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Abstract
We present a formalisation of the unified translation approach from linear temporal logic (LTL) to
ω-automata from [19]. This approach decomposes LTL formulas into “simple” languages and allows
a clear separation of concerns: first, we formalise the purely logical result yielding this decomposition;
second, we develop a generic, executable, and expressive automata library providing necessary
operations on automata to re-combine the “simple” languages; third, we instantiate this generic
theory to obtain a construction for deterministic Rabin automata (DRA). We extract from this
particular instantiation an executable tool translating LTL to DRAs. To the best of our knowledge
this is the first verified translation of LTL to DRAs that is proven to be double-exponential in the
worst case which asymptotically matches the known lower bound.
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1 Introduction

As time has shown again and again, bugs in hardware and software can have dramatic costs,
ranging from monetary damages over destroyed property to life-threatening situations. In
order to prevent the introduction of unwanted behaviour into software or hardware designs,
an immense amount of testing and debugging is applied. However, for critical systems such
methods are not enough, since they simply cannot guarantee the absence of bugs in general.
Formal methods offer here a way forward by applying mathematical rigour to detect and
rule out unwanted behaviour. Model checking [14] is one of the most successful techniques
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11:2 A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

in the area of formal methods. A key component for model checking reactive systems,
i.e., non-terminating systems interacting with an open environment, against a temporal
specification language, in our case linear temporal logic (LTL), is the translation to a suitable
automaton model over infinite words.

Throughout the last decades, a wide variety of translation strategies to different types of
ω-automata have been proposed and implemented, e.g. [23, 22, 2, 4, 43, 17]. However, as
mentioned before, software development seems to be inherently error-prone, not to mention
there might be mistakes in the definition of these constructions themselves. So, how can we
trust these implementations to produce the correct automata for identifying bugs or proving
their absence? Who watches the watchers?

Exactly that train of thought lead to the development of the Cava LTL model checker [20]
which is verified in Isabelle and exported as an executable tool. The model checker includes
a translation from LTL to nondeterministic Büchi automata due to [23]. However, for model
checking other structures, such as probabilistic systems, other types of automata are necessary,
such as limit-deterministic [44, 15] or deterministic automata [5]. Consequently, there is the
need to formalise new translations from scratch which seems wasteful and cumbersome.

It would be desirable to have a separation of concerns: a theory that captures the common
essence of LTL for all desired translations and that leaves a small gap to deal with the
specifics of a chosen automaton model. The logical framework of [19] sketches an approach
to such a modularisation: a theorem decomposing an LTL formula ϕ into “simple” languages,
named L1

ϕ,X , L2
X,Y , and L3

X,Y , such that:

L(ϕ) =
⋃

X⊆ν(ϕ)
Y⊆µ(ϕ)

(L1
ϕ,X ∩ L2

X,Y ∩ L3
X,Y )

where X and Y are sets of least- and greatest-fixed operators – hence the names ν and
µ – that are subformulas of ϕ. We will later see a formal definition of these sets. This
decomposition outlines a simple strategy to obtain a translation from LTL to our chosen
automaton model: first, we define constructions for the “simple” languages; second, we
implement two Boolean operations, namely union and intersection, in the automaton model;
third, we combine the automata for L1

ϕ,X , L2
X,Y , and L3

X,Y using these Boolean operations.

Contribution

We provide a formalisation of [19] in Isabelle and contribute the following components: (1) a
generic and expressive automata library2 providing the necessary Boolean operations, (2)
a formalisation of the Master Theorem [19] decomposing LTL formulas, (3) a combination
of these two components to obtain an executable and verified translation from LTL to
deterministic Rabin automata (DRA) of asymptotic optimal size, and (4) an implementation
extracted from the Isabelle theory combined with an LTL parser, a verified LTL simplifier,
and a serialisation to the HOA format [3], a textual format for ω-automata. Note that the
resulting implementation is just one use-case and using the same framework we can also
obtain a construction for other types of ω-automata, e.g. nondeterministic Büchi automata
(NBA) or deterministic generalised Rabin automata. However, this would exceed the scope
and space of this paper.

2 The scope of the library is actually wider than just the support of ω-automata: automata on finite
words and abstract transition systems can also be expressed.
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Isabelle/HOL [36] is a proof assistant based on Higher-Order Logic (HOL), which can
be thought of as a combination of functional programming and logic. Formalisations done
in Isabelle are trustworthy for two reasons: First, Isabelle’s LCF architecture guarantees
that all proofs are checked using a very small logical core which is rarely modified but
tested extensively over time. This reduces the trusted code base to a minimum. Second,
bugs in the core rarely lead to accidentally proving false propositions. Bugs that have large
effects are easily caught, while the limited applicability of bugs with small effects is unlikely
to coincide with a logical mistake in the large-scale structure of the proof. In order to
export executable code, we use the Isabelle code generator in conjunction with the monadic
refinement framework [26] and automatic refinement [27]. Finally, we use several entries
from the “Archive of Formal Proofs” (AFP), a collection of formalisations for Isabelle that
are maintained and continuously machine-checked.

Related Work

A substantial amount of work has already been invested into verifying translations from linear
temporal logic (LTL) to nondeterministic Büchi automata (NBA3): We already mentioned
[20] which includes a translation to NBAs following the tableau construction from [23].
Further, the translation proposed by [22], which translates LTL via very-weak alternating
automata to NBAs, has been formalised by [25] in HOL4. This work also includes an
executable refinement of the abstract algorithm.

Alternating automata have been previously studied in [34] with an application to the
translation of LTL to alternating ω-automata. However, the translation from alternating
automaton to NBAs is not included. At the other end of the spectrum the publication
[17], with the formal proof development archived in [40], presents a direct, verified, and
executable translation from LTL to deterministic generalised Rabin automata. However, this
construction is only shown to be triple-exponential and thus one exponential larger than
the known, optimal lower bound. It is also important to mention that with the help of the
Isabelle formalisation errors in the original publication [18] were uncovered and removed for
the journal version [17]. This highlights again how important such a rigorous development
for verification tools is.

Another interesting point is that the DRA constructions we provide for the “simple”
languages can be seen as a version of Brzozowski’s derivatives [13] applied to LTL formulas.
Derivative-based constructions seem to be more natural in the functional programming
paradigm as the work on regular expression equivalence from [37] shows.

Outline

After a brief introduction of the preliminaries in Section 2 we discuss the used automata
formalisation in Section 3. We then give an overview of the LTL decomposition results in
Section 4 and finally derive an executable LTL to DRA translation in Section 5.

3 In the context of this paper we do not distinguish minor variations of acceptance conditions and the
term NBA includes also nondeterministic generalised Büchi automata as well as transition-based Büchi
automata. Similar we use the term DRA also for deterministic generalised Rabin automata.

ITP 2019
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2 Preliminaries

Locales

Isabelle provides a mechanism for parameterized theory contexts in the form of locales [6]. In
a simplified sense, this means that a named context can be defined that is both parameterized
by types and terms as well as augmented with assumptions. It is then possible to add
various definitions and theorems within this context. Finally, by instantiating the parameters
and proving the assumptions, these definitions and theorems also become instantiated and
available to the enclosing context.

ω-Words

Let Σ be a finite alphabet. An ω-word w over Σ is an infinite sequence of letters a0a1a2 . . .

with ai ∈ Σ for all i ≥ 0 and an ω-language is a set of ω-words. We use two different
representations for ω-words over a type α: as a function “αword = nat ⇒ α” and as a
codatatype “α stream = α## α stream”. The reason for this division is historic and is due
to the fact that the material building on the LTL entry [41] predates the development of the
codatatype package [7]. Observe that these two types are isomorphic.

The function prefix i w returns the finite prefix of w of length i and the function suffix i w
gives the infinite suffix of w starting at i. The concatenation operator w′ _ w prepends the
finite word w′ to w.

We introduce the constants scan and sscan for lists and streams, respectively. They work
like the identically named function in Haskell, in that they perform a fold with accumulation.
That is, they fold over a list or stream and collect the state of the fold at each step and
return this collection as a list or stream, respectively. Thus, unlike fold, it is also possible to
define this function on infinite sequences.

We also introduce the constant “infs :: (α ⇒ bool) ⇒ α stream ⇒ bool” that indicates
if a predicate is fulfilled infinitely often in a stream. We will use infs to define acceptance
conditions for ω-automata.

Linear Temporal Logic

We base our contribution on the LTL entry found in the AFP [41] and extend it where
necessary. The datatype we use for LTL syntactically enforces formulas to be in negation
normal form. In order to preserve the expressiveness of LTL with negation, we need to
include for the U (Until) operator its dual R (Release). For the logical decomposition result
it is also essential to include W (Weak-Until) and M (Strong-Release). As usual we use F ϕ

(Eventually) as an abbreviation for tt U ϕ and G ψ (Always) for ff R ψ.

I Definition 1 (Linear Temporal Logic).

datatype α ltl = tt | ff | α | ¬α | (α ltl) ∧ (α ltl) | (α ltl) ∨ (α ltl) | X (α ltl)
| (α ltl) U (α ltl) | (α ltl) R (α ltl) | (α ltl) W (α ltl) | (α ltl) M (α ltl)

The type variable α determines the type of the atomic propositions. We write atoms ϕ
to refer to the set of atomic propositions in a formula ϕ. The function sf ϕ computes all
subformulas of ϕ, i.e., all subtrees of its syntax tree. Additionally, we define subformulasµ ϕ as
set of subformulas of the form ψUχ or ψMχ, and subformulasν ϕ as the set of subformulas
of the form ψ R χ or ψ W χ.
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I Definition 2 (Semantics). The entailment relation |= :: α set word⇒ α ltl⇒ bool is defined
recursively as follows:

w |= tt w |= X ϕ = suffix 1 w |= ϕ

w 6|= ff
w |= a = a ∈ w 0 w |= ϕU ψ = ∃i. suffix i w |= ψ ∧ (∀j < i. suffix j w |= ϕ)
w |= ¬a = a /∈ w 0 w |= ϕR ψ = ∀i. suffix i w |= ψ ∨ (∃j < i. suffix j w |= ϕ)
w |= ϕ ∧ ψ= w |= ϕ ∧ w |= ψ w |= ϕW ψ= ∀i. suffix i w |= ϕ ∨ (∃j ≤ i. suffix j w |= ψ)
w |= ϕ ∨ ψ= w |= ϕ ∨ w |= ψ w |= ϕM ψ = ∃i. suffix i w |= ϕ ∧ (∀j ≤ i. suffix j w |= ψ)

We define the set of all words over an alphabet Σ satisfying a formula ϕ:

language Σ ϕ = {w.w |= ϕ ∧ range w ⊆ Σ} .

Equivalence Relations over LTL

We define three equivalence relations over LTL formulas: The largest equivalence relation is
language equivalence. Two formulas are (language-)equivalent if they are satisfied by exactly
the same words.

A smaller relation is defined by propositional equivalence. We interpret an LTL formula
ϕ in propositional logic by treating every subformula that is a literal (a, ¬a) or a modal
operator (X, U, M, R, W) as a propositional variable. If a set of these subformulas I is a
propositional model for ϕ, we write I |=p ϕ. Two formulas are propositionally equivalent if
are satisfied by the same propositional models.

IDefinition 3 (Propositional Semantics). The propositional entailment relation |=p :: α ltl set⇒
α ltl⇒ bool is defined recursively as follows:

I |=p tt I |=p X ϕ = (X ϕ) ∈ I
I 6|=p ff
I |=p a = a ∈ I I |=p ϕU ψ = (ϕU ψ) ∈ I
I |=p ¬a = (¬a) ∈ I I |=p ϕR ψ = (ϕR ψ) ∈ I
I |=p ϕ ∧ ψ= I |=p ϕ ∧ I |=p ψ I |=p ϕW ψ= (ϕW ψ) ∈ I
I |=p ϕ ∨ ψ= I |=p ϕ ∨ I |=p ψ I |=p ϕM ψ = (ϕM ψ) ∈ I

Finally, constants equivalence is the smallest of the three equivalence relations. We use
the function eval :: α ltl⇒ tvl with the three-valued logic “tvl = Yes | No | Maybe”. It returns
Yes iff ϕ is propositionally equivalent to tt, and No iff ϕ is propositionally equivalent to ff ,
respectively. Otherwise, Maybe is returned. The actual Isabelle formalisation does not refer
to propositional equivalence, but in order to simplify the presentation we use the presented
characterisation. Two formulas ϕ and ψ are constants-equivalent iff they are (syntactically)
identical or “eval ϕ = eval ψ 6= Maybe”.

I Definition 4 (Equivalence Relations). For ϕ :: α ltl and ψ :: α ltl, we define:

ϕ ∼l ψ = ∀w. w |= ϕ←→ w |= ψ

ϕ ∼p ψ = ∀I. I |=p ϕ←→ I |=p ψ

ϕ ∼c ψ = (ϕ = ψ ∨ (eval ϕ = eval ψ ∧ eval ψ 6= Maybe))

I Lemma 5 (Order of Equivalence Relations).

∼c ≤ ∼p ≤ ∼l

Note that this order also corresponds to the computational complexity, with ∼c being
the easiest to compute and ∼l the hardest.

ITP 2019
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3 Transition Systems and Automata

Automata are a popular subject in their own right in theoretical computer science and
also have many applications, like regular expression matching and model checking. As
such, it suggests itself to formalise these concepts separately and generically as a library
to be shared. We first establish our goals for such a library. The deceptively simple term
automaton covers a diverse range of objects that need to be supported. These differ in various
ways, including but not limited to: successors (deterministic, nondeterministic), labelling
(state-labeled, transition-labeled), and acceptance condition (finite, Büchi, Rabin, etc.). For
each automaton type, we want to formalise fundamental concepts like path, reachability,
and language. We would also like to formalise constructions like Boolean operations (union,
intersection, complementation), and degeneralisation of Büchi acceptance conditions. As an
overall goal, we want to share as much of the formalisation as possible by keeping it abstract.
This avoids duplication and often makes definitions and proofs simpler and more elegant.
Finally, we want to do all of this while providing good usability and automation, especially
concerning the basic concepts that constitute the foundation of the library.

With these goals in mind, we look at the formalisations that are already available in the
Isabelle ecosystem. First off, there are many ad-hoc formalisations of transition systems and
automata done as part of other formalisations [40, 21, 1, 31]. Furthermore, there have been
a few major formalisations as part of the Cava project [21], although not all of them were
preserved or published. Stephan Merz and Alexander Schimpf formalised NBAs and NGBAs
in preliminary work of the Cava project [38] and then later as part of Cava itself. Peter
Lammich is the author of the current Cava automata library [28], which includes state-labeled
NBAs and NGBAs. These formalisations cover a very specific set of automata, making them
convenient to use, but only if one happens to need exactly that type of automaton. Another
unpublished formalisation by Thomas Tuerk is more generic and covers DFAs, NFAs, NBAs,
and NGBAs. It achieves this genericity by modelling some of these automata as special cases
of others, which allows for sharing of definitions and proofs. For instance, a deterministic
transition system would naturally be modelled using the type “α⇒ ρ⇒ ρ”. Alternatively, it
can also be treated as a special case of a nondeterministic transition system with the type
“(ρ× α× ρ) set”. However, this causes several issues. Firstly, since the type is too weak, a
uniqueness predicate on the term level is needed to only allow those transition relations that
act like functions. These predicates then have to be carried around in all proofs explicitly,
rather than being encoded in the type. Secondly, due to the type being a poor fit, we can
no longer do things like folding over the successor function. Lastly, the user is restricted
to a single representation, rather than, for instance, being able to choose between explicit
(“(ρ× α× ρ) set”) and implicit (“α⇒ ρ⇒ ρ set”) representations.

We use these experiences to design a new architecture in order to achieve the goals we set
earlier. Since our primary goal is sharing via abstraction, this is what will mainly motivate
our decisions. There are two observations to be made. Firstly, acceptance conditions are far
too diverse and specific to be treated abstractly. Thus, our abstract representation will cover
transition systems instead of automata, with acceptance conditions being added on a more
concrete level at a later stage. This idea is not new and was in fact used in most of the earlier
formalisations as well. Secondly, as mentioned in the previous paragraph, specialisation as
a mechanism of abstraction has various issues. Instead, we choose to use the mechanism
of instantiation via locales (Section 2), the advantages of which will become apparent in
the following sections. Thus, the library formalises abstract transition systems (Section 3.1),
which are then instantiated and used as building blocks for concrete automata (Section 3.2).



J. Brunner, B. Seidl, and S. Sickert 11:7

We try to formalise as much as possible in the context of abstract transition systems, since
this both often leads to elegance and conciseness and is shared between all concrete automata.
Thanks to this, adding a new automaton requires only a minimal amount of setup, allowing
users to use the library in conjunction with their own custom automata representations.
That being said, the set of automata supplied with the library is also growing and becoming
more useful, making this less and less necessary. In the end, we supply both a collection of
useful automata as well as the tools to easily add custom ones as needed.

3.1 Abstract Transition Systems
Having decided on our architecture, the central decision lies in the specification of the locale
for transition systems. We focus on the defining property of a transition system: its ability
to use transitions to move from state to state. This leads us directly to the specification in
terms of its types (transition and state) and its terms (execute and enabled).

I Definition 6.

locale transition-system =
fixes execute :: transition ⇒ state ⇒ state
fixes enabled :: transition ⇒ state ⇒ bool

Given a transition and a source state, the function execute specifies the target state for
that transition. Analogously, the function enabled determines whether the given transition
is enabled at the given source state. Together, these functions capture the essence of a
transition system in terms of its ability to transition between states. Given the types, it may
seem appealing to combine both constants into a single one with result type “state option”.
This sounds great in theory, but unfortunately, is very inconvenient to work with in practice.
It mixes the issue of finding the target of a transition with that of whether that transition
was valid in the first place. Keeping these two things separate makes definitions simpler and
allows for better automation in proofs.

Having defined the transition-system locale, we now develop some abstract theory within
this context. So far, we can only execute single transitions, so we look at finite and infinite
sequences of transitions. We introduce the following constants based on the execute function.

I Definition 7.

target = fold execute :: transition list⇒ state ⇒ state
trace = scan execute :: transition list⇒ state ⇒ state list

strace = sscan execute :: transition stream⇒ state ⇒ state stream

Given a sequence of transitions and a source state, these functions give the target state and
the finite and infinite sequence of traversed states, respectively. Note both the simplicity and
elegance of these definitions and how each of them is simply a lifted version of execute.

We can do something similar for the enabled function.

I Definition 8.

inductive path :: transition list⇒ state ⇒ bool where
path [] p
enabled a p =⇒ path r (execute a p) =⇒ path (a# r) p

coinductive spath :: transition stream⇒ state ⇒ bool where
enabled a p =⇒ spath r (execute a p) =⇒ spath (a## r) p

ITP 2019
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These constants are (co)inductively defined predicates that capture the notion of all the
transitions in a sequence being enabled at their respective states. Like in the previous
paragraph, these are basically lifted versions of enabled, which is also reflected in their types.

Together, these form the very foundation of the library, since almost every other concept
is in some way related to sequences of transitions. The nice thing about these definitions
is that they lend themselves very well to automation. In the case of definitions lifted from
execute, we can define simplification rules. In the case of definitions lifted from enabled, we
can define safe introduction and elimination rules. This works for both the constructors of
sequences (# and ##), as well as the operators for concatenation (@, @−). Convenience
and automation regarding the basic concepts was a major shortcoming of earlier libraries.

Next, we define the constant reachable for the set of reachable states from a source state.
Like path, this is an inductively defined predicate. Alternatively, we could have defined
reachable in terms of target and path. Instead, it is defined directly based on execute and
enabled and the connection to target and path is shown as a lemma.

There are some interesting things we can formalise even on this very abstract level. We
present one such example in the construction of infinite paths.

I Lemma 9 (Recurring Condition).

fixes P :: state ⇒ bool and p :: state

assumes P p and
∧
p. P p =⇒ ∃r. r 6= [] ∧ path r p ∧ P (target r p)

obtains r :: transition stream
where spath r p and infs P (p## strace r p)

Here, the premises only guarantee the repeated existence of a finite extension to an existing
finite path, which we want to use to construct an infinite path. Proving a statement like
this is cumbersome, as it requires skolemisation of the premise, construction of a stream
via iteration combinators and finally proving the properties via coinduction. By providing
generic rules like these, all this complexity is hidden and users can restrict themselves to
easy-to-work-with constants like spath and infs.

3.2 Concrete Automata
In order for our formalisation of abstract transition systems to be useful, it needs to be able
to express a wide range of transition system types and their representations. We now present
instantiations for various transition systems with labels of type α and states of type ρ.

Given a successor function “succ :: α⇒ ρ⇒ ρ option”, we instantiate as follows.

I Example 10 (Incomplete Deterministic Transition System).

execute = λa p. the (succ a p) transition = α

enabled = λa p. succ a p 6= None state = ρ

Note how the deterministic successor function fits the interface straightforwardly.
Given a successor function “succ :: α⇒ ρ⇒ ρ” we instantiate as follows.

I Example 11 (Complete Deterministic Transition System).

execute = succ transition = α

enabled = > state = ρ
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Things get interesting when considering “succ :: α⇒ ρ⇒ ρ set”. Textbooks teach us that
deterministic transitions systems are a special case of nondeterministic ones. At first glance,
it may seem like we are trying to do the impossible opposite here. However, since we get to
instantiate the type variables, there is a surprisingly elegant solution.

I Example 12 (Implicit Nondeterministic Transition System).

execute = λ(a, q) p. q transition = α× ρ
enabled = λ(a, q) p. q ∈ succ a p state = ρ

Note how unlike in the first two examples, the type variable transition gets instantiated in
a nontrivial way. While it may seem backwards at first, this actually works out perfectly
and gives our constants the strongest possible type for this scenario. For instance, we get
“path :: (α×ρ) list⇒ ρ⇒ bool”. That is, the path predicate expects a source state as well as a
list of the traversed labels and states. This expression contains exactly the necessary amount
of information, nothing more, nothing less. Note that the fact that we are dealing with
pairs is not an issue, as Isabelle has good automation for those. We also added some more
automation for sequences of pairs as part of this library. In the end, neither the deterministic
nor the nondeterministic case necessitates inconvenient wellformedness predicates while
sharing the same abstract formalisation.

Finally, we consider an explicit representation in “trans :: (ρ×α×ρ) set”. Being isomorphic
to the previous case, the type variables as well as execute are instantiated the same way.

I Example 13 (Explicit Nondeterministic Transition System).

execute = λ(a, q) p. q transition = α× ρ
enabled = λ(a, q) p. (p, a, q) ∈ trans state = ρ

Unsurprisingly, an isomorphic change in representation does not make a difference since the
instantiation absorbs such details.

Having shown that we can instantiate a variety of transition systems using our abstract
theory, we can now use these as building blocks for concrete automata. Since the abstraction is
achieved via type instantiation and locales, it only minimally impacts the usability compared
to a fully specific formalisation. Moreover, since it does not restrict the type of the automaton
at all, the user can use a representation that exactly fits their needs.

There are some definitions that one would expect to be part of a general automata library
that unfortunately cannot be formalised on transition systems. One of these are Boolean
operations, since they require information about the automaton’s successors, labelling, and
acceptance condition. With some effort, they could be formalised on intermediate abstraction
over a family of similar automata (for instance, DBA, DCA, DRA). However, we could not
justify the effort for our purposes, since these formalisations do not contain much substance.

Degeneralisation, which plays an important part in defining aforementioned Boolean
operations, can be generalised a little easier. The reason for this is that it is independent from
successors and labelling, requiring only the concept of state-based Büchi acceptance. Thanks
to this, we were able to abstractly formalise degeneralisation in a transition system locale
augmented with an acceptance condition. This intermediate abstraction is then instantiated
in order to facilitate the formalisation of Boolean operations on DBAs and DCAs.

ITP 2019
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3.3 Predefined Automata

While the focus of the automata library is on the abstract part and the provision of tools to
build concrete automata, it also comes with a growing collection of the latter. At the time of
writing, it contains (non)deterministic finite automata, (non)deterministic Büchi automata,
as well as deterministic co-Büchi and Rabin automata. Each of these incurs around 50 lines
of proof text in order to set-up the automaton and to define its language. The latter is
fairly simple to achieve, as all the constituents (paths and acceptance conditions) are already
available and just need to be composed to yield a language definition.

3.4 Executable Implementation

One of our goals is also the ability to implement executable versions of some algorithms. As
mentioned earlier, we will use the refinement frameworks and the Isabelle code generator
for this. Most of this needs to be done on concrete automata, as it depends on details of
the representation. Furthermore, in many cases it is advantageous to be able to choose data
structures depending on the representation. Because of these reasons, all the executable
implementations are done on the concrete level, with only some proofs being reused.

We build on existing algorithms for graph structures to implement versions that work
with automata. For instance, we use the AFP entry about depth-first search [32, 33] to
explore all reachable states of an automaton. This is used to generate explicit representations
of automata in order to be able to serialise and output them. In the case of NBAs we consider
the successor function “succ :: α ⇒ ρ ⇒ ρ set”, which implicitly represents the transitions
of the automaton. The algorithm can then turn this into an explicit set of transitions
“trans :: (ρ× α× ρ) set”. We also implement an algorithm for translating an automaton with
an arbitrary state type into one whose states are natural numbers. Furthermore, we use the
AFP entry about Gabow’s algorithm for strongly-connected components [29, 30] to decide
language emptiness of NBAs.

3.5 Formalisation

The library is available in the form of the AFP entry Transition Systems and Automata
[10]. At the time of writing, it comprises about 5800 lines of theory text. Other than in this
paper, the library is used in the partial order reduction optimisation [12, 11] of the Cava
model checker [21]. It is also used as the foundation of the AFP entry about rank-based
complementation of Büchi automata [9].

3.6 Contributions to the Translation Formalisation

For this paper, we contribute deterministic Büchi, co-Büchi, and Rabin automata. For
instance, the constructor for deterministic Büchi automata is “dba :: α set⇒ ρ⇒ (α⇒ ρ⇒
ρ)⇒ (ρ⇒ bool)⇒ (α, ρ) dba”. Furthermore, we add corresponding union and intersection
operations to the library (Figure 1). In addition to those operations, we also implement a
specialised operation dbcrai that provides the intersection of a DBA and a DCA resulting in
a DRA. We prove both their correctness in terms of language as well as upper bounds on
the number of states of the resulting automata. Since the resulting automata are implicit,
we also provide an executable algorithm for exploration and subsequent conversion to an
explicit representation together with a numbering of the states.
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Automaton ∩ (Pair)
⋂

(List) ∪ (Pair)
⋃

(List)
DBA dbail dbau dbaul
DCA dcai dcail dcaul
DRA draul

Figure 1 Boolean Operations on Deterministic ω-Automata. Shown are the Boolean operations
that were implemented for deterministic Büchi, co-Büchi, and Rabin automata.

4 The Master Theorem: Decomposing LTL Formulas

The centrepiece for all translations is the Master Theorem [19] that decomposes LTL formulas
into a Boolean combination, in our case union and intersection, of “simple” languages. We
will recall important definitions from [19] in order to state the theorem itself and to highlight
obstacles we encountered in our formalisation. For an in-depth discussion and exposition of
the theory and its proof we refer the reader to the primary source [19].

We will now introduce the functions used in the scope of the Master Theorem: the
“after”-function af ϕ w, read “ϕ after w”, and the two “advice” functions ϕ[X]ν and ψ[Y ]µ
which are pronounced as “ϕ with GF-advice X” and “ψ with FG-advice Y ”, respectively.

4.1 The “after”-Function
Let us begin with the definition of the “after”-function [18, 17, 19]. The function application
af ϕ w computes a new formula such that for every infinite word w′ we have:

I Lemma 14 ([19]).

w _ w′ |= ϕ ⇐⇒ w′ |= af ϕ w.

We can intuitively see af as a function that returns a formula representing the language
that we obtain after reading the prefix w. We achieve this by using well-known LTL expansion
rules combined with partial evaluation.

I Definition 15 (“after”-Function [19]). The function af :: α ltl⇒ α set⇒ α ltl is defined for
a single letter recursively as follows:

af tt σ = tt af (X ϕ) σ = ϕ

af ff σ = ff
af a σ = if a ∈ σ then tt else ff af (ϕU ψ) σ = (af ψ σ) ∨ ((af ϕ σ) ∧ (ϕU ψ))
af (¬a) σ = if a /∈ σ then tt else ff af (ϕR ψ) σ = (af ψ σ) ∧ ((af ϕ σ) ∨ (ϕR ψ))
af (ϕ ∧ ψ) σ= (af ϕ σ) ∧ (af ψ σ) af (ϕW ψ) σ= (af ψ σ) ∨ ((af ϕ σ) ∧ (ϕW ψ))
af (ϕ ∨ ψ) σ= (af ϕ σ) ∨ (af ψ σ) af (ϕM ψ) σ= (af ψ σ) ∧ ((af ϕ σ) ∨ (ϕM ψ))

We generalise this definition to finite words by overloading af :: α ltl⇒ α set list⇒ α ltl:

af ϕ w = foldl af ϕ w.

I Remark 16. The reader might have noticed that the definition of af resembles the idea
of Brzozowski’s derivatives for regular expressions [13]. In fact, as we will see later, the
DRA construction relies on af and the previously introduced LTL equivalence relations again
mirroring the idea of Brzozowski. However, this approach alone can only be applied to
fragments of LTL.
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4.2 Syntactic Fragments of LTL
We already teased the idea of the “simple” languages, but what is special about these? What
is the mechanism to achieve this? These languages are made simple by the fact that they can
be expressed by fragments of LTL. To be more precise, let µLTL be the fragment that only
contains modal operators that can be expressed as least-fixed points, i.e., we disallow the
operators R and W. Dually, νLTL contains only modal operators that can be expressed as
greatest-fixed points, i.e., we disallow the operators U and M. The fragments GF(µLTL) and
FG(νLTL) contain all formulas GFϕ and FGψ where ϕ ∈ µLTL and ψ ∈ νLTL, respectively.
For these fragments one can easily define translations to NBAs or DRAs, e.g. [19].

Let us now think about how to make use of this: Assume one gets a promise set
X = {aU b} guaranteeing that aU b holds infinitely often, i.e., w |= GF(aU b), and assume
we have access to a translation for νLTL. Can we simplify ϕ = G(a U b) ∨Gc with this
information? Since w |= GF(a U b) implies that b is infinitely often true, we can replace
the U by an W. Under the assumption that X is a correct promise, we simplify ϕ to an
equivalent formula G(a W b) ∨Gc which is a formula of νLTL. Then we can apply our
translation for the νLTL fragment.

Formally, we define the functions ϕ[X]ν and ϕ[Y ]µ such that ϕ[X]ν takes a promise set
X and produces a formula of νLTL, and such that ϕ[Y ]µ takes a promise set Y and produces
a formula of µLTL:

I Definition 17 (“Advice”-Functions [19]). The function · [ · ]ν :: α ltl ⇒ α ltl set ⇒ α ltl is
defined for the cases U and M as follows:

(ϕU ψ)[X]ν = if (ϕU ψ) ∈ X then (ϕ[X]ν) W (ψ[X]ν) else ff
(ϕM ψ)[X]ν = if (ϕM ψ) ∈ X then (ϕ[X]ν) R (ψ[X]ν) else ff

The function · [ · ]µ :: α ltl⇒ α ltl set⇒ α ltl is defined for the cases R and W as follows:

(ϕR ψ)[Y ]µ = if (ϕR ψ) ∈ Y then tt else (ϕ[Y ]µ) M (ψ[Y ]µ)
(ϕW ψ)[Y ]µ = if (ϕW ψ) ∈ Y then tt else (ϕ[Y ]µ) U (ψ[Y ]µ)

For all other cases, both functions are defined as a recursive descent over the syntax tree.

4.3 The Master Theorem
We are now equipped with the necessary definitions to state the Master Theorem. Note that
the formulation we use is taken nearly verbatim from the Isabelle theory, apart from the
annotations L1

ϕ,X , L2
X,Y , and L3

X,Y that we added to relate to the introduction.

I Theorem 18 (Master Theorem [19]).

w |= ϕ ⇐⇒ (∃X ⊆ subformulasµ ϕ. ∃Y ⊆ subformulasν ϕ.
(∃i. suffix i w |= af ϕ (prefix i w)[X]ν) —L1

ϕ,X

∧ (∀ψ ∈ X. w |= G (F ψ[Y ]µ)) —L2
X,Y

∧ (∀ψ ∈ Y. w |= F (G ψ[X]ν)) —L3
X,Y

The proof of this theorem intrinsically depends on the fact that we can check promise
sets bottom-up, as formalised by the following lemma. We highlight this intermediate lemma,
because we needed to introduce a custom induction mechanism over finite sets to our theory.
The remaining material needed to show Theorem 18 is obtained in straight-forward manner
and closely resembles the proofs of [19].
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I Lemma 19 ([19]).

fixes w :: α set word and ϕ :: α ltl
assumes X ⊆ subformulasµ ϕ and Y ⊆ subformulasν ϕ

and ∀ψ ∈ X. w |= G (F ψ[Y ]µ) and ∀ψ ∈ Y. w |= F (G ψ[X]ν)
shows ∀ψ ∈ X. w |= G (F ψ) and ∀ψ ∈ Y. w |= F (G ψ)

The corresponding proof from [19] proceeds by constructing a sequence of pairs (Xi, Yi)
where we have (X0, Y0) = (∅, ∅) and (Xn, Yn) = (X,Y ). Moreover, in each step a single
formula ψi ∈ X ] Y is added to either Xi or Yi, depending on whether ψi ∈ X or ψi ∈ Y .
However, ψi cannot be chosen arbitrarily and ψi must respect the subformula order, i.e., if
ψi ∈ sf ψj , then i ≤ j. Then the proof proceeds by an induction over this sequence.

Since to the best of our knowledge there has been at the time of writing no matching
induction rule in Isabelle or its libraries, we derived a suitable induction rule for our purposes.
First, note that instead of sorting the formulas by the subformula order, it is sufficient to
order them by their size, because all subformulas of a formula ϕ are smaller than ϕ. Second,
an induction over pairs of sets seemed inconvenient to us in the context of our theorem
prover. Hence we combined the two disjoint sets into a single one and used a suitable case
distinction. Finally, we arrived at the following, general induction rule4 for finite sets with
an additional order constraint:

I Lemma 20 (Finite Ordered Induction).

fixes S :: α set and P :: α set⇒ bool and f :: α⇒ (β :: linorder)
assumes finite S and P ∅

and
∧
x S. finite S ∧ (∀y. y ∈ S −→ f y ≤ f x) ∧ P S =⇒ P (insert x S)

shows P S

5 Deriving the DRA Construction

With the necessary decomposition theorem in place, we now can follow our automata
construction blue-print to obtain a translation from LTL to DRAs. We will first build
automata for L1

ϕ,X , L2
X,Y , and L3

X,Y , named A1, A2, and A3, respectively. In the subsequent
section, we will assemble these pieces to the final automaton and end the section with a
description of the extracted, verified tool.

5.1 Constructing Automata for L1
ϕ,X , L2

X,Y , and L3
X,Y

We parametrise our automata constructions for the “simple” components by an equivalence
relation ∼. The most important requirement for ∼ is that ∼c ≤ ∼ ≤ ∼l holds, i.e., that ∼
does not consider two formulas with different languages equivalent and ∼ eventually detects
equivalence to tt and ff for certain fragments. This abstraction has two advantages over fixing
a concrete equivalence: first, our proofs stay as abstract as possible and the proof automation
does not rely accidentally on irrelevant properties of the chosen equivalence relation; second,
we can instantiate the final automaton with any suitable equivalence relation. In Section 5.3
we exemplarily use propositional equivalence but one can easily replace it by a different
equivalence without any additional effort to speak of.

4 This induction rule has now been included in Isabelle/HOL, is located in HOL/Lattices_Big.thy, and
is named finite_ranking_induct.
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In this paper, we will only discuss the construction of A2 for L2
X,Y . The constructions

for L1
ϕ,X and L3

X,Y as defined by [19] are formalised analogously. Remember that L2
X,Y is

defined as “
⋂
ψ ∈ X. language UNIV (GF(ψ[Y ]µ))” for the finite sets X and Y . Hence it

suffices to define a translation for formulas of the fragment GF(µLTL) and then apply the
intersection construction from the automaton library.

For the translation of formulas from the fragment GF(µLTL) we make use of the following
lemma. It states the we can monitor a formula from µLTL using af and the constrained
equivalence relation ∼, and if a word satisfies the formula, then we will notice this after a
finite amount of steps. Furthermore, the lemma states that we can deal with GF(µLTL) by
repeatedly doing this:

I Lemma 21 (Logical Characterisation of µLTL and GF(µLTL) [19, 42]5).

assumes ϕ ∈ µLTL and ∼c ≤ ∼ ≤ ∼l
shows w |= ϕ ⇐⇒ ∃i. af ϕ (prefix i w) ∼ tt

and w |= G (F ϕ) ⇐⇒ ∀i. ∃j. af (F ϕ) (prefix j (suffix i w)) ∼ tt

Since ∼ is such a fundamental ingredient throughout the formalisation of the automata
constructions, we use locales in Isabelle to fix ∼ and assumptions about it. In particular, we
use the equivalence classes of ∼ as states in our constructed automata. To define the quotient
type for a given equivalence relation, we use the Isabelle’s Quotient package introduced in [8]
and revised in [24]. However, it is not possible to define such a quotient type within a locale.
Thus we present a primitive, ad-hoc mechanism to simulate the quotient type in our locale.
We fix a type parameter γ and the functions Rep and Abs that compute the representative of
an equivalence class and the equivalence class of a formula, respectively. In other words we
use Rep and Abs to map between equivalence classes and representatives. Further, we assume
the quotient type invariant “Abs (Rep x) = x” and require that equality on γ is equivalent to
∼ on formulas. Thus we can pretend γ to be a quotient type over ∼ which resembles “duck
typing” found in programming languages such as Python.

I Definition 22 (Locale for LTL to DRA translation6).

locale ltl-to-dra =
fixes ∼ :: α ltl⇒ α ltl⇒ bool
and Rep :: γ ⇒ α ltl and Abs :: α ltl⇒ γ

assumes equivp ∼ and ∼c ≤ ∼ ≤ ∼l
and Abs (Rep x) = x and Abs ϕ = Abs ψ ←→ ϕ ∼ ψ
and ϕ ∼ ψ =⇒ (af ϕ σ ∼ af ψ σ) ∧ (ϕ[X]ν ∼ ψ[X]ν)

In this definition two new assumptions can be found that we have not talked about yet:
We also demand that af and · [ · ]ν are congruent with respect to ∼. This is due to the fact
that our the automata use equivalence classes as states and for computing the successor with
af the choice of the representative must be irrelevant.

5 This lemma is a generalised version of [19] which only considers the special case for ∼p.
6 We only present the final combination of several locales defined in our Isabelle formalisation to give an
overview of all assumptions required by our proofs.
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Within this locale we now define the deterministic Büchi automaton AGF
µ for a single

formula of the fragment GF(µLTL). The DBA A2 for L2
X,Y is then computed by a Büchi

intersection (dbail). Note that this intersection construction requires the operands to be
ordered. Hence we represent the advice sets X and Y as the lists xs and ys and propagate
this order to dbail.

I Definition 23.

AGF
µ ϕ = dba UNIV (Abs (F ϕ)) (afF ϕ) (λψ. ψ = Abs tt)

afF ϕ σ ψ = if ψ = Abs tt then Abs (F ϕ) else Abs (af (Rep ψ) σ)
A2 xs ys = dbail (map (λψ. AGF

µ (ψ[set ys]µ)) xs)

Using Lemma 21 we show correctness for a single component and using the lemmas from
the automata library we also prove the intersection correct. The constructions for L1

ϕ,X and
L3
X,Y are analogous and thus skipped from the presentation in this paper.

5.2 Assembling the Pieces
It now remains to intersect the (co-)Büchi automata “A1 ϕ xs”, “A2 xs ys”, and “A3 xs ys”,
representing L1

ϕ,X , L2
X,Y , and L3

X,Y , respectively. Again we need to use a list representation
for X and Y to fix an iteration order and thus we use xs and ys. We call the resulting
Rabin automaton “A ϕ xs ys”. To finish the construction, we then iterate over all possible
choices for X ⊆ subformulasµ ϕ and Y ⊆ subformulasν ϕ and take the union of all languages
accepted by “A ϕ xs ys” with draul (DRA union):

I Definition 24.

ltl-to-dra ϕ = draul (map (λ(xs, ys). A ϕ xs ys) (advice-sets ϕ)).

Using the Master Theorem (Theorem 18) and the correctness lemmas for the intermediate
constructions, we obtain the correctness of the translation:

I Theorem 25.

language (ltl-to-dra ϕ) = language UNIV ϕ.

5.3 A Verified LTL Translator
We extract the executable translation of LTL formulas into ω-automata by instantiating
the locale with a suitable equivalence relation. As mentioned above we use ∼p and we
show for this equivalence relation that the constructed automaton indeed has at most a
double-exponential number of states in the size of the formula. Hence an exploration by
depth-first search terminates, and more importantly, this makes the construction the first
LTL to DRA translation with a formally verified double exponential size bound.

I Lemma 26.

card (nodes (ltl-to-dra ϕ)) ≤ 2 ∧ 2 ∧ (2 ∗ size ϕ+ floorlog 2 (size ϕ) + 4).

Exporting code for the LTL part needs only minor adjustments through code lemmas,
e.g. we instantiate ∼p with code provided by [35]. For the parts related to automata we rely
on the code export feature of the automata library, see Section 3.4. Notice that Theorem 25
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refers to the potentially infinite alphabet UNIV. Choosing UNIV as the alphabet simplified
the proofs leading up to the result, but potentially infinite alphabets make an exploration
using depth-first search using a naive enumeration of letters impossible. Consequently, we
restrict the alphabet to a finite set for the code export by only considering atomic propositions
occurring in ϕ. The resulting constant ltl-to-draei has the signature α ltl⇒ (α set, nat) draei
which is then exported to Standard ML. The overall correctness theorem is as follows:

I Theorem 27.

language (draei-dra (ltl-to-draei ϕ)) = language (Pow (atoms ϕ)) ϕ.

Note that the constant language is only defined for DRAs with a transition function (dra)
while we obtain from the translation a DRA with a list of transitions (draei). The constant
draei-dra converts an automaton of type draei back to one of type dra.

In the final tool, we combine the function ltl-to-draei with an unverified LTL parser and
an unverified serialisation to the Hanoi Omega Automata format [3], a text-based format for
representing ω-automata. It is then compiled with mlton or polyc using the build scripts
included in the formalisation [39].

I Example 28. The following command translates the formula FGa to a DRA in HOA
format and then, using autfilt from Spot [16], prints it in the dot-format. The result gets
rendered by dot and is written to a PDF file.

./ltl_to_dra "F G a" | autfilt --dot --merge-transitions | dot -Tpdf -O

6 Concluding Remarks

The formalisation of the “Master Theorem” itself did not pose major obstacles and did not
require special care except for the mentioned techniques. However, the LTL entry [41] and
dependencies are host to several LTL datatypes and matching lemmas and notation. This
excessive amount of copy-pasting is due the inability to define fragments of datatypes, i.e.,
restrictions on the constructors used. While one could use typedef to carve out restricted
types using a predicate, this new type misses the structure of the type we started with.
Thus we choose in some cases to have separate datatypes connected by translations, while
in other cases we used simple predicates to capture fragments. We think the addition of
a mechanism addressing this issue – the definition of datatype fragments and the addition
of necessary constants and proof automation – would be worthwhile, since we conjecture it
would significantly reduce the size and complexity of LTL related theories.

There are several topics we want to investigate going forward: First, we also want to derive
constructions for NBAs and LDBAs. Second, we plan to reduce the size of the generated
automata by restricting the possible choices for the advice sets X and Y . Third, we want to
provide implementations using better instantiations for the equivalence relation to further
reduce the size of the computed automata. Fourth, provide constructions for DRA variants,
e.g., transition-based or generalised acceptance. Fifth, while adding some of the Boolean
operations, we realised that constructions for ω-automata could potentially be shared and
consolidated in an intermediate abstraction.
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