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—— Abstract

Genome variation graphs are natural candidates to represent a pangenome collection. In such
graphs, common subsequences are encoded as vertices and the genomic variations are captured by
introducing additional labeled vertices and directed edges. Unlike a linear reference, a reference
graph allows a rich representation of the genomic diversities and avoids reference bias. We address
the fundamental problem of mapping reads to genome variation graphs. We give a novel mapping
algorithm V-MAP for efficient identification of small subgraph of the genome graph for optimal
gapped alignment of the read. V-MAP creates space efficient index using locality sensitive minimizer
signatures computed using a novel graph winnowing and graph embedding onto metric space for
fast and accurate mapping. Experiments involving graph constructed from the 1000 Genomes data
and using both real and simulated reads show that V-MAP is fast, memory efficient and can map
short reads, as well as PacBio/Nanopore long reads with high accuracy. V-MAP performance was
significantly better than the state-of-the-art, especially for long reads.
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1 Introduction

Conventional genome analysis relies primarily on a linear reference. A pangenome reference
collection, on the other hand, is a richer representation of the genomic diversity and suffer less
from reference bias [26]. Genome variation graphs are natural candidates for representing the
genomic variations in a pangenome collection [26, 28]. In genome variation graphs, common
subsequences are encoded as vertices and the genomic variations are captured by additional
labeled vertices and directed edges. Such pangenome based representations and analysis
are becoming increasingly popular also due to several ongoing large scale population-wide
sequencing projects worldwide. As a result, there is an increasing need for developing efficient
genome analysis pipelines that can work with graph genomes in place of linear genomes
[26, 28]. The non-linear graph structure poses additional challenges to even the fundamental
problems of sequence alignment and read mapping [28].

© Kavya Vaddadi, Rajgopal Srinivasan, and Naveen Sivadasan;
37 licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 7; pp. 7:1-7:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:kavya.vaddadi@tcs.com
mailto:rajgopal.srinivasan@tcs.com
mailto:naveen.sivadasan@tcs.com
https://doi.org/10.4230/LIPIcs.WABI.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2
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In this work, we consider the problem of efficiently mapping reads to genome variation
graphs. Performing gapped alignment of reads to the whole graph is prohibitively expensive
due to the large graph size and its complex structure. To achieve high throughput, the
mapping algorithms have to restrict the expensive gapped alignment to only small regions of
the reference graph where the read can align optimally. Several high throughput mapping
tools are available for linear references [20, 21, 22, 24, 4]. Alignment based mappers use
techniques such as Burrows-Wheeler Transforms [3, 9, 11, 23, 20, 17] to construct a search
index of the reference along with backtracking to compute target alignment. Seed-and-extend
approaches [2, 8, 5] use seeds or short read fragments to identify the target region and extend
this to compute the final gapped alignment. Hashing based approaches [14, 21, 22] create
hash signatures of the reference for fast identification of the target region. In particular, using
locality sensitive hash functions (LSH) such as minhash have gained popularity due to their
robustness to small read errors and gaps [14]. For instance, Mashmap [14] combines LSH with
sequence winnowing technique [30] to build space efficient index with probabilistic guarantees
on the identified target regions for long reads. Some of the tools that are optimized for short
reads are not well suited for long reads due to higher error rates and longer read length.
BWA-MEM [20], GraphMap [34], MashMap [14], Minimap2 [22] are a few of the mappers
that provide long read support.

Linear reference mappers can be extended to a pangenome by treating the pangenome as a
collection of linear sequences [25, 37, 12, 36]. One drawback of this approach is the increasing
space/time requirements with increasing number of sequences. A unified representation, on
the other hand, is significantly more compact and generalizes well to the space of possible
variations and recombinations. GenomeMapper([31], MuGI [7], RCSI [37], BWBBLE [12] are
some of the recent examples of mapping short reads to genome collection. They work based
on the seed-and-extend paradigm with restrictions on the read length and gaps.

Similar to the linear reference setting, for genome graphs, the mapping algorithm has
to restrict the costly alignment to small regions of the graph where the read is likely to
align optimally to achieve high throughput. The Variation Graph (VG) project provides a
state-of-the-art read mapping tool VG Mapper (VG) [10] on genome variation graphs. VG
can handle directed acyclic graphs as well as variation graphs with cycles. VG considers the
de Bruijn graph associated with the input graph and constructs an exact search index of the
de Bruijn graph using Burrows-Wheeler extensions (GCSA2) for graphs [33, 32]. The index is
used to identify hits on the graph based on the input read. These hits are then clustered and
the final alignment is performed on the subgraph corresponding to the largest cluster. The
BWT indexing of the graph is highly compute-intensive and requires an enormous amount of
RAM and disk space. Further, de Bruijn graph can introduce false positives as it can encode
paths that are not present in the graph [32]. Similarly, isolated hits in the graph produced
by the read hits can affect the overall performance. The adverse effect on mapping quality
and efficiency can be pronounced in the case of long reads.

1.1 Our Results

We present an algorithm V-MAP for efficient identification of subgraph of the genome
variation graph for optimal read alignment. In this work, we consider variation graphs that
are directed acyclic. The read can be aligned with affine gaps to the identified subgraph
using any of the existing graph-based gapped aligners [10, 16, 15, 18, 29]. V-MAP creates a
space efficient index of the graph G by computing locality sensitive minimizer signatures
of G using a novel graph winnowing technique and combining it with a graph embedding
onto a metric space. Graph winnowing creates a compact index which reduces the signature
look-ups and also isolated false positive hits. Additionally, graph embedding allows fast
subgraph identification based on signature hits.
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We performed mapping experiments using real and simulated short/long read datasets on
the graph constructed from the 1000 genomes variation data [1]. The variation data contained
about 85 million variations and the resulting variation graph consisted of about 3 x 108
vertices and 4 x 108 edges. The 1000 genomes variation graph is a directed acyclic graph.We
compared the performance of V-MAP with the state-of-the-art graph-based read mapper
VG [10] and the popular linear reference mappers BWA-MEM [20] and Minimap2 [22].

V-MAP index has ~20GB size and is constructed in just 2 hours using 16GB RAM,
which is significantly smaller than VG in terms of the time/resource requirements. In terms
of the final alignment score, V-MAP achieved higher alignment scores for a significantly
large fraction of long reads. The performance was also significantly better than the linear
mappers. Also, V-MAP accuracy in identifying the target region were 96.6% and 99% for
short and long reads respectively. V-MAP identifies the target subgraph in milliseconds,
even for long reads. In contrast to the whole graph size, the subgraph sizes were significantly
smaller and were proportional to the read lengths. This lead to a significant reduction in
time for gapped alignment time of reads to target subgraphs. We also provide analytical
bounds for the V-MAP index size and for the V-MAP path sampling approach while indexing
dense graph regions.

2 Preliminaries

2.1 Notations

Let G = (V, E,?) be a connected directed acyclic graph with vertex set V, edge set E and
vertex labels given by £(v). Edges in E are ordered pairs from V x V. Let 0% denote the
set of all sequences of one or more elements from an alphabet 0. Each member in o™ is
called a o-sequence. When o is the set of nucleotides, the o-sequences are the nucleotide
sequences. For a vertex v € V, its label £(v) € o is a o-sequence. For an ordered sequence
x = (x1,Z2,...,Tm), || = m denotes its length. The ith element of z is denoted by x[i].
For the sake of brevity, we also denote ¢(v) simply as v and use v[i] to denote £(v)[i:] when

there is no ambiguity.

A directed path p of length r in G is denoted by the ordered sequence (uq,...,u,) of
r vertices, where u; € V and (u;,u;+1) € E. We say that the path p starts at u; and
ends at u,.. The o-sequence corresponding to p is obtained by concatenating the labels
l(uy),...,L(u;) in the same order. For each vertex u in G, we associate a o-path given
by an ordered sequence of pairs of the form ({u,0),..., (u, |(u)| — 1)), where (u,i) denotes
the pair of vertex u and the offset i to its label £(u). We call each such vertex offset pair
a graph coordinate of G or coordinate in short. A o-path ¢ in G is given by a sequence
(<U17i>, ey <U1, |€(U1)| — 1>, <’U,2,0>, ey <UQ, |£(U2>| — 1>, ey <’U,T_1,O>7 ey <’U,T_17 |€(uT_1)| —
1), (uy,0),...,(ur, j)), where uy,...,u, is a path in G and 7 and j are offsets to £(u;) and
£(u,) respectively. Here, the o-path ¢ is composed of the suffix of u; starting at offset ¢
followed by the complete o-paths of vertices us, ..., u,_1 and finally by a prefix of u, ending
at offset j. Clearly, the o-path ¢ has a corresponding o-sequence say ¢’ of the same length
obtained by concatenating the corresponding label symbols along the o-path in the same
order. We say that G contains a o-sequence if it corresponds to some o-path in G. We also
say that G contains a o-path ¢ (or a o-sequence ¢') starting at the graph coordinate {(u, ).
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2.2 Sequence Winnowing

Given a o-sequence s, let K denote the set of distinct k-mers in s. We assume random
mapping of k-mers to distinct non-negative integers uniformly at random. For simplicity,
the integer associated with a k-mer x is also denoted by z. Let z(s) denote the minimizer
k-mer, which is the minimum valued k-mer, in K. We denote by h(s), the minimizer offset
in s. That is, h(s) is the offset of z(s) in s. If the minimizer occurs at multiple offsets in s
then h(s) is defined as the rightmost offset. The function z is locality sensitive in the sense
that two sequences r and s have the same minimizer with probability |K, N K|/|K, U K|,
which is the Jaccard similarity of the underlying sets K, and K [6].

The standard winnowing of a linear sequence s [30] extends h(s) to a function h(s)
that maps s to a subset of distinct minimizer offsets from {0, ...,|s| — 1} by considering
a moving window of some fixed size w < |s| over s starting at offsets 0,...,|s| — w. Let
50,81, - - - 8|s|—w denote the corresponding subsequences. More precisely, h.,(s) maps s to
the set of distinct offsets from the set

{i+h(s) | 0<i<|s|—w}

The function h,,(s) creates a fingerprint of s as a sequence of minimizers with a bounded
positional gap between consecutive minimizers. The minimizer sequence can be used for
sequence similarity. The expected size of the minimizer set is upper bound by 2|s|/|w]| [30].
In [14], it was shown empirically that the minimizers computed by h,, can be used to well
approximate the Jaccard similarity between sequences and this allows efficient alignment of
reads to linear reference databases with higher precision under certain read error models.

3 Indexing

In this section, we describe our approach for indexing G that allows efficient mapping of reads
to G. For this, we extend the notion of sequence winnowing to graph winnowing. We combine
the graph winnowing with a graph embedding to generate a space efficient index of G that
allows fast read mapping. We also discuss approaches to improve indexing performance.

3.1 Graph Winnowing

We extend the above winnowing of linear sequences to graph G by considering o-sequences
in G. Let p be a o-path in G where |p| > w and let p’ be its corresponding o-sequence.
We define

h(p) =plh(p))] and  hy(p) = {pli] | i€ hu()}

That is, for a o-path p, h(p) maps p to the graph coordinate corresponding to the
minimizer of p’ and h,, maps p to the set of graph coordinates corresponding to the minimizer
set obtained by winnowing p’.

Let S denote the set of all o-paths in G each of length > w. Let H = Upeshy,(p) denote
the set of all distinct minimizer coordinates in G obtained by winnowing all paths in S.
Similarly, let H,, = Upes, hw(p) where Sy, is the set of all o-paths in G each of length exactly
w. It is straightforward to see that H = H,, because the minimizers obtained by winnowing
any o-path in G are already present in H,,. In graph winnowing, we therefore compute H,,.
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3.2 Graph Embedding and Indexing Approach

In this section, we describe our indexing approach which combines the graph winnowing and
graph embedding to compute the graph index. Let N denote the set of natural numbers. We

consider an embedding A : V X N — Y of coordinates (v,i) in G to a target metric space Y.

Let dy(x1,z2) € RZ0 denote the distance between the embedding of coordinates z; and z2
in Y, given by A(x1) and A(z3) respectively.

Let S, denote the set of all o-paths in G each of length w. We do graph winnowing on
G and create the index as follows. Let p be a o-path in S, and let p’ be its corresponding
o-sequence. Consider the set of minimizer locations h,,(p’) in p’ obtained by winnowing of
p’. For each offset i in h,(p’), let k; denote the corresponding minimizer k-mer. The graph
coordinate of k; is given by p[i]. Let Tz be a key value table (dictionary) where for each
minimizer k-mer, the corresponding graph coordinate and its embedding are stored. That is,
T k] stores the tuple (p[i], A(p[i])). Since k-mer k; can be the minimizer for multiple paths
from S, T [k;] stores all such tuples corresponding to k;. The specific choice of embedding
and the final structure of the V-MAP graph index are discussed later.

Creating an index in the above manner that combines graph winnowing along with
graph embedding results in a space efficient index which at the same time supports fast
querying for read mapping. To identify regions in the graph where the read could optimally

align, winnowing is performed on the input read and its minimizers are looked up in Tg.

The hits from T are then clustered in the embedded space to identify maximum density
cluster. Though each read minimizer can occur at multiple graph coordinates, the minimizer
coordinates belonging to target subgraph tend to cluster in the embedded space. After
identifying this cluster, read minimizer hits in this cluster are back-projected to construct
the pruned subgraph where the input read is finally aligned. Different choices of embedding
allow fast identification of the cluster while also ensuring that the corresponding subgraph is
sufficiently pruned. For instance, using an embedding A : V x N — N?, the target cluster
can be identified by computing the maximum enclosing d-dimensional axis parallel box of
bounded side lengths in N¢, where the side length is related to the read length. In particular,
this can be done efficiently for small d [27]. If ¢ is the total number of minimizer elements
for an input query read, then the computation can be done in O(tlogt) time for d = 1 by
scanning the elements in the sorted order (in the embedded space). Similar bounds are also
known for d = 2 [27].

V-MAP specific Embedding and Index

V-MAP uses an embedding A : V x N — N defined as follows. Consider an auxiliary
undirected edge weighted graph G’ derived from G as follows. For each vertex v in G,
we include two vertices v; and vy in G’ which are connected by edge (vy,v2) with weight
|¢(v)] — 1. Also, for every edge (u,v) in G, an edge (ug,v1) with weight 1 is included in G'. If
u is the vertex in G with zero in-degree, we designate u; as the source verter in G’. In case
of multiple vertices with zero in-degree, a dummy source vertex is included that connects
to these vertices with zero weight edges. For a vertex v in G’, let sp(v) denote the shortest
path distance from the source vertex to v in G’. The embedding A({(v, %)) for a coordinate
(v,4) in G is defined with respect to the shortest path distances of the corresponding vertices
v; and vy in G’ as

A((v,4)) = min{sp(v1) + 4, sp(vz) + [¢(v)| —i -1}

7:5
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Under the above embedding, any two coordinates u and v with A(v) > A(u) satisfies that
A(v) — A(u) is upper bound by the length of the shortest o-path that connects v and v in G
if there is any such path. Thus, nearby minimizers tend to cluster under this embedding.

In summary, the V-MAP indexing winnows all the w length o-paths in G and the resulting
set of minimizer coordinates are embedded onto the integer line based on their shortest path
distances (length of o-paths ) from a designated source vertex coordinate in an undirected
version of G. These embeddings are stored against the minimizer values.

The V-MAP index is a key/value table I which is a trimmed version of the table T
discussed earlier. For each minimizer k-mer r, only the embedding of its corresponding
coordinates in G are stored in Ig[r], whereas T [r| stores the respective coordinates along
with their embedding. That is,

Ig[r] = {\(z) | Tg[r] contains the coordinate x}

The set I[r] is a multiset in the sense that for each entry in Tz [r], a separate, not necessarily
distinct, element is present in Ig[r].

V-MAP index also contains an adjacency representation of G sorted by the vertex
embedding values. In this, the adjacency list for each vertex is also maintained as a sorted
skip list or sorted array. This allows efficient extraction of the subgraph identified by V-MAP
in order to compute the optimal gapped alignment of the read to the subgraph.

Dynamic Programming for Indexing

Enumerating all w length o-paths in G for graph winnowing could be computationally
expensive. Nevertheless, a dynamic programming heuristic can be used to winnow all w
length o-paths in G to reduce recomputations. The details are given in the Appendix
(Section A).

4  Minimizer Density

We provide bounds on the expected number of minimizers created by V-MAP for an
input graph G. Specifically, we suppose that the graph G is constructed from a collection
C ={s1,...,8n5} of N related random sequences each of length at most n. The sequences
in C are generated by a coupled random process, where, starting with a designated random
sequence, random independent mutations with probability p are introduced to generate each
of the remaining sequences in C. The generation model is inspired by the mutation model
approximations proposed in [35]. Due to the space limitation, the details are provided in
Appendix B. For k-mer length k, we show the following theorem.

» Theorem 1. The expected number of minimizers for G is upper bound by u?fk(l +p(N —
1))“* for winnow length w.

To prove the above theorem, we first show that the expected number of w length o-paths
in G is bounded from above by n (1 + p(N — 1))". Combining this with a charging argument,
which is an extension of [30] for linear random sequences to our graph setting, we obtain the
theorem. The proofs are provided in Appendix B.

It follows that similar to the linear reference case, in the worst case, the number of
minimizers on expectation, which is O(: exp(pwN)), grows as 1/w fraction of the expected
number of w length windows (o-paths ) in G.
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4.1 Random Sampling

Dense regions of the graph can lead to increased time and space requirements for V-MAP

indexing as the number of possible w length o-paths in these regions could be very large.

We use random sampling in such dense regions where, instead of considering all w length
paths, M such paths are randomly sampled (random walk with replacement) where M is a
parameter. This helps in reducing the time and space requirements and at the same time
maintain high mapping accuracy. V-MAP indexing switches to random sampling mode for a
coordinate when the total number of w length o-paths starting from that coordinate exceeds
M. Clearly, the final minimizer set of any graph under sampling is a subset of the minimizer
set without sampling.

We analyze the effect of random sampling on the minimizer set. In particular, missing
out minimizers due to sampling. Consider a k-mer x in a graph G. We analyze the expected
number of w length o-path samples in G that have x as a minimizer. Let U = {uq,...,u,}
be the set of coordinates in G such that x is reachable from them through a o-path of length
at most w. Let g be the probability that a random w length o-path sample from a randomly
chosen (uniformly at random) u € U contains . We suppose the worst case that the number
of w length o-paths from each u; € U exceeds M. In the analysis, we assume that the k-mers
in any w length o-path are distinct.

» Lemma 2. The expected number of path samples each having x as the minimizer > qM .

Proof. We observe that |U| > w — k + 1 as there are at least w — k + 1 coordinates lying
on some w length o-path leading to x in G. Consider any coordinate u; from U. Let oy
denote the probability that a random w length o-path sample from u; contains the k-mer
x. Then, the probability that a random sampled path contains z as minimizer is at least
a;/(w —k +1). The total number of path samples (with repetition) from all of uq,...,u, is
rM. In this sampling, let Z denote the the expected number of path samples where each of
them have x as a minimizer. We have Z > (wfi]\gﬂ) 22:1 «;. Recalling that r > w —k 4+ 1,
we obtain that Z > % S = qM <

It is straightforward to see that, under no sampling, the expected number of w length
o-paths in G each having x as minimizer is S/(w — k + 1), where S denote the total number
of w length o-paths from all the coordinates in U where each path contains the k-mer x.

From the above lemma, we infer that when a minimizer k-mer x of graph G is present in
a dense region with high ¢ value, then with a suitable sampling parameter M, sufficiently
many paths under sampling also have x as a minimizer on expectation. For example, Figure 1
shows part of a commonly occurring dense subgraph topology which is a cascade of variations.
The number of w length o-paths from a fixed graph coordinate grows by a multiplicative
factor depending on the number of cascade elements it can pass through. For the k-mer
x as shown in the subgraph, there are several w length o-paths from every coordinate in
U. However, a random path sample from any coordinate in U will pass through the vertex
containing z with probability 1/3, implying a higher ¢ value.

// N

CATTGT...TGT N\ r\\

(A) (G )

—> " ATAGC......GTCG J_' TcoasTce...wacaT ) w—»@u)—»w © CATTTOATT GATT S —>GaTha...  CCTGTGTTTT...ANTGGE
—
NaY
/ oem ) N kmerx
N\

Figure 1 Dense subgraph region with a cascade of variations.
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If there is prior information available about the likelihood of certain paths over others in a
graph region, such as the underlying haplotype information, edge weights can be introduced
to capture non-uniform transition probabilities between vertices. Graph winnowing is easily
generalizable to this setting resulting in biased path sampling for winnowing. Such a haplotype
aware sampling can strike a balance between using haplotype prior and allowing newer paths
that could arise due to recombinations. Further generalizations that allow a k-step Markov
walk for path sampling can tilt the balance further in favour of haplotype prior.

5 Read Mapping

We describe the V-MAP read mapping algorithm in this section. For an input read s, the
mapper aims to efficiently find a small subgraph G’ of the graph G where s can align optimally.
That is, G’ has a path where s aligns optimally among all paths in G. The alignment of s to
G’ with affine gaps could be performed with any of the existing graph-based gapped aligners
for sequences [10, 16, 15, 18, 29].

The minimizer set R of the input read s is first computed by applying the winnow hashing
hy on s. For each distinct minimizer x € R, the entries stored at I[z] in the index I are
included in the hit set H. We recall that I[z] contains the embedding in N of all coordinates
in G where z is a minimizer. Set I[z] is assumed to be empty if x is not present as a
minimizer in G. The final union H is a multiset. We now identify a maximum cardinality
enclosing interval in N of fixed width D that covers the maximum number of elements in
H. This can be done easily in O(|H|log |H|) time by sorting H followed by a linear scan.
The interval width D is fixed to be the length ¢ of the read s. Let h; and h, be the left end
and right end respectively of the final enclosing interval. The final graph region identified
by V-MAP is given by the subgraph induced by the vertices whose embedding lies in the
interval [h; — €/2, h, 4+ £/2]. The vertex set and the adjacency information of each vertex are
stored in a sorted fashion based on the embedding of the start and the end coordinates of
the vertices. This allows efficient extraction of the subgraph identified by V-MAP. Optimal
gapped alignment of the read to the extracted subgraph can be computed using any graph
alignment algorithm.

Reverse Complement

Reads from reverse complement strand can be handled using strand prediction in a straightfor-
ward way using techniques in [14] with a marginal increase in the index size. While indexing,
each k-mer is transformed to its canonical form (either itself or its reverse complement
based on their lexicographic ordering). For a minimizer k-mer z stored in the index Ig,
we store an additional bit along with each of the coordinate embeddings stored in the set
I¢[x]. The canonical bit records whether x appeared in the canonical form or not at that
coordinate. While mapping, the canonical bit is computed for the read minimizers as well.
Strand prediction is done based on the consensus of the canonical bits of the minimizers in
the final cluster and bits of the read minimizers.

6 Experimental Results

We performed experiments to measure mapping accuracy and run time performance of
V-MAP. We compared V-MAP with the state-of-the-art VG mapper [10] and popular linear
reference mappers BWA-MEM [20] and Minimap?2 [22].
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Genome Variation Graph Construction

Human reference genome GRCh37 and the 1000 Genomes [1] variation data (phase 3) were
used to construct a Human genome graph for our experiments. The variation data consisted
of about 85 million variations. The VG graph construction tool [10] was used with default
parameter setting to construct the reference graph. The reference graph consisted of about
3.2 x 108 vertices and 4.1 x 10® edges in total.

Read Set

The Illumina, PacBio and ONT real reads of AshkenazimTrio HG002 _NA24385 son made
available by Genome In A Bottle (GIAB) Consortium [39] were used. Around 10* reads of
average length 117 formed the Illumina readset. For PacBio, ~ 10* reads of length 5k or
above were used. For ONT, about 8000 reads were available in the GIAB dataset with read
length 1000 or above.

Simulated reads were also used in the experiments. Reads were generated using read
simulation tools from sequences arising from random paths in the reference graph. The
ART tool [13] was used to generate Illumina short reads of lengths in the range 100 to 200
with its default error profile. PacBio and Nanopore (ONT) long reads of average lengths
of 5k, 10k and 50k were generated using ReadSim tool [19]. In total, 144 x 105 short reads

and 3.8 x 10° long reads were generated. All reads in the read set are from forward strand.

Strand prediction aspect is not considered in this work.

Implementation Details

V-MAP was implemented in C++. The index construction and mapping were performed on
200 GB RAM Linux machine with 48 threads and with 6TB HDD. Choices for the V-MAP
parameters w and k were determined by a grid search based on the mapping accuracy on
a separate set of random reads. Values w = 35,k = 20 were chosen for short reads and
w = 40, k = 20 were chosen for long reads (PacBio/ONT). The random sampling parameter
M for indexing was set to 30, 000.

6.1 Mapping Accuracy

The final alignment score achieved by the candidate methods V-MAP, VG, BWA-MEM, and
Minimap2 were measured for the real read set. In V-MAP, as in VG, the GSSW graph-based

aligner [38, 10] was used to compute the gapped alignment score to the identified subgraph.

The default alignment score parameters of BWA-MEM for gap open, gap extension, match,
and mismatch were used across all tools. Table 2 gives the percentage of reads where each
tool was a top scorer. That is, its score is no less than the score of other tools. The best
value among BWA-MEM and Minimap2 is shown under the linear mapper column. The
low percentage for linear mapper especially for long reads can be attributed to the fact that
unlike the graph-based mappers, linear mappers have to work with only the linear reference
and without any variant information. The graph mappers like V-MAP, on the other hand,
achieve higher alignment score by working on a unified space of reference and variations
encoded as a graph. The purpose of including the linear mappers in the comparison is only
to bring out the advantage of using a pangenome reference over a linear reference and not to
highlight the performance of any specific linear mapper. In Table 1, we show the average
percentage gain in the alignment score achieved respectively by V-MAP and VG for reads
where they were top scorers. As seen in Table 1, the percentage gain is pronounced in the
case of long reads.
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Table 1 Average percentage gain in the alignment score for V-MAP and VG.

% Reads Illumina PacBio ONT
V-MAP VG Linear V-MAP VG Linear V-MAP VG Linear
mapper mapper mapper
Top scorer 95.28 99.79 87.98 81.15 52.01 3.2 80.73 62.43 3.43

Table 2 Comparison of the candidate methods based on the final alignment scores achieved. The
best performance among BWA-MEM and Minimap?2 is shown under linear mapper.

Illumina PacBio ONT
V-MAP | VG | V-MAP | VG | V-MAP | VG
0.0004 0.05 5.85 3.29 7.06 6.42

Using simulated reads, we calculated the mapping accuracy measured as the fraction of
reads for which the subgraph identified by the mapper contained the path in the graph from
which the read was generated. Table 3 shows the mapping accuracy of V-MAP and VG.
V-MAP exhibits consistently superior performance for long reads with a much smaller index.
In addition to higher accuracy, V-MAP also achieved considerably higher final alignment
score. The average score difference was in excess of 680 for reads in the 5k to 10k range and
3590 for 10k to 50k range and 18300 for above 50k length reads. For short reads, the V-MAP
alignment score was less than VG by 2 on average. In a related experiment of mapping
24k simulated reads of length 10k each from the graph with no sequencing errors, V-MAP
achieved full alignment score for all but 2 reads in comparison to 96.8% of the reads for VG.

Table 3 Mapping accuracies for different read classes.

Read class | 100 | 150 | 200 | Pac 5k | Pac 10k | Pac 50k | ONT 5k | ONT 10k | ONT 50k

V-MAP 95.22 | 96.21 | 98.49 | 96.90 99.04 99.63 99.47 99.57 99.95
VG 99.67 | 99.80 | 99.98 | 71.62 70.48 71.27 94.28 94.13 93.93

6.2 Mapping Performance

Table 4 gives the indexing performance, i.e., index construction time, index size, intermediate
storage and RAM requirements for V-MAP and VG.

Table 5 gives the average read mapping time (single thread) for V-MAP and VG for
short and long reads. The map time is the subgraph identification time and align time is
the time taken for gapped alignment of the read to the identified subgraph using the GSSW
graph-based aligner [38, 10]. The difference in alignment time between the two tools can
be attributed to the smaller subgraphs identified by V-MAP for the alignment phase as
shown in Figure 2.

Figure 2 shows the average size statistics of identified subgraphs for short and long reads.
The figure shows the number of edges, vertices and the total number of nucleotides in the
vertex label sequences of the subgraph. The reduced subgraphs sizes significantly improve
the gapped alignment time. Also, improved algorithms and implementations for gapped
alignment on graphs can further improve the overall time.



K. Vaddadi, R. Srinivasan, and N. Sivadasan

Table 4 Index construction and Mapping performance.

Index Parameters V-MAP VG
Construction Time 2 hours 36 hours
Intermediate storage 0 ~ 2 TB
Index Size 21 GB (short reads) | 80 GB
18 GB (long reads)

RAM 16 GB 200 GB

# indexing threads 4 32
Mapping RAM 27 GB 75 GB

Table 5 Map and align timings. Map time is the subgraph identification time. Align time is the

time to perform gapped alignment of the read to subgraph using GSSW.

Read length Map time (ms) Align time (ms) Total time (ms)
V-MAP | VG | V-MAP | VG V-MAP | VG
100 0.45 4.56 1.88 33 2.33 37.56
150 0.67 12.02 2.94 94.85 3.61 106.87
200 1.24 37.5 3.91 153.15 5.15 190.65
5k 5.84 144.16 540.28 4300.22 546.12 4444.39
10k 11.35 292.22 1831.34 9010.63 1842.69 9302.85
50k 63.63 1223.1 | 39,584.69 | 48,652.42 | 39,648.13 | 49,875.5
45000 ‘ ‘ 60000 ‘ ‘ 400000 ‘ ‘
V-MAP —— V-MAP —— V-MAP ——
40000 FTNG S ] so000 | VG - ><- 1 350000 = VG - -X -
35000 |- I . 300000 |- A
g 30000 - I 3 40000 |- 1 g 2s0000 | S
=3 — — D > 1
g 25000 ) = 30000 |- R g 200000 |- -
E 20000 |- o g . = )
15000 - S 20000 |- S * 150000 - . 1
L ' 3 : - 100000 )
10000 X 10000 1 x /] %
5000 - 3 ° N x 50000 [~ o - .
0 = 0 ¥ 0 >¥=
Short 5k 10k 50k Short 5k 10k 50k Short 5k 10k 50k

Read lengths

Read lengths Read lengths

Figure 2 Average size statistics of identified subgraphs for short and long reads. The figure shows
the number of edges, number of vertices and the total number of nucleotides in the vertex label
sequences of the subgraph.

7 Discussion

We present V-MAP for efficient identification of a subgraph of the input genome variation
graph for optimal read alignment. Our tool exhibited significantly improved performance
in comparison to the state-of-the-art. Improved algorithms and implementations of gapped
aligners for graphs can further improve the overall performance significantly. Also, better
graph embedding, say in N2 or other metric spaces including trees or other simpler graphs,
could result in finer graph pruning and hence faster alignment.
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A Dynamic Programming for Indexing

Enumerating all w length o-paths in G for graph winnowing could be computationally
expensive. Nevertheless, a dynamic programming approach can be used to winnow all
w length o-paths in G to avoid recomputations. It is based on the observation that the
minimizer set H; of the set of all ¢ length paths, each starting at a given graph coordinate
(u, 1), can be obtained recursively from the minimizer set H;_1 of the set of all ¢ — 1 length
paths in G having the property that for each of these paths, its start coordinate, say (v, j),
occurs immediately after (u,?) in some o-path in G. As a consequence, each of these t — 1
length o-path p is extended to a t length o-path p™ by appending (u,i) to its beginning.
Winnowing of p* is easily done by finding the minimum of the already computed minimizer
of p and the leftmost k-mer of pT. The details of the DP formulation are given below.

Let P,(v,j,s) denote the set of all ¢ length o-paths in G each starting at the graph
coordinate (v, j) and having the k — 1 length sequence s as the prefix of its corresponding
o-sequence. For a o-path p € Pi(v,j, s), associate a triplet (u,i,r) corresponding to the
minimizer of p where (u,i) = h(p) denotes the minimizer coordinate and r denotes the
minimizer k-mer. Corresponding to P;(v, j, s), let

H:(v,j,s) = {(u,1,r) associated with a p € P:(v,j,s)}

We use Hy(v, j, s) to also denote an underlying max heap of its triplets where the ordering
is based on the k-mer values. In the following, we define a recurrence on Hy 1 (v, j, s) where s
is a k — 1 length prefix of some o-sequence starting at (v, j). Clearly £(v)[j] = s[0]. Let s’ be
the k — 2 length suffix of s. Define the set R of successor coordinates of the coordinate (v, j)
as follows. If j < |v]| — 1 then R = {{v,j + 1)}. If j = |v| — 1 then R = {{u,0) | u € N,(v)},
where N, (v), called the out-neighbors of v, denote the set of all vertices that have directed
edges from v.

We now compute Hiiq1(v,j,s), where |s| = k — 1, recursively from the H; sets of the
successor coordinates of (v, j) in R. For this, we define H; which is a set of non-empty sets
Hyi(u,i,z), where |z] =k —1, as

H: = {H(u,i,2) | (u,i) € R and s is prefix of z}

For each Hy(u,i,z) € Hy, let 2T denote the k-mer obtained by concatenating s[0] followed
by z. We modify the max heap Hy(u, 1, 2) to obtain a modified max heap (and the underlying
triplet set) H,(u, 1, z) by removing all triplets from Hy(u,, z) whose k-mer values are greater
than or equal to zT. Also, insert the triplet (v, j,2") in H,(u,1, z) if at least one triplet was
removed from Hy(u,i,z). Finally, the required Hy11(v,J, s) is obtained as

Hiy1(v,4,8) = U Ht/(u’ivz)
Hy(u,i,z)EHy

The final set of triplets L to be indexed is given by the union of all non-empty H,, (v, j, s) sets
computed as above. For each triplet (u,¢,r) in L, A((u, 7)) is included in the index set I[r].

The above recurrence is defined for ¢ > k. For the base case t = k, we construct Hy(v, j, s)
for each coordinate (v, j) in G by including all triplets (v, j,7) in Hy(v,j, s) where s is the
k — 1 length prefix of the k-mer r occurring at (v, j) in G.

In the above dynamic programming based minimizer computation, after round t of the
dynamic programming updation, for each graph coordinate (v, j) and for each k — 1 length
string (o-sequence ) s starting from the coordinate (v,j), we maintain a separate heap
Hi(v,7,s). In the next round ¢t + 1, the new set Hyyq(u,i,z2), for a k — 1 length string z
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starting at coordinate (u, ), is computed from all sets Hy(v, 7, s) such that the k — 2 length
suffix of s and k — 2 prefix of z are identical. Coordinates (u, %) and (v, j) should additionally
satisfy that either (a) u = v;j =i+ 1 or that (b) j = 0;i = |€(u)| — 1; (u,v) is a directed
edge in G. In this case, s and z give rise to a new k-mer r which is z[0] followed by the string
s. Now, Hiy1(u,i,2) is the union of all minimizer entries of such Hy(v, j, s) excluding the
minimizers having value greater than r. A new entry for r is also included in Hyyq(u,i,2) if
at least one minimizer was excluded in the union.

From the complexity perspective, we see that after round ¢, the number of H; sets (heaps)
that are present is at most the total number of k — 1 length o-paths in G. This is because,
a separate H;(v,7j,s) is maintained for each k — 1 length string starting from the graph
coordinate (v, 7). For a minimizer coordinate triplet (y, j, z), let B(y, j,z) denote the total
number of ¢ length o-paths in G each having x at coordinate (y, j) as its minimizer. Then,
it is straightforward to verify that the minimizer triplet (y, j, 2) can be present in at most
By, j,x) different Hy sets. Let set B denote the set of all distinct minimizer triplets obtained
by winnowing ¢ length o-paths in G. Then, the sum total of the sizes of all H; sets is given
by >,cp B(r). This in the worst case is upper bound as ) |H;| < |B| x d where d is the
maximum number of ¢ length o-paths in G such that each give rise to the same minimizer
triplet. That is, d = max,ecp B(r). In other words, the blowup in space after round ¢t is by a
factor d in the worst case.

From the algorithm description, we can see that, in round ¢+ 1, each H¢(v, j,s) with j > 0
is scanned exactly once for obtaining a new Hy;q set. This is because, only Hyyq(v,j —1,-)
requires Hy(v,j,s). However, set Hy(v,0,s) entries are scanned as many times as the in-
degree of vertex v in G. Hence, the total number of triplet scanning performed in round
t+1 is upper bound by 3" [Hy| + (3, ey | Hi(v,0,+)| x in-degree (v)), which can be crudely
upper bound as O(dm|B|), where m is the total number of edges in G.

In the subsequent section, we discuss random path sampling approach for improving
the indexing performance in the dense graph regions when the winnowing is performed by
scanning w length paths in G. This dynamic programming heuristic does not incorporate the
path sampling strategy. The DP approach can be useful for winnowing non-dense graphs.

B  Minimizer Density

We provide bounds on the expected number of minimizers created by V-MAP for an input
graph G corresponding to a collection of random related sequences. Specifically, we suppose
that the graph G is constructed from a collection C = {s1,...,sny} of N random related
sequences each of length at most n. The sequences in C are generated by a coupled random
process described in the following, where, starting with a designated random sequence, random
independent mutations with probability p are introduced to generate each of the remaining
sequences in C. This generation model is inspired by the mutation model approximations
proposed in [35]. Sequence sp, also denoted as s, is designated as the basis sequence
which is a random sequence where the nucleotide at each location is chosen independently
and uniformly at random. Each remaining sequence s for k € {2,..., N} is generated
independently as gapped variant of the basis sequence s; using the following coupled process.
The basis sequence s} is scanned sequentially from left to right for n steps. At each step ¢,
the nucleotide present in s} is appended to s; independently with probability 1 — p for some
fixed p. With probability p, a gap introduced in s, either as a deletion from s} (i.e., skip the
nucleotide in s7), a random nucleotide substitution in s or a nucleotide insertion in s. In
the case of an insertion, the scan location in sj does not change. It is straightforward to
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verify that any given sequence from C is a random sequence where the nucleotide at each
location is chosen independently and uniformly at random. However, any two sequences from
C are not independent of each other. If the mutation and gap probabilities are unequal, let p
denote the maximum of them in the following analysis.

We now consider a genome variation graph G constructed from C. The above generation
process gives a natural way to construct G. The complete basis sequence s is initially
represented as a single labeled vertex. Each of the remaining coupled sequence sy for k > 2
is incorporated by introducing alternative paths in G at the gap regions with respect to sj.
Specifically, a contiguous gap between s; and s is handled by introducing a new vertex u
that encodes the subsequence of s in this gap region. The new vertex w is connected as a
bridge vertex parallel to the corresponding gap subsequence of s7 in G. For this, a vertex
split is done at the begin and end locations of this gap in the respective vertices of the path
that encodes the gap subsequence of sj. After the split, there is a path in G that exactly
encodes the gap subsequence of s and the new vertex u is connected as a bridge parallel to
this path. If the gap region consists of only deletions along sg, then the gap subsequence of
sk is empty. In this case, just a bridge edge is introduced across the gap sequence path of sj.

In each step, while generating a new sequence, a gap occurs with probability p and each
gap introduces a constant number of additional edges and vertices in G. Hence the expected
number of vertices and edges in G is O(npN). In order to bound the minimizer cardinality,
first, we bound the expected number of w length o-paths in G.

w

» Lemma 3. The expected number of w length o-paths is upper bound by n (1 + p(N — 1))

Proof. For the ease of exposition, we assume without loss of generality that each vertex of
G has only single nucleotide label. If a vertex has a longer label, it can be replaced by a
corresponding path of single nucleotide vertices. Let the vertices along the s; path in G be
U ={uy,...,u,} and let d; be the out-degree of u;. Let X denote the set of all w length
o-paths in G. Let X; for i € {1,...,n} denote the subset of X where each o-path x in it has
u; at location 2[m — 2]. Let R denote the remaining paths from X not included in any of X;.
Consider the m — 1 length prefix z[0,- - - ,m — 2] of each o-path x from an X;. Let n; be the
number of distinct such prefixes from X;. Clearly, | X| < Y n;d; + |R|. We observe that n;
is independent of d; and that E(d;) is approximated by 1 + E(Binomial(N — 1,p)) because
each of ss,..., sy can introduce an outgoing edge at u; with probability p. Therefore, we
obtain E(|X|) < (14+p(N —1))E(>_n; + |R|). Clearly Y n; + |R| is no more than the
number of w — 1 length o-paths in G. Here we observe that w — 1 length prefix of each path
x from R is distinct as the out-degree of a non U vertex (vertex at x[m — 2]) is at most 1.
Repeating the above argument and using the observation that the expected number of 1
length o-paths (i.e., total nucleotides) in G is at most n(1 4+ p(N — 1)), we finally obtain
E(X) <n(l+4+p(N-1))*. <

The following Theorem provides a bound on the expected number of minimizers resulting
from winnowing of G.

» Theorem 4. The expected number of minimizers for G is upper bound by %(1 +p(N —
1))®*t for winnow length w.

Proof. We extend the charging argument in [30] for linear random sequences to our graph
setting. In [30], for a linear sequence s, a w sized window W; at coordinate ¢ is charged, i.e.,
contributes a new minimizer k-mer say at s[j], if W; is the leftmost among the windows that
overlap the k-mer at s[j] and the k-mer is a minimizer in them. It was shown in [30] that this
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corresponds to the event that in the w + 1 sized window W which is the union of W;_; and
W;, the minimizer of W is given by either it’s first k-mer or its last k-mer. The probability
of this to happen in a random sequence is 2/(w + 1). The total number of minimizers after
winnowing an n length sequence s is then given by the total number of w length windows
that are charged, which is 2n/(w + 1).

Consider any w + 1 length o-path in G. Let ¢’ denote the w length suffix window of ¢
and let  and 2’ denote the (minimizer) k-mers at locations h(c) and h(c’) respectively. We
charge window ¢’ if and only if z is either the first or the last k-mer in c. It is straightforward

to verify that each minimizer in G is charged to at least one w length o-path window in G.

In the linear case, a minimizer is charged to exactly one window whereas the same minimizer
could be charged to multiple windows in the case of graphs. This can only overestimate the
desired count. Recalling the generation process of G, we observe that any given w + 1 length
o-path ¢ in G encodes a random o-sequence. Hence, its w length suffix ¢’ is charged with
probability 2/(w — k 4 2). The graph G has an underlying topology from  which denote
the space of all graph topologies that can arise from the graph creation process described
earlier. Each topology in 2 has a unique encoding where each vertex u has an associated
distinct triplet id of the form (i, j,1) denoting that u is uniquely associated with the I length
subsequence of s; € C starting from offset j. For a given topology, the specific vertex labels
are still random. It is clear from the generation process that for any fixed topology T, the
o-sequence for any given o-path in T is a random sequence. Hence, if np denote the number
of w + 1 length o-paths for a topology T', a w + 1 length o-path is charged in a graph with
topology T with probability 2/(w — k + 2). Let D denote the number of charged k + 1
length o-sequence in G. The total number of minimizers is upper bound by D. We have
ED|T)=2 ny/(w—k+2). Hence, we obtain

E(D)=Y_E(D|T)Px(T)
TeQ
E w—#]H—Q Z nr PI'(T) S w2ilk(1 +p(N o 1))w+1

TeQ

where the last inequality follows by applying Lemma 3 as ), nr Pr(T') is the expected
number of w + 1 length o-paths . <
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