
Proof Pearl: Purely Functional, Simple and
Efficient Priority Search Trees and Applications to
Prim and Dijkstra
Peter Lammich
The University of Manchester, UK

Tobias Nipkow
Technical University Munich, Germany
http://www.in.tum.de/~nipkow

Abstract
The starting point of this paper is a new, purely functional, simple and efficient data structure
combining a search tree and a priority queue, which we call a priority search tree. The salient feature
of priority search trees is that they offer a decrease-key operation, something that is missing from
other simple, purely functional priority queue implementations. As two applications of this data
structure we verify purely functional, simple and efficient implementations of Prim’s and Dijkstra’s
algorithms. This constitutes the first verification of an executable and even efficient version of
Prim’s algorithm.
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1 Introduction

The standard implementations (e.g. [6]) of a number of efficient algorithms (e.g. Prim [26]
and Dijkstra [7]) require a priority queue with a decrease-key operation. The latter operation
is easy to realize efficiently in an imperative setting but harder in a functional one because
one cannot use a pointer into the priority queue. The starting point of this paper is an
extremely simple and yet efficient functional data structure that supports the usual search
tree operations plus the priority queue operations including decrease-key. It can be realized
on top of any kind of binary search tree by augmenting it with priority information. We call
it a priority search tree. Based on this data structure we implement and verify two classic
efficient algorithms, Prim and Dijkstra, in a purely functional manner. This is the first
formal verification of an executable version of Prim’s algorithm and we discuss its details.
The work is carried out in the theorem prover Isabelle/HOL [20, 21].

The paper is structured as follows: Section 2 introduces some Isabelle specific notations.
Section 3 presents the ADT of priority maps and its efficient realization via priority search
trees. Section 4 introduces undirected graphs. Section 5 details the verification of Prim’s
algorithm. Finally, Section 6 sketches the verification of Dijkstra’s algorithm. The discussion
of related work is found in each section.
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The Isabelle/HOL sources of the formalizations discussed in this paper are available in
the Archive of Formal Proofs [16, 17].

2 Notation

Type variables are denoted by ′a, ′b, etc. Most type constructors follow postfix syntax, e.g.
τ set is the type of sets of elements of type τ . Function types are denoted by the infix ⇒.
Function update is written as f (x:=y).

Type nat is the type of natural numbers.
On sets, the unary − is complement and the binary − is difference. The image of a set S

under a function f is written f ‘ S.
Lists (type τ list) are constructed from the empty list [] via the infix cons-operator (#).

The infix (@) concatenates two lists. Function set converts a list into a set.
The option type is also predefined: datatype ′a option = None | Some ′a.

3 Priority Maps and Priority Search Trees

3.1 Priority Maps
A priority map is a map from keys (type ′a) to values (type ′b) where the values (“priorities”)
are linearly ordered and a key with minimal value can be extracted. This is the interface:

empty :: ′m
update :: ′a ⇒ ′b ⇒ ′m ⇒ ′m
delete :: ′a ⇒ ′m ⇒ ′m
is_empty :: ′m ⇒ bool
lookup :: ′m ⇒ ′a ⇒ ′b option
getmin :: ′m ⇒ ′a × ′b

The first five operations are the canonical ones for maps (which is why we omit their
specification); function update subsumes decrease-key (which should be called decrease-
priority). Function getmin extracts the key with the minimal value. Its specification is:

getmin m = (k, p) ∧ invar m ∧ ¬ lookup m = (λx. None) −→
lookup m k = Some p ∧ (∀ p ′∈ran (lookup m). p ≤ p ′)

where invar is the representation invariant and ran m = {b | ∃ a. m a = Some b} is the
range of a map.

3.2 Priority Search Trees
The first contribution of this paper is a truly simple implementation of priority maps by
means of augmented binary search trees. That is, the basic data structure is some arbitrary
binary search tree, e.g. a red-black tree, implementing the map from ′a to ′b by storing pairs
(k,p) in each node. At this point we need to assume that the keys are also linearly ordered.
To implement getmin efficiently we annotate/augment each node with another pair (k ′,p ′),
the intended result of getmin when applied to that subtree. The specification of getmin tells
us that (k ′,p ′) must be in that subtree and that p ′ is the minimal priority in that subtree.
Thus the annotation can be computed by passing the (k ′,p ′) with the minimal p ′ up the tree.
We will now make this more precise for balanced binary trees in general.
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We assume that our trees are either leaves of the form 〈〉 or nodes of the form 〈l, kp, b,
r〉 where l and r are subtrees, kp is the contents of the node (a key-priority pair) and b is
some additional balance information (e.g. colour, height, size, . . . ). Augmented nodes are of
the form 〈l, kp, (b, kp ′), r〉.

The implementation of getmin is trivial: getmin 〈_, _, (_, kp ′), _〉 = kp ′. It remains to
upgrade the existing map operations to work with augmented nodes. Therefore we now show
how to transform any function definition on un-augmented trees into one on trees augmented
with (k ′,p ′) pairs. A defining equation f pats = e for the original type of nodes is transformed
into an equation f pats ′ = e ′ on the augmented type of nodes as follows:

Every pattern 〈l, kp, b, r〉 in pats and e is replaced by 〈l, kp, (b, _), r〉 to obtain pats ′
and e2.
To obtain e ′, every expression 〈l, kp, b, r〉 in e2 is replaced by node l kp b r where

node l a c r = 〈l, a, (c, min_kp a l r), r〉
min_kp kp l r =
(case (l, r) of (〈〉, 〈〉) ⇒ kp
| (〈〉, 〈l2, a2, (b2, kp2), r2〉) ⇒ min2 kp kp2
| (〈l1, a1, (b1, kp1), r1〉, 〈〉) ⇒ min2 kp kp1
| (〈l1, a1, (b1, kp1), r1〉, 〈l2, a2, (b2, kp2), r2〉) ⇒

min2 kp (min2 kp1 kp2))
min2 = (λ(k, p) (k ′, p ′). if p ≤ p ′ then (k, p) else (k ′, p ′))

Note that this transformation does not affect the asymptotic complexity of f. Therefore
the priority search tree operations have the same complexity as the underlying search tree
operations, i.e. typically logarithmic (update, delete, lookup) and constant time (empty,
is_empty). For brevity we simply speak of efficient in the rest of the paper.

As an example, consider red-black trees where the balancing information b is one of the
two colours Red or Black. In the functional definition of red-black trees due to Okasaki [25]
there is a balance function that eliminates red-red configurations. We consider a slight variant
baliL [14] where one of the defining equations is

baliL (R (R t1 a1 t2) a2 t3) a3 t4 = R (B t1 a1 t2) a2 (B t3 a3 t4)

where R l a r = 〈l, a, Red, r〉 and B l a r = 〈l, a, Black, r〉. The transformed version of
this equation is

baliL (R (R t1 a1 _ t2) a2 _ t3) a3 t4 =
node (node t1 a1 Black t2) a2 Red (node t3 a3 Black t4)

where R l a kp r = 〈l, a, (Red, kp), r〉.
We obtained a priority search map based on red-black trees via the above transformations.

The correctness proofs could be transformed incrementally, too. The main idea is to augment
the data structure invariant to say that the annotations are correct as well. Function invpst
expresses this property: invpst 〈〉 = True and

invpst 〈l, kp, (_, kp ′), r〉 =
(invpst l ∧ invpst r ∧ is_min2 kp ′ (set (inorder l @ kp # inorder r)))

where set (...) yields all key-priority bindings and is_min2 asserts that kp ′ is minimal amongst
them: is_min2 kp ′ KP = (kp ′ ∈ KP ∧ (∀ kp∈KP. snd kp ′ ≤ snd kp)).

It is straightforward to show invpst (node l a c r) = (invpst l ∧ invpst r), and this easily
discharges the additional proof obligations when transforming the correctness proof.

ITP 2019
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3.3 Related Work
Our priority map ADT is close to Hinze’s [12] priority search queue interface, except that
he also supports a few further operations that we could easily add but do not need for our
applications. However, it is not clear if his implementation technique is the same as our
priority search tree because his description employs a plethora of concepts, e.g. priority
search pennants, tournament trees, semi-heaps, and multiple views of data types that obscure
a direct comparison. We claim that at the very least our presentation is new because it is
much simpler; we encourage the reader to compare the two.

As already observed by Hinze, McCreight’s [19] priority search trees support range queries
more efficiently than our trees. However, we can support the same range queries as Hinze
efficiently, but that is outside the scope of the paper.

4 Undirected Graphs

There seems to be no single best way of how to represent undirected graphs in Isabelle/HOL.
One variant is to represent an undirected graph as a symmetric relation, i.e., an entity of
type ( ′v × ′v) set. The advantage is that many existing theory of symmetric relations can be
reused. However, edges in a symmetric relation are pairs, i.e., they are naturally directed: For
u 6=v, we have (u,v) 6=(v,u), although, when interpreted as undirected edges, the two should
be identified. The same issue transfers to derived concepts like paths in between two nodes.

Another option is to use undirected pairs or doubleton sets to represent an edge. The
advantage is that HOL’s equality on edges matches the natural equality. However, one cannot
re-use the well-established theory of relations then, and has to develop many basic concepts
from scratch.

For this formalization, we use a hybrid approach, which tries to combine the advantages
of both, and being lightweight at the same time: A graph is represented as a symmetric
relation, and only when equality on edges is required, they are converted to doubleton sets
on the spot.

We start by defining the type of an undirected graph to be a finite, symmetric, and
irreflexive relation together with a set of nodes, which must cover the domain of the relation:

typedef ′v ugraph = { (V :: ′v set , E). E ⊆ V×V ∧ finite V ∧ sym E ∧ irrefl E }

Next, we define accessor functions to obtain the nodes and edges of a graph:

nodes:: ′v ugraph ⇒ ′v set edges:: ′v ugraph ⇒ ( ′v × ′v) set

We also define functions to construct a graph from its nodes and edges, to insert an edge
into a graph, and to restrict the edges of a graph:

graph:: ′v set ⇒ ( ′v × ′v) set ⇒ ′v ugraph
ins_edge:: ′v × ′v ⇒ ′v ugraph ⇒ ′v ugraph
restrict_edges:: ′v ugraph ⇒ ( ′v × ′v) set ⇒ ′v ugraph

Note that graph forms the symmetric closure of the edges, ignores reflexive edges, and adds
missing nodes:

finite V ∧ finite E −→
nodes (graph V E) = V ∪ fst ‘ E ∪ snd ‘ E ∧ edges (graph V E) = E ∪ E−1 − Id

Similarly, ins_edge also inserts the nodes of the edge, and restrict_edges removes all edges
not in the symmetric closure of the given set.

A path is a list of (directed) edges between two nodes:
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path g u [] v = (u = v)
path g u (e # ps) w = (∃ v. e = (u, v) ∧ e ∈ edges g ∧ path g v ps w)

As the edge relation is symmetric, every path induces a reversed path:

path g u (revp p) v = path g v p u where revp p = rev (map (λ(u, v). (v, u)) p)

Obviously, existence of a path between two nodes is equivalent to these nodes being in the
reflexive transitive closure of the edge relation:

(∃ p. path g u p v) = ((u, v) ∈ (edges g)∗) where _∗ is reflexive transitive closure

We call a graph connected, if there exists path between all its nodes:

connected g = (nodes g × nodes g ⊆ (edges g)∗)

A simple path does not contain any edge twice. Here, we need to consider undirected edges.
Thus, we define a function uedge:: ′a × ′a ⇒ ′a set to map an edge to a doubleton set.

simple p = distinct (map uedge p) where uedge = (λ(a, b). {a, b})

A cycle is a simple, non-empty path with the same start and end node. We define a predicate
for cycle-free graphs:

cycle_free g = (@ p u. p 6= [] ∧ u ∈ nodes g ∧ simple p ∧ path g u p u)

A tree is a connected and cycle free graph:

tree g = (connected g ∧ cycle_free g)

A spanning tree of a graph is a tree with the same nodes and a subset of the edges:

is_spanning_tree G T = (tree T ∧ nodes T = nodes G ∧ edges T ⊆ edges G)

Every connected graph has a spanning tree:

connected g −→ (∃ t. is_spanning_tree g t)

which is proved by removing edges on cycles until the graph is cycle free.
We model weighted graphs as graphs with a function w:: ′v set ⇒ nat from (doubleton)

sets to natural numbers1. Note that we do not need to restrict the domain of the weight
function to be doubleton sets of valid nodes – the values for invalid nodes or sets will just be
ignored. We then define the weight of a graph as the sum of the weights of all its edges:

weight w g = sum w (uedge ‘ edges g)

A minimum spanning tree (MST) of a graph g is a spanning tree with minimal weight:

is_MST w g t =
(is_spanning_tree g t ∧ (∀ t ′. is_spanning_tree g t ′ −→ weight w t ≤ weight w t ′))

Obviously, each connected graph has a minimum spanning tree:

connected g −→ (∃ t. is_MST w g t)

1 For simplicity of presentation, we restrict weights to be natural numbers. Lifting this restriction is
straightforward.
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4.1 Related Work
There is a plethora of approaches to modelling graphs. Most formalizations focus on directed
graphs. A typical example is Noschinski [24] (who should be consulted for a more detailed
review of related work): he models undirected graphs as symmetric (bidirectional) directed
graphs. Abstractly, this is also what Chou [5] does, who was the first to formalize undirected
graphs. In both approaches, there is an explicit type of edges. Our approach is at the
minimalist end: we avoid a separate edge type but use pairs of nodes. This means that we
can use pattern matching on pairs in addition to projection functions but it also means that
we cannot have multi-edges, something we don’t need in our applications.

4.2 An Interface for Undirected Graphs
We have defined a representation of undirected weighted graphs in Isabelle/HOL. The next
step towards an implementation is to specify an interface for the operations on undirected
weighted graphs. We fix an implementation type ′g, and an invariant invar :: ′g ⇒ bool, as
well as two abstraction functions, one for the graph, and one for the weights:

αg:: ′g ⇒ ′v ugraph αw:: ′g ⇒ ′v set ⇒ nat

We specify operations to get the adjacent edges of a node, to create an empty graph, and to
add an edge to a graph (implicitly adding the endpoints as nodes).

adj:: ′g ⇒ ′v ⇒ ( ′v × nat) list empty:: ′g add_edge:: ′v × ′v ⇒ nat ⇒ ′g ⇒ ′g

Note that these are exactly the operations required for our purpose of formalizing Prim’s
algorithm. More operations can easily be added. The specifications for the operations are:

invar g −→
set (adj g u) = {(v, d) | (u, v) ∈ edges (αg g) ∧ αw g {u, v} = d}

invar empty ∧ αg empty = graph ∅ ∅ ∧ αw empty = (λ_. 0)

invar g ∧ (u, v) /∈ edges (αg g) ∧ u 6= v −→
invar (add_edge (u, v) d g) ∧
αg (add_edge (u, v) d g) = ins_edge (u, v) (αg g) ∧
αw (add_edge (u, v) d g) = (αw g)({u, v} := d)

That is adj g u returns a list of pairs of nodes and weights, corresponding to the adjacent
edges of node u, empty creates an empty graph, and add_edge inserts a (new) edge.

Note that designing interfaces often involves a trade-off between usability and implement-
ability. We now motivate some of our design decisions:

We leave the order of the adjacency list unspecified and allow duplicates. This introduces
nondeterminism, and thus makes using the interface more complex. However, an (ab-
stractly) fixed order on the adjacency list can only be implemented when the node type
is linearly ordered, and even then, it incurs unnecessary overhead due to sorting.
The node passed to adj needs not be a node of the graph (The returned list is empty for
non-nodes). This makes the interface easier to use, as there is one precondition less to
prove. Moreover, the implementation is straightforward.
The weight function of the empty graph is fixed to λ_. 0. This makes the specification
deterministic, and thus simpler to use, and can be easily implemented.
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4.3 Parsing Graphs from Lists
Based on the graph interface, we develop an algorithm to create a graph from a list of
weighted edges. The elements of the list have the form ((u, v), d), describing an edge between
u and v with weight d:

from_list l = foldr (λ(e, d). add_edge e d) l empty

We show that, for a valid list l, a graph implementation gi will be created that satisfies
its invariant, and whose abstraction (g,w) contains exactly the nodes, edges, and weights
contained in the list:

G_valid_wgraph_repr l −→
(let gi = from_list l; g = αg gi; w = αw gi
in invar gi ∧ nodes g =

⋃
{{u, v} | ∃ d. ((u, v), d) ∈ set l} ∧

edges g =
⋃
{{(u, v), (v, u)} | ∃ d. ((u, v), d) ∈ set l} ∧

(∀ ((u, v), d)∈set l. w {u, v} = d))

Here, a list is valid if no edge is specified twice and there are no reflexive edges:

G_valid_wgraph_repr l =
((∀ ((u, v), d)∈set l. u 6= v) ∧ distinct (map (λ((u, v), d). {u, v}) l))

5 Verifying Prim’s Algorithm

Prim’s algorithm [26] is a classical algorithm to find a minimum spanning tree of an undirected
graph. In this section we describe our formalization of Prim’s algorithm, roughly following
the presentation of Cormen et al. [6].

Our approach features stepwise refinement. We start by a generic MST algorithm
(Section 5.1) that covers both Prim’s and Kruskal’s algorithms. It maintains a subgraph
A of an MST. Initially, A contains no edges and only the root node. In each iteration,
the algorithm adds a new edge to A, maintaining the property that A is a subgraph of an
MST. In a next refinement step, we only add edges that are adjacent to the current A, thus
maintaining the invariant that A is always a tree (Section 5.2). Next, we show how to use a
priority queue to efficiently determine a next edge to be added (Section 5.3), and implement
the necessary update of the priority queue using a foreach-loop (Section 5.4). Finally we
parameterize our algorithm over ADTs for graphs, maps, and priority queues (Section 5.5),
instantiate these with actual data structures, and extract executable ML code (Section 5.6).

The advantage of this stepwise refinement approach is that the proof obligations of each
step are mostly independent from the other steps. This modularization greatly helps to keep
the proof manageable. Moreover, the steps also correspond to a natural split of the ideas
behind Prim’s algorithm: The same structuring is also done in the presentation of Cormen
et al. [6], though not as detailed as ours.

5.1 Generic MST Algorithm
For the rest of this section, g:: ′v ugraph will be an undirected graph, r ∈ nodes g will be the
root node identifying the connected component of the graph for which we want to compute
the minimum spanning tree, and w:: ′v set ⇒ nat will be a weight function.

ITP 2019
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Once we have fixed a root node, we can define the reachable part of the graph2:

rg = ins_node r (restrict_nodes g ((edges g)∗ ‘‘ {r}))

Cormen et al. [6] describe Prim’s algorithm as an instance of a more generic algorithm,
which maintains a subgraph A of a minimum spanning tree. The graph is grown by repeatedly
adding safe edges, i.e., edges that preserve the property of A being a subgraph of a minimum
spanning tree.

is_subset_MST w g A = (∃ t. is_MST w g t ∧ A ⊆ edges t)

Note that, like Cormen et al., we represent the current subgraph by a set of directed edges
A::( ′v × ′v) set.

The central idea of the generic algorithm provides a way to find a safe edge: A cut (C ,
nodes g − C ) is a partitioning of the nodes. A subgraph respects a cut, if none of its edges
cross the cut:

respects_cut A C = (A ⊆ C × C ∪ (− C ) × − C )

An edge (u,v) is light w.r.t. a cut (C , nodes g − C ) if it crosses C (wlog. u ∈ C ∧ v /∈ C ),
and its weight is minimal among all edges crossing C :

light_edge C u v =
(u ∈ C ∧ v /∈ C ∧ (u, v) ∈ edges rg ∧
(∀ (u ′, v ′)∈edges rg ∩ C × − C . w {u, v} ≤ w {u ′, v ′}))

Given a cut that is respected by the current subgraph, light edges are safe:

is_subset_MST w rg A ∧ respects_cut A C ∧ light_edge C u v −→
is_subset_MST w rg ({(v, u)} ∪ A)

5.2 Prim’s Algorithm
Prim’s algorithm maintains a connected graph, i.e., A forms a tree. It starts with the
singleton tree containing no edges and only the root node, and then repeatedly adds light
edges connecting a node of the tree with a node not yet in the tree. Note that the nodes of
the current tree can be defined from A as S A = {r} ∪ fst ‘ A ∪ snd ‘ A. Obviously, they
form a cut respected by A: respects_cut A (S A).

Figure 1 shows the abstract algorithm in pseudocode: As long as the current nodes S A
are not closed under the edge relation, we pick a light edge (wrt. the cut S A), and add it to
A. In order to prove this algorithm correct, we have to specify an invariant and a measure
function, and show that the invariant holds initially, is preserved by a loop iteration, and
implies that the result is a minimum spanning tree when the loop terminates. Moreover, we
have to show that the measure decreases in every loop iteration.

As measure, we use the number of nodes that are not in S A:

T_measure1 A = card (nodes rg − S A)

The invariant states that A is a subgraph of a minimum spanning tree, and that all nodes of
A are connected to the root node:

2 Cormen at al. [6] assume that the graph is connected. Our setting is slightly more general. In particular,
it saves us from checking a connectedness precondition.



P. Lammich and T. Nipkow 23:9

A := {}
while S A not closed under edges
choose edge (u,v) with u /∈ S A and v ∈ S A such that w {u,v} is minimal
A := {(u,v)} ∪ A

Figure 1 Pseudocode of the abstract version of Prim’s Algorithm.

prim_invar1 A = (is_subset_MST w rg A ∧ (∀ (u, v)∈A. (v, r) ∈ A∗))

The following theorems formalize invariant initialization, maintenance, and termination with
the correct result for the abstract algorithm:

prim_invar1 ∅

prim_invar1 A ∧ light_edge (S A) u v −→
prim_invar1 ({(v, u)} ∪ A) ∧ T_measure1 ({(v, u)} ∪ A) < T_measure1 A

prim_invar1 A ∧ edges g ∩ S A × − S A = ∅ −→ is_MST w rg (graph {r} A)

Recall that graph forms the symmetric closure of the edges and adds missing nodes.

5.3 Using a Priority Queue
To efficiently find a next edge to be added, Prim’s algorithm maintains a priority queue Q:: ′v
⇒ enat and a predecessor map π:: ′v ⇒ ′v option, where enat is the type of natural numbers
with ∞ and enat :: nat ⇒ enat is the canonical injection. A node u is adjacent to a set of
nodes S, iff u /∈S and there is an edge connecting u to some node in S.

For every node u that is adjacent to the current tree, Q u stores the minimum weight
of all edges connecting u to the tree. Moreover, π u is the other endpoint of this edge.
Additionally, we use π to store the edges of the current subtree itself: If π u = Some v, and
Q u = ∞, i.e., the node u is already in the tree, then (u, v) is an edge of the current subtree:
A Q π = {(u, v) | π u = Some v ∧ Q u = ∞}.

Note that the implementation of Cormen et al. slightly differs from ours: Our priority
queue only stores nodes that are adjacent to S A, while theirs stores all nodes not in S A. In
their implementation, the priority queue has to be initialized with all (reachable) nodes of
the graph, while we only need to initialize the queue for the root node. This simplifies the
implementation as it saves an iteration over the graph’s node.

A step of the algorithm extracts a node u from Q with minimum priority, and then
updates the priorities for all adjacent nodes. The priority (and predecessor) of a node v ′ has
to be updated if v ′ is adjacent to u, outside S, and the weight of the edge (u,v ′) is less than
the weight currently stored in Q v ′:

upd_cond Q π u v ′ = ((v ′, u) ∈ edges g ∧ v ′ /∈ S (A Q π) ∧ enat (w {v ′, u}) < Q v ′)

In this case, we update both, Q v ′ and π v ′:

Qinter Q π u v ′ = (if upd_cond Q π u v ′ then enat (w {v ′, u}) else Q v ′)
Q ′ Q π u = (Qinter Q π u)(u := ∞)
π ′ Q π u v ′ = (if upd_cond Q π u v ′ then Some u else π v ′)

ITP 2019
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Q := (λ_. ∞)(r :=0); π := (λ_. None)
while Q 6= (λ_. ∞)
pick u such that Q u is minimal
Q := Q ′ Q π u; π := π ′ Q π u
Q u := ∞

Figure 2 Pseudocode of Prim’s Algorithm using a Priority Queue.

Note that we define Q ′ in two steps: Qinter is the priority queue where adjacent nodes have
been updated, but the node u has not yet been removed. This definition is motivated by our
implementation, which first iterates over the adjacent nodes, and then removes u from Q3.
The refined algorithm is displayed in Figure 2.

Note that the refined algorithm starts with a priority queue that only contains the root
node r. Intuitively, this corresponds to a tree that contains no nodes at all, not even the
root node. In particular, it does not correspond to the initial state of the abstract algorithm.
Only after the first loop iteration, the priority queue is initialized for the nodes adjacent to r.
Thus, the refined state after the first iteration corresponds to the abstract initial state. We
accommodate for this discrepancy in the invariant and variant of the refined loop:

prim_invar2 Q π = (prim_invar2_init Q π ∨ prim_invar2_ctd Q π)
T_measure2 Q π = (if Q r = ∞ then T_measure1 (A Q π) else card (nodes rg))

Here, prim_invar2_init states that Q and π are in their initial states, and prim_invar2_ctd
states that the abstract invariant holds for the abstracted state A Q π, and, additionally,
some consistency properties on Q and π:

I Definition 1. Let (Q, π) be the refined state of the algorithm. Moreover, let A be the
corresponding abstract state, S be the nodes of the current subtree, and cE = edges rg ∩ (−
S) × S be the set of edges crossing S. Then, prim_invar2_ctd Q π states that

1. the abstract invariant holds: prim_invar1 w g r A
2. the root node has no predecessor and is not in Q: π r = None ∧ Q r = ∞
3. the outside node of any crossing edge is in Q: ∀ (u, v)∈cE . Q u 6= ∞
4. π encodes actual edges with target nodes in S:

∀ u v. π u = Some v −→ v ∈ S ∧ (u, v) ∈ edges rg
5. Q u stores the weight of the corresponding edge in π, and this is the minimum weight of

all crossing edges from u:
∀ u d. Q u = enat d −→

(∃ v. π u = Some v ∧ d = w {u, v} ∧ (∀ v ′. (u, v ′) ∈ cE −→ d ≤ w {u, v ′}))

Note that the first and second part of the invariant mutually exclude each other:

3 Although non-standard, we chose this implementation because it slightly simplifies the proofs: When
further refining the update, we can simply assume that the loop invariant holds. In the standard
implementation, which removes u before the update, we would have to define an assertion that describes
the state after the removal.
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prim_invar2_init Q π −→ ¬ prim_invar2_ctd Q π Proof: Consider value of Q r.

Thus, the following lemmas imply correctness of the refined algorithm:

prim_invar2_init initQ initπ

prim_invar2_init Q π ∧ Q u = enat d −→
prim_invar2_ctd (Q ′ Q π u) (π ′ Q π u) ∧
T_measure2 (Q ′ Q π u) (π ′ Q π u) < T_measure2 Q π

prim_invar2_ctd Q π ∧ Q u = enat d ∧ (∀ v. enat d ≤ Q v) −→
prim_invar2_ctd (Q ′ Q π u) (π ′ Q π u) ∧
T_measure2 (Q ′ Q π u) (π ′ Q π u) < T_measure2 Q π

prim_invar2_ctd Q π ∧ Q = (λ_. ∞) −→
is_MST w rg (graph {r} {(u, v) | π u = Some v})

5.4 Inner Foreach Loop
As a next step towards an efficiently executable implementation, we implement Q ′ and π ′ by
iterating over the nodes adjacent to u. We assume that adjs::( ′v × nat) list is the adjacency
list of node u, and define:

foreach u adjs (Q, π) =
foldr
(λ(v, d) (Q, π).

if v 6= r ∧ (π v = None ∨ Q v 6= ∞) ∧ enat d < Q v
then (Q(v := enat d), π(v 7→ u)) else (Q, π))

adjs (Q, π)

where f (x 7→y) is short for f (x :=Some y). This updates Q and π only for adjacent nodes, with
a smaller associated weight than that currently stored in Q. We show that this implementation
computes the correct result:

set adjs = {(v, d) | (u, v) ∈ edges g ∧ w {u, v} = d} −→
foreach u adjs (Q, π) = (Qinter Q π u, π ′ Q π u)

In order to express Q and π after some but not all adjacent nodes have been processed, we
need to generalize the statement accordingly. We define

Qigen Q π u adjs v = (if v /∈ fst ‘ set adjs then Q v else Qinter Q π u v)
π ′gen Q π u adjs v = (if v /∈ fst ‘ set adjs then π v else π ′ Q π u v)

and prove

set adjs ⊆ {(v, d) | (u, v) ∈ edges g ∧ w {u, v} = d} −→
foreach u adjs (Q, π) = (Qigen Q π u adjs, π ′gen Q π u adjs)

by induction on the adjacency list adjs.
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5.5 Data Structures
The next step towards an executable algorithm is to implement the graph, priority queue,
and predecessor map by actual data structures. We do this in a two-step approach: First,
we implement the algorithm parameterized over the interfaces of graphs, maps, and priority
maps, and, in a second step, we instantiate these interfaces to actual data structures. This
approach has two advantages: First, it is easy to exchange the used data structures by simply
exchanging the instantiation. Second, not knowing the actual data structures when proving
the implementation correct prevents accidental breaking of the interface and looking into
data structure details. Note that this actually happens in practice, e.g., due to “forgotten”
simplifier setup, or automated tools like sledgehammer, which do not know about interfaces.

For Prim’s algorithm, we fix the interfaces of an undirected weighted graph (cf. Section 4.2),
a map, and a priority map (cf. Section 3). The interface functions are prefixed with G, M,
and Q, respectively, and the implementation types are ′g, ′m, and ′q:

G_αw:: ′g ⇒ ′v set ⇒ nat G_αg:: ′g ⇒ ′v ugraph G_invar :: ′g ⇒ bool
G_adj:: ′g ⇒ ′v ⇒ ( ′v × nat) list G_empty:: ′g
G_add_edge:: ′v × ′v ⇒ nat ⇒ ′g ⇒ ′g

M_lookup:: ′m ⇒ ′v ⇒ ′v option M_invar :: ′m ⇒ bool M_empty:: ′m
M_update:: ′v ⇒ ′v ⇒ ′m ⇒ ′m M_delete:: ′v ⇒ ′m ⇒ ′m

Q_lookup:: ′q ⇒ ′v ⇒ nat option Q_invar :: ′q ⇒ bool Q_empty:: ′q
Q_update:: ′v ⇒ nat ⇒ ′q ⇒ ′q Q_delete:: ′v ⇒ ′q ⇒ ′q Q_is_empty:: ′q ⇒ bool
Q_getmin:: ′q ⇒ ′v × nat

For the rest of this section, we also fix a graph g:: ′g and root node r :: ′v.
At this point of the formalization, we can actually define Prim’s algorithm as a functional

program. On the previous abstraction levels, this was not possible because functional
programs in Isabelle/HOL must be deterministic. However, when, e.g., extracting a minimum
element from a priority queue, we cannot define any tie-breaking in terms of the abstract
representation Q:: ′v ⇒ enat, as the actual tie-breaking will depend on the data structure
that is used. The same holds for the order in which the foreach loop iterates over the list
of adjacent nodes. Figure 3 shows our implementation of the algorithm. It uses the while
combinator, which obeys the following recursion equation:

while b c s = (if b s then while b c (c s) else s)

In HOL, tail-recursive functions can always be defined, regardless of termination [2].
Like for the other abstraction levels, we define an invariant and a measure function:

prim_invar_impl Qi πi =
(Q_invar Qi ∧ M_invar πi ∧ prim_invar2 (Q_α Qi) (M_lookup πi))
T_measure_impl = (λ(Qi, πi). T_measure2 (Q_α Qi) (M_lookup πi))

where Q_α abstracts the priority map to the type ′v ⇒ enat, mapping None to ∞, and
M_lookup abstracts the predecessor map to the type ′v ⇒ ′v option.

Again, we show invariant initialization, maintenance, and termination with the correct
result:

prim_invar_impl (Q_update r 0 Q_empty) M_empty

prim_invar_impl Qi πi ∧ ¬ Q_is_empty Qi ∧ Q_getmin Qi = (u, d) ∧
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foreach_impl Qi πi u (G_adj g u) = (Qi ′, πi ′) −→
prim_invar_impl (Q_delete u Qi ′) πi ′ ∧
T_measure_impl (Q_delete u Qi ′, πi ′) < T_measure_impl (Qi, πi)

Q_is_empty Q ∧ prim_invar_impl Q π −→
M_invar π ∧ is_MST (G_αw g) rg (graph {r} {(u, v) | M_lookup π u = Some v})

Here, foreach_impl stands for the inner foreach loop:

foreach_impl Qi πi u adjs = foldr (foreach_impl_body u) adjs (Qi, πi)

We show its correctness separately:

foreach_impl Qi πi u (G_adj g u) = (Qi ′, πi ′) ∧ prim_invar_impl Qi πi −→
Q_invar Qi ′ ∧ M_invar πi ′ ∧ Q_α Qi ′ = Qinter (Q_α Qi) (M_lookup πi) u ∧
M_lookup πi ′ = π ′ (Q_α Qi) (M_lookup πi) u

This is proved by first showing that the abstract foreach loop foreach can simulate the
concrete one, and then using the already proved correctness of the abstract loop.

Finally, we show correctness of the whole algorithm, i.e., that the returned predecessor
map satisfies its invariant, and encodes a minimum spanning tree of the reachable part of
the graph:

invar_MST prim_impl ∧
is_MST (G_αw g) (component_of (G_αg g) r)
(graph {r} {(u, v) | M_lookup prim_impl u = Some v})

The proof is straightforward, using the standard invariant proof rule for while loops:

[[P s;
∧
s. P s ∧ b s −→ P (c s);

∧
s. P s ∧ ¬ b s −→ Q s; wf r ;∧

s. P s ∧ b s −→ (c s, s) ∈ r ]]
=⇒ Q (while b c s)

5.6 Executable Code
Using Isabelle’s locale mechanism, it is straightforward to instantiate the algorithm prim_impl
to actual data structures implementing the interfaces. We do so by using red-black trees for
both, the priority map and predecessor map. The graph is implemented by red-black trees,
mapping nodes to their adjacency lists.

Finally, we combine the list parser from_list with prim_impl.

prim_list_impl l r =
(if G_valid_wgraph_repr l then Some (prim_impl (G_from_list l) r) else None)

We return None if the input list is not valid, otherwise we return a minimum spanning tree:

case prim_list_impl l r of None ⇒ ¬ G_valid_wgraph_repr l
| Some πi ⇒

let g = αg (from_list l); w = αw (from_list l); rg = component_of g r ;
t = graph {r} {(u, v) | lookup πi u = Some v}

in G_valid_wgraph_repr l ∧ invar πi ∧ is_MST w rg t

Isabelle’s code generator [11] can generate a functional program in various different target
languages (SML, OCaml, Haskell, Scala) from prim_list_impl.
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prim_impl = (let
— Initialization
(Q,π) = (Q_update r 0 Q_empty, M_empty);
— Outer loop: Iterate until Q is empty
(Q, π) =
while (λ(Q, π). ¬ Q_is_empty Q) (λ(Q, π). let

(u, _) = Q_getmin Q;
— Inner loop: Update for adjacent nodes
(Q, π) =
foldr ((λ(v, d) (Q, π). let

qv = Q_lookup Q v;
πv = M_lookup π v

in
if v 6=r ∧ (qv 6=None ∨ πv=None) ∧ enat d < enat_of_option qv
then (Q_update v d Q, M_update v u π) else (Q, π))

) (G_adj g u) (Q, π);
Q = Q_delete u Q
in (Q, π)) (Q, π)

in π)

Figure 3 Implementation of Prim’s algorithm, parameterized over a graph, map, and priority
map interface.

5.7 Discussion and Related Work
We have used a stepwise refinement approach, from an abstract generic MST algorithm, over
Prim’s algorithm, to its implementation with a priority queue, and finally the realization of
the priority queue with a concrete data structure and the extraction of executable code.

The abstract versions of the algorithm are inherently nondeterministic, which prevents
their straightforward formalization in Isabelle/HOL. Instead, we manually came up with
verification conditions (invariant maintenance) for the abstract level, and refined them towards
the concrete level until we could use them to prove correct the concrete implementation.
We expect that our approach of manual verification condition generation against informal
algorithm sketches will not scale to more complex algorithms. To this end, the Isabelle
Refinement Framework [18] provides a more scalable, though less lightweight, approach to
stepwise refinement in Isabelle/HOL.

We are aware of two previous formal verifications of Prim’s algorithm, but both of them
ignore our focus, efficient data structures, and stop short of executable code. Abrial et al.
[1] perform a stepwise refinement using the B event-based method. Guttmann [10] uses
Isabelle/HOL to verify a version of Prim’s algorithm in an extension of relation algebra.

6 Dijkstra’s Algorithm

Dijkstra’s algorithm [7] is a classical algorithm to determine the shortest paths from a root
node to all other nodes in a weighted directed graph. Although it solves a different problem,
and works on a different type of graphs, its structure is very similar to Prim’s algorithm.
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In particular, like Prim’s algorithm, it has a simple loop structure and can be efficiently
implemented by a priority queue. This makes Dijkstra’s algorithm another good example to
illustrate the main points of this proof pearl: Functional implementations of algorithms that
use priority queues with a decrease-key operation.

A directed graph is represented by a weight function w:: ′v × ′v ⇒ enat. The edge relation
is edges = {(u, v) | w (u, v) 6= ∞}.

Note that this formalization differs from our formalization of undirected graphs, in that
we do not model an explicit node set, nor do we encode finiteness into the type. The modeling
of an explicit node set has proved useful when formalizing the concept of trees4, which is
not required for Dijkstra’s algorithm. As finiteness is the only additional property that
we require, we traded the overhead of defining a new type for the overhead of maintaining
finiteness as an explicit assumption.

6.1 Abstract Algorithm
Again, our formalization of Dijkstra’s algorithm follows the presentation of Cormen et al. [6].
However, for the sake of simplicity, our algorithm does not compute actual shortest paths,
but only their weights.

For the rest of this section, we fix a weighted directed graph w and a source node s. We
define δ u v to be the minimum distance from node u to node v.

Abstractly, Dijkstra’s algorithm keeps track of a set of finished nodes S :: ′v set, and an
estimate of the shortest path weights D:: ′v ⇒ enat. The invariant D_invar D S states that

1. D u is an upper bound of the minimum distance between s and u:

δ s u ≤ D u

2. D u is precise if u is finished:

u ∈ S −→ D u = δ s u

3. D u is consistent with the distances induced by paths that end with an edge from a node
v∈S :

v ∈ S −→ D u ≤ δ s v + w (v, u)

4. The start node is finished, unless in the initial state

s ∈ S ∨ D = (λ_. ∞)(s := 0) ∧ S = ∅

The main idea of the algorithm is that the least estimate D u among all unfinished nodes
u /∈S is already precise:

u /∈ S ∧ (∀ v. v /∈ S −→ D u ≤ D v) −→ D u = δ s u

Thus, adding an unfinished node u /∈S with minimal D u to the finished set S, and updating
the estimates of all successor nodes to accommodate for paths over u, will preserve the
invariant. We iterate this until all nodes are finished, and thus all estimates are precise.

4 For example, connecting two trees on disjoint nodes by a single edge yields a tree again. Without an
explicit node set, the formulation of this lemma requires tedious special cases for singleton trees.
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6.2 Refined Algorithm
Like for Prim’s algorithm, a priority map Q:: ′v ⇒ nat option from unfinished nodes to
estimates is used to efficiently obtain a node with minimum estimate. Moreover, we use
another map V :: ′v ⇒ nat option to map finished nodes to their minimum distances from the
source. The relation between a refined state (Q,V ) and an abstract state (D,S) is defined as:

coupling Q V D S =
(D = enat_of_option ◦ V ++ Q ∧ S = dom V ∧ dom V ∩ dom Q = ∅)

where (++) joins two maps, and enat_of_option maps None to∞. The refined loop invariant
states that the refined state is related to an abstract state that satisfies its invariant:

D_invar ′ Q V = (∃D S . coupling Q V D S ∧ D_invar D S)

The rest of the formalization proceeds analogously to the formalization of Prim’s algorithm:
We implement the update of the successor nodes by iteration over a successor list, refine
the algorithm to use the interfaces of directed graphs, priority maps and maps, and finally
instantiate it with concrete, red-black-tree based implementations. Combining the imple-
mentation with a from_list function for directed graphs, we get the executable function
dijkstra_list::( ′v × ′v × nat) list ⇒ ′v ⇒ ( ′v × nat, color) tree option and the theorem

case dijkstra_list l s of None ⇒ ¬ valid_graph_rep l
| Some D ⇒

valid_graph_rep l ∧ invar D ∧
(∀ u d. (lookup D u = Some d) = (δ (wgraph_of_list l) s u = enat d))

Note that the distance δ is also parameterized over the graph here.

6.3 Related Work
Dijkstra’s algorithm seems to be a standard benchmark for formal verification tools. One of
the authors [23] has already verified Dijkstra’s algorithm (including computation of shortest
paths) using a functional priority queue based on Finger Trees [13], and later [15] amended
the formalization to use an imperative heap data structure. Filliâtre [8] provides a verification
in Why3 [9], Böhme et al. [3] provide one in Boogie, and Charguéraud [4] uses characteristic
formulae to verify a Caml implementation. However, all of these do not verify priority queue
data structures and only compute the distances, instead of actual shortest paths.

The treatment of priority queues differs in the above formalizations. Nordhoff and
Lammich [23] use finger trees which support decrease-key. Charguéraud [4], however, writes:

This implementation uses a priority queue that does not support the decrease-key
operation. Using such a queue makes the proofs slightly more involved, because the
invariants need to account for the fact that the queue may contain superseded values.

It appears that he uses the following trick that works for Dijkstra and Prim. Instead of
decreasing the priority of some key k to p one adds the new pair (k,p) to the priority queue.
If one also maintains a set of keys that have been extracted from the priority queue (which
Dijkstra and Prim do anyway), one can simply ignore pairs (k,p) returned by getmin, if k
has been extracted before. This trick requires that the same key is not inserted again after it
has been extracted.
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7 Conclusion

We presented priority search trees, a simple, purely functional and efficient data structure
that combines search trees and priority queues, including an operation for modifying the
priority associated with a key (aka “decrease-key”). We are only aware of considerably more
complicated purely functional data structures with decrease-key, and the only one that has
been formally verified is based on finger trees [13, 27, 22].

Based on priority search trees we gave the first verified executable implementation of
Prim’s algorithm. In particular we included the level of efficient data structures which had
been ignored before. Therefore we show the details of the stepwise refinement and verification.
We have also verified Dijkstra’s algorithm in the same manner, but because of the ubiquity
of this algorithm as a verification benchmark we merely sketched the proof.
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