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Abstract
Transcriptomic structural variants (TSVs) – large-scale transcriptome sequence change due to struc-
tural variation – are common, especially in cancer. Detecting TSVs is a challenging computational
problem. Sample heterogeneity (including differences between alleles in diploid organisms) is a critical
confounding factor when identifying TSVs. To improve TSV detection in heterogeneous RNA-seq
samples, we introduce the Multiple Compatible Arrangement Problem (MCAP), which seeks
k genome rearrangements to maximize the number of reads that are concordant with at least one
rearrangement. This directly models the situation of a heterogeneous or diploid sample. We prove
that MCAP is NP-hard and provide a 1

4 -approximation algorithm for k = 1 and a 3
4 -approximation

algorithm for the diploid case (k = 2) assuming an oracle for k = 1. Combining these, we obtain a
3

16 -approximation algorithm for MCAP when k = 2 (without an oracle). We also present an integer
linear programming formulation for general k. We characterize the graph structures that require
k > 1 to satisfy all edges and show such structures are prevalent in cancer samples. We evaluate our
algorithms on 381 TCGA samples and 2 cancer cell lines and show improved performance compared
to the state-of-the-art TSV-calling tool, SQUID.
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18:2 Detecting TSVs in Heterogeneous Contexts via MCAP
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1 Introduction

Transcriptomic structural variations (TSVs) are transcriptome sequence alterations due to
genomic structural variants (SVs). TSVs may cause the joining of parts from different genes,
which are fusion-gene events. Fusion genes are known for their association with various types
of cancer. For example, the joint protein products of BCR-ABL1 genes are prevalently found
in leukemia [4]. In addition to fusion genes, the joining of intergenic and genic regions, called
non-fusion-gene events, are also related to cancer [22].

TSV events are best studied with RNA-seq data. Although SVs are more often studied
with whole genome sequencing (WGS) [2, 12, 18, 9, 5, 20], the models built on WGS data lack
the flexibility to describe alternative splicing and differences in expression levels of transcripts
affected by TSVs. In addition, RNA-seq data is far more common [14] than WGS data, for
example, in The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov).

Many methods have been proposed that identify fusion genes with RNA-seq data. Gener-
ally, these tools identify candidates of TSV events through investigation into read alignments
that are discordant with the reference genome (e.g. [10, 15, 3, 16, 21, 11]). A read alignment
is concordant with a reference sequence if the alignment to the sequence agrees with the
read library preparation. For example in paired-end Illumina sequencing, the orientation
of the forward read should be 5′-to-3′ and the reverse for the mate read. Otherwise the
alignment is discordant with the reference. A series of filtering or scoring functions are
applied on each TSV candidate to eliminate the errors in alignment or data preparation. The
performance of filters often relies heavily on a large set of method parameters and requires
prior annotation [13]. Furthermore, most of the fusion-gene detection methods limit the
scope to the joining of protein-coding regions and ignore the joining of intergenic regions
that could also affect the transcriptome. An approach that correctly models both fusion-gene
and non-fusion-gene events without a large number of ad hoc assumptions is desired.

An intuitive TSV model is the one that describes directly the rearrangement of the
genome. For example, when an inversion happens, two double-strand breaks (DSB) are
introduced to the genome and the segment between the DSBs is flipped. After a series of
TSVs are applied to a genome, a rearranged genome is produced. In order to identify the
TSVs, we can attempt to infer the rearranged genome from the original genome and keep
track of the arrangements of genome segments. Since a model of the complete genome is
produced, both fusion-gene and non-fusion-gene events can be detected. A recently published
TSV detection tool, SQUID [14], models TSV events in this way by determining a single
rearrangement of a reference genome that can explain the maximum number of observed
sequencing reads. SQUID finds one arrangement of genome segments such that a maximum
number of reads are able to be sequenced from it. Novel transcriptomic adjacencies appearing
in the arrangement are predicted as TSVs while the ones not appearing are regarded as
sequencing or alignment errors.

Despite the generally good performance of SQUID, it relies on the assumption that
the sample is homogeneous, i.e. the original genome contains only one allele that can be

https://www.cancer.gov/tcga
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represented by a single rearranged string. This assumption is unrealistic in diploid (or high
ploidy) organisms. When TSV events occur within the same regions on different alleles,
read alignments may suggest multiple conflicting ways of placing a segment. Under the
homogeneous assumption, conflicting TSV candidates are regarded as errors. Therefore, this
assumption leads to discarding the conflicting TSV candidates that would be compatible
on separate alleles and therefore limits the discovery of true TSVs. Conflicting SV candid-
ates are addressed in a few SV detection tools such as VariationHunter-CR [9]. However,
VariationHunter-CR assumes a diploid genome, and its model is built for WGS data that
lacks ability to handle RNA-seq data.

We present an improved model of TSV events in heterogeneous contexts. We address
the limitation of the homogeneous assumption by extending the assumption to k alleles. We
introduce the Multiple Compatible Arrangement Problem (MCAP), which seeks,
assuming the number of alleles k is known, an optimal set of k arrangements of segments from
GSG such that the number of concordant sequencing reads with any of the rearrangement
sequences is maximized. Each arrangement is a permutation and reorientation of all segments
from the reference genome, representing the altered sequence of one allele. The originally
discordant edges that are concordant in any of the k arrangements are predicted as TSVs,
and those edges are regarded as errors otherwise. We show that MCAP is NP-hard. To
address NP-hardness, we propose a 1

4 -approximation algorithm for the k = 1 case and a
3
4 -approximation solution to the k = 2 case using an oracle for k = 1. Combining these,
we obtain a 3

16 -approximation algorithm for MCAP when k = 2 (without an oracle). We
also present an integer linear programming (ILP) formulation that gives an optimal solution
for general k.

We characterize the patterns of reads that result in conflicting TSV candidates under a
single-allele assumption. We show that these patterns are prevalent in both cancer cell lines
and TCGA samples, thereby further motivating the importance of SV detection approaches
that directly model heterogeneity.

We apply our algorithms to 381 TCGA samples from 4 cancer types and show that
many more TSVs can be identified under a diploid assumption compared to a haploid
assumption. We also evaluate an exact ILP formulation under a diploid assumption (D-
SQUID) on previously annotated cancer cell lines HCC1395 and HCC1954, identifying several
previously known and novel TSVs. We also show that, in most of the TCGA samples, the
performance of the approximation algorithm is very close to optimal and the worst case of
3

16 -approximation is rare.

2 The Genome Segment Graph (GSG)

A Genome Segment Graph, similar to a splice graph [8], encodes relationships between
genomic segments and a set of reads. A segmentation S of the genome is a partition of the
genome into disjoint intervals according to concordant and discordant paired-end alignments
with respect to the reference genome. The genome partitioning, edge construction and edge
filtering is done in the same way as in [14].

I Definition 1 (Genome Segment Graph). A genome segment graph is a weighted, undirected
graph G = (V,E,w) derived from a segmentation S of the genome and a collection of reads.
The vertex set, V = {sh ∈ S}

⋃
{st ∈ S}, includes a vertex for both endpoints, head (h) and

tail (t), for each segment s ∈ S. The head of a segment is the end that is closer to the 5′ end
of the genome. The tail is the end that is close to the 3′ end. Pairs of reads that span more
than one segment are represented by edges. There are four types of connections: head-head,
head-tail, tail-head and tail-tail. Each edge e = (ui, vj) ∈ E, where i, j ∈ {h, t}, is undirected
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18:4 Detecting TSVs in Heterogeneous Contexts via MCAP

and connects endpoints of two segments. The weight (we ∈ w) is the number of sequencing
reads that support edge e.

We also define the weight of a subset E′ ⊆ E of edges w(E′) =
∑

e∈E′ we. (More details
on the GSG provided in Ma et al. [14].)

I Definition 2 (Permutation, Orientation function and Arrangement). A permutation is a
function where π(u) = i, where i is the index of segment u ∈ S in an ordering of a set S
of segments. We also define orientation function f(u) = 1 if segment u should remain the
original orientation, or 0 if it should be inverted. An arrangement is a pair of permutation
and orientation functions (π, f).

If π(u) < π(v), we say that segment u is closer to the 5′ end of the rearranged genome than
segment v. Each arrangement is a concatenation of segments from different chromosomes,
which retrieves the sequences affected by inter- and intra-chromosomal TSV events. The
arrangement of genome segments imitates the movements of genomic sequences by SVs. One
crucial difference between arrangement in GSG and sequence movements by SVs is that an
arrangement in GSG only captures the movement that are relevant to transcriptome sequence
alterations. Such alterations can either fuse two transcript sequences or incorporate previously
non-transcribing sequences into transcripts as long as they are present in RNA-seq reads.

I Definition 3 (Concordant and Discordant edges). Let e be an edge connecting segment u on
end a and segment v on end b (a, b ∈ {h, t}). Given arrangement (π, f), suppose π(u) < π(v),
edge e is concordant with respect to the arrangement if f(u) = 1a=t and f(v) = 1b=h. Denote
the concordance as e ∼ (π, f). Otherwise, e is discordant and denote as e 6∼ (π, f).

Since edges are constructed based on segment connections indicated by read alignments,
the concordance and discordance of edges are extensions from read alignments. A discordant
edge represents a set of discordant read alignments. Examples of discordant edges with tail-
tail and head-head connections are shown in Figure 1a. Concordant edges, when connecting
nodes that belong to the same chromosome, represent concordant alignments that are either
continuous alignments or split-alignments due to alternative splicing. Due to alternative
splicing, a node can be incident to multiple concordant edges given an arrangement. Edges
that initially spanned two chromosomes but become concordant in an arrangement represent
inter-chromosomal translocation events.

Segments connected by discordant edges can be arranged so that some of the discordant
edges become concordant. See Figure 1b,c for examples of arrangements that make tail-tail
and head-head connections concordant.

I Definition 4 (Conflicts among a Set of Edges). Given GSG G = (V,E,w) and a subset
of edges E′, the edges in set E′ are in conflict with each other if there is no single ar-
rangement (π, f) such that e ∼ (π, f) (∀e ∈ E′). Otherwise, edges in set E′ are compatible
with each other.

I Definition 5 (Transcriptomic Structural Variant (TSV)). A TSV is a new adjacency in
transcript sequences that cannot be explained by alternative splicing.

In GSG, the adjacency in transcript sequences is represented by edges. New adjacencies
that cannot be explained by alternative splicing belong to the set of edges that are either
discordant with respect to the reference arrangement or connecting segments belonging to
different chromosomes.
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3 The Multiple Compatible Arrangements Problem (MCAP)

3.1 Problem Statement
Given an input GSG G = (V,E,w) and a positive integer k, the Multiple Compatible
Arrangements Problem seeks a set of k arrangements A = {(πi, fi)}k

i=1 that are able to
generate the maximum number of sequencing reads:

max
A

∑
e∈E

w(e) · 1 [e ∼ A] , (1)

where 1 [e ∼ A] is 1 if edge e is concordant in at least one (πi, fi) ∈ A, and 0 otherwise.
This objective function aims to find an optimal set of k arrangements of segments where

the sum of concordant edge weights is maximized in the rearranged alleles, where k is the
number of alleles and assumed to be known for sure. The objective seeks to maximize the
agreement between rearranged allelic sequences and observed RNA-seq data. Assuming that
the majority of RNA-seq reads are sequenced, the concordant edges with respect to the
optimal set of arrangements represent the most confident transcriptomic adjacencies. In
heterogeneous samples where k 6= 1, MCAP separates the conflicting edges onto k alleles as
shown in an example in Figure 1.

When k = 1, the problem reduces to finding a single rearranged genome to maximize the
number of concordant reads, which is the problem that SQUID [14] solves. We refer to the
special case when k = 1 as Single Compatible Arrangement Problem (SCAP).

Predicted TSVs are the concordant edges with respect to any of the arrangements in
a solution to MCAP that were either discordant with respect to or spanning multiple
chromosomes in the reference genome.

Figure 1 MCAP resolves conflicts. The darker ends of the segments represent head with respect
to the original genome. The lighter ends represent tail with respect to the original genome. “H”
stands for head and “T” stands for tail. (a) Two conflicting edges connecting two segments u and
v. If the sample is known to be homogeneous (k = 1), then the conflict is due to errors. If k = 2,
MCAP seeks to separate two edges into two compatible arrangements as in (b) and (c). (b) In the
first arrangement, segment v is flipped, which makes the blue edge concordant. (c) In the second
arrangement, u is flipped to make the red edge concordant.

3.2 NP-hardness of SCAP and MCAP
I Theorem 6. SCAP is NP-hard.

Proof Sketch. We prove the NP-hardness of SCAP by reducing from MAX-2-SAT. While
2-SAT can be solved in polynomial time, MAX-2-SAT, which asks for the maximum number
of clauses that can be satisfied, is NP-hard. For boolean variables and clauses in any MAX-2-
SAT instance, we create gadget segments in the GSG so that the satisfaction of each clause
is determined by the edge concordance and the boolean assignment is determined by segment

WABI 2019



18:6 Detecting TSVs in Heterogeneous Contexts via MCAP

inversion. The gadgets force the optimal sum of concordant edge weights to directly represent
the number of satisfied clauses. Correspondingly, the optimal orientations of segments
represent the assignment of boolean variables. See Appendix A for a complet eproof. J

I Corollary 7. MCAP is NP-hard.

Proof. SCAP is a special case of MCAP with k = 1, so the NP-hardness of MCAP is
immediate. J

4 A 1
4-approximation Algorithm for SCAP

We provide a greedy algorithm for SCAP that achieves at least 1
4 approximation ratio and

takes O(|V ||E|) time. The main idea of the greedy algorithm is to place each segment into
the current order one by one by choosing the current “best” position. The current “best”
position is determined by the concordant edge weights between the segment to be placed
and the segments already in the current order.

Algorithm 1 Greedy algorithm for SCAP.

Data: Segment set S, genome segment graph G = (V,E,w)
Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];
2 orientation = [];
3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from 4 possible order and orientation options
5 options = [(si in the beginning of order in forward strand), (si in the beginning

of order in reverse strand), (si in the end of order in forward strand), (si in the
end of order in reverse strand)] ;

6 for j in 1 : 4 do
7 weights[j] =

w({e ∈ E : e connects si with sk and concordant in options[j], k < i});
8 end

// update the current order and orientation
9 opt = argmax1≤i≤4,i∈Nweights[i] ;

10 order = update segment order as given by options[opt] ;
11 orientation = update segment orientation as given by options[opt] ;
12 end

I Theorem 8. Algorithm 1 approximates SCAP with at least 1
4 approximation ratio.

Proof. Denote E′ ⊂ E as the concordant edges in the arrangement of Algorithm 1. Let
OPT be the optimal value of SCAP. We are to prove w(E′) ≥ 1

4w(E) ≥ 1
4OPT .

For iteration i in the for loop, the edges Ei = {e ∈ E : e connects si with sj , i < j}
are considered when comparing the options. Each of the four options makes a subset of
Ei concordant. These subsets are non-overlapping and their union is Ei. Specifically, the
concordant edge subset is {e = (si

h, s
j
t )} for the first option, {e = (si

h, s
j
h)} for the second,

{e = (si
t, s

j
h)} for the third, and {e = (si

t, s
j
t )} for the last.
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By the selecting the option with the largest sum of concordant edge weights, the concordant
edges E′i in iteration i satisfies w(E′i) ≥ 1

4w(Ei). Therefore, the overall concordant edge
weights of all iterations in the for loop satisfy∑

i

w(E′i) ≥
1
4
∑

i

w(Ei) = 1
4w
(⋃

i

Ei

)
.

Each edge e ∈ E must appear in one and only one of Ei, and thus
⋃

i Ei = E. This implies∑
i w(E′i) ≥ 1

4w(E) ≥ 1
4OPT . J

Algorithm 1 can be further improved in practice by considering more order and orientation
options when inserting a segment into current order. In the pseudo-code 1, only two possible
insertion places are considered: the beginning and the end of the current order. However,
a new segment can be inserted in between any pair of adjacent segments in the current
order. We provide an extended greedy algorithm to take into account the extra possible
inserting positions (Algorithm 2). Algorithm 2 has a time complexity of O(|V |2|E|), but it
may achieve a higher total concordant edge weight in practice.

Algorithm 2 Extended greedy algorithm for SCAP.

Data: Segment set S, genome segment graph G = (V,E,w)
Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];
2 orientation = [];
3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from i+ 1 possible order and orientation options
5 options = [(si in the beginning of order in forward strand), (si in the beginning

of order in reverse strand)] ;
6 for j in 1 : i− 1 do
7 Append [(si right after order[j] in forward strand), (si right after order[j] in

reverse strand)] to list of options ;
8 end
9 for j in 1 : 2i do

10 weights[j] =
w({e ∈ E : e connects si with sk and concordant in options[j], k < i});

11 end
// update the current order and orientation

12 opt = argmax1≤j≤i,j∈Nweights[j] ;
13 order = update segment order as given by options[opt] ;
14 orientation = update segment orientation as given by options[opt] ;
15 end

5 A 3
4-approximation of MCAP with k = 2 Using a SCAP Oracle

If an optimal SCAP solution can be computed, one way to approximate the MCAP’s optimal
solution is to solve a series of SCAP instances iteratively to obtain multiple arrangements.
Here, we prove the iterative SCAP solution has an approximation ratio of 3

4 for the special
case of MCAP with k = 2.

WABI 2019
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Algorithm 3 3
4 -approximation for MCAP with k = 2.

Data: A genome segment graph G = (V,E,w)
Result: a set of two arrangements, sum of weights of edges that are concordant in

either arrangement

1 a1 = optimal SCAP arrangement on G;
2 E′ = {e ∈ E : e is discordant in a1};
3 G′ = (V,E′, w);
4 a2 = optimal SCAP arrangement on G′;
5 Ẽ = {e ∈ E : e ∼ A,A = {a1, a2}};
6 W =

∑
e∈Ẽ w(e);

7 return ({a1, a2}, W );

I Theorem 9. Algorithm 3 is a 3
4 -approximation of MCAP with k = 2. Denote the optimal

objective sum of edge weights in MCAP with k = 2 as OPT , and the sum of edge weights in
iterative SCAP as W , then

W ≥ 3
4OPT

Proof. Denote MCAP with k = 2 as 2-MCAP. Let Ed
1 and Ed

2 be concordant edges in the
optimal two arrangements of 2-MCAP. It is always possible to make the concordant edges of
the arrangements disjoint by removing the intersection from one of the concordant edge set,
that is Ed

1 ∩ Ed
2 = ∅. Let Ed = Ed

1 ∪ Ed
2 . The optimal value is w(Ed).

Denote the optimal set of concordant edges in the first round of Algorithm 3 as Es
1 . The

optimal value of SCAP is w(Es
1). Es

1 can have overlap with the two concordant edge sets of
the 2-MCAP optimal solution. Let the intersections be I1 = Ed

1 ∩Es
1 and I2 = Ed

2 ∩Es
1 . Let

the unique concordant edges be D1 = Ed
1 − Es

1 , D2 = Ed
2 − Es

1 and S = Es
1 − Ed

1 − Ed
2 .

After separating the concordant edges in 2-MCAP into the intersections and unique sets,
the optimal value of 2-MCAP can be written as w(Ed) = w(I1) + w(I2) + w(D1) + w(D2),
where the four subsets are disjoint. Therefore the smallest weight among the four subsets
must be no greater than 1

4w(Ed). We prove the approximation ratio under the following two
cases and discuss the weight of the second round of SCAP separately:

Case (1): the weight of either D1 or D2 is smaller than 1
4 w(Ed). Because the two ar-

rangements in 2-MCAP are interchangeable, we only prove for the case where w(D1) ≤
1
4w(Ed). A valid arrangement of the second round of SCAP is the second arrangement in
2-MCAP, though it may not be optimal. The maximum concordant edge weights added
by the second round of SCAP must be no smaller than w(D2). Combining the optimal
values of two rounds of SCAP, the concordant edge weight is

W ≥ w(Es
1)+w(D2) = w(S)+w(I1)+w(I2)+w(D2) ≥ w(Ed)−w(D1) ≥ 3

4w(Ed). (2)

Case (2): both w(D1) ≥ 1
4 w(Ed) and w(D2) ≥ 1

4 w(Ed). The subset with smallest sum
of edge weights is now either I1 or I2. Without loss of generality, we assume I1 has
the smallest sum of edge weights and w(I1) ≤ 1

4w(Ed). Because the first round SCAP
is optimal for the SCAP problem, its objective value should be no smaller than the
concordant edge weights of either arrangement in 2-MCAP. Thus

w(Es
1) ≥ w(Ed

2 ) = w(D2) + w(I2). (3)



Y. Qiu, C. Ma, H. Xie, and C. Kingsford 18:9

A valid arrangement for the second round of SCAP can be either of the arrangements
in 2-MCAP optimal solution. Picking the first arrangement of 2-MCAP as the possible
(but not necessarily optimal) arrangement for the second round of SCAP, the concordant
edge weights added by the second round of SCAP must be no smaller than w(D1).
Therefore, the total sum of concordant edge weights of the optimal solutions of both
rounds of SCAP is

W ≥ w(Es
1) + w(D1) ≥ w(D2) + w(I2) + w(D1) = w(Ed)− w(I1) ≥ 3

4w(Ed). (4)

J

I Corollary 10. An approximation algorithm for MCAP with k = 2 can be created by using
Algorithm 1 as the oracle for SCAP in Algorithm 3. This approximation algorithm runs in
O(|V ||E|) time and achieves at least 3

16 approximation ratio.

The proof of the corollary is similar to the proof of iterative SCAP approximation ratio.
By adding a multiplier of 1

4 to the right of inequalities (3) and (4), the 3
16 approximation

ratio can be derived accordingly.

6 Integer Linear Programming Formulation for MCAP

MCAP, for general k, can be formulated as an integer linear programming (ILP) to obtain
an optimal solution. We rewrite the ith permutation (πi), orientation (fi) and decision
(1[e ∼ (πi, fi)]) functions with three boolean variables yi

e, zi
e and xi

e. For i ∈ {1, 2..., k} and
e ∈ E, we have:

xi
e = 1 if edge e ∼ (πi, fi) and 0 otherwise.
yi

u = 1 if fi(u) = 1 for segment u and 0 if fi(u) = 0.
zi

uv = 1 if πi(u) < πi(v), or segment u is in front of v in arrangement i and 0 otherwise.

In order to account for the edges that are concordant in more than one arrangement in
the summation in Equation 1, we define qe such that qe = 1 if edge e is concordant in one of
the k arrangements and 0 otherwise. The constraints for qe are as follows:

qe ≤
k∑
i

xi
e (5)

qe ≤ 1 (6)

The objective function becomes

max
xi

e,yi
u,zi

uv

∑
e∈E

w(e) · qe (7)

We then add ordering and orientation constraints. If an edge is a tail-head connection,
i.e. concordant to the reference genome, xi

e = 1 if and only if zi
uv = yi

u = yi
v. If an edge

is a tail-tail connection, xi
e = 1 if and only if zi

uv = 1 − yi
v = yi

u. If an edge is a head-tail
connection, xi

e = 1 if and only if zi
uv = 1− yi

u = 1− yi
v. If an edge is a head-head connection,

xi
e = 1 if and only if zi

uv = 1− yi
u = yi

v. The constraints for a tail-head connection are listed
below in Equation 8, which enforce the assignment of boolean variables yi

e, zi
e and xi

e:

xi
e ≤ yi

u − yi
v + 1,

xi
e ≤ yi

v − yi
u + 1,

xi
e ≤ yi

u − zi
uv + 1,

xi
e ≤ zi

uv − yi
u + 1,

(8)
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The constraints of other types of connections are similar and detailed in Ma et al. [14].
Additionally, constraints are added so that all segments are put into a total order within
each allele. For two segments u, v, segment u will be either precede or follow segment v, i.e.
zi

uv + zi
vu = 1. For three segments u, v, w, if u precedes v and v precedes w, then u has to

precede w: 1 ≤ zi
uv + zi

vw + zi
wu ≤ 2.

The total number of constraints as a function of k is 4k|E|+k
(|V |

3
)
+2|E| = O(k(|E|+V 3)).

When k increases, the number of constraints grows linearly. When k = 1, the ILP formulation
reduces to the same formulation as SQUID.

7 Characterizing the Conflict Structures That Imply Heterogeneity

In this section, we ignore edge weights and characterize the graph structures where homogen-
eous assumption cannot explain all edges. We add a set of segment edges, Ê, to the GSG.
Each ê ∈ Ê connects the two endpoints of each segment, i.e. ê = {sh, st} for s ∈ S. The
representation of GSG becomes G = (E, Ê, V ).

I Definition 11 (Conflict Structures and Compatible Structures). A conflict structure, CS =
(E′, Ê′, V ′), is a subgraph of a GSG where there exists a set of edges E′ that cannot be made
concordant using any single arrangement. A compatible structure is a subgraph of a GSG
where there exists a single arrangement such that all edges can be made concordant in it.

I Definition 12 (Simple cycle in GSG). A simple cycle, C = (E′, Ê′, {v0, . . . , vn−1}), is a
subgraph of a GSG, such that E′ ⊆ E, Ê′ ⊆ Ê and vi ∈ V , with (vi, vi+1 mod n) ∈ E′ ∪ Ê′
and where vi 6= vj when i 6= j except vn−1 = v0.

I Definition 13 (Degree and special degree of a vertex in subgraphs of GSG). Given a subgraph
of GSG, G′ = (E′, Ê′, V ′), degE′(v) refers to the degree of vertex v ∈ V ′ that counts only
the edges e ∈ E′ that connect to v. deg(v) refers to the number of edges e ∈ E′ ∪ Ê′ that
connect to v.

I Theorem 14. Any acyclic subgraph of GSG is a compatible structure.

I Theorem 15. A simple cycle C = (E′, Ê′, V ′) is a compatible structure if and only if there
are exactly two vertices, vj and vi such that degE′(vi) = degE′(vj) = 2 and vi and vj belongs
to different segments.

The details of the proofs of the above two theorems are in Appendix B.

I Corollary 16. A necessary condition for a subgraph (E′, Ê′, V ′) to be a conflict structure
is that it contains cycles. A sufficient condition for a subgraph (E′, Ê′, V ′) to be a conflict
structure is that it contains a simple cycle which is not a compatible structure.

The corollary is a direct derivation of Theorem 14 and Theorem 15 when considering
general graph structures.

In practice, we determine if a discordant edge, e = (u, v), is involved in a conflict
structure by enumerating all simple paths using a modified depth-first search implemented
in Networkx [7, 19] between u and v omitting edge e. We add e to each path and form
a simple cycle. If the simple cycle satisfies Corollary 16, we stop path enumeration and
label the e as discordant edge involved in conflict structure. If the running time of path
enumeration exceeds 0.5 seconds, we shuffle the order of DFS and repeat enumeration. If
path enumeration for e exceeds 1000 reruns, we label e as undecided.
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8 Experimental Results

To produce an efficient, practical algorithm for TSV detection in diploid organisms, we use the
following approach, which we denote as D-SQUID: Run the ILP (Section 6) under the diploid
assumption by setting k = 2 on every connected component of GSG separately. If the ILP
finishes or the running time of the ILP exceeds one hour, output the current arrangements.

8.1 D-SQUID Identifies More TSVs in TCGA Samples than SQUID

We calculate the fraction of discordant edges involved in conflict structures (Figure 2a) in
381 TCGA samples from four types of cancers: bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), lung adenocarcinoma (LUAD) and prostate adenocarcinoma
(PRAD). Among all samples, we found less than 0.5% undecided edges out of all discordant
edges. The distribution of fraction of discordant edges within conflict structures are different
among cancer types. The more discordant edges are involved in conflict structures, the more
heterogeneous the sample is. Among four cancer types, PRAD samples exhibit the highest
extent of heterogeneity and BRCA samples exhibit the lowest. On average, more than 90%
of discordant edges are within conflict structures in all samples across four cancer types.
This suggests that TCGA samples are usually heterogeneous and may be partially explained
by the fact that TCGA samples are usually a mixture of tumor cells and normal cells [1].

We compare the number of TSVs found by D-SQUID and SQUID (Figure 2b). In all of
our results, all of the TSVs found by SQUID belong to a subset of TSVs found by D-SQUID.
D-SQUID identifies many more TSVs than SQUID on all four types of cancers.

A discordant edge is termed resolved if it is made concordant in one of the arrangements.
Among all discordant edges in all samples, D-SQUID is able to resolve most of them
(Figure 2c), while SQUID is only able to resolve fewer than 50% of them. The results
demonstrate that D-SQUID is more capable of resolving conflict structures in heterogeneous
contexts, such as cancer samples, than SQUID.
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Figure 2 (a) The distribution of fractions of discordant edges that are involved in each identified
conflict structure (CS) in four cancer subtypes. Minima, maxima and means of the distributions are
marked by horizontal bars. (b) Number of TSVs identified by SQUID versus D-SQUID. (c) Histogram
of fractions of resolved discordant edges by SQUID and D-SQUID.
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8.2 D-SQUID Identifies More True TSV Events Than SQUID in
Cancer Cell Lines

We compare the ability of D-SQUID and SQUID to detect fusion-gene and non-fusion-gene
events on previously studied breast cancer cell lines HCC1395 and HCC1954 [6]. The
annotation of true SVs is taken from Ma et al. [14]. In both cell lines, D-SQUID discovers
more TSVs than SQUID. In HCC1954, D-SQUID identifies the same number of known TSVs
including fusions of gene (G) regions and intergenic (IG) regions compared with SQUID.
In HCC1395, D-SQUID identifies 2 more true TSV events that are fusions of genic regions.
We tally the fraction of discordant edges in conflict structures (Figure 3c) and find similar
fractions between HCC1395 and HCC1954, which indicates that the extent of heterogeneity
in two samples are similar. Compared to Figure 2a, the fraction in HCC samples is much
lower than that in TCGA samples. This matches the fact that two HCC samples contain the
same cell type and are both cell line samples, which are known to be less heterogeneous than
TCGA samples.
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Figure 3 Performance of D-SQUID and SQUID on breast cancer cell lines with experimentally
verified SV. (a) Total TSVs found. In both cell line samples, D-SQUID discovered more TSVs than
SQUID. (b) Number of known fusion-gene and non-fusion-gene events recovered by D-SQUID and
SQUID. G denotes TSVs that affect gene regions. IG denotes TSVs that affect intergenic regions.
(c) Fraction of discordant edges in conflict structures.

8.3 Evaluation of approximation algorithms
We evaluate the approximation algorithms for diploid MCAP (k = 2) using two different
subroutines described in Section 4. In this subsection, A1 refers to using Algorithm 1 with
worst case runtime O(|V ||E|) as a subroutine and A2 refers to using Algorithm 2 with worst
case runtime O(|V |2|E|) as a subroutine. Both A1 and A2 solve SCAP by greedily inserting
segments into the best position in the current ordering. While A1 only looks at the beginning
and ending of the ordering, A2 looks at all the positions.

In order to compare the performance of approximations to the exact algorithm using
ILP, we run D-SQUID, A1 and A2 on TCGA samples in Section 8.1. The algorithms are
evaluated on runtime and total weight of concordant edges in the rearranged genomes. “Fold
difference” on the axes of Figure 4 refers to the ratio of the axis values of D-SQUID over
that of A1 or A2. Both A1 and A2 output results in a much shorter period of time than
D-SQUID. A2 achieves better approximation than A1, demonstrated by closer-to-one ratio
of total concordant edge weight, at a cost of longer run time.
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The run time of D-SQUID ILP exceeds one hour on 4.5% of all connected components in
all TCGA samples. D-SQUID outputs sub-optimal arrangements in such cases. As a result,
approximation algorithms, especially A2, appear to resolve more high-weight discordant
edges than D-SQUID in some of the samples in Figure 4, which is demonstrated by data
points that fall below 1 on the y axes. A1 resolves more high-weight edges in 10 samples and
A2 resolves more high-weight edges in 54 samples than D-SQUID.
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Figure 4 Fold differences (ILP/approx) in run time and total weights of concordant edges resolved
by D-SQUID, A1 and A2 on TCGA samples. Horizontal and vertical red lines mark 1.0 on both
axes. (a) shows fold differences between D-SQUID and A1. (b) shows fold differences betweeen
D-SQUID and A2.

9 Conclusion and Discussion

We present approaches to identify TSVs in heterogeneous samples via the Multiple Com-
patible Arrangement Problem (MCAP). We characterize sample heterogeneity in terms
of the fraction of discordant edges involved in conflict structures. In the majority of TCGA
samples, the fractions of discordant edges in conflict structures are high compared to HCC
samples, which indicates that TCGA samples are more heterogeneous than HCC samples.
This matches the fact that bulk tumor samples often contain more heterogeneous genomes
than cancer cell lines, which suggests that fraction of conflicting discordant edges is a valid
measure of sample heterogeneity.

MCAP addresses this heterogeneity. In 381 TCGA samples, D-SQUID is able to resolve
more conflicting discordant edges than SQUID. In HCC cell lines, D-SQUID achieves
better performance than SQUID. Since D-SQUID solves MCAP by separating conflicting
TSVs onto two alleles, D-SQUID’s power to find TSVs generally increases as the extent of
heterogeneity increases.

We show that obtaining exact solutions to MCAP is NP-hard. We derive an integer linear
programming (ILP) formulation to solve MCAP exactly. We provide a 3

16 -approximation
algorithm for MCAP when the number of arrangements is two (k = 2), which runs in time
O(|V ||E|). It approximates the exact solutions well in heterogeneous TCGA samples.

Several open problems remain. MCAP relies on the number of arrangements (k) to make
predictions. It is not trivial to determine the optimal k for any sample. In addition, although
MCAP is solved by separating TSVs onto different alleles, there are typically many equivalent
phasings. Developing techniques for handling these alternative phasings is an interesting
direction for future work. Analyzing the effect of TSVs, especially non-fusion-gene ones, on
cellular functions and diseases is another direction of futher work.
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A Proof of NP-hardness

I Theorem 1. SCAP is NP-hard.

Proof. To prove the NP-hardness, we reduce from MAX-2-SAT problem. It is necessary and
sufficient to show that for any MAX-2-SAT problem, a genome segment graph (GSG) can be
constructed in polynomial time, and the SCAP objective directly tells the objective of the
MAX-2-SAT problem. For any MAX-2-SAT instance, we are going to construct a GSG such
that the satisfiability of a clause is indicated by the concordance of an edge.

Given a MAX-2-SAT problem with n booleans {x1, x2, · · · , xn} and m clauses
{c1, c2, · · · , cm}, the key gadget is the segments for boolean variables and clauses and the
edges between them (Figure 5A). For each boolean variable xi, a segment Xi is constructed
and termed as a boolean segment. For each clause ci, a segment Ci is constructed and termed
as a clause segment. To ensure that the correspondence between the edge concordance and
the clause satisfiability as well as the correspondence between the orientation of boolean
segments and the assignment of boolean variables, we add edges between clause segments
and boolean segments in the following way. For clause ci that involves boolean xi1 , an edge
is added between the head of Xi1 and the head of Ci if clause ci contains the negation of xi1 ,
otherwise the edge is between the tail of Xi1 and the head of Ci. When the literal is xi1 ,
setting the orientation of segment Xi1 to be 1 indicates assigning True to variable xi1 and
leads to the concordance of the edge; when the literal is x̄i1 , setting the orientation of segment
Xi1 to be 0 indicates assigning False to variable xi1 and leads to the edge concordance.
The edge between clause ci and the other involved boolean variable xi2 is added in the
same principle. We call the edge between boolean segments and the clause segments as
Type 1 edge. Type 1 edges have weight of 1.

Two extra edges between the two boolean segments involved in each clause are added.
This is the Type 2 edge with weight of 1. For each clause ci that involves boolean xi1 and
xi2 , two edges are added between Xi1 and Xi2 as in Table 1. When both literals in ci are
True, there are two concordant Type 1 edges; when only one literal in ci is True, one and
only one of the two Type 2 edges is guaranteed to be concordant, to compensate for the
decrease of concordant Type 1 edges.

An extra n+m+ 1 segments are added that we term blocking segments and denote as
{B1, B2, · · · , Bn+m+1}. Suppose w1 and w2 are large positive weights, and w2 � w1 � 1.
Type 3 edges with edge weight w2 are constructed between each adjacent pair of blocking
segments, specifically between the tail of Bi and the head of Bi+1 (∀i ∈ [1, n+m]). Type 3
edges are used to enforce the order and orientation among blocking segments. Type 4 edges
with weight w1 are constructed between blocking segments and the other types of segments.
Specifically, when i ≤ n, an edge is added between the tail of segment Bi and both the head
and the tail of Xi, as well as between the tail and the head of Xi and both the head of Bi+1.
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Similarly when n < i ≤ n+m, two edges are added between the tail of Bi and Ci−n, and
two other edges are added between the head and tail of Ci−n and Bi+1. Type 4 edges are
used to enforce the relative order between blocking segments and the boolean and clause
segments. But the orientation of the boolean and clause segments can be changed freely.

Table 1 Construction of Type 4 edges based on the clause.

clause ci edge 1 edge 2

xi1 ∨ xi2 head of Xi1 to head of Xi2 tail of Xi1 to tail of Xi2

x̄i1 ∨ xi2 tail of Xi1 to head of Xi2 head of Xi1 to tail of Xi2

xi1 ∨ x̄i2 tail of Xi1 to head of Xi2 head of Xi1 to tail of Xi2

x̄i1 ∨ x̄i2 head of Xi1 to head of Xi2 tail of Xi1 to tail of Xi2

We first prove that the order of the blocking segments in the optimal arrangement is
B1 < B2 < · · · < Bn+m+1 and the orientations of them are all in forward strand, where
< denotes the ordering between segments. Under the arrangement that uses the forward
strand of all {Bi} and have an order of B1 < B2 < · · · < Bn+m+1, the sum of concordant
edge weights is at least (n+m)w2. If the optimal arrangement contains any violations of
the adjacencies between Bi and Bi+1, there will at least one Type 3 edge that does not
connect blocking segments in a tail-to-head manner and become a discordant edge in the
arrangement. Therefore, the optimal arrangement can at most have an objective value of
(n+m− 1)w2 + 4(n+m)w1 + 4m. Since w2 � w1 � 1, the objective value is smaller than
(n+m)w2, and the arrangement is not optimal, which contradicts the assumption. Therefore
assuming the whole chain of segments is not reverse complemented, the orientations of
blocking segments are all in forward strand, and order is B1 < B2 < · · · < Bn+m+1 in the
optimal arrangement.

We then prove that the Type 2 edges restrict the order of all segments but not the
orientation of boolean and clause segments. The order between blocking segments and
boolean segments must be Bi < Xi < Bi+1, the order between blocking and clause segments
must be Bi < Ci−n < Bi+1, and all boolean segments must be before clause segments. When
the order is Bi < Xi < Bi+1 among the three segments, and the orientations of Bi and
Bi+1 are both in forward strand, the concordant edge weights of Type two edge sum to 2w1
no matter whether Xi is in forward strand or inverted. The same weight can be achieved
for order Bi < Ci−n < Bi+1. The arrangement with order B1 < X1 < B2 < · · · < Bn <

Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1 and with all blocking segments in their
forward strand will achieve a sum of concordant edge weight (n+m)w2 + 2(n+m)w1 at
least. This concordant weight is summed over Type 3 and Type 4 edges. However, if the
optimal arrangement violates any Bi < Xi < Bi+1 or Bi < Ci−n < Bi+1 order, the violated
triplet can achieve at most w1 of concordant edge weights, and thus the maximum sum of
concordant edge weights is (n + m)w2 + 2(n + m − 1)w1 + w1 + 4m. Since w1 � 1, the
“optimal” arrangement objective is smaller than (n+m)w2 + 2(n+m)w1, which contradicts
the optimality. Therefore, the order of all segments in the optimal arrangement must be

B1 < X1 < B2 < · · · < Bn < Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1.

Third, we prove that under the above segment order there are always two concordant
edges of weight 1 when clause segment Ci has any concordant Type 1 edge. Suppose there is
a clause ci involving boolean variables xi1 and xi2 , segment Ci has one Type 1 edge between
Xi1 and one Type 1 edge between Xi2 . When both Type 1 edges are concordant, both
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(A)

B1 X1 B2 X2 B3 X3 B4 C1 B5 C2 B6

(B)

−X1 X3 C2

(C)

X1 X3 C2

(D)

−X1 −X3 C2

(E)

X1 −X3 C2

Figure 5 (A) Constructed GSG for boolean expression (x1 ∨ x2) ∧ (x̄1 ∨ x3). There is a segment
for each boolean variable xi (blue) and clause ci (white), and 6 blocking segments (green) to separate
between boolean segments and clause segments. Type 1 edges, black edges, are connecting between
boolean segments and clause segments. Type 2 edges, blue edges, are connecting between a pair
of boolean segments that appear in the same clause. Type 3 edges, green edges in the figure, are
chaining the blocking segments. Type 4 edges, orange edges, are connecting between blocking and
boolean / clause segments. (B-E) The subgraph corresponding clause x̄1 ∨ x3. −X1 and −X3 means
the segment is inverted. Solid lines indicate the concordant edges in the arrangement, and dotted
lines indicate the discordant edges. (B) The clause is satisfied with both literals satisfied. (C) The
clause is satisfied with x3 satisfied. (D) The clause is satisfied with x̄1 satisfied. (E) The clause is
not satisfied.

Type 2 edges between Xi1 and Xi2 are discordant (Figure 5B. When only one of the Type 1
edges is concordant, there is also one Type 2 edge between Xi1 and Xi2 that is concordant
(Figure 5C,D). When neither of the Type 1 edges is concordant, both of the two Type 2 edges
between Xi1 and Xi2 are discordant (Figure 5E). In this case, there is zero concordant edges
of weight 1 incident to Ci. Any arrangement solution of objective value W that satisfies
the above segment order has W − (n + m)w2 − 2(n + m)w1 concordant edges of weight
1. Therefore, the arrangement solution will have 1

2 (W − (n+m)w2 − 2(n+m)w1) clause
segments with non-zero concordant Type 1 edges.

When multiple clauses involve the same pair of segment, multi-edges between Xi1 and
Xi2 are constructed to make sure that two edges of weight 1 are contributed by any clause
segment when it has non-zero concordant Type 1 edges.
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Suppose the optimal number of satisfied clauses of the MAX-2-SAT instance is OPTm and
the optimal sum of concordant edge weights of the constructed SCAP instance is OPTs, the
following inequality holds: 1

2 (OPTs− (n+m)w2− 2(n+m)w1) ≥ OPTm. Given the optimal
solution of the MAX-2-SAT instance, a SCAP solution can be constructed by reversing
segment Xi if xi is assigned to False while keeping the order of B1 < X1 < B2 < · · · <
Bn < Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1. By the construction of the Type 1
edges, a clause segment will have at least one concordant Type 1 edge if and only if it
corresponds to a satisfied clause in the MAX-2-SAT solution. Denoting the objective value
of the constructed solution of arrangement problem as W and applying the third proof, we
have the following equality OPTm = 1

2 (W − (n+m)w2 − 2(n+m)w1). Since the optimal
objective value of the arrangement problem is as least W ,

OPTm = 1
2(W − (n+m)w2 − 2(n+m)w1) ≤ 1

2(OPTs − (n+m)w2 − 2(n+m)w1). (9)

Meanwhile 1
2 (OPTs − (n+m)w2 − 2(n+m)w1) ≤ OPTs. Given the optimal solution of

arrangement problem, there are 1
2 (OPTs − (n+m)w2 − 2(n+m)w1) clause segments with

non-zero concordant Type 1 edges. Construct a MAX-2-SAT solution by assigning False
to boolean variables if the corresponding boolean segment is reversed otherwise assigning
True. The concordance of Type 1 edges guarantees that the corresponding literals in
the MAX-2-SAT clauses are True. Thus the constructed MAX-2-SAT solution will have
1
2 (OPTr − (n+m)w2 − 2(n+m)w1) satisfied clauses, which is smaller than or equal to the
optimal number of satisfied clauses. Therefore

1
2(OPTs − (n+m)w2 − 2(n+m)w1) ≤ OPTm. (10)

Combining inequality (9) and inequality (10), the maximum number of satisfied clauses
in MAX-2-SAT instance can be directly calculated from the optimal concordant edge weights
in the arrangement problem, that is, OPTm = 1

2 (OPTs − (n+m)w2 − 2(n+m)w1). J

B Proof of Characterization of Conflict Structures

I Theorem 4. Any acyclic subgraph of GSG is a compatible structure.

Proof. We show that any acyclic subgraph with N edges (|E′|+|Ê′| = N), G′N = (E′, Ê′, V ′),
of GSG is a compatible structure by induction.
When |E′|+ |Ê′| = 1, G′1 is a compatible structure because no other edge in G′ is in conflict
with the only edge e ∈ E′.
Assume the theorem hold for any acyclic subgraph that contains n edges. Let G′n+1 =
(E′, Ê, V ′) be an acyclic subgraph with n+ 1 edges. Since G′n+1 is acyclic, there must be
a leaf edge that is incident to a leaf node. Denote the leaf node as vb and the leaf edge
e = (ua, vb) ∈ E′ ∪ Ê′ (a, b ∈ {h, t}). By removing edge e and leaf node vb, the subgraph
G′n = (E′ − {e}, Ê′ − {e}, V ′ − {vb}) is also acyclic and contains n edges. According to the
assumption, G′n is a compatible structure and there is an arrangement of the segments in
which all edges in E′ ∪ ê′ − {e} is concordant. Because no other edge in E′ ∪ Ê′ except
e connects to vb, it is always possible to place segment v back to the arrangement such
that e is concordant. Specifically, one of the four placing options will satisfy edge e: the
beginning of the arrangement with orientation 1, the beginning with orientation 0, the end
with orientation 1 and the end with orientation 0. Therefore, G′n+1 is a compatible structure.
By induction, acyclic subgraph G′N of GSG with any |E′| is a compatible structure. J
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I Theorem 5. A simple cycle C = (E′, Ê′, V ′) is a compatible structure if and only if there
are exactly two vertices, vj and vi such that degE′(vi) = degE′(vj) = 2 and vi and vj belongs
to different segments.

Proof. We prove sufficiency and necessity separately in Lemma 6 and Lemma 7. J

I Lemma 6. If C is a compatible structure, there are exactly two vertices, vi, vj that belong
to different segments, such that degE′(vi) = degE′(vj) = 2

Proof. We discuss compatiblity in two cases:
Case (1): All edges are concordant in C. Sort the vertices by genomic locations in ascend-

ing order and label the first vertex v1 and the last vn, assuming |V ′| = n. Similarly,
sort the set of segments S′ in C by the values of their permutation function π and label
the first segment s1 and the last sm, assuming |S′| = m. Since concordant connections
can only be tail-head connections (e.g. Figure 1 b,c), v1 = s1

t and vn = sm
h . Since C

is a simple cycle, all vertices v ∈ V ′ have deg(v) = 2. Because v1 and vn are the first
and last vertices in this arrangement, the edges incident to v1 or vn must be in E′. It
follows that the two edges incident to v1 connects to s2

h and sm
h . Similarly, edges incident

to vn connects to s1
t and sn−1

t . Therefore, we have degE′(v1) = degE′(vn) = 2. Any
other vertex vi (1 < i < n) is connected by one e ∈ E′ and one ê ∈ Ê′ and thus has
degE′(vi) = 1.

Case (2): Some edges are discordant in C. If discordant edges exist in cycle C, according
to the definition of compatible structure, segments in C can be arranged such that all
edges are concordant. This reduces to case (1). J

I Lemma 7. If there are exactly two vertices in V ′ that belong to different segments, vi and
vj, such that degE′(vi) = degE′(vj) = 2, then C is a compatible structure.

Proof. Let vi and vj be the one of the end points of segments si and sj(i 6= j) , respectively.
We can arrange si and sj such that π(si) = mins∈S′ π(s), π(sj) = maxs∈S′ π(s) and that
vi = si

t, vj = sj
h. Rename vi to v1 and vj to vn. Since C is a simple cycle, we can find

two simple paths, P1 and P2, between v1 and vn and there is no edge between P1 and P2.
Let P ′1 and P ′2 denote P1 and P2 that exclude v1 and vn and the edges incident to v1 and
vn. Since P ′1 and P ′2 as acyclic subgraphs of GSG, according to Theorem 14, P ′1 and P ′2 are
compatible structures and therefore segments in P ′1 and P ′2 can be arranged so that all edges
are concordant. Denote the first and last vertices in the arranged P ′1 as v2 and v3, and the
first and last vertices in the arranged P ′2 as v4 and v5. Because all the edges are concordant
in P ′1, v2 and v3 are the head and tail of the first and last segments in P ′1. Because only v1
and vn have degE′ = 2 in C, v2 must be connected to v1 or vn and v3 must be connected to
vn or v1. A similar argument applies to v4 and v5. To ensure concordance of edges connected
to v1 and vn, if vn is connected to v2 and v1 is connected to v3, we flip all the segments in P ′1.
The similar operation is applied to v4, v5 and P ′2. Now we have a compatible structure. J
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