
Quantitative Continuity and Computable Analysis
in Coq
Florian Steinberg
INRIA Saclay, France
https://floriansteinberg.github.io
florian.steinberg@inria.fr

Laurent Théry
INRIA Sophia-Antipolis, France
http://www-sop.inria.fr/marelle/thery.html
Laurent.Thery@inria.fr

Holger Thies
Kyushu University, Japan
http://www.holgerthies.com
thies@inf.kyushu-u.ac.jp

Abstract
We give a number of formal proofs of theorems from the field of computable analysis. Many of our
results specify executable algorithms that work on infinite inputs by means of operating on finite
approximations and are proven correct in the sense of computable analysis. The development is
done in the proof assistant Coq and heavily relies on the Incone library for information theoretic
continuity. This library is developed by one of the authors and the results of this paper extend the
library. While full executability in a formal development of mathematical statements about real
numbers and the like is not a feature that is unique to the Incone library, its original contribution
is to adhere to the conventions of computable analysis to provide a general purpose interface for
algorithmic reasoning on continuous structures. The paper includes a brief description of the most
important concepts of Incone and its sub libraries mf and Metric.

The results that provide complete computational content include that the algebraic operations
and the efficient limit operator on the reals are computable, that the countably infinite product of a
space with itself is isomorphic to a space of functions, compatibility of the enumeration representation
of subsets of natural numbers with the abstract definition of the space of open subsets of the natural
numbers, and that continuous realizability implies sequential continuity. We also describe many
non-computational results that support the correctness of definitions from the library. These include
that the information theoretic notion of continuity used in the library is equivalent to the metric
notion of continuity on Baire space, a complete comparison of the different concepts of continuity
that arise from metric and represented space structures and the discontinuity of the unrestricted
limit operator on the real numbers and the task of selecting an element of a closed subset of the
natural numbers.

2012 ACM Subject Classification Mathematics of computing → Continuous functions; Theory of
computation → Models of computation; Software and its engineering → Formal methods

Keywords and phrases computable analysis, Coq, contionuous functionals, discontinuity, closed
choice on the naturals

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.28

Related Version A full version is available on HAL: https://hal.inria.fr/hal-02088293.

Supplement Material The project page of this paper: https://holgerthies.github.io/continuity

Funding Florian Steinberg: Supported by the ANR project FastRelax (ANR-14-CE25-0018-01) of
the French National Agency for Research and by EU-MSCA-RISE project 731143 “Computing with
Infinite Data” (CID).

© Florian Steinberg, Laurent Théry, and Holger Thies;
licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/227274929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://floriansteinberg.github.io
mailto:florian.steinberg@inria.fr
http://www-sop.inria.fr/marelle/thery.html
mailto:Laurent.Thery@inria.fr
http://www.holgerthies.com
mailto:thies@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.ITP.2019.28
https://hal.inria.fr/hal-02088293
https://holgerthies.github.io/continuity
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Quantitative Continuity in Coq

Laurent Théry: Supported by the ANR project FastRelax (ANR-14-CE25-0018-01) of the French
National Agency for Research.
Holger Thies: Supported by JSPS KAKENHI Grant Number JP18J10407 and by the Japan Society
for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks).

Acknowledgements The first and last authors would like to thank Hugo Férée, Akitoshi Kawamura
and Matthias Schröder for discussion on the topics of this paper.

1 Introduction

Computable analysis is the theory of computing on continuous structures. Its roots are often
cited as going back to Turing’s fundamental paper from 1936 in which he introduced his
mathematical model of computation later known as Turing machine [62]. Turing’s original
definitions rely on the binary representation and he adapted them to the ones still used
today in his 1937 correction [63] with a pointer to earlier work by Brouwer. The theory of
computable functions on the real numbers was further developed in the 1950s by Grzegorczyk
and Lacombe in parallel [21, 33]. Later on, Kreitz and Weihrauch extended the theory to
apply to more general spaces and introduced the formal framework of representations that is
standard today [32, 65, 34]. The basic idea behind computable analysis is fairly simple: To
make uncountable structures available to computation, one encodes them by infinitary objects
that can still be operated on mechanically. Most commonly infinite strings are used, but more
conveniently one may use functions between discrete structures. An example for a reasonable
encoding of a real number is a function that provides arbitrarily accurate approximations.
To compute functions on the real numbers, one operates on such codes by means of allowing
calls to their values. Since the inputs and outputs of such functions can be chosen rational
and thus be described by finite means, this leads to a computational model that can properly
handle infinite inputs while remaining realistic in the sense of being implementable.

The model used in computable analysis is by far not the only popular model for computing
with functional inputs. Alternative approaches use similar access models but assume all
inputs to be computable, or deal with functional input by encoding via a Gödel numbering.
Many of these models are special cases from the perspective of computable analysis [2, 34].
The former of the two mentioned above should for instance be understood to impose a
weaker notion of correctness of algorithms as they are only required to behave appropriately
on a countable subset of all possible inputs, namely the computable ones. Yet another
take on computation on the real numbers are algebraic approaches like the BSS model [8].
These models have the disadvantage of not providing directly implementable algorithms
and the advantage that they closely resemble how numerical analysts proceed in practice:
the mathematical proof of correctness of the algorithm underlying an implementation often
uses mathematical methods that assume the capability to carry out exact operations on
real numbers. For the actual implementation, real variables are substituted with machine
numbers so that highly optimized and hardware-supported floating-point operations can be
used for fast computations. As machine numbers fail to satisfy basic mathematical properties
like associativity, the mathematical proof of correctness of the algorithm does not need
to have any direct implications for validity of the values the implementation returns even
if everything is done correctly. This problem is well aware to algorithm designers and in
applications that demand high reliability, correctness may be recovered in an additional
step by estimation of rounding errors. These often lead to laborious computations that are
error-prone themselves and quickly become infeasible to do by hand.



F. Steinberg, L. Théry, and H. Thies 28:3

Recent advances in formal proofs provide a toolset that can be used to make the loop back
from numerical practice to the theory of computation [11, 9, 5, 10]. A popular tool in these
works is the classical formalization of real numbers in Coq’s standard library. This is because
working conservative over this axiomatization in Coq provides capabilities fairly similar to
working in the BSS model. The computable analysis community has shown an increase of
interest in these developments [41]. Algorithms from computable analysis are notoriously
difficult to implement in a way that makes them competitive in terms of speed and memory
consumption [7, 30] and thus applications often highlight reliability which naturally goes
well with verification. Furthermore, popular methods to overcome the efficiency problems
use a toolset similar to that used by the verified numerics community [40].

As a step of bringing formal methods and computable analysis closer together, this paper
formulates some more theoretical algorithms in the proof assistant Coq. The produced code
is fully executable and proven correct in the sense of computable analysis. Where the real
numbers turn up, the axiomatization from Coq’s standard library is used. We do not make
attempts to make these algorithms competitive in terms of speed or memory usage. For
example, we currently use rational numbers for approximating reals and no kind of efficiency
can be expected before these are not at least replaced by arbitrary precision floating-point
numbers. However, it should be kept in mind that this is possible in principle and we
believe our framework to have realistic applications. Indeed, for the formalization we use the
Incone library whose long term goal is to provide an environment in which the intersection
of formal proofs, computable and numerical analysis can conveniently be investigated in Coq
and their merits can be combined in attempts to prove efficient algorithms with practical
relevance correct.

1.1 Proofs about continuous structures in Coq and related research
Few if any of our results are mathematically original, but most are known facts from
computable analysis. Parts of our development of real numbers has previously been covered
by fully constructive developments such as the C-CoRn library. Some of these results
are also covered by a smaller project that implemented Cauchy reals to use them and the
Mathematical Components library to give a definition of the algebraic real numbers in Coq
[13]. To the best of our knowledge most of the rest of our results falls outside of the scope
of any other formal development in Coq or in other proof assistants for that matter. We
consider these formalizations original to this paper.

As our development heavily relies on the Incone library, we make some effort to describe
its central concepts and how they were formalized. We tried to keep the presentation of
the background theory from computable analysis close to the formal development in the
Incone library. The standard references for computable analysis are [48, 65, 29]. The main
topics are also presented in a way somewhat closer to how this paper proceeds in [52, 46, 3].
Due to the page restriction, we had to cut some corners in the presentation of the internals
of the Incone library and point to the full version of this article for a more exhaustive
treatment [60]. By relying on the toolset that the library provides, most of our proofs went
quite smoothly and stayed close to the informal proofs from computable analysis. Where
the proofs turned out to be more complicated, this paper includes informal descriptions
of the formal proofs and the difficulties encountered. For a more thorough description of
the interesting parts of the proofs and some details of the simpler proofs we also point the
interested reader to the full version.

The C-CoRn library for constructive analysis is by far the most advanced fully computa-
tional Coq development that deals with real numbers [14]. It provides a wide range of results
about functions on real numbers and some about operators on function spaces and includes

ITP 2019



28:4 Quantitative Continuity in Coq

an exhaustive treatment of metric spaces and uniformly continuous functions between metric
spaces [44]. While the mathematical contents that are the topics of the C-CoRn library,
this paper and the Incone library are similar, the approach and scope are quite different.
The C-CoRn library is inspired by, and roughly follows the development of constructive
analysis by Bishop and Bridges [6]. Executability is achieved by restricting to constructive
proofs. This constructive focus makes the C-CoRn library and the publications related to it
difficult to access for some classically trained mathematicians. The Incone library follows
the tradition of computable analysis where computational content is extra information that
should follow a mathematical understanding of the structures under consideration. For the
formulation of a clean mathematical theory, classical reasoning and well justified axioms may
be used where they simplify the proofs and clean up the statement of theorems. It should
thus be understood as a complementary approach.

The use of axioms always comes with the danger of introducing inconsistencies. We
attempted to minimize their use in many places and only use axioms from Coq’s standard
library which are commonly used in the Coq community. The parts that involve real
numbers rely on the axiomatization of the real numbers as an archimedian ordered field from
Coq’s standard library. Other axioms that we use fairly often include classical reasoning,
functional extensionality and weak choice principles like countable choice or choice principles
on countable types, some parts also use proof irrelevance. Throughout the paper we make
some effort to discuss where we believe the use of axioms to be essential and why. How much
work we put into minimizing the use of axiom depends on the use cases of the results. For
instance, there exists a line of lemmas that mostly act as sanity checks for the library and
are best understood when interpreted in the sense of category theory (universal properties of
products etc.). The parts of these that do not feature computational content were given a
lower priority in optimizations for axiom use.

1.2 Realizability, computable analysis and computing on infinite data
In computable analysis the elements of an abstract set X to compute over are encoded over
Baire space by use of a partial surjective function from Baire space to X that is called a
representation. An element of Baire space that is mapped to x ∈ X by the representation
is considered to provide on demand information about x. The description of real numbers
via functions that take rational accuracy requirements and return rational approximations
is an example for such a representation. A set with a designated representation is called a
represented space and there exist natural notions of what it means for a function between
represented spaces to be continuous and to be computable. Both of these notions, and in
particular where they diverge, are central points to computable analysis. An informal rule of
thumb is that any function that is continuous and whose definition is sufficiently ‘natural’ is
also computable.

The Incone library follows these ideas to provide a formal definition of represented
spaces in Coq. However, as implicitly done in the example of real numbers, it adds an
additional layer of abstraction where the inputs and outputs of a description need not
always be explicitly encoded as natural numbers but are allowed to use any countable and
inhabited types. The Incone library includes a definition of continuity of functions between
represented spaces and, if Coq’s types are interpreted as sets and a classical setting is
assumed, the continuity part of computable analysis is captured. If one wants to reason
about computability as refinement of continuity, more care has to be taken. For instance, to
avoid difficulties with the input and output types, one should guarantee that these types are
either finite or there is an effective bijection with the natural numbers. This may be forced



F. Steinberg, L. Théry, and H. Thies 28:5

by requiring the construction of Mathematical Components countType structure for the
input and output types [38]. In presence of this additional information, the Incone library
provides tools to capture the notion of computability used in computable analysis in Coq.
It provides a way to specify functions on Baire space such that the functions computable in
the sense of computable analysis are exactly those that can be instantiated with pure Coq
terms, i.e., Coq terms that do not involve any axioms. This construction is compatible with
Coq’s code-extraction capabilities.

However, the Incone library does not give a formal definition of computability of
functions between represented spaces or even Baire space, but only reasons about it on the
meta-level. This is due to a reflection problem where checking a term for use of axioms can
not be done internally. The additional value of such a definition would be the possibility
to give computability-theoretic proofs of incomputability. Such proofs are fairly rare in
computable analysis due to the rule of thumb mentioned above: any sufficiently natural
function that is incomputable should already be discontinuous. This is in particular true for all
instances where we have proven incomputability so far. Once computability theoretic proofs
of incomputability move to the center of our attention, a formal definition of computability
may be added either using a self-reflection library or more directly by relying on a full
formalization of a model of computation [20, 66].

1.3 Structure of the paper and pointers to the main results
All theorems, propositions and lemmas in this paper have been formalized in Coq and were
made part of the Incone library. They come with explicit pointers to their name in the
library. The statements of the results in the library and in the paper are fairly close. The
only notable exception is what was discussed at the end of the last section: whenever the
paper claims computability, the formal version proves continuity by explicitly specifying a
term that witnesses the continuity and this term is axiom-free as can be checked by the
user. Many of the claims that are stated in the plain text, as corollaries or as examples are
also supported by formal proofs and occasionally library names are put in brackets after the
statement. The identifiers of the exact versions of the mf, Rlzrs, Metric and Incone
libraries that this paper refers to can be found in the references [58, 57, 59, 56] or downloaded
from the project homepage.

The results whose formalization we consider the main contributions are that the algebraic
operations and the efficient limit operator on the reals are computable (Examples 3 and 5),
that the countably infinite product is isomorphic to a space of functions (Theorem 7),
compatibility of the enumeration representation of subsets of natural numbers with the
abstract definition of the space of open subsets of the natural numbers (Theorem 16), and
that continuous realizability implies sequential continuity. The previous results are fully
algorithmic, but we also describe many non-computational theorems. These include that
Incone’s information theoretic notion of continuity is equivalent to the metric notion on
Baire space (Theorem 14), a complete comparison of the different concepts of continuity
that arise from metric and represented space structures (Corollary 9 and Lemma 10) and the
discontinuity of the unrestricted limit operator on the real numbers (Example 5) and the
task of selecting an element of a closed subset of the natural numbers (Corollary 18).

Coq uses a type-theoretic setting, while the mathematics that we formalize is more
commonly formulated over a set theoretic background theory. As is very common in these
situations, the paper uses a mix of set-theoretic and type-theoretic notations. In particular
we identify subsets of a given type T with functions of type T → Prop and borrow the
elementhood notation from set theory, i.e., we write t ∈ T for T (t). We also use the

ITP 2019



28:6 Quantitative Continuity in Coq

mathematical notation for subsets, subset inclusion and partial functions. Finally, we avoid
the use of the colon for typing when referring to elementhood of certain function spaces. This
is because of the confusing ambiguity in interpretation of function types. For our purposes it
is more natural to consider elements of some function spaces as mathematical functions and
not elements of a function type. This is because we do not want to restrict to the computable
functions only and also expressed through regular use of the functional extensionality axiom
and of choice principles to construct elements.

2 Multifunctions and partial operators on Baire space

In computable analysis, the computability and topological structure of Baire space are carried
over to more general spaces by means of encodings that are called representations. Before we
go into detail about how this is done, this section describes the structure on Baire space that
we need. Classically, Baire space is the space of all total functions from natural numbers to
natural numbers, i.e., functions of type N→ N. We more generally refer to any space of the
form Q→ A as Baire space if Q and A are countable and inhabited types. Classically these
assumption imply that the types are either finite or bijectively related to the natural numbers.
Of course, constructively this is far from true. Indeed, if computability considerations come
in, one has to be more careful as the bijections with the natural numbers need not be
computable. In the applications considered in this paper, however, the substitution by
natural numbers are extremely simple, obviously computable and can even be carried out by
hand. The critical reader may therefore replace any occurrence of Q,A and their dashed
variants in the following by N and assume that the difference in naming is merely for easy
distinction of different in- and outputs and readability.

Computable analysis heavily relies on the theory of continuous partial operators on
Baire space. In Coq, functions are always total and to find an appropriate notion of
partiality, which is important for a proper treatment of continuity, we first need to discuss
how functions can be specified through relations [1, 47, 45, 15]. A multivalued function
F : S ⇒ T (notation _ ->> _ in the library) is a function that assigns to each s : S a possibly
empty subset F (s) of T . While this gives F the type S → T → Prop and one could identify
F with a binary relation, the intuition behind a multivalued function is different as S is
treated as input type and T as output type. The domain of a multifunction F is given by
dom(F ) := {s : S | ∃t : T, t ∈ F (s)} and for s ∈ dom(F ) the set F (s) should be interpreted
as the set of eligible return values. A multivalued function is called total if its domain is all
of S, and single-valued if each of the sets F (s) has at most one element.

A multivalued function can be considered a specification for functions: A function
f : S → T fulfills the specification F : S ⇒ T if s ∈ dom(F ) =⇒ f(s) ∈ F (s) for all
s : S. In this case we say that f is a choice for F (icf in the library with notation
_ \is_choice_for _). The operations on multivalued functions are chosen such that
they behave well with respect to the interpretation as specifications. For instance, the
composition F ◦G of two multivalued functions G : R⇒ S and F : S ⇒ T is given by

F ◦G(r) := {t : T | G(r) ⊆ dom(F ) ∧ ∃s, t ∈ F (s) ∧ s ∈ G(r)}.

(notation _ \o _ in the library). This is an associative operation and the second half, namely
F ◦R G(r) := {t : T | ∃s, t ∈ F (s) ∧ s ∈ G(r)}, is what is commonly used as composition for
relations. The domain condition is a modifier that addresses the difference in interpretations
and in particular leads to a loss of the symmetry under exchange of the input and output
types. In particular for the multifunction composition it is true that if f is a choice for F
and g is a choice for G then f ◦ g is a choice for F ◦ G, which may fail for the relational
composition (compare Figure 1a).



F. Steinberg, L. Théry, and H. Thies 28:7

There is a very straightforward way to generate multifunctions from functions or partial
functions. Namely, for a function f : S → T just use the specification F2MFf : S ⇒ T that
uniquely determines it, i.e., F2MFf(s) := {t : T | t = f(s)}. Clearly, this multifunction is
always total and single-valued and assuming that T is not empty each total single-valued
multifunction arises in this way (fun_spec). This construction can be extended to partial
functions by assigning to g : S → optT the function PF2MFg(s) := {t : T | g(s) = Some t},
which is still single-valued but need not be total anymore. We are mostly interested in
operators on Baire spaces, whose domains are rarely decidable. Coding a partial function as
a function to an option type may be understood to indicate that the domain of the function
should be decidable and we thus avoid it. Instead, we choose the mathematical notation
g : ⊆ S → T for partial functions and in the Incone library they are usually treated as
single-valued multifunctions right away. The assignments F2MF and PF2MF are compatible
with the multifunction composition and many other operations.

Note that in contrast to functions, any multifunction can be assigned a reverse multi-
function where the input and output is simply switched. All properties of a multifunction
have a co-version that requires the same property for the reverse multifunction. Many of
the co-properties have nice characterizations for the special case of functions. For instance,
a function f is injective if and only if F2MFf is co-single-valued and a partial function f is
surjective if and only if PF2MFf is co-total.

An important concept for our purposes is the notion of a tightening (tight in the library
with notation _ \tightens _). For multifunctions F,G : S ⇒ T we say that F tightens G
if it is more restrictive as a specification. That is, if

dom(G) ⊆ dom(F ) and ∀s ∈ dom(G), F (s) ⊆ G(s).

Indeed, under appropriate assumptions F tightens G if and only if being a choice for F
implies being a choice for G (icf_tight and tight_icf, also compare Figure 1b). A function
f is a choice for a multifunction F if and only if F2MFf tightens F (icf_spec) and if PF2MFf
tightens F we say that f is a partial choice for F . An exhaustive overview over the concepts
and notations for multifunctions the mf library provides can be found in the preamble of the
mf.v file [58].

For the purposes of this paper another construction is important. A multifunction ΦN of
type S ⇒ T can be obtained from a function N of type N× S → optT via

ΦN (s) := {t : T | ∃n,N(n, s) = Some t}.

In the special case where S = N = T the specification of any partial computable function can
be expressed using a primitive recursive function N and this is particularly interesting to us
as any primitive recursive function has a definition in Coq that is closed under the global
context [43]. The core idea behind why this is true is a version of the Kleene normal-form
theorem [55], although there are some technical differences. For a fixed partial computable
function, a primitive recursive function N that works can be obtained from any Turing
machine computing the function as follows: on input (n, s) return Some t if the machine on
input s terminates within the first n time-steps and returns t and None otherwise. Under the
reasonable assumption that any Coq-function is computable we obtain a characterization of
the partial computable functions. Thus, the above correspondence can be used to talk about
computable functions in Coq at least on a meta-level. A priori, the multifunction ΦN need
neither be total nor single-valued but a single-valued tightening ΦN ′ of ΦN can be obtained.

ITP 2019



28:8 Quantitative Continuity in Coq

2.1 Continuity of partial operators between Baire spaces
Fix some types Q, A, Q′ and A′ and set B := Q→ A and B′ := Q′ → A′. An important
class of objects of investigation in computable analysis are computable, or at least continuous
partial operators on Baire space, or in our generalized setting of type F : ⊆ B → B′. One way
to produce specifications of such operators is to relativize the Φ assignment from the previous
section and assign to a function M : N × B ×Q′ → opt A′ the specification FM : B ⇒ B′
such that

ψ ∈ FM (ϕ) ⇐⇒ ∀q′ : Q′,∃n : N,M(n, ϕ, q′) = Someψ(q′).

(operator in the library with notation \F_( _ ), compare Example 15). The relativization
adds complexity as it can for instance be seen on the example of composition: on the one hand
it is easy to realize composition for the Φ assignment, finding a tightening of FM ◦ FM ′ from
M andM ′ alone, on the other hand,this is problematic : M ′ allows to produce arbitrary good
approximations to a functional input for M , but no information is known about how good
this approximation must be for M to return a correct value. Indeed, these approximations
are sufficient to obtain correct values of the composition only if FM is continuous.

Continuity of FM can be made sense of by equipping B and B′ with the topologies of
pointwise convergence, or equivalently by using an appropriate metric on these spaces. For
our purposes a slightly different, information based description of the same concept is more
adequate. Intuitively continuity means that the return-values of an operator F : B → B′
interpreted as functional of type F : B×Q′ → A′ do only depend on finite information about
the values of the functional input from B and thus can be thought of as being represented by
a diagram as depicted in Figure 1c. Mathematically, a function F : B → B′ is continuous if
for any element ϕ of B and any q′ : Q′ there exists a certificate, i.e., a finite list L : seq Q
such that for any ψ that coincides with ϕ on L it holds that F (ψ)(q′) = F (ϕ)(q′). Here, two
functions are said to coincide on a finite list L if ϕ(q) = ψ(q) for any q contained in L. A
partial operator F : ⊆ B → B′ is continuous if for all ϕ ∈ dom(F ) and q′ : Q′ there exists a
certificate, i.e., a finite list L ⊆ Q such that the above statement holds for any ψ ∈ dom(F ).

The definition of continuity in the Incone library follows the mathematical definition
given above mostly literally. The only notable difference is that instead of a separate list
for each q′ : Q′ a Skolem-function µ : Q′ → seq Q is used. This is equivalent to the above
definition whenever an appropriate choice principle is available (choice_cont) and avoids
assuming any axioms in the proof that the composition of continuous operators is continuous.
From a meta-level many of the proofs of continuity that can be found in the Incone library
proceed by specifying an axiom-free Coq-function interpreted either through the F2MF or
through the F· assignment and may thus be understood as proofs of computability. All
claims of computability in the rest of the paper should be understood in this sense.

Partiality is treated by using multifunctions and the statement of continuity of a mul-
tifunction is chosen in such a way that continuity implies the function to be single-valued
(cont_sing). This definition works well with the composition of multivalued functions:

I Theorem 1 (cont_comp). Let F : ⊆ B → B′ and G : ⊆ B′ → B′′ be continuous partial
operators. The operator G ◦ F : ⊆ B → B′′ is continuous.

The idea behind the proof is that the certificate functions µ and ν whose existence is
guaranteed by the continuity of F and G can be interpreted as multivalued functions and
composed relationally to obtain a certificate function for the composition of the operators.
The necessary relational composition can be realized constructively.



F. Steinberg, L. Théry, and H. Thies 28:9

R S T

g

f

G

F

(a) f chooses through
F , g chooses through
G. f ◦ g does not
choose through F ◦R

G, but through F ◦G
which is empty.

S

T

G

f
F

(b) f chooses through
F which tightens G.
Thus f also chooses
through G.

F

ϕ

(c) A continuous oper-
ator F can be thought
of as determining its
return value by ask-
ing finitely many ques-
tions to the input func-
tion ϕ.

X f // Y

B
F
//

δX

OO

B′
δY

OO

(d) F : ⊆ B → B′ is a
realizer of f : X→ Y.

Figure 1

2.2 Represented spaces and continuous realizability
A representation δ of a space X is a partial surjective mapping δ : ⊆ B → X. If δ(ϕ) = x

then ϕ is called a δ-name, or just name, of x. A pair X = (X, δX) of a set and a representation
of that set is called a represented space. The definition of represented spaces in the Incone
library replaces the Baire space NN from the definition used in computable analysis with
some space B = Q→ A, where Q and A should be countable inhabited types, i.e., with a
Baire space according to the conventions we fixed. Thus, a represented space X is defined
as a record containing a type X (with a coercion from X to X) together with types QX
and AX and proofs that these are countable and inhabited and additionally a multivalued
function δX : (QX → AX)⇒ X and proofs that it is single-valued and co-total, where the
last requirement is equivalent to being surjective for partial functions. We use the notation
BX := QX → AX.

As an example let us equip the real numbers with the representation that is used for
motivation and as a point of reference throughout this section.

I Example 2 (examples/Q_reals.v). Choose QR,AR := Q, i.e., BR = Q→ Q. It is straight
forward to prove that the rational numbers provided by Coq’s standard library are countable
and inhabited. The multifunction δR : BR ⇒ R (rep_RQ in Incone) specified by:

δR(ϕ) = x ⇐⇒ ∀ε ∈ Q, 0 < ε =⇒ |x− ϕ(ε)| < ε

is a representation. Indeed, using the axiomatization of the real numbers provided by Coq’s
standard library δR can be proven single-valued and surjective and we refer to the represented
space (R, δR) (RQ in the library) simply by R.

The topological and computability structure of Baire space can be pushed forward through
a representation: A partial operator on Baire space is a realizer of a function f : X→ Y
between represented spaces if it assigns to each name of x a name of f(x) (compare Figure
1d). A function between represented spaces is continuous if it has a continuous realizer and
computable if it has a computable realizer. Represented spaces form a Cartesian closed
category both with the continuous and the computable functions as morphisms.

With little effort, the definition of being a realizer can be made sense of if both operators
on Baire space and functions between represented spaces are multivalued. For the full
definitions we point the interested reader to [34] or the Rlzrs library. While we are mostly

ITP 2019



28:10 Quantitative Continuity in Coq

interested in continuous, and therefore single-valued, realizers the case where f is multivalued
is of interest to us as it is needed for the concrete example of closed choice on the natural
numbers that we discuss in Section 3.3. We call a multifunction between represented spaces
continuously realizable if there exists a continuous realizer that maps any name of an
input to a name of some eligible return-value. Multivaluedness can also be used to recover
continuity: the sign function on the real numbers is discontinuous, but can be approximated
by the family of continuously realizable ε-sign multifunctions whose set of eligible return
values is increased to {−1, 0, 1} whenever |x| is smaller than ε. Another popular and similar
example is the use of an ε-equality test to account for the undecidability of equality on the
real numbers. That continuity and continuous realizability are preserved under composition
follows from content of the Rlzrs library together with the fact that continuity of operators
on Baire space is preserved under composition from Theorem 1.

Any Baire space can be made a represented space by using the identity function as a
representation. While a partial operation between Baire spaces is continuous if and only if it
is continuously realizable with respect to these representations, there are many multivalued
functions between Baire spaces that are continuously realizable but not continuous. This
is because continuity implies single-valuedness and continuous realizability, to the contrary,
is stable under increasing the set of eligible return values. On Baire spaces continuous
realizability of a multifunction is equivalent to the existence of a continuous choice function.
However, this is specific to Baire spaces and fails for more general represented spaces as can
for instance be seen at the example of an ε-sign function or an ε-equality test as given above.

2.3 Basic constructions and examples for represented spaces
Now that we can talk about continuity and computability on the real numbers, a reasonable
next step is to attempt to prove addition and multiplication computable.

I Example 3 (examples/Q_reals.v). The arithmetic operations on the real numbers are of
type R× R→ R and to make sense of continuity of functions of this type we need to specify
a represented space structure on R × R. The Incone library automatically generates a
represented space X×Y from arbitrary represented spaces X and Y and proves correctness
of this construction and continuity of the basic functions. Relying on this one can prove that
addition and multiplication of real numbers is continuous (Rplus_cont and Rmult_cont).
The realizers are defined directly using the F2MF assignment and are computable (in the
sense described in Section 2.1).

Let I be a countable inhabited type and let X be a represented space. Consider the set
of families (xi)i∈I indexed over I. A reasonable description of such a family would be a
function that takes an additional argument from I and if this argument is fixed to i results in
a name for xi. Formally this can be captured by defining a represented space

∏
I X, where

the underlying set are the functions of type I → X, the questions given by Q∏
I

X := I×QX,
the answers by A∏

I
X := AX and using the representation

(xi) ∈ δ∏
I

X(ϕ) ⇐⇒ ∀i : I, xi ∈ δX(q 7→ ϕ(i, q)),

where (xi) is short for the function i 7→ xi.
For the understanding of the following proposition recall that the universal property

that is required from an infinite product
∏
I Xi is that for each represented space Y and

family (fi) of continuous functions fi : Y → Xi there exists a unique continuous function
F : Y→

∏
I Xi such that for all i ∈ I and y ∈ Y it holds that F (y)i = fi(y). The following

proposition says that in the special case where all the spaces Xi coincide and I = N, the
space constructed above has this universal property.



F. Steinberg, L. Théry, and H. Thies 28:11

I Proposition 4 (rep_Iprod_sing, rep_Iprod_sur and cprd_uprp_cont).
∏
I X is a rep-

resented space and Xω :=
∏

N X is a countably infinite product in the category of represented
spaces and continuous functions.

The use of the symbol ω instead of N is to differentiate the space Xω of sequences (notation
_ \^w in the library) from a function space. The proof of single-valuedness of the infinite
product representation assumes functional extensionality and the proof of surjectivity needs
a choice principle over the index set I. Since I = N is by far the most common use-case and
I is assumed countable, this will usually boil down to the axiom of countable choice. The
proof of the universal property relies on stronger choice principles, classical reasoning and
proof irrelevance. Since the category of represented spaces with computable functions fails
to have countably infinite products, the universal property should not be provable without
axioms. This makes this result more of a sanity result than something that may actually be
of use, and minimizing the strength of the axioms used is not our highest priority.

The limit operator is a good example of a multi-function whose natural source space is the
space of sequences. Consider the multivalued function limX : Xω ⇒ X where x ∈ limX(xn)
if and only if there is a convergent sequence of names (ϕn) ⊆ BX and some ϕ such that
ϕ is a name of x, each ϕn is a name for xn and the sequence (ϕn) converges to ϕ in BX,
i.e., limBX(ϕn) = ϕ where BX is given the topology of pointwise convergence of functions
between discrete spaces. A function f : X → Y between represented spaces is called
sequentially continuous if it preserves this notion of a limit, i.e., if limX xn = x implies
that limY f(xn) = f(x). While the limit operator on Baire space is single-valued, this may
not be true for the limit operator on a general represented space, as can be seen at the
example of Sierpiński space that is discussed in Section 3.3. In most spaces that are relevant
for numerical analysis, the limit operator is single-valued but discontinuous and has an
appropriate computable restriction.

I Example 5 (examples/Q_reals.v). On the real numbers R the limit operator limR
captures the usual notion of convergence of sequences of real numbers. Furthermore, limR is
discontinuous (lim_not_cont), but its restriction to those sequences (xn) that are efficiently
Cauchy in that |xn − xm| ≤ 2−n + 2−m is computable (lim_eff_hcr).

The Incone library defines and proves correct a continuous universal U (one may think
of either Kleene-Kreisel associateship [28, 31, 17] or Weihrauch’s η [65]). Let X and Y be
represented spaces and consider the collection of all continuously realizable functions from X
to Y. In Incone, the continuous universal U is used to construct a representation for this
collection of functions by

f ∈ δYX(ψ) ⇐⇒ FU(ψ) realizes f.

Since functions (as opposed to partial or multifunctions) are uniquely determined by each of
their realizers, δYX is single-valued. That δYX is co-total is the distinguishing property of
continuous universals like U . Thus, δYX is a representation and we refer to the represented
space of continuously realizable functions from X to Y with this representation as YX

(notation _ c-> _ in Incone).
Recall that spaces are called isomorphic, in symbols X ' Y, if they are connected by a

continuous bijection with continuous inverse and computably isomorphic if there exists a
computable bijection and with computable inverse. The natural numbers come with a natural
representation and the space XN of functions with respect to this structure is isomorphic
to the space Xω of sequences that was constructed as an infinite product at the beginning
of this section. I.e. XN ' Xω. This means that there is an overlap in scope between the

ITP 2019



28:12 Quantitative Continuity in Coq

function space construction and the infinite product. To understand this in more detail, let
I be any countable and inhabited type. Set QI := {?} and AI := I. Then δI(ϕ) := ϕ(?)
makes I := (I, δI) a represented space that is discrete in the following sense:

I Lemma 6 (cs_id_dscrt). For any countable, inhabited type I the represented space I
from above is discrete in the sense that any function that has I as its domain is continuous.

The set underlying the space
∏
I X is the set of functions from I to X. Since I is discrete all

functions from I to X are continuous and the sets underlying
∏
I X and XI are identical.

Indeed these spaces are computably isomorphic and we formalized the proof of this.

I Theorem 7 (sig_iso_fun). For any represented space X and countable inhabited type I
the space

∏
I X is computably isomorphic to XI, where I is the discrete space over I.

The realizer that translates from sequences to functions is defined using the simpler F2MF
assignment, but relies on the details of how Incone implements the universal. This may be
attributed to the fact that the above theorem need not be true in an arbitrary Cartesian
closed category. The construction of a sequence from a continuous function proceeds by using
a variation of the realizer of the evaluation operation that is proven computable for arbitrary
represented spaces in the Incone library. On the one hand this makes it mostly independent
of the implementation of the universal. On the other hand it means that the universal has to
be executed and is thus an instance where a realizer uses the more complicated F· assignment.
An axiom-free definition of a realizer using the F2MF assignment is likely to be impossible.
This is related to the fact that the construction of the reals from Dedekind cuts and Cauchy
sequences are not fully equivalent in a constructive setting [35].

3 Metric spaces and closed choice on the naturals

A function d : M ×M → R is called a pseudo-metric on a set M if it is positive, symmetric
and fulfills d(x, x) = 0 and the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). It is called a
metric if d(x, y) = 0 implies x = y. A pair (M,d) is called a pseudo-metric space if d
is a pseudo-metric on M and a metric space if d is a metric. Every pseudo-metric space
comes with a topology that is generated by the open balls and therefore with notions of
continuity of functions between and limits of sequences in such spaces. The latter is of
particular importance since any pseudo-metric space is first-countable and thus knowing the
limits is sufficient for characterizing continuity. A more accessible definition of continuity
can be given using the well-known ε-δ-criterion that does not require any knowledge about
topology. A function f : N → M between pseudo-metric spaces (N, dN ) and (M,dM ) is
called continuous in x if

∀ε, ∃δ, ∀y, dN (x, y) ≤ δ =⇒ dM (f(x), f(y)) ≤ ε.

The function is called continuous if it is continuous in any point of M . Here, ε and δ

are a priori reals but may be replaced by rationals for density reasons. An element x of a
pseudo-metric or metric space (M,d) is said to be the limit of a sequence (xn) in M , in
symbols lim(M,d)(xn) = x, if

∀ε, ∃N, ∀n,N ≤ n =⇒ d(x, xn) ≤ ε.

The function f is then called sequentially continuous if lim(N,dN )(xn) = x implies
lim(M,dM )(f(xn)) = f(x).



F. Steinberg, L. Théry, and H. Thies 28:13

Metric spaces have received considerable attention in their formal treatment [36]. There
exists a definition of the concept of a metric space and continuity of functions between metric
spaces in the standard library of Coq. Several external libraries come with their own versions
of metric spaces and continuity. Metric spaces and uniformly continuous functions are some
of the core concepts of the C-CoRn library [44]. Another example is the Coquelicot library,
which uses a concept it refers to as uniform space that closely resembles pseudo-metric
spaces (cntp_cntp). The Incone library comes with its own version of metric spaces that is
kept close to the classical mathematical treatment and is thus most similar to the metric
spaces that can be found in Coq’s standard library. It provides interfaces with both the
standard library of Coq (MS2M_S, M_S2MS, Uncv_lim, cont_limin, etc.) and the Coquelicot
library (US2MS, MS2US, cntp_cntp, etc.) so that it is possible to reuse results proven there.
In contrast to the Coquelicot library, the metric library does not attempt to be conservative
over the background theory of the real numbers.

While the naming of notions for metric spaces is identical to what we used for represented
spaces, there are some conceptual differences. First off, a function between metric spaces
is continuous if and only if it is sequentially continuous, where for represented spaces the
backward implication can fail. A sufficient condition to recover it is admissibility of the
involved representations [50]. Secondly, metric continuity can be recovered from a pointwise
notion while continuous realizability can not. The pointwise notion introduces subtle problems
in the treatment of subspaces. Even in the most well-behaved cases like a closed interval
as subspace of the real numbers there is a difference between a function on the reals being
continuous in each point of the interval and the restriction of the function to the interval
being continuous. The statements of important theorems from the standard library (for
instance the mean value theorem) do not account for this difference and diverge slightly from
what a mathematician would expect. The metric library assumes proof-irrelevance to allow
for a treatment of subspaces as dependent types.

3.1 Comparing continuity in represented and in metric spaces
Metric spaces are well investigated in computable analysis [64]. In particular in the case
where (M,d) is a metric space and (rn) is a designated dense sequence in M , M can be
made a represented space M := (M, δM) using the representation defined by

x ∈ δM(ϕ) ⇐⇒ ∀n, d(x, rϕ(n)) ≤ 2−n.

Note that the idea behind this construction is nearly identical to that behind the repres-
entations of the reals: A name takes a precision requirement, now encoded as integer, and
returns an approximation, or rather an index of an approximation.

A metric space is separable if there exists a dense sequence and even though the sequence
goes into the definition of the corresponding Cauchy representation, we decide to not mention
it explicitly in the following. This is justified in a continuity setting as different choices of
dense sequences lead to isomorphic represented spaces. The situation is more complicated if
computability is considered and the proofs in the library explicitly carry the sequences along.

I Theorem 8 (lim_mlim). Whenever (M,d) is a separable metric space and M as above
then lim(M,d) = limM.

The proof that the sequential notions of continuity on metric and represented space
coincide follows immediately from this theorem. Each direction of the proof requires to
translate limits in both directions and is thus as constructive or non-constructive as the
worse direction of the previous theorem (which requires to assume mild choice principles).

ITP 2019



28:14 Quantitative Continuity in Coq

I Corollary 9 (scnt_mscnt). If (M,d) and (M ′, d′) are separable metric spaces, then a
function f : M → N , is sequentially continuous as a function between metric spaces if and
only if it is sequentially continuous as function f : M→M′.

For the equivalence of ε-δ-continuity and continuous realizability one direction needs
stronger assumptions and for the Incone library we have thus separated the proofs.

I Lemma 10 (cont_mcont and mcont_cont). Let (M,d) and (M ′, d′) be two separable metric
spaces. A function f : M →M ′ is ε-δ-continuous if and only if f : M→M′ is continuous.

The proof that continuous realizability implies ε-δ-continuity is straight forward, the proof of
the other implication has turned out to be more complicated. We sketch some of the details.

Call a function µ : N→ N a modulus of metric continuity of f in x if

∀y, d(x, y) ≤ 2−µ(n) =⇒ d(f(x), f(y)) ≤ 2−n

And call such a modulus minimal if it is minimal in the obvious way.

I Lemma 11 (exists_minmod_met). For any continuous function f between metric spaces
and any argument x for f there exists a minimal modulus of f in x.

The proof relies on classical reasoning. This is a case where the use of axioms can not be
avoided: In the special case where the metric space is Baire space the existence of a minimal
modulus cannot be proven constructively [61].

If the source space is Baire space, it can be shown that the minimal modulus function is
continuous in each x and from this Lemma 10 can be deduced. For general metric spaces,
however, this strategy is bound to fail: If the metric space is connected, the function assigning
to each x the minimal modulus function of f in x cannot be continuous as it takes values
in the totally disconnected space NN. One might expect that this is due to the awkward
typing, and that making µ have type R→ R instead would help, but it does not. It is known
that also in this case the minimal modulus need not be continuous and that a construction
of a continuous modulus of continuity, while possible in general, takes considerably more
effort [16]. Our proof that ε-δ-continuity implies continuous realizability therefore proceeds
differently and uses a notion of being almost-selfmodulating instead, where the value of the
minimal modulus on slightly disturbed input from the metric space is bounded in terms of a
shift of the minimal modulus in the original value.

Interestingly, similar tools as those in the above proof turn out to be useful in other
parts of the Incone library. More specifically, the proof of correctness of the continuous
universal that the library uses for the construction of function spaces also makes use of
minimal moduli.

3.2 Recovering continuity on Baire space from a metric structure
Fix some types Q and A and set B := Q→ A. Recall from the discussion in Section 2.1 that
if B is a Baire space, then there exists a canonical way to make this space a represented space
and that the elementary notion of continuity coincides with the represented space notion
for partial functions. The limit operator limB that this space gets as a represented space
captures pointwise convergence with respect to the discrete topology on A. The information
theoretic notion of continuity on B from Section 2.1 is equivalent to sequential continuity in
the associated represented space and a proof of this can be found in the Incone library.



F. Steinberg, L. Théry, and H. Thies 28:15

For each function cnt : N→ Q define a mapping dcnt : B × B → R by

dcnt(ϕ,ψ) :=
{

2−k if ϕ 6= ψ and k = min{n, ϕ(cnt(n)) 6= ψ(cnt(n))
0 otherwise.

Note that if B is a Baire space, then Q is countable and there exists some surjective function
cnt : N→ Q. This makes the above mapping a metric.

I Proposition 12 (dst_pos, dst_sym, dstxx, dst_trngl, dst_eq). Whenever cnt : N→ Q
is surjective, (B, dcnt) is a metric space.

The core of the proof is an implementation of a function that approximates an unbounded
search and developing some of its properties.

I Theorem 13 (lim_lim). Let B be a Baire space and cnt surjective, then lim(B,dcnt) = limB.

The above theorem directly implies that the concepts of sequential continuity between Baire
spaces coincides with the corresponding metric notion. For metric spaces sequential continuity
and continuity are equivalent by combination of Corollary 9 and Lemma 10, thus:

I Corollary 14 (cont_cont). Whenever B and B′ are Baire spaces and cnt and cnt′ are
appropriate surjective functions then F : ⊆ B → B′ is continuous in the sense of Section 2.1
if and only if it is continuous as function from (dom(F ), dcnt) to (B′, dcnt′).

I Example 15 (examples/continuous_search.v). An instructive example is the search
operator whose domain are those functions from NN that eventually return zero and whose
value is the first argument on which such an input returns zero. This operator is continuous
and does not have a continuous total extension. As the regular notion of continuity on the
original Baire space NN is captured by the continuity introduced in Section 2.1, this is true
for both the metric notion as well as the information-theoretic notion. This operator is not
only continuous but computable and this is witnessed by the function that was used in the
proof of Proposition 12 to approximate an unbounded search and is a good example for the
mechanisms discussed in Section 2.1.

3.3 Sierpiński space and closed choice on the naturals
This section describes the content of the file examples/closed_choice.v from the Incone
library. Sierpiński space S (cs_Sirp in the library) is the space whose base set is the two
point set {⊥,>} equipped with the total representation δS : ⊆ (N→ B)→ S specified by

δS(ϕ) = > ⇐⇒ ∃n ∈ N ϕ(n) 6= false.

For a subset U ⊆ X denote by χU : X → S its characteristic function. One reason for the
importance of Sierpiński space in computable analysis is that a set U ⊆ X is open if and
only if this characteristic function χU is continuous as a function from X to S. Thus we can
identify the space O(X) of open subsets of X with the function space SX [46]. Similarly, the
space A(X) of closed subsets of X is represented as the complements of opens.

For many concrete spaces X simpler descriptions of O(X) and A(X) are available. If
the represented space X = N are the natural numbers, for instance, the infinite product
construction and in particular of the special case I = N and X = S of the statement
XI '

∏
I X of Lemma 7 guarantees that O(N) = SN '

∏
N S = Sω. There exists a fully

concrete description that is often used for reasoning about O(N). Consider the enumeration

ITP 2019



28:16 Quantitative Continuity in Coq

representation of the open subsets of the natural numbers, where a name of an open set
enumerates its elements. We call the corresponding space ON. The representation of the
concrete space AN of the closed subsets of the natural numbers is given by δAN(ϕ) =
N \ {n : N | ∃m : N, ϕ(m) = n+ 1}. The information a name specifies about a closed set is an
enumeration of its complement. The underlying sets of the spaces of opens and closeds of N
are all subsets, but the information about such sets that is made available by names differs.

We provide a formal proof that the enumeration representations of the open and closed
subsets of the natural numbers capture the abstract structure these spaces can be given
through the exponential in the category of represented spaces and Sierpiński space.

I Theorem 16 (AN_iso_Anat, ON_iso_Onat and clsd_iso_open). A(N) ' AN, O(N) ' ON
and A(N) ' O(N).

The last of these isomorphies is trivial: the isomorphism is taking the complement and it
is realized by the identity function. The isomorphism of O(N) and ON is proven by first
replacing O(N) by Sω as described above. The realizers for the isomorphism between Sω and
ON uses the Cantor paring function provided by the Mathematical Components library.

As an application let us consider some choice operators that are popular for classification
of computational tasks with respect to their Weihrauch degree. Solving the task of choosing
an element of a non-empty closed subset of a represented space X can be formalized as
asking for a realizer for the multivalued function CX defined by

CX : A(X)⇒ X, a ∈ CX(A) ⇐⇒ a ∈ A.

Or in words: a is an acceptable return value of CX on input A if and only if a is an element
of A. The domain of CX are the non-empty subsets of X and this means that a realizer can
behave arbitrarily on names of the empty set and may even diverge. As the input A is given
as a closed set where a name specifies negative information about element-hood, this task
does not have a continuous, let alone computable, solution for most spaces X.

Consider the case X = N. The domain of the multivalued function CN is A(N) but the
same definition also specifies a multifunction C ′N : AN ⇒ N whose source space AN uses the
enumeration representation. A mathematician may even consider it pointless to give this
function a different name as isomorphic spaces are regularly identified. For the question
whether CN has a continuous realizer A(N) may be substituted with AN (CN_CN’_hcr).

I Proposition 17 (CN’_not_cont). C ′N does not have a continuous realizer.

Our formal proof follows the standard proof by contradiction literally: Assume that to the
contrary that F was a continuous realizer of C ′N. Pick any name ϕ of the one point set {0}. As
F is a realizer, it has to return a name of 0 on input ϕ, i.e., F (ϕ)(?) = 0. Since F is continuous
there is a list L ⊆ N such that F (ϕ)(?) = F (ψ)(?) for all ψ : N→ N that coincide with ϕ on
L. Consider the name ϕ′ of the non-empty set A := N \ ({n | ∃m ∈ L,ϕ(m) = n+ 1} ∪ {0})
defined by ϕ′(n) := ϕ(n) if n ∈ L and 1 otherwise. On the one hand, F (ϕ′)(?) ∈ A since
F is a realizer. On the other hand F (ϕ′)(?) = F (ϕ)(?) = 0 as ϕ and ϕ′ coincide on L. By
definition of A it holds that 0 /∈ A, which is a contradiction and completes the proof.

From the previous result together with exchangeability of CN and C ′N it is follows that:

I Corollary 18 (CN_not_cont). Closed choice on the natural numbers is discontinuous.



F. Steinberg, L. Théry, and H. Thies 28:17

4 Conclusion

The Incone library formalizes ideas from computable analysis in Coq. There exists some
overlap with other developments, in particular with C-CoRn. However, the emphasis of
the library is different and many of our examples fall outside of the scope of C-CoRn and
similar developments. It may be considered complementary as it provides general purpose
tools for enriching abstract mathematical objects with computational structure. We feel that
the example from the last section of this paper showcases the capabilities of the library well.
The abstract definition of the space of open subsets is based on Incone’s function space
construction and the proof that it is equivalent to the concrete representation relies on the
libraries results about infinite products of represented spaces. We believe the Incone library
to be reasonably accessible to people familiar with the setting that computable analysis
works in. We hope that combination with recent developments in computable analysis [41]
could open it to an even wider audience including parts of the numerical analysis community.

The Incone library keeps close to recent work about complexity theory for computable
analysis [25, 18, 42, 27] such that it should be possible to add capabilities to at least
do qualitative complexity theory in terms of tracking the rate of decrease in accuracy of
approximations. Recently there has been a lot of progress on the formalization of models
of computation [20, 66] and methods from implicit complexity theory [19] that may even
allow to do quantitative complexity theory. Another way to gain insight into such efficiency
considerations would be to capture the trace of the basic feasible functionals on the operators
on Baire space [39, 23, 24].

The replacement of Baire space by more general spaces means that we maintain the ability
to benefit from Coq’s machinery in the low-level manipulations of data. From an abstract
point of view this makes our approach look like an attempt to interpret a class of generalized
Kleene-Kreisel continuous functionals as a computational model in presence of an ambient
model of computation. This is a backwards approach to the more common idea of identifying
a sub-algebra that captures computability in a given partial combinatory algebra, in this
case K2 [34, 3]. Most of the methods from the Rlzrs library are not original and have been
implemented independently of a specific proof assistant before [4]. An implementation in
other proof assistants one could trade convenience in computationally operating on discrete
data against bigger mathematical libraries.

We feel that this paper provides sufficient evidence that the concepts developed in the
Incone library can be used as a foundation for proving statements from computable analysis
in Coq. The possible applications we are interested to look into are manifold. One that would
be a particularly fitting extension of the contents of this paper is a proof that C([0, 1]) ' R[0,1].
This statement is called the Computable Weierstraß Theorem [49]: C([0, 1]) is represented as
separable metric space with supremum norm and the rational polynomials as dense sequence
and R[0,1] is a function space. Other possibilities include:

A more computation-efficient representation of real numbers and results about ODE
solving [22, 37, 26]. This may be done by providing an interface with C-CoRn, parts of
it could also be done separately by relying on libraries like Coq-Interval.

Duality theory for spaces of summable sequences (`p-spaces) which provide a pool of
examples where subspaces of exponentials can be treated complexity theoretically [53, 51].
Additionally it constitutes a step towards capturing popular methods for solving partial
differential equations [12, 54, 10].

A characterization of continuity via preimages of open sets and similar results [46, 52].

ITP 2019



28:18 Quantitative Continuity in Coq

References
1 Klaus Ambos-Spies, Ulrike Brandt, and Martin Ziegler. Real Benefit of Promises and Advice. In

Paola Bonizzoni, Vasco Brattka, and Benedikt Löwe, editors, The Nature of Computation. Logic,
Algorithms, Applications, pages 1–11, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

2 Jeremy Avigad and Vasco Brattka. Computability and analysis: the legacy of Alan Tur-
ing, page 1–47. Lecture Notes in Logic. Cambridge University Press, 2014. doi:10.1017/
CBO9781107338579.002.

3 Andrej Bauer. The Realizability Approach to Computable Analysis and Topology. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 2000. AAI3002721.

4 Andrej Bauer and C.A. Stone. RZ: A tool for bringing constructive and computable mathem-
atics closer to programming practice. Computation and Logic in the Real World. CiE 2007.
Lecture Notes in Computer Science, vol 4497., 2007.

5 Yves Bertot, Laurence Rideau, and Laurent Théry. Distant decimals of π. Journal of Automated
Reasoning, pages 1–45, 2017. URL: https://hal.inria.fr/hal-01582524.

6 Errett Bishop and Douglas Bridges. Constructive analysis, volume 279. Springer Science &
Business Media, 2012.

7 Jens Blanck. Exact real arithmetic systems: Results of competition. In Computability and
complexity in analysis. 4th international workshop, CCA 2000. Swansea, GB, September 17–19,
2000. Selected papers, pages 389–393. Berlin: Springer, 2001.

8 Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of
the American Mathematical Society, 21(1):1–46, 1989.

9 Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
Melquiond, and Pierre Weis. Wave Equation Numerical Resolution: a Comprehensive Mech-
anized Proof of a C Program. Journal of Automated Reasoning, 50(4):423–456, April 2013.
doi:10.1007/s10817-012-9255-4.

10 Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero. A
Coq Formal Proof of the Lax–Milgram theorem. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, pages 79–89, Paris, France, January
2017. ACM. doi:10.1145/3018610.3018625.

11 Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal Proofs. ISTE Press
- Elsevier, December 2017. URL: https://hal.inria.fr/hal-01632617.

12 Vasco Brattka and Atsushi Yoshikawa. Towards computability of elliptic boundary value
problems in variational formulation. Journal of Complexity, 22(6):858–880, 2006. Computability
and Complexity in Analysis. doi:10.1016/j.jco.2006.04.007.

13 Cyril Cohen. Construction of real algebraic numbers in Coq. In Lennart Beringer and Amy
Felty, editors, ITP - 3rd International Conference on Interactive Theorem Proving - 2012,
Princeton, United States, August 2012. Springer.

14 Luís Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the constructive Coq
repository at Nijmegen. In International Conference on Mathematical Knowledge Management,
pages 88–103. Springer, 2004.

15 K. Deimling. Multivalued Differential Equations. De Gruyter series in nonlinear analysis and
applications. W. de Gruyter, 1992.

16 Ali Enayat. δ as a continuous function of x and ε. The American Mathematical Monthly,
107(2):151–155, 2000.

17 Martín Escardó and Chuangjie Xu. A constructive manifestation of the Kleene–Kreisel
continuous functionals. Annals of Pure and Applied Logic, 167(9):770–793, 2016. Fourth
Workshop on Formal Topology (4WFTop). doi:10.1016/j.apal.2016.04.011.

18 Hugo Feree. Game Semantics Approach to Higher-order Complexity. J. Comput. Syst. Sci.,
87(C):1–15, August 2017. doi:10.1016/j.jcss.2017.02.003.

https://doi.org/10.1017/CBO9781107338579.002
https://doi.org/10.1017/CBO9781107338579.002
https://hal.inria.fr/hal-01582524
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1145/3018610.3018625
https://hal.inria.fr/hal-01632617
https://doi.org/10.1016/j.jco.2006.04.007
https://doi.org/10.1016/j.apal.2016.04.011
https://doi.org/10.1016/j.jcss.2017.02.003


F. Steinberg, L. Théry, and H. Thies 28:19

19 Hugo Férée, Samuel Hym, Micaela Mayero, Jean-Yves Moyen, and David Nowak. Formal
proof of polynomial-time complexity with quasi-interpretations. In Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 146–157.
ACM, 2018.

20 Yannick Forster and Gert Smolka. Call-by-Value Lambda Calculus as a Model of Computation
in Coq. Journal of Automated Reasoning, 2018.

21 A. Grzegorczyk. On the definitions of computable real continuous functions. Fund. Math.,
44:61–71, 1957.

22 Fabian Immler and Johannes Hölzl. Numerical Analysis of Ordinary Differential Equations in
Isabelle/HOL. In ITP, volume 7406 of LNCS, pages 377–392, 2012.

23 Bruce M. Kapron and Stephen A. Cook. A New Characterization of Type-2 Feasibility. SIAM
J. Comput., 25:117–132, 1996.

24 Bruce M. Kapron and Florian Steinberg. Type-two polynomial-time and restricted lookahead.
In LICS, 2018.

25 Akitoshi Kawamura and Stephen Cook. Complexity theory for operators in analysis. ACM
Transactions in Computation Theory, 4(2):Article 5, 2012.

26 Akitoshi Kawamura, Florian Steinberg, and Holger Thies. Parameterized Complexity for
Uniform Operators on Multidimensional Analytic Functions and ODE Solving. In International
Workshop on Logic, Language, Information, and Computation, pages 223–236. Springer, 2018.

27 Akitoshi Kawamura, Florian Steinberg, and Holger Thies. Second-order linear-time comput-
ability with applications in computable analysis. 15th Annual Conference on Theory and
Applications of Models of Computation, 2019. extended abstract accepted for presentation at
TAMC 2019.

28 S.C. Kleene. Countable functionals. Constructivity in Mathematics: proceedings of the
colloquium held at Amsterdam, 1959.

29 Ker-I Ko. Complexity theory of real functions. Progress in Theoretical Computer Science.
Birkhäuser Boston Inc., Boston, MA, 1991.

30 Michal Konecný and Eike Neumann. Representations and evaluation strategies for feasibly
approximable functions. CoRR, abs/1710.03702, 2017. arXiv:1710.03702.

31 Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite type,
Constructivity in Mathematics, 1959.

32 Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical computer
science, 38:35–53, 1985.

33 Daniel Lacombe. Sur les possibilités d’extension de la notion de fonction récursive aux fonctions
d’une ou plusieurs variables réelles. In Le raisonnement en mathématiques et en sciences
expérimentales, Colloques Internationaux du Centre National de la Recherche Scientifique,
LXX, pages 67–75. Editions du Centre National de la Recherche Scientifique, Paris, 1958.

34 John Longley and Dag Normann. Higher-order computability, volume 100. Springer, 2015.
35 Robert S. Lubarsky and Michael Rathjen. On the constructive Dedekind reals. Logic and

Analysis, 1(2):131–152, May 2008. doi:10.1007/s11813-007-0005-6.
36 Marco Maggesi. A Formalization of Metric Spaces in HOL Light. J. Autom. Reasoning,

60(2):237–254, 2018.
37 Evgeny Makarov and Bas Spitters. The Picard Algorithm for Ordinary Differential Equations

in Coq. In ITP, volume 7998 of Lecture Notes in Computer Science, pages 463–468. Springer,
2013.

38 The Mathematical Components library. https://math-comp.github.io/math-comp/.
39 Kurt Mehlhorn. Polynomial and abstract subrecursive classes. Journal of Computer and

System Sciences, 12(2):147–178, 1976. doi:10.1016/S0022-0000(76)80035-9.
40 Norbert Th. Müller. The iRRAM: Exact arithmetic in C++. In Computability and complexity

in analysis. 4th international workshop, CCA 2000. Swansea, GB, September 17–19, 2000.
Selected papers, pages 222–252. Berlin: Springer, 2001.

ITP 2019

http://arxiv.org/abs/1710.03702
https://doi.org/10.1007/s11813-007-0005-6
https://math-comp.github.io/math-comp/
https://doi.org/10.1016/S0022-0000(76)80035-9


28:20 Quantitative Continuity in Coq

41 Norbert Th. Müller, Sewon Park, Norbert Preining, and Martin Ziegler. On Formal Verification
in Imperative Multivalued Programming over Continuous Data Types. CoRR, abs/1608.05787,
2016. arXiv:1608.05787.

42 Eike Neumann and Florian Steinberg. Parametrised second-order complexity theory with
applications to the study of interval computation. CoRR, abs/1711.10530, 2017. submitted
for publication. arXiv:1711.10530.

43 Russell O’Connor. Essential Incompleteness of Arithmetic Verified by Coq. In Joe Hurd
and Tom Melham, editors, Theorem Proving in Higher Order Logics, pages 245–260, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

44 Russell O’Connor. Incompleteness & Completeness: Formalizing Logic and Analysis in Type
Theory. PhD thesis, Radboud Universiteit Nijmegen, 2009.

45 Arno Pauly. Multi-valued functions in computability theory. In Conference on Computability
in Europe, pages 571–580. Springer, 2012.

46 Arno Pauly. On the topological aspects of the theory of represented spaces. Computability,
5(2):159–180, 2016.

47 Arno Pauly and Martin Ziegler. Relative computability and uniform continuity of relations. J.
Logic & Analysis, 5, 2013.

48 Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics, volume
Volume 1 of Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1989.

49 Marian Boykan Pour-El and Jerome Caldwell. On a simple definition of computable function
of a real variable-with applications to functions of a complex variable. Mathematical Logic
Quarterly, 21(1):1–19, 1975.

50 Matthias Schröder. Extended admissibility. Theoretical computer science, 284(2):519–538,
2002.

51 Matthias Schröder and Florian Steinberg. Bounded time computation on metric spaces and
Banach spaces. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005139.

52 Matthias Schröeder. Admissible Representations for Continuous Computations. PhD thesis,
FernUniversität Hagen, 2002.

53 Matthias Schröder. Spaces allowing Type-2 Complexity Theory revisited. Math. Log. Q.,
50:443–459, September 2004. doi:10.1002/malq.200310111.

54 Svetlana Selivanova and Victor Selivanov. Computing Solutions of Symmetric Hyperbolic
Systems of PDE’s. Electron. Notes Theor. Comput. Sci., 221:243–255, December 2008.
doi:10.1016/j.entcs.2008.12.021.

55 Robert I Soare. Recursively enumerable sets and degrees. Bulletin of the American Mathem-
atical Society, 84(6):1149–1181, 1978.

56 Florian Steinberg. The Incone library. https://github.com/FlorianSteinberg/incone,
2019. release v1.0.

57 Florian Steinberg. The Metric library. https://github.com/FlorianSteinberg/metric,
2019. release v1.0.

58 Florian Steinberg. The Mf library. https://github.com/FlorianSteinberg/mf, 2019. release
v1.0.

59 Florian Steinberg. The Rlzrs library. https://github.com/FlorianSteinberg/rlzrs, 2019.
release v1.0.

60 Florian Steinberg, Laurent Thery, and Holger Thies. Quantitative continuity and computable
analysis in Coq. working paper or preprint, April 2019. URL: https://hal.inria.fr/
hal-02088293.

61 A. S. Troelstra and D. van Dalen. Constructivism in mathematics. Vol. II, volume 123
of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 1988.

http://arxiv.org/abs/1608.05787
http://arxiv.org/abs/1711.10530
https://doi.org/10.1109/LICS.2017.8005139
https://doi.org/10.1002/malq.200310111
https://doi.org/10.1016/j.entcs.2008.12.021
https://github.com/FlorianSteinberg/incone
https://github.com/FlorianSteinberg/metric
https://github.com/FlorianSteinberg/mf
https://github.com/FlorianSteinberg/rlzrs
https://hal.inria.fr/hal-02088293
https://hal.inria.fr/hal-02088293


F. Steinberg, L. Théry, and H. Thies 28:21

62 A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(1):230–265, 1936. doi:10.1112/plms/
s2-42.1.230.

63 Alan Mathison Turing. On computable numbers, with an application to the Entscheidungs-
problem. A correction. Proceedings of the London Mathematical Society, 2(1):544–546, 1938.

64 Klaus Weihrauch. Computability on computable metric spaces. Theoretical Computer Science,
113(2):191–210, 1993.

65 Klaus Weihrauch. Computable Analysis. Springer, Berlin/Heidelberg, 2000.
66 Maximilian Wuttke. Verified Programming of Turing Machines in Coq. Master’s thesis,

Saarland University, 2018.

ITP 2019

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

	Introduction
	Proofs about continuous structures in Coq and related research
	Realizability, computable analysis and computing on infinite data
	Structure of the paper and pointers to the main results

	Multifunctions and partial operators on Baire space
	Continuity of partial operators between Baire spaces
	Represented spaces and continuous realizability
	Basic constructions and examples for represented spaces

	Metric spaces and closed choice on the naturals
	Comparing continuity in represented and in metric spaces
	Recovering continuity on Baire space from a metric structure
	Sierpinski space and closed choice on the naturals

	Conclusion

