
Rapidly Computing the Phylogenetic Transfer
Index
Jakub Truszkowski1

LIRMM, CNRS, Université Montpellier, Montpellier, France
jakub.truszkowski@lirmm.fr

Olivier Gascuel
Unité Bioinformatique Evolutive, Département de Biologie Computationnelle, USR 3756,
Institut Pasteur et CNRS, Paris, France
LIRMM, CNRS, Université Montpellier, Montpellier, France
olivier.gascuel@pasteur.fr

Krister M. Swenson
LIRMM, CNRS, Université Montpellier, Montpellier, France
swenson@lirmm.fr

Abstract
Given trees T and To on the same taxon set, the transfer index φ(b, To) is the number of taxa that
need to be ignored so that the bipartition induced by branch b in T is equal to some bipartition
in To. Recently, Lemoine et al. [13] used the transfer index to design a novel bootstrap analysis
technique that improves on Felsenstein’s bootstrap on large, noisy data sets. In this work, we propose
an algorithm that computes the transfer index for all branches b ∈ T in O(n log3 n) time, which
improves upon the current O(n2)-time algorithm by Lin, Rajan and Moret [14]. Our implementation
is able to process pairs of trees with hundreds of thousands of taxa in minutes and considerably
speeds up the method of Lemoine et al. on large data sets. We believe our algorithm can be useful
for comparing large phylogenies, especially when some taxa are misplaced (e.g. due to horizontal
gene transfer, recombination, or reconstruction errors).

2012 ACM Subject Classification Applied computing → Bioinformatics; Theory of computation →
Design and analysis of algorithms

Keywords and phrases large phylogenies, bootstrap analysis, tree comparison, data structures on
trees

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.20

Acknowledgements We would like to thank Jeet Sukuraman for his help with the Dendropy package.

1 Introduction

The need to compare phylogenetic trees arises in many contexts in computational biology.
In bootstrap analysis [11], trees inferred from bootstrapped data sets are compared to the
tree inferred from the original data set (known as the reference tree) in order to evaluate
the statistical support for every branch in the inferred topology. Distance measures between
phylogenies, such as the Robinson-Foulds distance [9] or quartet distance [6], are also
frequently used to evaluate the accuracy of inference methods by comparing the trees they
produce with the “ground truth” trees that were used to simulate the data set. Finally,
distance measures between phylogenetic trees allow researchers to cluster trees inferred from
different genes to reveal groups of genes with similar patterns of evolution due to horizontal
gene transfer, duplication, loss, or recombination [12].

1 Present address: Borealis AI, Waterloo, Ontario, Canada

© Jakub Truszkowski, Olivier Gascuel, and Krister M. Swenson;
licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 20; pp. 20:1–20:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/227274896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-0312-2981
mailto:jakub.truszkowski@lirmm.fr
mailto:olivier.gascuel@pasteur.fr
https://orcid.org/0000-0001-8690-1261
mailto:swenson@lirmm.fr
https://doi.org/10.4230/LIPIcs.WABI.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Rapidly Computing the Phylogenetic Transfer Index

The most popular approach to comparing phylogenies compares the sets of splits (bi-
partitions) induced by the two trees. In the bootstrap setting, each branch in the reference
tree is assigned a bootstrap score which is the fraction of bootstrap trees that contain a
branch inducing the same split as the branch in the reference tree. Higher scores imply
more confidence in the inferred branches. This is known as Felsenstein’s bootstrap (FBP).
When the goal is to compare the global similarity of a pair of trees, a related approach is to
compute the number of splits that are found in one of the trees but not both. This is known
as the Robinson-Foulds(RF) distance and is widely used for comparing phylogenies. The RF
distance can be computed in O(n) time thanks to an algorithm by Day [9].

Both FBP and the RF distance are widely used due to their low computational cost and
ease of interpretation. However, these approaches become inadequate when dealing with
large, noisy data sets where large splits are unlikely to be recovered exactly. For example,
if the data set contains a small number of recombinant sequences, the location of those
sequences may vary between the bootstrap trees and the reference tree. Even a small number
of such sequences can impact many splits in the tree, leading to low bootstrap values across
the tree, despite the fact that the location of most sequences is strongly supported by the
data. This problem is exacerbated in large trees, where the risk of including a rogue taxon is
elevated. To illustrate this problem, Lemoine et al. [13] showed that trees built on a random
sampling of HIV strains have generally higher bootstrap values than a tree built on the full
set of strains.

Recently, Lemoine et al. [13] addressed this shortcoming of FBP by introducing a new
bootstrap procedure based on finding similar, rather than identical splits in the bootstrap
trees. For each split b in the reference tree and each bootstrap tree To, their method computes
the transfer index φ(b, To) between the split and the bootstrap tree, which is the minimum
number of taxa that need to be removed from the taxon set for b to equal some split bo in To.
The bootstrap support value assigned to b is then 1.0 minus its transfer index normalized
by the size (minus 1.0) of the smaller of the bipartition sets induced by b, averaged over all
bootstrap trees (see Davila Felipe et al. [8] for the statistical justification of this formula).
Lemoine et al. show that this approach is considerably more robust to the presence of
unstable taxa. The transfer index is computed using a quadratic-time algorithm due to
Lin, Rajan and Moret [14], which is efficient for moderate-sized data sets, but becomes less
practical for trees containing thousands or tens of thousands of taxa. In contrast, modern
tree-building methods can reconstruct trees with hundreds of thousands of taxa [16, 4], which
creates a need for scalable post-processing and analysis tools.

In this work, we present a fast exact algorithm for computing the transfer index for all
edges in the reference tree with respect to a bootstrap tree. Our algorithm runs in O(n log3 n)
time where n is the number of taxa in the data set, which is considerably faster than the
O(n2) required by Lin, Rajan and Moret [14]. Our prototype Python implementation [1]
is able to process pairs of trees with tens of thousands of taxa in a matter of seconds on
a standard laptop computer. Our C implementation for balanced trees [2] enables us to
carry out the analyses of Lemoine et al. at least an order of magnitude faster, and makes it
possible to compute the transfer index on data sets with tens or hundreds of thousands of
sequences. Computations that took nearly nine hours now take about ten minutes. Pairwise
comparisons of trees with hundreds of thousands of taxa can be completed within minutes.

2 Preliminaries

We consider binary trees with n leaves uniquely labeled from a set L of size n. Take a tree
T . A branch b ∈ E(T) can be described by the bipartition {A,B} that it induces on L when
removed from the tree (A ∪B = L). For L′ ⊆ L, define b|L′ = {A ∩ L′, B ∩ L′}.

J. Truszkowski, O. Gascuel, and K.M. Swenson 20:3

Consider two leaf-labeled binary trees T and To with branches b ∈ E(T) and bo ∈
E(To). The transfer distance δ(b, bo) is the number of leaves that must be ignored so that b
and bo are equal

δ(b, bo) = n−max
({
|L′|

∣∣ b|L′ = bo|L′
})

The transfer index for b with respect to To is the minimum transfer distance over all possible
bo ∈ E(To):

φ(b, To) = min
({
δ(b, bo)

∣∣ bo ∈ To

})
This work is about computing φ(b, To) for all b ∈ E(T). We first describe an algorithm

for a special case of the problem, corresponding to situations where To is a balanced tree.
We then present a modification of the algorithm that enables us to process general trees
efficiently. Finally, we evaluate the performance of our algorithm on simulated and empirical
data sets and discuss directions for future research.

3 An algorithm for balanced trees

In this section, we describe an efficient algorithm to compute φ(b, To) for all b ∈ E(T) when
To is a balanced tree. For the purposes of this manuscript, we say that a tree To is balanced
if there exists a node r ∈ V (To) (which we call the root) such that the path from r to any
leaf of To contains at most C logn edges for some constant C. Under this assumption, our
algorithm can compute φ(b, To) for all branches b ∈ E(T) in O(n log3 n) time. Balanced trees
are common in phylogenetics, as both the Kingman coalescent (standard population genetics
model) and Yule (standard speciation model) trees are expected to be balanced [18].

For convenience, we will work with transfer distances between rooted subtrees. For a node
u ∈ V (T), let L(u) be the set of leaves descendant from u. The rooted transfer distance is

δr(v, u) = |L(v) ∪ L(u)| − |L(v) ∩ L(u)|

for v ∈ V (To) and u ∈ V (T). The (unrooted) transfer distance between the corresponding
splits bv and bu is then

δ(bv, bu) = min({δr(v, u), n− δr(v, u)}). (1)

Let T be a rooted binary tree. For any node u in V (T), let ch(u) and cl(u) be the children
of u such that |L(ch(u))| ≥ |L(cl(u))|. We call ch(u) and cl(u) the heavy and light child of u,
respectively. We refer to the edge (u, ch(u)) as the heavy edge. If both children of u have an
equal number of leaf descendants, we pick the heavy child arbitrarily.

The main idea of the algorithm is to exploit the structure of both T and To when
computing the transfer index for subsequent splits. Suppose that T contains two vertices
u, u′ such that L(u′) = L(u) ∪ {x} for some leaf x. Unsurprisingly, we can show that the
transfer distance values δr(v, u) and δr(v, u′) differ by at most 1.

I Lemma 1. Let u and u′ be nodes in V (T) such that L(u′) = L(u) ∪ {x} for some leaf x.
Let P = v1, . . . , vk be the path from x to r in To, where v1 = x and vk = r. Then, for any
1 ≤ i ≤ k

δr(vi, u
′) = δr(vi, u)− 1,

and for any v /∈ P

δr(v, u′) = δr(v, u) + 1.

WABI 2019

20:4 Rapidly Computing the Phylogenetic Transfer Index

T

Figure 1 The difference between the rooted transfer distance to u and u′, for all nodes in To.
The rooted transfer distance decreases for all nodes on the path from x to the root and increases for
all other nodes.

Proof. Any node v on the path between r and x in To has x as its descendant, so δr(v, u′) =
δr(v, u)− 1 as x does not have to be removed from L(v) to obtain L(u′), but it has to be
removed to obtain L(u). The opposite holds for nodes outside the path from r to x, so the
distance increases by one – see Figure 1. J

The above lemma suggests a strategy for efficiently computing δr(v, u′) from δr(v, u). For
each node v ∈ V (To), we will maintain a variable D[v] which, when combined with a global
counter, maintains the invariant δr(v, u) = D[v] + counter. Algorithm AddLeaf updates
D when moving from u to u′. The global counter is incremented, effectively increasing the
transfer distance for all nodes. To compensate for this, each D along the path from x to the
root is decreased by 2, thus maintaining the invariant.

Algorithm 1 AddLeaf(x).

global counter
v ← x {Note: x ∈ V (To).}
while v 6= r do
D[v]← D[v]− 2
v ← v.parent

end while
counter ← counter + 1

Algorithm 2 RemoveLeaf(x).

global counter
v ← x {Note: x ∈ V (To).}
while v 6= r do
D[v]← D[v] + 2
v ← v.parent

end while
counter ← counter − 1

Finding the node v that minimizes δr(v, u) can be achieved by using a dynamic data
structure similar to a heap [7]. The total running time of AddLeaf is O(log2 n) for balanced
trees as the main loop is executed O(logn) times and each update of the structure takes
O(logn) time.

When L(u′) differs from L(u) by more than one leaf, we update D by calling AddLeaf
for all leaves in L(u′)− L(u).

We now present the complete algorithm as Algorithm 3. First, we initialize the D values
by computing the rooted transfer distance from the empty subtree to every subtree in To.
The rooted distance from the empty subtree equals the number of leaves in L(v). Then, we
choose a leaf x in T and traverse its ancestors, calling AddLeaf on leaves descended from
nodes off the path from x to r. To ensure that AddLeaf is called a limited number of times

J. Truszkowski, O. Gascuel, and K.M. Swenson 20:5

on a leaf, we terminate the traversal when the current node is the light child of its parent. In
that case, we undo the leaf additions using the routine RemoveLeaf and restart the process
from a new leaf.

Algorithm 3 ComputeTransferIndices(To, T).

Set D[v]← |L(v)|,∀v ∈ V (To)
counter ← 0
for all x ∈ L(T) do
curNode← x

AddLeaf(x)
while curNode 6= r do

if curNode is the heavy child of its parent then
for all y ∈ L(sibling(curNode)) do
AddLeaf(y)

end for
φ(bparent(curNode), To)← minv∈V (To)({D[v] + counter, n−D[v]− counter})
curNode← parent(curNode)

else
for all y ∈ L(curNode) do
RemoveLeaf(y)

end for
break

end if
end while

end for

We can prove the following property.

I Lemma 2. The number of calls made to AddLeaf during the execution of
ComputeTransferIndices is at most n log2 n.

Proof. Let x be a leaf in T . The number of times AddLeaf is called with x given as the
argument is at most the number of nodes v on the path from x to the root such that
|L(v)| ≤ 1

2 |L(parent(v))|. There can be at most log2 n such nodes since |L(r)| = n and
|L(x)| = 1. We obtain the result by summing over all leaves in T . J

Since the running time of AddLeaf is O(log2 n), it follows that the total running time of the
algorithm is O(n log3 n).

4 General Trees

4.1 The data structure
The performance of Algorithm 3 crucially depends on the height of the phylogeny. When
To is a caterpillar tree and T is balanced, the running time of the algorithm can be as
bad as O(n2 log2 n). In order to derive a fast algorithm for general trees, we need a data
structure that would allow us to efficiently navigate splits in the tree, regardless of the
topology. Our approach is based on heavy path decompositions, originally introduced by
Sleator and Tarjan [17].

Recall that a heavy child is a node that has at least as many descendant leaves as its
sibling, and that a heavy edge is an edge that connects a heavy child to its parent. A heavy
path is a sequence of nodes v1, . . . , vk such that (vi, vi+1) is a heavy edge for all 1 ≤ i ≤ k− 1

WABI 2019

20:6 Rapidly Computing the Phylogenetic Transfer Index

Figure 2 A phylogeny with heavy paths marked in thick lines.

(see Figure 2). A heavy path is called maximal if vk is a leaf and v1 is either the root or the
light child of its parent. We let P(T) denote the set of maximal heavy paths in T .

I Lemma 3. Let x be any leaf in To. The path from x to the root of To intersects at most
dlogne+ 1 distinct maximal heavy paths.

Proof. Let (u, v) be an edge on the path from x to the root such that u and v belong to
different maximal heavy paths. Without loss of generality, we can assume that u is the
parent of v. Then |L(u)| ≥ 2|L(v)| since otherwise (u, v) would be a heavy edge. Since
L(x) = 1 and L(root(To)) = n, it follows that there are at most dlogne such edges, which
gives the result. J

We will think of T as a collection of maximal heavy paths. For each maximal heavy
path p = v1, . . . , vk, we recursively define a path search tree S(p) as follows. The root of
S(p) is associated with p. The children of a node associated with a path p′ = vp′1, . . . , vp′k′

are associated with subpaths vp′1, . . . , vp′bk′/2c and vp′bk′/2+1c, . . . , vp′k′ ; we refer to them
as intervals and write [a, b] to denote both the node associated with the path a, . . . , b and
the path itself. If p′ has only one element, it is a leaf in S(p). We also write first(p) := v1,
last(p) := vk and path(x) for the unique maximal heavy path that contains x.

For each interval [a, b] we maintain variable D[a, b] and maintain the invariant

δr(v, u) =
∑

{[a,b]∈S(p)|v∈[a,b]}

D[a, b] + counter (2)

for all v ∈ V (To), where u is the node in T under consideration. Moreover, we maintain
variables minval[a, b] and maxval[a, b] with the invariant

minval[a, b] = min
v∈[a,b]

∑
{[y,z]∈S(p)|v∈[y,z]⊆[a,b]}

D[y, z] (3)

maxval[a, b] = max
v∈[a,b]

∑
{[y,z]∈S(p)|v∈[y,z]⊆[a,b]}

D[y, z] (4)

Informally, minval[a, b] is the minimum value of the rooted transfer distance between any
node in [a, b] and the current split in T , up to a constant. That is, the node v that minimizes∑
{[y,z]∈S(p)|v∈[y,z]⊆[a,b]}D[y, z] also minimizes δr(v, u). In particular, if [a, b] is the root node

of its path search tree, we have

min
v∈[a,b]

δr(v, u) = minval[a, b] + counter (5)

J. Truszkowski, O. Gascuel, and K.M. Swenson 20:7

Analogously, for maxval[a, b] we have

max
v∈[a,b]

δr(v, u) = maxval[a, b] + counter (6)

While we are not aware of this particular data structure having been defined previously,
we note that somewhat similar search tree structures on phylogenies have been developed
before for large-scale phylogenetic tree reconstruction [5] and computing the quartet distance
between trees [3]. Heavy path decompositions have also been introduced in database literature
for computing edit distances on trees [15].

4.2 The algorithm
Algorithm 7 follows the same strategy as the algorithm for balanced trees, with a few
modifications designed to accommodate potentially long paths between the root and leaves
in To. First, we initialize the path search trees by setting D[x, x] = |L(x)| for every node
x ∈ V (To) and D[a, b] = 0 for every interval with a 6= b. We also set minval[a, b] = |L(b)|,
maxval[a, b] = |L(a)|, and counter = 0. It can be easily verified that the invariants given by
Equations 2, 3, and 4 are satisfied.

The algorithm then repeatedly calls functions AddLeafGeneral and RemoveLeafGeneral
to move between splits of T , updating the transfer distances to splits in To. We use path
search trees together with the function UpdatePath to efficiently update the minimum
transfer distance values within each heavy path, making use of Equations 5 and 6. Given
a node x, the algorithm traverses the intervals in the path search tree of the heavy path
containing x while updating D, minval, and maxval values to reflect the fact that the
distance has changed by the same amount for x and every node above it (see Figure 3).

Algorithm 4 UpdatePath(x,d).

D[x, x]← D[x, x] + d

minval[x, x]← minval[x, x] + d

maxval[x, x]← maxval[x, x] + d

[a, b]← [x, x]
while [a, b] is not root interval do

[ap, bp]← parent_interval([a, b])
if bp = b then

[as, bs]← sibling_interval([a, b])
D[as, bs]← D[as, bs] + d

minval[as, bs]← minval[as, bs] + d

maxval[as, bs]← maxval[as, bs] + d

end if
minval[ap, bp]← min{minval[as, bs],minval[a, b]}+D[ap, bp]
maxval[ap, bp]← max{maxval[as, bs],maxval[a, b]}+D[ap, bp]
[a, b]← [ap, bp]

end while

I Lemma 4. Each call to UpdatePath changes the value of
∑
{[a,b]∈S(p)|v∈[a,b]}D[a, b] by d

for all vertices v ancestral to x (including x) in the path p. Moreover, each call preserves
invariants 3 and 4.

WABI 2019

20:8 Rapidly Computing the Phylogenetic Transfer Index

v1

Figure 3 Updating the D values associated with the heavy path v1, . . . , v16 during the call to
UpdatePath(v11,−2). Intervals whose D values have been updated are coloured in red.

Proof. Let y be a node in p that is above x. Let [am, bm] be the minimal interval in S(p)
that contains both x and y and let [al, bl] and [ar, br] be the left and right child of [am, bm]
in S(p), respectively. By the choice of [am, bm], x and y cannot both belong to the same
child of [am, bm]. Since y is above x in To, it follows that y ∈ [al, bl] and x ∈ [ar, br]. We
have bm = br by the definition of the path search tree, so D[al, bl] will be increased by d at
the iteration of the while loop when [a, b] = [ar, br] and minval[al, bl] and maxval[al, bl] will
be increased by the same amount, preserving invariants 3, 4. On the other hand, it can be
easily verified that all the other variables D[a, b] such that y ∈ [a, b] will remain unchanged,
since [al, bl] is the only interval containing y that is the left child of its parent and has a right
child that contains x. J

Algorithm 5 AddLeafGeneral(x).

global counter
UpdatePath(x,−2)
while first(path(x)) 6= root(To) do
x← parent(first(path(x)))
UpdatePath(x,−2)

end while
counter ← counter + 1

Algorithm 6 RemoveLeafGeneral(x).

global counter
UpdatePath(x, 2)
while first(path(x)) 6= root(To) do
x← parent(first(path(x)))
UpdatePath(x, 2)

end while
counter ← counter − 1

I Lemma 5. After each call to AddLeafGeneral or RemoveLeafGeneral, Equation 2 is
satisfied.

J. Truszkowski, O. Gascuel, and K.M. Swenson 20:9

Proof. Equation 2 holds for the initial values ofD[a, b] and counter. The calls to UpdatePath
from within AddLeafGeneral decreases the sum

∑
{[a,b]∈S(p)|v∈[a,b]}D[a, b] by exactly 2 for

each node v on the path from x to the root of To. The variable counter increases by 1, which
means that the sum∑
{[a,b]∈S(p)|v∈[a,b]}

D[a, b] + counter

is decreased by 1 for each node on the path from x to the root and increased by 1 for all
other nodes. This, together with Lemma 1 gives the result for AddLeafGeneral. The case
of RemoveLeafGeneral is proved by analogous reasoning. J

I Theorem 6. Algorithm 7 computes the transfer index for all splits in T .

Proof. Lemma 5 and Equation 5 ensure that at each iteration of the while loop, the value
minval[first(p), last(p)] + counter is equal to the minimum value of the rooted transfer
distance among the nodes in p. Using Equation 1 and taking the minimum over all the paths
yields the result. J

Algorithm 7 ComputeTransferIndicesGeneral(To, T).

Initialize D[., .],minval[., .],maxval[., .].
counter ← 0
for all x ∈ L(T) do
curNode← x

AddLeafGeneral(x)
while curNode 6= r do

if curNode is the heavy child of its parent then
for all y ∈ L(sibling(curNode)) do
AddLeafGeneral(y)

end for
min1← minp∈P(To) minval[first(p), last(p)] + counter

min2← minp∈P(To)(n−maxval[first(p), last(p)])− counter
φ(bparent(curNode), To)← min {min1,min2}
curNode← parent(curNode)

else
for all y ∈ L(curNode) do
RemoveLeafGeneral(y)

end for
break

end if
end while

end for

4.3 Running time analysis
The running time of Algorithm 7 is O(n log3 n). Each call to UpdatePath takes at most
O(logn) time. During the execution of AddLeafGeneral and RemoveLeafGeneral,
UpdatePath is called at most O(logn) times by Lemma 3, which gives a bound of O(log2 n)
for each call to any of these functions. Finally, by Lemma 2, AddLeafGeneral is executed

WABI 2019

20:10 Rapidly Computing the Phylogenetic Transfer Index

at most O(n logn) times, which means that the overall running time is O(n log3 n). Finding
φ(bcurNode, To) can be solved efficiently using a heap at a cost of O(logn) for each call to
UpdatePath, which increases the total running time only by a constant factor.

5 Implementations

We have two implementations currently available. A proof-of-concept implementation of
Algorithm 7 was written in Python, making use of the Dendropy package [19]. This
implementation is available at [1]. A definitive C implementation is a work in progress;
Algorithm 3 has been integrated into the current Booster code base [2].

To obtain speedups for trees with a high degree of similarity, our Python implementation
first traverses both trees and identifies, in linear time, maximal identical subtrees that occur
in both trees. These trees are then replaced with single nodes whose weight equals the
number of leaves in the collapsed subtree. After this pre-processing step, every AddLeaf and
RemoveLeaf operation changes all the relevant counters by the weight of the node, rather
than by 1. Every edge within the collapsed subtrees has transfer index equal to 0. This
procedure can result in substantial speedups for highly similar trees (see next section).

6 Experiments

We evaluated the performance of our algorithm on several simulated and empirical data sets.
In all simulation experiments, we simulated pairs of trees by sampling the first tree topology
uniformly at random and applying random edit operations to obtain the second tree. Each
edit operation chose two random nodes such that neither node is ancestral to the other (with
respect to some arbitrary rooting of the tree) and swapped the subtrees rooted at the chosen
nodes. By increasing the number of applications of the edit operation, we decreased the
similarity of the trees.

In the first experiment, we generated pairs of trees with sizes varying between 100 and
100000 taxa. Each pair of trees was generated using the number of edit operations equal to
0.2 times the number of taxa. Experiments were performed on a Linux laptop with 8 GB
of RAM and an Intel i5 2.3 GHz processor using one thread for each run. The results are
given in Figure 4(left). The running time of our Python program is close to linear in the
number of taxa; even for 100000 taxa, it takes less than 100 seconds to compute the transfer
indices. Our C implementation of Algorithm 3 is faster for smaller trees with up to 20000
taxa, but becomes considerably slower for very large trees. This is not surprising as trees
sampled from the uniform distribution are likely to be unbalanced, as the mean diameter of
a tree is O(

√
n) [10]. Booster is the slowest of the three algorithms and runs out of memory

for trees with more than 20000 taxa.
In the second experiment, we investigated the impact of tree dissimilarity on the running

time. Experiments were performed on an Intel Xeon 2.1 GHz processor with 32 GB of RAM
using a single thread. We generated pairs of trees with 10000 taxa each while varying the
number of edit operations from 0 to 10000. As we can see in Figure 4(right), tree dissimilarity
has little, if any, effect on the running time of the algorithm when the preprocessing procedure
is not applied. In contrast, collapsing identical subtrees can lead to 2- to 3-fold speedups for
highly similar tree pairs.

In the final experiment, we repeated the analysis from Lemoine et al. on several HIV and
mammalian data sets. Each data set contained 1000 bootstrap replicates and the number of
taxa varied between 571 and 9147. The results are given in Table 1. On the largest data

J. Truszkowski, O. Gascuel, and K.M. Swenson 20:11

0 20000 40000 60000 80000 100000

0
20

0
40

0
60

0
80

0

number of taxa

tim
e(

se
co

nd
s)

booster−C [13]
Algorithm 7−python
Algorithm 3−C

0 2000 4000 6000 8000 10000

2
3

4
5

6
7

8

number of edit operations between the trees (10000 taxa)

tim
e(

se
co

nd
s)

Alg. 7, collapsing equal subtrees
Alg. 7, no collapsing

Figure 4 Left: The running times for our two implementations and the code by Lemoine et al. as
a function of the number of taxa. Right: Running times for a pair of 10000-taxon trees as a function
of the similarity of the trees.

set, our Python program completed the analysis in less than 2 hours and our C program
completed the analysis in less than 12 minutes, compared to almost 9 hours for Booster,
which is written in C. Smaller data sets were processed in a matter of minutes by Booster and
our Python implementation, while our C implementation was at least an order of magnitude
faster than Booster in all cases.

Table 1 Running times for four data sets from Lemoine et al.. Our C implementation presents
substantial advantages.

Data set taxa #bootstraps booster-C [13] Alg. 7-Python Alg. 3-C
HIV/Full 9147 1000 8h51m 1h47m 12m

HIV/Medium_Sample1 571 1000 1m 3m23s 6s
HIV/Medium_Sample2 571 1000 1m 3m32s 6s

Mammals/raxml 1449 1000 10m32s 10m36s 30s

7 Conclusion

We have presented an algorithm for rapidly computing, for every split in tree T , the minimum
transfer distance to the closest split in another tree To. The running time of the algorithm
is O(n log3 n), which is close to linear in the size of input trees. We expect to be able to
remove a logarithmic factor with improved bookkeeping to maintain the minimum value
of the transfer distance. Without this improvement, our prototype implementation scales
almost linearly in practice, enabling us to compare pairs of trees with hundreds of thousands
of taxa in a matter of minutes. This is comparable to several widely-used implementations
of the RF distance, which makes our tool an interesting alternative to the RF distance for
comparing large, noisy trees.

WABI 2019

20:12 Rapidly Computing the Phylogenetic Transfer Index

The most direct practical implication of this work is scaling up the TBE bootstrap
analysis by Lemoine et al. Our method gives at least an order of magnitude speedup on all
of the data sets they analyzed, and will enable the analysis of bootstrap data sets for trees
of tens to hundreds of thousands of taxa within hours of CPU time.

On small and moderate-size data sets, our Python implementation is slower than the
Booster software of Lemoine et al., which is likely due to their optimized implementation.
Our C implementation for balanced trees always significantly out-performs Booster, however,
and we are in the process of expanding it to the complete Algorithm 7.

There are several possible directions for future research. It would be interesting to see if
the techniques developed here could be used to design novel methods for finding consensus
trees. Another natural direction is to investigate whether global distance measures between
trees, rather than splits, could be designed based on the transfer index.

References
1 https://bitbucket.org/thekswenson/rapid_transferindex/.
2 https://github.com/thekswenson/booster.
3 GS Brodal, R Fagerberg, and CNS Pedersen. Computing the quartet distance between

evolutionary trees in time O(n log n). Algorithmica, 38(2):377–395, 2004.
4 Daniel G Brown and Jakub Truszkowski. Fast phylogenetic tree reconstruction using locality-

sensitive hashing. In Algorithms in Bioinformatics, pages 14–29. Springer, 2012.
5 Daniel G Brown and Jakub Truszkowski. Fast error-tolerant quartet phylogeny algorithms.

Theoretical Computer Science, 483:104–114, 2013.
6 D Bryant, J Tsang, PE Kearney, and M Li. Computing the quartet distance between

evolutionary trees. In Proceedings of SODA 2000, pages 285–286, 2000.
7 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al. Introduction

to algorithms, volume 2. MIT press Cambridge, 2001.
8 M Dávila Felipe, J-B Domelevo Entfellner, F Lemoine, J Truszkowski, and O Gascuel.

Distribution and asymptotic behavior of the phylogenetic transfer distance. Journal of
Mathematical Biology, April 2019.

9 WHE Day. Optimal algorithms for comparing trees with labeled leaves. Journal of classification,
2(1):7–28, 1985.

10 Péter L Erdös, Michael A Steel, László A Székely, and Tandy J Warnow. A few logs suffice to
build (almost) all trees: part II. Theoretical Computer Science, 221(1-2):77–118, 1999.

11 Joseph Felsenstein. Confidence limits on phylogenies: an approach using the bootstrap.
Evolution, 39(4):783–791, 1985.

12 K Gori, T Suchan, N Alvarez, N Goldman, and C Dessimoz. Clustering genes of common
evolutionary history. Molecular biology and evolution, 33(6):1590–1605, 2016.

13 F Lemoine, J-B Domelevo Entfellner, E Wilkinson, D Correia, M Dávila Felipe, T de Oliveira,
and O Gascuel. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature,
556(7702):452, 2018.

14 Yu Lin, Vaibhav Rajan, and Bernard ME Moret. A metric for phylogenetic trees based on
matching. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),
9(4):1014–1022, 2012.

15 M Pawlik and N Augsten. RTED: a robust algorithm for the tree edit distance. Proceedings
of the VLDB Endowment, 5(4):334–345, 2011.

16 Morgan N Price, Paramvir S Dehal, and Adam P Arkin. FastTree 2–approximately maximum-
likelihood trees for large alignments. PloS one, 5(3):e9490, 2010.

17 DD Sleator and RE Tarjan. A data structure for dynamic trees. Journal of Computer and
System Sciences, 26(3):362–391, 1983.

18 Mike Steel. Phylogeny: discrete and random processes in evolution. SIAM, 2016.
19 Jeet Sukumaran and Mark T Holder. DendroPy: a Python library for phylogenetic computing.

Bioinformatics, 26(12):1569–1571, 2010.

https://bitbucket.org/thekswenson/rapid_transferindex/
https://github.com/thekswenson/booster

	Introduction
	Preliminaries
	An algorithm for balanced trees
	General Trees
	The data structure
	The algorithm
	Running time analysis

	Implementations
	Experiments
	Conclusion

