
Review Article
Overview on the Role of Advance Genomics in
Conservation Biology of Endangered Species

Suliman Khan,1 Ghulam Nabi,1 MuhammadWajid Ullah,2 Muhammad Yousaf,3

Sehrish Manan,4 Rabeea Siddique,5 and Hongwei Hou1

1The Key Laboratory of Aquatic Biodiversity and Conservation, Chinese Academy of Sciences, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan, Hubei 430072, China
2Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
4National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University,
Wuhan 430070, China
5Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25000, Pakistan

Correspondence should be addressed to Hongwei Hou; houhw@ihb.ac.cn

Received 21 July 2016; Revised 23 October 2016; Accepted 8 November 2016

Academic Editor: Hieu Xuan Cao

Copyright © 2016 Suliman Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created
a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of
chronic exposure to anthropogenic activities. Various ex situ and in situmeasures have been adopted for conservation of threatened
and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them.
Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation.
Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding
about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance
genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools
for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive
genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota.
In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation
of endangered plant and animal species.

1. Introduction

Anthropogenic activities have changed the global environ-
ment, reducing the biodiversity through extinction and also
reducing the population size of already surviving species.
Due to man-made activities and interruptions, the current
rate of species extinction is 1,000 times higher than natural
background rates of extinction and future rates are likely to
be 10,000 times higher [1]. According to IUCN 2015 report,
currently 79,837 species were assessed, of which 23,250 are
threatened with extinction. Only one-third of the world’s
freshwater fishes are at risk from hydropower dam expansion

[2]. According to various estimates, each year few thou-
sands to 100,000 species extinct, most without ever having
been scientifically described [3]. Due to these tremendous
anthropogenic activities, the notion has been emerged that
earth biota is entering a “sixth” mass extinction [4] which
is based on the facts that recent rates of species extinction
are very high than prehuman background rates [5, 6]. Only
in the Island of Tropical Oceana, 1800 bird species were
reported to extinct in approximately 2000 years, since human
colonization [7]. Even in the scientifically advanced 19th and
20th centuries, numerous species of birds, mammals, reptiles,
fresh water fishes, amphibians, and other organisms extinction
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have been documented [5, 8, 9]. If species extinction persists
at such a tremendous speed, future generation will occupy
a planet with significantly reduce biodiversity, diminished
ecosystem services, reduced evolutionary potential, and ulti-
mately higher extinction rate and collapse ecosystem [3, 10].

It is a major challenge for biologists and ecologists to pro-
tect endangered species. Several measures have been taken
and efforts done in this regard which is extensively described
in literature such as population viability analysis, formulation
of metapopulation theory, species conservation, contribution
of molecular biology, development of global position system,
geographical information system, and remote sensing [11]. In
the recent era, genomics is a key part of all the biological sciences
and a quickly changing approach to conservation biology.The
genomes of many thousands of organisms including plants,
vertebrates, and invertebrates have been sequenced and the
results augmented, are annotated, and are refined through
the use of new approaches in metabolomics, proteomics,
and transcriptomics that enhance the characterization of
metabolites, messenger RNA, and protein [12]. The genomic
approaches can provide detail information about the present
and past demographic parameters, phylogenetic issues, the
molecular basis for inbreeding, understanding genetic dis-
eases, and detecting hybridization/introgression in organ-
isms [13]. It can also provide information to understand the
mechanisms that relate low fitness to low genetic variation,
for integrating genetic and environmental methodologies to
conservation biology and for designing latest, fastmonitoring
tools. The rapid financial and technical progress in genomics
currently makes conservation genomics feasible and will
improve the feasibility in the very near future even [14].
The objective of this review is to describe recently advanced
molecular technologies and their role in species conservation.
We have described the effectiveness and possibility of con-
servation technology using the advance genomic approaches
alongwith their limitations and future development.Wehope
that this review will provide fundamentals and new insights
to both new readers and experienced biologists and ecologists
in formulating new tools and establishing technologies to
prevent endangered species.

2. Biodiversity and Conservation

Biodiversity refers to the variety of all forms of life on
this planet, including various microorganisms, plants, ani-
mals, the ecosystem they form, and the genes they contain.
Biodiversity within an area, biome, or planet is therefore
considered at three levels including species diversity, genetic
diversity, and ecosystem diversity [15]. As the names indicate,
species diversity refers to the variety of species; genetic
diversity is the variation of genes within species and pop-
ulations and ecosystem diversity relates to the variety of
habitats, ecological processes, and biotic communities in the
biosphere [15]. Today’s biodiversity about 9.0 to 52 million
species is the result of billions of years of evolution, shaped
by natural phenomena, and forms the web of life of which
we are an integral part and upon which we are so fully
[15, 16]. For species adaptation and survival, genetic diversity
is the basic element and all the evolutionary achievement

and to some degree survival depend on it. Though both
adaptation and survival can be viewed in terms of space, time,
and fitness but fitness further includes adaptation, genetic
variability, and stability. The phenomenon of extinction can
be the result of either abiotic or biotic stresses, caused by
various factors such as disease, parasitism, predation, and
competition or due to habitat alteration or isolation due to
human activities, natural catastrophes, and slow climatic and
geological changes. Considering these persistent threats, it
is very crucial that genetic diversity in species should be
appropriately understood and efficiently conserved and used
[17].

At present, several species are in retreat, losing localities,
and increasingly threatenedwith extinction by various factors
mainly human intervention, and thus conservation biology
has become a major file in recent times. A “threatened”
designation generally recognizes a significant risk of becom-
ing endangered throughout all or a portion of a species’
range. Although extinction is a natural process, the human
understanding of the value of the endangered species and
its realization to intervene the stability of the environment
is rapidly increasing. Human interferes in the natural envi-
ronment of species in different ways, such as destruction of
natural habitat, the introduction of nonnative organisms, and
direct killing of natural components of a population [18].
Maintaining natural variation of species is beneficial from
an economical, ecological, and social perspective. Several
combinations of benefit occur for any particular species, and
some species are obviously more valuable than the others.

Currently, the maintenance of rare and endangered
species is amain focus of interest of biologists and geneticists.
The impact of extinction is not always apparent and difficult
to predict, and thus several parameters have been set and
different technologies are being developed. For example,
population viability analysis (PVA) quantitatively predicts
the probability of extinction and prioritizes the conservation
needs. It takes into account the combined impact of both
stochastic (including the demography, environment, and
genetics) and terministic (including habitat loss and over-
exploitation) factors [11]. Mandujano and Escobedo-Morales
using PVA method for howler monkeys (Alouatta palliata
mexicana) to simulate a group trend and local extinction
and to investigate the role of demographic parameters to
population growth under two landscape scenarios isolated
populations and metapopulation [19]. They found that the
rate of relative reproductive success and fecundity is directly
linked with the number of adult females per fragment. As
a result, the finite growth rate depended mainly on the
survival of adult females while in both isolated populations
and metapopulation the probability of extinction was expo-
nentially dependent on fragment size. Further, it establishes a
minimum viable population, predicts population dynamics,
establishes conservation management programs, and evalu-
ates its strategies. However, it is limited by several factors; for
example, it is often very difficult tomeasure small-population
parameters which need to be used in PVA models. This
necessitates the development of more comprehensive and
well-established approaches that can not only predict the
extinction but also predict rather at a very early stage.
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3. Role of Genomics Analysis Tools in
Species Conservation

The term genome is about 75 years old and refers to the
total set of genes on chromosomes or refers to the organism
complete genetic material [20]. Together with the effect of
an environment, it forms the phenotype of an individual.
Thomas Roderick in 1986 coined the term genomics as a
scientific discipline which refers to the mapping, sequencing,
and analysis of the genome [21]. Now due to universal
acceptance of genomics, it expands and is generally divided
into functional and structural genomics. Structural genomics
refers to the evolution, structure, and organization of the
genome while functional genomics deals with the expression
and function of the genome. Functional genomics needs
assistance from structural genomics, mathematics, computer
sciences, computational biology, and all areas of biology [22].

Genome analysis was once limited to model organisms
[23] but now the genomes of thousands of organisms
including plants, invertebrates, and vertebrates have been
sequenced and the results annotated are further refined and
augmented by using new approaches in metabolomics, pro-
teomics, and transcriptomics [12]. Nowadays, it is quite easier
to investigate the population structure, genetic variations,
and recent demographic events in threatened species, using
population genomic approaches. With recent developments,
hints for becoming endangered species can be found in their
genome sequences. For example, any deleteriousmutations in
the genes for brain function, metabolism, immunity, and so
forth can be easily detected by advanced genomic approaches.
Conversely, these can also detect any changes in their genome
which may result in enhanced functions of some genes, for
example, related to enhanced brain function and metabolism
that may lead to the abnormal accumulation of toxins [24–
26]. Specific genetic tools and analytical techniques are used
to assess the genome of various species to detect genetic
variations associated with specific conservation and popula-
tion structure. Currently, most commonly used genetic tools
for detection of genetic variations in both plant and ani-
mal species include random fragment length polymorphism
(RFLP), amplified fragment length polymorphism (AFLP),
random amplification of polymorphic DNA (RAPD), single
strand conformation polymorphism (SSCP), minisatellites,
microsatellites, single nucleotide polymorphisms (SNPs),
DNA and RNA sequence analysis, and DNA finger printing.
Analysis of genetic variation in species or population using
these tools is carried out either using current DNA of
individuals or historic DNA [27]. These tools target different
variables within the genome of target species and selection of
the specific tools and gnome part to be analyzed is carried out
based on the available information. For example, mitochon-
drial DNA in animals possessing a high substitution rate is
a useful marker for the determination of genetic variations
in individuals of the same species. However, these techniques
have several limitations associated with them. For instance,
genetic high substitution rate in animal mitochondrial DNA
is only inherited in female lines. Similarly, the mitochondrial
DNA in plants has a very high rate of structural mutations
and thus can rarely be used as genetic marker for detection
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Figure 1: Illustration of various genetic tools for detection of
genetic variations in species and their limitations in broad spectrum
applications.

of genetic variation. Various genomic tools used for the
detection of genetic variations in species and limitations
associated with them are summarized in Figure 1. Genome-
wide association studies (GWAS), development of genome-
wide genetic markers for DNA profiling and marker assisted
breeding, and quantitative trait loci (QTL) analysis in endan-
gered and threatened species can give us information about
the role of natural selection at the genome level and identifi-
cation of loci linkedwith the disease susceptibility, inbreeding
depression, and local adaptations. For example, most of the
QTLs have been detected using linkage mapping and cover
large segments of the genome in different species. Currently,
due to the availability of high-density SNP chips and genome-
wide analysis techniques, GWAS has proven to be effective in
identification of important genomic regions more precisely
within the genome of species, for example, those associ-
ated with genetic variations and important qualitative and
quantitative traits [28]. Further, use of population genetics
and phylogenomics can help us in identifying conservation
units for recovery, management, and protections [23]. As the
genome of more species is sequenced, the rescue of more
endangered species will become easier. The applications of
advance genomics in the conservation of threatened biota are
illustrated in Figure 2.

3.1. Demography. To identify recent and historic demo-
graphic events such as geographic population structure, gene
flow, admixture, and population size fluctuations, specific
genetic markers such as silent sites and microsatellites
have been traditionally used. Although traditional molecular
approaches have successfully analyzed andmodeled complex
demography histories, effective population size, nucleotide
diversity, and recombination, genomics have provided a
greater statistical and analytical power [29]. Genomics can
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Figure 2: Illustration of advance genomic approaches for the
conservation of species.

also provide information about speciation time, recombi-
nation rates, origin, relationship, and estimation of current
and ancestral effective population size [30, 31]. Similarly,
population genomics can improve our understanding about
microevolution through a better understanding of recom-
bination, assertive matting, mutation, and selection which
helps us in identifying genes that are crucial for adaptation
and fitness [32]. Future genetic analysis using SNPs can be
of more advantage in determination of genome structure
in regions with high linkage disequilibrium (LD) and low
haplotype number in order to accelerate and optimize gene
mapping based on genetic association, for example, finding
relatively frequent variants associated with complex traits.
However, this requires extensive knowledge of the LD pat-
terns in the genome. It has been suggested that LD in genomes
can be organized as a pattern of blocks of different length
possessing limited diversity and separated by regions of low
LD. Such structure can be the result of a number of possible
mechanisms, one of which is recombination hotspots [33].

3.2. Adaptive Genetic Variations. Selective forces shape adap-
tive variations and identification of these adaptive loci is
one of the most crucial focuses of genomics in conservation
and evolution [34]. Genomics can help us to identify genetic
changes resulting from local adaptation and the way these
alterations influence fitness, through access to genome-wide
data and annotated genomes inwild species.This information
will not only help in defining conservation units [35] but
also provide information about population potentials to
respond to changing environmental condition [36]. Similarly,
understanding the relationship between local adaptation and
geographic distribution of loci will also benefit to evaluate
habitat requirements for population persistence and the
ecological exchangeability of divergent populations [37].

Various techniques are used to identify genetic regions
associated with the adaptive traits. The most frequently used
method is QTL [38], which has been used for many wild
species such as cave tetra fish [39], deer mouse [40], and
the zebra finch [41]. For example, the yield improvement
of several crops such as wheat and maize has been made
possible through the indirect manipulation of QTLs that
control the heritable variability of the traits and physiological

mechanisms [42, 43]. The conventional approaches of crop
improvement such as breeding were based on little or no
knowledge of the factors governing the genetic variability
[44]. However, the conventional approaches for determin-
ing the genetic diversity are currently insufficient as the
factors, for example, abiotic factors, including heat, stress,
drought, water logging, and salinity, are becoming more
prevalent in certain areas. Consequently, the genetic dissec-
tion of quantitative traits controlling the adaptive response
in important crops to abiotic stresses is essential to allow
cost-effective applications of genomic-based approaches to
breeding programs aimed at improving the sustainability and
stability of yield under adverse conditions [43].Due to limited
life history availability, nowadays, RAD-sequence [13, 45],
GWAS [46, 47], and genome scan [48–50] are also used for
identification of genetic regions associated with the adaptive
traits. For example, GWAS was applied across the whole
genome in several crops to detect the nonrandom association
between the genomic markers scattered across the genome
and the adaptive trait of interest [51]. Historical recombina-
tion increases the resolution in the detection of the locus
controlling the adaptive traits [52], and thus GWAS identifies
the nonrandom association of alleles among a locus with the
adaptive traits (i.e., LD) as a result of action of natural selec-
tion [53]. The Major Histocompatibility Complex (MHC)
has a role in kin recognition, intraspecific territoriality, and
mate choice [54] and identification of polymorphism inMHC
loci through genomics can give us information about the
immunological fitness of the population [55] and further as
advances aremade can help us in conservationmanagements.

3.3. Inbreeding. Inbreeding of a species results in inbreeding
depression, which can cause reduction of evolutionary adap-
tive potential, and ultimately increases the risk of extinction
[56] but the exact mechanism of how this leads to the
inbreeding depression is poorly understood. Only it is the
genomics, which can shed light on the genetic architecture
of inbreeding depression, a number of loci that contribute
to inbreeding, and some underlying genetic mechanisms
such as epistasis, overdominance, dominance, and/or gene-
environment interactions [23]. For example, small scabious,
a perennial plant in Netherlands, is an endangered species
with highly fragmented and genetically eroded populations.
Various transcriptomics and epigenetic analyses of inbreed-
ing and inbreeding depression have been used to analyze this
plant in the context of conservation. Various methods such
as GWAS [57], gene expression profiles [58], and sequencing
the whole genome of both parents and offspring [59] are
used to identify loci related to inbreeding depression. The
most immediate effect of inbreeding in a population is to
reduce the frequency of heterozygotes, lowered fitness of
individuals, inbreeding depression [60], and loss of diversity
due to genetic drift by reducing effective population size
[61]. For example, Mooney andMcGraw studied Panax quin-
quefolius (American ginseng), a rare plant for outcrossing
and inbreeding [62]. For inbreeding, the Panax quinque-
folius were either self-pollinated or either cross-pollinated
within the population. On the other hand for outcrossing,
Panax quinquefolius were either cross-pollinated within the
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population or with cultivated plants. Offspring resulted from
all the crosses were followed for 4 years. Seedlings from
self-pollinated plants showed 33% smaller heights and 45%
smaller leaf areas relative to those from cross-pollination. On
the other hand, Seedlings from crosses with cultivated plants
showed 165% greater root biomass and 127% greater leaf area
relative to outcrosses within the population. This example
shows how inbreeding accelerates population extinction.

3.4. Hybridization and Introgression. Hybridization in some
plant taxonomic group requires molecular markers at the
genome level due to the peculiar characteristics of their
genome architecture. For example, the wild form of sun-
flower, a noxious weed, can serve as a weed to the crop form.
Hybridization can take place through pollinating insects
which can move some of the crop’s pollens into the weed
populations. Ongoing hybridization between closely related
species appears to be common in nature [63]. Genomics
can provide better insight in the roles of hybridization
and introgressive gene flow in natural populations and also
can clear our concept of how species can maintain their
genetic distinctiveness and reproductive isolation. Because
introgressive gene flow may decrease or increase fitness, a
better capability to identify the timing and occurrence of gene
flow between species is relevant to population management
and sustainability [23]. Translocated populations sometimes
can hybridize with closely related or native populations of
the same species, compromising the genetic purity of each
species. For example, when Cervus nippon (Sika deer) were
introduced to Western Europe, they readily inbreed with
native C. elaphus (red deer) and as a result in Great Britain,
there are no pure red deer [64]. Some extent of genetic
flow is through a normal and evolutionarily constructive
process, as the entire constellations of genotypes and genes
cannot be preserved. However, hybridization with or without
introgression in a rare or threatened species may compro-
mise their existence. In this regard, only advance molecular
technologies can play a significant role to understand the
underappreciated problem that is not always evident from
morphological observations alone [65].

3.5. Disease Susceptibilities. Infectious diseases, especially
viral ones, are generally considered as a cause of decline
in population [66] and are seldom considered a cause
of extinction. In conservation biology, except in unusual
circumstances, infectious diseases have a contributory or
marginal influence on extinction [67, 68]. Recently it has
been found that long term exposure to infectious diseases
may alter the constitution of genome [69] which has a role
in evolution and shaping of our biochemical individuality
[70]. Advanced genomics can identify relevant susceptible
genes and can provide better comprehensions into protective
and pathogenicmechanisms and can pinpoint newmolecular
targets for therapeutic and prophylactic interventions [71].
Genome-wide SNP studies and whole genome sequencing
can provide better understanding in wild life species man-
agements and treatment of diseases [72] as the immediate
goal for conservation management is to assess carrier status

and to provide the basis for species recovery [73]. Currently,
there are various examples under threat for various reasons
being severely impacted by infectious diseases such as canine
distemper in lions and black-footed ferrets [74, 75], Marburg
and Ebola hemorrhagic diseases in anthropoids [76], trans-
missible facial tumor disease in Tasmanian devils [77], Kola
retrovirus [78], and Chlamydia pecorum in Koalas [79]. In
conservation biology, though host-pathogen interaction is a
subject of particular interest, the possibility that pathogen
causes extinction in certain context is rarely understood.
However, increasing developments in the molecular tech-
nologies can provide substantial contribution to precisely
understand the microbiological processes in wildlife [80].

4. Future Hope from Advance Genomics

Approximately, one-quarter of all avian species are either
nearly threatened or threatened. Only 73 species of which
are rescued from extinction. One of them was Nipponia
nippon (crested ibis), which only from seven individuals
was recovered, using high-quality genome sequences [25].
Even scientists for the first time created a viable clone of
the world smallest endangered sheep, European mouflon,
providing a hope to save them from extinction. Similarly,
the original gene pool of any extinct population can be
regenerated via cloning, by preserving their genetic diversity,
through collection of cell samples. Even if cloning ismanaged
properly, it may expand the genetic pool, can help us bring
back genetic materials from dead animals, infertile animals,
and even young animals that were too immature to breed [81].
For those extinct organisms for which no living cell exists,
cloning is impossible; however, genome editing is the only
means to bring extinct species or more accurately extinct
traits back to life [82].

5. Limitations of Genomics

The most important impediment in conservation genomics
is either lack of availability of samples or difficulty in sample
collections of endangered species. Similarly, production of
genomics data is easier and faster, but data analysis tech-
nique mostly lags. In addition, many statistical programs
for population genetics need to be adapted to large data
sets and require significant advances in bioinformatics and
computational biology. Application of genetic data may
result in defining units of conservation too narrowly, may
impede conservation actions, and may stand in the way of
endangered species management [83]. Further, genomes of
some endangered species have not been sequenced yet and
this requires not only heavy funds but considerable time.
Some policies relating to sample exchange among countries
also retard the speed of biological conservation.

6. Conclusions and Future Prospects

Conservation genetics is mainly focused on to determine
the relationship between species or population, study the
cross-species variation, and describe the interactions between
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species and their threatening processes. In the current
manuscript, we have overviewed the problems of conser-
vation of endangered species and possible solutions and
genetic and genomic approaches to apprehend them. Besides
preventing the threatened species, diversity can benefit from
looking beyond these and considering the genome of rare
species and others that share a common environment.
By identifying the factors or processes that influence the
genomic composition of the threatened or extinction species,
we can predict and identify the ecologically and genetically
unique species. In the future, we hope that as advancement
continues in genomics, we will be able to accurately pre-
dict the viability of local population and also to predict
the ability of populations to adapt to climatic change and
other anthropogenic challenges. Both climatic changes and
anthropogenic activities due to a population explosion will
be increasing day by day. Therefore, both these factors are a
serious menace to biodiversity loss. The only hope to prevent
their loss is expected from advance genomics. Further studies
are also needed to appropriately understand and utilize
environmental and genomic data and better ways to integrate
them with multidisciplines, including policy analysis for
effective conservation. Further, special policies should be
established, to exchange the samples and genetic data of
endangered species, in order to enhance species survival by
the efforts of multinational groups.
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