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—— Abstract

Authenticated data structures are a technique for outsourcing data storage and maintenance to an
untrusted server. The server is required to produce an efficiently checkable and cryptographically
secure proof that it carried out precisely the requested computation. Recently, Miller et al. [10]
demonstrated how to support a wide range of such data structures by integrating an authentication
construct as a first class citizen in a functional programming language. In this paper, we put this
work to the test of formalization in the Isabelle proof assistant. With Isabelle’s help, we uncover
and repair several mistakes and modify the small-step semantics to perform call-by-value evaluation
rather than requiring terms to be in administrative normal form.
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1 Introduction

Consider a client that requests data from a server and trusts the server to answer its request
truthfully, making financial or security-critical decisions based on the response. In this
common scenario, a malicious actor can profit from causing the server to give incorrect
answers to a client’s query. Authenticated data structures (ADS) prevent this attack by
effectively removing the need for the client to trust the server. To do so, they require the
server to accompany all responses to queries with an efficiently verifiable proof that its
answer is honest.

Merkle trees [9] are the prototypical example of ADS. They are binary trees that store
data in their leaves. Every leaf node is augmented with a hash of the corresponding data and
every inner node is augmented with a hash of its child nodes’ hashes. An example Merkle
tree is shown in Figure 1. The server stores this entire tree, whereas the client only stores
the top hash Hy. The client can then query the server for any of the stored data. The server,
upon being queried, traverses the tree to find the requested data and returns it along with
the hashes needed to reconstruct the root hash. The client can then recompute the root hash
to verify that it matches its stored root hash. In our example, querying the server for Dy
would result in it returning D5 as well as the hashes HD; and Hs. The client can then verify
that the result of hash (hash (HD; || hash Ds) || Hz) matches its stored root hash.
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[Ho = hash (H; || HQ)]

— D
[Hl = hash (HD, || HDQ)] [HQ = hash (HD; || HD4)]

— ~ — ~_
]Dl \[HDl — hash Dlj ]D2 \[HDQ — hash Dzj ]DS \[HDg, — hash D3] ]D4 \[HD4 — hash D4]

Figure 1 An example Merkle tree.

Early work on ADS [5,9,16] has focused on designing particular data structures for this
purpose. More recently, Miller et al. [10] have put forward a more general view on the
matter. In their paper, titled Authenticated Data Structures, Generically (ADSG), they
introduce Ae (pronounced lambda auth), a purely functional language, which supports generic,
user-specified ADS. The programs of Ae run in two modes. The server, which hosts the
data, computes certain hash values and sends them to the client. The client verifies that
the passed hash values are the expected ones. ADSG establishes correctness (verification
succeeds if both parties correctly follow the protocol) and security (tricking the client requires
discovering a hash collision) for all well-typed Ae programs. Given that ADS are intended
to be used in security-critical applications, it is crucial that these correctness and security
properties do in fact hold.

We formalized Ae in Isabelle/HOL and proved the claims stated in ADSG. During the
formalization process, we identified several problems, many of which we rectified with relative
ease. Nevertheless, a serious problem prevents us from reaching a fully satisfactory statement
and proof of the conventional formulation of Ae’s type soundness.

In addition to finding and correcting mistakes, we also make a modification to the language
semantics. “To keep the semantics simple,” ADSG works with expressions in administrative
normal form (ANF) [6]. ANF only supports recursive evaluation in arguments of let expres-
sions and thus requires all other constructs to be applied to values (rather than unevaluated
expressions). While this does not make the language any less powerful, the restrictive syntax
makes \e somewhat cumbersome to use, e.g., instead of writing ¢ u for expressions ¢ and u
one has to write let f =tinlet x = win f . To hide this verbosity from the user, arbitrary
expressions are typically translated into ANF in a separate step. However, such a translation
would need to correctly handle \e’s authentication construct. Instead, we extended the
semantics to permit recursive argument evaluation for most expressions. We have performed
this modification only after finishing the formalization of \e and proving all the theorems for
the ANF semantics. Isabelle allowed us to quickly discover all the ramifications of our changes.
Thus, correcting the proofs that were affected by the modification was a matter of a few hours.
In the following, we present only the modified semantics that supports recursive evaluation.

On the technical side, we used Nominal Isabelle [8,17] (Section 2) to model the syntax and
semantics of Ae (Section 3), which involves several variable binding constructs. Of particular
interest is our abstract modeling of a hash function that is compatible with Nominal and can
be used in binding-aware definitions (Subsection 3.1). The small-step semantics of Ae is split
into three transition relations that correspond to the client’s, the server’s, and an idealized
view of the computation, respectively. Following ADSG, we relate programs evaluated under
these three views using an inductive predicate (Section 4) and prove that if one of the related
programs takes a step, the others can follow, unless a hash collision occurred (Section 5).

Related Work. ADSG [10] is our object of study. While our paper aspires to be self-
contained with respect to the scope of the formalization, we refer to ADSG for the illuminating
usages of the \e language to implement Merkle trees, blockchains, and authenticated red-
black trees.
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The literature on formal studies of authenticated data structures is sparse, and in all cases
focused on specific instances. Examples include the automatic verification of Merkle trees
using weak monadic second-order logic on trees [12] and the formalization of blockchains [15]
and cryptographic ledgers [20] (based on Merkle trees) in the Coq proof assistant. The two
latter works both assume injective hash functions, which we avoid (Subsection 3.1).

A key feature of our formalization is the use of Nominal Isabelle [8,17,19], Isabelle’s
implementation of Nominal logic [7] on top of higher-order logic, to model a syntax involving
binding of variables. More precisely, we use Nominal2 [8,17], the most recent implementation
of Nominal Isabelle, which has previously been employed successfully in formalizations
of Godel’s incompleteness theorems [13], lazy programming language semantics [3], and
rewriting [11].

A frequently used alternative to the Nominal approach of modeling bound variables are
de Bruijn indices, i.e., nameless pointers to binding constructors. We chose Nominal because
it allows us to work more abstractly, without the need to manipulate pointers. We refer to
Urban and Berghofer [18] for a comparison of the two approaches and to Blanchette et al. [2]
for an extensive overview of the issue of binding variables in proof assistants and beyond.

2 Nominal Isabelle

The treatment of bound variables in pen and paper proofs is often informal, with renaming
of clashing variables being implicitly assumed for most definitions. ADSG is no exception in
this regard. In a formalization, a more rigorous approach is necessary. Nominal Logic [7] is a

powerful such approach that is well-supported in Isabelle with the Nominal framework [8,17].

We sketch the most important features of Nominal and refer to Huffman and Urban (8] for a
more extensive introduction.

Nominal allows us to closely follow the informal presentation of ADSG in the formalization
by enforcing the Barendregt convention [1, p. 26]:

If My, ..., M, occur in a certain mathematical context (e.g. definition, proof), then
in these terms all bound variables are chosen to be different from the free variables.

A central notion for achieving this flexibility is that of an object’s support supp, which
corresponds to the set of atoms (i.e., variable names) that occur free in it. An atom a outside
of the support of z is fresh in x, written a § x = a & supp . We will use two kinds of atoms:
type variables tvar and term variables var, which are embedded into the type of atoms using
the overloaded function atom. We will often see statements of the kind atom a f « in the
premises of our definitions, making explicit the requirement that some (type) variable name
a does not clash with any of the ones in x. These additional freshness assumptions are
typically the only required modifications to an informal lemma’s statement.

Nominal Isabelle provides commands for defining binding-aware datatypes, recursive
functions, and inductive predicates, along with a proof method for performing binding-aware
structural induction. The syntax of Ae (types ty and terms term), shown in Figure 2,
is defined via the nominal datatype command, which requires us to explicitly specify
which names are bound in which constructors. For \e’s terms these are Lam, Rec, and Let,
which model lambda abstractions (i.e., A\xz. ¢ is written as Lam x t), recursive functions,
and let expressions, respectively, as well as Mu for recursive types. To define functions on
a Nominal datatype we use the nominal_function command. The syntax for Nominal
function definitions is the same as for normal functions except that freshness assumptions
may be added when operating on datatype constructors that bind variables. For example,
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nominal datatype term = nominal datatype ty =
Unit One
Var var | Fun ty ty
Lam (z :: var) (¢ :: term) binds z in ¢ | Sum ty ty
Rec (z :: war) (t :: term) binds z in ¢ | Prod ty ty
Injl term | Mu (« :: tvar) (7 == ty) binds « in 7
Inj2 term | Alpha tvar
Pair term term | AuthT ty

Let term (x :: var) (¢t :: term) binds z in ¢
App term term

\
|
\
\
\
\
inductive value : term = bool where
| Case term term term

|

\

\

\

\

\

\

\

value Unit
value (Var z)

PrJ:l term value (Lam z ¢)
Prj2 term value (Rec z €)
Roll term

value v — value (Inj1 v)
value v — value (Inj2 v)

Auth term value v; A value vy — value (Pair v1 v3)
Unauth term value v — value (Roll v)
Hash hash

value (Hash h)

value v — value (Hashed h v)

|
|
|
Unroll term :
|
|
Hashed hash term :

Figure 2 Syntax for terms and types.

the Lam case of the definition for capture-avoiding substitution, written ¢[t'/z] and read as
“in t substitute ¢’ for z,” is the following.

atom y £ (z,t') — (Lam y t)[t'/x] = Lam y (¢[t'/z])

Definitions of inductive predicates use similar premises, as can be seen for example in our
typing judgment’s Lam rule in Figure 4. To enable binding-aware proofs by rule induction,
Nominal can be instructed to prove a strong induction rule (after the user discharges a
simpler abstract property, which is automatic for most definitions). The strong induction
rule guarantees the absence of name clashes with a finite but arbitrary set of atoms.
Nominal is designed to support user-defined types as long as all objects have finite
support. A particularly useful type for us will be that of finite maps, written («, ) fmap,
to model type environments and parallel substitutions. Finite maps are defined as the
subtype of functions o = 8 option that map all but finitely many arguments to None. Other
formalizations use association lists to represent type environments [18]. However, to ensure
that any key in the list occurs at most once these require a validity predicate, cluttering the
rules and proofs with implementation details. Finite maps nicely complemented our use of
Nominal and allowed us to keep the statements of definitions and lemmas very close to those
in ADSG. We use the syntax @& to denote the empty finite map, I'[x] to denote a lookup of x
in the finite map I" and I'[x — a] to denote an update to the finite map I", assigning a to z.

3 Syntax and Semantics of \e

We formalize the terms and types for Ae as Nominal datatypes, along with an inductive
predicate specifying which terms are considered to be values. These are listed in Figure 2.
The terms and types are those of a standard lambda calculus with unit (One), product
(Prod), sum (Sum), and recursive types (Mu), and the corresponding term constructors (e.g.,
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nominal function shallow :: term = term ((_])) where

(Unit) = Unit | (Var v) = Var v
| (Lam z €] = Lam z (e) | (Recxe) =Recuz (e)
| (Injl €) = Inj1 (e) | (Inj2 €] = Inj2 (e)
| (Pair e; ea) = Pair (e1) (e2) | (Roll €] = Roll (e)
| (Let e; = ea) = Let (e1]) = (e2) | (App e1 e2) = App (e1) (e2)
| (Case e e es)) = Case (e) (e1) (e2) | (Prile) = Prjl (e)
| (Pri2 e) = Prj2 (e) | (Unroll e) = Unroll (e)
| (Auth e) = Auth (e) | (Unauth e) = Unauth (e
| (Hash h) = Hash h | (Hashed h e) = Hash h

Figure 3 The shallow projection.

Roll, the constructor of recursive types) and their inverses (e.g., Unroll, the destructor of
recursive types) [14]. They also include the non-standard AuthT type constructor, Auth and
Unauth term constructors, and auxiliary constructors Hashed consisting of a hash-value pair
and Hash consisting of just a hash. We postpone the discussion of hash values and the type
hash and introduce a few auxiliary functions first. Also the precise meaning of the Auth
and Unauth constructors will become clear once we formally define the small-step semantics.
Intuitively, Auth signals the client and server to compute a hash value, while Unauth signals
the server to output a value to the client and the client to verify the hash of this value.

Substitution on terms and on types uses the syntax t[u/z] for both. The definitions are
standard, with simple, structural recursion on the non-standard constructs:

(Auth t)[u/z] = Auth (t[u/z]) (Unauth ¢)[u/x] = Unauth (¢t[u/z])
(Hash h)[u/z] = Hash h (Hashed h t)[u/x] = Hashed h (t[u/z])

Furthermore, we define a parallel substitution function psubst :: term = (var, term) fmap =
term. It replaces all variables by terms assigned by the finite map given as its second
argument:

psubst (Var y) A = (case Aly] of Some t = ¢ | None = Var y)

For all other cases it is structurally recursive.
A closed term is one with empty support or, equivalently, closed ¢ = (Vx :: var. atom z § t).
ADSG also introduces the shallow projection function, written (_J), whose formal definition
is given in Figure 3. It replaces all Hashed h v subterms in a given term with Hash h.

3.1 Modeling the Hash Function

The security of \e relies on a collision-resistant hash function. ADSG provides a useful
modeling trick, which permits us to omit the formalization of this assumption or collision-
resistance in general. In our formalization, we use very mild assumptions on how the hash
function may behave. Our security statement is then a disjunction between the statements
“everything worked out as planned” and “a hash collision has occurred.” Clearly, if we use a
collision-resistant hash function, the second disjunct will be violated with high probability.
(This meta-argument is not captured in our formal modeling.)

We start by introducing a new type: typedecl hash. The only property we require of
this type is that it does not contain any atoms, which we obtain by instantiating the pure
type class. Doing so allows us to make use of the following lemma with o = hash.

» Lemma 1 (No atoms occur in pure types).

atom z f (¢« pure)
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Because our desired hash function hash :: term = hash will be used in inductive predicates
involving the term type, such as the small-step semantics, Nominal requires it to be equivariant,
i.e., satisfy the strong property Vp. p @ hash ¢t = hash (pet) for all terms ¢. Here, p is a
permutation, i.e., a variable renaming, and e denotes its application to a an arbitrary object.
(The application to the object’s variables is defined by instantiating a type class, which
is automatic for Nominal datatypes.) Since a hash contains no free variables, applying
a permutation to it is the identity function. Clearly then, equivariance can only hold if
permuting free variables does not change the hash — a counterintuitive requirement for a
hash function, which we want to avoid.

For closed terms ¢ the above property holds for any function hash. Moreover, it turns out
that we will only apply hash to closed terms. Nominal, however, is blind to this fact and still
requires us to prove equivariance for all terms. These two observations lead to the following
solution. We declare a hash function using Isabelle’s consts command, which introduces a
new constant symbol without providing any specification of the constant beyond its type.

consts hash__term :: term = hash

This function is not necessarily equivariant. (We can neither prove nor disprove this.) Equivari-
ance is established by composing hash__term with the function collapse_ frees :: term = term,
which maps all free variables of a term to a single fixed variable (definition omitted).

definition hash :: term = hash where hash = hash_ term o collapse_ frees

The function hash is equivariant (Vp. p @ hash t = hash (p e ¢)) and equal to hash__term on
closed terms (closed ¢ — hash t = hash_term t), because collapse_frees t = ¢ on closed
terms t. Whenever we make use of the hash function hash, we ensure that its argument
is closed.

3.2 Typing Judgement

The typing judgment I' - e : 7, read “given the type environment I" :: (var, ty) fmap the term
e is well-typed and has type 7,” for \e is defined in Figure 4. The rules are standard except
for the last two, which allow the introduction and elimination of authenticated types AuthT 7
via the Auth and Unauth constructors. In other words, these two rules fix the following types
for the authentication constructors: Auth :: 7 = AuthT 7 and Unauth :: AuthT 7 = 7.

In addition to this typing judgment, we define an alternative, weaker typing judgment
I' Fw e: 7, which is not present in ADSG. This version replaces the last two rules with
the ones in Figure 5, which do not introduce authenticated types, i.e., fixing Auth :: 7 = 7
and Unauth :: 7 = 7. This modification is motivated by an ambiguity in ADSG, which
we will encounter when discussing type soundness. We use the unqualified well-typed to
mean well-typed according to the original typing judgment and weakly well-typed to mean
well-typed according to the modified rules.

Neither well-typed nor weakly well-typed terms may contain the Hashed and Hash term
constructors, as there is no rule for them. These auxiliary constructors will arise only as the
result of some computations and are not meant to be used as a language construct by the
end-users of Ae. Thus, the use of these constructors loosely resembles the use of memory
locations as an auxiliary language construct in lambda calculi with references [14, Chapter 13].
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I'[x] = Some T atomz 4" Tx—7|kFe:m
I' = Unit : One I'Varz:r I'Lam xz e: Fun 71 7
atoma f (Ie;) Ther:m Tle—mnlber:m I'kFe:Funmqym ThHe:m
T'tletey zex:m I'Appee :m

atomz 4 I'  atomyf (I',z) Tz Funm 7]k Lamye:Fun 7 m

' Recz (Lam y e) : Fun 7 7

I'kFe:n I'kFe:m I'e:Prod 7 m I'ke:Prod 7 m
I'FInjl e:Sum 1 I'FlInj2 e:Sum 7 'FPrile:n I'EPri2e:m
I'te:Summn T'kFeg:Funm7 Threy:Funm 71 I'teir:mm T'Fex:m
I'Caseeejeq: T I' - Pair e; eg : Prod 1

atoma I’ Trke:7[MuarTt/q] atomafl’ Tre:Muar
I'-Rolle:MuarTt 'k Unroll e : 7[Mu a 7/a]
'ke:7 I'e:AuthT 7
I' - Auth e : AuthT 7 I'-Unauthe: 7

Figure 4 The typing judgment.

I'Fw e:r I'kFw e:r

I' bw Authe:r I' Fw Unauthe:r

Figure 5 Alternative, weaker typing rules.

3.3 Operational Small-Step Semantics

Figure 6 defines the small-step semantics as the inductive predicate (1, e1) m— (w2, ea),
meaning “the expression e; in combination with the proof stream m, can take a step in mode
m to yield the expression es and the proof stream 7. A proof stream is simply a list of
Ae-expressions; the infix operator @ appends lists. The mode, which is a parameter of the
semantics, can be one of three values:

datatype mode =1|P |V

The three modes I, P, and V are read as ideal, prover, and verifier, respectively. The ideal
mode represents the unauthenticated evaluation. The authenticated evaluation proceeds
with the prover mode running on the server, while the verifier mode runs on the client. Most
rules are those of a standard lambda-calculus; they are shared for all three modes. Only the
last six rules of (my, e1) m— (w2, e2) for Auth and Unauth depend on the mode.

In the ideal mode, Auth and Unauth are simply removed, i.e., semantically they are
identity functions. Upon encountering Auth v, both the prover and the verifier compute the
hash of v’s shallow projection. The prover uses the hash to generate the hash-value-pair
Hashed (hash (v)) v, wheras the verifier generates just the hash Hash (hash v). The rules
thus enforce that the Hashed constructor only ever arises in the prover mode and the Hash
constructor only in the verifier mode. Thus, the shallow projection can be omitted for the
verifier. The Unauth rules are the most interesting ones, as they establish the communication
of the prover and the verifier via the proof stream. Unauth can only ever be applied to
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(m, 1) m— (x', e1)

(m, App e1 e2) m— (r’, App €] e2)

valuev  atom z t (v,7)

value vi  (m, e2) m— (', eb)

(m, App v1 e2) m— (r’, App v1 e3)

valuev atomz § (v,m) €' =e[Rec z e/x]

(m, App (Lam z e) v) m— (m, e[v/z])

value v atom z f (v, )

(m, Let v z €) m— (7, e[v/z])

(7, e1) m— (', €})

{m, Pair e1 e2) m— (', Pair €] e2)

(m, ) m— (7', €')

{m, Prjl e) m— (', Prjl &)

value v1 value va

(m, Prjl (Pair vi v2)) m— {(m, v1)
(m, ey m— (7', €’)

' Injl e’)

(m, Injl e) m— (m

value v

(m, App (Rec z €) v) m— (m, App €’ v)

atom z § (e1,el, m, ') (m, e1) m— (7', e])

(m, Let e1 = e2) m— (7', Let €] z e2)

value v1  (m, e2) m— (7', €5)

{(mr, Pair v1 e2) m— (', Pair v €5)

(m, e) m— (7', €')

(m, Prji2 e} m— (7', Prj2 ¢’)

value v1 value v2

(m, Prj2 (Pair v1 v2)) m— (m, v2)
(m, €) m— (7', €)

" Inj2 €’)

(m, Inj2 e) m— (7

value v

(m, Case (Injl v) e1 e2) m— (mw, App e1 v)

value v

(m, Unroll (Roll v)) m— (m, v)

{(m, ey m— (7', €’)

{m, Unroll €) m— (', Unroll ¢’)
(m, ) m— (7', €')

(m, Auth e) m— (r’, Auth €’)

value v

(m, Auth v) |— (m, v)

closed (v)  value v

(m, Case (Inj2 v) e1 e2) m— (mw, App e2 v)

(m, &) m— (n', €')
(m, Case e e1 e2) m— (7r Case €’ e1 e2)
(m, ) m— (', €’)
{7, Roll e) m— (', Roll ¢’)

(7, €) m— (7', €)

(m, Unauth e) m— (', Unauth ¢€)

value v

(m, Unauth v) |— (7, v)

value v

(m, Auth v) P— (m, Hashed (hash (v)) v)

closed v value v

(m, Auth v) V— (m, Hash (hash v))

(m, Unauth (Hashed h v)) P— (7 @ [(v)], v)

closed sg hash so = h

(so#m, Unauth (Hash h)) V— (m, so)

(m, e) m—o (7, €)

<7T1, 61> m—; <7T27 €2>

(w2, e2) m— (ms, e3)

(m1, e1) m—riq1 (73, e3)

Figure 6 The small-step semantics of \e.
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expressions of type AuthT. Values of this type are always Hashed h v" and Hash h (for some h,
v') in the prover and verifier modes, respectively. The prover appends the shallow projection
of v’ to the proof stream and continues to evaluate v’. The shallow projection ensures that
any hash-value pairs within v’ discard the value, keeping just the hash. The verifier consumes
the first element of its input proof stream to verify that this value’s hash is equal to the hash
of its argument. Only if the check succeeds, the evaluation may proceed.

The rules demonstrate that the evaluation in all three modes is structurally identical but
a compiler would have to substitute a different function for the Auth and Unauth functions
for the prover and verifier modes. In this semantics any given expression can first be executed
in mode P by the prover, generating a proof stream, and then in mode V by the verifier,
consuming a proof stream. The execution in mode | does not modify or depend on the proof
stream at all. The last two rules lift the single-step evaluation to multiple steps, while at the
same time counting the number of taken steps.

The three Auth and Unauth rules that require hash computation all have a premise that
ensures that hashes are only computed on closed terms. The small-step semantics given in
ADSG is not restricted in this way. But the restriction is unproblematic: even though our
semantics allows the prover and the verifier to evaluate strictly fewer expressions, we will show
later that they can still simulate any ideal computation that starts with a closed formula.

Above, we have stated informally that the prover generates the proof stream and the
verifier consumes the proof stream. We can formalize this notion in the following two lemmas
that will be necessary for the correctness and security proofs.

» Lemma 2 (Execution in mode P generates the proof stream).
(71, ep) P— (ma, €p) — Im.my=m Q7

» Lemma 3 (Execution in mode V consumes the proof stream).
(m1, ey) V—; (ma, €)y) — Im. m =7 Q 7y

Furthermore, we can show that in mode P we are allowed to add (or remove) a prefix to
(from) the proof stream.

» Lemma 4 (Add/remove prefix of prover proof stream).

(7, ep) P—; (7', €p) +— (X Qmr, ep) P—; (X Q7' €}p)
In mode V we can modify the proof stream by adding or removing a suffix.
» Lemma 5 (Add/remove suffix of verifier proof stream).

(m, ey) V= (', €) +— (r Q@ X, ey) V—; (7' Q X, ¢/)

In mode | we do not touch the proof stream at all, so we will not need to prepend, append or
remove data from them during proofs. However, we do want to prove that the proof stream
does not change during evaluation.

» Lemma 6 (ldeal execution does not modify the proof stream).

A o
) ) -
(mye) l=; (7', ey —m=m
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3.4 Freshness Lemmas

In Section 2, we emphasized the importance of freshness when working with Nominal. In
many instances, we have to show in our proofs that a certain variable is fresh with respect
to some term, proof stream, or type environment. In this section, we discuss some of the
more interesting freshness lemmas we needed to prove. One of the most useful lemmas is
the following, relating freshness in a typing environment with freshness in terms. We show
the lemma for the weak typing judgment, but similar statements hold for the strong typing
judgment and for agreement, which will be introduced in Section 4.

» Lemma 7 (Freshness in environment implies freshness in terms).

atomx AT by e:7 — atomx f e

Proof. The proof is by induction on I' Fy, e : 7, with the only interesting case being the
one for Var x. Since Var z can only be well-typed if the type environment assigns a type to
x, it is easy to show that a being fresh in I' implies a # x. Hence, atom a f Var . <

For the small-step semantics we have lemmas showing that evaluation preserves freshness
in some object, for example in the term when evaluating in mode P.

» Lemma 8 (Prover evaluation preserves freshness in terms).
atom z f e A (m, e) P— (7', ¢') — atom z ¢’

For the proof stream this only holds if the atom is fresh in both the term and the proof
stream.

» Lemma 9 (Prover evaluation preserves freshness in proof streams).

atom z f e A atom z f A (m, e) P— (7', ¢') — atom z § 7’

3.5 Type Soundness

Now that we have defined the typing judgment and the small-step semantics of \e, we turn
our attention to type soundness for the execution in mode I. We proceed by proving the
standard progress and preservation lemmas.

» Lemma 10 (Progress).
Z by e:m —>value eV (3], e) 1= (], €'))
» Lemma 11 (Preservation).
({,e)l={,YND Fw e:T7— @ Fw € :7
Using Lemma 10 and Lemma 11, type soundness for weakly well-typed terms follows easily.
» Lemma 12 (Type Soundness).

G tw e:T—valueeV (Fe. (,e) 1= ([, ) AND Fw € :7)
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nominal function erase :: ty = ty where

erase One = One
| erase (Fun 74 72) = Fun (erase 71) (erase 73)
| erase (Sum 7 73) = Sum (erase 71) (erase 72)
| erase (Prod 71 73) = Prod (erase 71) (erase 72)
| erase (Mu « 7) = Mu « (erase 1)
| erase (Alpha «) = Alpha «
| erase (AuthT 7)  =erase T

Figure 7 The erase function.

There are two differences in our Lemma 12 compared to ADSG’s type soundness statement
(Lemma 1). First, ADSG formulates the lemma for an arbitrary environment I' (and
consequently for terms that may contain free variables) in the judgment — an oversight
which trivially invalidates the lemma: for example, Prjl (Var x) is not a value and cannot
take a step.

The second difference is that we formulate type soundness using the weak typing judgment.
Type soundness does not hold for the original set of typing rules. Consider, for example,
the well-typed expression Auth Unit of type AuthT One. Since it is not a value it must take
a step. However, the resulting expression Unit has the different type One, violating type
soundness (namely the preservation property). ADSG notes that “for mode |, authenticated
values of type o7 [i.e., AuthT 7] are merely values of type 7.” This remark seems to imply
that V7. AuthT 7 = 7, a property that is essential to a successful type soundness proof.
Our weak typing judgment simulates syntactic equality of authenticated types by simply
omitting them and allowing the introduction of the Auth and Unauth constructors without a
change of types. However, although this interpretation is necessary for type soundness, it
is undesirable. The main purpose of authenticated types is to ensure that Unauth can only
be applied to expressions to which Auth has been applied previously. This disallows terms
such as Unauth Unit, whose semantics is well-defined in the ideal execution mode but not in
the prover and verifier modes. In the weakened typing judgment such terms are considered
well-typed.

Since type soundness does not hold for the strong typing judgment, we show the weaker
property that well-typed terms are also weakly well-typed after removing any AuthT anno-
tations from its type and type environment. For this purpose we define the function erase
(Figure 7), which erases all AuthT annotations in a type but leaves it otherwise unchanged.
Using erase we can state and prove the relationship between the weak and the strong typing
judgment. The function fmmap :: (8 = v) = (a, B) fmap = (a, v) fmap is the canonical
map function for the type of finite maps.

» Lemma 13 (Well-typedness implies weak well-typedness).

I'kFe:7— fmmaperase I' Fy, e:erase T

4 Agreement

When introducing the small-step semantics we have discussed the intended interpretation of
the mode. Any expression can be evaluated in mode |, performing a simple unauthenticated
computation; in mode P, performing the computation and generating the proof stream; or in
mode V, performing the computation and verifying the proof stream. Even though the three
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atomz I’ Tz—7i]be, ep, ev:m

I' F Unit, Unit, Unit : One I'kLam z e, Lam x ep, Lam z ey : Fun 71 72
I'[x] = Some T I'ke1, epr,evy:Funmi 7o Thes, eps, eya T
I'-Varz, Var x, Var x : 7 '+ App e1 ez, App epy epa, App evy eva @ T2

atom z f (Tye1,epr,evy) Then,epr,eviim Tz 7]k e, epa, evg i T2

I'+Let e x e, Let epy T epy, Let ey x eyy i T2

atomzx 4 I' atomyf (I',z) T[z+ Fun 7 =]+ Lamye, Lamy ep, Lam y ey : Fun 71 72

'+ Rec z (Lam y ¢e), Rec = (Lam y ep), Rec x (Lam y ey) : Fun 71 72

I'kHe, ep,ev:mi I'ke, ep,ev:mi

I'FInjl e, Injl ep, Injl ey : Sum 71 T2 T'FInj2 e, Inj2 ep, Inj2 ey : Sum 71 T2

I'te, ep, ey : Sum 11 T2 I'te1, epy, evy : Funm 7 'k es, epsy, eyg : Fun 7o 7

I'+ Case e ey ez, Case ep ep; epy, Case ey ey eya i T

I'tei, epy, evy 7 'tk eq, epa, eva : T2

' Pair e1 ez, Pair epy epsy, Pair ey eyy : Prod 71 72

I'te, ep, ey : Prod 71 72 I'ke, ep, ey : Prod 71 2
' Prjl e, Pril ep, Pril ey : 11 ' Prj2 e, Prj2 ep, Prj2 ey : 1
atoma I’ Thke ep, ey:7[MuaT/a] atoma T’ Thre ep,ey:Muar

T'F Roll e, Roll ep, Roll ey : Mu a 7 I' - Unroll e, Unroll ep, Unroll ey : 7[Mu o 7/

I'ke ep,ev:T T'ke, ep, ey : AuthT 7
I' - Auth e, Auth ep, Auth ey : AuthT 7 I' = Unauth e, Unauth ep, Unauth ey : 7

valuev  value vp @t v, vp, (vp) : 7  hash (vp) =h

I' - v, Hashed h vp, Hash A : AuthT 7

Figure 8 The agreement predicate.

modes differ in their semantics and their terms may differ at any point during evaluation,
their evaluations are structurally identical. This observation is captured by the agreement
relation, written as I' - e, ep, ey : 7 and read as “in environment I, ideal expression e, prover
expression ep, and verifier expression ey all agree at type 7”7 (quoted from ADSG [10]).
We formalize agreement as an inductive predicate, with the introduction rules presented
in Figure 8. Most rules are straightforward extensions of the (strong) typing judgment to
three terms. This immediately gives us the following result, which states that any well-typed
expression can be used in the ideal, prover, and verifier positions to yield an agreeing triple.

» Lemma 14 (Well-typedness implies agreement).
I'Fe:7—TFeee:T

The interesting exception to the agreement rules being extensions of the typing rules
is the last rule. It is modeled after the Auth small-step rules for the three modes. This
rule allows the three expressions to diverge during the evaluation of Auth and still be in
agreement. Note that the agreeing triple in the rule’s premises may not contain any free
variables. This property is enforced by the empty type environment, using the agreement
version of Lemma 7. Therefore, the use of the hash function in this rule is unproblematic.
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Lemma 14 states that well-typedness implies agreement. Ideally, we would also like to
show the other direction of this property: agreement implying well-typedness. Unfortunately
this does not hold. This is due to the extra agreement rule, allowing the introduction of
authenticated types for any ideal value. Consider for example that with @ = Unit, Unit, Unit :
One, we can obtain @ F Unit, Hashed h Unit, Hash A : AuthT One. Clearly we cannot show
@+ Unit : AuthT One. However, we can show weak well-typedness:

» Lemma 15 (Reformulated Lemma 2.3 from ADSG).
I'ke, ep,ey:7—>fmmaperase I' Fy e:erase T

We now prove Lemma 16 and Lemma 17 that are used extensively in later proofs.

» Lemma 16 (Lemma 2.1 from ADSG).
ke, ep, ey :7—> (ep) = ey
» Lemma 17 (Lemma 2.4 from ADSG).
I'Fe, ep, ey : T —> (value e A value ep A value ey) V (—value e A —value ep A —value ey)

In addition to Lemmas 15, 16, and 17, ADSG also states the following false property
as Lemma 2.2. (Although ADSG states the property as a lemma, we did not encounter a
situation where this statement was required to complete a proof.)

T'ke ep,ey:TATFe €p, ey :T—ep=epNey=c¢)

To demonstrate why this property does not hold we construct a counterexample. We define
h = Hash Unit and we abbreviate Unit as u for better readability. Let us first consider the
following two agreeing triples.

@+ u, u,u:One
@ b u, Hashed h u, Hash h : AuthT One

The second triple can be generated from the first one by applying the last agreement rule.
Both triples share the environment and the first term but disagree in the second and third
term as well as their type. Using the Pair rule we obtain the following two agreeing triples.

&+ Pair u u, Pair u u, Pair u u: Prod One One
@t Pair u u, Pair u (Hashed h u), Pair u (Hash h) : Prod One (AuthT One)

Applying Prjl to these triples removes the difference in the types but preserves the differences
in the second and third terms, completing our counterexample to ADSG’s Lemma 2.2.

@ + Prjl (Pair u u), Prjl (Pair u u), Prjl (Pair u u) : One
@+ Prjl (Pair u u), Prjl (Pair u (Hashed h u)), Prj1 (Pair u (Hash h)) : One

In the following we prove that, given a well-typed \e term, containing only free variables
of authenticated types, substituting agreeing values of the same type produces an agreeing
triple. This property is significant because it occurs in the following practical scenario. The
verifier must represent the data structure in a query it sends to the prover. It does so by
replacing it with a free variable, for which the prover substitutes its representation of the
data structure. The prover then returns the generated proof stream to the verifier, who
substitutes the free variable with its hash of the data structure and verifies the proof stream.
We formalized this lemma as stated below, with fmdom returning a finite map’s domain as a
finite set and |€| denoting membership on finite sets.

10:13
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» Lemma 18 (Reformulated Lemma 3 from ADSG). For A, Ap, Ay = (var,term) fmap:

F'kFe:7TA
fmdom A = fmdom I' A fmdom Ap = fmdom I' A fmdom Ay = fmdom I' A
Vz. z |€] fmdom T' — (37, v, vp, h. T'[z] = Some (AuthT 7') A N

Alz] = Some v A Ap[z] = Some (Hashed h vp) A Ay [z] = Some (Hash h) A
@ v, Hashed h vp, Hash h : AuthT 77)
@+ psubst e A, psubst e Ap, psubst e Ay : T

ADSG’s Lemma 3 includes an additional premise:
I'F e: 7 where e contains no values of type AuthT 7

Since variables are values, this premise implies that e contains neither bound nor free
variables of type AuthT 7 (only for this particular 7, it can contain other variables with other
authenticated types). The premise does not impose any further restrictions, since variables
are the only expressions that are values and can have type AuthT o for some o. We are
unclear as to what this premise’s purpose is. Fortunately, the lemma holds without it.
Finally, we prove a straightforward but crucial lemma, which states that substituting
agreeing values of the correct type for a free variable in an agreeing triple preserves agreement.

» Lemma 19 (Lemma 4 from ADSG).

(F[m»—)r’]FE, ep, ey i TADE v, vp, vy T A

—I'k :
value v A value vp A value vy ) elv/a], eplvr/a], evvv/a]: 7

5 Correctness

Having formalized Ae and proved a number of lemmas about it, we now take a look at the
main claims formulated in ADSG, concerning the correctness and security of \e. We start
with some agreeing terms e, ep, ey. The properties we would then like to obtain can be
informally stated as follows:

1. Correctness: If e takes i steps in mode |, then ep and ey can also take 7 steps in their
respective modes, with the verifier consuming the prover’s output proof stream. The
resulting terms agree.

2. Security: If ey takes i steps in mode V, consuming the proof stream 7 (which may be
legit or created by an adversary trying to trick the verifier) then either e and ep can also
take ¢ steps in their respective modes, with the prover generating m and the resulting
terms agreeing, or otherwise there exists a term in the proof stream m, such that we can
show the presence of a hash collision.

Besides these primary claims ADSG formulates a third claim (named Remark 1) that starts
with the prover’s computation and lets the other two modes follow:

3. Remark 1: If ep takes i steps in mode P generating the proof stream 7, then e and
ey can also take i steps in their respective modes, with the verifier consuming 7. The
resulting terms agree.

In a first step we formulate and prove these three properties on the single-step relation.
Afterwards we will lift these lemmas to obtain the main results on the multi-step relation.
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» Lemma 20 (Single step version of Correctness, Lemma 5 from ADSG).

ghe ep,ev:TA{],e) 1= (], ) —
dep, ey, m. o€, €ep, ey T A
(Vrp. (mp, ep) P— (mp Q 7, €p)) A (Va'. (m Q@ 7', ey) V= (7', €},))

Proof. The proof is by induction on the agreement relation. Most cases are straightforward,
using the lemmas about agreement and various freshness lemmas. The most interesting
cases are those for Let, Auth and Unauth. Let is the only construct with a binder that allows
recursive evaluation, requiring an additional freshness lemma to show that the recursive step
preserves freshness. The Auth and Unauth cases require us to show that the expressions being
hashed are closed. In both cases we have an agreeing triple with an empty typing context, so
we can apply the counterpart of Lemma 7 for agreement to show that property. |

» Lemma 21 (Single step version of Security, Lemma 6 in ADSG).

ke, ep, ey :TA(ma, ey) V= (7', €,) —
e, ep, m. ([, e) I= ([], &) A (Vrp. (mp, ep) P— (mp Q 7, €p)) A
(BFe, ep, ey :TATa=1Q7") V
(3s,s'. m=[s] Ama=1[s] @7’ A s# s Ahash s=hash s’ A closed s A closed s))

Proof. The proof is similar to that of Lemma 20, though the Unauth case here does not
involve hashes and therefore does not need special treatment. <

» Lemma 22 (Single step version of Remark 1).

ke, ep, evlT/\<7Tp, €p> P— <7‘l’p@7‘(7 693>—>
(3 e, D€, ep, ey T AL, e) 1= (], &) A(m, ev) V= ([], €}))

Proof. The proof is by straightforward induction on the agreement relation, without any of
the special cases of Lemmas 20 and 21. |

Having proven Lemmas 20, 21 and 22 we can now lift the results to the small-step semantics’

transitive closure to obtain the main results, described informally above.

» Theorem 23 (Correctness, Theorem 1 in ADSG).

e ep,ey:T A, e) 1= (], ) —
(Jep, ey, m. ey ep, ey 1 T A(]], ep) P—i (m, €p) AT, ev) V=i ([, €}))

» Theorem 24 (Security, Theorem 1 in ADSG).

ke ep, ey :TA(ma, ey) V=, (7, €,) —
(3e's ep,m. (], e) 1= ([, €) A ([], ep) P—i (7, €p) A
Ta=mQun' NOFeé, ep ey :T)V
(3ep, 4, mo, mh, 8,8 § < i A([], ep) P—j (mo Q [s], €pp) A
ma=m Q[s] Q7 Q7' As#s Ahash s =hash s’ A closed s A closed s)

» Theorem 25 (Remark 1 in ADSG).

e, ep, ey :TA <7Tp, 6p> P—; <7Tp Q, 6;;,> —
(e, e, D€, ep, ey TN, e) 1= ([], &) A, ev) V=, ([], €}))
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The statement of Theorem 24 differs from the one in ADSG. In the case where colliding
hashes cause the verifier to falsely accept a computation as correct, the theorem ensures
that the offending proof stream 74 has a specific shape. ADSG claims this shape to be
ma =m Q [¢'] @ 7', i.e., the evaluation must stop after a hash collision is encountered. For
Lemma 21, the single-step version, this holds, since we only evaluate a single step. However,
this fact is no longer true when taking multiple steps, since the verifier may continue to
evaluate and consume valid (or invalid) elements of the proof stream after encountering
the hash collision. In fact, the verifier cannot recognize that a hash collision has occurred.
Formally, this means that 74 = m9 @ [¢'] @ w{, @ 7’ for some 7}, as our corrected theorem
states. We illustrate the problem with ADSG’s formulation with a concrete counterexample:

Let (Unauth (Auth (Inj1 Unit))) « (Let (Unauth (Auth Unit)) y (Var z))

This term can be evaluated in the prover mode to generate the proof stream [Injl Unit, Unit].
We assume a hash function, which satisfies hash (Inj1 Unit) = hash (Inj2 Unit) and hash Unit #
hash ¢ for all ¢ # Unit. Note that, since all theorems are formulated to be agnostic to the choice
of the hash function, this is an entirely reasonable hash function to use in a counterexample.
A verifier using the adversarial proof stream 74 = [Inj2 Unit, Unit] evaluates the given term
to Inj2 Unit. The original statement of the theorem would require the proof stream to be
of the shape m4 = 7y @Q [¢'] @ ' with 7' = []. However, our adversarial proof stream
does not fit this pattern since the term with a colliding hash is not the last term from the
proof stream that is evaluated. With our amended, formally verified version, the shape
ma =mp Q [¢'] @ 7}, @ 7' can be matched as m4 =[] @ [Inj1 Unit] @ [Unit] @ [].

Since ADSG requires terms to be in administrative normal form, the above counterexample
cannot be expressed in ADSG’s definition of Ae. However, in our formalization we include a
(more verbose) counterexample in administrative normal form.

6 Discussion

We have formalized e and proved its correctness and security in Isabelle/HOL. Our work
can be seen as the mechanized supplement to Miller et al’s ADSG [10]. Ultimately, ADSG
passed the test of formalization. However, achieving this result turned out to be harder
than we first had expected, given the mistakes and imprecisions we had to overcome. We
discovered major problems in the paper’s Lemmas 1 and 2.2. We repaired Lemma 1 in a
rather unsatisfactory fashion. However, in our view type soundness, and more specifically
type preservation, is not very relevant for Ae; what is more important is the preservation
of agreement, which correctness and security establish. Lemma 2.2 could not be salvaged.
Moreover, we removed a redundant (and nonsensical) assumption from ADSG’s Lemma 3
and corrected a slip in the formal statement of ADSG’s main security theorem. We have not
reported here the minor typos we found in ADSG’s informal definitions and refer to the first
author’s Bachelor’s thesis [4] for such an overview. Taken together, our findings confirm the
value of formal proofs. The formalization could (and arguably should) have been undertaken
as part of the research on ADSG.

The last point is typically countered by the disproportional effort needed to obtain the
formalization. However, in this case the effort was modest: The main difficulties stemmed
from the fact that on several occasions we first tried to prove false statements from ADSG.

At 3500 lines of proof, our formalization is concise. In our view, Nominal was the main
asset behind this conciseness, because it allowed us to closely follow the informal proofs,
while discharging straightforward freshness obligations along the way. Nominal’s seamless
integration with the type of finite maps provided the right level of abstraction to reason
about type environments and term substitutions.
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However, we also noticed a few points where Nominal could provide a better user
experience. First, the introduction of binding-aware recursive functions and inductive
predicates requires some boilerplate proofs, which in many cases seem automatable. This
impression is confirmed by the fact that we could literally copy these proofs from unrelated
formalizations that were also using Nominal and perform minor adjustments to make them
work in our case. Second, ADSG uses terms of the form rec x \y. t for defining recursive
functions, which we model with the term Rec 2 (Lam y t). The more faithful way to model this
form would be a single Nominal datatype constructor that simultaneously binds two variables:

Rec (z :: war) (y :: var) (t :: term) binds z and y in ¢

Nominal supports this declaration. However, the reasoning infrastructure it provides for
such constructors is significantly more difficult to use than the one for the special case of
constructors binding a single variable. We had started our formalization with the above
formulation, but soon switched to the presented Rec constructor that only binds the recursive
variable x. Note that both typing and agreement require Rec’s second argument to be of
a function type, which is what the above form used in ADSG aims to hardwire into the
syntax. Third, unlike ADSG we do not consider actually running Ae programs. Here, in
our opinion, Nominal does not score very well by not being integrated with Isabelle’s code
generator. And moreover, it is not clear in general how to execute recursive functions that
carry freshness assumptions. Executability can be regained by translating the Nominal
types to a nameless representation (e.g., de Bruijn indices) and lifting all definitions to this
representation. Developing a more principled approach to executing Nominal programs is
interesting future work.
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