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KAJIAN  KERENTANAN  DAN  PENGHASILAN  SITOKIN  DALAM VIRUS  
DENGGI  JENIS 2 (DENV2) – MONOSIT  TERKESAN  DARIPADA  INDIVIDU  
YANG  KEKURANGAN GLUKOSA-6-FOSFAT  DEHIDROGENASE (G6PD). 
 
 

ABSTRAK 
 
 
Virus denggi adalah endemik di Semenanjung Malaysia. Manifestasi klinikal berubah-

ubah bergantung ke tempoh inkubasi virus serta tahap keimunan pesakit. Kekurangan 

Glukosa-6-fosfat dehidrogenase (G6PD) adalah prevalen di Malaysia, yang 

keberlakuannya adalah 5.2%. Dicatatkan bahawa individu kekurangan G6PD menderita 

lebih teruk jika dijangkiti infeksi denggi. Kajian ini bertujuan mengkaji kerentanan / 

suseptibiliti monosit terhadap infeksi DENV2, respons oksidatif, dan penghasilan 

sitokin dalam monosit individu yang mengalami kekurangan G6PD. Sampel darah 

dikumpulkan daripada penderma setelah mendapat kelulusan daripada Jawatankuasa 

Etika Penyelidikan USM dan Kementerian Kesihatan. Ujian G6PD dijalankan dengan 

keadah titik pendarflour (florescent spot method) diikuti dengan asai kuantitatif. 

Monosit daripada individu kekurangan G6PD dan individu yang sihat (G6PD normal) 

diasingkan dan diberikan DENV2. Kepelbagaian infeksi (multiplicity of infection, 

MOI) 0.1 dan kadar infeksi intrasel diukuir dengan sitometri aliran dan ekstrasel 

menggunakan asai plak. Tahap spesies oksidatif, anion superoksida (O2•-), nitrik oksida 

(NO), stres oksidatif dan sitokin ditentukan dan dibandingkan dengan kawalan. 

Keputusan menunjukkan bahawa kerentanan yang tinggi daripada monosit kekurangan 

G6PD terhadap DENV2 dan tahap NO dan O2•-,   secara signifikannya rendah dalam 

monosit kekurangan G6PD dibandingkan dengan kawalan-sihat.  Pada keseluruhan, 

stres oksidatif pada individu kekurangan G6PD secara signifikannya amat tinggi 

dibandingkan dengan kawalan-sihat. Kajian korelasi di antara replikasi viral dan 
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keadaan oksidatif monosit mengesahkan dapatan  ini. Di samping itu, pro-inflamatori 

sitokin IL-6, IL-8, IL-12, TNF-α dan MCP-1 secara signifikannya meningkat  (P<0.05) 

dan mencapai puncak pada 48 jam dalam monosit kekurangan G6PD dibandingkan 

dengan individu sihat. Secara kontras, anti-inflamatori sitokin IL-10 secara signifikan 

lebih tinggi (P<0.05) dengan puncak maksimum pada 48 jam dan seterusnya menjadi 

semakin berkurangan. IFN-α secara signifikan berkurangan dalam monosit kekurangan 

G6PD dibandingkan dengan G6PD-normal (p<0.05). Sebagai tambahan, kajian korelasi 

di antara replikasi viral dan penghasilan sitokin menyokong hipotesis bahawa 

kekurangan G6PD, beban DENV2 yang lebih tinggi, dan stres oksidatif dalam sel boleh 

menyumbang terhadap peningkatan penghasilan sitokin inflamatori. Keputusan kajian 

menunjukkan bahawa individu yang kekurangan G6PD didapati lebih rentan terhadap 

infeksi DENV2 dibandingkan dengan individu sihat. Dengan kata lain, penghasilan 

spesies oksigen reaktif (reactive oxygen species, ROS) berkurangan dalam individu 

kekurangan G6PD. Ini menjelaskan bahawa infeksi denggi  tinggi di kawasan yang 

mana kekurangan G6PD adalah prevalen. Beban viral yang tinggi, stres oksidatif yang 

semakin meningkat, dan penghasilan sitokin yang diaruh adalah patogenesis DHF yang 

amat pemting. 
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THE STUDY OF SUSCEPTIBILITY AND CYTOKINE PRODUCTION IN 

DENGUE VIRUS TYPE 2 (DENV2)-INFECTED MONOCYTES OF 

INDIVIDUALS WITH GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) 

DEFICIENCY 

 
 
 
 

ABSTRACT 
 
 

Dengue virus is endemic in peninsular Malaysia. The clinical manifestations 

vary depending on the incubation period of the virus as well as the immunity of the 

patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in 

Malaysia, where the incidence is 5.2%. It has been noted that G6PD-deficient 

individuals suffer from more severe clinical presentation of dengue infection. The aim 

of this study is to investigate the susceptibility of monocytes to DENV2 infection, the 

oxidative responses, and cytokine production in monocytes from G6PD-deficient 

individuals. Blood samples were collected from donors after being approved by the 

Research Ethical Committees of USM and Ministry of Health. Screening for G6PD was 

performed using the florescent spot method followed by the quantitative assay. 

Monocytes from G6PD-deficient and healthy individuals (G6PD-normal) were isolated 

and infected with DENV2, whereby multiplicity of infection (MOI) 0.1 and intracellular 

infection rate were measured by flow cytometry and extracellular by plaque assay. 

Levels of oxidative species, superoxide anions (O2•-), nitric oxide (NO), oxidative stress 

and cytokines were determined and compared with normal controls. The findings 

indicate that early and high susceptibility of monocytes with G6PD-deficiency to 

DENV2 and levels of NO and O2•-,  were significantly lower in the monocytes of 
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individuals with G6PD-deficiency compared to the healthy controls. Furthermore, the 

overall oxidative stress in individuals with G6PD-deficiency was significantly higher 

when compared to the healthy controls. Correlation studies between viral replication 

and monocyte oxidative state further confirmed these findings. Moreover, pro-

inflammatory cytokines IL-6, IL-8, IL-12, TNF-α and MCP-1 were significantly 

increased (P<0.05) and peaked on 48 hours in infected G6PD-deficient monocytes 

compared to those obtained from healthy individuals. Anti-inflammatory cytokine IL-10 

was significantly higher (P<0.05) with maximum peak at 48 hours and decreased 

thereafter. IFN-α were significantly reduced in infected monocytes with G6PD-

deficiency compared to G6PD-normal (p<0.05). In addition, correlation studies between 

viral replication and cytokine production confirmed and thus supported the hypothesis 

that in G6PD-deficiency, the higher DENV2 load, and oxidative stress in the cell may 

contribute to enhance production of inflammatory cytokines. The results of the study 

demonstrated that individuals with G6PD-deficiency are more susceptible to DENV2 

infection compared to healthy individuals. The likely explanation for this is reduced 

production of reactive oxygen species (ROS) in individuals with G6PD deficiency. This 

may explain the reason for high prevalence of dengue infection in areas where G6PD 

deficiency is prevalent. High viral load, elevated oxidative stress and induce cytokines 

production are the most important of pathogenesis of DHF.  
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CHAPTER ONE 

 

1.0   Introduction 

Dengue infection disease is a leading cause of morbidity and mortality in the 

tropics and subtropics, and can lead to extensive outbreaks in urban areas (Dammert et 

al., 2009). The disease is a global problem, given that as many as 100 million people are 

infected, of whom 25,000 die annually (Gubler & Meltzer, 1999). Dengue virus (DENV) 

is primarily transmitted to humans through the bite of infected Aedes mosquitoes, 

particularly Aedes aegypti (Green & Rothman, 2006). Dengue infection is caused by 

DENV, a positive-strand RNA virus of the family Flaviviridae. Distinct variations or 

serotypes of the virus include DENV1, DENV2, DENV3, and DENV4. All four 

serotypes are capable of causing a full spectrum of the disease symptoms, with several 

degrees of severity (McBride & Bielefeldt-Ohmann, 2000).  

A significant percentage (~80%) of individuals infected with DENV show only 

mild symptoms, such as dengue fever (DF), whilst some develop a more severe dengue 

illness called dengue haemorrhage fever (DHF)/dengue shock syndrome (DSS) 

(Whitehorn & Farrar, 2010). DF is a self-limiting illness characterized by fever, 

headache, myalgia, arthralgia, nausea, and fatigue (Whitehorn & Farrar, 2010). The high 

viral load in DHF/DSS patients can be a life-threatening form of dengue infection 

characterized by a high fever, haemorrhage, vascular permeability, thrombocytopenia 

and shock (Rigau-Pérez et al., 1998). DHF/DSS is one of the leading causes of 
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paediatric hospitalization in Southeast Asia and has become endemic in all Pacific 

Countries. 

DENV2 has been involved in most Dengue outbreaks in the last 20 years and is 

associated with the severity of the disease‘s outcome (Méndez et al., 2012). Moreover, 

several epidemic reports from different studies indicated that a severity of dengue 

infection was associated with a higher titer DENV2 viremia than the other DENV 

serotypes (Balmaseda et al., 2006; Clyde et al., 2006). In addition, DENV2 has been 

identified as a cause of DHF/DSS, rather than other serotypes of DENVs (Hesse, 2007). 

In Malaysia, DENV2 emerged as the major serotype responsible for recent outbreaks of 

dengue infection (Chee & AbuBakar, 2003).  

Monocytes have been considered the major target cells of DENV replication by a 

number of authors (O'Sullivan & Killen, 1994; Chao et al., 2008). They act with the aim 

to regulate the mechanism of the immune system during infection, resulting in 

production of several cytokines/chemokines and chemical mediators. These cytokines 

include tumour necrosis factor alpha (TNF-α) (Hober et al., 1996), interferon alpha 

(IFN-α) (Kurane & Ennis, 1988), interleukin-6 (IL-6) (Chaturvedi et al., 1999), 

interleukin-8 (IL-8) (Chaturvedi et al., 2000; Bosch et al., 2002), interleukin-10 (IL-10), 

interleukin-12 (IL-12) (Green et al., 1999b), and monocyte chamoattarctic protein-1 

(MCP-1) (Yang et al., 1995), which play a key role in both innate and adaptive immune 

responses. Therefore, these cytokines play an important role in enhanced activation of 

other immune cells that may contribute to the DHF pathogenesis, and they have been 

implicated widely in conditions associated with vascular leakage, as well as hemorrhagic 

disorders in DHF/DSS patients (Martina et al., 2009). Therefore, inflammatory and anti-
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inflammatory cytokines play an important role in the pathogenesis of dengue virus 

infection and serum levels of certain cytokines are elevated during dengue infection 

(Martina et al., 2009). 

Dengue haemorrhagic fever is one of the serious causes of morbidity and 

mortality in children, in contrast to other infections in Southeast Asian countries 

(Dejnirattisai, 2004). DHF is now a leading cause of hospitalization and death among 

children (Dejnirattisai, 2004). However, it is not entirely clear why some individuals are 

more at risk of severe forms DHF/DSS of dengue infection while others are not. 

The pathogenesis of DENV remains unclear, due to the complex interplay of 

viral and host factors. Several conducted studies identified the risk factors associated 

with the severity of disease, including the specific serotype of DENV, the host immune 

status, age, and the genetic background of the patients (Clyde et al., 2006; Noisakran & 

Perng, 2008). The data from genetic epidemiology studies has demonstrated that a 

certain host susceptible genes promote the development of severe DENV infection 

(Chaturvedi et al., 2006), particularly alleles of human leukocyte antigen (HLA) class I 

and II (Lan et al., 2008). Additionally, polymorphism in gene‘s coding for TNF-α 

(Fernández‐Mestre et al., 2004), transforming growth factor β (TGFβ) (Chen et al., 

2009), and Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-

integrin (DC-SIGN) (Sakuntabhai et al., 2005) have been linked with an increased risk 

of severe dengue complications. Moreover, another genetic abnormality that is reported 

to have a link with DHF/DSS is the deficiency of glucose-6-phosphate dehydrogenase 

(G6PD)—an ubiquitous X-linked enzyme.  
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G6PD deficiency is primarily found in populations originating from tropical and 

subtropical areas of the world, and its geographic distribution is similar to that of 

malaria. G6PD deficiency, a common enzymopathy in human cells, enhances the viral 

replication (Ho et al., 2008; Wu et al., 2008) and cytokine production (Wilmanski et al., 

2007). Although the relationship between G6PD deficiency and cytokine modulation is 

very important, it has not been investigated thus far. Intracellular redox status changes in 

G6PD-deficient cells may have an impact on a modulator of cytokine production, 

thereby potentially increasing the severity of microbial infection complications 

(Wilmanski et al., 2007). Moreover, modulator of cytokine production was found to 

influence the antiviral mechanism of G6PD-deficient cells (Wu et al., 2008). 

1.1 Rationale of the Study 

Globally, dengue infection continues to affect more than 2.5 billion people living 

in 120 countries in endemic areas at risk of dengue infection (Chaturvedi et al., 2006; 

Chaturvedi & Nagar, 2008). Approximately 40% of the world‘s population live in areas 

where the disease can be acquired from mosquitoes (Morens & Fauci, 2008). Recent 

epidemic reports from Western Pacific, Southeast Asia, Eastern Mediterranean, Africa 

and some parts of South America have demonstrated that DENV infection is a serious 

cause of morbidity and mortality, with much higher prevalence compared to other 

infections (Halstead, 2007). The number of DF cases has increased 30-fold in the last 50 

years, and the associated complications cause an estimated 100 million infections, 

500,000 hospitalizations by DHF, and 25,000 deaths annually (Phillips, 2008). 
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In Malaysia, the first case of DF was reported in 1902 (Skae, 1902). Penang was 

the first to be affected with DF (Rudnick et al., 1965). The primary DHF outbreak was 

also recorded in Penang in 1962 (Rudnick et al., 1965; George, 1992). Currently, DF 

and DHF have become the major public health problems in Malaysian Peninsula 

(Wallace et al., 1980; George, 1992), all states, including East Malaysia, similarly 

affected. More recently, a large outbreak of DENV infection occurred in 2008, with the 

total of 49355 cases and 122 deaths, according to the Ministry of Health reports. 

Annually, epidemiology of the disease and the number of cases increased in all 

Malaysian states. Clearly, there is an urgent need to determine whether genetic factors, 

rather than environmental factors, are associated with increased prevalence of dengue 

fever.  

G6PD deficiency and dengue infection are still major health problems in 

countries where these diseases are common, such as Malaysia. At present, our 

understanding of the pathogenesis of dengue virus is incomplete, especially in affected 

individuals who suffer from genetic diseases such as G6PD-deficiency, thalassemia, and 

sickle cell anaemia. G6PD deficiency is the most common enzymopathy in human cells, 

which affects approximately more than 500 million individuals throughout the world 

(Sirdah et al., 2012). The majority of the affected individuals reside mainly in Africa, 

Mediterranean countries, Southeast Asian countries and Northern Europe (Sirdah et al., 

2012).  

Deficient in G6PD enzyme affects production of reactive nitrogen (RNS) and 

oxygen species (ROS), such as nitric oxide (NO), superoxide (O2•-), and hydrogen 

peroxide (H2O2), resulting in alterations of normal redox state of immune cells, which 
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produce cytokines and RNS/ROS in order to clear invading pathogens (Wu et al., 2008). 

Alteration of the redox state may render immune cells ineffective against invading 

organisms, resulting in an increased severity of the infection (Wu et al., 2008). Recent 

studies have indicated that the G6PD deficiency enhances viral replication and hence the 

virulence of a virus (Ho et al., 2008; Wu et al., 2008). Moreover, recurrence of 

microbial infections in G6PD-deficient individuals has been previously reported (Abu-

Osba et al., 1989; Costa et al., 2002). 

According to the findings of a study conducted in Thailand, G6PD-deficient 

individuals were significantly (19.1 %) prone to developing DHF/DSS compared to non-

G6PD-deficient individuals (Tanphaichitr et al., 2002). More recent study have shown 

that monocytes from G6PD-deficient individuals were more susceptible to DENV2 

infection with higher replication ability than those from healthy controls (Chao et al., 

2008). Although there appears to be a connection between G6PD-deficiency and 

increased severity of DENV2 infection, no studies have been carried out to elucidate the 

mechanism behind this relationship and the immune status. 

In Malaysia, so far no research has been conducted to investigate the association 

of G6PD deficiency as a genetic defect and dengue infection. Moreover, until now, there 

have been no studies on G6PD deficiency and its effect on cytokine production from 

DENV-infected monocytes of individuals with G6PD deficiency. 

1.2 Hypothesis 

Many genetic alterations have contributed to the development of dengue disease. 

One of the most recently identified genetic factors believed to be implicated in 
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pathogenesis dengue infection is G6PD-deficiency. It was hypothesized that monocytes 

from G6PD-deficient individuals will: 

• be more susceptible to DENV2 infection 

• produce lower levels of nitric and oxygen species following DENV2 infection.  

• accumulate higher oxidative stress following DENV2 infection 

• produce higher levels of cytokines following DENV2 infection 

1.3 General  of the Study 

To investigate the association between G6PD deficiency and DENV2 infection   

1.3 .1   Specific Objectives 

1. To find out whether monocytes from G6PD-deficient individuals were more 

susceptible to DENV2 infection 

2. To investigate the levels of nitrogen and oxygen species production following 

DENV2 infection in monocytes from G6PD-deficient individuals 

3. To investigate levels of oxidative stress accumulation following DENV2 

infection in monocytes from G6PD-deficient individuals 

4. To investigate the levels of cytokines production following DENV2 infection in 

monocytes from G6PD-deficient individuals 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Dengue Virus (DENV) 

The DENV belongs to the genus flavivirus of the family Flaviviridae (Kurane, 

2007). There are four serotypes that are closely antigenically related and designated as 

DENV1, DENV2, DENV3 and DENV4 (Lindenbach & Rice, 2003). When humans are 

infected by one serotype, this stimulates long-life protection immunity against 

reinfection by the same serotype, but it does not protect the affected individual from 

infection with other serotypes (Gujarati & Ambika, 2012). 

2.1.1 Viral Composition 

DENV is a small spherical particle covered by a lipid-enveloped RNA virus. 

DENV is comprised of three structural proteins, which include capsid (Core C) protein, 

a membrane (M) protein, an envelope (E) protein and seven non-structural (NS1, NS2a, 

NS2b, NS3, NS4a, NS4b, and NS5) proteins as shown in Figure 2.1 (Lambeth, 2007). 

The E protein is the major surface protein that plays a key role in DENV entry and 

fusion into target cells (Rey, 2003). M protein is a small proteolytic fragment of prM 

protein, which is essential for growth and maturation of the virus into an infectious form 

that can attack new cells (Netsawang, 2010; Smit et al., 2011).  



9 
 

 

Figure 2.1: Dengue virus genome (Lambeth, 2007). The positive single stranded RNA is 
translated to capsid (C), pre-membrane (M), and envelope (E). The seven non-structural 
proteins as divided into NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. 
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2.1.2 Dengue Virus Life Cycle and Replication  

DENV is a lipid-enveloped RNA flavivirus replicate in the cytoplasm of 

susceptible cells (Perera et al., 2008). Figure 2.2 summarized the initial stages of the 

viral life cycle start with bonding of the virus to the susceptible cells by receptor-

mediated endocytosis (Van Der Schaar et al., 2007; Perera et al., 2008). The entry 

process is initiated by the interaction of E protein with glycosaminoglycans and heparan 

sulphate on monocyte/macrophage target cells (Jain, 2005). After taking up the virus 

particles, the viruses are carried into endocytic compartment to form endosome in which 

low pH triggers a conformational change in the viral E and allows it to fuse with the 

endosomal membrane releasing the capsid into the cytoplasm. This mechanism has been 

reported with mosquito cells and human peripheral blood monocytes (Van Der Schaar et 

al., 2007; Perera et al., 2008; Umareddy, 2009).  

Once the viral RNA is in the cytoplasm, initiation of translation begins; the viral 

polyprotein is processed co- and post-transnationally into three functional viral proteins 

(C, prM, and E) and seven non-structural proteins (Perera et al., 2008). This processing 

is carried out by cellular and viral proteases. RNA replication is processed in the 

membrane-associated cytoplasmic compartment. Following virus proliferation, newly 

synthesized viral genome is encapsidated into the capsid proteins and directly buds into 

the endoplasmic reticulum where the immature virus (prM and E proteins) is surrounded 

by a lipid envelope containing viral proteins and budded off into the endoplasmic 

reticulum as undeveloped particles (Van Der Schaar et al., 2007; Netsawang, 2010). 

Some of these immature particles are transported to Golgi apparatus in which prM is 

cleaved to generate mature infectious particles in the low pH environment (Van Der 
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Schaar et al., 2007; Netsawang, 2010). Immature non-infectious and mature infectious 

particles are released into the extracellular space by exocytosis (Van Der Schaar et al., 

2007) 

 

 

 

 

 

 

 

 

 



12 
 

Figure 2.2: The flavivirus life cycle . A. Virions bind to cell-surface attachment 

molecules and receptors and are internalized through endocytosis. B. In the low pH of 

the endosome, viral glycoproteins mediate fusion of viral and cellular membranes, 

allowing disassembly of the virion and release of RNA into the cytoplasm. C. Viral 

RNA is translated into a polyprotein that is processed by viral and cellular 

proteases. D. Viral non-structural proteins replicate the genome RNA. E. Virus assembly 

occurs at the ER membrane, where capsid protein and viral RNA are enveloped by the 

ER membrane and glycoproteins to form immature virus particles. F. Immature virus 

particles are transported through the secretory pathway. In the low pH of the trans-Golgi, 

network (TGN) furin-mediated cleavage of prM drives maturation of the 

virus. G. Mature virus is released into the cytoplasm. Numbers shown in colored boxes 

refer to the pH of the respective compartments (Perera et al., 2008). 
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2.1.3 Epidemiology 

2.1.3.1 Global Epidemic of Dengue Infection 

In the 19th century, dengue infection was seen as a periodic disease, causing 

widespread infections at long intervals (Malavige et al., 2004; Netsawang, 2010). 

However, variation in this pattern has occurred and recently dengue surpassed other 

infections to rank the most serious mosquito-borne viral disease in the world. In the last 

50 years, its occurrence has increased 30-fold with considerable outbreaks in five of six 

World Health Organization (WHO) regions (Pinheiro & Corber, 1997; Malavige et al., 

2004).  

Globally, dengue infection is endemic in more than 120 countries worldwide and 

about 3 billion people are estimated to be at risk of acquiring dengue infection in tropical 

and subtropical regions as shown in figure 2.3 (Pinheiro & Corber, 1997; Malavige et 

al., 2004). Annually, approximately 100 million individuals suffer from self-limited an 

acute mild DF, while at least 500,000 incidences of DHF have been reported with 0.5% -

3.5% fatalities in Asian countries (Gubler & Clark, 1995; Malavige et al., 2004). 

Moreover, 90% of those suffering from DHF are children less than 15 years of age 

(Gubler & Clark, 1995; Malavige et al., 2004). 

In past centuries, in tropical regions of the world, outbreaks of DF occurred 

every 10 to 40 years (Luplertlop, 2005). This pattern has shifted dramatically in the last 

century and now DF and DHF occur every 3-5 years in many countries in Southeast 

Asia and are currently a major public health problem in seven of them (Malavige et al., 

2004). Epidemics of DF have been reported in the early 1900s, primarily in South Africa 
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(Gubler & Kuno, 1997), as well as in Yemen in the 1870s (Carey, 1971), and in 

Mediterranean. In the Southeast Asian countries, the number of outbreaks increased 

during and after the II World War (Gubler, 1998). However, since then, the situation had 

deteriorated, as there was a dramatic rise in frequency and in geographic extension of 

DF into Latin America and Brazil (Monath, 1994; Bozza et al., 2008). In the America, 

only few cases had been reported until the early 1980s, when a large outbreak in Cuba 

marked the start of epidemic spread to the Pacific and the American tropics (Monath, 

1994). 

The first outbreak of DHF in Asia was recorded in Manila, Philippines, in 1953-

1955 (Chaturvedi & Nagar, 2008), followed by an outbreak in Thailand in 1958. DHF 

epidemics in Singapore, Malaysia, and Vietnam were also reported in 1960s (Teo et al., 

2009). The incidence of DHF has increased dramatically in recent years with 

approximately five times more cases reported since 1980 than in the previous 30 years 

(Gubler & Meltzer, 1999). 

DENV infection now causes more illnesses and deaths than any other arboviral 

illness and has become a significant cause of morbidity and mortality in some parts of 

the world. Both DF and DHF affect people of all ages, with some studies showing 

highest incidence rates among infants and elderly (Rigau-Pérez et al., 1998; García-

Rivera & Rigau-Pérez, 2003). DHF mostly affects children under 15 years of age and 

women are more susceptible to the infection compared to men (Lye et al., 2010). The 

death rate decreases with increasing age, in particular above age of 50 (Guzmán et al., 

2002). The risk that a child will die during a secondary infection is nearly 15- fold 

higher compared to adults (Lye et al., 2010).  
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Figure 2.3: Countries and areas at risk of dengue transmission (Jelinek, 2009) 
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2.1.3.2 Dengue Infection in Malaysia 

In Malaysia, a century after its first reported occurrence in 1902 in Penang, 

dengue continues to be a serious health threat (Skae, 1902). It has become one of the 

major public health problems in both urban and suburban areas of Malaysia, especially 

after the emergence of DHF in 1962 (Rudnick et al., 1965). In 1982, the country 

underwent vast spread of the disease, with 3005 cases, of which 28.4% were cases of 

DHF with 35 deaths (Fang et al., 1984). Last available data suggested that the major DF 

and DHF outbreaks in Malaysia follow a periodic pattern, alternating every eight years 

(Bakar & Shafee, 2002). However, the frequency of these outbreaks had now changed to 

occur yearly and most cases are associated with severe complications (Senior, 2007). 

According to the data from Ministry of Health (MOH), all the states in 

Peninsular of Malaysia were evenly and similarly affected by the outbreaks. During the 

past 10 years, there has been a dramatic increase in DENV infections cases and the 

number of deaths (Figures 2.4 and 2.5.) Thus, the disease greatly affected the health, 

social and even economic life throughout the country. 
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Figure 2.4: Dengue cases within the last decade recorded among Malaysian population 
(MOH, 2010) 

 

 

Figure 2.5: Dengue death cases during the last decade among Malaysian population (MOH, 
2010) 
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2.1.4 Clinical Manifestations of Dengue Virus Infection 

2.1.4.1 Dengue Fever (DF) 

DF is an acute febrile illness characterized by the abrupt onset with a high fever 

between 39 and 40 oC that tends to last for 3-7 days. The fever is usually accompanied 

by severe malaise, headache, retro-orbital pain, myalgia, nausea, vomiting, epigastric 

pain, lymphadenopathy, weakness, and diarrhoea (Platt et al., 1997). In children, sore 

throat and abdominal pain are prevalent; thereafter, defervescence occurs between days 

3 and 8, and is usually followed by minor haemorrhagic phenomena (petechiae, purpura, 

epistaxis, gum bleeding, and menorrhagia) and the occurrence of a maculopapular 

(Gubler, 1998; Rigau-Pérez et al., 1998). 

In most cases, DF is self-limiting and the patient usually convalesces from the 

symptoms without complications 10 days after the onset of disease. Severe symptoms, 

such as haemorrhagic manifestations, are rare in DF patients, ranging from mild to 

severe in some cases, and are not restricted to only ‗dengue haemorrhage fever (Gubler, 

1998; Rigau-Pérez et al., 1998). Laboratory findings include leukopenia and 

thrombocytopenia and a positive result of the tourniquet test (Gubler, 1998; Rigau-Pérez 

et al., 1998). 

2.1.4.2 Dengue Haemorrhagic Fever (DHF)/ Dengue Shock Syndrome (DSS)  

DHF is a more severe form of dengue fever and mostly affects children under 15 

years, although it may also occur in adults (Lye et al., 2010). It is manifested as high 

fever, haemorrhage, increased vascular permeability, hepatomegaly and marked 
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thrombocytopenia (Gubler, 1998; Rigau-Pérez et al., 1998). Patients may also present 

with Vessele‘s leakage, which leads to plasma discharge, haemoconcentration, low pulse 

pressure, hypotension, heart failure, and shock, resulting in DSS (Gubler, 1998; Rigau-

Pérez et al., 1998). High serum levels of viral progeny, pro-inflammatory and ant-

inflammatory cytokines had been associated with DHF(Avirutnan et al., 2006).   

World Health Organization (WHO) grouped DHF into four grades. DHF grades 

1 and 2 are distinct from classical DF due to the affected individuals developing 

thrombocytopenia, hepatomegaly, and haemoconcentration(Gubler, 1998). DHF grades 

3 and 4 are classified as DSS, which is a more life-threatening dengue disease 

characterized by failure circulation due to a rapid and weak pulse, low pressure or 

hypotension with cold clammy skin and restlessness (Gubler, 1998).  

The dangerous phase of DSS is characterized by circulation failure that may 

occur at 24 hours before to 24 hours after the temperature falls to or below normal level 

(Dejnirattisai, 2004). The crisis usually lasts for 24 to 36 hours and the patients recover 

rapidly once convalescence starts (Dejnirattisai, 2004). The prognosis in DSS depends 

on prevention, early diagnosis and treatment of shock (Umareddy, 2009). Once a shock 

has set in, the fatality rate may be as high as 12 to 44% (Umareddy, 2009). The fatality 

among DSS patients is usually 25-50% or higher if not properly treated, and less than 

5% of such poor cases succumb to the disease, though recovery is rapid and without 

sequelae (Nimmannitya et al., 1987).  
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2.1.5 Dengue Pathogenesis  

DENV is introduced into a human host through the bite of an infected mosquito, 

whereby the virus establishes infection by replication in Langerhans cells and dentritic 

cells (DC) (Wu et al., 2000). It is subsequently disseminated and replicates via 

monocytes/macrophages (Wu et al., 2000). Pathogenesis of dengue disease depends 

upon a number of factors, such as viral virulence, antibody-dependent enhancement 

(ADE) (Halstead, 2007) and a number of host-specific factors that include age, 

race/ethnicity, genetic status, cytokines, and cellular immune response (Noisakran & 

Perng, 2008). The factors identified as responsible for the development of serious 

dengue diseases are viral virulence and abnormal host immune responses to infection 

(Sakuntabhai et al., 2005). 

2.1.5.1  Viral Virulence  

A number of researchers have studied the possible relationship between 

particular DENV serotypes and the severity of disease outcome, some reports indicating 

that DENV2 and DENV3 serotypes may cause more serious disease than the other 

serotypes, while DENV4 is responsible for a milder illness (Clyde et al., 2006; Mathew 

& Rothman, 2008). It is possible that certain genotypes within specific serotypes have 

also been associated with more severe disease of DHF. Generally, all Asian serotypes 

appear to be more virulent compared to those found in the Americas and the South 

Pacific (Clyde et al., 2006). According to phylogenetic analyses, DF is caused by the 

Native American DENV2 genotype, whereas the Asian DENV2 genotypes are 

associated with DHF (Cologna & Rico-Hesse, 2003).  
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Moreover, it was shown that the replication of Asian DENV2 genotype resulted 

in higher titers in human monocyte/macrophages and dentritic cells (DCs) compared to 

the American genotype (Rodenhuis-Zybert et al., 2010). Furthermore, when the ability 

of American and Asiatic lineage‘s genotypes to infect several population of Aide’s 

aegypti was analyzed, it was demonstrated that the overall infection rates were higher 

for the Asiatic DENV2 genotypes, so that the latter may be more transmittable 

(Armstrong & Rico-Hesse, 2003; Rodenhuis-Zybert et al., 2010). 

Maturation of DENV appears to be unproductive as dengue-infected mosquito 

and mammalian cells have been shown to secrete large numbers (up to 30%) of prM-

containing particles that play a role in dengue pathogenesis (Yu et al., 2008; Zybert et 

al., 2008; Rodenhuis-Zybert et al., 2010). Numerous studies have demonstrated that not 

fully mature particles lack the ability to infect cells and therefore, these particles are 

generally believed to be of minor importance in DENV pathogenesis (Rodenhuis-Zybert 

et al., 2010).  

2.1.5.2  Antibody-Dependent Enhancement (ADE) Infection 

Antibodies against dengue viruses play a significant role in the development of 

infection. Recently, several studies have shown a positive relationship between peak 

viremia titer and disease severity in humans, supporting the idea of the potential 

importance of ADE in enhancing dengue pathogenesis (Libraty et al., 2002).  

Following a primary DENV infection individuals typically develop cross-

reactive immune responses of two to three months in duration (Luplertlop, 2005). On the 

other hand, throughout a secondary infection with a different DENV serotype, a 
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preexisting, non-neutralizing, cross-reactive heterologous antibody recognizes the 

heterological infecting virus and forms an antigen-antibody complex (Luplertlop, 2005). 

The complex is bound to and internalized by immunoglobulin-FcR on the cell 

membrane of infected monocytes/macrophages (Luplertlop, 2005; Wahala & de Silva, 

2011). As the antibody is heterologous, the heterologous virus is not neutralized and is 

free to replicate inside a monocytes. This mechanism, known as ADE, enhances the 

infection and replication of dengue virus in monocytes, resulting in the increasing 

number of dengue-infected cells and levels of viremia, leading to DHF/DSS (Luplertlop, 

2005; Martina et al., 2009; Wahala & de Silva, 2011).  

The occurrence of DHF during primary dengue virus infection in the first year of 

life in children who have acquired antibody against dengue viruses transplacentally from 

dengue-immune mothers also supports the idea of an in vivo role for ADE (De Rivera et 

al., 2008).  

2.1.5.3  Cellular Immune Response in Dengue Virus Infection 

At present, the focus of the researchers has shifted towards studying aspects of 

cell-mediated immune responses in the pathogenesis of DHF (Malavige et al., 2004). 

The DENV can infect CD4+ and CD8+ T-cell lines in vitro (Malavige et al., 2004; 

Nielsen, 2009), even though there is no evidence of CD4+ and CD8+ T-cells serving as 

a target for dengue virus in vivo (Theofilopoulos et al., 1976). There is strong evidence 

that a high level of T-cell activation is associated with DHF (Green et al., 1999a). 

Moreover, primary infection induces activation of both serotype-specific and serotype-

cross-reactive T-cells against DENV infection. On secondary infection, CD4+ and 
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CD8+ T-cells were shown to enhance severity of infection by producing various 

cytokines (Kurane & Ennis, 1994). Thus, enhanced cytokine production indicates severe 

pathogenesis of DHF/DSS (Chaturvedi et al., 2005). 

2.1.5.4   Cytokine Response in Dengue Infection  

The immune system maintains the physiological integrity of the body mainly by 

eradicating foreign material and infectious pathogens (Chaturvedi et al., 2004). During 

the process of virus establishing an infection, the host responds by initiating a complex 

defence system by means of phagocytic cells, in order to eradicate and clear the virus 

from the host (Matsukawa et al., 2000).  

The most severe forms of dengue disease are associated with high viral titers and 

cytokines. Both host genetic determinants and virus characteristics contribute to viral 

replication; however, rapid replication during the short viraemic period of acute 

infection can be achieved only if innate immunity, which represents the first line of host 

defence against pathogens, is delayed or inhibited (Mazzon, 2010). The more efficient 

the evasion of innate immunity, the higher will be the viral titer and cytokine production, 

and the more severe the disease outcome (Mazzon, 2010).  

Phagocyte cells that serve as the first line of defence in innate immunity play 

important role in neutralizing and eliminating pathogens (Matsukawa et al., 2000). In 

contrast, the adaptive immune response is responsible for permanent protection, taking 

days to develop antigen-specific T-cell receptor (cell-mediated immunity) and 

immunoglobulin (Esche et al., 2005).  
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During an infection, both innate and adaptive immune responses play a key role 

in cytokine and chemokine release (Esche et al., 2005). Inflammatory and anti-

inflammatory cytokines might be released either directly from infected monocytes or 

after interactions with immune cells (Esche et al., 2005; Luplertlop, 2005). 

Consequently, a number of cytokines are produced, and the complex network of 

induction further increases the cytokine levels, resulting in the increased vascular 

permeability, plasma leakage, shock, and the coagulation system dysfunction, which 

may lead to DHF/DSS (Luplertlop, 2005; Nielsen, 2009). 

2.1.5.4.1  Role of Cytokines in Pathogenesis of DF and DHF 

Cytokines are groups of soluble proteins with low molecular weight that are 

produced by different immune cells—autocrine and paracrine regulators—that affect and 

regulate the activity of target cells (Berczi & Szentivanyi, 2003). In DENV infection, 

cytokines play an important role in the disease severity, homeostasis regulation (Bozza 

et al., 2008) and immunopathogenesis of the DENV infection (Chen & Wang, 2002).  

In fact, all immune-system cells seem to be activated during dengue infection 

and produce cytokines, such as T-cells producing helper Th1 and Th2 cytokines during 

DENV infection (Rabablert, 2005). Th1 cells produce IFN-, IL-2 and TNF-α, which are 

responsible for cell-mediated inflammatory reactions and tissue injury infection 

(Rabablert, 2005). Th2 cells produce IL-4, IL-5, IL-6, IL-10 and IL-13, which help B-

cells to secrete antibodies (Chaturvedi et al., 2000; Rabablert, 2005). The cytokine 

profiles produced in patients with DF include IFN- and IL-2, as well as slightly 

increased levels of IL-4, IL-6 and IL-10, which is a typical Th1-type response 
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