
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2019

Multiple Feedback Mechanisms Fine-Tune Rho
Signaling To Regulate Morphogenetic Outcomes
Katy Lauren Ong
University of Pennsylvania, ongkaty1@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Cell Biology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3223
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ong, Katy Lauren, "Multiple Feedback Mechanisms Fine-Tune Rho Signaling To Regulate Morphogenetic Outcomes" (2019).
Publicly Accessible Penn Dissertations. 3223.
https://repository.upenn.edu/edissertations/3223

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=repository.upenn.edu%2Fedissertations%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3223?utm_source=repository.upenn.edu%2Fedissertations%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3223
mailto:repository@pobox.upenn.edu


Multiple Feedback Mechanisms Fine-Tune Rho Signaling To Regulate
Morphogenetic Outcomes

Abstract
Rho signaling is a conserved mechanism for generating forces through activation of contractile actomyosin.
How this pathway is tuned to produce different morphologies of cells and tissues is poorly understood. In the
Drosophila embryonic epithelium, I investigated how Rho signaling controls force asymmetries to drive
morphogenesis. Specifically, I studied a distinctive morphogenetic process termed “alignment”. This process of
coordinated cell shape changes results in a unique cell geometry of rectilinear cells connected by aligned cell-
cell contacts. I found that this rearrangement is initialized by contractility of actomyosin cables that elevate the
local tension along aligning interfaces. Curiously, I find that hours after establishing the alignment, this cell
geometry is stabilized independent of actomyosin at the end of embryogenesis. This suggests that there are
alternate mechanical bases for maintaining the aligned cell geometry in the steady state.

My data show that polarization of two branches of Rho signaling, Rho Kinase (ROK) and Diaphanous (Dia),
is responsible for the formation of these cables. Constitutive activation of these Rho effectors causes aligning
cells to instead invaginate. This observation suggests that moderation of Rho signaling is essential to
producing the aligned geometry. Therefore, I tested for feedback interactions in the pathway that could fine-
tune Rho signaling. I discovered that F-actin exerts negative feedback on multiple nodes in the pathway. In
contrast, Myo-II does not feedback to the Rho pathway. However, inhibiting ROK caused an upregulation in
Rho activity. This shows that ROK has a Myo-II independent function in regulating the Rho pathway. Taken
together, this work suggests that multiple feedback mechanisms factor into the regulation of Rho signaling,
which may account for the versatility of Rho in diverse morphogenetic processes.

Preliminarily, I also find a requirement for a regulator of Rac-Arp 2/3-mediated actin polymerization, pointing
towards cooperation and crosstalk between branched actin and linear actin promoting pathways. This may
allow for a balance of different mechanical forces that can generate the aligned geometry.

This thesis work lays down a foundation for understanding how the activity of contractile actomyosin and
small GTPase signaling be modified to suit numerous morphogenetic processes.
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ABSTRACT 

MULTIPLE FEEDBACK MECHANISMS FINE-TUNE RHO SIGNALING TO REGULATE 

MORPHOGENETIC OUTCOMES   

Katy Lauren Ong 

Stephen DiNardo 

Rho signaling is a conserved mechanism for generating forces through activation 

of contractile actomyosin. How this pathway is tuned to produce different morphologies 

of cells and tissues is poorly understood. In the Drosophila embryonic epithelium, I 

investigated how Rho signaling controls force asymmetries to drive morphogenesis.  

Specifically, I studied a distinctive morphogenetic process termed “alignment”. This 

process of coordinated cell shape changes results in a unique cell geometry of 

rectilinear cells connected by aligned cell-cell contacts.  I found that this rearrangement 

is initialized by contractility of actomyosin cables that elevate the local tension along 

aligning interfaces.  Curiously, I find that hours after establishing the alignment, this cell 

geometry is stabilized independent of actomyosin at the end of embryogenesis.  This 

suggests that there are alternate mechanical bases for maintaining the aligned cell 

geometry in the steady state. 

My data show that polarization of two branches of Rho signaling, Rho Kinase 

(ROK) and Diaphanous (Dia), is responsible for the formation of these cables.  

Constitutive activation of these Rho effectors causes aligning cells to instead invaginate.  

This observation suggests that moderation of Rho signaling is essential to producing the 

aligned geometry. Therefore, I tested for feedback interactions in the pathway that could 

fine-tune Rho signaling.  I discovered that F-actin exerts negative feedback on multiple 

nodes in the pathway. In contrast, Myo-II does not feedback to the Rho pathway.  

However, inhibiting ROK caused an upregulation in Rho activity.  This shows that ROK 
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has a Myo-II independent function in regulating the Rho pathway.  Taken together, this 

work suggests that multiple feedback mechanisms factor into the regulation of Rho 

signaling, which may account for the versatility of Rho in diverse morphogenetic 

processes. 

Preliminarily, I also find a requirement for a regulator of Rac-Arp 2/3-mediated 

actin polymerization, pointing towards cooperation and crosstalk between branched actin 

and linear actin promoting pathways.  This may allow for a balance of different 

mechanical forces that can generate the aligned geometry. 

This thesis work lays down a foundation for understanding how the activity of 

contractile actomyosin and small GTPase signaling be modified to suit numerous 

morphogenetic processes. 
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CHAPTER 1: General Introduction 
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Tissue function frequently relies on the underlying shapes and organization of its 

constituent cells.  Diverse processes are responsible for coordinating the morphology 

and arrangement of cells into complex geometries.  Failure of these morphogenetic 

processes can lead to developmental defects and cancer[1,2].  Therefore, investigation 

of the molecular basis of tissue morphogenesis is the key to significant insights into 

human health and disease. 

Theoretically and in silico, simple epithelia can be physically conceptualized as 

two-dimensional, single-layered foams[3,4].  The contacts at which bubbles touch one 

another are always spaced 120⁰ from one another (Fig. 1.1A).  These contacts are equi-

length across the foam and interconnect at three-way vertices, giving the whole 

arrangement the appearance of a honeycomb (Fig. 1.1A).  This packing allows for the 

most even distribution of surface tension around the bubbles and is, thus, the lowest 

energy configuration[4].  Likewise, it is believed that the lowest energy state for a simple 

epithelium is a hexagonal arrangement of cell-cell contacts that are again separated by 

120⁰ (Fig. 1.1A). 

This simple geometry of cells is not observed often in real tissues.  This is 

because tissues commonly require more complex shapes and arrangements of cells in 

order to perform their physiological tasks.  The formation and maintenance of complex 

geometries in the steady-state requires mechanical forces.     

Two key pursuits in the field are understanding the molecular machinery that 

create these forces and the polarity mechanisms that wield them to drive diverse 

morphological changes. 

 

Forces of Morphogenesis 

The mechanical forces that generate high-energy geometries can come from 

many sources.  They can be extrinsic in nature, meaning that they come from outside of 
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the cells that are undergoing morphogenesis.  Examples include forces due to 

movements by adjacent tissues or remodeling of the extracellular matrix [5,6].  Forces 

can also be generated intrinsically, meaning that cells internally produce mechanical 

force in order to change their shape within the tissue[5,7,8].  This thesis work will focus 

on morphogenesis driven by intrinsic forces. 

Additionally, there are different types of mechanical force that cells can apply at 

cell-cell contacts during tissue morphogenesis[9,10].  Contractile force can be applied 

along the axis of the contact inwards toward the middle, promoting compression and 

shortening of the contact (Fig. 1.1C).  Compression forces orthogonal to cell contacts 

generally strengthen adhesions and promote contact elongation (Fig. 1.1C).  Finally, 

shear stresses are applied along opposing vectors parallel with the junction (Fig. 1.1C).  

Shear stresses are difficult to measure in vivo and even harder to attribute a 

morphogenetic function to, but they can be produced intracellular by the cytoskeleton 

and are hypothesized to weaken cell-cell contacts[11].  Additionally, they may deform 

the contact in other ways.  Different combinations of deploying these three types of 

mechanical force allow for a variety of cell geometries to persist in steady state. 

 

Actomyosin contractility in morphogenesis 

Intrinsically-produced forces rely on intracellular molecular machines.  One 

broadly conserved machine is the actin and myosin cytoskeleton[12].  This machinery is 

commonly referred to as “actomyosin” because of the two core components: filamentous 

actin (F-actin) and non-muscle myosin II motors (Myo-II).  Activated Myo-II complexes 

co-assemble into bi-polar “mini-filaments” that can bind and walk along F-actin.  The 

binding of multiple motor heads in the mini-filaments to multiple actin filaments coupled 

to the movement of those motors mediates the contraction of the entire filamentous 
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network[7,12].  With proper physical coupling, this network can apply contractile force to 

membranes in order to drive cell shape changes.    

This strategy is used to induce various morphological changes in cells: apical 

constriction, cell intercalation, cell migration, and many others[5,12].  There are some 

factors that are known to dictate the activity of actomyosin networks.  Examples include 

the organization of filaments within these network, the actin-binding proteins that 

associate with and crosslink filaments in the network, the linkers between actomyosin 

and the membrane, and the dynamics of actin polymerization and 

depolymerization[5,12–14].  Despite the large body of work that describes these 

examples, we still do not have a complete picture of how cells are able to diversify the 

functionality of actomyosin networks to achieve different shapes and geometries. 

 

Supracellular Actomyosin Cables 

Another important factor that determines the function of actomyosin is the 

manner by which it is spatially distributed within cells and across tissues.  Subcellular 

structures that control the morphogenesis of individual cells are much better understood 

than the assemblies that cooperate during multicellular morphogenetic programs.  

Understanding the actomyosin structures that produce forces and participate in tissue 

morphogenesis are therefore a very active field of research. 

One such organization of actomyosin is the so-called actomyosin supracellular 

cable[15].  These structures are actually multiple assemblies of F-actin and Myo-II 

located at contiguous cell junctions across multiple cells.  While technically a collection 

of subcellular structures, each contractile subunit is interconnected with the whole via 

physical linkage at cell-cell adhesions.  This allows for cooperation between the 

contractile subunits and for the so-called cables to function as a cohesive structure.  

Mechanically, these cables increase the local cortical tension along the junctions that 



5 
 

they occupy [16–20].  This creates force asymmetry in the tissue in order to drive 

morphology changes (Fig. 1.2A-F).  Functionally, they are utilized in many processes in 

both vertebrates and invertebrates and can produce different morphological changes in 

tissues[15].  During wound healing, a cable forms at the edge of the wound margin to 

promote its closure (Fig. 1.2A) [21–24].  In the development of tube structures such as 

that in the kidney, cables form at junctions perpendicular to the tube axis to induce 

junction shrinking (Fig. 1.2B) [25].  This decreases the diameter of the tube (Fig. 1.2C) 

[25].  Additionally, actomyosin cables mediate closure of the neural tube in 

mammals[26,27].  By purportedly contracting along the interior of the nascent tube, 

these cables promote curving of the tissue and eventual sealing of the tube (Fig. 1.2C) 

[26,27].   

In Drosophila, the study of two more examples of actomyosin cable activity has 

revealed a great deal of molecular insight into their mechanism of action:  rosette 

formation during convergent extension and mechanical boundary formation in larval 

tissues[28,29]. 

During convergent extension in the early Drosophila embryo, select junctions 

along the dorsal-ventral axis upregulate actin and myosin, forming actomyosin 

cables[28,30].  These cables increase the cortical tension along those junctions, creating 

force asymmetry within the tissue (Fig. 1.2D,G) [18,19].  This induces the junctions to 

shrink (Fig. 1.2D).  The morphological consequences are a cluster of cells joining 

together transiently at a point, resembling a rosette [19,28](Fig. 1.2D).  This allows for 

the compaction of the tissue along the dorsal-ventral axis.  Subsequently, new junctions 

form in the middle of the rosette along the anterior-posterior axis, causing the tissue to 

elongate in this new direction[28,31].   

Actomyosin cables also participate in the mechanical segregation of cells at 

tissue boundaries[16,17,29,32,33].  These tissue boundaries separate compartments of 
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cells with different gene expression profiles.  The underlying mechanism is not fully 

understood, but the activity of the actomyosin cables prevent cells from crossing over 

the boundary, thereby maintaining the cellular identity of the adjacent compartments 

[16,17,29,32].  As with convergent extension, cables elevate the cortical tension along 

the junctions of cells making up the boundary.  Indeed, laser ablation measurements 

show that the degree of force asymmetry at mechanical boundaries is comparable to 

that along junctions that shrink during convergent extension[16–19,32].  However, the 

morphological results from this force asymmetry at tissue boundaries are quite different 

from that observed during convergent extension.  Instead, the junctions along the 

boundary shorten somewhat but never shrink completely (Fig. 1.2E, G vs H) [16,17].  

The junctions also align slightly to give the boundary a smooth morphology (Fig. 1.2E, H) 

[16,17].   

Both convergent extension and mechanical boundary formation appear to rely on 

similar actomyosin supracellular structures that impart a comparable contractile force 

asymmetry within the tissue.  There is an open question as to what molecularly and 

mechanically distinguishes these two morphogenetic events.  This question gets at a 

larger gap of knowledge in the field; we know little about how actomyosin structures are 

regulated to serve different functions. 

 

Polarity mechanisms in morphogenesis 

In order to complete their jobs, the subunits of actomyosin cables need to be 

properly positioned in the cell and oriented within the tissue.  This requires polarity 

molecules that can spatially instruct the recruitment of actomyosin assembly.   

There are a variety of polarity factors that control each spatial dimension of the 

cell.  There are factors that stratify the apical-basal axis of the cell (Fig. 1.1B). This is 

critical to properly positioning cell junctions, the membrane anchor points for the 
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cytoskeleton.  Adherens junctions, positioned just below the apical surface, are 

composed of E-cadherin complexes that mechanically link the membrane to the actin 

cytoskeleton.  Other cell-cell junction types can also be relevant to epithelial 

morphogenesis.  In my study, I primarily focus on cell shape changes that occur at the 

level of adherens junctions, as this is where actomyosin is most active in my system.  

Therefore, I use the terms “cell-cell contact” or “contact” interchangeably with “junction”. 

Planar polarity factors function in the plane orthogonal to the apical basal axis 

(Fig. 1.1B).  These signals position structures, such as actomyosin cables, with respect 

to neighboring cells[34].   

The full array of polarity factors the participate in morphogenesis has yet to be 

identified.  Furthermore, of those that are known, it is still poorly understood how they 

orchestrate downstream events to drive complex morphological changes. 

 

Rho small GTPase signaling 

The Rho family of small GTPases are master polarity regulators of the actin 

cytoskeleton[35–37].  The members of this family are associated with different cellular 

functions of actin[37].  Generally speaking, Rho (the namesake member of the family) is 

linked with promoting contractile actomyosin assembly[35,37].  There are multiple Rho 

homologs in the human genome, but Rho1 is the sole homolog in Drosophila and 

hereafter will be referred to simply as Rho[38].  While Rho targets many downstream 

effectors, this thesis will focus on two key players in promoting contractile actomyosin 

assemblies: Rho Kinase (ROK) and Diaphanous (Dia).   

ROK has a number of phosphorylation targets, the most well-known of which is 

the regulatory Myosin Light Chain (MLC)[39].  This phosphorylation event is essential to 

alleviating MLC from its autoinhibited state [40].  After this step, Myo-II hexamers can 

assemble into active mini-filaments.  Dia is the sole Diaphanous family formin in 
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Drosophila[41]. It promotes actin filament nucleation and elongation, most notably within 

linear arrangements of actin [41].   

The function and regulation of the Rho pathway within classic subcellular 

contractile structures like stress fibers has been intensely studied[35].  Rho function is 

required for the morphogenesis of many tissues, but its mechanism of action is much 

less well understood in these various contexts [42–44].   

Out of many types of structures, Rho can promote the assembly of actomyosin 

supracellular cables[15].  Active GTP-bound Rho and its effectors enrich along junctions 

targeted for shrinking during convergent extension (Fig. 1.2D,G) [42,45,46].  There is 

also significant evidence that planar polarization of Rho signaling also guides the 

assembly of actomyosin cables at mechanical tissue boundaries (Fig. 1.2E,H) 

[33,47,48]. 

 Yet again, it is unclear how or if Rho function is altered to regulate these two very 

different morphogenetic events. 

 

Cell Alignment 

During my doctoral research, I studied a distinctive morphological process that in 

many ways resembles both convergent extension and mechanical boundary formation, 

but yields a unique tissue geometry.  Specifically, I researched a developmental event in 

the Drosophila embryonic epithelium that our lab has termed “alignment”[49].  This 

process occurs in the anterior region of each abdominal segment during mid-

embryogenesis.  In terms of embryonic developmental stages, this spans the end of 

Stage 12 and the beginning of Stage 13[49,50].  In each segment, alignment occurs at 

two interfaces of cell-cell contacts along the dorsal-ventral axis (Fig. 1.3A 

magenta)[49,51].   
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Before alignment, the cells exhibit irregular packing where the angles separating 

cell-cell contacts average close to 120⁰.  This is characteristic of a simple epithelium in a 

low-energy state[52,53].  Over time, the two interfaces straighten significantly relative to 

non-aligning regions of the epithelium (Fig. 1.3B, magenta vs orange).  Quantitatively, 

this means that angles between contacts approach 180⁰, which is a high-energy 

configuration.  By comparison, cells in the adjacent regions maintain an angle 

distribution that is closer in average to 120⁰ (Fig. 1.3B orange).   

Several hours after alignment has completed, the cells adjacent to and in 

between the two interfaces give rise to protrusions called denticles (Fig. 1.3C).  The 

denticles are neatly arranged in straight rows along the dorsal-ventral axis.  These 

denticles allow for proper traction while larvae crawl[54].  This is in part a function of the 

aligned cellular geometry.  Hence, the collective cell changes that occur earlier in 

development are significant to the physiological function of this epithelium.   

 

The mechanical basis of alignment 

 As in convergent extension and mechanical boundaries, actomyosin cables are 

also involved in alignment[49,50].  Cables are localized along the aligning junctions, 

spanning the length of the interfaces (Fig. 1.2F, I) [49].  Embryos depleted of Myo-II 

activity exhibit alignment defects[49], suggesting a requirement for actomyosin 

contractility and possibly asymmetric force production.  As described in Chapter 3, I 

would go on to test this hypothesis extensively during my thesis work and show that it is 

indeed the case that cortical tension is selectively upregulated along aligning junctions. 

 

Polarity signals that guide alignment 

 The polarity mechanisms that regulate actomyosin assembly during alignment 

were also unknown prior to the beginning of my doctoral candidacy.  Given the likely 
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function for contractile actomyosin in alignment, Rho signaling was an obvious 

candidate.  Upon investigating the function of Rho during alignment, I would find that 

there is a requirement for planar polarization of Rho and its effectors to aligning 

junctions.  This strongly resembles what is known about convergent extension and 

mechanical boundary formation.  These findings are documented in Chapter 4.   

 

Diversification of actomyosin cable function 

 The first half of my thesis work revealed these essential insights into alignment.  

However, I was left with no answer to the more important question: what allows for 

differentiation of morphological outcomes of Rho signaling and actomyosin contractility?  

The resultant cell geometry from alignment is unique compared to the rosettes formed 

during convergent extension and the smooth interfaces that arise at mechanical 

boundaries (Fig. 1.2G-I).  Rather than shrinking or shortening as observed in these other 

examples, the junctions within aligning interfaces actually elongate against the direction 

of contractile force (Fig. 1.2F, I).  This is counter-intuitive.  In fact, in most simulations of 

force balance at junctions, contractile force is the primary factor in driving junction 

shrinkage, while adhesive force is modeled to promote junction lengthening (Fig. 1.1C) 

[5,53,55].   

In terms of cytoskeletal organization, tensile force distribution and polarity 

signaling, there is little that differentiates alignment from convergent extension or 

mechanical boundary formation. 

 The question of what accounts for the unique cell geometry observed in 

alignment can be broken down into two parts.  First, what in terms of signaling is 

different about alignment relative to convergent extension and mechanical boundary 

formation?  Is Rho signaling molecularly repurposed in some manner to produce these 

different cell arrangements?  In an attempt to answer this question, I overactivated the 
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Rho pathway and observed an interesting effect on alignment.  The activity of the 

actomyosin cables was modified by this manipulation, causing an aberrant change in 

tissue morphology.  Essentially, changing the activity levels of Rho and its effectors 

switched the morphological outcome, specifically from alignment to furrowing.  As 

detailed in Chapter 5, this led to the pursuit of mechanisms that could fine-tune Rho 

activity, leading to the identification of multiple feedback interactions within the pathway. 

 Second, what is different about actomyosin activity during alignment versus other 

morphogenetic processes?  What permits cell junctions to lengthen along the same axis 

that contractile force is upregulated?  I hypothesize that actin remodeling factors modify 

the structure of cables in order to promote this unique cell morphological change.  In 

Chapter 6, I begin to characterize the structure and dynamics of actin within 

supracellular cables at higher temporal and spatial resolution than has been previously 

done.  Additionally, I screened numerous actin-associated proteins, looking for factors 

that are present or enriched at aligning interfaces.  My observations cumulatively 

suggest that Arp2/3 activity is present in actomyosin cables.  In contrast to Dia, Arp2/3 

promotes actin nucleation along the length of existing actin filaments in order to create 

branch points[56,57].  Branched actin networks can produce pushing forces at 

membranes that may allow for resistance to contractile forces[14,58–60].  Arp2/3-activity 

is typically controlled by relatives of Rho, Rac or Cdc42[35,37].  Preliminarily, I find a 

requirement for a Rac activator for alignment, further supporting the hypothesis that 

Arp2/3-mediated actin polymerization may mechanically contribute to the activity of 

actomyosin cables.  Additionally, these initial observations may point to a role for Rac-

Arp2/3 signaling that can crosstalk with the Rho pathway in order to balance linear and 

branched actin remodeling. 

 As I have described previously, actomyosin cables have extremely diverse 

functions and are a broadly conserved mechanism for inducing morphology changes 



12 
 

(Fig. 1.2A-F)[15].  Between processes and even within different phases of a single 

morphogenetic event, there is likely a need for changes in activity and the mechanical 

properties of cables.  My work lays a foundation for further explore the molecular 

mechanisms that allow for such fine-tuning, which will be broadly applicable to many 

morphogenetic events and tissue types. 
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  Figure 1.1: Cell mechanics and morphogenesis 

(A) Schematic of the apical surface of a simple epithelium in its theoretical low-energy 
state.  Cell-cell contacts are equilength (represented by value “X”) and separated by 
120⁰ angles.  These contacts meet at 3-way vertices (green), giving the epithelium a 
hexagonal packing. 

(B) The axes along which molecules can be polarized and morphogenesis can occur 
in a theoretical epithelium. 

(C) Types of intracellular forces (orange arrows).  Contractile forces promote 
compression oriented along cell-cell contacts.  Compression forces push on cell-cell 
contacts to promote adhesion and junction lengthening.  Shear forces may weaken 
adhesion or deform cell contacts. 
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Figure 1.2: Diverse function of actomyosin supracellular cables 

(A-F) Examples of actomyosin cable function in morphogenesis.  (A) Actomyosin 
cables at wound margins encourage the closure of wounds.  (B) Cables can 
decrease the diameter of tubulated epithelia through contraction.  (C) Contraction of 
cables in the interior of the nascent neural tube allows it to curve and seal.  (D-F) 
Specific examples of actomyosin cable function in Drosophila tissues. (D) During 
convergent extension in the early Drosophila embryo, cables are biased along the 
dorsal-ventral axis to shrink cell junctions, transiently forming rosettes and 
compacting the tissue.  New junctions grow in the middle of these rosettes in the 
opposite direction, allowing for elongation of the tissue.  (E) Cables at gene 
expression boundaries in developing Drosophila tissues prevent the intermixing of 
cells at the boundary, allowing for maintenance of separate compartments with 
different cellular identities.  (F) Actomyosin cables align interfaces that correspond 
with the denticle fields in mid-embryogenesis.  Red lines show the location of 
actomyosin cables.  Pink arrows show the direction of contractile force from those 
cables.  Blue shows the larger morphogenetic movements of the tissue due to the 
actomyosin cable activity. 
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  (Figure 1.2 Continued) 

(G-I) High resolution schematics of how actomyosin cables and Rho signaling polarity 
can produce diverse cell geometries.  Schematics show the distribution of actomyosin 
and Rho activity (both represented by red) during (G) convergent extension (H) 
mechanical boundary formation and (I) alignment. 
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Figure 1.3: Cell Alignment in the Drosophila embryo 

(A) A schematic of the ventral face after alignment.  Arrows indicate anterior-posterior 
and dorsal-ventral axes.  In each abdominal segment, the two aligning interfaces are 
indicated in purple.   

(B) The junctions within aligning interfaces (purple) straight out along the dorsal-
ventral axis.  This is specific to these two interfaces within each abdominal segment 
and is not observed in the non-aligning (orange) regions.  Intersecting orthogonal 
junctions (green) sometimes form four-way vertices.  Cell junctions marked with E-
cad::GFP.  

(C) Actin-based structures called “denticles” form aligned rows along aligning 
interfaces.  Brightfield image of denticles in one abdominal segment of a late stage 
embryo, after alignment has completed.   Reproduced from Donoughe and DiNardo 
2011.  Dashed magenta lines show position of aligned interfaces. 

Scale bar = 4μm in (B).  Scale bar = 10μm in (C). 
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CHAPTER 2: Materials and Methods
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Fly Stocks and Husbandry 

Flies were raised on standard cornmeal medium at 25̊C.  For knockdown of Pav 

with RNAi, the cross was kept at 28̊C to boost GAL4-mediated expression of the short 

hairpin RNA.  Embryos were collected on apple juice agar plates supplemented with a 

dab of fresh yeast paste.  After allowing adult flies to lay fertilized eggs for approximately 

12 hours, the embryos were transferred to a nylon mesh strainer by rinsing with de-

ionized water and using a paintbrush.  Embryos were de-chorionated with 50% bleach 

for no longer than 5 minutes, and then processed as described in subsections below. 

 

Immunofluorescence 

For Dia staining, embryos were processed with a heat fixing protocol[61].  This 

begins with immersion of dechorionated embryos 3mL of boiling E-Wash buffer (0.3% 

Triton-X, 0.4% NaCl) in a glass vial.  The vial is then quickly filled with ice cold E-wash 

buffer (approximately 17mL), capped and submerged in ice.  The embryos are washed 

once with Phosphate Buffered Saline (PBS, 7mM Na-HPO4, 3mM Na-HPO4, 150mM 

NaCl) before being devitellinized with a 2:1 methanol:heptane mixture with vigorous 

shaking for 30 seconds.  Devitellinized embryos were washed three times with 100% 

methanol and stored at 4⁰C for at least two days prior to beginning the 

immunofluorescent staining. 

For phalloidin staining, embryos were fixed in a glass vial at 23⁰C in a 1:1 mixture 

of 40% para-formaldehyde (PFA):heptane for 12 minutes while on a rocker[62].  The 

PFA was removed and replaced with PBS solution.  Embryos were transferred onto 

double sided tape adhered to a glass dish and covered with a small volume of PBS.  

Embryos were manually removed from the vitelline membrane using a tungsten needle.  

Embryos were transferred to PBS-TX solution before proceeding immediately with 

immunofluorescent staining. 
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For all other stains, embryos were fixed in a glass vial at 23⁰C in a 1:1 mixture of 

4% PFA in PBS:heptane for 20min while on a rocker [63].  The PFA was removed and 

replaced with an equal volume of 90% Methanol, 50mM EGTA.  The vial was vigorously 

shaken for 30 seconds to devitellinize the embryos.  The heptane was removed and 

devitellinized embryos were washed with 100% methanol three times.  Embryos were 

transferred to 100% ethanol for storage or to PBS-TX for immediate immunofluorescent 

staining. 

For the remainder of the immunofluorescent staining protocol, all incubations 

occurred on a rocker.  Embryos were incubated in PBS-TX (0.1% Triton-X in PBS) for 

10min at 23⁰C.  Embryos were incubated in block solution (1% NDS, 1% NGS, 0.1% 

Triton-X in PBS) for 1hr at 23⁰C.  Embryos were incubated in primary antibody diluted in 

block overnight at 4⁰C.  Antibodies were used at the following concentrations: pTyr 

(1:1000), Dia (1:500), GFP (Chicken 1:2000 and/or Rabbit 1:1000), RFP (1:500).  

Embryos were washed three times with PBS-TX with the last wash lasting at least 1hr at 

23⁰C.  They were then incubated in an approximate mix of secondary antibodies 

conjugated to 488 or 647 Alexafluors or Cy3.  All secondary antibodies were diluted in 

block solution at a concentration of approximately 2μg/mL.  After a 1hr incubation at 

23⁰C, embryos were washed as described above with PBS-TX.   

For F-actin imaging, embryos were incubated in approximately 0.05μM 

Rhodamine-Phalloidin or 0.1μM 647 Alexafluor-Phalloidin diluted in PBS-TX for 20min at 

23⁰C.  Embryos were then washed with PBS-TX as previously described. 

For Hoechst staining, embryos were incubated in about 1μg/mL dilution in PBS-

TX for five minutes at 23⁰C.  This was followed by four washes of PBS-TX without 

rocking.   
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Embryos were transferred to a 2% n-propyl gallate:80% glycerol solution prior to 

being mounted on glass slides, covered with 23X30 glass coverslips and sealed with 

clear nail polish.   

Fixed and stained embryos were imaged on one of two systems.  First, an 

Axioplan Zeiss widefield microscope equipped with either a 40X 0.75 N.A. water 

immersion objective or a 20X 0.75 N.A. dry objective using AxioVision software.  For 

imaging with the 40X objective, a structured illumination system (Zeiss Apotome) was 

used in order to remove out of focus information.  The second system used was an IX7 

Olympus spinning disk confocal microscope equipped with an 100X oil immersion 1.4 

N.A. objective.  Images were acquired with a Hamamatsu Photonics electron multiplying 

charge-coupled device camera (EMCCD, model C9100-13) controlled using Metamorph 

software.  Z-stacks were acquired with a 0.5μm step size. 

 

Live Imaging 

Embryos were sorted and oriented on an agar plate using a tungsten needle.  A 

weak adhesive was made from dissolving double-sided tape in heptane (“heptane-

glue”). Embryos were transferred to a strip of dried heptane-glue on a glass slide such 

that the dorsal side made contact with the glue.  Embryos were covered with 

approximately 3uL of 27 weight Halocarbon oil.  Two 18x18 coverslips were glued on 

either side of the embryos to create spacers.  A 23x30mm coverslip was glued to the 

spacers to cover the embryos[43].   

Time lapse imaging was performed on either a Leica DM16000 B spinning disk 

confocal with a 63X 1.2 N.A water immersion objective or an IX7 Olmpus spinning disk 

confocal microscope with a 60X 1.2 N.A. water immersion objective.  Images were 

acquired with an EMCCD camera (Andor iXon 3 897E or Hamamatsu photonics, model 
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C9100-13) controlled by Metamorph software.  Z-stacks were acquired with a 0.5μm 

step size and a time interval of either 2.5, 5 or 10min. 

 

Laser Ablation 

Embryos were mounted as described above.  Fluorescently-labelled E-cadherin 

was used to visualize cell junctions.  Either MLC::mCherry or Engrailed-GAL4 > 

NLS::mCherry was used as a marker to identify the position of aligning interfaces.  

Embryos were imaged using the IX7 Olympus spinning disk with a 100X 1.4 N.A. 

objective (see above).  A Micropoint nitrogen-pumped laser with a 405nm dye cell was 

used for laser ablation.  The ablation laser was controlled using Andor IQ3 software that 

interfaced with Metamorph.  A single timepoint, two-color z-stack image was taken 

initially to allow for unambiguous, post-acquisition identification of the ablated junction.  

Then, a single z-plane, single color time lapse was initiated to image E-cadherin with an 

interval of 0.25 seconds for a total of 75 seconds.  Within the first 10 seconds of the time 

lapse, a single point ROI was placed on the target junction and a single pulse of the 

laser was fired.  The remaining approximately 60 seconds of the time lapse captured the 

subsequent retraction of the adjacent membranes around the ablation site.  

 

Drug Injections 

For drug injection experiments, embryos were mounted as described for Live 

Imaging but with their ventral side adhered to a heptane glue strip on a 23X30 coverslip.  

Embryos were covered with 700 weight Halocarbon oil.  The coverslip was glued to a 

transparent plastic frame that fit into our microscope specimen holder.  Imaging pre- and 

post-injection was performed on the Leica DM16000 B spinning disk system with a 63X 

1.2 N.A. objective (see above).  A micromanipulator was mounted onto the sample 

holder stage using an optical post apparatus (Thor labs).  A single timepoint, z-stack 
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image with a step size of 0.5μm was taken of each embryo prior to injection.  Femtotip 

needles (Eppendorf Cat no. 930000043) were backfilled with drug or control vehicle 

solution using capillary loading tips before being installed onto the micromanipulator.  A 

time lapse, z-stack series was immediately acquired after injections were complete 

(between 5 and 15 minutes from the start of injecting the first embryo).   

Drugs were diluted as follows: Cyto D -- 5mM in 1:1 DMSO:MilliQ-filtered water; 

Lat B 5ug/uL -- in 100% DMSO, SMIFH2 -- 20ug/uL in 100% DMSO, Y-27632 -- 10-

20mM in MilliQ-filtered water, H-1152 – 10mM in MilliQ-filtered water.  Alignment and 

fluorescent protein localization was analyzed prior to injection and at the following time 

points after the beginning of injection: Cyto D -- 10minutes; Lat B -- 10-20min, SMIFH2 – 

90min; Y-27632/H-1152 – 10min.  As a negative control, embryos of the same genotype 

were injected with solvent to rule out any defects caused by injection or exposure to the 

vehicle. 

Cyto D binds to the barbed ends of actin filaments to block the addition of 

monomers[64,65].  It can also induce actin dimers, which causes ATP hydrolysis, 

depleting the pool of actin monomers competent for incorporation into filaments.  

Effectively, this has been reported to induce actin depolymerization in some 

physiological contexts[66] while only blocking polymerization in others[67].   

Lat B binds to actin monomers, sequestering them from filaments to block 

polymerization and promote depolymerization[68]. 

   

DeGradFP-mediated Knockdown 

We used the UAS-driven DeGradFP construct [69].  The construct contains a 

GFP-recognizing nanobody fused to an F-box domain.  This allows for recruitment of 

GFP-labelled substrates to the E2 ligase complex for eventual ubiquitin-mediated 

degradation.  Males expressing both Engrailed-GAL4 and UAS-DeGradFP were crossed 
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to females that had a null MLC allele, sqhAX3, on their X chromosome and a transgene 

expressing GFP-labelled MLC.  Embryos that inherited a Y chromosome from the male 

only expressed MLC::GFP and were therefore functionally MLC-depleted in the GAL4 

expressing regions.  Embryos that inherited the X chromosome from the male were used 

as controls as they received a wild-type, untagged allele of MLC that rescued cells from 

DeGradFP knockdown.  In both deGradFP knockdown and control embryos, the anterior 

aligning interface was analyzed in each abdominal segment. 

 

Constitutive Activation of ROK and Dia 

The UAS-ROK-CA expresses ROK that is missing the C-terminus responsible for 

auto-inhibition[70].  The UAS-Dia-CA expresses Dia that has truncations at both the N 

and C-termini, leading to deletion of the GTP-ase interacting and autoinhibitory domains, 

respectively[71].   

 

Quantification and Statistical Analysis 

The degree of alignment was determined by measuring the angles between 

adjacent cell contacts using the angle tool in ImageJ.  The angles of a single interface 

were averaged and normalized to a range of 120 to 180 to give a percent alignment.  

Angles of 180⁰ are by definition 100% aligned and 120⁰ is defined as 0% aligned.   

Fluorescence measurements along cell junctions were manually measured using 

the segmented line tool in Fiji with the width set to 3 pixels. To test for differences in 

fluorescence intensity between aligning and orthogonal junctions (e.g. Fig. 3.1), 

measurements were taken of each aligning and orthogonal junction in a given interface.  

An ROI covering a small area off of the embryo sample was measured for background 

fluorescence.  This average background fluorescence was subtracted from all junctional 

measurements to correct for background. The corrected mean gray values (MGV) were 
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averaged for both types of junction.  The two averages were treated as a paired sample 

for each interface and were compared using a Wilcoxon Rank test to determine 

statistical significance (e.g. Fig. 3.1A-C).  For comparing the fluorescence intensity 

between aligning and orthogonal junctions, the average mean gray value was compared 

between that of aligning junctions and orthogonal junctions within the same interface.  A 

Wilcoxon Rank test was used to determine whether there was a significance difference 

in fluorescence levels between aligning and orthogonal junctions, with the 

measurements for each interface being treated as a paired sample.   

For comparing the average fluorescence between embryos processed with 

immunofluorescent staining, we accounted for variability in staining by normalizing the 

mean gray value at the experimentally perturbed interface to that of the unaffected 

interface (in other words, the signal at control or MLC depleted interfaces was 

normalized to the regions indicated in with white arrowheads, as in Fig. 5.5C and Fig. 

5.6C).  For all other experiments, the mean gray value was used to compare 

fluorescence intensity at aligning interfaces between different embryos.   

To measure planar polarity, the mean gray values of aligning junctions and 

orthogonal junctions were averaged, respectively.  The ratio between these averages 

was then used to represent planar polarity.  A value greater than 1 indicates relative 

enrichment along aligning junctions with respect to orthogonal junctions. 

Measurements of fluorescence intensity, planar polarity and alignment were 

compared between sample groups of different genotypes or before and after drug 

treatment using non-parametric statistical tests.  In most cases, an unpaired Mann-

Whitney test was performed.  In cases of drug treatment where the same cells could be 

precisely tracked and analyzed before and after drug exposure, a paired, Wilcoxon Rank 

test was performed (as in Fig. 5.4E, F).   
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For analysis of cell morphology during furrow ingression, each cell flanking the 

interface was manually traced using the polygon tool in Fiji to create an ROI.  Apical 

surface area (μm2), major axis length and minor axis length were extracted from the 

ROI. Cell anisotropy was calculated as a ratio between the major and minor axes.  

Furrow depth was determined by counting the number of Z-slices between the top and 

bottom of the furrow at each time point.  The average apical surface area, average cell 

anisotropy, and furrow depth were plotted for each time point.  These parameters were 

compared between a Dia-CA expressing segment and an adjacent, non-expressing 

control segment for the same embryo over the same time points.  The anterior-most 

interface was analyzed in each case, as Eve-GAL4 is expressed more strongly in the 

cells along the anterior interface compared to the posterior interface.   

Maximum velocity as inferred from laser ablation experiments was used as a 

metric of cortical tension.  The length of the ablated junction was manually measured by 

drawing a line with the line tool in Fiji.  This measurement was taken prior to ablation and 

every 5 seconds after ablation up to a total of 60 seconds.  Maximum velocity was 

calculated from these measurements.   

For comparing cell junction remodeling events to the degree of alignment, 

embryos expressing E-cad::GFP and MLC::mCherry were live-imaged as described 

above at a time interval of 2.5 minutes.  The duration of the live imaging included before, 

during and after completion of alignment.  Interfaces were manually tracked using Fiji 

software.  Alignment and the number of 3-way and 4-way vertices were measured for 

each time point.  A 4-way vertex is formed when a junction between two three-way 

vertices is remodeled away (Fig. 3.1).  Therefore, the number of cell junction shrinking 

events was represented by the fraction of 4-way vertices present in the interface.  For 

each time point and each of three interfaces analyzed, the percent alignment was plotted 

against the percent 4-way vertices.  A Pearson correlation test was used to assess the 
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relationship between these two metrics, and a linear regression was fitted to the data 

(Figure S1C).    

Errors bars for all graphs represent Standard Deviation. All statistical tests and 

curve fitting were executed with Graphpad Prism software.   
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Table 2.1: Fly Stock and Reagent Sources 

RESOURCE OR REAGENT SOURCE LOCATION IDENTIFIER 
Antibodies 

Mouse anti-phospho-Tyrosine 
(pTyr) Millipore 

Burlington, 
MA, USA 

4G10 - 
Cat#05-321 

Rabbit anti-Dia Steven Wasserman 
San Diego, 
CA, USA [72] 

Rabbit anti-RFP Abcam 

Cambridge, 
United 
Kingdom Cat# 62341 

Chicken anti-GFP Aves Labs 
Tigard, OR, 
USA GFP-2010 

Mouse anti-Scar 
Developmental Studies 
Hybridoma Bank 

Iowa City, IA, 
USA P1C1 

Rabbit anti-GFP Invitrogen 
Carlsbad, 
CA, USA A-11122 

Alexafluor Secondary 
Antibodies (488, 647) Molecular Probes 

Carlsbad, 
CA, USA N/A 

Cy3 Affinipure Secondary 
Antibodies 

Jackson Immunoresearch 
Laboratories 

West Grove, 
PA, USA N/A 

Chemicals 

Para-formaldehyde (PFA) 16% 
Electron Microscopy 
Sciences 

Hatfield, PA, 
USA 15710 

PFA 40% 
Electron Microscopy 
Sciences 

Hatfield, PA, 
USA 15715-S 

Rhodamine-conjugated 
Phalloidin Invitrogen 

Carlsbad, 
CA, USA R415 

Alexafluor 647-conjugated 
Phalloidin Invitrogen 

Carlsbad, 
CA, USA A-22287 

27 Weight halocarbon oil Halocarbon Products Corp 
River Edge, 
NJ, USA 9002-23-9 

700 Weight halocarbon oil Sigma Aldrich 
St. Louis, 
MO, USA H8898-100mL 

Y-27632 dihydrochloride (ROK 
inhibitor) Sigma Aldrich 

St. Louis, 
MO, USA Y0503 

Latrunclin B EMD Millipore 
Burlington, 
MA, USA 428020-1MG 

Cytochalasin D Santa Cruz 
Santa Cruz, 
CA, USA 201442 

SMIFH2 Formin inhibitor Sigma Aldrich 
St. Louis, 
MO, USA S4826-5MG 

Propyl-gallate Sigma Aldrich 
St. Louis, 
MO, USA P3130 

Normal Donkey Serum (NDS) 
Jackson Immunoresearch 
Laboratories 

West Grove, 
PA, USA 017-000-121 

Normal Goat Serum (NGS) 
Jackson Immunoresearch 
Laboratories 

West Grove, 
PA, USA 005-000-121 

Hoescht Sigma Aldrich 
St. Louis, 
MO, USA 14530 

Experimental Models 

w1118 
Bloomington Drosophila 
Stock Center (BDSC) 

Marseille, 
France; BL#3605 
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Bloomington, 
IN, USA 

Ubi::Ani-RBD-GFP; sqh-Moe-
ABD::mCherry 

Made with Ubi-Ani-
RBD::GFP (gift from 
Thomas Lecuit) and sqh-
Moe-ABD::mCherry 
(BDSC) 

Marseille, 
France; 
Bloomington, 
IN, USA [45] and 

BL#35521 

Ubi::Ani-RBD-GFP; Ubi-
Par3::mCherry 

Made from Ubi-Ani-RBD-
GFP (gift from Thomas 
Lecuit) and Ubi-
Par3::mCherry (gift from 
Yohannes Bellaiche) 

Marseille, 
France; 
Paris, France 

[45,73] 
sqhAX3; sqh-sqh::GFP  Gift from Roger Karess Paris, France [74] 

sqhAX3; E-cad::tdTomato; sqh-
sqh::GFP  

Made with sqhAx3;sqh-
sqh::GFP (gift from Roger 
Karess) and E-
cad::tdtTom (gift from 
Yang Hong) 

Paris, 
France; 
Pittsburgh, 
PA, USA 

[74,75] 

UAS-Dia::GFP BDSC 
Bloomington, 
IN, USA BL#56751 

UAS-diaFH3FH1FH2::EGFP/CyO BDSC 
Bloomington, 
IN, USA BL#56753 

FrlMI03375-GFSTF.0/TM3, Sb1 Ser1 BDSC 
Bloomington, 
IN, USA BL#60195 

CapuMI05737-GFSTF.0/CyO BDSC 
Bloomington, 
IN, USA BL#66507 

DAAMMI04569-

GFSTF.0 lncRNA:CR46248MI04569-

GFSTF.0-X/FM7j, B1 BDSC 

Bloomington, 
IN, USA 

BL#60213 

dia2/CyO-Dfd-GMR-nvYFP 
dia2 Gift from Steve 
Wasserman and BDSC 

San Diego, 
CA, USA and 
Bloomington, 
IN, USA 

[76] and 
BL#23230 

rho172O/CyO-Dfd-GMR-nvYFP BDSC 
Bloomington, 
IN, USA 

BL#7325 and 
BL#23230 

rho172F/CyO-Dfd-GMR-nvYFP BDSC 
Bloomington, 
IN, USA 

BL#7326 and 
BL#23230 

UAS-Pav shRNA BDSC 
Bloomington, 
IN, USA BL#42573 

E-cad::tdTomato Gift from Yang Hong 
Pittsburgh, 
PA, USA [75] 

E-cad::tdTomato; Tubulin-GAL4 

Made from E-
cad::tdTomato (gift from 
Yang Hong) and Tubulin-
Gal4 (BDSC) 

Pittsburgh, 
PA; 
Bloomington, 
IN, USA [75] BL#5138 

Engrailed-GAL4, UAS-
mCherry::NLS; UAS-
DeGradFP/TM3,Sb BDSC 

Bloomington, 
IN, USA 

BL#38420 
sqhAX3; sqh-Utr-ABD::GFP, sqh-
sqh::mCherry Gift from Adam Martin 

Cambridge, 
MA, USA [43] 

sqh-GFP::ROKK116A, Ubi-
Par3::mCherry 

Made from sqh-
GFP::ROKK116A (gift from 
Jennifer Zallen) and Ubi-
Par3::mCherry (gift from 
Yohannes Bellaiche) 

New York, 
NY, USA; 
Paris, France 

[46,73] 



29 
 

E-cad::tdTomato; sqh-
GFP::ROKK116A 

Made from E-
cad::tdTomato (gift from 
Yang Hong) and sqh-
GFP::ROKK116A (gift from 
Jennifer Zallen)  

Pittsburgh, 
PA; New 
York, NY, 
USA 

[46,75] 

Ubi-E-cad::GFP, sqh-
sqh::mCherry/CyO-Dfd-GMR-
nvYFP 

Made from Ubi-E-
cad::GFP (gift from 
Jennifer Zallen), sqh-
sqh::mCherry (gift from 
Adam Martin) and 
snasco/CyO-Dfd-GMR-
nvYFP (BDSC) 

New York, 
NY; 
Cambridge, 
MA; 
Bloomington 

[77,78] 
BL#23230 

Eve-GAL4 
BDSC 

Bloomington, 
IN, USA BL#40732 

Opa-GAL4 
BDSC 

Bloomington, 
IN, USA BL#47406 

E-cad::tdTomato; Eve-GAL4 

Made from E-
cad::tdTomato (gift from 
Yang Hong) and Eve-
GAL4 (BDSC) 

Pittsburgh, 
PA, USA and 
Bloomington, 
IN, USA 

[75] and 
BL#40732 

UAS-mCherry::NLS 
Gift from Amin Ghabrial 

New York, 
NY, USA N/A 

sqh-sqhWT::GFP 
Gift from Jennifer Zallen 

New York, 
NY, USA [79] 

sqh-sqhEE::GFP 
Gift from Jennifer Zallen 

New York, 
NY, USA [79] 

UAS-rokCA::HA 
Gift from Jennifer Zallen 

New York, 
NY, USA [46] 

E-cad::tdTomato; tGPH 

Made from E-
cad::tdTomato (gift from 
Yang Hong) and tGPH 
(BDSC) 

Pittsburgh, 
PA, USA 

[75] and 
BL#8164 

Ubi-CPB::mCherry 
BDSC 

Bloomington, 
IN, USA BL#58726 

mbcC1/CyO-Dfd-GMR-nvYFP 
BDSC 

Bloomington, 
IN, USA 

BL#23230 and 
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Coffilin::GFP Kyoto Stock Center Kyoto, Japan #115280 
Elmo::GFP Kyoto Stock Center Kyoto, Japan #115020 

Software 
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Bethesda, 
MD, USA N/A 
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Automation and Image Analysis 
Software Molecular Devices 

San Jose, 
CA, USA 
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Graphpad Prism Graphpad Software 
San Diego, 
CA, USA Version 7.00 

Andor IQ3 Live Cell Imaging 
Software Andor 

Belfast, 
United 
Kingdom N/A 

 

 

  



31 
 

CHAPTER 3: The Mechanical Basis of Cell Alignment 
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Introduction 

Our lab previously reported the requirement for non-muscle Myosin II (Myo-II) in 

alignment[49].  Furthermore, our lab showed that enrichments of non-muscle Myo-II and 

F-actin arise along interfaces, forming supracellular actomyosin cables[15,49].  This 

evidence strongly indicates a role for asymmetric force generation.  Using laser ablation 

approaches and localized depletion of Myosin activity, I determined that alignment arises 

from elevated cortical tension along aligning junctions.  These forces derive from 

actomyosin contractility from both cell columns making up the aligning interface.  

Interestingly, loss of force from just one side of the interface is sufficient to disrupt the 

aligned morphology, indicating a requirement for symmetric force application for proper 

orientation of these junctions.  Finally, I have preliminary evidence that over a longer 

time scale, force asymmetry dissipates from the interfaces and that the aligned 

morphology is stabilized independent of actomyosin contractility.  This suggests that 

other mechanisms can maintain non-energetically favorable cell geometries, and that 

further inquiry into this system may reveal novel insights into cell mechanics. 

 

Results 

Junction remodeling does not mechanistically explain the aligned geometry 

Our lab previously proposed that alignment was caused by shrinkage of select 

cell-cell contacts along the interfaces (Fig. 3.1A)[49]. However, analyzing the cell 

dynamics of this process at higher temporal resolution revealed no correlation between 

the remodeling events and the emergence of alignment (Fig. 3.1C).  Therefore, I 

considered alternatively whether alignment may be caused by collective cell shape 

changes driven by actomyosin contractility along the length of the interface (Fig. 3.1C).    
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Local actomyosin contractility generates force asymmetry to drive alignment 

To test this, I used laser ablation to map the forces in the aligning epithelium.  I 

ablated individual junctions within the aligning interface (Fig. 3.2A, magenta) and 

“orthogonal” junctions intersecting the aligning interfaces (Fig. 3.2B, green).  As a 

control, I ablated junctions within non-aligning interfaces (Fig. 3.2C, orange).  Tension 

along aligning interfaces was over three-fold higher compared with that of orthogonal 

junctions (Fig. 3.2A vs B, D), revealing a large local force asymmetry.  Furthermore, 

relative to non-aligning junctions, tension was about two-fold higher along aligning 

junctions (Fig. 3.2A vs C, D) demonstrating that this is asymmetry is not a global 

property of the epithelium. 

To determine whether this tension asymmetry is actomyosin-dependent, I used 

deGradFP to deplete MLC[69] and disrupt contractility in aligning cells.  In brief, this 

approach utilizes a construct (hereafter “deGradFP”) that targets GFP-tagged proteins 

for degradation (see Materials and Methods).  The presence of deGradFP in an MLC 

mutant embryo (sqhAX3) that only expresses a transgenic GFP-tagged MLC would result 

in knockdown of Myo-II activity.  I used a spatially-restricted Engrailed-GAL4 line to 

express UAS-deGradFP.  This resulted in knockdown of MLC in the cells at only the 

anterior aligning interface, resulting in alignment defects (Fig. 3.3A, B, red arrowheads 

and dashed line) and binucleated cells, indicating disrupted cytokinesis (Fig. 3.3A blue 

arrowheads).  This was in contrast to sibling controls that expressed wild-type, untagged 

MLC from a Sqh+ allele and were, therefore, insusceptible to deGradFP (Fig. 3.3B, 

yellow “WT CTRL”).  To rule out the possibility that cytokinesis defects caused the 

alignment phenotype, I analyzed embryos expressing interfering RNAs (RNAi) to 

Pavarotti (Pav), a kinesin-like protein involved in cytokinetic ring assembly[80].  Pav 

knockdown caused binucleated cells but no disruption to alignment (Fig. 3.3C, D).   
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I then used deGradFP knockdown to test whether force asymmetry is generated 

by the actomyosin cables.   When I measured the tension along aligning junctions of the 

MLC-depleted interface, I found that tension was significantly decreased in comparison 

to the same interface in control embryos (Fig. 3.3E).  This resulted in a 30% reduction in 

tension asymmetry between aligning and orthogonal junctions (Fig. 3.3E).  These results 

demonstrate that cells at the aligning interface generate cortical tension by upregulating 

actomyosin contractility.  Furthermore, I can conclude that these local forces are 

responsible for alignment, rather than extrinsic forces from tissues distal to the aligning 

epithelium.   

 

Contractile force is required from cells on both sides of the aligning interface 

I gained further insight into the mechanics of alignment by capitalizing on 

variability in the Engrailed-GAL4 expression pattern. This line primarily expresses in the 

first column of cells comprising the anterior aligning interface (Fig. 3.4A, B).  However, 

there was occasional GAL4 expression in cells on the posterior side of the interface (Fig. 

3.4B).  This yielded two scenarios: unilateral knockdown in which depletion only 

occurred on one side of the interface (Fig. 3.4B, salmon) and “bilateral” knockdown in 

which cells on both sides of the interface were depleted for MLC (Fig. 3.4B, red). 

Unilateral knockdown caused a decrease in tension along aligning junctions relative to 

that of wild-type sibling controls (Fig. 3.4B, gray). With bilateral knockdown, tension was 

reduced even further compared to unilateral knockdown (Fig. 3.4B).  This demonstrates 

that cortical tension along the aligning interfaces comes from actomyosin in the cells on 

each side of the interface.  Interestingly, alignment was equally defective with either 

unilateral or bilateral knockdown of MLC (Fig. 3.4C), suggesting that tensile forces must 

be applied from both sides of the interface for alignment to occur.   
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The aligned geometry is maintained independent of contractile force asymmetry over the 

long term 

The aligned geometry and actomyosin cables are fully established at the 

beginning of embryonic Stage 13 (Fig. 3.5A).  At least four hours after this, the aligned 

geometry is maintained.  This time frame encompasses a number of significant 

developmental events in the epithelium.  First, at the beginning of Stage 14, dorsal 

closure begins.  As the epithelium migrates to enclose the opening on the dorsal side of 

the embryo, the ventral epithelial cells are stretched out along the dorsal-ventral axis 

(Fig. 3.5B).  The DiNardo lab showed previously that alignment occurs independently of 

this stretching process, as dorsal closure mutants still have properly aligned 

interfaces[49].   

Also during Stage 14, as dorsal-closure proceeds, actomyosin begins to 

accumulate on the apical surface of the ventral denticle cells (Fig. 3.5B).  This apico-

medial actin pool forms a dynamic, irregular meshwork.  During Stage 15, when dorsal 

closure is mostly complete, this meshwork will aggregate over time into foci that are the 

precursors to denticles (Fig 3.5C, 1.3C).   

In addition to the cellular geometry, it seems that actomyosin polarity persists 

through all of these stages of embryonic development.   At Stage 14, the presence of 

actomyosin cables is apparent (Fig. 3.5B, right panel).   At Stage 15, this is more difficult 

to discern because of the presence of actin-based protrusions on the apical surface (Fig. 

3.5C, third panel).  However, when I examined a z-slice 0.5μm below the apical surface, 

subtle MLC enrichments were seen at the two interfaces (Fig. 3.5C, right panel).  I have 

not quantified this as the actin-based protrusion pool may confound measurements.  

However, the evidence suggests that actomyosin cables are present for these stages 

and that they may allow for maintenance of alignment for many hours (Fig. 3.5A-C).   



36 
 

To test this hypothesis, I measured the local force distribution at the aligned 

interfaces at Stages 14 and 15.  I then compared these quantifications to the force 

asymmetry I measured at Stage 13, when alignment is first initialized.   

I was surprised to find that the force asymmetry that I characterized at the 

aligned interfaces dissipates with time (Fig. 3.5D).  Recall that just after alignment, there 

was an over three-fold elevation in cortical tension between aligning and orthogonal 

junctions (Fig. 3.5D, Stage 13).  In the middle of actin-based protrusion formation, this 

difference had declined to an over two-fold difference (Fig. 3.5D, Stage 14).  By the time 

actin-based protrusions had fully matured, there was no significance difference in force 

between aligning and orthogonal junctions (Fig. 3.5D, Stage 15).  The size of these two 

sample groups are relatively small, and the analysis would benefit from repetition of the 

experiment.  However, it is very clear that cortical force asymmetry is not maintained 

over this time scale, despite the presence of actomyosin enrichments and the 

persistence of the aligned geometry. 

I also tested whether the cortical tension at junctions in older embryos comes 

from actomyosin contractility.  As described previously, at alignment initialization, the 

tension along aligning junctions is decreased substantially with deGradFP-mediated 

knockdown of MLC (Fig 3.5E, Stage 13).  At Stage 14, the decline in force observed with 

MLC knockdown is significant, but smaller in magnitude.  This is consistent with the 

previous observation that the actomyosin-derived forces that produce tension 

asymmetry are beginning to wane at this developmental time point.  By Stage 15, there 

was no significant difference in retraction velocity between control and MLC-depleted 

aligning junctions.  This indicates that whatever cortical tension is remaining at this point 

is not Myo-II derived, and that the actomyosin-generated force asymmetry has 

completely disappeared by Stage 15. 
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Discussion 

Actomyosin-generated, bilateral cortical tension is required for alignment 

I have shown that alignment constitutes a tissue-scale, coordinated cell shape 

change driven by local increases in contractile force.  Depletion of actomyosin-based 

forces lowered the tension along aligning junctions, consequentially reducing the force 

asymmetry relative to orthogonal junctions (Fig. 3.3E).  It is worth noting that there was 

still a significant force asymmetry with Myosin depletion (Fig. 3.3E).  One explanation for 

this decreased tension is that polarized Rho activity along aligning interfaces sequesters 

Myo-II away from orthogonal junctions.  However, it is also possible that other 

mechanisms actively decrease tension along orthogonal junctions.  There has been 

some suggestion that E-cad enriches along orthogonal junctions and depletes from 

aligning junctions[49].  This increase in E-cad could indicate an increase in adhesive 

forces that could counter contractile force.  However, qualitatively, I have observed that 

this re-distribution of E-cad does not begin until at least an hour after alignment has 

been established.  Therefore, I find this hypothesis unlikely. 

Two cells contribute actomyosin to each of the junctions in the aligning interface.  

Therefore, it was not surprising to observe an additional decrease in tension from 

bilateral vs unilateral knockdown of MLC (Fig. 3.4B).  Intriguingly, unilateral depletion of 

MLC was sufficient to disrupt the aligned morphology (Fig. 3.4C).  This implies that the 

minimum force required for alignment necessitates the contribution of both cells (bilateral 

contractility).  Alternatively, there may be a need for symmetric contractility – unilateral 

application of force could be as counter-productive to alignment as full depletion of Myo-

II activity.   

With laser ablation, the read out of cortical tension is the outward retraction rate 

of junctions.  This indicates that contractile force is applied along the junctions starting 

from the adjacent vertices inwards toward the middle of the junction.  However, there 
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could be other directions of force application that this assay does not directly reveal.  

With unilateral knockdown, there may be a disruption of the balance of such force 

vectors that could contribute to loss of the aligned geometry.   

 

The aligned geometry is stabilized by actomyosin-independent mechanisms later in 

development 

The aligned geometry is maintained for a remarkably long period of 

developmental time – upwards of four hours after actomyosin cables first form, which 

constitutes about 20% of embryonic development.  Even more fascinating is that my 

preliminary data suggests that the manner by which this geometry is stabilized evolves 

over developmental time. 

It appears that actomyosin cables are present through this entire timeframe, 

although given the potentially confounding apical signal from denticle formation, a 

careful quantitative analysis at each developmental stage would be necessary to solidify 

this conclusion.   Regardless, it is clear that the contractile force generated by these 

cables decreases over time.  Irrespective of this, the interfaces remain aligned.   

There are a number of interesting cellular and molecular events that temporally 

correlate with the dissipation of force asymmetry.  First, as mentioned previously, the 

cells stretch along the dorsal ventral axis during the course of dorsal closure.  Again, this 

is partially due to the migration of the dorsal epithelium in order to enclose the 

amnioserosa.  However, our lab showed qualitatively that cells are still anisotropically 

stretched even when dorsal closure is blocked[49].  This suggests that there are other, 

potentially intracellular mechanisms for the stretching of these cells.  Tissues that are 

artificially stressed will initially upregulate actomyosin along the axis of stretch, resulting 

in upregulation of cortical tension in that direction[81].  However, if the stretch is applied 

for a long enough duration, the forces created by this actomyosin polarity will 
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dissipate[81].  This is purportedly due to unknown mechanisms that buffer the tissue 

against mechanical stresses.  After at least 2 hours of increasing cellular stretch, such a 

buffering mechanism could be deployed in the late embryonic epithelium. 

Secondly, septate junctions emerge and mature after Stage 13.  This is 

characterized by the emergence of classic septate junction marker Discs large (Dlg) and 

the tricellular septate junction Gliotactin during Stage 14[49,82,83].  It has recently been 

proposed that septate junctions can increase the stiffness or viscosity of a tissue, 

thereby countering contractile forces[84].  Indeed, our lab previously reported that Dlg 

mutants have alignment defects[49].  However, it was originally hypothesized that Dlg 

regulated junction remodeling in alignment.  This cannot be the case for two reasons: (1) 

is clear that Dlg is not present at cell junctions until significantly later in development and 

(2) as I demonstrated above, junction remodeling is not the cell mechanical basis of 

alignment.  It would be interesting to further investigate whether septate junction or Dlg 

contribute to the mechanics of the tissue during these later stages of development. 

A vast majority of developmental mechanics research is focused on actomyosin-

derived forces.   Exploration of the physical basis of this geometry stabilization will likely 

reveal novel mechanisms of tissue morphogenesis. 
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Figure 3.1:  Alignment is driven by coordinated cell shape changes rather than 
junction remodeling. 

(A and B) Two models can explain the alignment morphology.  (A) The first involves 
elevated contractility along select junctions in the interface driving remodeling events 
to create 4-way vertices.  (B) The second model has cortical tension elevated along 
all contacts of the interface to drive coordinated cell shape changes. Yellow dashed 
lines indicate location of elevated tension. 

(C) A lack of correlation between the presence of 4-way vertices and the alignment of 
the interface eliminated (A) the first model.  The R2 value from a Pearson correlation 
test is shown as well as a linear regression fit.  N = 3 interfaces, 3 embryos 
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  Figure 3.2:  Contractile force is upregulated along aligning junctions. 

(A-C) Representative montages of retraction in response to laser ablation for (A) 
aligning, (B) orthogonal and (C) non-aligning junctions.  The first image in each 
sequence shows the junction prior to ablation and each subsequent frame represents 
a five second interval.  Pseudo-colored lines map out the trajectory of motion for the 
vertices that connect the cut junction. 

(D) Tension was elevated along aligning (purple) cell-cell contacts relative to 
orthogonal (green) and non-aligning (orange) contacts.  Cell junctions were 
visualized with E-cad::GFP.  Orthogonal: 21 junctions from 15 embryos; Aligning: 31 
junctions, 21 embryos; Non-aligning: 46 junctions, 26 embryos 

***p<0.0001, Mann-Whitney U test, Error bars = S.D. Scale bars = 4μm.   
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Figure 3.3: Actomyosin cables create force asymmetry to drive alignment   

(A) Depletion of MLC along one interface (red arrowheads) caused alignment defects 
(red dashed line).  Cell junctions were visualized with E-cad::tdTomato and 
deGradFP-expressing cells identified by nuclear mCherry signal.  Blue arrowheads 
mark bi-nucleated cells caused by MLC knockdown.  Depletion was restricted to the 
anterior interface and did not affect the morphology of the posterior interface (white 
arrowheads and dashed line).  

(B) MLC knockdown (“MLC KD”, red, right fluorescent image) caused a significant 
decrease in alignment compared to that of embryos expressing untagged MLC as a 
control (“WT CTRL”, yellow, left fluorescent image).  E-cad::tdtTomato was used to 
visualized cell outlines.  Nuclear signal marks cells expressing Engrailed-GAL4 > 
DeGradFP.  WT CTRL: 15 interfaces, 6 embryos; DeGradFP+: 17 interfaces, 6 
embryos 
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  (Figure 3.3 Continued) 

(C) Blocking cytokinesis by Pavarotti knockdown did not cause alignment defects.  
The position of nuclei in binucleated cells along the aligning interface were identified 
by Hoechst staining in deeper sections (not shown) and are marked in orange.  In the 
graph, red shows alignment measurements of Eve-GAL4 > Pav RNAi interfaces 
while yellow are control, non-expressing interfaces.  pTyr staining marked cell 
outlines.  CTRL: 11 interfaces, 4 embryos; Pav RNAi: 12 interfaces, 4 embryos 

(D) Pav knockdown also did not affect F-actin (magenta) or MLC (green) enrichment 
to aligning interfaces. CTRL: 11 interfaces, 4 embryos; Pav RNAi: 11 interfaces, 4 
embryos 

(E) MLC knockdown resulted in a significant decrease in tension compared to WT 
control along aligning contacts (purple), but no significant change along orthogonal 
contacts (green).  The net result is a reduction in tension asymmetry (orange 
arrows).  WT CTRL: 13 orthogonal junctions, 7 embryos, 17 aligning junctions, 5 
embryos; DeGradFP+: 12 orthogonal junctions, 5 embryos, 18 aligning junctions, 6 
embryos 

***p<0.0001, Mann-Whitney U-test, Error bars = S.D. Scale bars = 4μm.  Error bars = 
S.D.  
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  Figure 3.4: Alignment requires that contractile force be contributed from both 
sides of the interface 

(A) A schematic of the Engrailed-GAL4 expression pattern (green) on the ventral 
face of the embryonic epithelium.  Aligning interfaces are marked with purple lines.  
Only the anterior interface of each pair will be affected by Engrailed-GAL4. 

(B) Engrailed-GAL4 variably expressed DeGradFP in cells at the anterior aligning 
interfaces.  NLS-mCherry positively marked Engrailed-GAL4 expressing cells.  Along 
the anterior aligning interface (dashed line), cells affected by DeGradFP-mediated 
MLC depletion are schematically shown in blue.  Cells anterior (left) of the interface 
always expressed DeGradFP.  Without expression on the posterior side (right), this 
resulted in unilateral knockdown (pink dashed lines and data points).  Variably, 
Engrailed-GAL4 expressed DeGradFP in cells posterior to the interface, resulting in 
bilateral knockdown (red dashed lines and data points).  Both cases resulted in 
decreased cortical tension compared to aligning junctions in wild-type controls (gray).  
Bilateral knockdown caused a greater reduction in tension compared to unilateral 
knockdown.  WT CTRL: 17 junctions, 6 embryos; Unilateral KD: 8 junctions, 6 
embryos; Bilateral KD: 10 junctions, 10 embryos) 

(C) Alignment was equivalently defective in both unilateral and bilateral knockdown 
scenarios. 

***p<0.0001, **p<0.001, Mann-Whitney U-test, Error bars = S.D. Scale bars = 4μm.  
Error bars = S.D.  
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Figure 3.5: The aligned geometry is stabilized independent of actomyosin 
contractility later in development 

(A-C) The aligned geometry and actomyosin polarity are retained until the end of 
embryo development.  Actomyosin cables the form at (A) Stage 13, when alignment 
is first completed, are retained through (B) Stage 14 and (C) Stage 15.  (C) Myo-II 
(revealed by MLC::mCherry, green) forms an additional medio-apical meshwork 
starting at stage 14 that will eventually focus into puncta in Stage 15 (yellow dotted 
circle).  0.5um below the apical network, junctional enrichments of of MLC are still 
observed at aligning junctions.  Interfaces (yellow arrowheads, lines) remain straight 
throughout these stages.  E-cad::tdTomato marks cell outlines.   

(D) The force asymmetry at aligning interfaces starts to decrease at Stage 14.  By 
Stage 15, there is no longer a significant difference in force between aligning (purple) 
and orthogonal (green) junctions. 
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(Figure 3.5 Continued) 

(E) In older embryos, myosin knockdown with deGradFP (red) does not decrease 
cortical tension significantly along aligning cell junctions compared to aligning 
junctions in control embryos (gray).  This contrasts with the significant decrease in 
tension observed in stage 13 embryos.  This demonstrates that the remaining cortical 
tension present in older embryos is no longer actomyosin derived. 

***p<0.0001, **p<0.001, Mann-Whitney U-test, Error bars = S.D. Scale bars = 4μm.  
Error bars = S.D.  
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CHAPTER 4: Planar polarized Rho signaling is essential for alignment 
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Introduction 

Another major objective of my thesis work was to identify the polarity cue for 

actomyosin accumulation at aligning interfaces.   

I have found that planar polarization of Rho signaling is critical for alignment to 

occur.  Both the ROK and Dia branches of the pathway are required enrichment of F-

actin and Myo-II along junctions in the aligning interfaces.  Furthermore, I present 

evidence the ROK has more functions in alignment than just phosphorylation of MLC.   

Additionally, I explored the requirement for Par3, a polarity protein that can be 

regulated by ROK.  Based on its spatial distribution, our lab previously proposed that 

Par3 may regulate alignment.  However, I have found two different lines of evidence that 

Par3 does not have a direct role in coordinating alignment. 

 

Results 

Planar polarization of Rho signaling coordinates alignment 

Given its role in regulating contractile actomyosin, I examined the localization of 

Rho pathway factors.  A fluorescent sensor for activated, GTP-bound Rho exhibited a 

consistent, subtle enrichment along aligning contacts relative to orthogonal contacts 

(Fig. 4.1A purple vs green)[45].  Corroborating this, I found that the Rho effectors ROK 

and Dia, were also enriched along aligning contacts (Fig. 4.1B, C).   

To test whether the Rho pathway is required for alignment, I disrupted these 

three components.  First, analysis of strong loss-of-function rho mutants had significant 

alignment defects (Fig. 4.2A).   

Second, I tested the necessity for ROK.  Genetic depletion was problematic due 

to the maternal and zygotic contribution of ROK, coupled to the relatively late stage 

during which alignment takes place.  Instead, I injected either of two ROK inhibitors, Y-
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27632 and H-1152, each which caused a rapid loss of alignment in contrast to embryos 

injected with solvent alone (Fig. 4.2B).  

Finally, to evaluate the function of Dia, I used complementary genetic and 

pharmacological approaches.  The epithelium of embryos homozygous for a null allele of 

dia was frequently too disrupted to analyze alignment (Fig. 4.3F).  However, 

heterozygous embryos (dia2/+) had significant alignment defects compared to 

homozygous, wild-type (+/+) embryos (Fig. 4.3A-D yellow vs pink).  To further deplete 

Dia activity, I analyzed dia2/+ embryos laid by dia2/+ females. These embryos had more 

severe alignment defects relative to dia2/+ embryos laid by +/+ females, showing that 

depletion of maternally-contributed Dia compromises alignment further (Fig. 4.3B, C, D 

pink vs red).  Detection of alignment phenotypes even with mild perturbations of Dia 

suggested a critical role for this formin in alignment.  

To achieve stage-specific disruption of Dia during alignment, I treated embryos 

with the formin inhibitor, SMIFH2[85].  Analysis of expression data for all formin family 

members indicated that Dia is the only formin present and cortically enriched to aligning 

interfaces (Fig. 4.3E).  Therefore, the effects observed from SMIFH2 treatment can be 

attributed to the inhibition of Dia.  

SMIFH2 treatment caused a significant loss of alignment (Fig. 4.3G).  

Additionally, individual cell junctions across the epithelium became convoluted in 

morphology (Fig. 4.3F, barbed arrows), further suggesting a role for Dia in regulating 

cortical tension[86,87].   

Taken together, our data indicates that alignment requires planar polarized ROK 

and Dia activation via Rho.   

 

Dia and ROK are each required for both F-actin and Myo-II planar polarization 



50 
 

ROK and Dia have well-studied roles in regulating Myo-II and F-actin, 

respectively.  I sought to test whether these factors are necessary for formation of 

actomyosin cables.  As such, I monitored the localization of fluorescently-labelled MLC 

and an F-actin sensor in response to pharmacological inhibition of ROK or Dia.  Before 

and after treatment, I measured the ratio of fluorescence between aligning and 

orthogonal junctions and used this as a metric of local planar polarity.    

For inhibition of ROK, I used the drug Y-27632 (referred to in this and 

subsequent experiments as “ROK inhibitor”).  Injection of the Y-27632 inhibitor caused 

an immediate depletion of MLC from cell junctions and a loss in its planar polarity (Fig 

4.4A). This is consistent with the known role of ROK in activating Myo-II through 

phosphorylation.    

I next sought to test whether phosphorylation by ROK was sufficient for proper 

localization of Myo-II.  Since inhibitor treatment should block MLC phosphorylation, I 

tested whether artificially restoring phosphorylation could rescue cortical enrichment and 

polarization.  Phosphomimetic MLC does not rescue the enzymatic activity of Myo-II, but 

it does allow insight into the phosphorylation dependence of Myo-II localization[88,89].  I 

examined embryos exogenously expressing a GFP-tagged form of the phosphomimetic 

mutant MLC in addition to endogenous, wild-type un-tagged MLC.  Phosphomimetic 

MLC enriched along aligning junctions at levels comparable to wild-type MLC expressed 

with a similar transgenic strategy (Fig. 4.5A-D).  This is likely due to co-assembly of 

phosphomimetic MLC and endogenous MLC into mini-filaments that can be recruited 

normally to cell junctions.   

Upon inhibition of ROK, wild-type MLC-containing mini-filaments would 

disassemble, whereas phosphomimetic MLC would still form mini filaments with Myosin 

Heavy Chain.  These mini filaments would be recruited to the cortex, but accumulate in a 

non-polarized manner given the loss of polarized ROK activity.  Such symmetric 
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recruitment is precisely what is observed in embryos earlier in development treated with 

ROK inhibitor [70].  Surprisingly, during alignment, treatment with the ROK inhibitor not 

only led to a loss of planar polarity but to depletion of Myo-II from all cortices, as 

demonstrated by a dramatically reduced fluorescence intensity measured at both 

aligning and orthogonal junctions (Fig. 4.5A, C, D, E, G, H).  These changes were 

comparable to that exhibited by non-phosphomimetic MLC (Fig. 4.5A, B, E, F).  As 

expected, expression of the phosphomimetic construct did not rescue alignment defects 

in embryos treated with ROK inhibitor (Fig. 4.5I).  These observations suggest that ROK 

regulates Myo-II targeting to cell junctions in a manner independent of its ability to 

phosphorylate MLC.  I also observed that F-actin became severely disorganized upon 

ROK inhibition (Fig. 4.4B).  In turn this suggests that ROK has a separate function in 

remodeling F-actin during alignment, in addition to Myosin activation.  

Dia disruption also had profound effects on F-actin and Myo-II distribution.  Upon 

SMIFH2 treatment, F-actin planar polarity at aligning interfaces was lost (Fig. 4.4C).  

This indicates that Dia is the primary driver of actin polymerization in the contractile 

assemblies that promote alignment.  Additionally, planar polarity of MLC was 

compromised with SMIFH2 treatment (Fig. 4.4D).  This demonstrates that Dia-mediated 

actin remodeling is required to properly incorporate Myo-II into the actomyosin cable.   

Our findings show that each of these Rho effectors is necessary to assemble 

both F-actin and Myo-II into the supracellular cables. 

 

Par3 is not required for alignment 

Our lab previously reported that Par3 is preferentially enriched along orthogonal 

junctions and depleted along aligning junctions (Figure 4.1A, B) [49].  Par3 is a classic 

regulator of apical-basal polarity, but has also been shown to function in planar polarized 

processes[70,90,91].  Specifically, during convergent extension, Par3 is preferentially 
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enriched along non-shrinking junctions where it is thought to repress Myo-II activity[70].  

Indeed, its exclusion from shrinking junctions arises due to ROK.  ROK is enriched along 

shrinking junctions, where it can phosphorylate and thereby inhibit Par3 association with 

the membrane. Given the similar distribution of ROK and Par3 during alignment, it would 

make sense that Par3 played a role in this process. 

To test Par3s function in alignment, I examined embryos with a strong loss-of-

function allele for Par3, baz815.8[92].  I confirmed that mutant embryos have very little 

Par3 protein by antibody stain (data not shown).  Homozygous mutant embryos had no 

significant alignment deficit compared to control siblings (Fig. 4.6A).  To confirm this 

result, I knocked down Par3 using the deGradFP approach on an endogenously GFP-

tagged Par3 expressing line.  As described in Chapter 3, I restricted knockdown to the 

first anterior interface in each abdominal segment by expressing deGradFP with 

EngrailedGal4.  Qualitatively, it appears that deGradFP+ embryos are intact for 

alignment (Fig. 4.6B).  This experiment would benefit from quantification, but Par3 

depleted embryos appear completely wild type with respect to alignment.  This 

cumulative data set strongly indicates that Par3 is not required for alignment. 

 

Discussion 

Planar polarized Rho is the guidance cue for actomyosin cable assembly 

I have demonstrated an essential role for polarization of Rho signaling as a 

spatial cue.  Both branches of the Rho pathway – ROK and Dia – are critical for 

recruitment of Myo-II and F-actin into the supracellular cables that drive alignment.  

This planar polarized distribution of Rho and ROK during alignment is nearly 

identically to that observed during convergent extension, where Rho- and ROK-

upregulated junctions undergo shrinking.  This begs the question of what molecularly 

differentiates these two morphogenetic processes.  This question will be more deeply 
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explored in Chapter 5.  However, it is worth noting that Dia is not enriched along Rho-

activated junctions during convergent extension.  This has been independently shown by 

two different research groups[30,71].  Whether this difference is functionally significant is 

not clear.  The relative enrichment of Dia during alignment could represent some 

increased signaling through the actin polymerization branch of the Rho pathway.  

Additionally, there could be a factor that acts in parallel with Rho that activates or 

stabilizes Dia function.  Experimental approaches that can more precisely down- and 

upregulate Dia activity in a spatially specific manner would allow further exploration of 

this question. 

 

Both branches of the Rho pathway are required for actomyosin cables 

It was interesting to find that both Rho effectors are required for proper 

recruitment of both F-actin and Myo-II into cables (Fig. 4.2, 4.3).  It was not surprising to 

find that the formin, Dia, is required for F-actin accumulation at aligning interfaces.  

Additionally, I have shown that this actin remodeling activity is required for recruitment of 

Myo-II to these junctions.  It is possible that mini-filaments prefer to bind to linear 

assemblies of F-actin that are promoted by Dia activity.   Enhanced Dia activity at 

aligning junctions could encourage recruitment of Myo-II via this mechanism.  This could 

explain the loss of Myo-II enrichment with Dia inhibition.  The interaction between F-actin 

and Myosin will be investigated further in Chapter 5. 

 

Potential functions for ROK outside of MLC phosphorylation 

Similarly, ROK activity is not just required for Myo-II enrichment to aligning 

interfaces (Fig. 4.4A).  F-actin was profoundly disorganized with ROK inhibition (Fig. 

4.4B).  This could be in part due to loss of MLC phosphorylation, as Myo-II can crosslink 

and stabilize F-actin networks[93].  However, I found that mimicking phosphorylation in 
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MLC was not sufficient to rescue Myo-II recruitment nor, apparently, any contractile 

activity upon ROK inhibition.  Therefore, there may be a more direct effect on F-actin by 

ROK that is required for stabilizing Myo-II at junctions.  ROK has numerous other 

phosphorylation targets that participate in F-actin remodeling[39].  Lim Kinase is one 

such example, which is a negative regulator of the actin depolymerizing factor, 

Cofilin[94].  Loss of Lim Kinase activity upon ROK inhibition could lead to aberrant 

depolymerization of F-actin by Cofilin.  This would account for the loss of cortical F-actin 

I observed in embryos.  Ezrin-Radixin-Moesin (ERM) proteins are another group of 

phosphorylation targets that serve as physical links between the membrane and actin 

filaments[95,96].  Reduced activation of proteins can also lead to F-actin 

disorganization[97].  Decreased cortical F-actin via either of these mechanisms could 

reduce the available filament binding sites available for Myo-II filaments, explaining the 

inability of both wild type and phosphomimetic Myo-II complexes to associate with cell 

junctions after ROK inhibition. 

 

Is there a requirement for Par3 repression at aligning interfaces? 

No alignment phenotype was observed with Par3 loss, demonstrating that the 

enrichment of Par3 along orthogonal junctions is not essential for alignment.  However, 

this loss-of-function approach cannot address whether exclusion of Par3 from aligning 

interfaces is important. To test this, I would need to experimentally force the recruitment 

of Par3 to aligning junctions and observe the impact on alignment.  This has been done 

in the context of lineage boundaries in the early embryos, where actomyosin 

supracellular cables are also present[98,99].  Overexpression of Par3 caused these 

boundaries to aberrantly ingress, creating ectopic furrows[99].  As will be discussed 

extensively in Chapter 5, Rho pathway overactivation causes a remarkably similar 
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phenotype.  It could be that Par3 suppression along aligning interfaces is required for 

proper activity of actomyosin cables and/or the Rho pathway.  
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Figure 4.1: Rho signaling is planar polarized to aligning junctions 

(A) A GFP sensor for Rho-GTP enriched along aligning junctions (purple in graph) 
relative to orthogonal junctions (green in graph).  On the left, Rho-GTP signal 
intensity is displayed with the Fire LUT (calibration bar shows Low to High signal). N 
= 34 interfaces, 7 embryos. 

(B) GFP::ROKK116A enriched along aligning interfaces relative to orthogonal junctions.  
N = 38 interfaces, 7 embryos 
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  (Figure 4.1 Continued) 

(C) Dia, as detected by antibody stain, enriched along aligning junctions relative to 
orthogonal junctions.  N = 98 interfaces, 8 embryos. 

Par3::mCherry was used to mark AJs in (A, B, magenta). 

phospho-Tyrosine (pTyr) antibody staining was used as a marker for cell outlines (C).   

***p<0.0001, Mann-Whitney U-test, Error bars = S.D.  Scale bars = 4μm.   
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Figure 4.2: Rho and ROK are required for alignment 

(A) rho loss-of-function mutants (red) had significant alignment defects compared to 
wild-type sibling controls (yellow).  pTyr antibody staining was used to visualize cell 
outlines.  CTRL: 76 interfaces, 6 embryos; rho72O/72F: 75 interfaces, 5 embryos. 

(B) Pharmacological inhibition of ROK with either Y-27632 or H-1152 caused 
significant decreases in alignment.  Fluorescently-tagged E-cad was used to 
visualize cell outlines before (yellow) and after (red) drug treatments.  Each line in 
the graphs of represents one interface and matches measurements before (yellow) 
and after drug treatment (red) or H2O control injection (gray). Control injections with 
H2O did not significantly reduce alignment.  Y-27632: 21 interfaces, 5 embryos; H-
1152: 11 interfaces, 3 embryos; H2O: 26 interfaces, 6 embryos 

***p<0.0001, Mann-Whitney U-test, Error bars = S.D.  Scale bars = 4μm.   
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  Figure 4.3: Diaphanous is the only formin required for alignment.  

(A-D) Partial genetic depletion of Dia causes alignment defects.  (B) Embryos 
heterozygous for the null allele dia2 (pink) experience a partial depletion of their 
zygotically (Z) contributed Dia protein.  (A) Relative to wild type controls (yellow), this 
zygotic reduction caused significant defects in alignment (D yellow vs pink). (C) 
Embryos laid by heterozygous females experience an additional depletion of 
maternally(M)-contributed Dia protein (red).  Heterozygous embryos of this category 
had more severe defects in alignment compared to dia2 heterozygotes laid by wild 
type mothers (D, pink vs red).  (A-C) pTyr staining was used to visualize cell outlines. 
A: interfaces = 157, 13 embryos; B: 137 interfaces, 10 embryos; C: 126 interfaces, 
12 embryos 
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(Figure 4.3 Continued) 

(E) We surveyed high-throughput sequencing data sets and in situ hybridization 
studies (flybase.org) of all formins in the Drosophila genome.  Only three (FRL, Capu 
and DAAM), are expressed during the developmental stages relevant to alignment 
(FRL, Capu and DAAM).  For each of these, we assessed the localization of 
endogenously GFP-tagged transgenic lines.  These three formins showed 
homogeneous cytoplasmic distributions with little cortical targeting, compared to Dia 
(visualized by antibody staining). Yellow brackets indicate region of aligning 
interfaces.  Dia antibody stain: Representative of 8 embryos; FRL::GFP: 
representative of 10 embryos; Capu::GFP: representative of 12 embryos; 
DAAM::GFP: representative of 13 embryos 

(F) Increased depletion of Dia is associated with more severe phenotypes that 
obfuscate analysis of alignment.  While heterozygous embryos have mostly intact 
epithelium (green), upon further loss of Dia activity, a larger fraction of embryos have 
either some large holes in their epithelium (orange) or many holes and severe 
disorganization (magenta).  Embryos with these two later phenotypes were not 
analyzed for alignment.  N values are displayed for each sample group are displayed 
on the graph. 

(G) Pharmacological inhibition of Dia caused significant decreases in alignment.  
White arrowheads indicate cell junctions that became convoluted after drug 
treatment.  Fluorescently-tagged E-cad was used to visualize cell outlines before 
(yellow) and after (red) drug treatments.  Each line in the graphs of represents one 
interface and matches measurements before (yellow) and after drug treatment (red) 
or DMSO control injection (gray). Control injections with H2O did not significantly 
reduce alignment.  SMIFH2: 27 interfaces from 6 embryos; DMSO: 16 interfaces 
from 3 embryos 

***p<0.0001, *p<0.01, Mann-Whitney U-test, Error bars = S.D. Scale bars = 4μm.   
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Figure 4.4: Rho effectors are required for actomyosin planar polarity.  

(A and B) ROK inhibition caused loss in planar polarity of (A) MLC::GFP (Y-27632: 
12 interfaces, 3 embryos; H2O: 11 interfaces, 3 embryos) and (B) F-actin 
(representative of 7 embryos). 

(C and D) Dia inhibition by SMIFH2 treatment caused loss in planar polarity of (C) F-
actin (SMIFH2: 12 interfaces, 3 embryos; DMSO: 21 interfaces, 5 embryos) and (D) 
MLC::GFP (SMIFH2: 17 interfaces, 4 embryos; DMSO: 26 interfaces, 5 embryos) 

Utr-ABD::GFP was used to visualize F-actin (B and C).  Planar polarity was 
quantified as a ratio of fluorescence intensity between aligning and orthogonal 
regions.  Each line in the graphs (A,C, D) represents one interface and matches the 
measurements before (yellow) and after (red) drug treatment. 

Control injections with H2O (for Y-27632) or DMSO (for SMIFH2) did not result in 
significant changes in planar polarity in either MLC or F-actin. 

***p<0.0001, **p<0.001, Mann-Whitney U-test.  Scale bars = 4μm.   
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Figure 4.5: Phosphorylation is not sufficient for Myosin activity or polarity. 

(A-H) Phosphorylation of MLC by ROK is not sufficient for junctional recruitment and 
planar polarity.  (A) GFP-labelled wild type MLC or (B) phosphomimetic MLC were 
expressed with a similar transgenic strategy so that protein levels would not 
confound analysis.  (C, D, yellow) Both versions of MLC were planar polarized 
properly to aligning interface.  Upon ROK inhibition (red), both constructs lost (C, D) 
planar polarity and exhibited decreased cortical targeting to both (E, F) aligning 
junctions and (G,H) orthogonal junctions (G, H).  

(I) Embryo expressing phosphomimetic MLC still exhibited significant alignment 
defects upon ROK inhibitor treatment.  E-cadherin-tdTomato was used to visualize 
cell outlines.  sqh-sqhWT::GFP: 20 interfaces from 5 embryos; sqh-sqhEE::GFP: 20 
interfaces from 6 embryos 

Each lines in graphs represents one interface and matches measurements before 
and after drug treatment. 

***p<0.0001, **p<0.01, Mann-Whitney U-test, Scale bars = 4μm.  
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 Figure 4.6: Par3 is not required for alignment. 

(A) Embryos with a strong hypomorphic allele of Par3, baz815.8 (red lines and data 
points), do not have an alignment phenotype relative to control siblings (yellow).   

(B) DeGradFP mediated knockdown of Par3 (green) did not disrupt alignment (red 
arrowheads).  White arrowheads mark the unaffected second interface.  pTyr 
(magenta) marks cell outlines.  

Mann-Whitney U-test, Scale bars = 4μm.  

 



64 
 

 
Figure 4.7: Model of Rho pathway function in alignment  

Model of Rho effector function in forming actomyosin cables during alignment.  
Dashed green arrows represent interactions that are not mechanistically well 
understood and may be direct or indirect. 
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Chapter 5: Multiple feedback mechanisms fine-tune Rho signaling to regulate 
morphogenetic outcomes 
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Introduction 

Rho signaling is required in many morphogenetic programs, but how this 

pathway allows for production of distinct cell and tissue morphologies is still poorly 

understood.  One contributing factor is spatial regulation of Rho activation.  As described 

in Chapter 4, I have demonstrated that planar polarization of Rho activation and its 

effectors to aligning junctions is critical for the formation of actomyosin cables, thereby 

driving alignment.  

However, planar polarization of Rho can result in cell geometries different from 

alignment. Two such examples are convergent extension and mechanical tissue 

boundaries.  During convergent extension, junctions along the dorsal-ventral axis 

become upregulated for Rho signaling[42,45,46], initiating the formation of actomyosin 

asymmetry[28,31].  At mechanical boundaries, actomyosin cables also increase force 

along cell-cell contacts in order to prevent cell mixing between tissue 

compartments[16,17,33,47,98].  Studies suggest that Rho signaling is also polarized to 

guide the formation of these boundaries in many tissues (unpublished from our 

lab)[16,17,33,47].   

These two processes strongly resemble alignment in the manner that Rho 

signaling and actomyosin remodeling is polarized to create local force asymmetry in the 

tissue[16–19,33].  Yet, the final resulting morphologies of these events are quite different 

from one another.  During convergent extension, junctions activated for Rho and 

actomyosin will shrink and remodel[28,31].  At tissue boundaries, cell-cell contacts also 

shorten in length and partly align with one another[16,17].  In contrast, alignment 

produces very straight interfaces of cell-cell contacts where individual contacts elongate 

relative to neighboring, orthogonal contacts (Figure 1a).  Indeed, the observation that the 

contacts under the most tension are competent to lengthen is contrary to most current in 

silico models[52,53], highlighting a key distinguishing feature of alignment.   
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Given that these systems do not appear to exhibit differences in the spatial 

deployment of Rho or its effectors, other mechanisms must account for these disparate 

morphological outcomes.  In this report, I present evidence that pathway feedback could 

allow for modification of Rho signaling outcomes.  I explored the interactions among the 

major components in the Rho pathway.  Consistent with reports in other morphogenetic 

processes, I found that F-actin negatively feeds back to Rho activation [100–102].  It 

appears that ROK may mediate some aspects of this interaction.  I also present 

evidence that suggests a novel feedback interaction between F-actin and Dia.  In 

contrast to observations in other systems, I found no role for Myo-II activity nor 

contractility in feedback regulation of Rho[45,102–104].  However, it seems that ROK is 

able to positively regulate Dia in a Myo-II independent manner.  These results suggest 

that numerous feedback interactions can fine-tune Rho signaling to allow for plasticity in 

morphological outcomes.   

  

Results 

Constitutive activation of Rho effectors changes the morphogenetic activity of 

actomyosin cables 

To further probe the function of the Rho pathway during alignment, I tested the 

effect of overactivating Rho effectors.  I expressed constitutively-activated ROK (ROK-

CA)[70,105] or Dia (Dia-CA)[71] along a broad patch of the epithelium (Fig 5.1A, Opa-

GAL4).  Activating either effector caused ectopic furrows that coincided with aligning 

regions, while adjacent non-aligning regions remained flat (Fig. 5.1B-F).  To confirm that 

the invaginations correspond with aligning regions, I examined the localization of the 

marker Cubitus interruptus, which accumulates in a segmental pattern beginning in the 

cells posterior to the first aligning interface (Fig. 5.1D).  I always observed the border of 
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this expression domain in the ectopic furrow (Fig. 5.1E,F arrowheads).  Additionally, 

upon expression of the constitutively active effectors in alternating segments (Fig. 5.2A, 

Eve-GAL4), the aligning interfaces were no longer apparent in the expressing segments 

because they were hidden in the furrows (Fig. 5.2B, red vs yellow bracketed regions).  

These ectopic furrows were previously described by other groups and attributed to 

aberrant persistence of grooves that form normally early in development[71,106].  

However, my live imaging showed that the early appearing grooves regressed normally 

despite constitutively active effector expression (data not shown).  Thus, the furrows 

arise de novo at aligning interfaces. 

I found ROK-CA expression caused additional, irregular changes across the 

epithelium (Fig. 5.1G).  These cell shape changes do not appear to be relevant to furrow 

formation, as I did not observe this in Dia-CA expressing embryos (Fig. 5.2C, 5.3A).  

Therefore, I focused on Dia-CA expression to investigate how furrows form. 

Initially, I hypothesized that furrows result from the absence of the spatial cue 

that promotes actomyosin assembly.  Expression of constitutively active effectors that 

accumulate along all cell junctions would lead to apolar upregulation of actomyosin.  

Apolar cytoskeletal forces would cause isotropic apical constriction, leading to furrow 

formation [13].   

However, I was surprised to observe that apical constriction was anisotropic in 

cells expressing Dia-CA (Fig. 5.2C).  Using Eve-GAL4 to express Dia-CA in alternating 

segments (Fig. 5.2A, B, Eve-GAL4), I indeed observed decreases in cell surface area in 

aligning cells as the furrow deepened compared to cells in non-expressing segments 

within the same embryo (Fig. 5.2C-E, G red vs yellow).  If anything, these control cells 

slightly increase in surface area (Fig. 5.2E, G yellow).  This increase was comparable to 

that observed in cells within wild type embryos (Fig. 5.2G gray).  As apical surface area 

of furrowing cells decreased, cells became more anisotropic along the axis of alignment, 
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the result of contraction along the orthogonal axis (Fig. 5.2C, D, H red vs yellow & gray).  

This asymmetric behavior is not consistent with the hypothesis that depolarized Rho 

signalling drives furrow formation.  

In fact, when I examined the distribution of F-actin just prior to when aligning 

interfaces fully ingressed into furrows, I observed that planar polarity was maintained at 

levels comparable to that of control interfaces (Fig. 5.3A, B).  This was observed when 

expressing Dia-CA with either Eve-Gal4 (Fig. 5.3A) or Opa-GAL4 (data not shown).  The 

same retention of planar polarity was observed for MLC (Fig. 5.3D, E), suggesting the 

actomyosin remain polarized along aligning junctions.  As expected from constitutive 

activation of a formin, I did find that F-actin levels were significantly elevated at 

interfaces with Dia-CA expression relative to control interfaces (Fig. 5.3C).  However, 

surprisingly, this did not correspond with an increase in MLC (Fig. 5.3F).   

Given that there is no apparent change to the polarized distribution of 

actomyosin, the data suggest that furrow formation is caused instead by a change in the 

activity of those polarized assemblies. That change might be linked to the increase in F-

actin level driven by Dia-CA, or possibly in the organization of that actin (see 

Discussion).   

 

F-actin mediates negative feedback to multiple levels of Rho signaling 

The generation of these ectopic furrows suggests strongly that there are 

mechanisms in place to temper Rho pathway activity during alignment.  Feedback is one 

such mechanism that could moderate of Rho signaling and regulate morphological 

outcomes.  Given the correlation between furrow formation and increased F-actin 

polymerization, I next asked whether F-actin itself could feedback to Rho.  Indeed, 

recent studies have shown that F-actin can negatively feedback to Rho in other systems 

[100,101].  Therefore, I assessed the response of the Rho pathway after treatment with 
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Latrunculin B (LatB).  Injection of LatB caused a rapid loss of F-actin from cell junctions, 

indicating increased depolymerization (Fig. 5.4A, Movie 1).  The remaining signal was 

found in foci, indicating severe filament disorganization as well (Fig. 5.4A, Movie 1). 

Consistent with previous reports, LatB treatment led to upregulation of Rho-GTP, 

as high intensity puncta of Rho-GTP appeared rapidly after treatment (Fig. 5.4B-D, 

Movie 2).  These puncta were located in the plane of adherens junctions (AJs), 

indicating that these represent cortical overactivation of Rho rather than artifactual 

aggregation of the sensor (Fig. 5.4B, Movie 2).  Quantification showed that total Rho-

GTP at aligning junctions increased significantly (Fig. 5.4C).  Assessment of planar 

polarity was complicated by the punctate, heterogeneous signal, but my measurements 

showed no significant differences in relative enrichment at aligning junctions (Fig. 5.4D).  

This suggested to us that the unknown, upstream signal that orients Rho activation is 

unperturbed by this manipulation. 

As expected from aberrant overactivation of Rho, both ROK and Dia distribution 

were disrupted with LatB treatment.  While there were no consistent changes in ROK 

planar polarity or levels at aligning junctions, its distribution became more punctate and 

heterogeneous at cell junctions (Fig. 5.4E-G, Movie 3).  Dia signal also became more 

punctate (Fig. 5.4H, Movie 4).  In contrast to ROK, the amount of Dia at aligning 

junctions increased consistently whereas planar polarity was not disturbed (Fig. 5.4I, J, 

Movie 4).  The dissimilar responses by Dia and ROK to LatB treatment may reflect 

differences in the manner by which Rho activates each effector.  

To understand mechanistically what is mediating negative feedback between F-

actin and Rho, I used Cytochalasin D (CytoD), which had a different effect on F-actin in 

the embryo.  Upon CytoD treatment, F-actin levels did not decrease, but qualitatively 

appeared to increase, indicating no net depolymerization (Fig. 5.5A, Movie 5).  However, 

F-actin distribution was broadly disrupted.  There was an obvious loss of planar polarity 
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at the aligning interfaces along with formation of aberrant foci at cell edges (Fig. 5.5A, B, 

Movie 5).  This likely reflects ectopic F-actin assemblies and dramatic changes in 

filament organization.   

Surprisingly, this inhibitor caused no significant changes in recruitment or planar 

polarity for Rho-GTP and ROK (Fig. 5.5E-J).  However, CytoD treatment dramatically 

increased Dia levels at aligning junctions (Fig. 5.5B, C).  Dia planar polarity was retained 

with a small increase in enrichment along aligning interfaces (Fig. 5.5D).  I considered 

the possibility that the effect on Dia was simply due to non-specific binding to the ectopic 

F-actin aggregates generated by CytoD.  However, Capping Protein Beta (CapB), 

another barbed-end binding protein, exhibited no increased or decreased recruitment to 

aligning cell junctions (Fig. 5.5K).  Therefore, the upregulation of Dia recruitment to cell 

junctions suggests that there is selective negative feedback from F-actin to the Dia 

branch of Rho signaling (Fig. 5.5L).  The organization of actin filaments may be the cue 

for this feedback, as upregulation of Dia did not correlate with net actin 

depolymerization. 

Cumulatively, our observations suggest negative feedback from F-actin to 

multiple points in the Rho pathway, engaging distinct mechanisms for each of these 

interactions (Fig. 5.4K vs 5.5L). 

 

Positive cross-talk between F-actin and Myo-II in actomyosin cables 

I then tested whether the two cytoskeletal components regulate each other.  MLC 

depletion by deGradFP caused a decrease in F-actin levels along aligning interfaces 

resulting in attenuation of planar polarity (Fig. 5.6A-C).  Reciprocally, exposure to either 

CytoD or LatB caused an immediate decrease in MLC planar polarity (Fig. 5.6D, E). 

Thus, mutual positive feedback between Myo-II and F-actin is critical to formation of 

actomyosin cables.    
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Contractility and Myo-II do not regulate Rho signaling  

Myo-II itself has also been shown to feedback to Rho.  Additionally, I 

demonstrated that F-actin levels decrease with MLC knockdown.  This suggests that 

Myo-II could also regulate the Rho pathway through F-actin.   

I could not assess the effect of Myo-II disruption on Rho activation directly, nor 

analyze ROK, because these assays require a GFP-tagged sensor or reporter, 

respectively. Since DeGradFP-mediated knockdown targets the GFP moiety, this would 

also interfere with analysis of any other GFP-tagged factors in those cells.  However, I 

were able to analyze Dia levels using antibody staining. Surprisingly, MLC knockdown 

affected neither the level of Dia along aligning junctions, nor its polarized enrichment to 

those junctions (Fig. 5.7A-C).  This suggests that there is no feedback from Myo-II to 

Rho signaling in the context of alignment, with the caveat that I could not directly assay 

Rho activity.  If feedback is indeed absent, this contrasts to other cases in which Myo-II 

has been shown to feedback to Rho either positively or negatively [45,102,103,107].   

Collectively, our data indicates not only that F-actin-mediated negative feedback 

is independent of contractility, but that it also does not rely on total actin filament levels.  

This latter insight follows from the observation that a reduction of F-actin caused by MLC 

knockdown did not correlate with a change in Rho pathway activity.  Instead, I 

hypothesize that actin filament organizational changes are the cue for feedback (see 

Discussion). 

  

ROK positively regulates Dia in a Myo-II independent manner 

While Myo-II did not appear to feedback to Rho signaling, I wanted to test if ROK 

has any feedback interactions with the pathway independent of its ability to activate 

Myo-II.  Indeed, after ROK inhibitor treatment, I observed a dramatic elevation in Rho-
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GTP levels (Fig. 5.7D, F).  Planar polarity of Rho-GTP was maintained, indicating that 

the underlying polarity signal orienting Rho activation does not rely on ROK (Fig. 5.6E).  

Given that F-actin is significantly disorganized with ROK inhibition (see Chapter 4, Fig. 

4.4B) and that LatB-mediated disruption of F-actin also resulted in an upregulation in 

Rho-GTP (Fig. 5.4B, C), I hypothesize that an F-actin remodeling activity of ROK 

mediates negative feedback to Rho.   

 While ROK inhibition increased Rho-GTP levels, it did not increase Dia levels at 

aligning junctions (Fig. 5.7G, I).  However, Dia planar polarity was lost (Fig. 5.7H), 

despite the maintenance of Rho polarity (Fig. 5.7D, E).  This indicates that ROK has a 

separate role in maintaining Dia enrichment at aligning interfaces. 

 

Discussion 

The plasticity of Rho signaling outcomes 

At both cytoskeletal and signaling levels, alignment strongly resembles two other 

morphogenetic processes -- convergent extension and mechanical boundary formation.  

These two processes produce a cell geometry distinct from alignment.  Convergent 

extension results in junctions that shrink completely[28,31]. Junctions also shorten along 

mechanical boundaries[16,17,32].  In contrast, junctions elongate during alignment 

despite being under cortical tension at a level comparable to both convergent extension 

and mechanical boundary formation[16–19,32,33].  In all three cases, the force 

asymmetry is driven by supracellular actomyosin cables[16–19,47] that are assembled 

downstream of Rho planar polarization.  How Rho is able to orchestrate these very 

different cell shape changes while initiating the same downstream events is perplexing 

and was the primary motivation for our studies on feedback. 
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Overactivation of the Rho pathway alters the morphogenetic output of actomyosin 

assemblies 

Overactivation of Rho effectors in the aligning epithelium provided the first hint 

that feedback regulation allows for plasticity in pathway outcomes.  Constitutive 

activation of either Dia or ROK altered the activity of actomyosin cables to yield a distinct 

tissue morphology – tissue invagination. 

It is unclear how the structure or activity of actomyosin cables is modified to 

produce furrows.  Increased Myo-II activity can induce ectopic furrowing in the early 

embryo[99].  However, I did not observe increased MLC recruitment in our system.  It 

remains possible that changes in the distribution of mono- and di-phosphorylated MLC, 

and therefore some change in Myo-II activation that I could not assess might account for 

furrowing.  However, in the aforementioned study in early embryos, the increased 

recruitment of MLC did not correlate with additional contractile force along the plane of 

AJs [99].  It is notable that the furrows I observed correlated with an increase in F-actin 

polymerization.  Perhaps this changes the organization and/or activity of contractile 

assemblies leading to furrowing.  For example, a reorganization of assemblies might 

shift the direction of contractile force generated rather than its magnitude.  Another 

reasonable hypothesis is that the additional filaments allow actomyosin cables to 

mechanically engage with other contractile assemblies, such as medio-apical 

actomyosin.  Connectivity of the medio-apical actomyosin network to junctions is critical 

for ventral furrow formation in the early embryo, and the emergence of this furrow is also 

coupled to anisotropic apical constriction as I observe in our system[7].  Further 

exploration of this question will provide insight into why moderation of Rho effectors is 

important for differentiating the function of actomyosin in morphogenesis.   

 

Self-regulation of Rho signaling through feedback  
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Our study suggests a number of feedback interactions in the pathway that could 

temper Rho activity during alignment (Fig. 5.8).  Consistent with other works [100–102], 

LatB treatment revealed a potential role for negative feedback from F-actin to Rho 

activation. While some RhoGAPs have been implicated in this regulatory loop, the 

underlying mechanisms are mostly unknown[101,102].  The broad conservation of this 

feedback suggests that many relevant players are still to be identified[101,102].  While 

corroboration of our findings with genetic approaches to manipulating F-actin would 

extend the power of our study, our data yield three significant insights into this potential 

mechanism. 

First, it is not mediated by contractile force, as disruption of Myo-II did not appear 

to increase Rho pathway activity.  This contrasts with several morphogenetic events 

where Myo-II activity positively regulates Rho [45,102,103].  The lack of feedback 

between Myo-II and Rho during alignment is supported by the fact that I observed no 

increase in Myo-II levels upon Rho pathway overactivation. Indeed, there have been 

recent reports of oscillating Rho activity in other systems that are Myo-II independent 

[101,108], corroborating the idea that contractile feedback is not a universal property of 

the Rho pathway. The activation state of Rho is primarily determined by GTPase 

Activating Proteins (RhoGAPs) that turn off Rho and Guanine Exchange Factors 

(RhoGEFs) that promote its activation.  It is possible that only a subset of 

RhoGAPs/GEFs are responsive to feedback from Myo-II and that this subset does not 

participate in alignment. If this is the case, context-dependent control over specific 

RhoGAPs/GEFs may be a strategy for differentiating signaling outcomes.  For example, 

one mediator of negative feedback between Myo-II and Rho has recently been identified 

in the Arf-GEF, Steppke [107]. I found that alignment occurred normally in steppke 

mutant embryos (data not shown), supporting the idea that regulatory links between 

Myo-II and Rho utilized for one morphogenetic process might not be engaged in others. 
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Second, it is likely that the negative feedback circuit is not simply monitoring the 

total level of F-actin.  Recall that LatB-induced depolymerization set off Rho activation 

whereas redistribution of F-actin by CytoD did not.  This initially indicated to us that the 

total amount of actin filaments may be the cue for negative feedback. However, MLC 

depletion caused a 30% reduction of F-actin at aligning interfaces, but this did not affect 

the polarized recruitment of Dia.  While it is possible that more significant depletion is 

needed to attenuate negative feedback, it is more probable that some aspect of actin 

organization is the cue for inhibitory regulation and that this organization is unaffected by 

Myo-II depletion.  Indeed, the organization of filaments can determine binding specificity 

of different actin regulators[109].  Such regulators could interact with RhoGAPs/GEFs in 

a manner that antagonizes Rho. 

Finally, I have presented evidence that ROK facilitates this negative feedback. 

This must be a Myo-II independent function of ROK, as MLC depletion did not appear to 

effect Rho activity whereas ROK inhibition upregulated the Rho-GTP sensor.  ROK can 

regulate the actin cytoskeleton through phosphorylation of other targets such as Moesin, 

which itself can suppress Rho via a RhoGAP[97,105,110,111].   

Other factors besides ROK may also participate in negative feedback, and in turn 

allow for different actin remodeling activities that could affect morphological outcomes.  

For example, Rho can be antagonized by Rho family members Rac and Cdc42, 

although the mechanisms underlying this antagonism are not fully elucidated [112].  

Dynamic interchange between by Rho and Rac/Cdc42 activation could strike a balance 

between promoting linear actin and branched actin.  This concept will be explored more 

in Chapter 6. 

Novel to this study, our data also suggest that a second tier of negative feedback 

control over Dia exists and that this feedback might be directly engaged by F-actin.  It is 

logical that F-actin feedback would target the branch of Rho signaling responsible for 
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filament polymerization to maintain appropriate levels of actin remodeling, particularly 

since I demonstrate that the formation of ectopic furrows is correlated to an elevation in 

F-actin levels.  However, because the mechanism underlying this reaction remains 

unclear, establishing further genetic support for this feedback is warranted.  Still, I can 

glean some information from that fact that after CytoD treatment, Dia accumulated at 

both membrane and in larger foci (Fig. 5.4B).  The latter likely corresponds to the 

aggregates of F-actin observed with drug treatment (Fig. 5.4A).  Therefore, I hypothesize 

that this feedback mechanism suppresses recruitment of Dia to both the cell membrane 

and to actin filaments.  Analysis of transgenic lines expressing forms of Dia deficient in 

either actin- or membrane-binding would give additional insight into this mechanism. 

Additionally, I have demonstrated that ROK has a separate function in positively 

regulating Dia planar polarity.  In mammalian cells, it has been shown that ROK can 

phosphorylate Dia to activate it directly[113].  It is unknown whether this phosphorylation 

site is conserved in Drosophila, so genetics-based approaches to manipulating putative 

phosphorylation residues as well as ROK activity would allow us to test this hypothesis 

further. 

 

Regulation of feedback as a strategy for diversifying morphogenesis 

Combinatorial control over feedback could modify signaling outcomes of the Rho 

pathway.  In many contexts where positive feedback on Rho has been demonstrated, 

the GTPase cycles between activation and inactivation (i.e. activator-inhibitor systems) 

[45,100–102].  The consequences of this are spatio-temporally dynamic actomyosin 

assemblies.  While the temporal resolution at which I analyzed Rho-GTP and 

actomyosin at aligning junctions is limited in this report, these enrichments appear to be 

more stable than that observed in excitable systems.  This may be a product of the 

apparent lack of a positive feedback control over Rho activity coupled to multiple tiers of 
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negative feedback.  This idea would require a more robust sensor for Rho-GTP that 

would allow analysis of its dynamics at higher temporal resolution. 

Negative feedback also appears important for suppression of epithelial 

invaginations.  Additionally, I demonstrated positive feedback between Myo-II and F-

actin as well as from ROK to Dia.  This positive feedback amongst downstream 

components in the pathway may allow for amplification of the relatively subtle 

enhancements of Rho-GTP I have observed in alignment.  Additionally, positive 

feedback may buffer against small fluctuations in Rho activity that may arise from 

negative feedback[103,114].   

Since the Rho is central to numerous morphogenetic programs, further 

investigation into the factors that dictate feedback regulation will provide insight into the 

extraordinary versatility of this signaling pathway.    
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Figure 5.1: Overactivation of Rho signaling causes ectopic furrowing at 
aligning interfaces  

(A) Schematic shows the expression pattern (green) of Opa-GAL4 over the ventral 
face of the embryonic epithelium.  Magenta lines show the aligning interfaces in each 
abdominal segment.  Fluorescent image shows fixed embryo that expresses UAS-
NLS::mCherry with Opa-GAL4.  With respect to the schematic, the embryo is slightly 
tilted along the Dorsal-Ventral axis. 

(B and C) In (B) wild type embryos, the epithelium is flat within the plane of AJs.  (C) 
Opa-GAL4 > Dia-CA drives invagination only in aligning regions.  Arrowheads 
indicate the location of the anterior aligning interface within each segment.  The 
epithelium is shown in cross-section along the apical-basal axis with apical side on 
top.  WT CTRL: representative of 5 embryos; Eve-GAL4>Dia-CA: representative of 4 
embryos. 
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  (Figure 5.1 Continued) 

(D-F) Ectopic furrows only form where aligning interfaces would normally form.  (D) 
The boundary of Cubitus Interruptus expression is located at the anterior aligning 
interface (arrowheads).  These regions are flat in wild type embryos.  Upon 
expression of (E) Dia-CA or (F) ROK-CA with Opa-GAL4, ectopic furrows form at the 
Cubitus Interruptus boundary.  Cross sections of the ventral epidermis are shown 
with the apical surface on top.  Above the yellow dashes line, a second, irrelevant 
embryo lies in the field of view.  CTRL: representative of 5 embryos; Dia-CA: 
representative of 4 embryos; ROK-CA: representative of 5 embryos 

(G) ROK-CA expression results in additional cell morphology changes across the 
epithelium in addition to furrow formation.  Red lines mark the aligning interfaces 
within the ectopic furrows.  Representative of 5 embryos 

pTyr antibody staining was used to mark AJs in all fluorescent images 

Scale bars = 12μm  
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Figure 5.2: Overactivation of Rho signaling changes the morphological 
outcome from alignment to apical constriction.  
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  (Figure 5.2 Continued) 

(A) Schematic shows the expression pattern (green) of Eve-GAL4 in alternating 
abdominal segments over the ventral face of the embryonic epithelium.  Magenta 
lines show the aligning interfaces in each abdominal segment.  Fluorescent image 
shows a fixed embryo of a similar orientation expressing UAS-NLS::mCherry with 
Eve-GAL4.   

(B) Aligning interfaces invaginate with constitutive activation of Dia.  Anterior aligning 
interfaces in non-expressing, control segments (yellow brackets) are pseudo-colored 
yellow.  In a surface view, the aligning interfaces are no longer detected in Eve-GAL4 
> Dia-CA expressing segments (red brackets), as they are located within furrows.  
Representative of 5 embryos.   

(C-F) Anisotropic apical constriction in Eve-GAL4 > Dia-CA expressing cells was 
observed by live imaging. (C) E-cad::tdTomato marked cell outlines.  As the ectopic 
furrow formed, (D) furrow depth, (E) apical area, and (F) anisotropy were measured 
for tracked cells (pseudo-colored cyan in e).  (E) Area and (F) anisotropy 
measurements for all the tracked cells were averaged at each time point in the 
graphs for the same interface: either Dia-CA expressing (red) or a control interface 
from a non-expressing segment in the same embryo (yellow).  We observed identical 
trends for three other embryos that were analyzed in this manner (not shown). 

(G) Cell surface area significantly decreases upon Dia-CA expression (red) 
compared to adjacent, control interfaces (yellow) or to interfaces in wild type 
embryos (gray).  WT: 33 cells, 4 embryos; Ctrl: 30 cells, 4 embryos; Dia-CA: 24 cells, 
4 embryos 

(H) Cell eccentricity significantly increases upon Dia-CA expression (red) compared 
to adjacent, control interfaces (yellow) or to interfaces in wild type embryos (gray). 
WT: 33 cells, 4 embryos; Ctrl: 30 cells, 4 embryos; Dia-CA: 24 cells, 4 embryos 

***p<0.0001, The Mann-Whitney U-test.  Error bars = S.D.  (B) Scale bar = 12μm, (C) 
Scale bar = 4 μm.   
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Figure 5.3: Ectopic furrow formation is associated with increased actin 
polymerization, not Myo-II recruitment 

(A-C) F-actin planar polarity was retained, but levels increased by Dia-CA.  (A) Dia-
CA (green) was expressed with Eve-GAL4.  F-actin (green) distribution was detected 
by Phalloidin staining. pTyr marked cell outlines (magenta).  (B) F-actin planar 
polarity was not significantly different in Dia-CA expressing segments (red 
arrowheads and data points) compared to control, non-expressing segments (yellow 
arrowheads and data points).  (C) Dia-CA expression caused elevation of F-actin 
levels along aligning junctions compared to control interfaces.  CTRL & Dia-CA: 20 
interfaces, 5 embryos  
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  (Figure 5.3 Continued)  

(D-F) Dia-CA expression does not enhance or alter the planar polarized distribution 
of MLC at aligning interfaces.  (D) Dia-CA::GFP (green) was expressed with Eve-
GAL4 and MLC::mCherry (magenta) was imaged.  (E) MLC was still significantly 
enriched at aligning junctions relative to orthogonal cell-cell contacts.  Each line 
represents one interface and matches orthogonal (green) and aligning (purple) 
measurements.  Orthogonal & Aligning: 12 interfaces, 7 embryos.  (F) There was no 
significant difference in the amount of MLC at aligning junctions in Eve-GAL4 > Dia-
CA expressing segments (red) in comparison to control segments (yellow).  CTRL: 
10 interfaces, 6 embryos; Dia-CA: 12 interfaces, 7 embryos 

***p<0.0001, **p<0.01.  (E) The Wilcoxon Rank paired test.  (B,C,F) The Mann-
Whitney U-test.  Error bars = S.D.  (A-D) Scale bars = 12μm, (E) Scale bars = 4 μm.   
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Figure 5.4: F-actin negatively feeds back to Rho.  

(A) LatB-induced mass depolymerization of F-actin.  Utr-ABD::GFP was used to 
visualize F-actin.  Representative of 4 embryos. 

(B-D) LatB treatment reveals negative feedback regulation of Rho-GTP.  (B) Rho-
GTP was visualized with a GFP-labelled sensor.  Fluorescence intensity is displayed 
with the Fire LUT (calibration bar shows Low to High signal).  (C) Rho-GTP levels 
increased significantly along aligning junctions after LatB treatment, whereas (D) 
planar polarity was unaffected.  LatB: 16 interfaces, 4 embryos; DMSO: 16 
interfaces, 4 embryos 
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  (Figure 5.4 Continued) 

(E-G). LatB caused defects in ROK distribution along junctions.  (A) GFP::ROKK116A 
appeared more punctate at cell junctions after drug treatment.  (B) Planar polarity 
and (C) the amount of ROK at aligning junctions did not change significantly with 
LatB treatment.  LatB: 20 interfaces, 5 embryos; DMSO: 11 interfaces, 3 embryos 

(H-J) Dia recruitment increases upon LatB treatment.  (D) Dia::GFP was imaged.  (E) 
The planar polarized distribution of Dia was not affected by LatB exposure.  (F) The 
levels of Dia at aligning interfaces increased with drug treatment.  LatB: 30 
interfaces, 6 embryos; DMSO: 9 interfaces, 3 embryos 

(K) Model of F-actin negative feedback to Rho. 

Each line in graphs represents one interface and matches measurements taken 
before (yellow) and after drug treatment (red) or vehicle treatment (gray).  

Control injections with DMSO did not result in significant changes in fluorescence 
intensity or planar polarity.  

***p<0.0001, **p<0.01, As explained in text, (I, J) the Wilcoxon-Rank test was used 
to assess statistical significance for changes.  For all other experiments, the Mann-
Whitney U-test was used.  Scale bars = 4μm. 
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88 
 

  

Figure 5.5: F-actin exerts additional feedback on the Dia branch of the Rho 
pathway. 

(A) CytoD had profound effects on F-actin organization, resulting in loss of planar 
polarity.  However, this drug did not induce net depolymerization of cortical F-actin.  
Utr-ABD::GFP was used to visualize F-actin.  Cyto-D: 26 interfaces, 5 embryos; 
DMSO: 22 interfaces, 7 embryos 

(B-D) CytoD treatment reveals negative feedback to Dia.  (B) Dia::GFP was used to 
visualize its distribution.  (C) CytoD caused a dramatic increase in total levels at 
aligning junctions and (D) a slight enhancement of planar polarity.  CytoD: 22 
interfaces, 4 embryos; DMSO: 22 interfaces, 7 embryos 

(E-G) CytoD does not alter Rho-GTP distribution.  (G) Rho-GTP is visualized with a 
GFP-labelled sensor.  Fluorescence intensity is displayed with the Fire LUT 
(calibration bar shows Low to High signal).  Neither (H) Rho-GTP planar polarity or (I) 
levels at aligning junctions changed significantly after CytoD treatment.  CytoD: 16 
interfaces, 6 embryos; DMSO: 18 interfaces, 5 embryos  

(H-J) CytoD does not alter ROK distribution. (J) GFP::ROKK116A was live imaged.  
Neither ROK planar polarity (K) or levels at aligning junctions (L) changed 
significantly after CytoD treatment.  CytoD: 18 interfaces, 5 embryos; DMSO: 8 
interfaces, 3 embryos    

(K) CytoD has no effect on CapB cortical levels.  CapB::mCherry (magenta) was 
imaged with E-cad::GFP (green) as a reference for cell junctions.  CapB levels at 
aligning junctions did not change significantly with CytoD injection. CytoD: 20 
interfaces, 6 embryos; DMSO: 16 interfaces, 4 embryos 

(L) Model of F-actin negative feedback to the Dia branch of Rho signaling.   

Each line represents one interfaces and matches measurements before (yellow) and 
after (red) drug treatment or vehicle treatment (gray).  

No significant changes in fluorescence intensity or planar polarity were observed with 
control injections of 50% DMSO. 

***p<0.0001, **p<0.01, Mann-Whitney U-test.  Scale bars = 4μm. 



89 
 

 
Figure 5.6: F-actin and Myosin positively regulate one another within 
contractile cables.   

(A-C) F-actin was depleted from actomyosin cables upon MLC knockdown.  (A) Red 
arrowheads indicate the interface where MLC was depleted.  Knockdown condition 
was compared to sibling control (WT CTRL, yellow arrowheads).  Phalloidin staining 
was used for F-actin detection.  pTyr antibody staining marked cell outlines.  (B) F-
actin planar polarity was reduced with MLC depletion.  (C) F-actin levels at aligning 
junctions were also decreased with MLC knockdown.  To account for variability 
between samples, the fluorescence of the affected interface was normalized to that 
of the unaffected, posterior interface (white arrowheads in A).  WT CTRL: 18 
interfaces, 4 embryos; deGradFP+: 25 interfaces, 5 embryos 

(D) MLC::GFP enrichments along aligning interfaces were lost with CytoD treatment. 
Cyto-D: 16 interfaces, 3 embryos; DMSO: 16 interfaces, 5 embryos 

(E) MLC::GFP enrichments along aligning interfaces were lost with LatB treatment. 
LatB: 25 interfaces, 6 embryos; DMSO: 27 interfaces, 5 embryos 

Each line in graphs (D,F) represents one interface and matches measurements 
taken before (yellow) and after drug treatment (red) or vehicle treatment (gray).   

No significant changes in MLC were observed with control injections of DSMO 

***p<0.0001, **p<0.001, Mann-Whitney U-test, Error bars = S.D.  Scale bars = 4μm.   
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Figure 5.7: Independent of actomyosin contractility, ROK regulates the Rho 
pathway.  

(A-C) MLC and contractility do not feedback to the Rho pathway. (A) Dia was 
detected by antibody staining.  MLC knockdown did not change (B) Dia planar 
polarity or (C) levels at aligning interfaces.  Fluorescence measurements at 
interfaces with MLC depletion (red) were compared to those of sibling controls 
(yellow). WT CTRL: 57 interfaces, 11 embryos; DeGradFP+: 34 interfaces, 6 
embryos. 

(D-F) ROK negatively regulates Rho activation.  (D) Rho-GTP is visualized with a 
GFP-labelled Rho sensor.  Yellow arrows mark the aligning interfaces before drug 
treatment.  Fluorescence intensity is displayed with the Fire LUT.  (E) Planar polarity 
of Rho-GTP was not affected by this treatment, but (F) the total amount at aligning 
junctions increased significantly.  Y-27632: 34 interfaces, 7 embryos; H2O: 15 
interfaces, 4 embryos 

(G-I) ROK positively regulates Dia planar polarity.  (G) Dia::GFP distribution is 
altered with ROK inhibition.   (H) Planar polarity of Dia is decreased significantly with 
ROK inhibition.  (I) Drug treatment did not significantly decrease Dia levels at aligning 
interfaces.  Y-27632: 18 interfaces, 4 embryos; H2O: 17 interfaces, 4 embryos 

(J) Schematic for model of ROK-mediated negative feedback through F-actin.   
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  (Figure 5.7 Continued) 

For graphs (D-I), each line represents one interface and matches measurements 
taken before drug exposure (yellow) and after Y-27632 injection (red) or vehicle 
treatment.  Rho-GTP levels were found to significantly decrease with control water 
injection.  This likely reflects photobleaching during the course of the experiment.  
However, given that Y-27632 resulted in the opposite change (increase in Rho-GTP 
levels), the change in signal from control injection does not impact the conclusions 
made from the experiment.  In all other instances, control water injection did not 
significantly alter fluorescence intensity or planar polarity. 

***p<0.0001, **p<0.01, Mann-Whitney U-test, Error bars = S.D. Scale bars = 4μm.   
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Figure 5.8: Model of Rho pathway interactions that mediate polarization of 
actomyosin assembly and cortical tension during alignment.  

Green lines indicate positive regulation while pink/magenta lines indicate inhibitory 
interactions.  Solid lines indicate direct interactions.  Dashed lines signify interactions 
that may be direct or indirect. 
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CHAPTER 6: A potential role for Rac-Arp2/3 signaling in alignment 
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Introduction 

 My findings in Chapter 3-5 elucidate important fundamentals on the mechanical 

and signaling basis of alignment, as well as the importance of moderating Rho signaling.  

However, they do not address the question of how cell junctions in aligning interfaces 

are able to elongate while under contractile force.  Even with constitutive activation of 

Rho effectors, aligning cells undergoing furrowing still lengthen along the dorsal-ventral 

axis, the direction along which cortical tension would be upregulated (Fig. 5.1).  

Therefore, there are still large gaps in our knowledge of the mechanical basis of 

alignment. 

 One reasonable hypothesis is that there is an actin remodeling activity yet to be 

discovered that explains the unique morphogenetic job these cables perform.  A strong 

candidate is Arp2/3-mediated actin polymerization, which results in a branched 

arrangement of actin filaments[14,56,115].  Branched actin has been shown to support 

junction lengthening in different systems[59,60].  This organization of actin is thought to 

produce pushing or compression forces at cell junctions [59,60].  Applied in the direction 

orthogonal to the junction, these forces would strengthen cell adhesions in order to 

promote junction lengthening[59,60].  In further support that this may be deployed during 

alignment, Arp2/3 activity is repressed during convergent extension where junctions that 

are under tension shrink dramatically[30].   

 In this chapter, I present preliminary lines of evidence that Arp2/3 activity 

contributes to actin within supracellular cables, and that this is significant to the 

mechanical properties of these structures.  Additionally, at aligning interfaces, I have 

detected the presence of a bipartite RacGEF, Mbc/Elmo, and observed alignment 

defects upon knockdown of one of its components.  This suggests that the Rho relative, 

Rac, is responsible for regulating this branched actin pool. 
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If both contractile and compression forces are deployed during alignment, there 

are likely mechanisms that precisely coordinate their activities.  Indeed, it is known that 

Rho and Rac participate in both negative and positive crosstalk with one another[112].  

These interactions are reported to occur at different levels within the pathways and 

primarily act upon the regulating GEFs and GAPs (Fig. 6.4A) [112].  One potential 

mechanism for simultaneously regulating different GTPases is the coupling of GEFs and 

GAPs.  Mbc/Elmo has been proposed to be coupled to RhoGAP19D in order to mediate 

rapid shifts in activity from Rho to Rac [115].  I have found that this RhoGAP19D is 

indeed present at cell junctions during alignment, suggesting that potential cooperation 

between these small GTPase regulators could be significant to alignment.   

 

Results 

Dynamic F-actin protrusions found at actomyosin cables indicate Arp2/3 activity 

By imaging actomyosin cables at a high temporal resolution, I found that the 

distribution of F-actin was dynamic and heterogeneous along the length of aligning 

interfaces.  Specifically, protrusions extend and retract from cables at varying rates (Fig. 

6.1A blue, yellow and pink arrowheads, Movie 6).  Some protrusions were thinner and 

more filopodia-like in morphology (Fig. 6.1C-D orange, Movie 6).  This observation is not 

particularly surprising given that Dia does participate in building the actin in 

filopodia[85,116,117].  Other protrusions were wider and appeared more like ruffles, 

indicating that they may be similar to lamellipodia molecularly (Fig. 6.1B-C green, Movie 

6) [14,116].  Arp2/3-mediated branched actin is the major structural component of 

lamellipodia.  Therefore, it appears that the filament organization within actomyosin 

cables may be complex and contain both branched and linear filament arrangements. 

It should be noted that there is no obvious increase in the frequency of 

lamellipodia along aligning junctions relative to junctions in the rest of the tissue.  
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However, careful quantification of these protrusions would be required to rigorously 

conclude one way or the other. 

 

Localization of branched-actin associated proteins suggest a requirement for Arp2/3 

activity 

While I was not able to achieve the imaging resolution necessary to discern the 

filament organization within these protrusions, I imaged multiple factors that are known 

to be associated with branched actin networks.  First, I looked at the distribution of key 

NPFs, WASp and the WAVE complex.  An endogenously GFP-tagged version of WASp 

appeared to be enriched to aligning interfaces relative to junctions in the rest of the 

tissue (Fig. 6.2A).  Two components of the WAVE complex, Scar and Abi, were also 

found at aligning junctions (Fig. 6.2B, C).  Quantification would be needed to determine 

whether there is a significant enrichment of any of these three factors along aligning 

junctions. 

I then examined the distribution of phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3), which is a phosphoinositide known to assist in the activation of both WASp and 

Rac[118,119].  To image the distribution of this lipid, I used a plekstrin-homology domain 

specific to PIP3 fused to GFP[120].  This sensor was enhanced significantly along 

aligning interfaces (Fig. 6.2D, G). 

Fimbrin is a small actin crosslinker that is preferentially recruited to branched 

actin networks[109,121].  An endogenously GFP-tagged version of fimbrin was polarized 

to aligning junctions (Fig. 6.2E). 

Lastly, I examined the distribution of the cofilin binding partner, AIP-1[122].  The 

depolymerization activity of cofilin is essential to the propagation of branched actin 

networks[116,122].  AIP-1 was enriched along aligning interfaces, revealing another 
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piece of evidence pointing towards the presence of branched actin within supracellular 

actomyosin cables (Fig. 6.2F). 

At the present time, the above observations are qualitative in nature, and thus, 

should be quantified in future work.  However, collectively they strongly suggest that 

actomyosin cables are composed of heterogeneous populations of actin, some of which 

arise from the activity of Arp2/3. 

 

The Elmo/MBC complex is required for alignment 

 Given the potential presence of Arp2/3, this raises the question of what small 

GTPase is involved with its activation.  It is challenging to inhibit Rac or Cdc42 during 

alignment to test their role directly.  Instead, I sought to test the function of specific GEFs 

that might activate these small GTPases.  I analyzed alignment in embryos homozygous 

for a null allele of mbc, which encodes a component of a bipartite RacGEF.  mbcC1 

embryos had significant alignment defects compared to wild-type embryos (Fig. 6.3B).  It 

is important to note here that the control group measurements I report for this 

preliminary experiment are not from sibling embryos.  This was because sibling 

embryos, many of which are heterozygous for mbcC1, also appeared to have alignment 

defects (data not shown).  This is likely due to partial maternal and zygotic depletion of 

Mbc, as I observed in a similar experimental set up with the dia null allele (Chapter 4, 

Fig. 4.2A-D).  Thus, mbcC1 analysis will need to be repeated so that the homozygous 

mutant embryos can be compared to a proper control group. In such cases, it would also 

be best to blind the samples prior to alignment analysis.   

 Nevertheless, the suggestion that Mbc is required for alignment led me to 

examine the distribution of its binding partner, Elmo.  Qualitatively, enrichment of Elmo 

was found along aligning junctions (Fig. 6.3A).  This preliminary result is indicative of a 

function for the Mbc/Elmo complex and Rac. 
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Mbc/Elmo has been shown to coordinate the balance of Rho/Rac activity via 

cooperation with a RhoGAP, namely RhoGAP19D[115].  Imaging an endogenously 

GFP-tagged version of RhoGAP19D, I found that this GAP was localized to cell junctions 

during the time that alignment takes place.  Qualitatively, it does not appear to be 

enriched at aligning interfaces. Note that I am analyzing total RhoGAP19D protein, 

which may not reveal where active RhoGAP is accumulating.  I have imaged other 

RhoGAPs, one of which has been implicated in feedback between F-actin and Rho, 

RhoGAP17E[101,102].  The signal of an endogenously GFP-tagged version of 

RhoGAP17E was extremely dim in embryos and mostly localized to the cytoplasm (data 

not shown).  Therefore, RhoGAP19D is currently the strongest candidate for regulating 

Rho activity during alignment. 

 

Discussion 

Potential functions for Mbc/Elmo-Rac-Arp2/3 during alignment  

Rac-Arp2/3-mediated actin remodeling may serve two different functions during 

alignment.  First, it may modulate that mechanical properties of actomyosin cables, 

allowing for the lengthening of junctions that are under contractile force (Fig. 6-4A). 

Second, it may suggest a role for crosstalk between small GTPase signaling pathways 

as a mechanism for moderating Rho activity (Fig. 6-4A, B).  Indeed, it may be the 

missing link between F-actin and Rho in terms of the negative feedback proposed in 

Chapter 5.  

 

Mechanical coordination between branched and linear actin 

As suggested before, branched actin may exert pushing forces onto junctions in 

order to allow for their elongation during alignment[59,60].    More robust methods of 
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depleting Rac, Arp2/3 and other branched actin associated proteins will be needed in 

order to thoroughly dissect their mechanical contribution to alignment.  Additionally, their 

activity likely needs to be tightly balanced with the contractility of linear assemblies in 

order to achieve the proper, final cell geometry. 

So-called supracellular cables perform different types of morphogenetic 

tasks[15,16,19,33,123].  The filamentous organization of actin in these structures has 

not been investigated at all due to lack of spatial resolution.  Their structure has been 

presumed to be linear due to the requirement for Rho signaling in many cases as well as 

the resemblance of cables to stress fibers.  However, filament architecture may be quite 

different comparing cables that act in different morphogenetic contexts.  There might 

even be heterogeneity within a single cable.  I hypothesize that the ratio of branched 

actin to linear actin may explain the diversity of outcomes from cable activity (Fig. 6.4B).  

For example, the cables that participate in convergent extension function under 

conditions where Arp2/3 is repressed[30].  Therefore, it seems likely that these 

structures are predominantly composed of linear actin that can produce primarily 

contractile force (Fig. 6.4B).  In alignment, it may be that there exists an equal balance 

between branched actin and linear actin, leading to a duality in mechanical properties 

(Fig. 6.4B).  My preliminary evidence suggest that this may be the result of precise 

regulation of Rac and Rho pathways (expanded upon below). 

  

Potential roles for Mbc/Elmo in alignment 

Mbc and Elmo can bind together to form a critical RacGEF that most notably 

functions during myoblast fusion[124,125].  Further investigation of the function of Mbc in 

alignment is a key step in assessing the role of the Rac pathway during alignment, as 

well as being informative as to the contribution of Arp2/3.  The requirement for Elmo can 

also be tested with zygotic mutants that are currently available[115,126].  It will also be 
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important to characterize both the cell and actin morphology dynamics with live imaging 

after Mbc/Elmo depletion.   

It is worth noting that junction elongation did not appear to be disrupted in mbcC1 

mutants, although this was not quantified.  This would seem to contradict my hypothesis 

that Arp2/3-mediated activity may be required for the lengthening of junctions during 

alignment.  If indeed junctions can elongate without Mbc, there are a few possible 

explanations.  First, junction elongation may not be the function of Arp2/3 in alignment.  

Second, Rac may activate an array of factors, with Arp2/3 being just one.  Different 

RacGEFs may promote different branches of Rac signaling.  Thus, Mbc/Elmo may not 

necessarily be involved in activating the Arp2/3 module of Rac.  It is also possible that 

Cdc42 is sufficient to activate Arp2/3 in this context, and that Mbc depletion reveals 

some other, significant function of Rac.  These possibilities highlight the importance of 

testing the function of Rac, Cdc42, Arp2/3 and putative RacGEFs during alignment 

separately. 

Both Mbc and Elmo can form complexes with other proteins to act as RacGEFs 

with distinct functions.  Mbc complexes with the protein Crk, forming a RacGEF that is 

essential for adult thorax development[127].  When bound to the protein Sponge, Elmo 

functions as a different RacGEF that has a role in CNS development and epithelial 

morphogenesis in the early embryo [126,128].  It is possible that multiple RacGEFs are 

deployed and function non-redundantly in the same process.  In addition to verifying the 

requirement for Mbc in alignment, the function of Crk, Sponge and Elmo in alignment 

should be pursued.   

 

Crosstalk between Rac and Rho signaling 
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Crosstalk between Rac and Rho could allow for coordinating the balance 

between branched and linear actin polymerization (Fig. 6.4A, B).  Negative and positive 

crosstalk is known to occur at many levels within each of these pathways (Fig. 6.4A).  

GAPs and GEFs that regulate different small GTPases can directly and indirectly 

cooperate with one another[112].  It has also been proposed that GAPs and GEFs are 

physically coupled in complexes in order to act as molecular switches[129,130] (Fig. 

6.4A).  For example, the complexing of a RacGEF with a RhoGAP can rapidly shift 

activity from Rho to Rac.  Unique combinations of GEFs and GAPs that complex with 

other regulating proteins can allow for many different types of switches that fulfill diverse 

functions.  So far, I have found that many of the RhoGEFs and GAPs implicated in Rho 

pathway feedback in other systems are either not expressed in the embryo during 

alignment, do not exhibit defects when depleted (data not shown), or do not have clear 

homologs in Drosophila [42,101,102].  This suggests to me that exploring this direction 

further could reveal unique Rho regulators and potentially novel complexes with 

RacGEFs. 

 Although not mechanistically understood, Mbc/Elmo coordinates with 

RhoGAP19D to simultaneously downregulate Rho and upregulate Rac activity (Fig. 

6.4B) [115].  However, it is worth noting that there was no obvious furrow phenotype in 

mbcC1 mutants, which we would anticipate if Mbc is involved with antagonizing the Rho 

pathway.  This observation needs to be verified, but even if confirmed, it does not 

exclude the possibility that other RacGEFs are involved with mediating crosstalk with 

Rho.  This would mean that Mbc/Elmo serves a separate function in regulating Rac-

Arp2/3. 

It makes sense that there would be both positive and negative regulatory 

interaction between small GTPases, as only inhibitory feedback could lead to the 

extinguishment of all signaling activity.  Rho is known to reciprocally feedback both 
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positively and negatively to Rac via the Mbc/Crk RacGEF.  Dia can activate Mbc/Crk 

whereas ROK represses it [131].  These are interactions have been described in 

mammalian cell culture, so whether they occur in Drosophila needs to be address.  This 

could be tested simply using the ROK and SMIFH2 (formin) drug inhibitors. 

One of the more interesting findings from Chapter 6 is that F-actin negatively 

feeds back to Rho and Dia activity.  Given its known ability to antagonize Rho, Rac 

mediated Arp2/3-activity may be the missing link in the feedback circuit from F-actin to 

Rho activation (Fig. 6.4A).  Of many possibilities, two hypotheses match the 

observations thus far.  First, branched F-actin directly or indirectly may recruit a RhoGAP 

to inhibit Rho activation.  Second, branched actin may upregulate Rac/Cdc42 through 

recruitment of a corresponding GEF, and consequentially initiate antagonistic feedback 

to the Rho pathway.  These hypotheses are not mutually exclusive, and I anticipate a 

number of mechanisms are in place to tightly regulate Rho activity.   

 Many morphogenetic processes require both linear and branched actin, as well 

as multiple Rho family members[35,37].  Therefore, further study of the mechanisms of 

that coordinate multiple Rho Family members would be broadly applicable. 
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Figure 6.1: Dynamic protrusions indicate potential Arp2/3 activity in 
actomyosin cables 

(A) Dynamic F-actin protrusions emanate from actomyosin cables.  Arrowheads point 
to regions in the montage where a protrusion is either in the process of extending or 
retracting.   

(B-C) Higher magnification montages of junctions in aligning interfaces showing the 
extension and retraction of F-actin protrusions.  Dashed line box colors correspond to 
the arrowheads in  (A).  Green brackets indicate frames where protrusions resemble 
lamellipodia while orange brackets mark timepoints where protrusions are filopodia-
like. Each frame is separated by a 24 second interval. 

Utr-ABD::GFP was used to visualized F-actin. 

Scale bars in (A) = 4μm.  All others are 2μm. 
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Figure 6.2: Arp2/3 associated factors are localized to aligning junctions 

(A-C) Arp2/3 activating proteins are recruited to aligning interfaces.  (A) WASp and 
(B) WAVE complex member Scar appear to be enriched along aligning junctions.  
(C) Another component of the WAVE complex, Abi, is also found along aligning 
interfaces.  (A) Endogenously tagged WASp::GFP was imaged.  Representative of 4 
embryos (B) Antibody stain was used to detect Scar.  Representative of 3 
Embryos(C) Ubiquitously expressed Abi::mCherry was visualized. Representative of 
4 Embryos 

(D, G) PIP3, a phosphoinositide associated with activating WASp, is significantly 
enriched along aligning junctions (purple) relative to orthogonal junctions (green).  
(D) A Plekstrin Homology domain fused to GFP was used as a sensor for PIP3.  (G) 
Each line represents a single interface, matching aligning and orthogonal junction 
measurements.  N = 18 interfaces, 5 embryos     

(E) Fimbrin, a cross-linking protein associated with branched actin networks, appears 
enriched along aligning junctions.  Endogenously-tagged Fimbrin was imaged. 
Representative of 6 embryos 

(F) Coffilin activity, a necessary depolymerizing factor in dynamic lamellopodia, may 
be enhanced along aligning junctions.  Endogenously tagged AIP-1::GFP, a binding 
partner with Coffilin, appears enriched along aligning junctions.  Representative of 5 
embryos 

***p<0.0001, Wilcoxon Rank paired test.  Scale bars = 4μm.   
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Figure 6.3: The Mbc/Elmo complex may function in alignment  

(A) Mbc may be required for alignment.  mbcc1 mutant embryos have significant 
alignment defects compared to wild type embryos.  These sample groups are not 
sibling embryos. CTRL: 157 interfaces, 13 embryos; mbcc1: 89 interfaces, 7 embryos 

(B) Mbc binding partner, Elmo, is enriched along aligning junctions.  Endogenously 
tagged Elmo::GFP was imaged. 

(C) Endogenously tagged RhoGAP19D is cortically targeted during alignment.   

***p<0.0001, Mann-Whitney U-test, Error bars = S.D.  Scale bars = 4μm.   
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Figure 6.4: Crosstalk between small GTPase pathways may allow for 
modification of morphogenesis  

(A) Schematic model of how F-actin remodeling may fit into the cross-talk between 
Rac and Rho, and how this would regulate F-actin architecture and actomyosin 
mechanical properties. 

(B) Schematic of hypothesis that balance of Rho and Rac activities may influence 
morphogenetic outcomes.  F-actin structure may mediate positive and negative 
crosstalk between Rho and Rac in order to strike the correct balance. 
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CHAPTER 7: Future Directions 
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Broader impacts on morphogenesis 

 The orchestration of complex morphological changes necessitates robust, 

adaptable and tightly-regulated signaling networks.  Yet, investigations into 

morphogenesis in various contexts have identified the same pathways and players over 

and over again.  The basic functions of these factors have been elucidated repeatedly in 

these different situations, but very little has been revealed in terms of how their activity is 

modulated to suit their function in each situation.   

 As described in the introduction, the activity of actomyosin cables contributes to 

diverse forms in tissues (Fig. 1.2).  For example, their activity yields very different end 

morphologies during wound healing (Fig. 1.2A) vs. neural tube formation (1.2B) vs. 

tubulogenesis (Fig. 1.2C).  Such disparate outcomes may reflect versatility in terms of 

the mechanical properties of these actomyosin cables.  I have shown in Chapter 3 that 

the cables can produce contractile force during alignment but cease to do so at a later 

point in development.  This suggests that cables can produce different forces tailored to 

the morphological context in which they function.  The mechanical properties of these 

cables may change dynamically over the time course of a morphogenetic process or 

may be heterogeneous along the length of the cable, contributing to the intricacy of 

actomyosin cable function.  My examination of the forces actomyosin cables produce 

during alignment provides significant insight into how such forces may apply to more 

complex morphogenetic movements as well as to mammalian tissue morphogenesis.  

Underlying the mechanical versatility of these actomyosin structures are likely 

modifications in actin remodeling and upstream signals.   My thesis work suggests a 

variety of mechanisms that could regulate these inputs.  First, the amount of linear vs 

branched actin synthesis may be a determining factor for morphological outcomes (Fig. 

6.4).  Second, the deployment of different small GTPases may be key to properly 

balancing the activity of different actin polymerization factors (Fig. 6.4).  Finally, 
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feedback within individual pathways as well as crosstalk between pathways may play a 

role in moderating GTPase signaling levels (Chapter 5 and 6).  At its core, my thesis 

work provides a nascent understanding of mechanisms that could explain the diverse 

utility of small GTPase signaling and the actin cytoskeleton, molecular themes that are 

broadly conserved. 

Different morphogenetic changes have important roles in human physiology.  

Even small errors in wound healing or in the development of tissue form can have dire 

consequences for human health.  Ultimately, my work affords key insight into how fine-

tuning at molecular and cellular scales can impact morphogenesis on the macro scale. 

 

 

Achieving further insight into the cell mechanics of alignment 

 In Chapter 3, I found that bilateral contractile force is needed to produce the 

aligned geometry.  It is unclear whether this is due to a minimum threshold of force that 

needs to be reached for alignment to occur, and that this threshold is high enough that 

two columns of cell must provide contractile force to reach it.  Another possibility is that 

contractile forces along the interfaces must be precisely balanced in terms of the 

direction that they are applied to the junction.  Indeed, shear forces can be applied to a 

junction from neighboring junctions within the same cell, and these forces have been 

shown to influence junction morphology and stability (Fig. 1.1C) [11].  There are two key 

limitations to further testing either of these hypotheses.  First, there needs to be 

experimental approaches that allow for subcellular manipulation of actin, myosin and 

Rho pathway activity.  Second, we need more informative methods of measuring forces 

in live tissues.  

Light induced protein recruitment, or optogenetics, is an emerging technology 

that may provide more precise spatio-temporal control over activation or inhibition of 
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actomyosin.  In brief, this technology uses protein domains that are photosensitive and 

activated by exposure to a specific wavelength of light.  Once active, it can bind another 

domain that can be functionalized to a lipid group or other moiety that targets its location 

in the cell.  RhoGEFs and phosphoinositide phosphatases have been fused to the 

photosensitive domain in order to optogenetically control Myo-II contractility[132–134].  

An inhibitor of Myo-II activity or any other target could be theoretically attached to the 

photosensitive domain to optogenetically control inactivation of the target.  At the 

moment, these methods work best when activating an area enclosing multiple 

cells[132,135].  Therefore, these methods require improvement in terms of spatial 

resolution before we are able to manipulate contractility along individual junctions. 

Laser ablation has a number of limitations with respect to measuring forces 

within living cells.  Among its limitations, ablation requires destruction of a junction, 

including the membrane and underlying cortical cytoskeleton.  Therefore, measurements 

cannot be repeated over time for the same junction, as one would during a time course.  

Additionally, measurements of neighboring cells within the tissue are likely to be 

influenced by the creation of a wound within the epithelium.  This prohibits us from 

seeing what the forces are along each junction within the same interface.  The best I 

have been able to do is take measurements of individual junctions in separate embryos.  

This approach does not capture possible temporal and spatial variability that may be 

relevant to the mechanics of alignment.  Furthermore, laser ablation only measures 

contractile forces along the axis of the cell-contact (Fig. 1.1C left).  They cannot detect 

shear forces (Fig. 1.1C right). 

FRET-based sensors for tensile force have started to emerge in the past 

decade[136,137].  These sensors have been inserted into E-cadherin for detection of 

forces across cell-cell junctional complexes[137,138].  However, the reproducibility of 

measurements made with these sensors in Drosophila has been challenged[139].  My 
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early attempts at using such a construct yielded very weak signals that were not able to 

be calibrated and quantified (data not shown).   

Newer, vinculin-based sensors bypass the signal issues associated with 

FRET[11,140].  This sensor functions off of the principle that alpha-catenin undergoes 

conformational changes when the cadherin complex is under force, revealing the 

vinculin binding domain[140].  Vinculin binding and recruitment to the membrane is then 

used as a way to measure contractile and shear forces applied to the junction[11].  This 

approach has been shown to resolve the spatial distribution of force across even a 

single junction[11].  Also advantageous is the fact that Vinculin mostly is dispensable in 

Drosophila, meaning that the protein can be modified significantly to optimize sensor 

function[141]. 

This Vinculin-based approach primarily addresses contractile-based forces.  It 

cannot directly measure potential compression forces produced by Arp2/3 activity, 

cellular rigidity and viscosity, or adhesive forces.  All of these potential variables may be 

important for understanding the function of Arp2/3.  Additionally, these other mechanical 

factors may play a role into how the aligned geometry is stabilized independently of 

actomyosin contractility.  Acquiring these measurements of these properties in the 

embryo is difficult because it is enclosed in the vitelline membrane during imaging, which 

prevents the use of Atomic Force Microscopy.  Advances have been made in inferring 

forces in cells with mathematical modeling.  In brief, these approaches use assessments 

of cell shape and modeling to infer the mechanical forces acting upon those cells[142].  

However, this approach depends on the assumptions that are tied into the model being 

correct.  Regardless, it would be interesting to see whether such an approach could 

predict the depletion of contractile force observed in late vs early embryos based on cell 

geometry alone.  Such a test would be insightful into whether this technology holds 

promise for investigating the mechanics of alignment further.   
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Higher order polarity signals of alignment 

While I have identified a key role for Rho signaling in orienting actomyosin 

assemblies during alignment, we still have little insight into what is upstream of Rho that 

guides its polarity.  Classic body segmentation determinants do have expression 

boundaries where aligning interfaces are positioned in the embryo.  The anterior 

interface corresponds to the Patched/Engrailed boundary while the posterior interface 

marks the beginning of Serrate expression[49].  Given that the gene expression patterns 

at these two boundaries are quite different from one another, it seems unlikely that they 

would be able to direct the same downstream effectors to spatially guide alignment.  We 

are also limited in our ability to test their functional significance as inhibition of one of 

these genes has severe, confounding effects on the embryonic body plan. 

The observation that PIP3 is enriched along aligning interfaces may point us 

toward a candidate worth testing.  PIP3 production can be promoted by PI3-Kinase 

recruitment to the membrane, which is commonly trigged by Receptor Tyrosine Kinase 

(RTK) activation[143].  Additionally, it has long been known that pTyr staining is enriched 

along aligning junctions, but the protein that this signal corresponds to is not known[49].  

Enrichment of PIP3 and pTyr may be indicative of RTK signaling upregulation at aligning 

junctions.  A screen of RTKs that are known to activate PI3-Kinase could be fruitful in 

identifying new polarity determinants in alignment. 

Another foothold we have is the knowledge that preferential activation of Rho 

along aligning junctions is key to this morphogenetic process.  Identification of the 

RhoGEF that is upstream of this could be another worthwhile step towards discovering 

new polarity factors for alignment.  Once the RhoGEF that activates Rho in this context 

is isolated, Co-Immunoprecipitation, Mass Spectrometry and/or yeast two-hybrid could 

be used to identify its binding partners and, therefore, possible new polarity factors. 
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Given the unique cell geometry produced and the unique time and place in 

embryogenesis that this event occurs, the signaling mechanisms that underly alignment 

are likely to be novel and have a significant impact in the morphogenesis field.  

However, as I will describe more thoroughly below, there are significant technical 

obstacles to functionally screening for proteins that have a role in alignment.  These will 

need to be overcome before RTKs and RhoGEFs can be further investigated rigorously. 

 

The challenges of functional screens in the embryo 

 Alignment occurs during an experimentally challenging time in development.  At 

mid-embryogenesis, zygotic depletion of proteins-of-interest is frequently rescued by 

maternally-contributed pools of protein.  However, simultaneous inhibition of both zygotic 

and maternal sources of a protein will commonly cause significant defects in the earlier 

development of the embryo.  This typically either causes death prior to reaching Stage 

13 or extreme morphological defects that confound alignment measurements.  These 

obstacles are what led me to rely on drug inhibitors and deGradFP, which allowed me to 

temporally control inhibition of proteins-of-interest.  However, the number of targets that 

can be pharmacologically inhibited are limited, and many drugs are prone to the caveat 

of off-target effects.  Additionally, I found that deGradFP, while able to robustly inhibit 

Myo-II activity, was not able to consistently degrade other targets efficiently enough to 

observe a functional consequence.  I also found that RNAi was rarely effective at 

functionally depleting transcripts, even when driven by high-expression GAL4 lines.  

Again, this may be due to the presence of maternally-contributed protein.  Unveiling 

additional molecular mechanism will require new, robust yet spatiotemporally incisive 

approaches to protein depletion. 

 A promising new technology that could address this problem is conditional use of 

CRISPR-Cas9[144,145].  In brief, Cas9 can be conditionally supplied by GAL4-UAS in 
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order to achieve spatio-temporal specificity over gene knockout.  This has been 

demonstrated to work using a maternally-supplied GAL4 to deplete maternal deposition 

of protein in embryos[146].  Therefore, in principle, the expression of Cas9 can be 

conditionally controlled by GAL4 lines that express in the embryonic epithelium to 

zygotically create mutations in the developing embryo.  Guide RNAs (gRNA) can be 

supplied conditionally with UAS/GAL4.  They can also be expressed ubiquitously by 

plasmid injection or by crossing to gRNA transgenic lines generated by the Drosophila 

RNAi Screen Center.  The efficacy of this approach will depend on a number of factors.  

First, the timing of expression will need to be optimized so that early developmental 

events are not affected by CRISPR/Cas9 mutations.  However, even after mutations 

have been made, remaining transcripts and protein can still rescue.  Therefore, the Cas9 

needs to be expressed early enough so that there is enough developmental time for 

protein and RNA to be naturally degraded prior to alignment.  It may also be necessary 

to partially deplete maternally-derived protein to reveal phenotypes.  However, this 

technology shows promise for robustly knocking down candidates.  Once candidates are 

identified, more precise manipulations such as optogenetics would allow for more 

rigorous and incisive tests of their function. 

  

Amplification and robustness of signaling information 

 As previously discussed, feedback within the Rho pathway may be important for 

fine-tuning the level of Rho activity (Chapter 5) or balancing its activity with that of Rac 

and other small GTPases (Chapter 6).  However, could there be other reasons for 

having so many apparent feedback mechanisms within the pathway? 

 In addition to negative feedback, I reported positive crosstalk between Myo-II and 

Actin as well as positive regulation of Dia planar polarity by Rho Kinase (Chapter 5).  It 

possible that these interactions make for a robust system that is refractory to challenges.  
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For example, I did not observe significant disruption of planar polarity of either F-actin or 

Myo-II even with constitutive activation of the Rho pathway, despite this manipulation 

having other dramatic effects in the tissue.  Additionally, I expressed other constructs 

that have been reported to alter actomyosin in other tissues.  These include 

constitutively active Myosin Light Chain Kinase and constitutively active Myosin 

Phosphatase, which should up- and down-regulate Myo-II, respectively.  However, 

neither of these had any effect on alignment (data not shown).  Other similar 

experiments were attempted that did not disrupt the aligned geometry (data not shown).  

It is hard to conclude the presence of robustness from these data, as there is no positive 

control to show that the manipulation had any effect.  However, they could be consistent 

with alignment being an extremely robust process, which may be a function of multiple 

feedback loops that buffer against aberrance in the system. 

 Additionally, I observed that there is an “amplification” of information from the top 

to the bottom of the Rho pathway.  Rho-GTP accumulations at aligning interfaces are 

extremely subtle, averaging about 5% elevation relative to orthogonal junctions.  ROK 

and Dia are enriched to a higher degree at about 45% and 9%, respectively.  The most 

downstream effectors of the pathway, Myo-II and F-actin are enriched at 45% and 20%, 

respectively.  This trend should be viewed with the caveat that very different visualization 

methods were used to quantify these enrichments.  However, the data set supports the 

idea that polarities are more dramatic amongst the downstream effectors, suggesting 

there are mechanisms that amplify the recruitment of proteins within the lower tiers of 

the pathway.  It is possible that positive feedback plays some role in this. 

 Finer manipulations of individual feedback loops would be needed to answer 

these questions, and this necessitates identifying the molecules that facilitate these 

feedbacks.  However, alignment may be a promising system for exploring these 
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questions that are broadly applicable, as all forms of morphogenesis must have 

mechanisms to buffer against error. 
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Appendix 

Below are Figure legends for the accompanying movie files. 

 

Movie 1. The effect of LatB treatment on F-actin distribution (Related to Fig. 5.4A) 

Time point 0 shows the epithelium before drug treatment.  F-actin is visualized with Utr-
ABD::GFP.  Scale bar = 4 μm. Representative of 4 embryos. 

 

Movie 2. The effect of LatB treatment on Rho activation (Related to Fig. 5.4B) 

Time point 0 shows the epithelium before drug treatment.  GTP-bound Rho is visualized 
with the Rho sensor (Ubi-Ani-RGB::GFP).  Scale bar = 4 μm.  Representative of 4 
embryos. 

 

Movie 3. The effect of LatB treatment on ROK distribution (Related to Fig. 5.4E) 

Time point 0 shows the epithelium before drug treatment.  ROK localization is visualized 
with GFP::ROKK116A.  Scale bar = 4 μm. Representative of 5 embryos.  

 

Movie 4. The effect of LatB treatment on Dia distribution (Related to Fig. 5.4H) 

Time point 0 shows the epithelium before drug treatment.  ROK localization is visualized 
with Dia::GFP.  Scale bar = 4 μm.  Representative of 6 embryos. 

 

Movie 5. The effect of CytoD treatment on F-actin distribution (Related to Fig. 
5.5A) 

Time point 0 shows the epithelium before drug treatment.  F-actin is visualized with Utr-
ABD::GFP.  Scale bar = 4 μm.  Representative of 5 embryos. 

 

Movie 6. F-actin protrusion dynamics at aligning interfaces (Related to Fig. 6.1)    

F-actin is visualized with Utr-ABD::GFP.  Scale bar = 4 μm.  Representative of 4 
embryos. 
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