment, the system should maintain localization

accuracy of less than 1 cm and 1 degree error given at least 1 landmark in view. These

constraints should make it possible to move and manipulate objects within reasonable

error bounds, and prevent catastrophic motion estimation and mapping failures such

as those from GICP in Fig. 5.8.

126



Chapter 6

High-resolution Local Mapping

6.1 Introduction

For a robot, mapping is the process by which an agent generates a spatial1 model of its

world, based on the information it gains from a collection of sensor measurements and

a method of representation chosen to best support the goal of the model. For example,

we know that humans generate representations of the world in the form of cognitive

maps [30], [102], [220], [227] (although what specificially constitutes those maps and

how they are generated is still an area of research). In addition, humans have been

generating maps for thousands of years as external artifacts that document what we

know about the planet and the places in which we live. In everyday experience, we

use map artifacts posted in shopping malls, subways, and rail cars to determine how

we will navigate within the relevant environment. They provide a representation that

we can use to suitably plan our behavior, such as route following.

Mapping is a key component for understanding and operating within the world

since it enables navigation through planning. Any embodied intelligent agent needs to

be able to find its way in the environment, and without some model of the surround-

ings, it would be very difficult. Imagine not having a model (i.e., map) of your own

living space; how would you be able to function effectively? Every time you needed

1I emphasize spatial here, since there are other ways a robot may model the world; e.g., causal
relations between actions and effects, physical properties of motion like gravity and inertia, social
behaviors of humans, and many others.
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a bowl to eat or needed to use the restroom, you would have to search randomly.

It is actually hard to imagine this scenario, since this kind of spatial and semantic

modeling is such an inherent human capability. We argue that building these models

is also a requirement for any embodied system that must carry out arbitrary tasks

over long periods of time. Experience should allow the system to build up effective

spatial models of the world so it can use them to plan to navigate as efficiently as

possible with respect to the current goals of the system.

Mapping, or environment modeling2, has another more fundamental purpose as

well: providing a basis for understanding the spatial structure of the world. We

conceive of these models in the following terms based on this thought experiment:

imagine you are an intelligent autonomous system (without access to human intelli-

gence) and you possess a set of sensors that provide a snapshot of information about

the world3. Let us interpret a single snapshot as a model of the world. This model

may be useful in itself, depending on a variety of factors. However, its utility may be

directly proportional to how much reasoning and planning you can do with it. If this

snapshot happens to be an organized set of colored pixels (i.e., an image), then it may

be very hard to do anything with it, without some significant experience and learn-

ing algorithms that allow you to interepret the image in a way that enables you to

achieve your current goal (e.g., exit the room). If you are looking towards a doorway

already, and you have an algorithm that can recognize doorways, then perhaps you

can generate a motion command that would move you towards the doorway. However,

did you recognize the heavy object (say, a desk) that happened to be in the way? A

more informative sensing modality (such as a depth camera or laser range finder) may

have given different information that is more directly usable (i.e., obstacles to avoid,

whether recognized or not), and therefore you may have been more successful with

this single snapshot.

In the same vein, consider the ability to merge snapshot after snapshot (say, at

2Throughout this chapter, I shall use these terms interchangeably, as they arguably mean the
same thing. However, we tend to think of environment modeling as a special kind of mapping that
focuses on more accurate representations of the (local) environment.

3Please allow me to use this discretized metaphor, as it is easy to talk about and relate to the
sensors and systems we work with.
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a rate of 15 Hz) into a single coherent representation that respects your ego-motion

and the actual structure of the world. It would then be possible to “look around” and

build up a larger representation that is more useful than any individual part on its

own. It is easy to imagine the utility of this kind of representation at scale, providing

enough information to plan a path to a goal through an entire room, building, or

city. It would simply not be possible to do so without this model. In contrast, if

we imagine a robotic insect that cannot build these representational models and can

only make choices based on the incoming snapshots, one at a time, then we can see

how difficult it might be to reason about future behavior. Yet, reasoning about future

behavior in order to achieve goals is one part of intelligence.

6.1.1 Kinds of maps

There are several different kinds of maps (and many different kinds of algorithms)

that have been used for motion planning. In this section, we give a brief overview of

the map types useful for understanding the place our mapping algorithm fits in the

overall picture.

How many dimensions?

Maps can be represented in either 2 or 3 dimensions. In the 2D case, occupancy

grids are often the default. The environment is assumed to be flat (or at least, it

is acceptable for the representation of the environment to be perceived as flat), and

is subdivided into equally spaced regions (also called cells) represented by one or

more values stored at each x, y coordinate. In the typical case, the value stored at

a location represents the likelihood of that cell being occupied. If a cell is occupied

it contains some kind of object that would prevent the robot from moving through

that cell. In this 2D planar world, motion planning usually occurs in 3 dimensions:

(x, y, θ), representing the x, y translation relative to some origin, and the yaw theta

representing the robot’s heading.

The 2D representation is simple, easy to represent, and straightforward to nav-
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igate; however, it does have some limitations. You might realize the fact that our

world is, in fact, not 2D, but actually 3D. This means it is not possible to represent

the height of obstacles and objects in the 2D occupancy grid, and it is not directly

possible to represent situations such as the floors in a building or the hills in a field.

We have even encountered environments that are mostly flat (another person would

generally agree), but still cause problems with sensors such as 2D laser range find-

ers because they are not actually flat: specifically, the imperfections of the surface

caused the robot to pitch enough that the plane of the laser sensor intersected the

ground meters in front of the robot, generating false obstacles in the occupancy grid

[160]. Additionally, the accuracy of your model depends on the resolution of the

grid. However, increasing the resolutions requires quadratically more memory and

quadratically increasing time for many planning algorithms, as halving the resolution

generates 4 times as many cells. One method that may be used to account for this

involves representing the occupancy grid in a more efficient data structure, such as a

quadtree [58].

In 3 dimensions, there are a variety of ways to represent a map. The key element,

however, is that all three dimensions are present, and therefore, any environment can

be modeled as accurately as the representation, sensors, and algorithm will allow.

In addition, in 3D dimensions, navigation can be performed through all 6 degrees of

freedom, (x, y, z, θ, φ, ψ). In practice, whether on a ground or air robot, planning and

motion are still relative to the local ground surface, which can be considered a 2D

manifold embedded in 3D space.

What is modeled?

In the previous section, we went into some detail about a particular 2D map repre-

sentation. There are others, and the representations are relevant to both the 2D and

the 3D case. The 2D occupancy grid has a 3D analog: the 3D occupancy grid, usually

stored in a multi-resolution spatial data structure such as an octree [140] (also, see

section 7.2.1).

The primary dichotomy in representation form is between dense, grid- or point
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cloud-based representations and sparse, landmark-based representations. The 2D

and 3D occupancy grids are examples of dense grid representations. A point cloud-

based representation can also be considered dense, but does not explicitly represent

the “free space”, although it can usually be computed based on the viewpoint of

the agent. In addition, point cloud representations don’t depend on a grid-based

resolution, as they are data structures containing points, and therefore can be more

efficient than an octree-based occupancy volume for the same information. Another

dense representation, popularized originally in KinectFusion [99] but used extensively

thereafter [38], [122], [128], [153], [214], [216], [217], is a TSDF volume [36]. Similar

to an occupancy grid, this representation is particular amenable to merging multiple

depth maps (Rk) interpreted as rays cast into a volume. Each depth reading represents

a noisy measurement we assume can be truncated by some value µ, such that cells

along the ray r < λRk(p)− µ are considered free space, and similarly cells along the

ray r > λRk(p) + µ are considered occupied space. The cells along r are uncertain

but are stored as a signed distance function where the positive values are outside

the surface, the point at 0 represents the surface, and negative values are inside the

surface. This allows an uncertain representation of the surface that can be updated

by new readings, allowing the 0 crossing to change as appropriate based on weighted

averaging of the cell values.

At the other end of the spectrum, landmark-based representations allow sparsity

because they only store points or objects in the environment that have been detected,

and then, only those points or objects that are likely to be robust to different view-

points or lighting conditions. While these representations can still be useful for pose

estimation and mapping, it is much harder to generate path plans, since the actual

structure of the environment is not explicit.

6.1.2 High-resolution 3D map

We choose to generate a high-resolution 3D map, but this choice comes with bene-

fits and compromises. A high-resolution cloud of surfels provides enough information

for segmentation algorithms that may be involved in online object learning; the fact
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that multiple frames often contribute to single surfels means the overall noise is re-

duced, generating better boundaries between objects and fewer holes in the model.

High-resolution models provide more detail, meaning smaller objects can be resolved.

Relationships between objects provide information about semantic associations and

typical spatial organization of related objects.

On the other hand, high-resolution models make it difficult to manage the size of

the objects in memory (whether CPU or GPU, although the latter is usually more

constrained). Also, while sufficient information is present to support navigation,

working with such a dense point cloud is difficult, and still requires processing into

something simpler before it can be used effectively for path planning (e.g., generating

a low-polygon mesh for collision detection).

In the rest of this chapter, we document our approach to dense, high-resolution

3D mapping using RGB-D sensors, which we call the surfel modeler. We chose this

approach to support learning online object recognition tasks (i.e., by capturing partial

object models) and to support learning about spatial relationships between objects

and regions4. Our process relies directly on the incremental processing of dense depth

maps provided by an RGB-D sensor, and also requires locally accurate ego-motion

estimation.

6.2 Approach

It is fairly clear that mapping is inherently tied to ego-motion estimation. Consider

the phrase “merge snapshot after snapshot into a single coherent representation that

respects ego-motion and the actual structure of the world.” The first part is “single

coherent representation,” and the second part describes the two constraints. The first

constraint means that the way we integrate the information snapshot into the whole

must respect the information from the system’s motion. . . this is metric information

that describes the sensor pose at individual time instants and how the pose changes

4While these topics are outside the scope of this dissertation, we present some ideas for future
work in these areas at the end of the chapter.
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from one instant to the next. This is critical information and makes the task of

merging snapshots easier; if we have it, then we know how we have moved with

respect to the previous snapshot, and can use the knowledge of the motion to better

align the snapshots for mapping. The second constraint means that we want the

whole to be a good representation of the world, and allow for reasoning algorithms

that can directly translate into action within the world. This depends heavily on

the ultimate goals for the representation; for example, if the only goal is to avoid

obstacles and you are a ground robot (in one of many guises), you may not need a

representation that models the full 3D structure of the world, or the height of objects,

since you just need to see where there is space to move on the ground; in other words,

a 2D occupancy grid would suffice. On the other hand, if you are an aerial robot, or

need to understand and manipulate human-scale objects (like the DARPA Robotics

Challenge [39]), then a 3D model of the world is required.

SLAM is the typical algorithmic technique used to generate maps when exploring

unknown environments. It relies explicitly on receiving ego-motion updates from an

odometry component (likely visual odometry, as discussed in chapter 5) and then uses

this information along with the information in the sensor snapshots to incrementally

build up a model of the world. A key aspect of SLAM is the iterative nature of the

task, but also the ability to correct for ego-motion errors by recognizing previously

visited places through the process of loop closing. This allows one to create a connec-

tion or constraint between places, and facilitates the correction of drift in the model

using a process of graph optimization.

6.2.1 Ego-motion and Localization

Ego-motion and localization are related but separate concepts. Ego-motion simply

refers to a description (or computation in the case of ego-motion estimation) of how a

sensor or agent is moving, while localization refers to the task of determining a pose

given a map and sensor data. Ego-motion, in fact, can be used to help determine and

maintain the localization within the map, since knowing the local motion can be useful

to compare the sensed observations with the expected change in the observations of
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Figure 6.1 Our SLAM system diagram. While some SLAM systems can accept different
kinds of sensor input, our algorithm focuses on RGB-D frames, that is, a pair of RGB
and depth images.

the map features based on the estimated location.

In the previous chapter, we described an ego-motion algorithm that computed

the incremental pose between two sensor frames. In this chapter, we describe how

we can use this technique in concert with building maps to perform both ego-motion

estimation and localization within the map we are building (implementing a version

of a SLAM algorithm).

6.2.2 SLAM architecture

Our approach follows the typical structure of modern SLAM algorithms: the front

end component computes the ego-motion as frames enter the system, and integrates

new depth maps for each frame into the currently active portion of the map. The

back end does loop detection, and optimizes the pose graph upon loop closures.

Figure 6.1 illustrates the overall architecture of our SLAM system. The following

subsections will describe the function of each block in the diagram.

Front end

The front end contains many components we described in Chapter 5. RGB-D frames

are submitted to the algorithm as they are received from the sensor, and first undergo

image processing (see section 5.6.2) to prepare them for the alignment step (see section

5.6). As mentioned in section 5.6.1, incoming frames are aligned not necessarily
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with the most recent frame, but with keyframes instead. This tends to improve the

accuracy of the ego-motion estimation, and directly contributes to the maintenance

of the active model using integration, described in a following section. First, however,

we describe our modeling element, the surface element.

Surface Elements (Surfels)

A surface element s (shortened to surfel like pixel for picture element) is a generaliza-

tion of a (usually) small region of a surface represented as the set s = {p,np, r, c,vh, κ, C},

where p is the point indicating the centroid of the region, np is the normal of the

surface at the point p, r is the radius of the region disk5, c is the color of the surface,

vh is the histogram of viewpoints the surfel has been observed from, κ is the curvature

of the surface at p, and C is the confidence in the existence of the surfel.

Why are surfels interesting for high resolution 3D modeling? Surfels are a surface

sample (and as such, have area), which is semantically more pleasing than points,

and better represents the imaging process from the camera. In addition, surfels allow

for generating surfaces at varying resolutions, depending on how far away the camera

is to the observed surface. Surfel clouds, like point clouds, do not require volumetric

storage representing all the empty space, as opposed to popular dense representations

such as TSDF volumes (see section 6.1.1).

On the other hand, surfels do take up more space, and like point clouds, do

not have a direct way to represent neighborhood connectivity when represented in a

typical unorganized cloud.

Integration

Integration is the process of using the ego-motion estimate to adapt the incoming

point clouds (derived from the depth image) into the existing active environment

model. We attempt to reduce error accumulation in the model by continuously in-

tegrating incoming frames into a single model composed of surfels, and subsequently

use that model for the ICP-based motion estimation in the following frames through

5The simplest and most common region shape.
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the extraction of a model-based keyframe. The model is created and updated on the

GPU, to maximize throughput when visiting individual surfels.

The algorithm is initialized with the first frame from the camera set as the initial

model. Following query frames are aligned using the method described in the previous

section, where the GPU-based join DVO/ICP algorithm aligns every visible point-

normal pair (p,np) derived from the surfels in the model to the query frame using

the GPU’s bilinear interpolation texture hardware. Once an estimate is generated,

the query frame is integrated into the model.

Surfel integration Integrating the query frame into the model is performed in two

steps: update and addition. Update is performed first, followed by the addition of

points in the query frame that were not processed during the update procedure. This

surfel integration procedure was adapted from the work of Weise et al. [211].

Update: Given an estimated transform T that maps the model frame to the query

frame, we can iterate over every visible surfel si ∈ M and project it onto the query

image plane, s′i = Tsi. Since the camera is moving and previous observations may

be noisy, a query point may be in front of, behind, or unobserved with respect to a

projected surfel. Part of the decision to update is made based on the distance between

the model surfel and the query point, as well as the difference in their normals. The

following conditions determine the outcome. Let d = z(s′i) − z(p) and α = νs′i · νp.

We also have the parameters Dmax representing the maximum surface offset allowed,

and A as the minimum dot product between normals.

|d| < Dmax The query point is within the maximum offset, and therefore the query

point will be used to update the surfel values.

d > Dmax The query point is in front of the model surface. This can be due to an

extreme outlier, or the motion of the camera bringing another surface into view

that is truly obscuring the view of the existing surfel. In this case, we do not

update the surfel, and instead mark this query point to be added independently

to the model in the next step.
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d < −Dmax The query point is behind the model surface. Since we are unsure

whether the query point is an outlier or the model point is an outlier, we let

our confidence in the surfel determine which action to take. If the surfel has

been seen and updated multiple times (i.e. in other frames it has been seen at

roughly the same location), then we assume the query point is an outlier and

do not update the surfel. On the other hand, if the surfel has been viewed less

than the minimum number of times (currently set to 3), we replace the existing

surfel by generating a new surfel based on the query point.

Addition: For every marked query point, the second step simply adds a surfel

derived from the point to the model. The point, normal and curvature are passed

through unchanged (the latter two estimated by the PCL routine). The viewpoint is

stored as the dot product of the normalized eye vector and point normal. The radius

is estimated with the following equation:

radius(d, f, z) =
1√
2

d/f

z
, (6.1)

where d is the depth of the point, f is the focal length of the sensor, and z = n · e, so

that the radius is larger the farther the viewpoint is from the normal direction.

Model Maintenance The GPU memory size is often more constrained than the

CPU size, and over time the surfel model can grow larger than can be held in GPU

RAM. This necessitates a swapping procedure, where a portion of the model is

swapped out to be held in the CPU RAM. As part of the model generation, we

maintain a list of keyframe locations (determined by the magnitude of the camera

motion) and associate the keyframe locations with the surfels seen at each keyframe.

We currently hold a fixed number of keyframes in memory, Kmem. At every keyframe

trigger, the surfels that haven’t been seen since keyframe K −Kmem are swapped out

to a surfel cloud that resides in the host (CPU) memory.
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Back end

For the back end, we made use of the real-time appearance-based mapping approach

for detecting loop closures of Labbe et al. [120]. They utilize hierarchical memory for

storing place descriptors based on a bag of words approach for describing places. Fea-

tures (i.e. words) are dynamically added to the vocabulary when they are sufficiently

far enough away from existing words.

When the loop detection module discovers a loop, a new constraint is added to

the graph. This new constraint triggers a graph optimization over the existing graph

to bring the keyframes into alignment, and deforms both the camera poses and select

control points embedded in the surfel cloud, based on the approach from Weise et al.

[211]. We use the graph optimization framework GTSAM [105] in this work, as it

comes with many features amenable to implementing SLAM optimizations.

6.3 Results

In this section, we highlight some of the typical qualitative results from running the

surfel modeler on hand captured datasets. During development of this approach,

we were less interested in how accurate frame-frame transforms were relative to an

external source, and more interested in how well the system captured the details and

structure in the environment. The samples in this section highlight some of the good

and bad results achieved with the modeler.

The loop-closed living room model shown in Fig. 6.2 provides a good illustration

of the detail achievable with the surfel cloud methodology. Note many of the pictures

with clearly definable faces, along with accurate details on the fireplace and the couch.

The loop is started and ended on the basket of blankets in the lower left corner.

This example also shows how errors in the photometric warping caused by chang-

ing exposure can affect the alignment, even when the ICP might provide good con-

straints. In this case, a slight misalignment can be seen at the TV in the upper center

of the image, and is due to the camera automatically adjusting exposure to handle

the reflection on the screen.
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Figure 6.2 An example model of a living room captured using the algorithms described
in this section.

In Fig. 6.3, we see an example of a model generated without global loop closure.

Here, while individual regions align well, it is clear the ego-motion estimation accu-

mulated drift, since the hallway walls are not parallel to the right office wall, as they

are in real life. The recording began in the bottom right corner on the office chair and

ended looking into the left office from the doorway. While the RGB-D sensors typi-

cally produce ranges between 5-7 meters, we discard any readings beyond 3 meters,

since the data are often too noisy to be useful.

Figure 6.4 shows an almost closed loop of the office seen at the bottom left of

the previous figure. Loop closure was often unstable when using the frame-frame

alignment module; we suspect the primary reason for misalignment is that the two

main assumptions are broken at a loop closure with even moderate drift. Specifically,

(a) the lighting and exposure may not be the same, causing the photometric warping

optimization to give incorrect results, and (b) the projective data association yields
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Figure 6.3 Sections of two offices and hallways. Notice the slightly bent hall; small
amounts of error build up over time, requiring the application of a loop closing algo-
rithm.

matches that may be too far apart and therefore also yield incorrect results, causing

the alignment operation to fail. The algorithm could likely be improved by first

substituting another frame-frame correspondence technique to bring the matching

frames into closer alignment, and then running the joint dense alignment module to

prepare for surfel integration.

The next model in Fig. 6.5 shows a relatively nice model of my children’s playroom,

but with an unsuccessful loop closure, which can be seen in the bottom center around

the green play shopping cart with the maroon bag. The wall behind the cart is

doubled, since when the loop was successfully detected, the drift was too large (on

the order of 10 cm) for the alignment algorithm to close, as mentioned previously.

The surfel modeler also did a fairly successful (if slightly noisy) job of generating

a nicely closed model of an object from continuous in hand scanning while circling

the object, with no additional modifications. Figure 6.6 shows a cleaning product

container with very little geometric variation from multiple viewpoints, illustrating
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Figure 6.4 Another office model capture before the loop closure.

the detail maintained after many frame alignments and surfel integrations. The model

is viewed within RViz, the standard ROS visualization tool, and uses square points

as more efficient stand-ins for the circular surfel visualization.

6.4 Conclusion and Lessons Learned

The surfel modeler is an instantiation of the jointly optimized DVO/ICP ego-motion

estimation algorithm with dense, high-resolution 3D surfel mapping. In the previous

section, we showed several examples of model maps demonstrating high reproduction

accuracy, but all is not consistently positive in the realm of surfel modeling. For

example, we did not show many of the failures in mapping due to incorrect alignment

caused by violated assumptions in the optimization algorithm. Since this work was

performed6, many systems have come out that in some ways are similar, and in other

6In the 2012-2014 timeframe.
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Figure 6.5 A captured model of a playroom. This model was adjusted after loop
detection, but the features didn’t completely constrain the closure of the model using
the joint dense alignment module. The slight offset can be seen in the bottom left of
the image.

Figure 6.6 This series shows several images of cleaning product container from varying
points of view, highlighting the detail, including the noise, from a relatively close up
scan of a single object.

ways are more advanced than what I have presented in this chapter. However, my

experience with these newer algorithms remains the same: they work well in some

cases, and fail in others. If we want to create reliable robots to operate within our

environments with confidence, then we have more work to do. As a way of concluding

this chapter, I would like to present a set of comments and lessons learned that focuses

on the challenges still present in the field of visual ego-motion and mapping.
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6.4.1 On surfels

Surfels were a good choice of representation, and this choice has withstood the test of

time: while many experimental algorithms continue to make use of TSDF volumes,

there are several new algorithms that have made good use of surfels as well [10], [66],

[164], [185]. The surfel maps provide additional information that is exploited during

integration time, and they do not require memory to store empty space (as opposed

to TSDF volumes).

However, we ran into several difficulties during the implementation of the algo-

rithm. The first challenge was finding the surfels in memory that were relevant to the

incoming query frame. To support continuously adding surfels to handle more detail

(e.g., when the camera is closer to the surface), the surfels were stored as an unor-

ganized cloud, and new surfels were appended to the end. However, as the camera

moves, we need to select the surfels that we wish to update, i.e., those that are in the

estimated query frustum. This requires projecting surfels into the frustum, and then

sorting the “active” surfels to the front of the array. This can be done using a parallel

partition algorithm on the GPU. Unfortunately, this adds additional overhead before

the alignment can even be computed.

Another challenge was the cost of CPU to GPU (and vice versa) memory transfers.

An alternative formulation that could help keep relevant surfels handy (as in the first

challenge), enable more efficient swapping, but sacrifices the ability to arbitrarily add

new surfels to the cloud is to store surfels in 2D organized clouds, corresponding

to the image plane. These keyframe clouds keep the relevant surfels at hand for a

particular frustum, but discard query surfels that move outside of the frustum, and

cannot support multiple resolutions (at least without creating a new keyframe cloud).

6.4.2 On high-resolution models

Many algorithms are enabled when you can capture coherent, high-resolution models

of the environment. For example, the models may be used as maps for humans, maps

for robots and, after some processing, used in navigation and path planning, sources
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for segmentation, and sources for object models for learning 3D object and pose

recognition. In addition, the corresponding ego-motion can be used for robot odome-

try. However, due to the difficulty in generating and maintaining the high-resolution

maps, the benefit may not be worth the costs. We want robots to understand the

environment deeply, and see it as we do, but it is not clear that a high resolution

metric model is the best way to do that. For example, we don’t see a bunch of points

or surface elements, we see objects, parts, and the surfaces they have and rest upon.

We see some of the properties of objects and surfaces, and can recognize a portion of

a surface as a wall if it is planar and has a normal perpendicular to the ground.

So, a high-resolution local model may be useful (and necessary) to extract some

of the higher level semantic information present in the environment, but may not be

needed for permanent map storage. What then does an intelligent embodied agent

do for maps?

6.4.3 On the future

Robots need scalable and reliable mapping, navigation, and understanding of new

and existing environments, especially for life-long adaptability and autonomy. We

are still looking for a solution that provides all three components. Therefore, I would

like to make three suggestions toward this goal based on my experience with this

research. First, discretizing space into a hierarchy of regions can help to simplify the

problem and allow for scalability. In addition, this approach would relate well to the

way humans conceptualize space, and may therefore provide a better representation

for common ground between robots and the people they interact with. Second, using

higher level landmarks within the map should offer robustness to varying environmen-

tal conditions and pave the way for better understanding. For example, if we replace

image features with recognized objects and raw point clouds with extracted planes,

walls and corners, then it may be easier to recognize a place, even when objects have

moved or the lighting differs from the previously experienced lighting condition. Fi-

nally, if we can focus more on the topological structure of the environment and less on

metric accuracy, the robot could respond more effectively to changes in the world, and
144



worry less about updating numbers in its spatial memory. This case is particularly

important when robots start to remember things for longer periods of time; anyone

who has seen a large map undergo loop closure adjustment after graph optimization

knows the many values that might need to change. What if individual objects or

events the robot experienced in those places were tied to the global pose of the map?

Instead, they could be tied to the lowest-level hierarchical regions, which obtain their

global context by moving to higher levels in the tree of places, and will usually require

no local updates, unless the robot directly experiences changes it wishes to record.

The remaining two chapters shift focus from ego-motion and mapping to object-

level concerns when observing the environment. Segmentation is often an important

component of understanding the environment, since it serves to logically group in-

dividual elements (i.e., points or pixels) into larger parts that can make it easier to

learn, recognize, or reason about the world. Recognizing objects and their pose is

one of the important steps from the previous discussion that will help us move to-

wards better understanding and away from the limitations of working with points and

occupancy grids.
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Chapter 7

Temporally Consistent

Segmentation

7.1 Introduction

Generating a useful segmentation for a point cloud is an important prerequisite for

object recognition, grasping, and scene understanding. Much of the existing work

has focused on single-frame segmentation in images or RGB-D image pairs, or global

segmentations in single point clouds. In robotics applications, however, we have

dynamic control over the sensor viewpoint within the environment and a constant

stream of data from sensors making the single-frame or single point cloud approach

less desirable, especially during navigation or manipulation related tasks where an

up-to-date segmentation can be critical. While it may be possible to re-segment the

entire cloud at every frame or segment each frame individually, it is not clear how to

maintain consistency between these completely different segmentations1.

We would also like to take advantage of the 3D data produced by the sensor

in order to generate segmentations that respect the geometry of the environment.

Image-based segmentation algorithms have difficulty distinguishing between two dis-

tinct regions if there is not a significant texture, color or intensity difference between

them. However, the geometry of the scene can provide significant hints through depth

1This chapter reproduced with adaptations from [157].
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discontinuities or abrupt changes in surface normal direction.

The goal of segmentation is to partition a representation of the world into useful

chunks. The exact meaning of “useful” depends on the context, but usually we wish

for different objects to belong to different segments and for a single segment to belong

to no more than one object. A perfect segmentation, if such a thing existed, would

have one segment per object (where the objects are defined by the application). If

objects of interest throughout the scene are divided into more than one segment, then

we say there is an over-segmentation of the scene. In contrast, an under-segmentation

results if one segment contains portions from more than one object. Unfortunately,

segmentation is an ill-posed problem [16], [138], and even humans have a hard time

determining or agreeing on the best partitioning of a scene.

Segmentation is often used as a pre-processing step before object recognition and

scene parsing, in order to group similar pixels or points together so the next algo-

rithm has a reduction in complexity. In this case, however, we wish to avoid under-

segmentation since an object recognition algorithm will interpret the segments as

indivisible units; if a unit contains more than one object, the recognition outcome

will necessarily be ambiguous (and incorrect). Therefore, since near-perfect segmen-

tations are so hard to obtain, we strive for effective over-segmentations and rely on

subsequent algorithms to merge the related segments into whole objects.

In this research, we aim to incrementally generate an over-segmentation of a point

cloud as aligned RGB-D keyframes arrive from an ego-motion estimation process. The

segmentation produced at time t+1 should have the property of temporal consistency:

all points belonging to segments from frames {1, ..., t} viewable from frame t + 1

should maintain the same label. Points in frame t + 1 that were previously unseen

may extend an existing label or generate a new label, as determined by the similarity

metric in use. Since we currently do not consider dynamic scenes, spatial consistency

is assumed such that points at one world location in frame t implicitly map to the

same location in frame t + 1. We accomplish this by computing an estimation of

the camera motion in order to align consecutive clouds and propagate the existing

segments forward into the new frame. Segments that lie on the boundaries of known

147



surfaces are candidates for extension using points from the new frame. The union

of these boundary segments and the new surface points make up the incremental

segmentation set: the set of points in frame t+ 1 that must be segmented.

An effective incremental over-segmentation can be used as input to a higher-level

scene-understanding algorithm: coalescing individual segments and providing object

labels like“wall”,“desktop”, and“chair”as the data is streamed from the sensor. While

these algorithms are much more complicated, a robot needs hypotheses as soon as

possible and the incremental but consistent nature of the data stream could allow for

more rapid and timely inference compared to a global batch scheme.

The primary contribution of our work is the extension of an existing point cloud

segmentation algorithm to support dynamic octree resizing, new point additions and

new occupied voxel notifications, as well as a boundary segment definition in order

to support consistent over-segmentations of streaming point clouds. We show that

the new incremental segmentation runtimes scale much better with model size as

compared to the full segmentation, and the incremental segmentation with bound-

ary expansion results in average segment sizes that are closer to those of the global

segmentation process than those segments produced without boundary expansion.

In section 7.2 we discuss the point cloud segmentation algorithm we utilize and

how we extend it to support temporally consistent operation. Section 7.3 provides

a brief description of the environment modeling algorithm we use from the previous

chapter. Section 7.4 discusses the results of our experiments, and we finish the paper

with some ideas for future research and our conclusion.

7.2 Segmentation approach

We begin by defining the notation and vocabulary of our approach.

Definition 1 Definition of point cloud segmentation. Given a point cloud modelM,

a segmentation is a non-empty set of segments S 6= ∅, where ci ∈ S, i = 1, .., N

are the components of the segmentation. Each ci is a disjoint subset of the points in

M such thatM = ∪ci.
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Let S = {c1, . . . , cN} be a segmentation for model M = {o1, . . . , oM}, where

each oi ∈ M is an object of interest. We give the most basic definition for an over-

segmentation:

Definition 2 S is an over-segmentation when N > M (often much larger) such that

each object oi ∈M is composed of one or more segments cj.

In fact, we are not just interested in any over-segmentation, but in one that has

high boundary recall and low under-segmentation error. Boundary recall reflects the

percentage of segments with borders that correspond to boundaries in the model

(i.e. the boundaries between objects we are interested in and other objects or the

background). Under-segmentation error is the percentage of segments that contain a

portion of a boundary; in other words, a single segment contains two objects. If we

intend to use the segmentation for object recognition, it is especially important to

minimize the under-segmentation error in order to ensure that the parts or segments

composing an object accurately represent its shape and texture properties and do not

model objects with features incorrectly included from other objects.

Note that these definitions do not give us any information about how to actually

generate a segmentation. While this depends heavily on the specific algorithm, it

typically involves both a function that provides a numerical similarity (or equivalently,

a distance) between all elements to be segmented (e.g. pixels or points) and a method

of determining the best grouping or segmentation given that function. In this work,

we extend the voxel cloud connectivity segmentation (VCCS) method2 to generate

incremental over-segmentations. The following sections describe the details of the

original algorithm as well as our extension for incremental processing.

7.2.1 Over-segmentation using voxels

We extend the work of Papon et al. [163] and adapt their voxel cloud connectivity

segmentation (VCCS) algorithm for incremental operation. Algorithm 5 shows the

2The version from the Point Cloud Library (PCL)[180].
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Algorithm 5 Voxel cloud connectivity segmentation

1: function VCCS(P , Oa, Os)
2: initialize Oa with resolution Rv

3: initialize Os with resolution Rs

4: S ← ∅
5: Oa ← P , Os ← P
6: for s ∈ Os do
7: p = closest(s,P)
8: S = S ∪ to supervoxel(p)
9: end for
10: S ← sparse filter(S)
11: for j = 1, d do
12: for ci ∈ S do
13: expand(ci, Oa)
14: end for
15: for ci ∈ S do
16: recenter(ci, Oa)
17: end for
18: end for
19: end function

high-level design of their original algorithm. In the following we reproduce a summary

of each component.

Point cloud generation and voxelization

VCCS relies on a voxelized version of a point cloud. The RGB-D sensor used in the

original work as well as this work only provides an RGB image I : Ω and a range image

R : Ω at each time step, where Ω ∈ R2. From these data, we generate an organized

point cloud P by back-projecting each image plane coordinate p = {u, v} ∈ Ω into

the world relative to the sensor frame according to:

Pp =

{
u− cu
fu
Rp,

v − cv
fv
Rp,Rp

}
.

While this is sufficient for segmenting a single RGB-D frame, it does not by itself take

into consideration the motion of the sensor within the world. We address this issue

in section 7.3.

The cloud P is voxelized using an octree data structure created with a voxel resolu-
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Figure 7.1 The tree structure for a simple octree with three layers. Each node represents
a uniformly sized volume in 3D Euclidean space surrounding an origin point o.3

tion Rv (see Fig. 7.1). An octree is a spatial data structure, i.e. a data structure that

provides some way of subdividing space or objects in space that reflects the relative

relationship between the items stored within. The octree structure divides a cubic

volume of space into eight octants surrounding an origin o = (x, y, z), corresponding

to the following relationships: {(< x,< y,< z), (< x,< y,> z), (< x,> y,< z), (<

x,> y,> z), (> x,< y,< z), (> x,< y,> z), (> x,> y,< z), (> x,> y,> z)}. Each

octant may then be recursively divided into its own set of octants, until an individual

cell measures Rv on a side. Insertion is very easy, and the organized structure provides

facilities for making local spatial searches quick (e.g. find the k nearest neighbors, or

all points within a radius). If the points in the cloud are dense enough or the resolu-

tion is large enough, multiple points may fall into a single leaf cell. This may be used,

as it is in this case, to reduce the complexity of the cloud by effectively subsampling

the points.

Adjacency computation

Another simplifying benefit of an octree structure is that it supports straightforward

adjacency computation. There are 26 neighbors in 3D space when discretized by axis-

aligned cubes. The octree provides a way to check the 26 neighbors for occupancy,

and generate an adjacency list for each node.

3Figure illustrated by WhiteTimberwolf.
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Supervoxel seeding and initialization

The VCCS algorithm utilizes a variant of k-means clustering to generate the seg-

ments. Two particularly challenging aspects of the k-means algorithm are choosing

k and effectively initializing the cluster centers. The value k determines how many

segments are produced and is important since we want to avoid under-segmentation.

Once k is chosen, we must distribute the cluster centers throughout the data to begin

alternately assigning the points closest to the current center to the cluster and then

re-computing the cluster center given points within the cluster. In the current PCL

VCCS implementation [163], [179], voxels are assigned to a cluster using a distance

function that combines distance metrics related to Euclidean distance, normal differ-

ence, and color difference between a candidate voxel and a given cluster. More com-

plex distance functions, such as those mentioned in Papon et al.[163], could include

distances between extracted 2D or 3D features at the cost of greater computation

time.

While there are many ways to choose k and initialize the centroids, VCCS ex-

ploits the following consideration for point clouds: the segments should be regularly

distributed over the surfaces in space while attempting to maximize the similarity

between points in a single segment. This yields a natural approach for implicitly

computing k and seeding the supervoxel4 segments: since we have the points in space

representing the world, we can use another application of an octree with a coarser

seed resolution Rs to find candidates that are reasonably distributed over the occupied

space.

Cluster Aggregation

As mentioned in the previous section, cluster aggregation, or associating voxels with

the supervoxel cluster centers, proceeds by alternating between two steps:

� (Expansion) For each supervoxel ci, we iterate over the voxels, adding them to

the segment if the distance between the current centroid and the voxel is less

4The authors use the term supervoxel to represent a collection of voxels, in the same way super-
pixel is used to represent a collection of pixels in the image segmentation literature.
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than the shortest distance to a center seen by that voxel. All voxels adjacent to

this voxel are added to the visit queue.

� (Recentering) The centroid is updated to reflect the mean of the supervoxel

The distance function used here is the weighted L2-norm of the vector of the

normalized spatial point to point distance Ds, color distance Dc, and normal distance

Dn = 1− 〈ν(pi), ν(pj)〉:

D =

√
λ
D2

s

3R2
s

+ µ
D2

c

m2
+ εD2

n. (7.1)

While the original paper states that the centroid stabilizes after an expansion

depth of five iterations, the version of the algorithm contributed to the Point Cloud

Library (PCL) we have adapted computes the expansion depth with T = bλRs

Rv
c.

This parameter is therefore directly related to the chosen ratio of the seed resolution

versus the voxel resolution. The algorithm assumes that each voxel will be tested by

at least one cluster. The greater the number of clusters tested for a particular voxel,

the greater the competition between the clusters.

7.2.2 Extension for incremental processing

There are two main issues when considering an incremental extension. First, we want

to minimize the number of points we have to process, and second, we want to support

the temporal consistency property. Therefore, processing each frame independently

is undesirable, as mentioned previously. Instead, we want to exploit estimates of the

camera motion in order to align the new incoming cloud with the existing cloud we

have already segmented.

Assume we have a method of detecting previously unseen points in an incoming

frame. Then adding only the new points to be segmented generates results like those

shown in Fig. 7.2. In that image, a single plane has been incrementally segmented over

camera motion, resulting in new point sets for each frame that were independently

segmented. This yields detectable boundaries between the frame views, since the
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Algorithm 6 Incremental VCCS

1: function Incremental-VCCS(Pi, Oa, Os, S)
2: Ba ← ∅, Bs ← ∅ . initialize octree observers
3: Oa ← Pi, Os ← Pi . B has new voxels
4: S ′ ← ∅
5: for s ∈ Bs do
6: p = closest(s,P)
7: S ′ = S ∪ to supervoxel(p)
8: end for
9: S ′ ← sparse filter(S ′)
10: s← ∅ . initialize candidate border set
11: for v ∈ Ba do
12: for n ∈ Nv do
13: if n has label then
14: s← supervoxel(n)
15: end if
16: end for
17: end for
18: s← border filter(s) . filter border using heuristic
19: S ′ ← S ′ ∪ s . add border to incremental set
20: for j = 1, d do
21: for ci ∈ S ′ do
22: expand(ci, Oa)
23: end for
24: for ci ∈ S ′ do
25: recenter(ci, Oa)
26: end for
27: end for
28: return S ∪ S ′

29: end function

Figure 7.2 Purely incremental segmentation over multiple frames. This image shows
a single plane viewed with camera motion over multiple frames. Note the detectable
boundaries between frame views due to lack of segment extension.

154



segments from the previous frame are not properly extended. In some cases, this may

not negatively affect the performance of the segmentation (with respect to boundary

recall or undersegmentation error), but could generate more segments than a single

global segmentation as well as more segments that are smaller or larger than the

average for artificial reasons. Since we would like the number of segments and segment

size distribution to be similar to a single global segmentation of the final model, we

must extend the old segments with the new data. We note that segment extension

requires a relaxation of the temporal consistency constraint (i.e. instead of“all points”

we have “most points”), since extended border segments can ultimately change shape

due to centroid updates.

How do we detect the previously unseen points, i.e. the ones that haven’t been

seen and segmented yet? A general way to do this (independent of the segmentation

algorithm) includes projecting the existing labeled points into the new frame and

generating a mask used to exclude points in the new frame that correspond to old

points. However, since we are manipulating point clouds and have access to spatial

data structures, we instead develop a voxel-based approach that exploits properties of

the VCCS algorithm and utilizes adjacency lists for boundary detection. Algorithm

6 shows pseudocode for the new method which we describe in more detail in the

following sections.

Voxel-based propagation with adjacency search

The voxel based approach is conceptually simple. We extend the existing algorithm

to allow for incremental computation by directly tracking newly inserted leaf nodes in

the voxel octree data structure and adding support for dynamic octree resizing. New

leaf nodes indicate the addition of newly occupied voxels, whereas if a query point

maps to an existing leaf node, then that voxel already exists and is occupied in the

octree. The latter also implies that the voxel has already been assigned a segment

label.

We take advantage of the fact that the existing VCCS algorithm is subdividing

the world into voxels and maintaining an octree data structure to manage adjacency
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between voxels. We make use of this capability to detect previously unseen points in

the query frame and add neighboring border segments using the adjacency list. For

each incoming frame, we construct an incremental voxel set, V , that indicates the

voxels that must be segmented. This set will also include the previously computed

border segments that must be extended with new voxels.

Detecting new points Each query frame point cloud is in world model coordi-

nates, courtesy of the camera motion estimation we perform. This allows us to insert

the query points directly into the existing voxel data structure used in the VCCS

algorithm. In original form the algorithm did not track or distinguish between newly

created voxels or previously occupied voxels. Our modification includes an Observer

pattern [68] implementation that allows us to receive notifications for every point

insertion that generates a new voxel leaf node in the octree data structure. Since

every point must reside at the resolution level of the tree (i.e. the leaves), we can

deduce that a point has not been seen before when a leaf is created; otherwise, the

leaf contains at least one other point that has been previously seen. Every newly

created voxel is added to V , and then queried for border segments.

Boundary detection In order to complete the incremental point set V , we must

also detect the existing segments that lie on the boundary in order to determine only

those segments we wish to extend using the incoming points. The following definitions

will clarify the following discussions.

Definition 3 A segment is an interior segment if it is completely bounded by other

segments.

Definition 4 A segment is a boundary segment if it is not an interior segment.

Since the octree data structure conveniently computes the occupied adjacencies

for every voxel in a 26-neighborhood, we exploit this information to search for voxels

with an existing segment label. If a new voxel has a neighbor with a label indicating

it belongs to an existing segment, then that corresponding segment’s points will also

be added to V (since, by the definitions above, the segment is a boundary segment).
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(a) No Heuristic, Frame 2-3 (b) No Heuristic, Frame 3-4

(c) Heuristic, Frame 2-3 (d) Heuristic, Frame 3-4

Figure 7.3 Comparison of segment changes, without (7.3a-7.3b) and with (7.3c-7.3d)
the boundary heuristic. In the left column, the images show the difference between the
segmentation of frames 2-3, and in the right column the difference between frames 3-4.
Note that without the heuristic, many more segments have significant differences in
their shapes, causing greater perceptual and structural discontinuity between frames.

Boundary heuristic

While the definition of boundary segment correctly handles any case where there exists

a new point adjacent to a labeled point, the choice to add the entire segment to the

active incremental cloud is not always desirable. In our experiments, we noticed that

many interior segments had a few voxels or pixels missing, causing them to be added

to V , the incremental voxel set. This often yielded noticeably different segmentations

across subsequent frames, for segments that were perceived to be interior and complete

(see Figures 7.3a-7.3b).
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We address this issue by adding a boundary heuristic: we check the percentage

of new unlabeled points or voxels to the total number of occupied adjacent nodes.

If the percentage of unlabeled points exceeds a configurable threshold, we consider

the adjacent segments as boundary segments, and add them to the incremental list.

Otherwise, the new leaf node is simply added to the segment that yields the lowest

distance, as in the original expansion algorithm. These segments are not added to

the incremental cloud in this iteration, better preserving their original configuration

(as seen in Figures 7.3c-7.3d. Note that some of the differences still seen in the

previously segmented regions are actually previously unseen points revealed by the

camera motion.

7.3 Environment modeling

The segmentation approach we have described relies on good ego-motion and a cor-

respondingly well-aligned model of the environment. We make use of the approach

presented in Chapters 5 and 6 to generate models of the environment and then use

these to generate fused color and depth images for the incremental segmentation.

Ideally, the SLAM algorithm would output new integrated keyframes as the camera

moved through the environment, but for the experiments we present in the next sec-

tion, we simulate that capability after the fact by pre-generating the model and then

extracting the color and depth views using the estimated camera motion path.

Figure 7.4 shows sample frames as well as the full models for two of the three

scenes we used in the testing dataset.

7.4 Results

We focus on two quantitative metrics to investigate the performance of the incremental

versus the global algorithm. We separate the incremental algorithm into two versions

with and without boundary expansion. Images from the three datasets used for testing

are shown in Fig. 7.4. For the tests, the voxel resolution was set to 8 mm, while the
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Figure 7.4 RGB and depth images from the three scenes analyzed.

seed resolution was set to 10 cm.

159



(a) patio runtime

0 2 4 6 8 10 12
iteration

0

1000

2000

3000

4000

5000

se
gm

en
ta

tio
n 

ru
nt

im
e 

(m
s)

outdoor patio dataset

full model
boundary expansion
no boundary expansion

(b) patio segment size

full model boundary
expansion

no boundary
expansion

0

100

200

300

400

500

600

700

800

900

nu
m

be
r o

f v
ox

el
s 

in
 s

up
er

vo
xe

l

142 143 113

outdoor patio dataset

(c) sofa runtime

0 2 4 6 8 10
iteration

0

500

1000

1500

2000

2500

3000

3500

4000

se
gm

en
ta

tio
n 

ru
nt

im
e 

(m
s)

indoor sofa dataset

full model
boundary expansion
no boundary expansion

(d) sofa segment size

full model boundary
expansion

no boundary
expansion

0

100

200

300

400

500

600

700

800

nu
m

be
r o

f v
ox

el
s 

in
 s

up
er

vo
xe

l

148 149 132

indoor sofa dataset

(e) table runtime

0 2 4 6 8 10 12
iteration

0

500

1000

1500

2000

2500

3000

3500

4000

4500

se
gm

en
ta

tio
n 

ru
nt

im
e 

(m
s)

indoor table dataset

full model
boundary expansion
no boundary expansion

(f) table segment size

full model boundary
expansion

no boundary
expansion

0

100

200

300

400

500

600

700

800

900

nu
m

be
r o

f v
ox

el
s 

in
 s

up
er

vo
xe

l

131 130 106

indoor table dataset

Figure 7.5 Runtimes (7.5a,7.5c,7.5e) and segment sizes (7.5b,7.5d,7.5f) for the three
segmentation algorithms run on each dataset. Box plots showing segment sizes in
voxels are annotated with the median segment sizes for each algorithm. Runtime
plots show that incremental algorithms scale better to increasing model size than full
model segmentations. Segment size plots show that segment sizes from an incremental
segmentation with boundary expansion more closely match the sizes from a full model
segmentation than incremental segmentation without boundary expansion.
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7.4.1 Performance

The runtimes of the three methods analyzed are shown in Fig. 7.5. As expected,

the runtimes of the incremental processes remain approximately the same as more

frames are iteratively added to the model, while the runtime of the full model process

increases significantly. The difference in runtime between the incremental processes

is due to the boundary identification process and the addition of the boundary voxels

to the incremental set. While the runtime is greater than the incremental process

without boundary expansion, the boundary expansion method remains lower than

even the first frame segmentation.

7.4.2 Segment size distribution

As discussed in Section 7.2.2, incremental segmentation without boundary expansion

can lead to prematurely truncated border segments. A byproduct of this truncation

is that segmentation clusters may have more or less competition with one another

depending on whether they are at the border or not. Ideally, more competition

between clusters would increase the likelihood that a voxel would be added to the

correct cluster. Also, increased competition naturally regulates the size of a cluster

to be less than the maximum allowable size based on the expansion depth, since a

portion of the clustering distance metric comes from the euclidean distance to the

center of a cluster.

Figure 7.5b, 7.5d, and 7.5f illustrate the sizes of superpixels for the test datasets

for each method analyzed. As we expected, segment sizes for the incremental seg-

mentation with boundary expansion mirrors the full model segmentation, while the

incremental version without boundary expansion truncates border segments, resulting

in consistently lower segment sizes. Counterintuitively, there are also a few large out-

liers for the incremental method without border expansion. In these cases, truncated

border segments are prevented from competing with neighboring segments in the next

frame, allowing segments in the next frame to grow larger than they otherwise would.
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7.5 Future Work

This research has made positive strides towards an online temporally consistent seg-

mentation of streaming point clouds, but there is still work to be done. As noted in

Sec. 7.4.1, the population of the octree takes up time proportional to the size of the

input cloud vs. the size of the incremental point set and is not conducive to frame-rate

operation. It may be possible to construct a hybrid algorithm utilizing aspects of the

voxel-based approach combined with an image-based projection test to minimize the

points inserted into the octree. Alternatively, the estimated ego-motion of the sensor

may be able to provide hints to the parts of the incoming cloud that are new; i.e. we

could take advantage of the image structure of the cloud and begin processing using

the edges that are likely to be new. Incorporating this segmentation process into the

ego-motion and mapping process on the GPU could provide additional benefits in

speed and segment consistency.

While the ego-motion and mapping algorithm handles overlapping point clouds,

as well as micro-loops5, it does not yet handle full loop closures successfully. As is

well known in the field of SLAM research, detecting and correcting for loop closures

effectively and efficiently is still a work in progress. In this case, assuming the loop

closure was detected by the ego-motion estimation algorithm, the segments generated

in the recent frames would need to be merged appropriately into the prior segment

structure. Detecting the interface boundary and determining how this merge would

occur with minimal or no disruption to previous segments requires further research.

7.6 Conclusion

The algorithm described in this chapter addresses the problem of generating tempo-

rally consistent incremental segmentations of streaming point clouds with ego-motion

5Micro-loops are similar to the standard loop closing problem but are caused by the camera
returning to regions recently covered; e.g. imagine a camera sweeping a room in one direction, and
then changing direction to sweep over the room recently observed. In this case, it is not possible
to assume that all points observed by the sensor relative to only the previous few frames have not
already been seen.
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estimates derived from the environment modeling algorithm we discussed in Chap-

ter 6. An over-segmentation for the initial frame is generated using a modified ver-

sion of the VCCS algorithm, which we then extend incrementally by computing the

boundaries of the existing segmentation and generate a new segmentation set given

the previously unseen points. While the algorithm is not yet suitable for operation

at frame-rate, it is clearly more efficient than simply running the algorithm on the

composite point cloud at each frame. In addition, due to the boundary extension

methodology, the number of segments compare favorably to the global segmentation

with similar segment size distributions, indicating that the incremental algorithm is

producing near-equivalent results.
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Chapter 8

PartNet

The long-term goal of my research driving the topics in this dissertation is the creation

of a set of algorithms that enable semantic environment understanding for robots.

What is semantic environment understanding? I believe for robots to be effective

collaborators, they must (1) know where they are at all times, (2) recognize places they

have been, (3) recognize places they have not been (but understand what is familiar

about them), and (4) recognize objects in the environment, and their configurations

and relationships with respect to each other.

Humans have an amazing capability for robust place and object recognition along

with the ability to quickly learn and become comfortable with our surroundings. Not

only does this occur in our frequently visited environments, it also occurs in places

that we are visiting for the first time as well as places we have not been for a long

period of time. Upon first exposure, humans are able to become familiar and gain a

functional understanding of the new environment that is almost instantaneous.

For example, we will not run into walls or run into objects that might be in our

way, and we also can recall semantic structure, such as“where is John’s room,”“where

is Mary’s office,”“where is the bathroom,”“where are the stairs?” Even out of doors,

we will recall the doors on the outside of a building or, analogously in an unfamiliar

state park, we will quickly learn the locations of the picnic, fishing, and camping sites.

These capabilities are driven by our ability to create cognitive maps using landmarks

as well as our knowledge of objects and their meaning, and their relationships to each
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other.

Therefore, it is one of my core beliefs that you cannot have an autonomous em-

bodied system exist within an environment and behave intelligently without having

these kinds of capabilities; i.e., without having the capability of understanding the

environment, being able to learn about it quickly, and then adapt on the fly.

Putting together what we have so far (in this dissertation) means we can build

maps of the environment and at the same time, know where we are within that map,

at least locally (eventually, globally). Now we need to know about objects.

How do we understand and construct representations of objects within the envi-

ronment? First, what do we need to know about objects? At the very least, we would

like to know what they are, which is the task of object detection and recognition, and

we would like to know where they are, which is the task of localization. Classic object

recognition systems typically provide a single class label, i.e., “that image or bound-

ing box contains a chair.” However, we may want to actually know more information

about that particular chair, because we plan to sit on it, or use it to get someplace

we cannot reach. Does it have armrests for our comfort if we sit in it? Does it have

wheels, implying it will likely move if we try to step on it? Do we need to first find

and manipulate the chair to get it into a usable position?

To be able to answer these questions, we need both the pose of objects and in-

formation about their parts. Knowing an object’s pose is important for a variety of

situations, foremost including tasks that would require manipulation of that object,

or detecting changes within the environment. Describing the pose of an object has

some subtleties, but is relatively straightforward compared to describing the more

refined aspects of an object.

Understanding semantic information about particular aspects of an object will

allow us to reason better about it and what we can do with it. Is that a high chair or

a low chair? Does it have arms? Can it be moved easily? Is the door handle a lever or

a knob? One might consider this solvable through a more fine-grained classification

approach, but that leads to a combinatorial explosion of aspects that may best be

avoided by recognizing properties individually. This is not just about fine grained
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classification, we cannot really represent all the possible states of all objects in the

world as specific classes. However, there is additional information, and we would like

to know about it. We want to be able to reason about it. This leads us to parts.

Knowing object parts and understanding the relationship between parts helps

address this combinatorial explosion of states that we might encounter in the world

and be able to reasonably determine what actions we need to take to achieve whatever

specific the goal we have at that time. Learning to segment and recognize parts

will give us this ability to chunk the world into meaningful components at a finer

granularity.

In this chapter, we look at the feasibility of training a deep convolutional neural

network to recognize parts within a given class. In the following sections, I describe

a network I call PartNet that I apply to the task of detecting and recognizing the

parts within a whole. Since I have mentioned chairs several times, and there is a

sufficient number of chair CAD models to select from to make it a feasible dataset for

deep learning experimentation, I collect a randomly sampled set of chair models, and

generate a partially hand-annotated data set for the purposes of supervised training.

While I am ultimately interested in developing a learning system for object parts and

components in an unsupervised setting, it is useful to approach that difficult task by

finding out what works and does not work in a supervised setting.

8.1 Parts

We define a part P ∈ O as a functional subvolume of an object, which itself may

be an object. This is general enough to capture multiple interpretations of an object

“part,” such as when we mean a literal subset of an object’s surface that serves a

semantic purpose. For example, many office chairs have armrests. Many of those

armrests could literally be detached from the rest of the chair and are themselves

objects; these separable objects are adjustable and integrated into the chair to serve

the armrest purpose. In contrast, other chairs, whether inside or outside an office

environment, may have armrests that are not obviously detachable from the whole.
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However, that part of the object clearly affords being used as an armrest1, therefore

we want to recognize that it serves that role.

Parts have both a true hierarchical relationship with an object, in that an object

may be composed of separate components that are put together to make a whole, as

well as a functional relationship to the object. In many cases, you can take the object

apart into its components. They may or may not be particularly useful on their

own, but they contribute to the overall structure and function of the whole. The

definition of part also represents the recognition that there may be specific functions

for a non-detacheable portion of an object, meaning that a portion of the object is

used for a particular task; this is affordance oriented and it may or may not coincide

with the hierarchical compositional view of parts. One may argue at length about

the philosophical nature of this question between objects and their parts and the

segmentation between them (in fact, someone does [22]); there is likely no single

answer or definition that would satisfy everybody, and cover all cases.

In this dissertation, we apply the dual definition with an emphasis on the semantic

use of a portion of an object.

8.2 Problem

We would like to recognize aobject parts and estimate pose using data from sensors

that may be mounted on an embodied intelligence system. This includes color images,

color and depth, or color with depth and normals; i.e., images Ii ∈ I where each image

is H ×W × D where D ∈ {3, 4, 7}, for RGB, RGB-D, and RGB-D-N, respectively.

Given a single Ii with a known object class (e.g., this could be the output of a

previous object detection and localization task) the goal is to detect and localize

the visible object parts and estimate the pose of the object. In the following, we

formulate the part detection as an instance segmentation task. Given an image of

1I thought it would be interesting to look up the definition of an armrest in Google’s dictionary,
and it provided “a padded or upholstered arm of a chair or other seat on which a sitter’s arm can
comfortably rest.” It’s funny how ill-defined our notions of parts (and perhaps our use of language),
even as prevalent as they are. So, if the armrest is not padded or upholstered, it’s not actually an
armrest?
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Figure 8.1 The PartNet architecture. The core architecture of the system is shared
with Mask R-CNN[82]. We split out a subnetwork to handle the pose estimation,
which begins with a segmentation component, and then feeds to a bifurcated network
that generates the translation and rotation estimates. Depending on the network con-
figuration, output from the part mask generation is concatenated with the feature maps
and segmentation before being fed to the pose network.

an object, we would like to label the pixels for each instance of an object’s parts

with the corresponding part class. We denote the instance segmentation labeling as

L = RH×W×E × NE. This gives us localization information for each detected part.

Therefore, the function Ψm(Ii; θ) → L produces a set of mask images of cardinality

|E| and a corresponding label for each mask.

The pose estimation task produces a rotation and translation for the object in the

camera’s frame. Therefore, this network, Ψp(Ii,L∗; θ)→ T o
c , where T

o
c ∈ SE(3) and

refers to the pose of the object in the camera frame. Note that the function optionally

takes as input the mask and class output provided by the previous function.

8.3 Approach

We instantiate the functions Ψm and Ψp as convolutional neural networks. To avoid

starting from scratch and because the part segmentation tasks are similar, we start

from the Mask R-CNN network of He et al. [82]. We use the ResNet101 backbone

and only make one small modification to allow the network to accept arbitrary image

channels to handle the additions of depth and normals.

168



Figure 8.1 illustrates a simplified block diagram of the overall architecture, showing

the data flow between the existing structure of the Mask R-CNN (MRCNN), as well

as the new additions for pose estimation.

8.3.1 Supervised part detection

Parts have a relatively long history2, if we include human pose segmentation and pose

estimation. Human “parts” consist of our articulated body parts, arms and legs and

hands and feet, and fall squarely into the “functional subvolume of a whole”definition

of parts. Work on pictorial structures by Felzenszwalb and Huttenlocher [56] (who

applied the part detection and model construction for human pose) was itself based

on the work or Fischler and Elschlager [62], who apply parts and a deformable model

to face detection. Deformable part models [52], [53] are the more recent extension to

these concepts. Without going into great detail on the operation of these algorithms,

I want to emphasize an important point: outside of the earlier models that specifi-

cally modeled body parts, the recent part models do not emphasize semantic parts.

Instead, they aim to learn a latent representation of parts that are formulated to best

discriminate the object from the background.

Why do most learning algorithms now focus on latent representations as opposed

to explicit semantic parts? Primarily due to a lack of data! We were initially inspired

by the work of Tulsiani et al. [203] in learning to extract 3D primitives from volumetric

representations of objects. They use a REINFORCE-based [218] algorithm to train

a network to regress primitive parameters for cuboid volumes that best fit the object

according to a pair of loss functions that induce the primitives to align to the surface.

I am as enthusiastic as the authors are about the potential for new investigation

into building simplified representations of objects, similar to the work of Nevatia and

Binford [151] and Biederman [14]. However, unfortunately for our robots, they don’t

see the world as complete, axis-aligned, volumetric objects. Instead, they only see

snapshots and partial views (albeit often with depth). We do not expect these data

to produce the same results.

2At least in “computer vision” timescale.
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While I believe that perceiving simplified versions of objects and recognizing parts

without direct supervision is where we are heading, in this dissertation I focus on the

first step: given a set of semantically labeled objects within a single class, can we

get a network to extract the parts? We can build on this foundation in the future (I

discuss possible routes to do this in the next chapter).

The MRCNN network provides the instance segmentation capability. We provide

the network with a set of classes that correspond to parts of a single object class, and

the network is trained to output a set of bounding boxes, masks, and the classes for

each of the box/mask pairs. It does this by training a subnetwork to evaluate region

proposals using a region of interest feature extraction mechanism called ROIAlign.

Since the features are only computed once, the process is very efficient, and allows the

network along with the attached“heads”(class, bounding box, and mask) to be trained

end-to-end. Our version of the MRCNN network uses the ResNet-101 [83] network

as the feature generating backbone, and implements feature pyramid networks [130]

for feature extraction. For more information on the details and the progression from

the R-CNN to the MRCNN, see girshick fast 2015, [72], [82], [130], [174].

The use of MRCNN is not particularly interesting in and of itself for this re-

search. What is interesting is that we show that the instance segmentation approach

is applicable to part labeling, and performs well on images when paired with depth

maps.

8.3.2 Pose Estimation

The MRCNN network does not support pose estimation. We extend the original

network by creating a new head that is composed of three primary components: an

object segmentation phase, followed by the bifurcated regression network for rotation

and translation. We instantiate three instances of the network to investigate the

effects of the part detection on the pose estimation process, as well as the contribution

between two different rotation regression formats.

Figure 8.2 describes the first addition to the network to support pose estimation.

The segmentation is currently used to generate bounding boxes that define region of
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Figure 8.2 The segmentation network layers, listed left to right.
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Figure 8.3 The translation branch layers of the pose network.

interests (ROIs) for extracting features from the feature pyramid network [130]. The

size of the feature map we extract is a hyperparameter, and we set it to [80, 80] here

to accommodate the optional feature masks we use for the “+Parts” variants.

The features extracted using the segmentation are then passed to regression net-

works for translation and rotation. Shown in figures 8.3 and 8.4, the networks are

very similar: both branches pass the features from the feature pyramid network (FPN)

through a small encoding network before processing them through two stages (com-

mon in many regression networks targeting pose): a set of convolutional layers fol-

lowed by a set of fully connected layers and terminating in the appropriate sized

vector output. We utilize rectified linear unit (ReLU) activation throughout until the

final layer, which allows is a linear activation to account for negative values.

Similar to PoseCNN [222] and the Riemannian CNN from Mahendran et al. [135],

but in contrast to Gupta [77], [78], Grabner and Lepetit [74], and Wu et al. [221],

our pose estimation directly outputs the translation and rotation parameters for the

object in the camera frame. Other approaches output additional information such

as an object wireframe (as in [221]), or may require additional steps, such as ICP
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Figure 8.4 The rotation branch layers of the pose network.

fitting after coarse pose estimation [77], [78], or solve a perspective-n-point (PnP)

from estimated object bounding box points [74].

Part contributions

Parts Pose

I believe that recognizing parts and their location can help in estimating the pose

and that similarly, knowing the pose of the object can provide information about

where to look for specific parts. While such a circular and iterative process may yield

better results than we can achieve otherwise, in this work we examine a single arc

of that graph: whether providing information about the detected parts to the pose

network improves pose estimation accuracy.

There are several ways we could pass this information: (1) a vector of parameters

that describe the bounding boxes and corresponding class values, (2) a derived graph

structure emphasizing neighborhood relationships (perhaps something like the latent

graph in [88]), or (3) the set of masks indicating shapes, location and class type. We

select the last item for this work, as the network is already producing the masks (in one

form) and it is straightforward to append the mask information as simple additional

channels in the ROI feature tensor. However, I suspect that item (2) may be part

of an effective way to include additional reasoning about object structure into the

system. I consider the mask-append method the baseline approach. Figure 8.5 shows

an example of the part masks and segmentation masks generated by the network.
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(a) Part mask set (b) Object segmentation

(c) Part mask set (d) Object segmentation

Figure 8.5 Examples of part masks generated for the pose network. A multi-channel
tensor representing each part class was reshaped into a grayscale image by tiling the
13 part classes into a 4x4 array.

We hypothesize that information about the presence and spatial location of the

parts in the camera frame as provided by the masks will improve the pose estimation

accuracy.

Pose representation

Representing rotations in a deep learning framework such as a convolutional neural

network is a challenge. The first choice is whether to regress the pose values directly

or to implement classification of the pose. For each option, there are several more

choices. There are 3 options to consider covering the regression approach: Euler

angles, quaternions, and rotation vectors from the Lie algebra so(3). We’ll briefly
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Figure 8.6 The rotation representation hierarchy.

discuss each of these approaches in turn.

In pose classification, we discretize the pose space, often just rotations, into a

set of classes where each class represents a continuous range of poses. Coarse-grained

classification discretizes the space into few bins, while fine-grained classification allows

for more accuracy at the cost of more complexity in the representation. For rotation

in a single plane (e.g., estimating an object’s yaw in the camera frame), it is common

to bin around the compass points in a coarse formulation, while a fine approach might

bin for every degree.

While discretizing the range of a single axis rotation is straightforward, it is not

obvious how to discretize SO(3) in full; typical approaches often discretize a spherical

rotation encoding: using elevation, azimuth, and in-plane rotations. Discretizing the

Euler angles is another possibility, although this admits the same problems as in other

uses of Euler angles (i.e., gimbal lock and multiple conventions).

In this dissertation, we limit our investigation to quaternions and rotation vectors

in so(3).

Quaternions are a popular 4D representation for rotation and orientations in 3D.

Although unit quaternions do provide a double cover of SO(3) (i.e., q and−q represent

the same rotation, in a similar way that a 45 degree rotation in the plane represents the

same ending point as -315 degree, although the angles are clearly different). Quater-

nions can also be used to interpolate between two different orientations (i.e., spherical

linear interpolation, or slerp) since mathematically, the difference between the two

rotations forms a geodesic on the four dimensional unit hypersphere. While quater-

nions have these benefits, only unit quaternions represent rotations, which means any
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mechanism we use must either try to enforce the normalization during learning or

accept non-normalized quaternions and normalize them before use. In practice, we

end up doing both because the network does not consistently produce normalized

quaternions.

Rotation vectors in so(3). Rotation vectors are a more compact encoding (3

vs. 4 values) than quaternions and do not require normalization. In fact, they are

specifically un-normalized vectors that encode an axis-angle rotation: (v̂, θ), where θ

is the amount of rotation around the unit vector axis v̂. The encoding is accomplished

by scaling the axis by the angle: θv̂. Rotation vectors are derived from the Lie algebra

for Lie group SO(3).

Loss function

To train the PartNet to generate pose estimates, we must provide a loss function that

computes the difference between the network’s estimation of the pose and the actual

ground truth pose. As shown in the architecture diagram in Fig. 8.1, the network

outputs the loss as 6 or 7 output neurons: 3 neurons for translation in the translation

branch, and 3 or 4 neurons in the rotation branch, depending on whether the rotation

is encoded as a rotation vector in so(3) or as a quaternion. We formulate the pose

loss as the following:

Lpose =
1

B

B∑
i=0

[
Ltrans(ti, t̂i) + Lrot(Ri, R̂i) + Lreg

]
. (8.1)

Translation loss. The translation loss Ltrans(ti, t̂i) is implemented in a straight-

forward manner as the squared Euclidean distance:
∥∥ti − t̂i∥∥2

2
.

Rotation loss. The rotation loss is not as straightforward. Since R ∈ SO(3),

the set of 3 × 3 orthogonal matrices {R | R ∈ R3×3, RT = R−1, det(R) = 1 }

representing rotations in R3, we require a loss function that computes the geodesic

distances between rotations, i.e. the length of the shortest path on the group manifold.
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The geodesic distance for elements of SO(3) is given in:

d(R1,R2) =
∥∥ln(R−1

1 R2)
∥∥ , (8.2)

where ln(R) is the logarithmic map of SO(3) that takes elements of R to a skew-

symmetric matrix ω ∈ so(3).

Since we would like to avoid the 9-element overparameterization of rotations in

SO(3), we instead parameterize our rotations with 3 or 4 elements. For the default

implementation, we chose the 4-element quaternions, and translate the distance metric

above into the following formula:

d(q1, q2) = 2 |ln(q1q∗2)| , (8.3)

where qi ∈ S3 are unit quaternions, which form the unit hypersphere as a subset

of R4. Before describing the quaternion logarithm, first recall Euler’s formula:

eiθ = cos θ + i sin θ. (8.4)

Glossing over background details, we note that unit quaternions can be thought

of as a generalization of imaginary numbers. Let Im(q) = q−q∗

2
which can be seen

to yield qv, the imaginary vector part of the quaternion. If we let h = Im(q)
|Im(q)| , then

h2 = −1, since
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h2 =

(
Im(q)

|Im(q)|

)2

(8.5)

=

(
qv

|qv|

)2

(8.6)

= q̂2
v (8.7)

= [xi yj zk]T [xi yj zk] (8.8)

= (xi)2 + (yj)2 + (zk)2 (8.9)

= −x2 − y2 − z2 (8.10)

= −(x2 + y2 + z2) (8.11)

= −1 (8.12)

Then, a quaternion can be expressed in polar form using Euler’s formula as:

eh
θ
2 = cos

θ

2
+ h sin

θ

2
. (8.13)

Since the quaternions provide a double cover of SO(3), we must use half the

desired angle. The quaternion logarithm is then:

ln
(
eh

θ
2

)
= h

θ

2
(8.14)

Which shows the relationship between quaternions and rotation vectors, since h

represents the unit vector axis of rotation, and θ
2
is half the angle of rotation around

the axis. Therefore, the map H→ so(3) is defined as q 7→ 2 ln q. We also see how Eq.

8.3 works: q1q
∗
2 computes the difference between the quaternions, the log computes

the half rotation vector which we then use to find twice the magnitude to yield the

angle between the original quaternions.

In practice, we must be slightly careful when we are trying to compute the min-

imal angle between the quaternions. Due to the double cover, we must orient the

quaternions in the same hemisphere of the hypersphere; i.e., we may need to negate

one of the quaternions. We check this efficiently by computing the magnitude of the
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chord between the points on the hypersphere |q1 − q2|; if it is greater than
√
2 we flip

the sign of one of the quaternions.

Since the network does not implicitly“know”that quaternions must be unit vectors

in R4, we must also add in a quaternion regularization term that penalizes the network

for producing non-normalized quaternions. Therefore, the full loss Lrot for quaternions

is:

Lrot(q, q̂) = 2

∣∣∣∣ln( q

‖q‖
q̂∗)

∣∣∣∣+ [‖q‖ − 1]2 (8.15)

When the network is predicting rotation vectors, we do not use the norm of the

difference between the vectors, nor do we use the exponential map to compute the

distance as in Eq. 8.2. Instead, we use the slightly more efficient conversion from

rotation vectors to quaternions, and use the same distance function (Eq. 8.3). To

convert from rotation vectors v = hθ to quaternions, we use the following:

θ = ‖v‖ , h =
v

θ
, q =

[
cos

θ

2
h sin

θ

2

]
(8.16)

However, in this case, we no longer need the regularization term in Eq. 8.15, since

the conversion generates unit quaternions by construction.

Regularization loss. This term implements the standard weight decay procedure

implemented for most neural network training algorithms; i.e., weights are multiplied

by a factor less than 1. This is thought to improve generalization performance, es-

pecially with smaller data sets and/or large parameter sets. However, according to a

paper under review for ICLR 2019 [4], they found for first order network optimizers

such as Adam, the effect is accounted for through an effective increase in learning

rate.

8.3.3 Data Generation

Generating and annotating data is a significant time investment. Since we were inter-

ested in investigating a simplified supervised learning approach as an initial baseline,

we searched for real and/or synthetic data that would satisfy our requirements: ob-
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Figure 8.7 Exemplar SceneNet RGB-D frames. Images reproduced from [139] ©2017
IEEE.

jects in a relatively non-cluttered environment with parts and pose annotations. While

we found some datasets that fit a portion of the requirements (Sun RGB-D [190], Sce-

neNN [98], and ScanNet [37]; mostly providing scenes with objects and pose), we did

not find any with all the requirements.

Based on our previous experience in capturing and annotating clean datasets from

real environments, we chose to pursue a synthetic scene generation approach, with

the assumption that the synthetic learning could later be merged with real data.

ShapeNet is a large database of CAD models [23], and the infrastructure of SceneNet

RGB-D provides a set of software tools to generate and render pseudo-realistic envi-

ronments with objects from ShapeNet using a photorealistic renderer based on pho-

ton mapping [139]. Figure 8.7 shows several example renderings from the original

SceneNet dataset.

We made two modifications to the SceneNet RGB-D scene and trajectory gener-

ators. We first modified the scene generation parameters to choose a single object

from a category of our choosing (i.e., chairs in this case), and to place it near the ori-

gin of the randomly selected environment. We also modified the environment models

to place the origin at a sufficiently central location, to allow for as much camera

movement as possible.

Secondly, we augmented the SceneNet RGB-D trajectory generation code to sup-

port “spherical” trajectories where our target object remains fixed at the camera

look-at origin, and the camera moves on the surface of a sphere with a smooth time-
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Figure 8.8 Example chair renderings from our dataset.

varying radius throughout the trajectory. This provides a trajectory that effectively

moves the camera along a path normal to the surface of the sphere for dollying the

camera near and far from the object, while the motion on the sphere provides views

of the object (and the surrounding environment) from various orientations. As in the

original work, we keep the camera pointed “up” during all motion.

Figure 8.8 shows several examples of the chair renderings in our dataset. Our

training set consists of 62,222 frames with color, depth, normals, part masks, object

instance mask, and camera/object pose. The testing set consists of 37,286 frames.

In order to efficiently generate labels for tens of thousands of images, we needed

to be as lazy as possible. Therefore, we developed a point cloud annotator built on

the Open3D library [235]. The annotator allows us to select multiple points in either

polygonal or rectangular regions of infinite depth, based on the camera view frustum.

The interface is minimal, using a few key commands and a text-based interface to

provide labels to each selected region. We annotated over 150 individual chair models

in this way.

While the annotator worked using a point cloud, we needed some way to apply

the point labels to the CAD models in order to generate proper depth-aware masks

(while a point cloud is a sampled representation of a surface, we needed a real surface

to enable OpenGL to do depth buffering). Therefore, we developed another piece
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Figure 8.9 Data images contained for each frame in the dataset. In order from left to
right: RGB, depth, normals, part masks, scene instance segmentation.

of software that modifies the existing CAD models by associating face colors with

the nearest labeled point value. Since many models are represented efficiently with

low polygon counts, this required us to subdivide the faces before labeling to reach a

suitable vertex resolution.

8.4 Experiments

We run three different network configurations where each configuration produces part

detections and object pose estimates. The configurations are as follows:

Pose The pose network is trained to output part masks and object pose but with no

part information passed to the pose network head. The features are extracted

from the FPN and used without any augmentation.

Pose+Parts In this configuration, we insert a custom layer to compute resized part

masks and concatenate them with the incoming feature pyramid. The hypothe-
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Parameter Value

S1 100

S2 100

λ1 0.0005

λ2 0.005

Steps/epoch 250

Batch size 4

Optimizer Adam

λ exp. decay 0.95

Table 8.1 Training parameters for our experiments.

sis here is that providing information about the detected parts and their relative

locations will provide support to improve the pose estimation.

Pose+Parts+so(3) The network configuration here is the same as in Pose+Parts,

but we investigate an alternate encoding for the orientation estimate. As de-

scribed in section 8.3.2, the original network output quaternions. Since quater-

nions require an additional component in the loss function to help keep the

output normalized, we wanted to investigate the so(3) rotation vector. This

network uses a modified pose loss function to train the rotation network to

output rotation vectors.

For each network configuration, we run 4 different input modalities, corresponding

to RGB, RGB-D, RGB-N, and RGB-D-N.

8.4.1 Training

Each MRCNN network is initialized with ResNet-50 weights pre-trained on ImageNet

[40], while the remaining layers of the ResNet-101 are intialized randomly. Training

proceeds in two stages:

1. The first stage trains the core MRCNN along with the segmentation branch for

S1 micro epochs with learning rate λ1.
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2. The second stage begins where the first stage leaves off, uses a higher learning

rate λ2, and trains the entire network (with the pose head) for an additional S2

micro epochs.

For a non-exhaustive summary of the summary of the parameters, see Table 8.1.

We train one network per GPU3 with preferably no restarts4. We found that we

needed a lower learning rate to avoid generating NaNs in the loss functions for the

MRCNN implementation. This issue greatly reduced the learning speed, and could

be due to lack of effective weight regularization. In future experiments, this problem

warrants further investigation (it seems the weights are disappearing and causing

divide-by-zero errors in the class bounding box pipeline).

8.5 Results and Analysis

We report the results of training and evaluating our networks in this section. Testing

and metric collection occurred on a 100 element randomly selected subset of the test

data.

For reporting on the part detection accuracy, we use the mean average precision

metric computed using the standard set of intersection over union (IOU) metrics (0.5-

0.95). For our implementation of MRCNN, we specifically use IOU computed over

the actual masks, since that is the output of interest.

Pose estimation is reported in a similar manner: we consider an orientation correct

if it differed by no more than a given threshold τr, which we vary between 0 and 0.51

radians; we consider a translation correct if it differed from the ground truth by no

more than a threshold τt, which we vary between 0 and 0.5 meters.

Figure 8.10 shows both the good and bad qualitative results for a single network

configuration.

3Either an NVIDIA P6000 with 24GB or a K6000 with 12GB. While we could train with larger
batch sizes on the P6000, we had to choose a batch size that would fit on both GPU models in order
to keep the parameters consistent.

4The Keras [29] framework makes it challenging to stop and restart without affecting the conti-
nuity of the loss values.
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Figure 8.10 Good (top 4 rows) and bad (bottom 4 rows) examples of part detection
(paired with the corresponding pose estimate visualization) for the RGB-D modality
and Pose+Parts network configuration.
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Pose+Parts 41.4 26.4 51.0 37.8 46.8 26.3 6.8 4.2

Pose 42.1 25.6 49.8 35.2 47.9 27.9 7.6 5.3

Pose+Parts+so(3) 41.0 26.2 48.0 35.6 45.7 27.2 9.1 4.2

Table 8.2 The mAP for PartNet at two common IOU thresholds. This score only
considers regions the network detects as compared to ground truth.

8.5.1 Part Detection

Table 8.2 shows the network configuration accuracy for each of the input modalities

and 2 IOU thresholds. Table 8.3 shows the same configurations, but in this case the

accuracy is computed based on the entire ground truth (i.e., missing detection are

counted against the network).

Overall, the results are a little lower than expected, and in two cases, rather sur-

prising. I expected the results to be somewhat higher overall when comparing to the

performance of MRCNN on the COCO [131] dataset. With the same network con-

figuration (ResNet-101), the original MRCNN paper reports an AP50 of 58.0 with 80

categories, while PartNet yields 51.0 for 13 categories. This may be relatively com-

mensurate, however, when considering the masks can be rather complex for certain

parts, due to the generation algorithm. As an example, consider the fourth column

of the first and fourth row in Fig. 8.9. A human annotating images directly would

probably have not taken the spaces between the slats into consideration when labeling

the back and seat parts for those chairs. However, since the image frame annotations

are computed automatically from the annotated 3D model, those details are present.

This means pixel-per-pixel, PartNet is trying to learn more complicated masks and

consequently gets hits harder on the IOU computation.
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Pose+Parts 24.4 17.0 30.8 23.3 22.5 12.9 1.1 0.5

Pose 25.6 17.5 31.4 21.9 23.1 13.7 1.7 0.9

Pose+Parts+so(3) 24.4 17.0 30.0 22.3 22.8 13.5 2.1 0.9

Table 8.3 The mAP for PartNet at two common IOU thresholds. This score considers
*all* ground truth regions present in the test images.

Effects from input modality

Here we find the two surprising and unexpected results. First, I expected the RGB-

D-N model to perform the best, simply because it was providing more information.

Instead, the RGB-D network, a subset of the RGB-D-N network, performed the best

consistently across the board. All other things equal (including the learning rate and

the number of epochs), this may in part be due to greater complexity in the input,

i.e., the extra normal data forces the network to work harder to find the features

of interest, meaning at the very least it may take more epochs to reach comparable

performance. I suspect that performing a hyperparameter search for a better learning

rate, and given more epochs, it may outperform the RGB-D network.

Second, the RGB performance is abysmal. This was not at all expected, consider-

ing the original MRCNN performs instance segmentatation on RGB images with no

additional input. This requires follow-on investigation, but we provide a hypothesis

here. We note that when lowering the detection threshold, some of the common parts

such as“back”and“seat”are detected, even if the mask is not as well defined. The low

learning rate here may have allowed the network to get into a poorly performing local

minima, because while the loss decreased during the earlier epochs, it leveled out and

failed to decrease for most of the training period. The synthetic data and the nature

of the parts may contribute to the low score as well. Modalities that include depth

and/or normals provide more information about the shape of parts and their bound-
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aries, whereas the distinction in appearance is not as well defined in the synthetic

images. In addition, I suspect the network is learning implicit spatial relationships

between the parts, and these are less ambiguous in the depth/normal modalities than

in color alone, primarily in the depth direction, which may help distinguish the pose

of the chair and where the back is with respect to the seat, and therefore left/right

legs and armrests. Since the RGB network rarely detects these smaller parts, this

may be less of an issue, but should also be a question for further investigation.

Finally, scores may improve across the board simply with additional training time.

For all networks except RGB, the validation loss was still decreasing. It is typical

to train a network until the validation loss stops decreasing; however, constraints on

available GPU usage limited our training time.

Effects from pose variants

The effects caused by the pose network variations seem insignificant, and this was

an expected result. While training the network end-to-end means there are gradients

that affect shared portions of the network, this primarily affects the feature backbone,

which likely has enough “bandwidth” to support features for pose as well as features

for parts. In addition, the gradients from the pose network are completely separated

from the instance segmentation head networks, even in the Pose+Parts configurations,

since I treat the mask generation as a constant operation in the network. This was

deliberate, since we were only investigating the parts → pose arc, and I wanted no

effect (positive or negative) from pose → parts in these comparisons.

8.5.2 Pose Estimation

Figure 8.11 shows the full orientation accuracy results across all variants of the net-

work. Like the part detection results, the overall performance here was not too

exciting. However, compared to a Gupta et al. [78], our top-performing networks sig-

nificantly improve on the accuracy for chairs at Acc π
12

and Accπ
6

5. However, compared

5To be fair, their network is trained for multiple classes, and we are currently focusing on single
class support.

187



to the state-of-the-art results from Grabner et al. [74], their accuracy for chairs at

Accπ
6
is 80.0 and ours is only 75.0 (Su et al. [197] report 86.0!) While the performance

leaves room for improvement (especially considering our use of extended modalities),

I am not overly concerned; estimating pose is very important and we shall improve

the performance in future iterations, but the primary goal was to investigate how

parts affected the pose estimation performance. We discuss this in the next section.
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Figure 8.11 Orientation accuracy plotted against an angular threshold. We use the
geodesic distance for SO(3) (the minimum angle between orientations) in both the loss
function and the metric.

Figure 8.12 shows the full translation accuracy results across all variants of the

network. While PartNet translation loss is similar to other implementations, the

network implementation in PartNet is simpler than the approach taken in [222]. Their

network first estimate votes for x and y centroid offsets for each pixel in the instance

mask (i.e., in image coordinates), estimates the depth in the camera frame, and then

uses a special voting layer to generate the final regression values. While they report

a different ICP-based accuracy metric, the distances they report are under 10 cm.
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Figure 8.12 Translation accuracy plotted against a distance (in meters) threshold.

Effects from part input

In Fig. 8.13, we show the rotation and translation accuracies broken down by input

modality and network configuration. For the RGB-D-N network, this clearly shows

how significant the addition of part information is to the orientation accuracy. For

the RGB-D networks, the contribution is not as significant, but the top network at

Acc π
12

and Accπ
6
still include parts. The plots also show that the effect on translation

estimation accuracy is much less significant.

This supports our hypothesis that providing parts to the pose detection network

provides useful information that allows the network to improve the pose estimation

performance. There is likely a direct correlation, which we do not explored here,

between the accuracy and completeness of the part detections and the support to the

pose estimation network.
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Figure 8.13 Rotation (top row) and translation (bottom row) broken down by input
modality: RGB-D (first column) and RGB-D-N (second column).

Effects from orientation encoding

Encoding the orientation estimate as an element of so(3) as opposed to a unit quater-

nion has a positive effect on the orientation accuracy for the RGB-D modality, but

does not perform as well in the RGB-D-N modality or the RGB-N modality. It’s

not clear how the addition of the normal information is negatively affecting the per-

formance of the estimation when using so(3), but the simplest explanation is that

it is confounding the features that are specifically useful to the rotation estimation.

This is unsatisfactory at best, and warrants additional experiments to uncover an

explanation.
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8.6 Summary

PartNet represents a step6 in the direction of perceiving more than just boxes and

classes for the objects in the world. The reported experiments show that parts do con-

tribute positively to the pose estimation task, in some cases improving performance at

Acc π
12

by almost 100%. Surprisingly, the RGB-D modality performs the best overall,

but further investigation is required to determine whether additional hyperparameter

tuning will improve the performance of some of the other modalities.

I believe understanding and recognizing parts is relevant to lifelong learning for

semantic representations and ultimately spatial environment understanding. In order

to learn incrementally and adapt to new situations and novel objects, I don’t believe

that we can rely solely on the generalization capacity of a single end-to-end learning

algorithm (like deep networks). Instead, I think we really need to focus on more basic

and more robust components (e.g., parts), as well as on the recognition of semantic

properties. We then send these components and properties to a more flexible reasoning

system that can better support learning and adaptation on the fly. In short, we would

like a system to be able to recognize new things and learn new objects interactively

and experientially, without having to modify or retrain a black box neural network

to do so.

Exploring the consequences and challenges of recognizing parts is one step in this

journey, since parts may be one way to represent objects at a more basic level. Pose

is one of the properties that all objects have, but we really don’t want to have to

know ahead of time about every single object to be able to say something about

its pose. This research shows that detecting semantic parts can be used to improve

pose estimation for a known object class. The next steps include expanding this

approach to additional objects, looking into improving performance, and investigating

unsupervised methods for discovering part classes automatically.

6A small step. . . but a step nevertheless.

191



Chapter 9

Future Work

In this chapter, I give an overview of where I think this research is heading. In some

cases work has already begun, while in other cases the work is only an idea of where

I think we can go next.

9.1 Part primitive fitting

One of the many motivating factors while investigating the part network was inducing

a network to see simpler subcomponents when looking at an object, i.e., perceiving

a decomposition of the object. This was inspired by the work of Tulsiani et al. [203]

where they learn to generate volumetric primitives from 3D voxelized objects. While

we have demonstrated the feasibility of recognizing and detecting parts in a supervised

framework, we want to also show that we can generate cuboid primitives in 3D at

the right place. Assuming success in that endeavor, we want to do the same thing

without supervision with partial RGB-D views. This is a useful approach, not only

because it enables deeper understanding of objects and their sub-parts, relationships

and affordances, but because it is a more compact and meaningful representation of

an object as compared to just an image, depth map or point cloud. You can reason

about parts and simple 3D primitives in a much more effective way. To that end, we

have already generated supervised cuboid part primitives that align with the object’s

point cloud. See Fig. 9.1 for an example set of primitives.
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Figure 9.1 Two examples from the primitive ground truth. Note the semantically
similar parts are colored (labeled) similarly, and that the chair labeling also supports
different chair structures. The primitives are simple cuboids, and are optimized to fit
the labeled point cloud (seen as red points) without completely enclosing each part.

9.2 Unsupervised Part Discovery

Given the relatively small set of hand labeled synthetic models, we are interested in

combining these supervised data with a larger set of unlabled real data. Specifically,

we want to use a combination of supervised labeled data with a bunch of unlabeled

data in order to enable unsupervised part discovery. In this case, we may be less

interested in correct semantic labels and more interested in focusing on decomposing

objects into logical components. This seems like a natural extension of our part de-

tection framework, and a possible instantiation of the concept of recognition by parts.

This would provide compositional object descriptions and additional understanding

that may be used for higher level reasoning and learning tasks.

9.3 Semantic Scene Description

If we start putting everything together, we begin to work towards the goal of fully

semantic scene description. This is a superset of the following tasks:

1. object detection (computing pose and relational attributes, not necessarily in-
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Figure 9.2 This shows a visualization from early conceptual work labeling a map gen-
erated using ego-motion estimation and detected object labels back projected onto the
points in the map cloud.

stances),

2. object instance detection (computing pose and relational attributes),

3. semantic segmentation (instance labeling, spatial reasoning),

4. and mapping (typically metric).

Semantic scene description aims to provide a rich scene representation based on

combining all the components in a manner suitable for reasoning, planning, naviga-

tion, and manipulation. The task of meaningfully describing scenes emphasizes object

instance detection, pose estimation, spatial relations between instances, and temporal

change explanation (i.e., explaining what is different and how it is different). This

requires the combination of multiple components and focuses on representations of

the environment at both a metric and semantic level. See Fig. 9.2 for an early attempt

at this goal.

A semantic scene description must be a usable, scalable and extensible represen-

tation. It must combine ego-motion, local environment modeling, and localization

over extended periods of time. It must support topological relationships between

local metric environment models. It must utilize robust landmarks, account for the
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distinction between objects and structure (things and stuff), and support hierarchical

organization. The system must support object descriptions that include pose, parts,

attributes, and affordances. The representations should be as parsimonious as possi-

ble; for example, we cannot simply represent a place as a very dense point clouds; we

should not have to use a million points to represent a wall!

Ultimately, the true goal is spatial, temporal, and behavioral knowledge manage-

ment for intelligent embodied systems that learn from experience.

9.4 Vision for robots with vision

All told, I, personally, am heading towards the far off target of artificial general

intelligence and lifelong learning that encapsulates (at a minimum) the capabilities

of navigation, place recognition, object recognition and learning. Whether the rest

of the robotics and artificial intelligence field agrees with my direction remains to be

seen. I’ve touched on the individual components I believe are required to achieve this

goal, albeit with very little detail. What I haven’t emphasized enough is the holistic

interpretation of how these algorithms work together. In order to achieve the synergy

I’m looking for the solutions must be more unified. While it may be there is not a

unified theory of robot intelligence, I do think that we need to constantly strive for

general mechanisms that are applicable for more tasks than the narrow point solutions

we tend to come up with in current work.
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Chapter 10

Conclusion

My research goals have been, and always will be, to develop algorithms that support

and enable intelligence for robotic systems. In this dissertation, I focus on perception

algorithms that raise the level of abstraction in one or more ways to enable better

understanding of the environment. I also focus on relationships in space, whether it is

between the relative pose of visual sensors mounted on a mobile robot, or point locality

for temporally consistent over-segmentation, or camera motion in an environment for

ego-motion estimation and mapping. Finally, object parts and their relationships

provide an increased level of abstraction when recognizing objects and computing

information about their pose.

The research in this dissertation addresses several independent aspects of spatial

environment perception, and while, separately, these aspects provide support to the

operation of embodied intelligent systems, there are several meta-observations I pro-

vide as a conclusion. However, I want to first emphasize the very pragmatic approach

I take by aiming my work at running on real robots. To a fault, I am constantly

concerned with the question of how I can run something on our robot to improve its

behavior and performance in the real world. This very practical approach stems from

my work as a computer scientist at the CCDC1 Army Research Laboratory, where

our goal is to research and develop new algorithms that will enable future intelligent

systems to save the lives of Soldiers.

1CCDC: Combat Capabilities Development Command, part of the new Army Futures Command.
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Calibration. Calibrating sensors may be an incredibly boring and mundane task.

However, I and my colleagues have discovered over and over again that the perfor-

mance of any algorithm you are trying to run on your system is directly correlated

with how well your sensors and platform components are calibrated. How accurate is

the pose of the camera known with respect to the laser sensor and how well are both

sensors’ poses known with respect to a manipulator’s end effector? For an intelligent

system in real life, a lack of calibration could mean the difference between successfully

grasping an object such as a IED versus missing it in just the wrong way. This is not

acceptable when time is of the essence and lives are on the line.

Here is another practical fact: whether you have a well calibrated system at the

beginning or not, it will become uncalibrated over time. MSG-Cal does not yet

address this situation. We are actively working on extending the algorithm to support

sensors on dynamic joints as well as online calibration maintenance. We have found

that our calibration algorithm has performed well for the collection of sensors on our

own robots, and others have made use of our system as well. However, there are a

few limitations that we will address in future research, including the absence of a

more direct camera to camera pairwise calibration routine that could make use of

reprojection error and allow for the automatic calibration of stereo sensors.

Motion and environment representation. The ego-motion estimation and

high resolution environment mapping work has yielded results that still compare fa-

vorably to dense mapping approaches produced more recently, although newer tech-

niques are more efficient. Over the time I have spent focusing on recovering accurate

camera motion and generating high-resolution surfel models, I have also realized that

we need to allow for some flexibility and inaccuracies if we are going to scale the algo-

rithm to support life-long localization and navigation: the ability to move around in

the world and navigate to both well-known and novel locations while improving per-

formance through experience. This will require a combination of accurate localization

in local environments (supported by the work in this disseration) as well as robust

navigation between local environments through flexible topological relationships and

stable landmarks. In addition, it will require the ability to store and retrieve infor-
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mation about places at a level much higher than that of surfels. This brings me to

the next section on objects. . .

Object parts, pose, and learning. Objects are a fact of life; we can’t live with-

out ’em. That is why so many researchers in computer vision and robotic perception

work hard to discover new ways of processing sensor data to produce information

about the objects in the world. There will not be intelligent embodied agents that

are truly useful to humans until they understand more about objects than they do

now. Generating instance segmentations and class labels at 100% accuracy will only

be a portion of the story. Parts are yet another “part” of the story. I can not tell you

now when the story will end, but I know it will include these things and more. I do

believe that it must involve allowing embodied systems to really experience the envi-

ronment, akin to how human babies develop visual capability. Our brains provide the

substrate, but our experience does the programming. Do the robots need 3D sensors?

No, but it will probably make it easier. Do the robots need to see in 3D? Absolutely.

By seeing in 3D, I mean taking whatever the sensors are providing and understanding

it in a 3 dimensional context, the shapes and spatial relationships intact.

I’m looking forward to continuing this research with you.

—Jason Owens

You could leave life right now. Let

that determine what you do and say

and think.

Marcus Aurelius
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Acronyms

2D two-dimensional. 5, 15, 47, 48, 49, 99

3D three-dimensional. 5, 6, 15, 16, 17, 18, 21, 22, 47, 95, 97

CAD computer aided design. 45, 179

CNN convolutional neural network. 30, 31, 32, 35, 36, 44, 45

CVPR Conference on Computer Vision and Pattern Recognition. 18

DoF degree of freedom. 93

DSO Direct Sparse Odometry. 18

DVO dense visual odometry. xi, 16, 17, 95, 104, 105, 106, 108, 110, 112, 114, 125

EGI extended Gaussian image. 114, 115, 114

FPN feature pyramid network. 171, 181

GICP generalized ICP. 116

GPU graphics processing unit. 20, 21, 22, 23, 108, 109, 110, 111

ICP iterative closest point. 20, 31, 32, 91, 94, 95, 97, 98, 101, 103, 104, 106, 108,

110, 112, 114, 116, 119, 171

IMU inertial measurement unit. 18, 52
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INS inertial navigation system. 12

IOU intersection over union. 183, 185

IR infrared. 17

LIDAR light detection and ranging. 23, 48

MRCNN Mask R-CNN. 168, 170, 182, 183, 185, 186

MSG-Cal multi-sensor graph calibration. 67, 68

ORB Oriented Rotated BRIEF. 14, 20

PCL Point Cloud Library. 99

RANSAC random sampling consensus. 68, 72, 90, 93

ReLU rectified linear unit. 171

RGB red, green, and blue. 20, 30, 97

RGB-D red, green, blue, and depth. 15, 16, 17, 16, 17, 18, 20, 21, 30, 89, 95, 110,

115, 132

ROI region of interest. 170, 172

ROS Robot Operating System. 17, 89

SIFT Scale Invariant Feature Transform. 14, 22

SIMT single instruction multiple thread. 109

SLAM simultaneous localization and mapping. 4, 19, 20, 25, 26, 133, 134

SVO Semi-direct Visual Odometry. 18

TSDF truncated signed distance function. 21, 26, 29, 110, 130, 142

VO visual odometry. 16, 18, 19, 20, 26, 103, 114, 118, 119, 121
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[101] F. Jäkel, M. Singh, F. A. Wichmann, and M. H. Herzog,“An overview of quantitative

approaches in Gestalt perception,” en, Vision Research, vol. 126, pp. 3–8, Sep. 2016,

issn: 00426989. doi: 10.1016/j.visres.2016.06.004.

[102] M. E. Jefferies and W. K. Yeap, Eds., Robotics and Cognitive Approaches to Spatial

Mapping, ser. Springer Tracts in Advanced Robotics v. 38, OCLC: ocn173721135,

Berlin ; New York: Springer, 2008, 328 pp., isbn: 978-3-540-75386-5.

[103] H. Johannsson, “Toward lifelong visual localization and mapping,” eng, Thesis, Mas-

sachusetts Institute of Technology, 2013.

[104] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of

vectors,”Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical

and General Crystallography, vol. 34, no. 5, pp. 827–828, 1978.

[105] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2:

Incremental smoothing and mapping using the Bayes tree,”The International Jour-

nal of Robotics Research, vol. 31, no. 2, pp. 216–235, Feb. 1, 2012, issn: 0278-3649.

doi: 10.1177/0278364911430419.

[106] P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture

model for real-time tracking with shadow detection,” in Proc. 2nd European Work-

shop on Advanced Video Based Surveillance Systems, vol. 25, 2001, pp. 1–5.

[107] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for RGB-D cam-

eras,” in International Conference on Robotics and Automation, bibtex: Kerl, 2013.

211

http://dx.doi.org/10.1016/j.visres.2016.06.004
http://dx.doi.org/10.1177/0278364911430419


[108] K. Koffka, Principles of gestalt psychology, eng. New York: Harcourt, Brace, &World,

1935, OCLC: 248396251.

[109] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, “Spectral surface reconstruction from

noisy point clouds,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH sym-

posium on Geometry processing, 00157, 2004, pp. 11–21.

[110] K. Konolige and J. Bowman,“Towards lifelong visual maps,”in Intelligent Robots and

Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, IEEE, 2009,

pp. 1156–1163.

[111] G. Kootstra, N. Bergstrom, and D. Kragic, “Using symmetry to select fixation points

for segmentation,” in Pattern Recognition (ICPR), 2010 20th International Confer-

ence on, IEEE, 2010, pp. 3894–3897.

[112] G. Kootstra, N. Bergström, and D. Kragic, “Fast and automatic detection and seg-

mentation of unknown objects,” in 2010 10th IEEE-RAS International Conference

on Humanoid Robots, IEEE, 2010, pp. 442–447.

[113] ——, “Gestalt principles for attention and segmentation in natural and artificial

vision systems,” in ICRA 2011 Workshop on Semantic Perception, Mapping and

Exploration (SPME), Shanghai, China, eSMCs, 2011.

[114] G. Kootstra and D. Kragic, “Fast and bottom-up object detection, segmentation,

and evaluation using Gestalt principles,” in Robotics and Automation (ICRA), 2011

IEEE International Conference on, IEEE, 2011, pp. 3423–3428.

[115] P. J. Kostelec and D. N. Rockmore, “FFTs on the Rotation Group,” Santa Fe Insti-

tute’s Working Paper Series, 03-11-060, 2003.
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[184] T. Schöps, J. Engel, and D. Cremers, “Semi-dense visual odometry for Ar on a

smartphone,” in Mixed and Augmented Reality (ISMAR), 2014 IEEE International

Symposium on, IEEE, 2014, pp. 145–150.
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