
Context-Aware Seeds for Read Mapping
Hongyi Xin
Computer Science Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA

Mingfu Shao
Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA, USA

Carl Kingsford1

Computational Biology Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Motivation: Most modern seed-and-extend NGS read mappers employ a seeding scheme that
requires extracting t non-overlapping seeds in each read in order to find all valid mappings under an
edit distance threshold of t. As t grows (such as in long reads with high error rate), this seeding
scheme forces mappers to use more and shorter seeds, which increases the seed hits (seed frequencies)
and therefore reduces the efficiency of mappers.
Results: We propose a novel seeding framework, context-aware seeds (CAS). CAS guarantees
finding all valid mapping but uses fewer (and longer) seeds, which reduces seed frequencies and
increases efficiency of mappers. CAS achieves this improvement by attaching a confidence radius to
each seed in the reference. We prove that all valid mappings can be found if the sum of confidence
radii of seeds are greater than t. CAS generalizes the existing pigeonhole-principle-based seeding
scheme in which this confidence radius is implicitly always 1. Moreover, we design an efficient
algorithm that constructs the confidence radius database in linear time. We experiment CAS with
E. coli genome and show that CAS reduces seed frequencies by up to 20.3% when compared with
the state-of-the-art pigeonhole-principle-based seeding algorithm, the Optimal Seed Solver.
Availability: https://github.com/Kingsford-Group/CAS_code

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases Read Mapping, Seed and Extend, Edit Distance, Suffix Trie

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.15

Supplement Material https://github.com/Kingsford-Group/CAS_code

Funding This research is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven
Discovery Initiative through grant GBMF4554 to CK, by the U.S. National Science Foundation
(CCF-1319998) and by the U.S. National Institutes of Health (R01GM122935). This work was
partially funded by the Shurl and Kay Curci Foundation. This project is funded, in part, by a grant
(4100070287) from the Pennsylvania Department of Health. The department specifically disclaims
responsibility for any analyses, interpretations, or conclusions.

1 Introduction

Read mapping is used ubiquitously in bioinformatics. Commonly, it is defined as follows:

I Problem 1 (Read Mapping). Given read R and reference T (usually with |T | � |R|), an
edit distance measurement D(·, ·), and an error tolerance threshold t, we say a substring of T
at location [l1, l2], i.e., T [l1, l2], is a valid mapping of R if we have D(R, T [l1, l2]) < t.

1 corresponding author, email: carlk@cs.cmu.edu

© Hongyi Xin, Mingfu Shao, and Carl Kingsford;
licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/227274891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/Kingsford-Group/CAS_code
https://doi.org/10.4230/LIPIcs.WABI.2019.15
https://github.com/Kingsford-Group/CAS_code
carlk@cs.cmu.edu
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Context-Aware Seeds

To efficiently map reads, modern mappers usually employ the seed-and-extend mapping
strategy [8, 9, 1, 14]: a mapper extracts a substring of R as a seed, s; iterates through all
seed locations of s in T ; at each seed location, performs sequence alignment of R against the
surrounding text in T ; reports alignments that have edit distances below t as valid mappings.

For mappers that use non-overlapping seeds, the number of seeds to extract from a read
R is governed by the pigeonhole principle: to find all valid mappings of R, the mapper must
divide R into at least t non-overlapping seeds. Otherwise, the mapper will not be able to
consistently find all valid mappings of R in T . As t grows, the length of seeds is reduced.
Using short seeds significantly increases the workload of a mapper [6, 11]. Shorter seeds
appear more frequently in T , hence increasing the number of alignments while mapping a
read. To improve the performance of mappers, it is desirable to use fewer non-overlapping
seeds under a fixed t, which lets a mapper not only use fewer seeds, but also use longer seeds.

In this paper, we focus on improving seed-and-extend mappers that use non-overlapping
seeds. We propose a novel seeding scheme, called context-aware seeds (CAS). CAS enables a
mapper to use fewer than t seeds without missing any valid mappings. CAS attaches each
seed s with a confidence radius score, cs, with cs ≥ 1. Let S be a set of non-overlapping
seeds from R. CAS ensures that as long as

∑
s∈S cs ≥ t, then S is sufficient to find all valid

mappings of R under an error tolerance threshold of t. When S includes any seed s with
cs > 1, then |S| < t and all valid mappings are secured with fewer-than-t seeds (|S| denotes
the number of seeds in S). In the worst case where cs = 1 for all s ∈ S, CAS degenerates
into the case governed by pigeonhole principle with |S| = t.

Figure 1 compares CAS and the pigeonhole-principle-based seeds. Assume that we have
verified that the two CAS seeds AACC and TTGG have confidence radii of cs = 2. Therefore
CAS can be guaranteed to find all valid mappings with just these two seeds, as

∑
s cs = 4 ≥ t.

Using the pigeonhole principle, however, a mapper needs to select t = 4 non-overlapping
seeds. It forces the mapper to pick short and repetitive seeds, making the mapper perform
more local alignments.

Figure 1 Illustration of CAS. The upper part shows a read and a reference. Suppose that t = 4,
i.e., we want to find all alignments of the read in the reference with fewer than 4 edits. There is only
one such locally optimal alignment (marked as red). The middle part shows the seed extraction
result with the pigeonhole principle, which splits the read into t = 4 seeds. This gives many seed
locations and thus many alignments. With CAS (in the lower part), we can split the read into 2
long seeds while still guarantee to find all valid mappings. The two long seeds together have a total
seed frequency of 2, drastically reducing the number of alignments.

We establish the theoretical foundation of CAS and demonstrate that with CAS future
mappers can map reads more efficiently using fewer, longer and less frequent seeds without
losing valid mappings. We also propose a suffix-trie-based CAS database construction
algorithm that builds a CAS database from T in linear time, based on which we design
a greedy CAS seeding algorithm that extracts CAS from reads. We test the greedy CAS
seeding algorithm against a state-of-the-art pigeonhole-principle-based seeding algorithm,
Optimal Seed Solver (OSS), on an E. coli dataset.



H. Xin, M. Shao, and C. Kingsford 15:3

2 Context-Aware Seeds

CAS reduces seed usage in read mapping by introducing a novel metric for seeds in T , the
confidence radius. A seed s in T has a confidence radius cs if cs is a smallest value (a lower
bound), such that all substrings in T whose edit distance is smaller than cs must occur in T
within a small window where s occurs. The window equals to extending s by cs − 1 letter(s)
at both ends. For example, under t = 2, seed AACC in T from Figure 1 has a confidence
radius of 2. Any substring in T whose edit distance to AACC equals 1 (e.g., AAC, ACC, GAACC,
AACCG) locates within the 1-letter extended window of AACC (GAACCG). The confidence radius
of each possible seed in T can be computed by profiling T . CAS guarantees that all valid
mappings of a read R can be located, as long as the seeds s extracted from R collectively
have a confidence radius of

∑
s cs > t. Below, we give the formal definition of CAS and prove

the correctness of CAS.
Let s be a string in T and [l1, l2] be a pair of locations. We say string T [l1, l2] is in the

vicinity of s under an integer c, if ∃[ls1, ls2], where l1−c < ls1 < ls2 < l2 +c and T [ls1, ls2] = s.
Furthermore, let seed s be a substring of R at [lr1, lr2] (s = R[lr1, lr2]) and let T [l1, l2] be a
valid mapping of R. We say T [l1, l2] is in the vicinity of s with regard to R under c, if string
T [l1 + lr1, l1 + lrr2] is in the vicinity of s under c. If a valid mapping T [l1, l2] is in the vicinity
of s with respect to R under t, then T [l1, l2] can be discovered by locally aligning R against
the surrounding text in T at each seed location of s.

The pigeonhole principle states that by dividing R into a set of t non-overlapping seeds,
denoted by S, then ∀[l1, l2] where T [l1, l2] is a valid mapping of R, there must be s ∈ S
where T [l1, l2] is in the vicinity of s with regard to R.

CAS seeks to retain the seed vicinity guarantee of the pigeonhole principle, where all valid
mappings of a read R are in the vicinity of its seeds with regard to R under t, with fewer
than t seeds. Given two substrings s and s′ of T and a edit-distance threshold t, we say s′

is a neighbor of s if D(s, s′) < t. Assume that s′ is a neighbor of s under t, CAS defines s′

as a trivial neighbor of s, if and only if ∀[l1, l2] where T [l1, l2] = s′, T [l1, l2] is in the vicinity
of s under D(s, s′). Otherwise CAS defines s′ as a nontrivial neighbor of s. Finally, CAS
defines the confidence radius cs of s as the minimum of 1) t and 2) the minimum edit-distance
between s and all nontrivial neighbors of s. Since a seed is trivial to itself and is at least
1-edit-distance away from any other string, we have t ≥ cs ≥ 1 for any seed s.

We now give the central theorem of CAS, the theoretical foundation that enables seed-
and-extend mappers to find all valid mappings using fewer than t seeds.

I Theorem 1. Let S be a set of non-overlapping seeds of a read R, if
∑

s∈S cs ≥ t, then
∀[l1, l2] where D(R, T [l1, l2]) < t, ∃s ∈ S where T [l1, l2] is in the vicinity of s with regard to
R under t.

Proof. Assume that T [l1′, l2
′] is a valid mapping of R, where D(R, T [l1′, l2

′]) < t. Further
assume that T [l1′, l2

′] is not in the vicinity, with regard to R under t, of any s ∈ S. In the
minimum-edit-distance alignment between R and T [l1′, l2

′], assume that the non-overlapping
seeds s1, s2, . . . , sn of R are aligned to the non-overlapping segments sT 1, sT 2, . . . , sT n

of T [l1′, l2
′], with n = |S|. Since T [l1′, l2

′] is not in the vicinity, with regard to R under
t, of any s ∈ S; and also because csi ≤ t for all i; there does not exist i where sT i is in
the vicinity of si, under csi. Therefore, sT i is a nontrivial neighbor of si for all i ∈ [1, n].
Because csi is the minimum edit-distance between si and any of its nontrivial neighbors,
we have D(R, T [l1′, l2

′]) ≥
∑

i D(si, sT i) ≥
∑

s cs ≥ t. D(R, T [l1′, l2
′]) ≥ t contradicts the

assumption that T [l1′, l2
′] is a valid mapping of R. Therefore such T [l1′, l2

′] does not exist. J

WABI 2019



15:4 Context-Aware Seeds

3 Construction of Confidence Radius Database

The confidence radius cs of each seed s is stored in a table, called the confidence radius
database. The confidence radius database only needs to be constructed once offline for a
reference T .

Computing cs of seed s involves finding the minimum edit distance to its nontrivial
neighbors. Below we propose an algorithm that constructs the confidence radius database in
O(|Σ|2 ·M) time, where Σ is the alphabet set of T and M is the total number of neighbors
of all strings in T (up to length P and under the edit distance threshold t).

The confidence radius database is constructed in two steps: first, we construct a neighbor
database, which stores all neighbors of all seeds (up to length P ) under the edit distance
threshold t; then, we find the confidence radius of each from its neighbors. We prove that
both steps can be done in O(|Σ|2 ·M) time.

3.1 Construction of the Neighbor Database
To find all neighbors of all substrings in T (up to a maximum length P ), we first build
a P -level suffix trie of T , then find all neighbors of each seed in Trie by systematically
traversing the suffix trie in a top-down manner. Formally, let Trie = (V,E) be a suffix trie
of T of a maximum depth of P + t. Let r ∈ V be the root of Trie. Each node represents a
substring in T , i.e., the string obtained by concatenating the letters on edges along the path
from r to v. We denote the edit distance between these two substrings corresponding to u
and v as D(u, v). We aim to solve the following problem:

I Problem 2. Given a suffix trie Trie = (V,E) and an integer t, to compute all pairs of
nodes u, v ∈ V such that D(u, v) ≤ t.

For any v ∈ V , p(u) denotes the parent node of v in Trie. σ(p(v), v) denotes the letter
on the edge between v and p(v), i.e., (p(v), v) ∈ E. We have the following lemmas.

I Lemma 2. Let u, v ∈ V . Then D(u, v) ≤ t only if D(p(u), p(v)) ≤ t.

Proof. Proved in Landau and Vishkin [7] by enumerating and validating all possible scenarios.
J

I Lemma 3. Let u, v ∈ V . We have

D(u, v) = min


D(p(u), p(v)) + δuv

D(p(u), v) + 1
D(u, p(v)) + 1

where δuv = 1 if σ(p(u), u) 6= σ(p(v), v) and δuv = 0 if σ(p(u), u) = σ(p(v), v).

Proof. This follows the dynamic programming algorithm for the edit distance problem. J

Lemma 2 shows that nodes are neighbors only if their parents are neighbors. Hence the
neighbors of a child node must be the children of the neighbors of its parent node. Lemma 3
further shows that the edit distance between two children nodes can be computed in constant
time, given the edit distances between one child and the parent node of the other child, as
well as the edit distance between the two parent nodes.

We construct the neighbor database by traversing Trie as follows: First, assign each node
in V an integral rank from {1, 2, · · · , |V |} following a top-down, left-to-right order. The root
r of Trie has rank of 1, and then the children of children of r have ranks of 2, 3, · · · , from the



H. Xin, M. Shao, and C. Kingsford 15:5

leftmost child to the rightmost child, and so on. Nodes that are deeper in Trie rank higher.
Among nodes of the same depth, children of a higher ranking parent node rank higher. A
breadth-first-search traversal of Trie ranks all nodes.

For any v ∈ V , we define Xv := {u ∈ V | D(u, v) ≤ t} as the set of neighbors of v,
including v itself, and define Yv := {D(u, v) | u ∈ Xv} as the accompanying edit-distance
set of Xv. For every neighbor node u in Xv, Yv provides the edit distance between u and v.
We compute Xv and Yv for each node v ∈ V from low ranking nodes to high ranking nodes.
Both Xv and Yv are implemented as arrays.

The algorithm for constructing the neighbor database is summarized in Algorithm 1. We
iterate through all nodes by rank from low to high. For each node v ∈ V , we iterate through
all children of v. For each children node v′ of v, we compute Xv′ and Yv′ of v′ based on
the previously computed Xv and Yv of v. Figure 2 illustrates the process of validating a
candidate neighbor u′ of another node v′, based on the information of its parent node v and
the neighbor u of v, where u is also the parent of u′ (lines 4–17 in Algorithm 1). We prove
that this algorithm maintains the following three invariants:

v

v′

u

u′

Xv,Yv

Xv′ ,Yv′

k

kv′

kv

Figure 2 Illustration of processing a single node v (i.e., lines 4–17 of Algorithm 1).

Algorithm 1 Linear Time Algorithm for Problem 2.
Input: Suffix trie Trie = (V,E) and the edit-distance threshold t
Output: Xv and Yv for each v ∈ V
0. Initialize Xr and Yr for root r ∈ V .
1. FOR each node v ∈ V in ascending order:
2. Initialize pointer kv = 0 for arrays Xv and Yv.
3. Initialize arrays Xv′ and Yv′ for each child v′ of v as empty arrays.
4. Initialize pointer kv′ = −1 for arrays Xv′ and Yv′ for each child v′ of v.
5. FOR k = 0→ |Xv|:
6. LET u := Xv[k].
7. FOR each child u′ of u:
8. FOR each child v′ of v:
9. LET δ = 1 if σ(u, u′) 6= σ(v, v′) and δ = 0 if σ(u, u′) = σ(v, v′). Compute

D1 = Yv[k] + δ, i.e., D1 = D(v, u) + δ.
10. Increase kv until Xv[kv] ≥ u′. IF we have Xv[kv] = u′, i.e., u′ ∈ Xv, THEN

compute D2 = Yv[kv] + 1, i.e., D2 = D(v, u′) + 1; otherwise set D2 =∞.
11. Increase kv′ until Xv′ [kv′ ] ≥ u. IF we have Xv′ [kv′ ] = u, i.e., u ∈ Xv′ , THEN

compute D3 = Yv′ [kv′ ] + 1, i.e., D3 = D(v′, u) + 1; otherwise set D3 =∞.
12. Compute D(v′, u′) = min{D1, D2, D3}. IF D(v′, u′) < t, THEN add u′ to the

end of Xv′ and add D(u′, v′) to the end of Yv′ .
13. END FOR
14. END FOR
15. END FOR
16. END FOR

WABI 2019



15:6 Context-Aware Seeds

1. For any node v ∈ V , array Xv is always sorted according to their ranks, i.e., nodes that
are added to Xv are always in ascending order w.r.t. their ranks.

2. Right before processing node v (i.e., before line 4 of Algorithm 1), Xv and Yv are already
computed and sorted w.r.t. their ranks.

3. Right after processing node v (i.e., after line 17 of Algorithm 1), Xv′ and Yv′ are computed
and sorted w.r.t. their ranks for each child v′ of v.

The initialization step Algorithm 1 (line 2) computes Xr and Yr for root node r. Its
neighbors include all nodes whose depth in Trie is no greater than t. The edit distance
between r to a neighbor node u is simply the depth of u minus 1 (we assume that root r is at
depth 1). Root r is also in Xr with D(r, r) = 0. Clearly, the first and the second invariant
hold for root r.

In the main loop (lines 3–18), for a node v ∈ V , Algorithm 1 iterates through all of its
children. For a child v′ of v, lines 4–17 compute Xv′ and Yv′ of v′. Line 4–6 initialize the
pointers that will be used to fetch the edit distances D(v, u′) and D(v′, u), which are stored
in Yv and the partially computed Yv′ , respectively. Because u ranks higher than u′, by the
time of computing D(v′, u′), D(v′, u) is already computed and stored in Xv′ . D(v′, u′) is
then computed according to Lemma 3. Specifically, pointer k tracks the position of u in
array Xv (i.e., the index of u in array Xv); pointer kv tracks the position of u′ in array Xv;
and pointer kv′ tracks the position of u in array Xv′ . Line 11 computes D1 := D(v, u) + δ, in
which D(v, u) is fetched from Yv indexed by k. Line 12 computes D2 := D(v, u′)+1, in which
D(v, u′) is fetched from Yv indexed by kv. Line 13 computes D3 := D(v′, u) + 1, in which
D(v′, u) is fetched from Yv′ indexed by kv′ . Line 14 computes D(v′, u′) := min{D1, D2, D3};
adds u′ to Xv′ and adds D(v′, u′) to Yv′ if D(v′, u′) < t.

Algorithm 1 maintains the first invariant. For each child v′ of v, assuming Xv is sorted,
then neighbors are also added to Xv′ in a sorted manner, as Algorithm 1 iterates through
neighbors ordered by Xv. Since Xr is sorted for root r, given the inductive nature of
Algorithm 1, we conclude that Xv must be sorted for any v ∈ Trie.

Algorithm 1 maintains the third invariant. According to Lemma 2, a node u′ ∈ Xv′

requires u ∈ Xv for their parents u and v. Any node ū′ whose parent ū 6∈ Xv results in
ū′ 6∈ Xv′ . Algorithm 1 iterates through all u in Xv. Therefore, after line 17, all neighbors of
child v′ must have been found, assuming the second invariant holds. The second invariant
holds because all neighbors of r are correctly defined during initialization. As the algorithm
propagates, because of the inductive nature of Algorithm 1, the second invariant holds.

LetM denote the member size of set {(u, v) | D(u, v) ≤ t}. The complexity of Algorithm 1
is O(|Σ|2 ·M).

I Theorem 4. Algorithm 1 computes Xv and Yv for each v ∈ V in O(|Σ|2 ·M) time.

Proof. For each v ∈ V , lines 4–17 compute Xv′ and Yv′ for each child v′ of v in O(|Xv| ·
|Σ|2 +

∑
v′:p(v′)=v |Xv′ |) time. Since pointers of kv and kv′ can only move forward, lines

12–13 cost |Xv|+
∑

v′:p(v′)=v |Xv′ | operations. Operations in lines 11–14 cost constant time.
Hence, lines 7–17 cost O(|Xv| · |Σ|2) operations, as the number of children of each node is
bounded by |Σ|. The overall run time of Algorithm 1 is thus bounded by

∑
v∈V O(|Xv| ·

|Σ|2 +
∑

v′:p(v′)=v |Xv′ |) = O(|Σ|2 ·M). J

With |Σ| being a small constant (for example Σ = {A,C,G, T} for DNA analysis),
Algorithm 1 finds all M neighbor pairs in Trie in O(M) time.



H. Xin, M. Shao, and C. Kingsford 15:7

3.2 Computing the Confidence Radius Among Nontrivial Neighbors

The neighbor database stores both the trivial and nontrivial neighbors of each seed. However,
CAS only requires the minimum edit distance to the nontrivial neighbors of each seed. In
order to derive the confidence radius of each seed, we propose an augmentation to Algorithm 1,
such that it computes the minimum edit distance to nontrivial neighbors while constructing
the neighbor database. We prove that the augmentation does not increase the time complexity
of Algorithm 1.

Within the neighbor array Xv of a node v, let the sub-array X0
v store all trivial neighbors

and X1
v store all nontrivial neighbors, where Xv = X0

v ∪X1
v . By definition, the confidence

radius of v is computed as cv := minu∈X1
v
D(u, v). To compute cv, instead of finding

all nontrivial neighbors, X1
v , we compute a subset X2

v ⊂ X1
v , where minu∈X2

v
D(u, v) =

minu∈X1
v
D(u, v).

Let u be a neighbor of v; we say u is an immediate neighbor of v if u is a substring, or a
superstring, or an overlapping string of v; otherwise we say u is a non-immediate neighbor
of v (see Figure 3 for examples). Immediate neighbors are not necessarily trivial neighbors.
If u is a trivial neighbor of v, by definition, then u must be an immediate neighbor of v.
However, the opposite is not necessarily true, i.e., u could be a substring of v (an immediate
neighbor) yet u is nontrivial to v. Substring u may appear at more locations in T than v
does. It is easier to determine whether u is an immediate neighbor to v than whether u is a
trivial neighbor to v.

GATCACCAAGACGTGTCACGAGTCATACGCC

GATCACCAAGACGTGTCACGAGTCATACGC

ATCACCAAGACGTGTCACGAGTCATACGCC

AGATCACCAAGACGTGTCACGAGTCATACGCC

GATCACCAAGACGTGTCACGAGTCATACGCCA

AGATCACCAAGACGTGTCACGAGTCATACGC

ATCACCAAGACGTGTCACGAGTCATACGCCA

Immediate Substrings

Immediate Superstrings

Immediate Overlapping Strings

Seed

Figure 3 Examples of trivial neighbors of a seed, including substrings, superstrings, and overlap-
ping strings of this seed.

Let X2
v be the set of non-immediate neighbors of a node v. The minimum edit distance

from v to nontrivial neighbors of v equals to the minimum edit distance between v to
neighbors in X2

v . We prove this in Theorem 7. To prove Theorem 7, we first prepare the
following two lemmas.

I Lemma 5. If u is a superstring of v, then u is a trivial neighbor of v.

Proof. Since u is a superstring of v, for any location [l1, l2] of u, ∃[l1, l2] where T [l1, l2] = v

and l1 −D(u, v) ≤ l1 < l2 ≤ l2 +D(u, v). By definition, u is a trivial neighbor of v. J

I Lemma 6. If u is a substring or an overlapping string of v and u is a nontrivial neighbor
of v, then ∃w ∈ Trie, where w is neither an immediate neighbor nor a trivial neighbor of v,
with |w| = |v| and D(v, w) ≤ D(v, u).

WABI 2019



15:8 Context-Aware Seeds

..ACCCAGATCACCAAGACGTGTCACGA..

CCCAGATCACCAAGACGTGTCACG

GCCCAGATCACCAAGACGTGTCACGA

||||||||||||||||||||||||||

||||||||||||||||||||||||

ACCCAGATCACCAAGACGTGTCACGA

||||||||||||||||||||||||||

u

v

u at T[l1,l2]

w

| Mismatch | Insertion

ACCCAGATCACCAAGACGTGTCACG

CCCAGATCACCAAGACGTGTCACGA

GCCCAGATCACCAAGACGTGTCACG

||||||||||||||||||||||||||

|||||||||||||||||||||||||

u

v

w

| Deletion | Insertion

..ACCCAGATCACCAAGACGTGTCACGA..u at T[l1,l2]
||||||||||||||||||||||||

Figure 4 Illustration of Lemma 6. The figure to the left shows an example where u is a substring
of v, while the figure to the right shows an example where u is an overlapping string of v. Notice
that in both figures, w is always optimally aligned to v.

Proof. Since u is a nontrivial neighbor of v, ∃[l1, l2], where T [l1, l2] = u but T [l1, l2] is not in
the D(v, u)-edit vicinity of v. We extract a substring w within T [l1 −D(u, v), l2 +D(u, v)],
where w locally and optimally aligns to v in T [l1 −D(u, v), l2 +D(u, v)], with |w| = |v|, as
shown in Figure 4. Then w must be a nontrivial neighbor of v since T [l1, l2] is not in the
D(u, v)-edit vicinity of v. Because w is optimally aligned to v within [l1−D(u, v), l2+D(u, v)],
we have D(w, v) ≤ D(u, v). J

By combining Lemmas 5 and 6 we prove the following theorem.

I Theorem 7. cv = minu∈X2
v
D(u, v), where X2

v is the set of non-immediate neighbors of v.

Proof. Lemmas 5 and 6 state that for any nontrivial immediate neighbor u of seed v,
there must exist a nontrivial and non-immediate neighbor w of v where D(w, v) ≤ D(u, v).
Therefore, by definition, we have cv = minu∈X2

v
D(u, v). J

We find the immediate neighbors, X3
v , of each node v ∈ Trie, by checking if a neighbor

u ∈ Xv is a immediate substring, superstring or overlapping string of v. We associate with
each node v a new vector Zv := {F (v, u) | u ∈ Xv}, where F (v, u) stores the information of
whether u ∈ X3

v . With X2
v = Xv \X3

v , the updated workflow is illustrated in Figure 5.
Computation of F (v, u) can be piggybacked on top of computing D(v, u) in Algorithm 1.

Given u and v, F (v, u) stores whether v and u possess any of the below immediate conditions:
(1) v is a prefix of u. (2) v is a suffix of u. (3) u is a prefix of v. (4) u is a suffix of v. (5) v
is neither a prefix nor a suffix but a substring of u. (6) u is neither a prefix nor a suffix but
a substring of v. (7) A prefix of v is a suffix of u. (8) A suffix of v is a prefix of u.

From above immediate conditions, we deduce the immediate relationship between v and u.
With conditions 1–6, we can infer the superstring-substring relationship. With Condition 7–8,
we can infer the overlapping relationship. If v and u qualifies none of the above immediate
conditions, then they must be non-immediate neighbors.

For simplicity, we initialize each node as satisfying immediate conditions 1, 2, 3 and 4 to
itself. We initialize the root node r as a prefix to any of its neighbors; and any neighbors of
r as a suffix to r. Finally, r is not an overlapping string or a substring of any neighbor.

v

v′

u

u′

Xv,Yv,Zv

Xv′ ,Yv′ ,Zv′

k

kv′

kv

Figure 5 Illustration of adding Zv := {F (u, v) | u ∈ Xv} to each node.



H. Xin, M. Shao, and C. Kingsford 15:9

F (u, v) can be computed in constant time if F (p(v), p(u)), F (p(v), u) and F (v, p(u)) are
known. For example, in Figure 5, F (v′, u′) satisfies condition 1, only if (a) v′ = u′ or (b)
F (v′, u) satisfies condition 1. F (v′, u′) satisfies condition 2, only if (a) u′ = v′ or (b) F (v, u)
satisfies condition 2 and σ(u, u′) = σ(v, v′). Conditions 3 and 4 are mirror cases of conditions
1 and 2, respectively with v and u, v′ and u′ trading places. F (v′, u′) satisfies condition 5,
only if (a) F (v′, u) satisfies condition 5 or (b) F (v′, u) satisfies condition 2, while v′ 6= u′ and
v is not root. Condition 6 is a mirror case of condition 5. F (v′, u′) satisfies condition 7 only
if (a) F (v, u′) satisfies condition 7 or (b) F (v, u′) satisfies condition 2, while v 6= u′ and v is
not root. Condition 8 is a mirror case of condition 7.

The computation of F (·, ·) is piggybacked on top of the computation of D(·, ·), as both
methods use dynamic programming. Both methods require piror knowledge between the
child-parent and parent-parent node pairs; and from prior results, both methods compute
the new result of the child-child node pair in constant time. As a result, piggybacking the
computation of immediateness does not increase the complexity of Algorithm 1.

Finally, the confidence radius of node v equals minD(v, u) where u ∈ X2
v , where F (v, u)

does not satisfy any of the immediate conditions. The confidence radius of a node can
be found by simply scanning its neighbor array, which finishes in linear time. The overall
complexity of constructing the confidence radius database is still O(|Σ|2 ·M).

The confidence radius database is stored in a |T |-by-P table, where P is user-provided.
The [x, y] entry of the table stores the cs of seed T [x, x+ y]. In practice, |T | � P and when
needed, we can condense the confidence radius database into bit-vectors to reduce the table
size. If necessary, when |T | is large, we can sub-sample seeds only at fixed-length intervals to
further reduce the storage footprint.

4 A Seeding Scheme with Context-Aware Seeds

While the major goal of this paper is to establish the theoretical framework of CAS, to test
the effectiveness of CAS, we propose a greedy seed selection method, referred to as greedy
CAS seeding. Greedy CAS seeding selects consecutive Maximum Exact Matching substrings
(MEMs, which are seeds that cannot be further extended without bumping into errors) from
a read as seeds. At the end of each MEM, greedy CAS seeding heuristically skips the next
two base pairs, in an effort to skip potential errors. Greedy CAS seeding sorts seeds by their
frequency from low to high, into Sraw. Then selects the minimum number of seeds S from
Sraw in sequential order such that

∑
s∈S cs ≥ t. In the rare cases where there is insufficient

number of CAS seeds such that @S with
∑

s∈S cs ≥ t, greedy CAS seeding reverts back to
using the pigeonhole principle, by dividing the read into t non-overlapping seeds.

AGGGCCCACTACCGAGAGCTCGCAGCCCAGATCACCAAGACGTGTCACGAGTCATACGCC

Frequency: 2
Confidence: 3

First MEM

Read

Frequency: 1
Confidence: 2

Second MEM

Hypothetical errors—Skip!

AGGGCCCACTACCGAGAGCTCGCAGCCCAGATCACCAAGACGTGTCACGAGTCATACGCCRead

Frequency: 6 Frequency: 5 Frequency: 3 Frequency: 4

Context-Aware Seeds

OSS with Ordinary Seeds

Figure 6 An example of drawing context-aware seeds from a read.

WABI 2019



15:10 Context-Aware Seeds

Figure 6 compares the seed extraction results of greedy CAS seeding against the state-
of-the-art, pigeonhole-principle-based seeding method, the Optimal Seed Solver (OSS) [15].
OSS has been previously shown that it generates the least frequent seeds, when compared
to other pigeonhole-principle-based seeding methods, such as flexible-placement k-mers or
spaced seeds. Figure 6 demonstrates both seeding methods in action under t = 4. Greedy
CAS seeding is shown in the upper half while OSS is shown in the lower half. Compared to
OSS, which uses a total of t = 4 seeds, greedy CAS seeding uses only two seeds. As a result,
greedy CAS seeding can afford longer and less frequent seeds.

Greedy CAS seeding has a maximum complexity of O(|R| + |S| log(|S|)) (|R| denotes
the length of R while |S| denotes the cardinality of set S). We use Burrows-Wheeler
Transformation (BWT) array to index seeds. With BWT array, it takes O(|s|) operations
to access the seed database for seed s and locate all seed locations of s. Given that∑

s∈S |s| ≤ |R|, and |S| ≤ t � |R|, we conclude that the maximum complexity of greedy
CAS seeding is O(|R|+ t log(t)).

5 Experiments

We benchmark greedy CAS seeding against OSS on the E. coli genome. We benchmark both
seeding schemes on a 22-million, 100-bp E. coli read set from EMBL-EBI, ERX008638-1.
We build a confidence radius database for E. coli genome with a maximum edit distance
threshold t = 5 and a max seed length P = 60. We measure the effectiveness of both
approaches by comparing the average total seed frequency of selected seeds under different
edit distance thresholds t = {1, 2, 3, 4, 5}. The average total frequency is the sum of seed
frequencies extracted from each read, averaged over all reads in the read set.

1 2 3 4 5
Error tolerance threshold, t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
ar

eg
e 

to
ta

l s
ee

d 
fre

qu
en

cy

1.00 1.03

1.55

2.12

2.85

0.99

1.54

2.10

2.66

3.23

Total Seed Frequency Comparison Between CAS and OSS
CAS
OSS

Figure 7 Comparison between CAS and OSS in terms of total seed frequency, with various edit
distance thresholds t.

Figure 7 shows the average total seed frequency comparison between the two approaches.
OSS has slightly smaller total seed frequency (averaged over all reads) under t = 1, but it
quickly increases, exceeding CAS at t > 1. OSS out performs CAS under t = 1 because
greedy CAS seeding extracts seeds sequentially; while OSS scans through all possible MEM
placements in a read and picks the least frequent placement. When t gets larger, OSS is



H. Xin, M. Shao, and C. Kingsford 15:11

1 2 3 4 5
Error tolerance threshold, t

0

1

2

3

4

5

6

Av
ar

eg
e 

Nu
m

be
r o

f S
ee

ds
 U

se
d

1.000 1.000

1.491

1.983

2.476

1.000

2.000

3.000

4.000

5.000

Seed Number Comparison Between CAS and OSS
CAS
OSS

Figure 8 Comparison between CAS and OSS in terms of average number of seeds used, with
various edit distance thresholds t.

pressured to use more seeds, which leads to using shorter and more frequent seeds. To the
contrary, greedy CAS seeding often uses fewer than t seeds, as shown in Figure 8, which let it
use longer and less frequent seeds. At t = 4, greedy CAS seeding out performs OSS by 20.3%.

CAS is expected to perform better on larger genomes. The E. coli genome is a small
genome, which has only around 4.6 million base pairs. In comparison, the human genome
has more than 3 billion base pairs. For small genomes, seeds becomes less frequent by nature.
Therefore short seeds becomes acceptable as they are not as frequent as they are in larger
genomes. We therefore expect CAS to perform better in larger genomes. However, due
to practical (not theoretical) limitations in scaling up the construction of the confidence
radius database on larger genomes (further elaborated in the Discussion section), we only
demonstrate CAS on the E. coli genome.

While the focus of this paper is to establish the theoretical foundation of CAS, instead of
providing a complete read mapping solution, it is worth mentioning that greedy CAS seeding
(only the seeding mechanism) is more practical than OSS. OSS requires scanning through
all substrings of R, which has a total size of O(|R|2), for seed frequencies. Combined with
BWT, it takes at least O(|R|2) operations to collect all seed frequencies with OSS. Greedy
CAS seeding, to the contrary, finishes in O(|R|+ t log(t)) time with t� |R|.

6 Discussion

Although Algorithm 1 finishes in O(|Σ|2 ·M) time, in practice, M could be on the scale of
trillions or more, for large and complex genomes. This is because for large genomes, the
suffix trie is close to full in the first ten to twenty levels, where almost every permutation of
letters exists. Nodes in these levels have large numbers of neighbors: the number of neighbors
of a node v, equals to the number of unique strings formed by editing the string of v with
up to t edits. After each edit, the resulting string is guaranteed to appear in Trie. This is
further amplified by the exponentially-growing number of nodes in each level. In human
genomes, there are more than one billion unique 15-base-pair suffixes. This means that for

WABI 2019



15:12 Context-Aware Seeds

human genomes, under t = 4, there could be more than 1 trillion total neighbors just for
15-base-pair suffixes. Maintaining metadata at such scale vastly exceeds the capacity of our
currently available computational power. From our experiment, it takes around 300 CPU
hours to compute the confidence radius database for the E. coli genome under t = 5 and
P = 60 on a multi-cpu, mechanical hard drive system. However, it is worth noting that
as a theoretical study, the database construction program is not fully optimized for speed
and is currently I/O-bound due to frequently reading and writing neighbor information into
neighbor arrays of nodes in Trie.

While there are many nodes (long suffixes) with fewer neighbors, given that Algorithm 1
traverses Trie in a top-down manner, it is unavoidable to track the massive number of
neighbors for short suffixes. This is an interesting algorithmic problem for future work.

CAS may be applied to situations other than NGS read mapping. For example, the idea
of context-aware seeds may improve long-read mapping. Long reads suffer from high error
rates [13, 3, 4]. Finding error-free seeds for long reads is very challenging [5]. CAS can serve
as a metric measuring the likelihood of seeds having errors: if there exists a seed, s, with
high confidence radius, it is highly likely that s is free of errors. The likelihood of obtaining
a reference-matching seed through many accidental errors is small.

Finally, CAS can be applied to develop probes for DNA and RNA identification. When
designing probe sequences, it is important to make certain that the target sequence is unique
in the genome [12, 2, 10]. It prevents probes from accidentally annealing to a similar sequences.
CAS checks the existence of similar sequences by consulting the confidence radius database.

7 Conclusion

In this work, we proposed a new seeding framework, context-aware seeds (CAS). CAS extends
the pigeonhole principle and guarantees finding all valid mappings with fewer seeds. CAS
associates each seed s with a confidence radius cs, defined as a lower bound of edit distances
towards nontrivial neighbors of s. We proved that the CAS can find all valid mappings of
any read R, as long as its seeds s satisfy

∑
cs ≥ t.

We proposed a linear-time algorithm for constructing the confidence radius database.
It computes the confidence radii of seeds by traversing the suffix trie of a reference. We
experimented CAS on E. coli genome and compared it against the state-of-the-art pigeonhole-
principle-based seeding scheme, OSS, and showed that CAS outperforms OSS by reducing
the sum of seed frequencies by up to 20.3%.

This paper focuses on the theoretical aspects of CAS, especially how it extends the
pigeonhole principle into using fewer seeds. Composing a practical solution of Algorithm 1
on larger genomes is an interesting-yet-separate problem for future work.

Financial disclosure. C.K. is co-founder of Ocean Genomics, Inc.

References
1 Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,

Philippe Batut, Mark Chaisson, and Thomas R Gingeras. STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29(1):15–21, 2013.

2 Eric Dugat-Bony, Eric Peyretaillade, Nicolas Parisot, Corinne Biderre-Petit, Faouzi Jaziri,
David Hill, Sébastien Rimour, and Pierre Peyret. Detecting unknown sequences with DNA
microarrays: explorative probe design strategies. Environmental Microbiology, 14(2):356–371,
2012.



H. Xin, M. Shao, and C. Kingsford 15:13

3 Ehsan Haghshenas, Faraz Hach, S Cenk Sahinalp, and Cedric Chauve. Colormap: correcting
long reads by mapping short reads. Bioinformatics, 32(17):i545–i551, 2016.

4 Ehsan Haghshenas, S Cenk Sahinalp, and Faraz Hach. lordFAST: sensitive and fast alignment
search tool for long noisy read sequencing data. Bioinformatics, 35(1):20–27, 2018.

5 Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M Phillippy. A fast
approximate algorithm for mapping long reads to large reference databases. In International
Conference on Research in Computational Molecular Biology, pages 66–81. Springer, 2017.

6 Szymon M Kiełbasa, Raymond Wan, Kengo Sato, Paul Horton, and Martin C Frith. Adaptive
seeds tame genomic sequence comparison. Genome Research, 21(3):487–493, 2011.

7 Gad M Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. Journal
of Algorithms, 10(2):157–169, 1989.

8 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357, 2012.

9 Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv, 2013. arXiv:1303.3997.

10 Qingge Li, Guoyan Luan, Qiuping Guo, and Jixuan Liang. A new class of homogeneous nucleic
acid probes based on specific displacement hybridization. Nucleic Acids Research, 30(2):e5–e5,
2002.

11 Ngoc Hieu Tran and Xin Chen. AMAS: optimizing the partition and filtration of adaptive
seeds to speed up read mapping. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 13(4):623–633, 2016.

12 Juexiao Sherry Wang and David Yu Zhang. Simulation-guided DNA probe design for consist-
ently ultraspecific hybridization. Nature Chemistry, 7(7):545, 2015.

13 Jason L Weirather, Mariateresa de Cesare, Yunhao Wang, Paolo Piazza, Vittorio Sebastiano,
Xiu-Jie Wang, David Buck, and Kin Fai Au. Comprehensive comparison of Pacific Bios-
ciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.
F1000Research, 6, 2017.

14 Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Samihan Yedkar, Onur Mutlu, and Can
Alkan. Accelerating read mapping with FastHASH. BMC Genomics, 14(1):S13, 2013.

15 Hongyi Xin, Sunny Nahar, Richard Zhu, John Emmons, Gennady Pekhimenko, Carl Kingsford,
Can Alkan, and Onur Mutlu. Optimal seed solver: optimizing seed selection in read mapping.
Bioinformatics, 32(11):1632–1642, 2015.

WABI 2019

http://arxiv.org/abs/1303.3997

	Introduction
	Context-Aware Seeds
	Construction of Confidence Radius Database
	Construction of the Neighbor Database
	Computing the Confidence Radius Among Nontrivial Neighbors

	A Seeding Scheme with Context-Aware Seeds
	Experiments
	Discussion
	Conclusion

