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otanyuk@mail.smu.edu, danieldavieau@mail.smu.edu, csouth@mail.smu.edu,
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Abstract. In this paper we find a pattern of aperiodic seismic signals
that precede earthquakes at any time in a laboratory earthquake’s cy-
cle using a small window of time. We use a data set that comes from
a classic laboratory experiment having several stick-slip displacements
(earthquakes), a type of experiment which has been studied as a simula-
tion of seismologic faults for decades. This data exhibits similar behavior
to natural earthquakes, so the same approach may work in predicting the
timing of them. Here we show that by applying random forest machine
learning technique to the acoustic signal emitted by a laboratory fault,
we can predict the time remaining before failure with 1.61 seconds mean
absolute error at any moment of earthquake’s cycle. These predictions
are based solely on the acoustical signal’s statistical features derived from
the local, moving 0.3 second time windows and do not make use of its
history. Essential improvements in providing new understanding of fault
physics may be brought by applying this technique to acoustic seismic
data.

1 Introduction

Earthquakes cause mass destruction and loss of life. A traditional method to pre-
dict earthquakes is to look to past recurrence intervals. Because the recurrences
are not constant, predictions can only be made within broad time windows. One
such model predicted that a strong earthquake would occur between 1985 and
1993 in the Parkfield California area but no significant event actually occurred
until 2004 [1].

Another way to predict earthquakes are based on changes in land elevation,
ground water levels, animal behavior or foreshocks [2]. There are couple examples
when this method of prediction worked. The segment of the San Andreas Fault
that broke in the 1989 magnitude 7.1 by Richter Scale (see section 2 Earthquakes
for more details about magnitude) Loma Prieta or ”World Series” earthquake
had been identified by the USGS (U.S. Geological Survey) as one of the more
likely segments of the San Andreas to rupture. Magnitude 5+ earthquakes 2 and
15 months before the damaging earthquake were treated as possible foreshocks,
and the USGS issued 5-day Public Advisories through the California Office of
Emergency Services [2]. Even in areas where foreshocks are fairly common, there
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is no way of distinguishing a foreshock from an independent earthquake [2]. In
the Pacific Northwest, there is no evidence of foreshock activity for most historic
earthquakes [2].

One well-known successful earthquake prediction was for the Haicheng, China
earthquake of 1975, when an evacuation warning was issued the day before a
magnitude 7.3 earthquake [2]. In the preceding months changes in land elevation
and in ground water levels, widespread reports of peculiar animal behavior, and
many foreshocks had led to a lower-level warning [2]. An increase in foreshock
activity triggered the evacuation warning [2]. Unfortunately, most earthquakes
do not have such obvious precursors [2]. In spite of their success in 1975, there
was no warning of the 1976 Tangshan earthquake, magnitude 7.6, which caused
an estimated 250,000 fatalities [2].

Advances in instrumentation quality and density have fostered hope that
progress can be made in forecasting. These advances have led to discoveries of
previously unidentified slip processes such as slow slips. Slow Slip Earthquakes
(SSE) are fault behaviors that occur slowly enough to make them undetectable
without instrumentation. They do not cause immediate widespread destruction
like regular earthquakes do. They occur near the boundaries of large earthquake
rupture zones [3]. There is evidence to suggest that there is a relationship be-
tween slow slip earthquakes and more noticeable regular earthquakes [4].

Researchers imitate natural slow slip earthquakes in the laboratory by placing
rocky material between steel blocks and applying shear stress to induce slipping.
Recent improvements in the instruments [5] used to measure signals have en-
abled the collection of larger volume and more akin to natural earthquake data.
However, processing the data and detecting patterns in it has become more
difficult. Methods to detect patterns of aperiodic seismic signals that precede
earthquakes are presented in this paper. We use acoustic data provided by the
Los Alamos National Laboratory (LANL) as part of a 2019 Kaggle competition
[5] which represents laboratory slow-slip earthquakes. The data is very aperiodic
and more akin to natural earthquakes than the data LANL studied earlier in
2017 [5]. We demonstrate that random forest regression can be used to detect
patterns in the data that and predict laboratory earthquakes with mean absolute
error of 1.61 seconds. Given seismic signal data with considerably more aperi-
odic slow-slip laboratory earthquake failures, we predict time remaining before
failure at any time in the slip cycle based solely on acoustical signal’s statistical
features derived from the small, local, moving time windows and do not make
use of its history.

The results of this experiment are potentially applicable to the field of real
world earthquakes [6]. Essential improvements in providing new understanding
of fault physics may be brought by applying this technique to acoustic seismic
data. Other potential applications include avalanche prediction, landslides and
failure of machine parts [6].
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2 Earthquakes

An earthquake is the shaking of the Earth’s surface caused by sudden releases
of energy in the lithosphere that creates seismic waves. It happens when two
blocks of the earth suddenly slip past one another. The surface where they slip
is called the fault or fault plane [7]. The location below the earth’s surface where
the earthquake starts is called the hypocenter, and the location directly above
it on the surface of the earth is called the epicenter [7].

Smaller earthquakes that happen in the same location as a larger earthquake
that follows are called fore shocks. Scientists can’t determine whether an earth-
quake is a foreshock until the larger earthquake happens [7]. The largest, main
earthquake is called the mainshock [7]. Mainshocks always have aftershocks that
follow, smaller earthquakes that occur afterwards in the same place as the main-
shock [7]. Depending on the size of the mainshock, aftershocks can continue for
weeks, months, and even years after the mainshock [7].

The earth has four major layers: the inner core, outer core, mantle and crust
[7]. The crust and the top of the mantle make up a thin skin on the surface of our
planet; this skin is not all in one piece; it is made up of many pieces like a puzzle
covering the surface of the earth [7]. These puzzle pieces are called tectonic plates,
and the edges of the plates are called the plate boundaries. Tectonic plates move
slowly and continuously; sliding past and bumping into each other. The plate
boundaries are made up of many faults, and most of the earthquakes around the
world occur on these faults [7]. Because the edges of the plates are not smooth
they can get stuck while the rest of the plate keeps moving [7]. Finally, when
the plate has moved far enough, the edges unstick on one of the faults and there
is an earthquake [7].

While the edges of faults are stuck together, and the rest of the block is mov-
ing, the energy that would normally cause the blocks to slide past one another
is being stored up [7]. When the force of the moving blocks finally overcomes
the friction of the jagged edges of the fault and it unsticks and all of the stored
energy is released [7]. The energy radiates outward from the fault in all direc-
tions in the form of seismic waves, those waves shake the earth as they move
through it, and when the waves reach the earth’s surface, they shake the ground
and anything on it [7].

The size of an earthquake depends on the size of the fault and the amount
of slip on the fault, but that’s not something scientists can simply measure with
a measuring tape since faults are many kilometers deep beneath the earth’s
surface [7]. The strength of the shaking from an earthquake diminishes with
increasing distance from the earthquake’s source, so the strength of the shaking
at the surface from an earthquake that occurs 500km below the surface can
considerably less than if the same earthquake had occurred 20 km below the
surface [7]. The size of the earthquake is called its magnitude. The Richter Scale
(ML) is what most people have heard about (scale range from 0 to 9), but in
practice it is not commonly used anymore, except for small earthquakes recorded
locally, for which ML and short-period surface wave magnitude (Mblg) are the
only magnitudes that can be measured [8]. For all other earthquakes, the moment
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magnitude (Mw) scale is a more accurate measure of the earthquake size [8].
Moment Magnitude (MW) is based on physical properties of the earthquake
derived from an analysis of all the wave forms recorded from the shaking [8].
First the seismic moment is computed, and then it is converted to a magnitude
designed to be roughly equal to the Richter Scale in the magnitude range where
they overlap [8]. Another way to measure the size of an earthquake is to compute
how much energy it released [8]. The amount of energy radiated by an earthquake
is a measure of the potential for damage to man-made structures [8]. The energy
can be converted into yet another magnitude type called the Energy Magnitude
(Me) [8].

Slow Slip Earthquakes (SSE) are fault behaviors that occur slowly enough to
make them undetectable without instrumentation. They do not cause immediate
widespread destruction like regular earthquakes do. They occur near the bound-
aries of large earthquake rupture zones [3]. Most SSE’s have been observed near
the downdip limit of the seismogenic zone at depths of 25–45 km, but in well-
instrumented areas they have also been detected at shallow depths (less than
10 km), updip of large earthquake ruptures [3]. SSE’s at tectonic boundaries
probably occur at the plate interface, and therefore should be controlled by the
frictional properties and conditions that characterize fault zones [3]. For deep
slow slip events, laboratory testing of natural material under in situ conditions
is not feasible at present [3].

3 Los Alamos National Laboratory’s Findings

In 2017 Los Alamos National Laboratory (LANL) researchers discovered a way
to successfully predict Slow Slip Earthquakes (SSE) in a laboratory experiment
that simulates natural conditions. The team trained a computer to pinpoint and
analyze quasi-periodic seismic and acoustic signals emitted during the move-
ments along the fault. They processed massive amounts of data and identified a
particular sound pattern previously thought to be noise that precedes an earth-
quake. The team was able to characterize the time remaining before a laboratory
earthquake at all times using a time window of 1.8 sec of the data to make each
prediction with 89% coefficient of determination [9]. This result was achieved us-
ing a Random Forest Regression machine learning technique and quasi-periodic
data.

In the lab, the team imitated a real earthquake using steel blocks inter-
acting with rocky material to cause slipping that emitted seismic sounds. An
accelerometer recorded the acoustic emission emanating from the sheared layers
[9]. For the first time, researchers discovered a pattern that accurately predicted
when a laboratory earthquake would occur. The LANL team acknowledges that
the characteristics of the lab experiment such as shear stress differ from natural
earthquakes but the application of the analysis to the real world to validate their
results is ongoing. This method can also be applied outside of seismology to sup-
port material failure research in other fields such as aerospace and energy [9].
The lab results reveal that the fault does not fail randomly but in a predictable
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manner. The observations also demonstrate that the fault’s critical stress state
which indicates when it might slip can be determined using exclusively an equa-
tion of state [9]. So far seismologists and earth scientists have mostly relied on
catalogs of historical data to try to characterize the state of faults. These cat-
alogs contain a minute fraction of seismic data with portions discarded during
analysis as useless noise. The authors discovered that hidden in the noise-like
data are signals that inform them of the state of the fault much more precisely
than catalogs [9].

4 Random Forest Overview

Random Forest (RF) is an ensemble machine learning technique capable of per-
forming both regression and classification tasks using multiple decision trees and
a statistical technique called bagging [10]. Decision trees are predictive models
that use a set of binary rules to calculate a target value [10]. Each individual
tree is a fairly simple model that has branches, nodes and leaves [10]. A sub
section of the entire tree is called a branch or sub-tree. A Root Node represents
the entire population or sample and this further gets divided into two or more
homogeneous sets. Nodes that do not split are called Leaves. A decision tree is
arriving at an estimate by asking a series of questions to the data, each question
narrowing the possible values until the model gets confident enough to make a
single prediction [10]. The order of the questions (the questions asked are all in
a True/False form) as well as their content are being determined by the model
[10]. Rather than just averaging the prediction of trees, a random forest uses two
key concepts that give it the name random:

1. Random sampling of training observations when building trees.
2. Random subsets of features for splitting nodes.
In other words a random forest builds multiple decision trees and merges

their predictions together to get a more accurate and stable prediction rather
than relying on individual decision trees [10].

Each tree in a random forest learns from a random sample of the training
observations [10]. The samples are drawn with replacement (known as bootstrap-
ping) which means that some samples will be used multiple times in a single tree
[10]. The idea is that by training each tree on different samples, although each
tree might have high variance with respect to a particular set of the training
data, overall, the entire forest will have lower variance but not at the cost of
increasing the bias [10].

The fundamental idea behind a random forest is to combine the predictions
made by many decision trees into a single model [10]. Individually, predictions
made by decision trees may not be accurate but combined together, the predic-
tions will be closer to the true value on average [10].

Let’s understand Random Forest step by step in below example: Step 1:
Samples are taken repeatedly from the training data so that each data point
is having an equal probability of getting selected, and all the samples have the
same size as the original training set [10].
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Let’s say we have the following data:
x= 0.1,0.5,0.4,0.8,0.6, y=0.1,0.2,0.15,0.11,0.13 where x is an independent

variable with 5 data points and y is dependent variable [10].
Now bootstrap samples are taken with replacement from the above data set.

n estimators is set to 3 (number of trees in random forest), then:
The first tree will have a bootstrap sample of size 5 (same as the original

dataset), assuming it to be:
x1=0.5,0.1,0.1,0.6,0.6
x2=0.4,0.8,0.6,0.8,0.1
x3=0.1,0.5,0.4,0.8,0.8
Step 2: A Random Forest Regressor model is trained at each bootstrap sample

drawn in the above step, and a prediction is recorded for each sample [10].
Step 3: Now the ensemble prediction is calculated by averaging the predic-

tions of the above trees producing the final prediction [10].
In our work training data is used to generate the RF model. The testing

data is used to evaluate the performance of the RF model; this constitutes a fair
measure of the RF performance because the testing data is independent from
the training process (i.e. out of sample performance). It is very important to
ensure that testing data does not leak into the training process [6].

The tree is given by a bootstrap re-sampling of the training data, which in-
duces variation between the trees and mitigates the effect of outliers on the forest
[6]. To generate each node, we formulate a ”yes”/”no” decision (corresponding
to a split into left/right branches) operating on the data available at the current
node. At each node, we select a random subset of the available features. From
the selected features, we construct the decision that best predicts the time to
failure [6].

The values used to evaluate predictions in our work are the coefficient of
determination r2 and mean absolute error (MAE) (Table 1).

Table 1. Statistical values used to evaluate predictions.
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5 Data

5.1 Data Generation Experimental Setup

The laboratory system is a two-fault configuration that contains fault gouge
material submitted to double direct shear (Figure 1)[5].

Fig. 1. Laboratory Earthquake Design

Two fault gouge layers are sheared simultaneously while being subjected to
a constant normal load and a prescribed shear velocity [5]. The laboratory faults
fail in repetitive cycles of stick and slip that is meant to mimic the cycle of
loading and failure on tectonic faults [5]. While the experiment is considerably
simpler than a fault in the Earth it shares many physical characteristics [5].

A driving piston displaces at a very constant velocity during the inter-event
time and accelerates briefly when a slip occurs [6]. An accelerometer records the
acoustic emission emanating from the shearing layers [6]. The steel blocks are
extremely stiff therefore the deformation takes place largely in the gouge [6].
Under a broad range of load and shear velocity conditions, the apparatus stick-
slips quasi-periodically for hundreds of stress cycles during a single experiment
and in general follows predictions from rate and state friction [6]. The rate of
impulsive precursors accelerates as failure approaches suggesting that upcoming
laboratory earthquake timing could be predicted [6].

The experimental data has 16 earthquakes. The shortest time to failure is 1.5
seconds for the first earthquake, 7 seconds for the 7th and the longest is around
16 seconds.
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5.2 Data Exploration

The data used in this work is a 157.275 second recording of seismic signals
(ordered sequentially.) It was recorded at 4MHz hence 629,145,480 data points
accompanied by the time remaining in seconds until the following lab earthquake.

The seismic signals are recorded using a piezoceramic sensor which outputs
a voltage upon deformation by incoming seismic waves (henceforth we will use
the term acoustic signal). The seismic data, which serves as the input to our
analysis, is this recorded voltage, in integers.

The Acoustic Signal is the voltage upon deformation by incoming seismic
waves. These signals are integers in the range [-5515 to 5444] with a mean of
4.52. The distribution of the acoustic signals has a very high peak and we see
outliers in both directions (Figure 6).

The Time to Failure is the remaining time in seconds until an actual stick-
slip failure occurred. The minimum value is very close to zero (9.55039650e-05
seconds) and the maximum is 16 seconds. The distribution of the time to failure
is right skewed (Figure 7).

The first five rows of the data are shown in Table 2.

Table 2. The first five rows of the data

Acoustic Signal Time to Failure

12 1.469099998474121
6 1.469099998474121
8 1.469099998474121
5 1.469099998474121
8 1.469099998474121

The acoustic signal shows huge fluctuations regularly just before each failure
(Figure 2). It is also worth noting that failures can be predicted visually as cases
when huge fluctuations in the signal are followed by smaller signals.

On a zoomed-in time plot (Figure 3) we see that the large acoustic signal
oscillation at the 1.572 second mark is not at the exact time of the failure but
just before it. There are trains of intense signal oscillations preceding the large
one and some smaller ones after it.

A 1% sample of the data (a histogram in Figure 4) shows that the voltage
amplitude of acoustic precursors accelerates as failure approaches, suggesting
that upcoming laboratory earthquake timing could be predicted. The red line
indicates that a quake occurs when the time to failure approaches 0.

We found that more than 90% of the high acoustic signal values (absolute
value greater than 1000 voltages) are around 0.31 seconds before an earthquake
(Figure 5).
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Fig. 2. 157.275 seconds of the data

Fig. 3. 1.572 seconds of data

9

Tanyuk et al.: Machine Learning Predicts Laboratory Earthquakes

Published by SMU Scholar, 2019



Fig. 4. 1% sample of the data histogram

Fig. 5. The highest column represents 90% of high acoustic signal values (absolute
value greater than 1000 voltage).
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Fig. 6. Univariate distribution of the acoustic signals

Fig. 7. Univariate distribution of the time to failure
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6 Feature Engineering

Working with quasi periodic seismic signals LANL achieved a 0.89 coefficient of
determination. They divided the data into 1.8 second time windows and used a
Random Forest technique. [6]. The most important features in the LANL model
were variance, kurtosis and threshold.

We used a similar approach in this study. Our goal is to predict the time
remaining before the next failure using only moving time windows of the acoustic
data. We divided the data into 0.3 second time windows (1,500,000 observations)
which is small relative to the lab quake cycle which spans 8 to 16 seconds. As
indicated in Figure 6; more than 90% of high acoustic values (absolute value
greater than 1000) are around 0.31 seconds before an earthquake therefore we
divide our data by 0.3 second windows to reduce error at the end of the quake
cycle.

Checking how sensitive our results are to the size of the time window (Figure
8) we find that the highest r2 and smallest mean absolute error we were able to
achieve is with 1.5M observations in each time window (0.3 seconds).

Fig. 8. Model sensitivity to the size of the time window

Our resulting transformed data set consists of 419 time windows (0.3 sec-
onds each). From each time window we compute a set of 95 potentially relevant
statistical features (e.g., mean, variance, kurtosis, min/max, threshold and so
on). Using feature importance technique (a feature is “important” if shuffling its
values increases the model error) we found that only the following (in Table 3)
are considerably important:
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Table 3. List of Engineered Features

Standard Deviation
90% Quantile
95% Quantile
99% Quantile
Absolute Standard Deviation
Average Rolling Standard Deviation for 100, 1000 and 10000 observations
Variance of Rolling Standard Deviation for 100, 1000 and 10000 observations
Minimum Rolling Standard Deviation for 100, 1000 and 10000 observations
1% Quantile of rolling standard deviation for 100, 1000, 10000 observations
5% Quantile of rolling standard deviation for 100, 1000, 10000 observations
10% Quantile of rolling standard deviation for 100, 1000, 10000 observations
90% Quantile of rolling standard deviation for 100, 1000, 10000 observations
95% Quantile of rolling standard deviation for 100, 1000, 10000 observations
99% Quantile of rolling standard deviation for 100, 1000, 10000 observations
Variance of Rolling Absolute Mean for 100, 1000 and 10000 observations

We apply machine learning techniques such as the Random Forest Regressor,
XGB Regressor, Decision Tree Regressor, LGBM Regressor and Extra Trees
Regressor to the new continuous values that we created analyzing acoustic time
series data.

To avoid correlation between the new features we applied a principal compo-
nent analysis technique: orthogonal transformation to convert a set of observa-
tions of possibly correlated variables into a set of values of linearly uncorrelated
variables. The principle components allows us to reduce the number of features
from 95 to only 5 which represents 99.9% of the full data variation.

We use a 50/50 continuous split of the data for use as training and testing
data sets respectively. Contiguity of the train and test data sets is important
to minimize contamination of the training data with information about the test
data.

We selected regularization hyper-parameters for each machine learning algo-
rithm using a random grid search technique based on a 3-fold cross-validation.

7 Results

We run different techniques on a training data set (50% of the full data) before
principal component analysis and after. The principal component analysis did
not enable any significant improvement in our results. We apply our model to
generate predictions on the test data and measure the accuracy of them using
r2 (the coefficient of determination) and MAE (mean absolute error).

The most accurate results were achieved by the Random Forest algorithm
with 1.65 seconds MAE and 0.63 r2 (Figure 9). The parameters used are dis-
played in Table 4. After applying the principle components analysis the Random

13

Tanyuk et al.: Machine Learning Predicts Laboratory Earthquakes

Published by SMU Scholar, 2019



Forest Regressor MAE score increased to 1.78 seconds and r2 decreased to 0.57
(Figure 10).

Results achieved with the Ada Boost Regressor algorithm are 1.68 MAE
and 0.62 r2 score (Figure 11). The hyper parameters used are learning rate
= 0.035421, loss = square, number of estimators = 500 and base estimator=
Ridge(alpha=1).

After applying the principle components analysis the Ada Boost Regressor
results are 1.72 MAE and 0.63 r2 score (Figure 12).

Table 4. Random Forest Parameters

Parameter Setting

Maximum Depth 10
Maximum Features log2
Minimum Samples Leaf 2
Minimum Samples Split 2
Number of Estimators 1000

Fig. 9. Results achieved with Random Forest Regressor are 1.65 MAE and 0.63 r2.
We emphasize that there is no past or future information considered in calculating the
predictions (red line). Each prediction uses only the acoustic signal information within
one single time window.
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Fig. 10. Random Forest Regressor after PCA MAE score is 1.78 and r2 is 0.57.

Fig. 11. Ada Boost Regressor MAE is 1.68 seconds and r2 score is 0.62.
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Fig. 12. Ada Boost Regressor after PCA MAE score is 1.72 and r2 is 0.63.
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8 Analysis

The most accurate results with coefficient of determination 0.63 and mean abso-
lute error 1.65 seconds were achieved using the Random Forest algorithm. The
most important features are shown on Figure 13. The top 4 are 90% and 95%
quartile rolling standard deviations, standard deviation of rolling absolute mean
and average rolling standard deviation. The values of all 4 features grows as
failure approaches. The highest picks we have just when failure appears.

Fig. 13. The top 4 features in predicting time to failure

17

Tanyuk et al.: Machine Learning Predicts Laboratory Earthquakes

Published by SMU Scholar, 2019



9 Ethics

Our responsibility to report our results has to be weighed with our responsibil-
ity not to cause social disturbance. If the method demonstrated in this paper
is scaled and applied to predict natural earthquakes this balance must be con-
sidered. Unwarranted predictions could have affects on personal property value
while failure to report warranted predictions could result in loss of life or avoid-
able property damage.

Clarence R. Allen, the chairman of the National Earthquake Prediction Eval-
uation Council claimed that keeping information, from the public and discussing
hypotheses on earthquake prediction “behind closed doors” would cause more
harm than good, for free speech is the only means to promote research and to
increase public responsibility of scientists [11]. The public’s demand for accurate
information would encourage scientists to further their research and hinder them
from making unwarranted statements that may cause disturbance in society [11].
Allen seems to suggest that free scientific communication in its due course would
bring order to the scientific environment by eliminating unwarranted scientific
hypotheses and predictions, together with the guesses of amateurs and cranks
[11].

While the methods presented in this paper can eventually be scaled to real
world earthquakes, it is unlikely that our findings will cause public disturbance
as they apply only to laboratory earthquakes.

In this study we follow the principles of the Association for Computing Ma-
chinery (ACM) Code of Ethics and Professional Conduct [12] to ensure both
privacy and security of individuals, and other codes of conduct related to good
ethical practices. Ethical principles to make no harm, be honest and trustworthy,
respect the work required to produce new ideas were used in our work. We also
took professional responsibilities to achieve high quality in both the processes
and professional work, maintain high standards of professional competence, ac-
cept and provide appropriate professional review, know and respect existing rules
pertaining to professional work.

10 Conclusions

Given aperiodic earthquake failures data set with more akin to the observed
behavior of natural earthquakes Random Forest Machine Learning technique
can provide failure forecasts based on small windows of time. The acoustic signal
measurement is an indicator of imminent failure. The prior recurrence interval
is not needed to make a prediction. Predictions were made for time remaining
before failure at any moment in the slip cycle. The Random Forest machine
learning technique provides the most accurate results. Predictions are based
solely on acoustical signal’s statistical features derived from the local, moving
small time windows.

Feature engineering, size of the time window used in the model creation are
essential to reduce mean absolute error.
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In this study we use only 157 seconds of the data that present 16 failures.
Future work should introduce higher volumes of data to determine if accuracy
can be improved. Also the combination of the acoustic signal and the recurrence
interval should be tested to determine it’s affect on accuracy.

The results of our work are potentially applicable to the field of real world
earthquakes [6]. Essential improvements in providing new understanding of fault
physics may be brought by applying this technique to acoustic seismic data.
Other potential applications include avalanche prediction, landslides and failure
of machine parts [6].
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