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—— Abstract

As sequence databases grow, characterizing diversity across extremely large collections of genomes
requires the development of efficient methods that avoid costly all-vs-all comparisons [17]. In addition
to exponential increases in the amount of natural genomes being sequenced, improved techniques for
the creation of human engineered sequences is ushering in a new wave of synthetic genome sequence
databases that grow alongside naturally occurring genome databases. In this paper, we analyze
the full diversity of available sequenced natural and synthetic plasmid genome sequences. This
diversity can be represented by a data structure that captures all presently available nucleotide
sequences, known as a pan-genome. In our case, we construct a single linear pan-genome nucleotide
sequence that captures this diversity. To process such a large number of sequences, we introduce
the plaster algorithmic pipeline. Using plaster we are able to construct the full synthetic plasmid
pan-genome from 51,047 synthetic plasmid sequences as well as a natural pan-genome from 6,642
natural plasmid sequences. We demonstrate the efficacy of plaster by comparing its speed against
another pan-genome construction method as well as demonstrating that nearly all plasmids align well
to their corresponding pan-genome. Finally, we explore the use of pan-genome sequence alignment to
distinguish between naturally occurring and synthetic plasmids. We believe this approach will lead to
new techniques for rapid characterization of engineered plasmids. Applications for this work include
detection of genome editing, tracking an unknown plasmid back to its lab of origin, and identifying
naturally occurring sequences that may be of use to the synthetic biology community. The source
code for fully reconstructing the natural and synthetic plasmid pan-genomes as well for plaster are
publicly available and can be downloaded at https://gitlab.com/qiwangrice/plaster.git.
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1 Introduction

Thanks to the advancement of sequencing and genome-editing technologies, over the past
decade genome engineering has become more affordable and accessible. Plasmids are com-
monly found as double-stranded DNA, which can replicate independently from chromosomal
DNA [12]. They are ubiquitous in bacteria and provide benefits such as enhanced host range
[4], antibiotic resistance [18], and even forced cooperation [20]. As plasmids are easy to
engineer and can confer functions in a broad range of species, they are widely used in biology
labs for understanding and modifying genetic elements. To date, more than 65 thousand
engineered plasmids have been deposited in the Addgene repository [13]. With the benefits
of genetic engineering microbial sequences also come risks [3], some with significant dual use
of research concerns [22]. In response, methods have been designed both to detect signatures
of engineering [1] and also trace back synthetic plasmids to a lab of origin using deep learning
methods [19]. Although deep learning shows potential to characterize engineered plasmids
and identify the lab-of-origin, there is a need for explainable, white-box approaches that
can provide a full list of sequence features specific to a biological function or lab. We thus
propose a novel method that enables the detection of a plasmid’s lab-of-origin with precise
characterization the diversity within and among all engineered plasmid sequences.

Traditionally, a single genome is chosen as a reference to describe genome diversity within
a group. Unfortunately, a single genome usually fails to reveal the full picture of similarities
and discrepancies among all individuals. The “pan-genome” concept was introduced to
reflect the diversity of all strains within a specific clade [31, 27]. This concept is similar
to the problem of finding a smaller set of founder sequences, which can map to a given
sequence in the group, called the founder sequence reconstruction problem [30]. The pan-
genome is designed to describe both the core genome shared by all the individuals and the
accesory genome contained by only some strains [27]. This concept can be applied to different
domains. In metagenomic studies, a pan-genome can highlight essential genetic elements
responsible for adaptations to the environment and the co-evolution interactions among the
microorganisms [17]. In terms of building a phylogenetic tree, pan-genomes can detect weak
evolutionary signals, which may be omitted by multiple sequence alignment. It also opens up
the possibilities for discovering the origin of unknown organisms [33], pathogen transmission
history [6], or the inference of cancer cell evolution [10].

In microbes, the pan-genome is commonly defined as the union set of genes that exist
in all the genomes in a selected clade [27]. Many bioinformatic tools have been developed
to build gene-based pan-genomes, such as PanOCT [8], PGAP [35], and Roary [24]. Given
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their gene-centric construction of the pan-genome, they are vulnerable to missing genes [34]

and do not include intergenic regions, which can have substantial impact on phenotypes [28].

To address these limitations, methods such as Piggy [29] build pan-genomes from intergenic
regions. In this paper we move away from a gene and intergenic centric approach; the term
pan-genome refers to the sum of all core and accessory DNA sequence fragments which are
longer than a minimal sequence fragment length [ (plaster default | = 50bp).

In order to efficiently analyze vast numbers of DNA sequences, there is a need to create a

pan-genome sequence that encodes all existing variations in the minimal possible size [21].

To solve this problem efficiently via pan-genomics we introduce plaster, a new pan-genome
construction algorithm inspired by fast DNA clustering techniques [5]. plaster’s speed
exceeds the fastest existing tool seq-seq-pan and can be easily scaled to handle large data
sizes. Seq-seq-pan [14] is a recently introduced method for efficient pan-genome construction
that was shown to be an order of magnitude faster than the fastest available methods for pan
genome construction [7]. In brief, it relies on progressiveMauve to catalog all of the differences
(including insertions, deletions, substitutions, inversions, and rearrangements) within a set of
genomes through multiple sequence alignment. Then, it applies majority vote to decide on
consensus sequences from a set of segments of aligned sequences and merges those sequences
with delimiter sequences. Our approach plaster employs a similar approach, but instead we
calculate pairwise alignments with NUCmer and identify unaligned regions using dnadiff. We
then append all unaligned regions along with delimiter sequences to the end of the reference
sequence Fig. 1. We introduce the algorithm of plaster in detail and compare its performance
with seq-seq-pan. In addition, we describe differences and similarities between the synthetic
and natural plasmid pan-genome sequences based on pairwise alignment results.

2 Methods

2.1 plaster Workflow

The goal of our algorithm is to construct a pan-genome P from a set S = [sg, $1, ..., $p] of
n genome sequences. Throughout this paper, we focus on plasmid sequences, though any
arbitrary sequences can be used to construct the pan-genome P. A high level overview of our
algorithmic pipeline is outlined in Fig. 1. Though not necessary to run the plaster software,
in all analyses in this paper we first sort S so that |sg| > |s1]| > ... > |s,| where |s| denotes
the length of a sequence s. This initialization offers optimal performance of the method and
we recommend it to be used as a standard practice for users of plaster.

As shown in Fig. 1, the pipeline for our full plaster algorithm can be broken up into
a series of discrete tasks. After ordering the sequences by length, the pan-genome P, also
referred to as the reference sequence, is initialized as the longest sequence sy in S. We
then proceed to build the full pan-genome by looping through all the remaining sequences,
[$1, $2, .., Sn], and performing the steps detailed in Fig. 1. We refer to each of these sequences
as a query sequence which we compare to the current pan-genome reference sequence.

For each query sequence, plaster begins by identifying the regions that do not align
between the query and current reference sequence. For this, NUCmer and dnadiff [25]
(from the MUMmer package [16], default dnadiff parameters were used). Pairwise genome
alignment is performed by NUCmer; following alignment, dnadiff provides detailed analysis
of all differences between the two sequences. Once the differences between the query and
reference sequences have been calculated, we add unaligned query sequence regions to the pan-
genome reference. The .report file output by dnadiff contains the total alignment percentage
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Identify Structural Variations

Order Plasmids by Length (MUMmer, dnadiff)

Pick the longest plasmid as Extract Sequence Fragments

Pick the remaining longest

. Add to
plasmid as query sequence

1

Figure 1 plaster Pipeline: To build a pan-genome sequence, first we order all of the input
sequences by length. We next select the longest plasmid as an initial reference sequence and
the second longest plasmid as the first query sequence. We perform pairwise local alignment to
identify DNA sequences that are not contained in the current pan-genome. We then extract the
novel sub-sequences from the query sequence and update the pan-genome with these sequences.
We continue the pan-genome construction process by selecting the next longest sequence in the
remaining data set as the next query sequence. We iterate over all input sequences until the entire
set has been processed.

between the reference and query sequence. If the alignment percentage is zero, that is, the
query sequence is totally unaligned to the reference, we add the entire query to the plasmid
pan-genome by appending a delimiter sequence and the entire query sequence to the end.

Following this procedure, there are five different types of structural variants we capture:
gaps, duplications, breaks, relocations, and inversions. Each of these represents a different
type of sequence variant. For the purpose of capturing the minimal pan-genome, we only care
about variations where there are nucleotides in the query sequence that are not described in
the current reference. This includes: i) gaps, which identifies indels between two consistently
ordered and oriented alignments, and ii) breaks, which refers to a fragment of query sequence
not aligned to the reference sequence. Inversions, relocations, and duplications are sequence
variants of interest, but do not require an update to the linear pan-genome. By default, if the
length of a gap or break area is longer than [ (default is 50bp), the corresponding unaligned
query sequence area will be appended to the end of the reference sequence after an additional
delimiter sequence. This process of finding and appending all differences between a query
sequence and the current pan-genome reference sequence continues until every sequence in S
has been iterated over. The final output of plaster is the resulting reference sequence which
represents a linear pan-genome P for the genomes of S.

3 Results

Having developed a novel algorithm for efficiently constructing pan-genomes that can handle
very large numbers of sequences, we set out to categorize the differences between all known
naturally occurring and synthetic plasmids. To justify the efficacy and utility of our newly
developed plaster algorithm, we perform experiments on the running time of our method.
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The run-time for plaster also includes the time for sorting the input sequences based on
length. We build the full pan-genomes of all natural and synthetic plasmids and we take
a first look at a novel approach for categorizing plasmids as natural or synthetic based on
percent alignment against these two pan-genomes. All the experiments in this paper are
written in python and run on a server running Ubuntu 18.04 LTS with two Intel Xeon Gold
6138 2.0 GhZ processors at 1 terabyte of RAM.

3.1 Evaluation of sensitivity

A total of 43 M. tuberculosis genomes were used to build a pan-genome sequence in [14].

However, only 41 genomes were still available in [23]. We used these 41 M. tuberculosis
genomes to build a pan-genome sequence using both seq-seq-pan and plaster. Seq-seq-pan
requires 34 min to construct the pan-genome sequence. On the other hand, it only takes
plaster around 4.2 min. The total length of the pan-genome sequence built by plaster
is 385,335 bp shorter than the one from seqg-seq-pan. However, the pan-genome sequence
generated by plaster can align a total of 8,828 bp more (or 99.994% average alignment
percentage compared to 99.989% for seq-seq-pan) when performing pairwise alignment of all
41 M. tuberculosis sequences as query sequences against the pan-genome built from these same
41 genomes as the reference sequence. This shows that plaster is an order of magnitude faster
than seq-seq-pan while simultaneously producing a more compacted pan-genome sequence
and capturing more detailed variations within it.

3.2 Evaluation of speed

Given the rapid increase in the number of natural and engineered plasmids, there is a need to
develop a platform which can build pan-genomes for large data sets within a reasonable time

and be able to update the pan-genome information quickly for newly sequenced genomes.

To evaluate the pan-genome construction speed of plaster, we first performed experiments
on subsets of synthetic plasmid sequences and compared the performance of plaster against
the state of the art seq-seq-pan pan-genome construction method. We randomly selected

subsets of 10, 100, and 1000 synthetic plasmids from the full set of all synthetic plasmids.

Then, we recorded the wall clock time for building a pan-genome from these sequences from
start to finish.

As seen in Table 2, the performance of plaster for building a pan-genome sequence
ranges from 10 to 100 times faster than seq-seq-pan. plaster processes plasmids at a rate
of 0.25 seconds/plasmid for 10 plasmids, 0.3 seconds/plasmid for 100 plasmids, and 0.337
seconds/plasmid for 1000 plasmids. For seq-seq-pan, the rate is 2.56 seconds/ plasmid, 4.7
seconds/plasmid, and 35.3 seconds/plasmid for 10, 100, and 1000 plasmids respectively. From
these results we can see that seq-seq-pan will not scale to building pan-genome sequences
for all known synthetic or natural plasmids. On the other hand, plaster is able to build a
pan-genome for 51,047 complete engineered plasmid sequences in 8.9 hours.

Table 1 Run-time, sensitivity, and pan-genome length for 41 M. tuberculosis genomes.

Seq-seq-pan plaster
Run-time (s) | 2058.64 252.215
Pan-genome length (bp) | 4,874,793 4,489,458
Total Aligned Length (bp) | 180,681,735 180,690,563
Average Alignment Percentage (%) | 99.989+0.00298 | 99.99440.00514
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Table 2 Run-time for building a pan-genome sequence and updating a pan-genome sequence
with one additional new sequence. We compare the speed of plaster to seq-seq-pan when building
pan-genome sequences using 10, 100, and 1000 random plasmids. We repeated the 10 and 100
sequence runs 20 times and report their average and standard deviation.

No. of plasmids Elapsed wall clock time (s) Elapsed wall clock time (s)

Pan-genome Construction Pan-genome Update

seq-seq-pan plaster seq-seq-pan | plaster
10 25.265+£0.736 | 1.90£0.0717 3.5+0.163 0.22£0.029
100 495.54+40.926 | 22.1894+0.401 | 7.84+1.89 0.23940.0243
1000 35295.3 337.2 86.679 0.886

In addition to the times for full pan-genome construction in Table 2, we compared the
timings for the pan-genome update speed. This update speed is the speed at which we can
add a single new sequence to an already fully constructed pan-genome. For this experiment,
we randomly selected one plasmid from our synthetic plasmid data set and added it to the
pan-genome sequences created in the previous experiment for 10, 100 and 1000 plasmids
using either seq-seq-pan or plaster.

As demonstrated by the results of Table 2, the update speed of seq-seq-pan grows
intractably for larger pan-genomes when compared to plaster. plaster is about 15 times
faster for the 10 plasmid pan-genome sequence, 30 times faster for the 100 plasmid pan-
genome sequence, and 100 times faster for the 1000 plasmid pan-genome sequence. Given the
speed of single sequence updates and the rapid growth of sequence databases, we envision that
plaster could be used as an online algorithm which updates a pan-genome sequence every
time new sequences are added to the database. A final timing experiment was performed
showing the update speed for plaster for all of a set of 51,047 synthetic plasmid sequences.
Fig. 2 shows these update times. The curvature of Fig. 2 suggests that we have created a
closed pan-genome, where update times gradually converge to a nearly constant time as the
pan-genome grows large.

3.3 Full Natural and Synthetic Plasmid Pan-Genomes

We built a full synthetic plasmid pan-genome and full natural plasmid pan-genome using
plaster based on 51,047 synthetic plasmid sequences, 73,727 partial synthetic plasmid se-
quences, and 6,642 natural plasmids. All the synthetic plasmids came from the Addgene
engineered plasmid database from January 2019 [13]. A JavaScript Object Notation (JSON)
file containing these DNA sequences was obtained directly from Addgene. These sequences
were grouped into four categories which were full plasmid sequences submitted by Addgene,
partial sequences (segments of the plasmid) submitted by Addgene, full plasmid sequences
submitted by a depositing lab, and partial sequences submitted by a depositing lab. There
were a total of 51,047 plasmids with complete sequences, in which 23,875 were submit-
ted by Addgene, and 73,727 partial sequences. The average size of a complete synthetic
plasmid is 7,159 bp.

To construct the full synthetic plasmid pan-genome, we first ordered all the plasmids
with full sequences based on their lengths. Then, we used those ordered plasmids as input to
plaster to build a full pan-genome sequence. It took about 8.9 hours to build the pan-genome
sequence and the final resulting linear pan-genome consisted of 8,307,070 bp. The total
number of nucleotides of all the synthetic plasmids with complete sequences was 365,468,935
bp. After building the pan-genome sequence with only full plasmid sequences, we generated
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a second pan-genome sequence using both full and partial sequences. We ranked the partial
sequences based on their lengths and input those sequences into the plaster pipeline as query
sequences. Given the online nature of plaster, we were able to use the already constructed
pan-genome for the full synthetic plasmids as the initial reference sequence, iterating over all
the partial sequences as new query sequences. plaster spent less than 35 hours to construct
the final pan-genome for both full and partial sequences. The total number of nucleotides
of this synthetic plasmid pan-genome sequence using both full and partial sequences is
18,163,933. The total number of nucleotides of all the sequences used to construct the
pan-genome was 442,923,876. For natural plasmids, we obtained the DNA sequences from
the latest database of plasmid sequences [2]. All of these natural plasmids are complete
sequences that were curated from the entire NCBI database [23]. There are a total of
6,642 plasmids in this database with an average size of 128,953 bp. The total number of
nucleotides of all natural plasmids was nearly one billion base pairs (856,388,404 bp total
length). It took plaster around 50.2 hr (wall clock time) to build the full natural plasmid
pan-genome sequence based on these sequences. The total number of nucleotides in the
resulting pan-genome sequence was 205,605,679 bp. The size of the pan-genome sequence is
around 24% of the total size of the natural plasmids.

3.4 Pan-genome Sequence Evaluation and Natural Versus Synthetic
Differentiation

An exciting new area of research in bioinformatics is in characterizing engineered DNA and
in differentiating engineered versus naturally occurring nucleotide sequences. To assess our
synthetic and natural pan-genomes, we realigned all natural and synthetic plasmids against
these two pan-genomes and report on the percent alignment for each of these plasmids. We
also highlight how this technique unveils a novel approach for differentiating synthetic and
natural plasmid sequences, given that each is expected to align well to its corresponding
pan-genome but not align well to the other pan-genome. Aligning a given query sequence to
both pan-genomes can therefore be used as an initial test for evidence of genomes having
been subjected to genome-editing.

1.0

log time (s)

0 10000 20000 30000 40000 50000
no.of plasmids

Figure 2 Cumulative run time per individual plasmid used when building the synthetic plasmid
pan-genome sequence. x-axis is the cumulative number of plasmids. y-axis is the cumulative log
scale time. As more plasmids are added to the pan-genome, the run time for each individual plasmid
increases. The run-time growth rate decreases after a few thousand plasmids are appended as the
sequence shifts from a more open pan-genome to a more closed pan-genome.
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To assess the representation of each of the plasmids within the newly constructed
pan-genome sequences, we did pairwise alignment using MUMmer. We used the plasmid
pan-genome sequences as the reference and all the plasmids from the two sets of plasmids as
query sequences. The percentage of a query sequence aligned to the pan-genome sequence
is a good estimator for evaluating how well the query sequence was included as part of
the corresponding pan-genome sequence. Figure 3a shows that, for most of the synthetic
plasmids, more than 75% of the DNA sequence aligns to the synthetic plasmid pan-genome
sequence. On the other hand, when natural plasmids are aligned to this same synthetic
plasmid pan-genome in Fig. 3b, most of the natural plasmids have below 5% of their DNA
aligning well. In Fig. 3c and Fig. 3d, we perform this same experiment but we align synthetic
and natural plasmids against the natural plasmid pan-genome. Again, most of the natural
plasmids are well aligned to the corresponding natural pan-genome sequence with more than
75% of the DNA aligning to the pan-genome in Fig. 3c. On the other hand, smaller portions
of synthetic plasmids align well to the natural plasmid pan-genome sequence in Fig. 3d. The
alignment percentages for synthetic plasmids range mainly from 25% to 75%

To evaluate the utility of natural and synthetic plasmid pan-genomes for differentiating
natural and synthetic plasmids, we randomly selected 1000 synthetic plasmids (submitted to
Addgene from January 2019 to June 2019) and 1000 natural plasmids from [9]. None of these
plasmids were used in the pan-genome construction steps. As such, we used these 2000 total
plasmids as a validation test data set. Our classification was performed as follows: Given an
unclassified plasmid p, if its pairwise alignment percentage of p compared to the synthetic
pan-genome S PG is above the threshold ¢ AND its pairwise alignment percentage against
the natural pan-genome N PG is below the threshold ¢, we classified p as a synthetic plasmid
(and vice versa). Note: if p has alignment percentage above or below the threshold ¢ for
both synthetic and natural plasmid pan-genomes, we leave the sequence unclassified. Table 3
indicates that by mapping to the SPG and N PG, an unknown plasmid can be differentiated
between being a synthetic or natural plasmid with high specificity. For synthetic plasmid
classification, a high threshold yields high sensitivity. On the other hand, natural plasmid
categorization has a high sensitivity with a low threshold.

To investigate the impact of the order of input sequences on building the pan-genome, we
created a synthetic pan-genome using full synthetic plasmids with the input order starting
from the shortest to the longest sequence. All the other parameters remained the same.
The total number of nucleotides of the full synthetic plasmid pan-genome with this reverse
input order is 6,585,872 bp. This is 1,721,198 bp shorter than the pan-genome built starting
from the longest to the shortest sequence. The average pairwise alignment percentage of a
plasmid against the initial pan-genome and the pan-genome with reversed input order are
91.52+11.63 % and 89.12+13.656 % respectively. Pairwise alignment results indicate that
the alignments against the pan-genome with reversed input order are slightly worse than
that against the initial synthetic plasmid pan-genome, but most of the synthetic plasmids
still have more than 75% alignment against the full synthetic pan-genome.

In addition, we analyzed the number of synthetic plasmids that aligned to each nucleotide
of the two pan-genome sequences. When aligning the plasmids against the synthetic pan-
genome, most of the plasmids were mapped at the beginning of the synthetic plasmid
pan-genome sequence (results not shown). In other words, the start of the synthetic plasmid
pan-genome captures most of the nucleotide sequences shared by synthetic plasmids. The
fragment with the highest number of aligned plasmids, which started at position 6077 in the
synthetic plasmid pan-genome sequence, is annotated by prokka [26] as gene bla with protein
product of “Beta-lactamase TEM precursor”. The results of aligning synthetic plasmids



Q. Wang, R. A. L. Elworth, T. Rui Liu, and T. J. Treangen 19:9

Table 3 Differentiation of natural and synthetic plasmids through pan-genome alignment. We
classify 2000 new plasmids as either synthetic or natural plasmids based on alignment percentage
against synthetic and natural plasmid pan-genomes. We calculated the sensitivity, specificity and
F-score for each result.

Threshold (t) Synthetic Plasmids Natural Plasmids
(Alignment %) | Sensitivity | Specificity | F-score | Sensitivity | Specificity | F-score
40 0.579 0.998 0.73 0.767 1 0.868
60 0.775 0.999 0.87 0.683 0.999 0.811
80 0.821 0.999 0.90 0.536 0.998 0.697
85 0.773 0.999 0.872 0.502 0.995 0.667

and natural plasmids against the natural pan-genome are shown in Fig. 4. Specifically, the
natural plasmid pan-genome sequence also includes some synthetic plasmid fragments (see
Fig. 4a). Among the fragments with more than 10,000 plasmids mapped to them, two were
assigned functions by prokka, with the rest having no results. Of these two fragments, one
started at position 95,790,389 and was annotated as lacZ Beta-galactosidase enzyme; the
other started at position 160,749,886 and was annotated as gene bla (Beta-lactamase). Both
lacZ and bla were involved in one of the first minimal fully synthetic plasmids [15, 32], and
known to be ubiquitous to the synthetic plasmidome.

4 Discussion and Conclusions

In this paper, we introduced a novel pipeline for building pan-genomes, called plaster, which
takes advantage of closed nature of pan-genomes when possible and displays an order of
magnitude improvements to the pan-genome construction speed when compared with the
fastest existing method in seq-seq-pan. For instance, given a new sequence, it can rapidly
update the pan-genome sequence within 0.01s for an already existing pan-genome built from
1000 plasmids. Using plaster, to the best of our knowledge we constructed the first ever pan-
genomes for natural and synthetic plasmids. These pan-genomes reflect the core sequences as
well as the sequence diversity that exists among sequenced natural and engineered plasmids.

Alongside these newly created pan-genomes, we presented a novel technique that serves
as a first step in inferring whether a plasmid is natural or synthetic. The previous work of
[19] used machine learning to attempt to infer labs of origin for synthetic DNA. One common

100 100- 100- 100-
75 5 75 75
H 50- 50- 50-
5 50
25- 25- 25
25
| 0- ] 0- ) 0- i
synthetic plasmid natural plasmid natural plasmid synthetic plasmid
(a) SPG vs. SPP. (b) NPG vs. SPP. (c) NPG vs. NPP. (d) SPG vs NPP.

Figure 3 Alignment percentages for naturally occurring plasmids vs synthetic plasmids com-
parisons. (a) SPG=Synthetic plasmid genomes, (b) SPP=Synthetic plasmid pan-genome, (c)
NPG=Natural plasmid genomes, NPP=Natural plasmid pan-genome, (d) SPG=Synthetic plas-
mid genome.
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Figure 4 Natural plasmid genome alignment (a) , and synthetic plasmid genome alignment (b),
with respect to the Natural plasmid pan-genome. x-axis represents the position in the pan-genome (1
to 205 Mbp), y-axis represents the number of plasmids that align to a given position in the natural
plasmid pan-genome.

disadvantage of machine learning approaches, in particular neural networks, suffer from poor
explainability due to their black box nature [11]. Our approach presented here performs
rapid pairwise sequence alignment of the query sequence against the natural and synthetic
plasmid pan-genome and, as such, provides a white-box approached that allows the user to
directly query the regions that are shared between natural and synthetic plasmids, specific to
a give lab-of-origin, as well as what regions can be used to differentiate plasmids that have
undergone human engineering [1]. Given a synthetic plasmid, our pipeline could be used to
recover the full set of structural variations to fully categorize why it was determined to be
synthetic as well as what engineering it has undergone.

There are several areas for future research left open by this work. As mentioned, alignment
against pan-genomes can yield a full set of differences between a suspected synthetic plasmid
and all natural and synthetic nucleotides contained in the pan-genomes. To investigate new
ways to infer a possible lab of origin, the synthetic pan-genome could include labels for all
of its contained variation and the lab(s) where that variation has been seen before. If a
machine learning approach is ultimately preferred and is the most accurate for determining an
origin lab or discriminating natural versus synthetic, the set of all mutations and structural
variations for a given plasmid will still be crucial to have in the set of features for the final
inferrence procedure. Functional annotations could also be added to determine what a
particular lab was trying to achieve with the particular structural variations and mutations
that they introduced into a plasmid. Investigations into fundamental improvements to the
plaster method also remain as future work. For instance, an arbitrary choice was made to
use variations greater than 50 bp when adding new nucleotides to the pan-genome. There will
be pros and cons for varying this value to higher and lower values. This minimum alignment
length could also be tuned depending on the final purpose of constructing the pan-genome,
for instance for determining a lab of origin for synthetic plasmids. Tweaks to this value,
as well as other algorithmic improvements, should push these alignments towards all being
100 percent alignment as well as aiding in the following step of differentiating natural and
synthetic plasmids.
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