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Photocatalytic decolorization of Basic Blue 41 using TiO2-Fe3O4-bentonite
coating applied to ceramic in continuous system

Restu Kartiko Widi, Inez Suciani, Emma Savitri, Rafael Reynaldi, and Arief Budhyantoro

Department of Chemical Engineering, University of Surabaya (UBAYA), Surabaya, Indonesia

ABSTRACT
Photocatalytic degradation/decolorization of Basic Blue 41 dye assisted by UV radiation has
been studied over TiO2-Fe3O4 supported by bentonite. In this experiment, photocatalytic
decolorization process was performed continuously; where dye feed solution was supplied
to a coated-ceramic vessel. The influence of the initial concentration, pH, and flow rate of
the dye feed solution on the degradation efficiency process was examined in this study. The
results showed that the increase in the dye concentration and flow rate reduces decoloriza-
tion efficiency. The highest decolorization efficiency was at pH of 5.5. The kinetic study of
this photo-decolorization indicated that under the experimental condition, the photocata-
lytic kinetic process followed first-order kinetics on the basis of Langmuir–Hinshelwood het-
erogeneous reaction mechanism, where the reaction rate constant, namely kr, is 0.7707 and
the adsorption rate constant, namely K, is 0.01298.

KEYWORDS
Basic Blue 41; Bentonite;
Decolorization; Fe3O4;
Photocatalytic; TiO2

Introduction

Most countries are required to setup an effective
strategy in developing the industry as the back-
bone of the economy. Basically, in the midst of
this sector, a concept of sustainable development
needs to be considered, in which the strategy is
focused on meeting the current needs of the sus-
tainability and health of the natural environment
(Habib et al., 2012; Widi et al., 2017). Industrial
activity, such as textile industries, often produces
waste plant in which its presence can harm the
environment. In these circumstances, the textile
and the dying industries are often blamed for
generating a lot of waste causing serious environ-
mental problems (Habib et al., 2012).

Extensive researches are being carried out
worldwide to degrade organic pollutants, such as
dyes so that they can be discharged to the envir-
onment in accordance with the standards of qual-
ity (Ameta et al., 2013). In physical purification
by adsorption, coagulation and filtration mem-
brane is a physical method which is quite good
in the decolorization of dyes (Pignatello et al.,

2007; Ahmad and Kumar, 2010; Ai et al., 2010),
but the system and the material used are still
quite expensive. In addition to its use, these
methods still have to consider how to dispose of
the pollutants that had been absorbed into the
adsorbent (Bhatia et al., 2009).

From some of the dye decolorization processes,
an alternative method called a photocatalyst
method appears. One type of photocatalyst material
widely used for wastewater treatment is TiO2. This
is due to its strong oxidizing properties, super-
hydrophilicity, and chemical stability
(Chanathaworn et al., 2014; Djellabi et al., 2014;
Nakata and Fujishima 2012). The effectiveness of
TiO2 photocatalytic activity depends on the adsorp-
tion capacity (Don et al., 2015). For the purpose of
enhancing the adsorption ability, some researchers
have immobilized TiO2 or other metal oxides on
porous materials (Widi et al., 2014). Several meth-
ods of TiO2/clay composite synthesis have been
developed through the pillaring process of TiO2

particles either on the surface or into interlayer of
the clays to produce dispersed TiO2 (Liu et al.,

CONTACT Restu Kartiko Widi restu@staff.ubaya.ac.id Department of Chemical Engineering, University of Surabaya (UBAYA), TG building 5th floor,
Raya Kalirungkut Tenggilis, Surabaya 60292, Indonesia.
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2007; Judit et al., 2008; Chong et al., 2009;
Kameshima et al., 2009; Mahalakshmi et al., 2009;
Xie Chen and Dai, 2009; Hadjltaief et al., 2014;
Widi and Budhyantoro, 2014; Widi et al., 2015;
Hadjltaief et al., 2016).

In the present work, the photocatalyst material
was prepared by mixing TiO2 and Fe3O4 and
then immobilized using bentonite. The existence
of Fe3O4 may improve the efficiency of the TiO2

photocatalytic performance (Savitri et al., 2015).
TiO2 and Fe3O4-bentonite were synthesized using
Ca-bentonite impregnated with TiO2-Fe3O4 fol-
lowed by calcination. The material was then
coated to the ceramic vessel. XRD and
SEM–EDX were used to determine the psycho-
chemical properties of the catalyst, while its
photocatalytic activity was tested using a Basic
Blue 41 solution under UV irradiation through a
continuous system. Basic blue 41 was used as an
experiment dye as it is widely used in Indonesian
textile industry and cannot be rapidly degradated.
Dyes feed solution was supplied to the coated-
ceramic vessel.

Experimental

Preparation of TiO2-Fe3O4-bentonite powder

The TiO2-Fe3O4-bentonite powder was synthe-
sized by sol–gel method. The material was pre-
pared by mixing colloidal Ti (from TiCl4) and
colloidal Fe (from FeCl2�4H2O and FeCl3�6H2O),
using a ratio of 1:3. Then, these colloids were
mixed with bentonite suspension and stirred for

24 h while heated at 50 �C. The obtained solid
was dried and calcined at 500 �C for 6 h with N2

and O2 (4:1 by volume) gas streaming.
The reactor was prepared using the ceramic

material with cubic dimensions of 24� 19� 4 cm.
The photocatalyst powder was exhaled on the
surface of the inside painted-walls of the reactor.

Characterization of materials

X-Ray diffraction analysis was used to character-
ize the photocatalyst, whereas scanning electron
microscope with energy dispersive X-ray analysis
(SEM-EDX) was used to characterize the morph-
ology of samples and its specific surface areas.
The absorbance of Basic Blue 41 solution was
recorded using UV–Vis spectrophotometer with
the maximum absorbance wavelength (kmax)
was 610 nm.

Experimental setup for continuous and batch
photocatalytic reactor

The decolorization of Basic Blue 41 was per-
formed using the TiO2-Fe3O4-bentonite coating
on ceramic cube reactor (see “Preparation of
TiO2-Fe3O4-bentonite powder” section) under
UV high-pressure mercury lamp irradiation. The
reactor is placed in the center of the box and
irradiated using UV high-pressure mercury light
with an intensity of 100 Watt/m2. This intensity
is typical value for photocatalytic degradation of
basic dye (Zhang et al., 2012). Additionally, the

Figure 1. Illustration of experimental setup for continuous photocatalytic reactor.
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spectrum of UV high-pressure mercury light is
quite similar to the solar spectrum. This is very
important to consider, because the application of
this degradation technique is expected to work
well using solar light. The dye solution was con-
tinuously streamed by a pump to the ceramic
reactor. The experimental setup for continuous
decolorization process was illustrated in Figure 1.

Batch system is used in order to measure the
kinetics of decolorization process. The reactor
setup is as same as for the continuous system
without stirring. For this system, during the mer-
cury irradiation, dye solution was taken from the
ceramic reactor every 10min until getting a clear
solution. The concentration of dye solution dur-
ing reaction process was measured by UV–vis
spectrophotometer. The efficiency of degradation
process of Basic Blue 41 was defined as by
Equation (1) as follows:

XA ¼ CAo�CA

CAo

� �
� 100 (1)

where XA is the efficiency (%), CA0 is the initial
dye concentration (ppm) and CA is the dye con-
centration at time t (ppm). From Equation (1),
efficiency (%) indicates the conversion value of
dye decolorization process.

Result and discussion

Characterization

XRD analysis
From Figure 2 (red line), it can be observed that
the characteristic peak of magnetite phase at
2h¼ 35.73� and TiO2 anatase phase at
2h¼ 26.59� and 30.31� were shown in XRD pat-
tern. The intensity of the magnetite phase is
higher than that of TiO2 due to the dominant
ratio in material preparation is Fe3O4. The exist-
ence of magnetite can control the formation of
TiO2 anatase phase, which is able to enhance the
photocatalyst process. The emergence of the peak
of TiO2 anatase structure shows the formation of
anatase crystals in the bentonite. This suggests a
relatively easy TiO2 oxide is formed on the sur-
face of bentonite. Figure 2 (black line) depicts the
XRD pattern of the photocatalyst material after
its performance examination in basic blue photo-
degradation. From this figure, it can be observed

that the intensity of the anatase and magnetite
phase slightly decreased, indicating that some of
the catalyst material escaped during the activ-
ity test.

However, the emergence high intensity of the
peak at 2h¼ 29.37� indicates the dominance of
the quartz phase in the material. This phenom-
enon confirms that the anatase and magnetite
escape from the vessel during the photocatalytic
performance test so that the material bearers of
bentonite (in this case the quartz crystals)
become more prominent.

SEM-EDX analysis
The morphology of the bentonite-TiO2-Fe3O4

photocatalysts before (Figure 3(a)) and after
(Figure 4) used in photocatalytic were studied by
the microscope images. A panoramic image of
photocatalyst before used in photocatalytic dem-
onstrates that the metal oxides (TiO2 and Fe3O4)
are distributed on the bentonite surface with
length and width ranging from 0.1 to 3 m.
Figure 4 depicts that after photocatalyst used in the
photocatalytic process, the material surface notice-
ably more uniform than before used. This indicates
that the material bearers of bentonite covered by
the dye Basic Blue as a result of their activities dye
adsorption. In addition, TiO2 and Fe3O4 are more
distributed on the surface after used. Additionally,
it is believed that the catalyst material was reduced
from the container after used. This probably
because of a container that has been used many
times in photocatalytic cause the photocatalyst

Figure 2. XRD diffractogram of bentonite TiO2–Fe3O4 before
(red line) and after (black line) used in photocatalytic perform-
ance test.
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material carried on outflows. This phenomenon is
supported by EDX data in Table 1, which shows
that amount of Ti and Fe decrease significantly
after used in the photocatalytic process.

Moreover, the phenomenon of breaking the
bond between the binder and photocatalyst
material might be enlightened by the generation
of reactive oxygen species (ROS) during the

photocatalytic process. The ROS would attack the
binder or photocatalyst material and pigment of
the paint (Abdulraheem et al., 2012), which
causes TiO2 and Fe3O4 break out from the binder
and leach with the feed stream. ROS can be
marked by the increasing component O in a ves-
sel which is in accordance with the revealed by
EDX result. The data demonstrate that the

(a)

(b)

Figure 3. (a) SEM image in the low and magnify times of photocatalyst before used, (O) metal oxides on pore of bentonite. (b)
SEM image in the high magnify times of photocatalyst before used, (O) metal oxides on pore of bentonite.

Figure 4. SEM image in the low magnify after treatment, (O) metal oxides on pore of bentonite.
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effectiveness of the photocatalytic material in the
photocatalytic process is three times use.

Photocatalytic performance

Effect of dye solution flow rate
Figure 5 shows the effect of dye (Basic Blue 41)
solution flow rate ranging from 10, 25, 40, to
65ml/min, while the other variables were kept
constant. Initial dye concentration is 10 ppm and
pH of the solution is 5.5 (natural pH of Basic
Blue 41).

The result indicated that the decolorization
efficiency significantly decreases due to the
increase in the dye solution flow rate. The highest
efficiency was found to be 97.41% (in 161min)
when the flow rate was maintained at 10ml/min,
while the lowest efficiency was 13.07% (in
30min) for 65ml/min dye solution flow rate.
Table 2 shows the degradation process efficiency
and space-time of dye in the ceramic vessel with
different dye solution flow rate.

The dye solution flow rate has a significant
role in the continuous system of dye decoloriza-
tion process. The expected reason is that in high
flow rate, the space-time of dye in the ceramics is
reduced. Subsequently, the contacting time
between dye molecules and photocatalyst particles
is reduced. When dye molecule is in contact with
photocatalyst particles, the positive hole (hþ) on
the TiO2 material allows it to contact and then
react with electron donors in solution. This reac-
tion can generate hydroxyl radicals (OH�). These
radicals would react with adsorbed organic mole-
cules on the surface of the catalyst (Sakka, 2005).
The longer the contact time between photocata-
lyst particles and dye molecules, the more the
hydroxyl radicals are formed. Accordingly, there

could be more dye molecules that could be
degraded. A lower dye flow rate will result in
longer contact time.

Effect of initial dye concentration
Figure 6 shows the effect of initial dye (Basic
Blue 41) concentration ranging from 10, 25, 50,
100, to 200 ppm, while the other variables were
kept constant. The dye solution flow rate is
10ml/min, and pH of the solution is 5.5 (natural
pH of Basic Blue 41).

As expected, the decolorization efficiency
decreases in line with the increase in the dye
solution flow rate. The lowest efficiency is found
to be 42.26% at the initial dye concentration of
200 ppm, while the highest efficiency is reached
at the lowest initial dye concentration.

This phenomenon is related to the number of
active sites on the photocatalyst surface. Dye con-
centration shows the number of dye molecules
(substrate) in the solution, whether photocatalyst
provides the active sites on its surface as the
adsorption sites and space for it to react with dye
molecules. The number of active sites on the
photocatalyst surface and the number of hydroxyl
radicals formed in solution cannot match the
number of dye molecules. This causes the contact
time between dye molecules and photocatalyst
particles to decrease. In addition, the increase in
the initial dye concentration could prevent the
photocatalyst particles to contact with light, and
this result in a decrease in color removal
(Abdulraheem et al., 2012). These results proved
that the dye solution flow rate has a significant
role in the continuous system of dye decoloriza-
tion process.

Effect of pH
In the photocatalytic process, pH is one of the
most important parameters that have an effect on
the catalyst particles surface charge and the posi-
tions of conductance and valence bands. The pre-
vious researcher reported that the optimum pH
resulting highest decolorization efficiency is 5.5
(Buyukada, 2016). In this study, the effect of pH
on the decolorization process efficiency was also
be observed ranging from 3 (acidic condition),
5.5 (natural condition), to 8 (alkaline condition).

Table 1. EDX of photocatalyst before and after used in
photocatalytic.
Element % wt (before used) % wt (after used)

C 5.47 12.41
O 57.1 62.39
Na 0 0.88
Mg 0.14 0.47
Al 1.94 1.46
Si 7.19 3.64
K 0.29 0.28
Ca 17.74 15.71
Ti 1.94 0.8
Fe 8.17 1.96

CHEMICAL ENGINEERING COMMUNICATIONS 5



The dye solution flow rate is 10ml/min and dye
concentration is 10 ppm.

The charge on the surface of photocatalyst and
dye molecules affects the decolorization process
as the result of changing the pH solution. This
correlation could be explained by the isoelectric
point (pHIEP) of dye and point of zero charges of
catalyst (pHZPC). Isoelectric point shows the
degree of acidity (pH) when molecule charge is
zero due to increasing proton or losing charge in
an acid–base reaction. There were three situations
to be argued. If solution pH is larger than pHIEP

and pHZPC, a negative repulsive force occurs on
dye molecules surface (1), if solution pH is
smaller than pHIEP and pHZPC, a positive repul-
sive force is occurs (2), and if pH of solution is
controlled between pHIEP and pHZPC, a strong
driving force occurs between positive charge of
catalyst and negative charge of dye ions
(Ciesielczyk et al., 2011). This third condition
leads color removal to increase because of the
increasing of attraction force between photocata-
lyst and dye molecules.

Figure 7 shows the highest decolorization pro-
cess efficiency is at pH 5.5 where this value of
pH is between pHZPC and pHIEP. The pHIEP

value of Basic Blue is 3.8 (Ciesielczyk et al.,

2011), and the pHZPC value of TiO2 and Fe3O4 is
6.8 (Abdulraheem, 2012) and 7.9 (Buyukada, 2016).
The surface of Basic Blue molecules would be on
negative charge condition because the pH of the
solution is greater than its pHIEP, while the surface
of TiO2 and Fe3O4 particles would be on positive
charge condition because the pH of the solution is
smaller than their pHZPC. Bentonite as photocata-
lyst supporting material contains small positive
metal ions on its surface, such as Ca2þ, Mg2þ, and
Naþ. It causes a great attractive force between dye
molecules and photocatalyst particles so the
adsorption of dye molecules could increase.

At pH value of 3, which is lower than pHIEP
and pHZPC, Hþ ions are accumulated on the
surface of the photocatalyst. This causes the sur-
face of the photocatalyst and the dye molecule to
be positively charged. While at pH value of 8,
OH� ions are accumulated on the surface of the
photocatalyst. As the result, the surface to be
negatively charged. Both of these cause a great
repulsive force between dye molecules and photo-
catalyst particles so the dye molecules and the
photocatalyst particles cannot be adsorbed on the
catalyst surface. This result proved that pH of the
solution was an important parameter for photo-
catalytic decolorization process in the continu-
ous system.

Kinetics of photocatalytic decolorization

The kinetics of photocatalytic decolorization has
been investigated in the batch system using initial
dye concentration of 10 ppm and pH at 5.5.

Figure 5. Effect of dye solution flow rate on decolorization of Basic Blue 41 in the presence of bentonite TiO2–Fe3O4

photocatalysts.

Table 2. Decolorization process efficiency and space time of
dye with different dye solution flow rate.
Flow rate
(ml/min)

Space
time (min) Efficiency (%)

10 161 97.41
25 70 43.74
40 45 26.46
65 30 13.07
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First, the photodegradation of the dye was
illustrated by the first-order kinetics model as
shown in Equations (2) and (3) (Levenspiel,
2003):

� dCA

dt
¼ kCA (2)

ln
CAo

CA
¼ kt (3)

where CA0 is the initial dye concentration (ppm),
CA is the dye concentration at time t (ppm), t is
the time of irradiation (min), and k is the reac-
tion rate constant (min�1).

The data was plotted between linear regression
ln(CA0/CA) versus the time of irradiation to
obtain slope which is equal to k based on
Equation (3) as shown in Figure 8(a).

The photodegradation of the dye was also
illustrated by the second-order kinetics model as
shown in Equations (4) and (5) (Levenspiel,
2003):

� dCA

dt
¼ kCA

2 (4)

1
CA

� 1
CAo

¼ kt (5)

where CA0 is the initial dye concentration (ppm),
CA is the dye concentration at time t (ppm), t is
the irradiation time (min), and k is the reaction
rate constant (min�1).

The data was plotted between linear regression
1/CA versus irradiation time to get slope equal to k
according to Equation (5) as shown in Figure 9(a).

The first-order kinetic expression can be effect-
ively applied to investigate the decolorization rate
in the process. The correlation coefficient, the R2

value was 0.9812, which designated a very good
fitting. Compared to the second-order kinetic, the
R2 value was only 0.7066, which lower than the
correlation coefficient of first-order kinetics.
Figure 10(b) shows the decrease in the dye con-
centration of first-order kinetics trend from the

Figure 7. Effect of pH on decolorization of Basic Blue 41 in the presence of bentonite TiO2–Fe3O4 photocatalysts.

Figure 6. Effect of initial dye concentration on decolorization of Basic Blue 41 in the presence of bentonite TiO2–Fe3O4

photocatalysts.
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experiment is nearly equal with the decreasing
trend from the theory. These results indicated
that decolorization rate follows first-order kinet-
ics. The apparent constant rate of Basic Blue
decolorization was 0.01 (min�1) at the initial
concentration of 10 ppm.

To describe the photocatalytic decolorization pro-
cess in more detail, Langmuir–Hinshelwood model
was used to analyze the adsorption and the reaction
constant rate of the photocatalytic process, which
took place at the surface of the catalyst, as shown in
Equation (6) (Levenspiel, 2003; Sakka, 2005).

r ¼ � dC
dt

¼ kr:K:CA

1þ K:CA
(6)

t ¼ 1
K:kr

ln
CAo

CA

� �
þ 1
kr CAo � CAð Þ (7)

ln
CAo

CA

� �
þ K CAo�CAð Þ ¼ kr:K:t (8)

As explained before, the kinetics of photo-
catalytic decolorization follows first-order

kinetics, where the dye concentration used in
the experiment is low. Thus, we can simplify
the second term on the right-hand side of
Equation (8) to first-order equation as shown
in Equation (9) (Sakka, 2005; Levenspiel,
2003):

Figure 9. (a) Second-order kinetic of photocatalytic decoloriza-
tion of Basic Blue 41. (b) Decreasing of dye concentration
based on second-order kinetic.

y 0 0105x 0 1281
4

4.5

y = 0.0105x - 0.1281
R² = 0.9812

3.5

2.5

3

/C
)

2ln
 (C

o/

1

1.5

0.5

0
0 50 100 150 200 250 300 350 400

t (min)

(a)

(b)

Figure 8. (a) First-order kinetic of photocatalytic decolorization
of Basic Blue 41. (b) Decreasing of dye concentration based on
first-order kinetic.

Figure 10. Decreasing of dye concentration (ppm) against
time (min) in batch system (using mercury lamp irradiation).
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r ¼ � dC
dt

¼ kr:K:CA ¼ KC:CA (9)

ln
CAo

CA

� �
ffi kr:K:t ffi KC:t (10)

where r is the photocatalytic reaction rate (ppm/
min), CA0 is the initial dye concentration (ppm),
CA is the dye concentration at time t (ppm), t is
the irradiation time (min), the kr is the reaction
rate constant, K is the adsorption rate constant,
and Kc is the apparent rate constant (min�1).

The data was plotted between linear transforms
ln(CA0/CA) versus irradiation time to get slope
equal to Kc according to Equation (10) as shown
in Figure 11.

The first-order kinetic expression can be effect-
ively applied to investigate the heterogeneous
decolorization reaction of the dye solution, based
on our experimental conditions. The value of Kc

of Basic Blue 41 decolorization process was 0.01
(min�1) which lead to high efficiency of 98,17%
at batch system process. From the intercept, the
adsorption rate constant, namely K is obtained
with the value of 0.01298, and from the slope,
the reaction rate constant, namely kr, is obtained
with the value of 0.7707. This data indicated that
photo-reaction process between the dye mole-
cules and photocatalyst particles was more dom-
inant than that of the adsorption process of dye
molecules onto catalyst surface.

Conclusions

Photocatalyst material of TiO2-Fe3O4-bentonite
was successfully synthesized by using the sol–gel

method and then to be coated onto ceramic. The
material demonstrated ability to degrade of Basic
Blue 41 by the photocatalytic process. This study
shows that the dye solution can be removed by
degradation reaction with high efficiency using
the continuous system.

Dye decolorization process in the continuous
system is affected by dye solution flow rate, initial
dye concentration, and pH of the solution. The
flow rate and initial concentration of dye could
affect the efficiency where the larger flow rate
and initial concentration value, then the effi-
ciency would decrease. The optimum flow rate
and initial concentration of dye obtained in this
study are 10ml/min and 10 ppm. The optimum
pH of the solution is 5.5 that obtained between
pHIEP of dye and pHZPC of photocatalyst mater-
ial. At pH 5.5, an attractive force occurs between
dye molecules and photocatalyst particles which
lead to the increase in the process efficiency.
Based on the Langmuir–Hinshelwood kinetic
model, it can be revealed that Bentonite
TiO2–Fe3O4 is able to act as a good photocatalyst
to degrade the Basic Blue 41 under the present
experimental conditions.
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