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ABSTRACT 

Converging evidence supports a distributed-plus-hub view of semantic processing in the 

brain, in which there are distributed modular semantic sub-systems (e.g., for shape, colour, and 

action) connected to an amodal semantic hub. Furthermore, object semantic processing of colour 

and shape, and lexical reading and identification, are processed mainly along the ventral stream, 

while action semantic processing occurs mainly along the dorsal stream. In Experiment 1, 

participants read a prime word that required imagining either the object or action referent, and 

then named a lexical word target. In Experiments 2 and 3, participants performed a lexical 

decision task (LDT) with the same targets as in Experiment 1, in the presence of foils that were 

legal nonwords (NWs; Experiment 2; allows orthography, phonology, and semantics to 

contribute to responding) or pseudohomophones (PHs; Experiment 3; allows only orthography to 

contribute to responding). Semantic priming was similar in effect size regardless of prime type 

for naming and the LDT with NW foils, but was greater for object primes than action primes for 

the LDT with PH foils, suggesting a shared-stream advantage when the task demands focus on 

orthographic lexical processing. Experiment 4 used functional magnetic resonance imaging 

(fMRI) and identified the potential loci of shared-stream processing to regions in the ventral 

stream anterior to colour sensitive visual area V4 cortex and anterior to lexical and shape 

sensitive regions in the left fusiform gyrus, as well as in cerebellar lobule VI. Action priming 

showed more activation than object priming in dorsal stream motion related regions of the right 

parietal occipital junction, right superior occipital gyrus, and bilateral visual area V3. Experiment 

5 identified structural connectivity using diffusion tensor imaging (DTI), and implicated 

connections from the cerebellar lobule VI to the anterior temporal lobe (ATL) semantic hub via 

the thalamus, supporting that this cerebellar region may act as a visual object semantic sub-

system of the semantic network. The behavioural experiments demonstrate that object semantic 

and lexical processing are temporally shared, and the fMRI activation supports the theory that 

spatially shared-stream activation occurs in the ventral stream during object (but not action) 

priming of lexical processing. The DTI connectivity analysis supports the theory that lobule VI 

may act as an additional object semantic sub-system. This research suggests that shared-stream 

processing occurs between lexical identification and object semantic processing in the ventral 

stream, providing preferential access to object semantics via lexical processing. This shared-

stream processing has implications for models of reading and the semantic system, which 
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currently do not delineate between different modalities of semantic processing. The shared-

stream regions identified may prove useful for pre-surgical localization of important 

intersections between the reading and semantic networks. These results also provide predictions 

that pure alexia and surface dyslexia patients with comorbid semantic deficits may be 

disproportionately affected by object semantic deficits compared to action semantic deficits. 
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CHAPTER 1: Introduction 

Portions of this thesis have been published or submitted as:  

Neudorf, J., Ekstrand, C., Kress, S., Neufeldt, A., & Borowsky, R. (2019). Interactions of  

reading and semantics along the ventral visual processing stream. Visual Cognition,  

27(1), 21–37. https://doi.org/10.1080/13506285.2019.1577319  

(Chapters 1-2 and 4, particularly Experiments 1-3),  

and  

Neudorf, J., Ekstrand, C., Kress, S., & Borowsky, R. (submitted). FMRI of shared-stream  

priming of lexical identification by object semantics along the ventral visual processing  

stream. Under review in Neuropsychologia.  

(Chapters 1 and 3-4, particularly Experiments 4-5). 

 

Our interpretation of the meanings of words shape the way we perceive and interpret our 

subjective experience of reality. Associated meanings for a referent object’s colour, shape, and 

actions are stored in semantic memory, and are intricately connected to the words we use to label 

and describe them. Endel Tulving was among early researchers to define separate categories of 

long-term memory, including episodic memories for events and semantic memories for 

associated meanings (Tulving, 1984). Early theories about how the brain stores and processes 

semantic information include Fodor’s (1983) theory that semantic memory relied on a general, 

abstract semantic system utilizing high connectivity in the brain. A commonly used behavioural 

paradigm for examining semantic processing is the semantic priming paradigm, which 

demonstrates that the reading of a prime word facilitates the reading of a related target word, 

supporting the theory that word representations connected via semantic memory spread 

activation to one another (e.g., Collins & Loftus, 1975; see McNamara, 2005 for a review).  

Although important research has worked to simulate, predict, and understand semantic processes 

(e.g., picture naming, Rogers et al., 2004; words, Armstrong & Plaut, 2016) and reading 

processes (e.g., the Dual Route Cascaded (DRC) model, Coltheart, Rastle, Perry, & Langdon, 

2001; the Parallel Distributed Processing (PDP) model, Plaut, McClelland, Seidenberg, & 
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Patterson, 1996; the Connectionist Dual Process (CDP++) model, Perry, Ziegler, & Zorzi, 2010; 

see also Wingerak, Neudorf, Ekstrand, & Borowsky, 2017 for a direct comparison of some of 

these models), the overlapping brain networks utilized by these processes can and should lead to 

novel, testable hypotheses. The current research, motivated by evidence from clinical and 

neuroimaging research in the fields of semantic processing and reading suggesting that visual 

semantics and lexical reading may utilize shared-stream regions of the ventral visual processing 

stream, investigates whether there is a temporal (i.e., behavioural reaction time, RT) priming 

advantage for visual object word primes (“imagine this object”) over action word primes 

(“imagine this action”) in semantic priming word naming and lexical decision paradigms. An 

object priming advantage for lexical processing in these paradigms would support the theory that 

cognitive processing for object semantics and lexical word representations are temporally shared. 

Furthermore, a functional magnetic resonance imaging (fMRI) investigation of this semantic 

priming paradigm will explore this theory by testing whether there is spatial evidence for shared-

stream ventral activation between lexical and semantic processing using the semantic priming 

lexical decision paradigm.  

1.1 Models of Semantic Processing 

The distributed-only model of semantic processing posits that there are distributed sets of 

connected, modality specific sub-systems for processing colour, shape, and action, which are 

integrated into a semantic network (e.g., Shallice, 1988, 1993). Alternatively, the distributed-

plus-hub model of semantic processing describes an additional amodal semantic hub located in 

the anterior temporal lobe (ATL) connected to all the sub-systems of semantic processing and 

supporting integration of semantic representations, and is supported by converging evidence 

from neuroimaging, computational modeling, and neuropathology cases (e.g., Binney, Embleton, 

Jefferies, Parker, & Lambon Ralph, 2010; Visser, Jefferies, & Ralph, 2010; see Patterson, 

Nestor, & Rogers, 2007 for a review; see Figure 1.1). Patterson et al. (2007) reviewed the 

literature around the debate for amodal ATL semantic processing versus distributed modal 

semantic processing and pointed to evidence from fMRI, neuropathology cases, and 

computational modeling (e.g., Rogers & McClelland, 2003), demonstrating that global deficits 

were associated with localized ATL damage while specific modal deficits were related to 

damage in one or more of the modal regions outside of the ATL. Both the distributed-only and 

the distributed-plus-hub models of semantic processing hold that there are distributed sub-
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systems of semantic processing, and have been supported by evidence that lesions can cause 

selective dysfunction of certain types of semantic memory (e.g., Goodale & Milner, 1992). 

Neuroimaging and neuropathology evidence suggests that the semantic sub-systems responsible 

for processing action are located mainly within the dorsal visual processing stream, proximal to 

the motor and sensory cortical regions involved (e.g., hand-related vs. foot-related objects, 

Esopenko et al., 2012), while visual sub-systems for colour and shape are processed mainly 

within the ventral visual processing stream just anterior to the modalities involved (e.g., colour 

and shape; Patterson et al., 2007; see Figure 1.1; see also Chao & Martin, 1999, Thompson-

Schill, Kan, & Oliver, 2006, Martin, 2007, Martin, Douglas, Borghesani et al., 2016, and 

Newsome, Man & Barense, 2018). 

 

Figure 1.1. Sublexical phonetic decoding and lexical processing superimposed on the 

distributed-plus-hub architecture of semantic processing, showing the potential for shared 

processing between the action semantic and phonetic decoding processing, and between object 

semantic (shape and colour) and lexical processing, adapted from Borowsky et al. (2006) and 

Patterson et al. (2007). Background brain adapted from Gray (1918) illustration. 
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Thompson-Schill et al. (2006) proposed that semantics are processed in brain regions that 

are anterior to brain regions involved in perception (i.e., semantics are processed downstream 

from earlier perceptual processes). For example, colour semantic processing has been shown to 

occur just anterior to the colour perception area (V4) that has been well documented (e.g., Chao 

& Martin, 1999). Similarly, object shape semantic processing not related to action occurs in a 

region of the left fusiform gyrus (FuG) that has been shown to be activated by semantic tasks 

involving reading of food words (inanimate), but not tool and animal words (interactive/animate; 

Carota, Moseley, & Pulvermüller, 2012). This region has also been suggested to be an interface 

between orthographic and semantic processing through studies of lesion deficits, owing to its 

position just anterior to the visual word form area (Purcell, Shea, & Rapp, 2014). Processing in 

the ventral stream has been described as developing in a gradient from basic perceptual 

sensitivity to generic semantic sensitivity from posterior to anterior regions, respectively. This 

has been supported by research in word reading (Borghesani et al., 2016), semantic question 

tasks (Martin, Douglas, Newsome, Man, & Barense, 2018), and semantic ‘how’ tasks (“How do 

you interact with the object?”; Borowsky et al., 2005; Esopenko et al., 2012). 

1.2 Two-stream Model of Visual Processing 

Seminal primate lesion research by Ungerleider and Mishkin (1982) demonstrated that 

impaired object discrimination performance, which they labeled ‘what’ identification, was 

observed following inferior temporal cortex lesions, while impaired landmark discrimination 

performance, which they labeled ‘where’ identification, followed parietal cortex lesions. 

Goodale and Milner (1992) later proposed that the two visual processing streams should be 

described as the ‘what’ versus ‘how’ streams, with the ‘what’ stream processed ventrally 

(occipital-temporal-frontal) and the ‘how’ stream processed dorsally (occipital-parietal-frontal; 

Goodale & Milner, 1992). The ventral ‘what’ stream was described as being involved in object 

identification, while the dorsal ‘how’ stream was involved in object interaction. Goodale and 

Milner’s (1992) patient DF suffered lesions to the lateral occipital cortex, a part of the ventral 

processing stream, and consequently developed visual form agnosia. DF had impaired ventral 

‘what’ identification processing, as illustrated by her acquired inability to process colour and 

visual information about an object, but she had intact dorsal ‘how’ interaction processing, and 

thus was able to interact with a presented object as the task required (e.g., correctly putting a card 

through a slot despite not being able to identify the orientation). The comorbidity of processing 
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impairments for various types of visual information in this ventral region indicates there may be 

colocation of processing for visual identity characteristics. 

Neuroimaging evidence has also found support for a distinction between the ventral-what 

stream and the dorsal-how stream for word reading. It has been shown using positron emission 

tomography (PET) that words with more action-related semantic meaning (e.g., tools) are 

processed more in the dorsal stream than words with shape-related semantic meaning (e.g., 

animals; see Damasio et al., 1996; Damasio, Tranel, Grabowski, Adolphs, & Damasio, 2004). 

Using fMRI, Borowsky et al. (2005) presented participants with either words or pictures in one 

of eight locations around a central fixation point and asked them to report in terms of ‘what’ 

(name the stimulus; e.g., ‘jeans’), ‘where’ (cardinal location on screen; e.g., ‘northwest’), or 

‘how’ (how to interact with the stimulus; e.g., ‘wear them’). The results revealed both shared and 

unique patterns of activation, with the ‘what’ task activating more of the ventral stream and the 

‘where’ and ‘how’ tasks activating more of the dorsal stream, with ‘where’ processing occurring 

more in the posterior parietal areas and ‘how’ processing leading into the anterior frontal regions 

proximal to the motor cortex (Borowsky et al., 2005). This evidence from object ‘what’ and 

‘where’/‘how’ tasks supported the dissociated ventral visual processing of object identification 

and dorsal visual processing for object location and interaction, while also showing similarly 

dissociated streams of activation for lexical and sublexical reading (described below, see 

Borowsky, Esopenko, Cummine, & Sarty, 2007). Esopenko et al. (2012) used the ‘how’ task in 

an fMRI study to provide evidence for embodiment of semantic processes utilizing the motor and 

sensory processes of the dorsal stream, whereby hand and foot objects produced activation near 

respective hand and foot motor and sensory regions. Ekstrand et al. (2017) showed converging 

behavioural evidence for this semantic processing near sensory cortex (most earlier studies 

focused on just motor cortex) in the dorsal stream, in a behavioural paradigm of vibratory 

sensory priming of the ‘how’ task. 

1.3 Dual-route Reading Models and the Two-stream Model of Visual Processing 

Dual-route models of reading (e.g., Coltheart, Rastle, Perry, & Langdon, 2001; Perry, 

Ziegler, & Zorzi, 2010) also describe two distinct pathways: the orthographic lexical pathway 

accesses the word meaning from the whole word visually, which then activates the appropriate 

phonology, while the phonetic decoding pathway converts letters to sounds (i.e., grapheme-to-

phoneme conversion (GPC)) in order to pronounce the word and then access meaning (see also 
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Poeppel & Monahan, 2008 for a model of speech perception that is consistent with this dual-

route model). Neuroimaging research has also shown preferential activation of the ventral-lexical 

stream during lexical processing of language through reading of exception words (words that 

cannot be sounded out to be read correctly; e.g., ‘yacht’; Borowsky et al., 2006; Borowsky et al., 

2007; Cummine et al., 2013; Gould, Mickleborough, Ekstrand, Lorentz, & Borowsky, 2017), and 

of the dorsal-sublexical stream during phonological processing when reading 

pseudohomophones (PHs; non-words that must be sounded out in order to be read correctly; e.g., 

‘yawt’). Highly familiar regular words (e.g., ‘boat’) have also been shown to activate 

predominantly the ventral-lexical stream, similar to exception word activation, because although 

regular words can be read both lexically and sublexically, highly familiar regular words tend to 

be automatically processed orthographically because of how frequently they are encountered in 

text (Cummine et al., 2013). 

Current computational models of reading (e.g., Coltheart et al., 2001; Perry et al., 2007; 

Plaut, McClelland, Seidenberg, & Patterson, 1996) typically describe a semantic system 

connected to orthographic and phonological systems (the “orthographic lexical system” and 

“phonological lexical system” for dual-route models; see Figure 1.2). In these computational 

models, it is assumed that the type of semantic information does not influence the efficiency with 

which the information is sent and received from the semantic system for orthographic or 

phonological processing. Currently, these models assume that the orthographic and phonological 

lexicons should have fixed excitatory parameters for connections to the semantic system. 

However, neurological and clinical evidence suggest that there is a semantic hub integrating 

information from distributed sub-systems for processing different types of semantic information 

(Patterson et al., 2007). It may be that access to the semantic system is facilitated when a 

semantic sub-system is processed within the visual stream of reading being used (i.e., object and 

ventral-lexical; see Figure 1.1). 
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Figure 1.2. A dual-route model of reading, with the ‘Dorsal Stream’ route corresponding to 

sublexical phonetic decoding and the ‘Ventral Stream’ route corresponding to orthographic 

lexical processing (adapted from Borowsky et al., 2013; abbreviations: Occ-Temp: Occipito-

Temporal; FO-ant. Insula: Fronto-Occipital, anterior Insula; IT-MT: Inferior-Temporal, Middle 

Temporal; post. Insula-IF: Posterior Insula, Inferior-Frontal; IT-MT-AT-Frontal-PreM: Inferior-

Temporal, Middle Temporal, Anterior-Temporal, Frontal, Premotor area; SMA-M1: 

Supplementary Motor Area, Primary Motor Cortex). Colours are coded to correspond with those 

in Figure 1.1. 

1.4 The Current Research  

            The current experiments seek to elucidate the behavioural relationship between reading 

and semantic processing using semantic priming of naming (Experiment 1) and lexical decision 

task (LDT) paradigms (Experiments 2 and 3). Specifically, reliance on lexical processing was 

assessed by using familiar words as targets. Prime words with either object related meanings 

(object primes; e.g., ‘canoe’) or action related meanings (action primes; e.g., ‘paddled’) were 

used to prime differential semantic sub-systems by instructing participants to imagine the objects 

for the former and the actions for the latter. Object primes were chosen to encourage reliance on 

the ventral stream, as their corresponding semantic sub-systems have been shown to be located 

more ventrally, and thus may result in shared-stream activation with the ventral-lexical stream of 

reading. Conversely, action primes were chosen to encourage reliance on the dorsal stream, as 

their corresponding semantic sub-systems have been shown to be located more dorsally. To 

further restrict processing to the ventral lexical stream, a second experiment had participants 

perform a lexical decision task with familiar words as targets and legal nonwords (NW) as foils 



8 

 

(Experiment 2). A third experiment restricted processing to the ventral lexical stream even 

further by using PH foils in an LDT, whereby the PH foils would cause participants to inhibit 

phonological and semantic processing in order to correctly respond to the word targets 

(Experiment 3; e.g., see Cummine, Aalto, Ostevik, Cheema, & Hodgetts, 2018 for a discussion 

of phonological inhibition in LDT with PH foils). Specifically, the LDT provides a way to more 

closely monitor orthographic lexical processing, particularly when the foils serve to eliminate 

reliance on other systems (i.e., PH foils preclude semantic or phonological reliance in the LDT, 

and sharpen the focus even more on what is happening within the orthographic lexical system). 

Although various metrics have been used to measure semantic variables (e.g., associative 

strength, Canas, 1990; semantic density, Shaoul & Westbury, 2010; semantic distance, Mandera 

et al., 2016), separable dimensions of object versus action semantics have not been studied in this 

way before. Similar past research includes research on priming of noun and verb targets. For 

example, Kersten and Earles (2004) found that verb targets benefit more from semantic priming 

than noun targets. However, the current research focused on different types of primes, setting it 

apart from previous research focusing on types of targets (e.g., Kersten & Earles, 2004; Moss, 

Ostrin, Tyler, & Marslen-Wilson, 1995). Additionally, although all object primes were nouns 

and all action primes were verbs, the related primes were not just required to be associatively 

related, but also were required to be related in terms of being able to interact with the target 

using the action described, or for the object prime to be visually similar to the target. These 

requirements for the prime words, while maintaining a within-target design, set this research 

apart from previous studies and was developed to serve as a manipulation of the visual 

processing stream and the semantic relationship between the semantic prime and the target. 

Using the same semantic priming lexical decision behavioural task described above 

(Experiment 3), Experiment 4 used fMRI to examine the hypothesis that the shared-stream 

priming effect could be localized to spatially-shared regions of the ventral-lexical visual 

processing stream. Experiment 5 used diffusion tensor imaging (DTI) to investigate whether the 

cerebellum may act as an additional object semantic subsystem in the semantic network based on 

fMRI results from Experiment 4. 

1.4.1 Hypotheses 

The neurobiologically-inspired distributed-plus-hub model leads to the following 

behavioural hypotheses regarding the underlying cognitive architecture. To the extent that word 
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target priming relies on modal object semantic processing that is shared with lexical reading, a 

two-way interaction was expected, whereby the size of priming effects would be commensurate 

(i.e., largest for shared prime-target streams). Considering that the semantic sub-systems for 

objects are thought to be located more ventrally, to the extent that they are shared with lexical 

word target processing, word target RTs may exhibit a larger priming effect with object primes 

than with action primes, particularly when task demands focus on orthographic lexical 

processing (i.e., LDT with PH foils). Conversely, to the extent that priming relied on the amodal 

semantic hub, the size of priming effects should be similar regardless of shared prime-target 

stream processing. For the neuroimaging analysis, we hypothesized that there should be regions 

in the ventral stream associated with colour semantics (just anterior to V4 in FuG) and shape 

semantics (anterior FuG) that would produce greater activation in contrasts between lexical word 

targets and the sublexical PH foils for object priming than action priming, owing to the ventral 

shared-stream processing for lexical and object semantic processing. Based on observed 

contrasts in the cerebellum we hypothesized that the structural connectivity DTI analysis would 

show robust structural connectivity between the cerebellum and semantic regions of the temporal 

lobe including the ATL semantic hub as a demonstration of the potential for the cerebellum to be 

integrated in the semantic network as an object semantic sub-system. 
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CHAPTER 2: Behavioural Semantic Priming of Reading and Lexical Decision 

2.1 Experiment 1 

2.1.1 Method 

2.1.1.1 Participants 

 Twenty-four English first-language participants were recruited from the undergraduate 

psychology participant pool at the University of Saskatchewan. Of the 24 participants analyzed, 

12 were female and 12 were male, with a mean age of 21.960 (SEM = 1.587, range 18 to 48). 

The participants’ consent was obtained, and the experiment was performed in compliance with 

the relevant laws and institutional guidelines and was approved by the University of 

Saskatchewan Research Ethics Board (see Appendix A). 

2.1.1.2 Apparatus and stimuli 

 Stimuli were presented using Eprime 2.0 (Psychology Software Tools, Pittsburgh, PA) on 

a 13-inch Compaq 7500 CRT monitor. White characters in 12-point Courier New font were 

presented against a black background, subtending a vertical visual angle of 1.0º, a minimum 

horizontal visual angle of 1.9º, and a maximum horizontal visual angle of 5.7º. Vocal RT was 

recorded using a microphone interfaced with the serial-response (SR) box. The participant began 

each prime-target trial by pressing the rightmost button on the SR box with their right hand index 

finger. 

 The stimuli were selected from datasets with ratings of imageability (the word’s capacity 

to arouse a sensory experience such as a mental picture or sound, on a scale from 1-7; Cortese & 

Fugett, 2004), and body object interaction (BOI; the ease with which one can physically interact 

with a word’s referent, on a scale from 1-7; Tillotson, Siakaluk, & Pexman, 2008). From these 

merged datasets of words, 60 stimuli rated highly on imageability and BOI were chosen that 

could be matched with believable object and action primes. Primes were selected from words 

with the closest possible semantic distance in the Snaut distributional semantics model, a 

computational prediction method applying the Continuous Bag of Words (CBOW) model to 

corpora of 385 million words from Open Subtitles (http://opensubtitles.org) and the UK Web 

Archiving Consortium (UKWAC; Ferraresi, Zanchetta, Baroni, &, Bernardini, 2008), consisting 
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of 2 billion words (Mandera, Keuleers, & Brysbaert, 2016). See Appendix A for the list of target 

words with their associated object and action primes. The 58 stimuli included in the analysis 

were subjected to a paired-samples t-test to compare the semantic distance between the Object 

and Action prime groups, which did not produce a significant difference, t(57) = -1.32, p = 0.19. 

2.1.1.3 Design 

 A 2 (Priming; Related vs. Unrelated) within-subject x 2 (Prime Type; Object vs. Action) 

within-subject experimental design was used. Participants completed 4 blocks of 60 prime-target 

reading trials, followed by a relatedness judgement of each of the prime-target related pairs on a 

5-point scale. For the first 2 participants, the first 2 blocks were action primes and the last 2 

blocks were object primes, and for the next 2 participants the first 2 blocks were object primes 

and the last 2 blocks were action primes. Each target was presented once in each block, and was 

presented with a related prime in one block of each prime type and an unrelated prime in the 

other block of each prime type. The order of related vs. unrelated primes was counterbalanced, 

with odd participants receiving one half of the targets with related primes first, and even 

participants receiving the other half of targets with related primes first. The relatedness 

proportion within each block was 50%, meaning half of all prime-target pairs in each block were 

related, while the other half were unrelated. 

2.1.1.4 Procedure 

  After obtaining consent, participants were tested individually for 30 minutes in a quiet 

room for 1 course credit through the psychology undergraduate participant pool. For the object-

priming blocks, the participants were instructed to imagine what the object prime word looked 

like, in terms of clearly visualizing it, and then name the target word. For the action-priming 

blocks, the participants were instructed to imagine performing the action depicted by the action 

prime word and then name the target word. On each trial, a white fixation cross (+) appeared at 

the center of the screen. When the participant pressed the rightmost button on the SR box the 

prime appeared for 300 ms, followed by an interstimulus interval (ISI) of 700 ms, and then an 

auditory beep was presented and the target appeared, resulting in a 1000 ms stimulus onset 

asynchrony (SOA). The 50% relatedness proportion combined with the relatively long SOA of 

1000 ms were chosen so as to allow every opportunity for both automatic and controlled 

expectancy priming to operate. The target disappeared when the voice-key was triggered by the 

participant’s response, at which point the experimenter entered whether the response was correct, 
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incorrect, or spoiled (if the voice-key was not triggered by the onset of speech; see Figure 2.1). 

 

 

Figure 2.1. Example progression of an object prime, word target trial. 

 Participants named the word after reading a prime that required imagining either 

visualizing an object (to prime the ventral stream) or performing an action (to prime the dorsal 

stream). A blocked presentation of object and action primes was used in order to optimize 

consistent reliance on the particular visual stream. The prime was presented before each target 

and naming RT was recorded using a voice key trigger. Sixty target words were presented for 

each of the 4 blocks, matched with either one related or one unrelated action prime for each of 

the 2 action blocks, as well as one related or one unrelated object prime for each of the 2 object 

blocks. Following the 4 prime-target blocks, participants rated the related 60 action prime-target 

pairs and 60 object prime-target pairs on relatedness from 1 (very unrelated) to 5 (very related). 

The participants then received the debriefing form and an explanation of the experiment. 

2.1.2 Results 

 The trial-level naming RT was analysed in a linear mixed model (LMM) and the trial-

level errors were analysed in a general linear mixed model (GLMM) with a binomial distribution 

and logit link function. The LMM and GLMM analyses were performed using the lmer and the 

glmer functions respectively in the lme4 package version 1.1.13 (Bates, Mächler, Bolker, & 
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Walker, 2015) in R version 3.4.2 (R Core Team, 2017). Priming (Related vs. Unrelated; within-

subject) and Prime Type (Object vs. Action; within-subject) were modeled as fixed effects, plus 

the 2-way interaction, along with the counterbalancing order (Object prime blocks first vs Action 

prime blocks first; between-subject) and the corresponding relevant interactions with Prime Type 

and with Priming x Prime Type. For the initial model, random intercepts for items and subjects 

were included, and fixed effects factors of Prime Type and Priming plus the two-way interaction 

were included as random slopes for items and subjects (when the factor was a within-subjects 

manipulation). The likelihood-ratio test (LRT) criterion was then used with α = .20 in a 

backward-selection heuristic to obtain a parsimonious model for the RT analyses as 

recommended by Matuschek, Kliegl, Vasishth, Baayen, and Bates (2017). After removing 

random slopes with the least variance until the model converged, either this converging model 

was selected or a more parsimonious model passing the LRT criterion was selected. Linear 

mixed models do not produce precise degrees of freedom, so a t ratio of 2 was used as the 

criterion for significance (see Baayen, Davidson, & Bates, 2008). Reaction time was the primary 

dependent variable of interest, while error rate (ER) was included as an additional analysis to 

determine whether any significant speed-accuracy trade-offs occurred. Trials with RTs greater 

than 3 standard deviations from the mean of the Stimulus Type were discarded from analysis in 

order to deal with the positively skewed distribution of the RT data (1.3% of trials). The items 

‘boot’ and ‘teeth’ were removed from the analysis due to a high occurrence of errors for the PH 

pronunciation of ‘bute’ across many participants, and a high proportion of spoils where the 

microphone did not detect the onset of speech for ‘teeth’. The figure means presented are partial 

means, with the effects of Counterbalance and its interactions partialled out, using the remef 

function provided in the R remef package (Hohenstein & Kliegl, 2015).  

2.1.2.1 Reaction time 

 A Priming main effect was observed whereby unrelated primes produced slower target 

naming RTs than related primes, Estimate = 11.627, SE = 5.406, t = 2.151. A main effect of 

Prime Type was observed whereby object primes produced faster target naming than action 

primes, Estimate = -31.316, SE = 10.059, t = -3.113. A Prime Type x Counterbalance interaction 

was observed whereby object primes resulted in slower target naming for those participants who 

received the object prime blocks first, Estimate = 47.055, SE = 14.218, t = 3.310. All other main 
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effects and interactions were not significant at the t > 2.0 cut-off (see Table 2.1)1,2. See Figure 

2.2 for partial effects means produced by the remef package in R (Hohenstein & Kliegl, 2015) 

and 95% confidence intervals from the Priming x Prime Type interaction of the LMM analysis 

(this method of showing confidence intervals for partialled mean figures of LMM analysis is a 

novel approach first applied in Neudorf, Ekstrand, Kress, Neufeldt, & Borowsky, 2019). The 

partial effects means have been used in recent research to more clearly show the statistical 

effects, which can make interpretation more straightforward (e.g., Hohenstein, Matuschek, & 

Kliegl, 2017). 

 

 

 

 

Table 2.1. Linear Mixed Model for Experiment 1 RTs with variances and standard deviations for 

random effects and estimates of coefficients, standard errors and t ratios for fixed effects. 

 RT 

Random effects Variance  SD 

Items    

Intercept 347.533  18.642 

Subjects    

Intercept 4970.548  70.502 

Priming 179.068  13.382 

Prime Type 1043.848  32.309 

Prime Type x Priming 192.707  13.882 

Residual 4768.801  69.057 

 
1 To address concerns about the inclusion of the same targets in all four blocks, an extra factor of Block (1, 2, 3, or 

4) was included in an additional model. The effect of Block was not significant, Estimate = -3.854, SE = 4.530,  

t = -0.851, while Priming was significant with block included in the model, Estimate = 11.566, SE = 3.741,  

t = 3.091, demonstrating that Priming accounted for variance over and above across-block repetition priming. 
2 In order to verify that subject level differences in subjective ratings of relatedness between the Object and Action 

Prime-Target pairs were not biasing the Priming effect towards either the Object or Action primes, an additional 

model was run with the ratings used in place of the dichotomous Priming factor, where Unrelated was given a value 

of 0, and Related pairs were assigned a value from 1 to 5 based on the relatedness rating given by the participant, for 

a continuous measure of prime-target relatedness. With this variable in place of the dichotomous Priming factor, the 

same pattern of effects was observed, except that the Prime Type x Counterbalance interaction was not significant, 

Estimate = 30.229, SE = 18.500, t = 1.634. 
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Fixed Effects Estimate Std. Error t-value 

Intercept 543.903 20.671 26.312 

Priming (Unrelated-Related) 11.627 5.406 *2.151 

Prime Type (Object-Action) -31.316 10.059 *-3.113 

Priming x Prime Type 3.863 6.679 0.578 

Counterbalance (Object 1st-Action 1st) -53.150 29.025 -1.831 

Prime Type x Counterbalance 47.055 14.218 *3.310 

Priming x Prime Type x Counterbalance -6.438 5.756 -1.118 

*Asterisks denote significant fixed effects (t>2.00). 

 

Figure 2.2. Experiment 1 partial mean target naming RTs (with partial mean ERs above each) 

for targets as a function of Priming and Prime Type for the LMM analysis. Error bars represent 

95% confidence intervals of the repeated measures Priming x Prime Type interaction for the 

LMM analysis. 

2.1.2.2 Error rate 

 Although most of the previous literature involving LMM analyses of word identification 

data have not included analyses of error rates, a GLMM using the binomial distribution is 

presented here as an appropriate method of analyses. No significant effects were observed at the 

z > 2.0 cut-off, with no evidence for speed accuracy trade-offs (see Table 2.2). See Figure 2.2 for 
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partial mean ERs. 

Table 2.2. Experiment 1 ERs on targets analyzed in a General Linear Mixed Model using 

Binomial distribution and logit link with variances and standard deviations for random effects 

and odds ratio (OR) estimates of coefficients, standard errors of the estimates and z ratios for 

fixed effects. 

 Errors 

Random effects Variance  SD 

Items    

Intercept 1.390  1.179 

Priming 1.597  1.264 

Prime Type 0.960  0.980 

Subjects    

Intercept 2.571  1.604 

Fixed Effects Estimate (OR) Std. Error z-value 

Intercept 0.001 0.001 -6.448 

Priming (Unrelated/Related) 1.866 2.224 0.523 

Prime Type (Object/Action) 0.205 0.272 -1.195 

Priming x Prime Type 0.608 0.901 -0.335 

Counterbalance (Object 1st/Action 1st ) 1.890 2.121 0.567 

Prime Type x Counterbalance 0.722 0.946 -0.249 

Priming x Prime Type x Counterbalance 4.043 5.549 1.018 

*Asterisks denote significant fixed effects (z>2.00). 

2.1.2.3 Discussion 

 The semantic priming paradigm produced an RT advantage for word target naming with 

related primes relative to unrelated primes. A Prime Type advantage was observed in Experiment 

1 for word naming RT, whereby words were named faster in the context of object prime blocks, 

but note that such main effects are not diagnostic of shared-stream effects in and of themselves. 

This object prime block advantage suggests that participants may have entered into an easier 

response set for visualizing prime words than for imagining action words.  For example, it may 

be faster to imagine a canoe than it is to imagine someone paddling a canoe. There was a Prime 

Type x Counterbalance interaction, owing to practice effects, whereby participants who received 

object blocks first would be more practiced in naming the targets for the later action blocks, 
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leading to faster target naming for action primes when the object blocks were presented first. The 

expected shared-stream priming advantage (i.e., an interaction between Priming and Prime Type 

whereby Object primes produce a greater priming effect than Action primes) was not observed 

with this word naming task. The ER analysis did not indicate that there were any speed accuracy 

trade-offs. 

2.2 Experiment 2 

          Experiment 1 provided a demonstration of equivalent priming effects for object and action 

primes with word naming targets, so a second experiment was conducted using a LDT on the 

word targets, with NW foils, to restrict processing more so to the ventral lexical stream. This 

enhanced reliance on the ventral lexical stream was expected to produce a stronger priming 

effect with object primes than with action primes, due to the ventrally located semantic system 

for visual object processing, compared to the more dorsally located semantic system for action 

semantic processing.             

2.2.1 Method 

2.2.1.1 Participants 

 Twenty-four English first-language participants were recruited from the undergraduate 

psychology participant pool at the University of Saskatchewan. Of the 24 participants analyzed, 

20 were female and 4 were male, with a mean age of 19.375 (SEM = .287, range 17 to 22). 

2.2.1.2 Apparatus, stimuli, design, and procedure 

 The methods for Experiment 2 were identical to that of Experiment 1, except that the task 

was changed from a naming task to a LDT. When the target letterstring appeared, participants 

were to respond by pressing the rightmost button on the SR box if the target was a word (e.g., 

“boat”), or by pressing the leftmost button on the SR box if the target was a NW (e.g., “boit”). 

Nonwords were matched to the word targets and created by changing a single letter from the real 

word counterpart (see Appendix A for a list of NWs used). Only RTs from the correctly 

answered word targets were analysed. With the addition of the NW foils, 120 trials (60 NW foils 

and 60 word targets) were completed in each block, but only correct responses to the 60 word 

targets were analysed. See Figure 2.3 for examples of the word target and NW foil trial 

progressions. 
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Figure 2.3. Example progression of an object prime, word target trial and an object prime, NW 

foil trial.  

2.2.2 Results 

 The same procedure was used as in Experiment 1 to analyze the trial-level LDT RT data 

in an LMM and the trial-level errors in a GLMM with a binomial distribution and logit link 

function. Trials with RTs greater than 3 standard deviations from the mean of the Stimulus Type 

cell were discarded from analysis in order to deal with the positively skewed distribution of the 

RT data (1.8% of trials). 

2.2.2.1 Reaction time 

 The only significant effect observed was that of a Prime Type x Counterbalance 

interaction, Estimate = 58.870, SE = 21.740, t = 2.708. A secondary analysis without the Priming 

x Prime Type x Counterbalance interaction was conducted, which produced a significant priming 

effect, Estimate = 36.656, SE = 9.914, t = 3.697, while diminishing the estimate for the Priming 

x Prime Type interaction, Estimate = -1.601, SE = 7.353, t = -0.218, down from the first model, 

Estimate = 14.834, SE = 10.435, t = 1.422. This difference between the models suggests that the 

Priming effect is qualified by an emerging Priming x Prime Type interaction, and that this 

Priming x Prime Type interaction relies on the presence of the Priming x Prime Type x 

Counterbalance interaction in the model. All other main effects and interactions were not 

significant at the t > 2.0 cut-off (see Table 2.3). See Figure 2.4 for partial means and confidence 

intervals from the LMM. 
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Table 2.3. Linear Mixed Model for Experiment 2 RTs with variances and standard deviations for 

random effects and estimates of coefficients, standard errors and t ratios for fixed effects. 

 RT 

Random effects Variance  SD 

Items    

Intercept 737.170  27.151 

Subjects    

Intercept 3685.587  60.709 

Priming 1654.027  40.670 

Prime Type 2200.917  46.914 

Residual 17410.551  131.949 

Fixed Effects Estimate Std. Error t-value 

Intercept 544.689 18.605 29.277 

Priming (Unrelated-Related) 20.768 13.830 1.502 

Prime Type (Object-Action) -27.282 15.371 -1.775 

Priming x Prime Type 14.834 10.435 1.422 

Counterbalance (Object 1st-Action 1st) -49.304 25.822 -1.909 

Prime Type x Counterbalance 58.870 21.740 *2.708 

Priming x Prime Type x Counterbalance -0.877 19.627 -0.045 

*Asterisks denote significant fixed effects (t>2.00).  
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Figure 2.4. Experiment 2 partial mean word target LDT RTs (with partial mean ERs above each) 

as a function of Prime Type and Priming for the LMM analysis. Error bars represent 95% 

confidence intervals of the repeated measures Priming x Prime Type interactions for LMM 

analysis. 

2.2.2.2 Error rate 

 See Figure 2.4 for partial mean ER. A Priming x Prime Type x Counterbalance 

interaction was observed whereby unrelated object primes produced more errors for those 

participants who received the object prime blocks first, OR Estimate = 0.615, SE = 0.215,  

z = -2.254. All other interactions and main effects were not significant at the z > 2.0 cut-off, with 

no evidence for speed accuracy trade-offs (see Table 2.4).  
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Table 2.4. Experiment 2 ERs on word targets analyzed in a General Linear Mixed Model using 

Binomial distribution and logit link with variances and standard deviations for random effects 

and odds ratio (OR) estimates of coefficients, standard errors of the estimates and z ratios for 

fixed effects. 

 Errors 

Random effects Variance  SD 

Items    

Intercept 0.190  0.436 

Subjects    

Intercept 1.051  1.025 

Fixed Effects Estimate (OR) Std. Error z-value 

Intercept 0.032 0.331 -10.355 

Priming (Unrelated/Related) 1.350 0.169 1.782 

Prime Type (Object/Action) 1.166 0.173 0.888 

Priming x Prime Type 1.325 0.227 1.242 

Counterbalance (Object 1st/Action 1st) 1.161 0.458 0.326 

Prime Type x Counterbalance 0.978 0.235 -0.096 

Priming x Prime Type x Counterbalance 0.615 0.215 *-2.254 

*Asterisks denote significant fixed effects (z>2.00). 

2.2.3 Discussion 

 Responses to the LDT with NW foils in Experiment 2 did not demonstrate the Prime 

Type advantage for object primes seen for naming, nor a clear priming effect. The lack of a 

Priming effect is likely qualified by the emerging Priming x Prime Type interaction, and will be 

explored in a further analysis combining Experiments 2 and 3. Effects related to the 

Counterbalance were the same as seen in Experiment 1, with Prime Type interacting with 

Counterbalance order. The ER analysis did not provide evidence for any speed accuracy trade-

offs. In order to clarify the results seen for LDT with NW foils, and further constrain the task 

demands to focus on orthographic lexical processing, a second LDT experiment with PH foils 

was conducted, and then a combined analysis of Experiments 2 and 3 presented. 
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2.3 Experiment 3 

 In order to see if a differential priming effect between object and action primes, as 

expected by the shared-stream priming hypothesis, could be demonstrated as a statistical two-

way interaction of Priming x Prime Type, a third experiment was conducted identical to 

Experiment 2 except that the foils used were PHs (e.g., “bote” matched to “boat”) rather than 

NWs (see Appendix A for a list of PHs used).  

2.3.1 Method 

2.3.1.1 Participants 

 Twenty-four English first-language participants were recruited from the undergraduate 

psychology participant pool at the University of Saskatchewan. Of the 24 participants analyzed, 

21 were female and 3 were male, with a mean age of 23.167 (SEM = .758, range 18 to 30). 

2.3.1.2 Apparatus, stimuli, design, and procedure 

As in Experiment 2, only correct responses to word targets were analysed. PH foils were 

used in order to constrain the LDT task demands to focus on orthographic lexical processing, as 

the matched PHs would activate the same phonological and, through the phonological lexical 

system, semantic representations of the target words. Successful responses to foils and targets 

would require inhibition of phonology and semantics, therefore isolating processing even more 

so to the ventral orthographic lexical stream. See Figure 2.5 for examples of the word target and 

PH foil trial progressions. 
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Figure 2.5. Example progression of an object prime, word target trial and an object prime, PH 

foil trial.  

2.3.2 Results 

2.3.2.1 Reaction time 

 A main effect of Prime Type was observed whereby object primes produced faster target 

naming than action primes, Estimate = -41.021, SE = 11.238, t = -3.650. A Priming x Prime 

Type interaction was observed whereby object primes produced more of a Priming effect than 

action primes, Estimate = 22.598, SE = 10.520, t = 2.148. A Prime Type x Counterbalance 

interaction was observed whereby object primes resulted in slower target responses for those 

participants who received the object prime blocks first, Estimate = 69.227, SE = 15.921,  

t = 4.348. All other main effects and interactions were not significant at the t > 2.0 cut-off (see 

Table 2.5)3,4. See Figure 2.6 for partial means and confidence intervals from the LMM. 

 
3 To address a reviewer’s concern about the inclusion of the same targets in all four blocks, an extra factor of Block 

(1, 2, 3, or 4) was included in an additional model. The effect of Block was significant, Estimate = -14.951, SE = 

3.715,  

t = -4.024, and the Priming x Prime Type interaction was also significant with block included in the model, Estimate 

= 22.960, SE = 10.878, t = 2.111, demonstrating that the Priming x Prime Type interaction accounted for variance 

over and above across-block repetition priming. 
4 In order to verify that subject level differences in subjective ratings of relatedness between the Object and Action 

Prime-Target pairs were not biasing the Priming effect towards either the Object or Action primes, an additional 

model was run with the ratings used in place of the dichotomous Priming factor, where Unrelated was given a value 

of 0, and Related pairs were assigned a value from 1 to 5 based on the relatedness rating given by the participant, for 

a continuous measure of prime-target relatedness. With this variable in place of the dichotomous Priming factor, the 

same pattern of effects was observed, except that the Prime Type effect was not significant, Estimate = -19.182, SE 

= 11.036, t = -1.738. 
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Table 2.5.  Linear Mixed Model for Experiment 3 RTs with variances and standard deviations 

for random effects and estimates of coefficients, standard errors and t ratios for fixed effects.  

 RT 

Random effects Variance  SD 

Items    

Intercept 272.135  16.497 

Subjects    

Intercept 3599.366  59.995 

Prime Type 848.315  29.126 

Residual 17904.441  133.807 

Fixed Effects Estimate Std. Error t-value 

Intercept 508.904 18.230 27.916 

Priming (Unrelated-Related) 0.103 7.416 0.014 

Prime Type (Object-Action) -41.021 11.238 *-3.650 

Priming x Prime Type 22.598 10.520 *2.148 

Counterbalance (Object 1st-Action 1st) -20.919 25.604 -0.817 

Prime Type x Counterbalance 69.227 15.921 *4.348 

Priming x Prime Type x Counterbalance -16.047 10.582 -1.516 

*Asterisks denote significant fixed effects (t>2.00). 
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Figure 2.6. Experiment 3 partial mean word target LDT RTs (with partial mean ERs above each) 

for word targets as a function of Prime Type and Priming for the LMM analysis. Error bars 

represent 95% confidence intervals of the repeated measures Priming x Prime Type interactions 

for LMM analysis. 

2.3.2.2 Error rate. 

 All main effects and interactions were not significant at the z > 2.0 cut-off, with no 

evidence for speed accuracy trade-offs (see Table 2.6). See the data labels in Figure 2.6 for 

partial mean ERs. 

 

Table 2.6. Experiment 3 ERs on word targets analyzed in a General Linear Mixed Model using 

Binomial distribution and logit link with variances and standard deviations for random effects 

and odds ratio (OR) estimates of coefficients, standard errors of the estimates and z ratios for 

fixed effects. 

 Errors 

Random effects Variance  SD 

Items    

Intercept 0.255  0.505 

Subjects    

Intercept 0.559  0.748 
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Fixed Effects Estimate (OR) Std. Error z-value 

Intercept 0.067 0.248 -10.916 

Priming (Unrelated/Related) 0.824 0.146 -1.323 

Prime Type (Object/Action) 0.764 0.149 -1.816 

Priming x Prime Type 1.305 0.212 1.255 

Counterbalance (Object 1st/Action 1st) 1.287 0.335 0.752 

Prime Type x Counterbalance 1.169 0.195 0.802 

Priming x Prime Type x Counterbalance 0.914 0.201 -0.448 

*Asterisks denote significant fixed effects (z>2.00). 

2.3.3 Discussion 

 Responses to the LDT with PH foils in Experiment 3 demonstrated the Prime Type 

advantage for object primes seen for naming, as well as a differential priming effect, with a 

larger Priming effect for object primes, consistent with the hypothesis based on shared-stream 

processing. Effects related to the Counterbalance were the same as seen in Experiment 1, 

whereby Prime Type interacted with Counterbalance order. The ER analysis provided no 

evidence for any speed accuracy trade-offs. 

2.4 Experiments 2 & 3 – LDT Analysis 

 A combined analysis was performed with RT data from Experiments 2 and 3, with 

factors of Priming, Prime Type, and Foil Type (NW vs. PH), plus Counterbalance and its 

interactions with effects and interactions including Prime Type. This analysis produced no 

significant main effects or interactions including the factor of Foil Type, so a LRT was used with 

α = .20 between this model and the same model with Foil Type and its interactions removed, 

which provided no justification for leaving Foil Type in the model, χ2(12) = 12.271, p = .424. 

2.4.1 Results 

2.4.1.1 Reaction time 

 A main effect of Prime Type was observed whereby object primes produced faster target 

naming than action primes, Estimate = -34.494, SE = 9.515, t = -3.625. A Priming x Prime Type 

interaction was observed whereby object primes produced more of a Priming effect than action 

primes, Estimate = 19.861, SE = 7.630, t = 2.603. A Prime Type x Counterbalance interaction 

was observed whereby object primes resulted in slower target responses for those participants 
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who received the object prime blocks first, Estimate = 65.232, SE = 13.458, t = 4.847. All other 

main effects and interactions were not significant at the t > 2.0 cut-off (see Table 2.7)5,6. 

Table 2.7.  Linear Mixed Model for Experiment 2 and 3 RTs with variances and standard 

deviations for random effects and estimates of coefficients, standard errors and t ratios for fixed 

effects.  

 RT 

Random effects Variance  SD 

Items    

Intercept 456.272  21.361 

Subjects    

Intercept 3933.739  62.720 

Priming 992.963  31.511 

Prime Type 1485.514  38.542 

Residual 17865.944  133.664 

Fixed Effects Estimate Std. Error t-value 

Intercept 526.776 13.617 38.685 

Priming (Unrelated-Related) 10.311 8.295 1.243 

Prime Type (Object-Action) -34.494 9.515 *-3.625 

Priming x Prime Type 19.861 7.630 *2.603 

Counterbalance (Object 1st-Action 1st) -35.805 18.873 -1.897 

Prime Type x Counterbalance 65.232 13.458 *4.847 

Priming x Prime Type x Counterbalance -9.175 11.894 -0.771 

*Asterisks denote significant fixed effects (t>2.00). 

 

 
5 To address concerns about the inclusion of the same targets in all four blocks, an extra factor of Block (1, 2, 3, or 

4) was included in an additional model. The effect of Block was significant, Estimate = -15.771, SE = 3.598,  

t = -4.383, and the Priming x Prime Type interaction was also significant with block included in the model, Estimate 

= 19.414, SE = 7.582, t = 2.561, demonstrating that the Priming x Prime Type interaction accounted for variance 

over and above across-block repetition priming. 
6 In order to verify that subject level differences in subjective ratings of relatedness between the Object and Action 

Prime-Target pairs were not biasing the Priming effect towards either the Object or Action primes, an additional 

model was run with the ratings used in place of the dichotomous Priming factor, where Unrelated was given a value 

of 0, and Related pairs were assigned a value from 1 to 5 based on the relatedness rating given by the participant, for 

a continuous measure of prime-target relatedness. With this variable in place of the dichotomous Priming factor, the 

same pattern of effects was observed, except that the Prime Type effect was not significant, Estimate = -15.563, SE 

= 9.536, t = -1.632. 
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2.4.2 Discussion 

 Analyses of RTs from the LDT Experiments in Experiments 2 and 3 demonstrated the 

Prime Type advantage for object primes seen for naming, as well as a differential priming effect, 

with a larger Priming effect for object primes, consistent with the hypothesis based on shared-

stream processing. Foil Type did not account for a significant amount of additional variance in 

the model, suggesting that the Priming x Prime Type interaction was significant when averaging 

over the Foil Type used. Effects related to the Counterbalance were the same as seen in 

Experiment 1, whereby Prime Type interacted with Counterbalance order. 

2.5 Discussion 

 These experiments explored the degree of shared-stream Priming advantages in reading 

and lexical decision, such that word targets would exhibit more of a priming effect when primed 

by imagined objects than when primed by imagined actions. Words showed an object priming 

advantage in Experiment 3 for the LDT in the presence of PH foils, and in a combined analysis 

of Experiments 2 and 3 for the LDT of both foil types, whereby the LDT produced more of a 

priming effect with object primes than action primes, supporting the theory that there are 

semantic sub-systems of visual object form shared with the ventral-lexical processing stream. In 

Experiment 1, word reading showed faster RTs in the object prime blocks, but there were similar 

sized Priming effects for both object and action priming, supporting the notion that there is no 

shared-stream priming advantage in the naming task. The combined analysis of Experiments 2 

and 3 suggests that the LDT experiments demonstrated greater shared-stream priming effects 

than simply reading words aloud (Experiment 1), but based on the findings from Experiment 2 

and Experiment 3 separately, PH foils do a better job of constraining access to the ventral lexical 

stream than NW foils, given that the two-way interaction was observed for Experiment 3 but not 

for Experiment 2. The systematic manipulation of experiments demonstrated no significant 

difference in priming effects between object and action primes for word naming (Experiment 1) 

and lexical decision in the presence of NW foils (Experiment 2). Only for lexical decision in the 

presence of PH foils (Experiment 3) did we observe the pattern of object priming with no 

observable action priming. This systematic experimentation demonstrates that in general the 

object primes and action primes do equally well at priming the targets, but only in the case of 

highly constrained lexical activation for lexical decision of words in the presence PH foils 

(Experiment 3) did we observe the hypothesized interaction, whereby priming was observed for 
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object primes but not for action primes. This interaction represents clear support of the 

hypothesis based on shared streams of activation for object semantic priming and lexical 

processing in the ventral-lexical stream. 

2.5.1 Distributed-Plus-Hub Model of the Semantic System 

The comparable size of the Priming effect observed for object and action primes for word 

naming is consistent with the distributed-plus-hub model of the semantic system, which proposes 

that the distributed modality-specific sub-systems are integrated into an amodal hub in the ATL 

in order to process semantic information (Patterson et al., 2007). In this case, in the absence of 

sufficient shared-stream activation between a specific sub-system of the semantic system (e.g., 

object or action) and processing used for reading words aloud would not have any additional 

benefit over the base Priming effect produced by the ATL semantic hub. The distributed modules 

aspect of the distributed-plus-hub model of semantic processing (Patterson et al., 2007) is 

supported by the shared-stream Priming advantage for object primes in the LDT with PH foils 

and the combined LDT analyses. It is important to note that this shared-stream advantage 

manifests as a significant interaction (i.e., significant Priming for objects but not actions), and 

that any main effect advantage for object primes could simply reflect that objects are easier to 

process (i.e., imagine) than actions.  However, any such overall benefit in processing objects can 

not account for the observed interaction in the LDT with PH foils but not with NW foils, nor in 

reading words aloud. 

2.5.2 Conclusion 

These results represent behavioural support for the theory that object semantic priming 

and word identification share processing in the ventral stream. Additionally, equivalent priming 

effects across prime types for reading words aloud supports the notion that there is also a 

generic, integrative, semantic hub. Together, these additive and interactive joint effects support 

and extend the distributed-plus-hub model of the semantic system. Furthermore, demonstrating 

these joint effects of reading and semantic processing provided a novel paradigm for further 

research. These findings will provide important insights to computational models of reading, 

which will need to accommodate the object semantic prime type advantage for lexical 

processing. Finally, this augmented understanding of how the semantic system and reading 

interact temporally in the underlying cognitive architecture has implications for the 

neuroimaging research conducted in Chapter 3 on determining where they interact spatially in 
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the brain. Specifically, the priming advantage for object priming and word identification suggests 

they may have a significant volume of conjunction in the ventral visual processing stream. These 

behavioural experiments tested hypotheses based on a neurobiological model, and have in turn 

led to new hypotheses about the neurobiological model. 
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CHAPTER 3: Neuroimaging of Ventral Shared-Stream Lexical Identification and Object 

Semantics 

3.1 Experiment 4 - FMRI 

 Using the same semantic priming lexical decision task as Experiment 3, which 

demonstrated that object processing and word identification are temporally-shared in the form of 

a priming effect for imagined object primes that is greater than imagined action primes, the 

current experiment used fMRI to examine the hypothesis that this effect could be localized to 

spatially-shared regions of the ventral-lexical visual processing stream. Specifically, we 

hypothesized that there should be regions in the ventral stream associated with colour semantics 

(just anterior to V4 in FuG) and shape semantics (anterior FuG) that would produce greater 

activation in contrasts between lexical word targets and the sublexical PH foils for object 

priming than action priming, owing to the ventral shared-stream processing for lexical and object 

semantic processing. 

3.1.1 Methods 

3.1.1.2 Participants 

 Twenty-five healthy participants with normal or corrected-to-normal vision and fluent 

English participated in the experiment. The sample of participants consisted of 15 females and 

10 males, with a median age of 25 years. The participants’ consent was obtained according to the 

Declaration of Helsinki (2013), and the experiment was performed in compliance with the 

relevant laws and institutional guidelines and was approved by the University of Saskatchewan 

Research Ethics Board.   

3.1.1.3 Stimuli 

 Stimuli were 15 prime-target pairs chosen from the stimuli used in Chapter 2. The stimuli 

with the highest previously measured priming effect size and ratings of prime-target relatedness 

from these experiments were chosen. Targets were equivalent between the object and action 

priming conditions, with only the prime word varying across conditions. The LDT from 

Experiment 3 was used with PH foils to optimize reliance on orthographic lexical processing. 
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3.1.1.4 Imaging Protocol 

 All imaging was conducted using a 3 Tesla Siemens Skyra scanner. Whole-brain 

anatomical scans were acquired using high resolution axial magnetization prepared rapid 

acquisition gradient echo (MPRAGE) sequence, consisting of 192 T1-weighted images of 1 mm 

thickness (no gap) with an in-plane resolution of 1 x 1 mm (field of view = 256; TR = 1900 ms; 

TE = 2.1 ms).  For the functional scans, T2*-weighted single-shot gradient-echo echo-planar 

imaging (EPI) scans were acquired using an interleaved ascending EPI sequence, consisting of 

149 volumes of 25 axial slices of 4 mm thickness (1 mm gap) with an in-plane resolution of 2.7 x 

2.7 mm (field of view = 250), using a flip angle of 90°, a TR of 1650 ms, and a TE of 30 ms.  

The top 2 coil sets (16 channels) of a 20-channel Siemens head-coil were used, with the bottom 

set for neck imaging (4 channels) turned off. Additional foam padding was used to reduce head 

motion. 

3.1.1.5 Procedure and Apparatus 

 Stimuli were presented to participants in the center of a screen using a PC running 

EPrime software (Psychology Software Tools, Inc., http://www.pstnet.com) through MRI 

compatible goggles (Cinemavision Inc., http://www.cinemavision.biz). Participants completed 2 

blocks of 15 prime-target pairs and 15 prime-foil pairs in both a related and an unrelated 

condition, one for each prime type (object and action; 60 trials in each block). The order of these 

blocks was counterbalanced across participants. Presentation of the prime-target pairs was 

randomized in each block. The presentation start time of the prime word was jittered by a 

random amount chosen from 100, 200, 300, 400, or 500 ms in order to reduce activation related 

to expectation resulting from stimuli appearing predictably at the beginning of each acquisition, 

and to allow for sampling at a range of time points after the onset of acquisition, which reduces 

correlation with successive evoked activations and increases detection efficiency (see Dale, 

1999). The prime appeared for 300 ms, followed by an interstimulus interval of 700 ms and then 

the target or foil appeared until the participant responded with a left mouse button click for a 

‘word’ response or a right mouse button click for a ‘nonword’ response (lexical decision task, 

LDT, see Figure 3.1), using a magnetic resonance imaging (MRI) compatible fiber optic mouse 

(Nata Technologies Inc., http://www.natatech.com/). The leading edge (10 μs) of the fibre-optic 

signal that is emitted by the MRI at the beginning of each acquisition volume was detected by a 

Siemens fMRI trigger converter and passed to the Eprime PC via the serial port.  In this way, 
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perfect continuous synchronization between the MRI and the experimental paradigm computer 

was obtained at each volume. 

 

Figure 3.1. Example progression of a related prime, then word target trial or PH foil trial. 

3.1.1.5 FMRI Analysis 

 All preprocessing and statistical analyses for functional images were performed using 

FMRIB Software Library (FSL; Jenkinson et al., 2012). Functional images were preprocessed 

including slice scan time acquisition correction, 3D motion correction, spatial smoothing with a 

5mm Full Width Half Maximum (FWHM) gaussian filter, and temporal filtering with a high-

pass filter to filter frequencies lower than one complete block/rest cycle (12 TRs; period of 20 

seconds). Functional volumes were then registered to anatomical brain images using FSL flirt 

with 7 degrees of freedom before being registered to standard MNI space (Mazziotta, Toga, 

Evans, Fox, & Lancaster, 1995) with 12 degrees of freedom. Motion parameters were regressed 

as variables in the model to eliminate any artifacts from motion. Event related effects were 

modeled including the time from the start of the prime to the time of mouse button response to 

the word target or PH foil. Two models were considered in this analysis: first an analysis of 

Word Type (Word and PH) was conducted and contrasted across Object and Action prime 

blocks; and second an analysis of Word Type (Word and PH) and Priming (Related and 

Unrelated) was conducted and contrasted across Object and Action prime blocks. Statistics were 

calculated using FSL randomize with 5000 permutations and Threshold Free Cluster 

Enhancement (TFCE) at p < .05. 
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3.1.2 Results 

3.1.2.1 Reaction Times 

A within-items factorial analysis of variance of the reaction time data from responses 

during the fMRI experiment with factors of Priming (Related vs. Unrelated) and Prime Type 

(Object vs. Action) verified that the stimuli produced reliable priming effects for the correct 

responses to target words whereby Related prime-target pairs (M = 732.6 ms) were faster than 

Unrelated prime-target pairs (M = 767.1 ms; F(1,56) = 9.994, p = .002). 

3.1.2.2 Lexical Processing with Object Priming Greater Than Action Priming 

The contrast of Prime plus Target > Prime plus PH Foil was greater for Object priming 

than for Action priming in a region of the left FuG (see Figure 3.2). This region has been 

associated with mental rotation of tools (Seurinck, Vingerhoets, Vandemaele, Deblaere, & 

Achten, 2005), sensory effect of colour (Schoenfeld et al., 2003), representation of colour 

information (e.g., McKeefry & Zeki, 1997; Hadjikhani et al., 1998), attention to colour (e.g., 

Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1991; Clark et al., 1997), and object-based 

adaptation in a naming paradigm with no grasp-based adaptation in this region (Shmuelof & 

Zohary, 2005). This region has also been associated with certain language related tasks, such as 

picture naming in multilinguals (Vingerhoets et al., 2003), and naming embossed (raised) letters 

and words in acquired blind participants (Burton, McLaren, & Sinclair, 2006). See Table 3.1 for 

fMRI contrast coordinates. 
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Figure 3.2. Significant region for Object > Action priming of the Prime plus Target > Prime plus 

PH Foil contrast, located in the left FuG.  

 

 

 

 

 

 



36 

 

The contrast of Prime plus Target > Prime plus PH Foil was greater for Object priming 

than for Action priming in a more anterior region of the left FuG (see Figure 3.3). This region 

has been shown to be activated by semantic tasks involving reading of food words but not tool 

and animal words (Carota, Moseley, & Pulvermüller, 2012). The sensitivity to food words over 

tool and animal words suggests that this region is sensitive to shape characteristics more so than 

action (tool) and animal (animate) characteristics. This region is also sensitive to word frequency 

during reading of visual-related words but not during reading of action-related words (Hauk, 

Davis, Kherif, & Pulvermüller, 2008). Given that this region is anterior to the more posterior 

“visual word form area” (VWFA) it may be that the visual semantic processing occurring in the 

anterior FuG is sensitive to lexical word frequency effects owing to the upstream sensitivity of 

the VWFA to word frequency (e.g., Kronbichler et al., 2004; Cummine, Sarty, Borowsky, 2010). 

See Table 3.1 for fMRI contrast coordinates. 
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Figure 3.3. Significant region for Object > Action priming of the Prime plus Target > Prime plus 

PH Foil contrast, located in the left FuG anterior to VWFA. This voxelwise activation represents 

FSL randomize analysis using threshold free cluster enhancement, whereby single voxel 

activation maps represent a consensus of clustered activation around that voxel. 

 

 

 

 

 



38 

 

The contrast of Prime plus Target > Prime plus PH Foil was greater for Object priming 

than for Action priming in regions of the cerebellum including the left cerebellar lobule VI (see 

Figure 3.4). This region has been shown to be activated during picture naming following a 4-

week lexical training of those items (Raboyeau et al., 2004). This region is also important for 

semantic categorization as opposed to specific item identification (Braunlich, Gomez-Lavin, & 

Seger, 2015). Mental imagery paradigms involving imagining grasping objects or grasping next 

to an object have identified the left cerebellar lobule VI as well as the left FuG (also identified by 

this contrast; see Figure 3.2) as having greater activation when imagining grasping next to an 

object than when imagining grasping the object directly (Schulz, Ischebeck, Wriessnegger, 

Steyrl, & Müller-Putz, 2018). This contrast suggests that regions of the cerebellum such as 

lobule VI may process visual object semantic information in the context of lexical processing 

and visual imagery. The potential for the cerebellar lobule VI to play a role as an additional sub-

system in the semantic network will be explored further in the DTI analysis of Experiment 5. See 

Table 3.1 for fMRI contrast coordinates. 
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Figure 3.4. Significant region for Object > Action priming of the Prime plus Target > Prime plus 

PH Foil contrast, located in the left cerebellum including lobule VI. 
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3.1.2.3 Priming by Action Greater Than Object 

The contrast of the Related > Unrelated prime-target/foil pairs was greater for Action 

priming than for Object priming in regions of the right parietal occipital junction (POJ) and the 

right superior occipital gyrus (SOG; see Figure 3.5). It has been demonstrated that the POJ and 

SOG are activated more strongly in response to motion of objects than static objects, and that 

coherent motion produces more activation than incoherent random motion (Paradis et al., 2000). 

Given that object-oriented action involves tracking where an object is in space and how to 

interact with it given its current orientation, these motion sensitive areas may play an important 

role in action-related semantics. See Table 3.1 for fMRI contrast coordinates. 
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Figure 3.5. Significant region for Action > Object priming of the Related > Unrelated prime-

target/foil pairs contrast, located in the right POJ and SOG. 
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The bilateral V3 ‘motion’ area in the cuneus was identified as having a Related > 

Unrelated prime-target/foil contrast that was greater for Action priming than for Object priming 

(see Figure 3.6). The region V3 has been well documented and is associated with visual motion 

(e.g., see Tootell et al., 1997 for an atlas of V3). More recent research has also associated this 

region with movement of a virtual ‘avatar’ (mental imagery) via grip force (Floegel & Kell, 

2017). As with the POJ and SOG regions also activated by this contrast, the motion sensitive V3 

region may play an important role in action semantics, suggesting that action semantics involves 

a mental simulation of perceived moving objects associated with the actions related to that 

object. See Table 3.1 for fMRI contrast coordinates. 
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Figure 3.6. Significant region for Action > Object priming of the Related > Unrelated prime-

target/foil pairs contrast, located in the right and left cuneus (V3). 
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Table 3.1. FMRI activation coordinates for significant contrasts. 

Prime 

Type 
Contrast Region 

Hemi-

sphere 
x y z Voxels 

Object > 

Action 

Target > 

Foil 

Cerebellar Lobule VI, Crus I, 

Crus II, Vermis VI,  

Vermis Crus II 

L -4 -74 -24 572 

Cerebellum I-IV L -6 -50 -4 5 

Cerebellar Crus I R 36 -62 -34 4 

Fusiform Gyrus L -20 -62 -14 34 

Fusiform Gyrus L -24 -74 -6 9 

Fusiform Gyrus L -40 -34 -22 1 

Action > 

Object 

Related > 

Unrelated 

V1 L -8 -92 -2 46 

V1/MT L -4 -82 -2 5 

V1 L -4 -98 2 1 

Parietal Occipital Junction R 20 -74 40 42 

Superior Occipital Gyrus R 18 -78 28 18 

Superior Occipital Gyrus/WM L -26 -70 22 20 

Cuneus (V3) LR 0 -86 34 17 

Precuneus R 14 -54 36 15 

Posterior Thalamic Radiation R 32 -60 14 65 

Corpus Collosum 

Splenium/Tapetum 
L -24 -50 16 14 

Corpus Collosum Splenium L -14 -46 26 8 

Forceps Major L -24 -76 4 13 

Posterior Corona Radiata L -18 -52 28 13 

3.1.3 Discussion 

 These neuroimaging analyses examined regions where lexical identification and object 

semantic processing exhibit ventral shared-stream processing. The contrast showing where 

responses to lexical targets produced greater activation than foils allowed for a focused 
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investigation of lexical processing, and this contrast was shown to be greater for object primes 

than for action primes in the left FuG (anterior to the V4 colour sensitive region) and in a region 

of the left FuG sensitive to shape semantics anterior to VWFA, as well as in cerebellar lobule VI. 

As hypothesized, the identified ventral stream regions correspond to sensory and semantic 

representation of colour (anterior to V4; e.g., Schoenfeld et al., 2003; McKeefry & Zeki, 1997; 

Hadjikhani et al., 1998) and shape semantics independent from interactive or animate stimuli 

(anterior to VWFA; Carota, Moseley, & Pulvermüller, 2012). The greater lexical contrast for 

object than action priming in these well-established colour and shape semantic regions supports 

the hypothesis that the ventral-lexical stream used for orthographic lexical identification of 

words engages in shared-stream processing with the ventrally located object semantic sub-

systems for colour and shape. These findings also support the conclusion that shared-stream 

processing contributed to the behavioural temporal object prime advantage observed in 

Experiment 3, whereby object primes produced greater priming than action primes in the LDT. 

3.2 Experiment 5 – DTI 

 In order to investigate the possibility that the cerebellar fMRI contrast activation 

observed in Experiment 4 whereby object priming produced a larger Prime plus Target > Prime 

plus PH foil contrast than action priming may represent an additional object semantic sub-

system, DTI structural connectivity data was used to test whether there is robust white matter 

structural connectivity between the cerebellar lobule VI region identified and the ATL semantic 

hub. This connectivity would suggest it is possible for the cerebellar lobule VI to efficiently 

communicate with semantic regions of the temporal lobe (including the ATL semantic hub and 

the object semantic sub-systems identified in Experiment 4), and therefore that it may act as an 

additional object semantic subsystem, as suggested by the contrast from Experiment 4. 

3.2.1 Methods 

The publicly available Human Connectome Project 1021 participant averaged DTI 

structural connectivity dataset (Van Essen et al., 2013) was used in conjunction with DSI Studio 

(http://dsi-studio.labsolver.org). Cortical connectivity with the cerebellum is described in detail 

by Keser et al. (2015) as following a ‘loop’ of connectivity, whereby connectivity from the 

cerebellum to the cortex is mediated by the thalamus, while the input to the cerebellum from the 

cortex (including the occipital lobe) follows Cortico-Ponto-Cerebellar pathways mediated by the 

middle cerebellar peduncle (see also Habas & Cabanis, 2007; Koziol et al., 2014). Based on 
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observed activation from our fMRI analysis, the left cerebellar lobule VI (identified using a 

probabilistic cerebellum atlas, Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009) was 

set as a seed region with the left thalamus as a waypoint region of interest (based on the model of 

cerebellum to cortex structural connectivity described by Keser et al., 2015) and the left ATL as 

an end region (thalamus and ATL regions were set using Harvard cortical and subcortical atlases, 

Desikan et al., 2006; end regions including the left fusiform gyrus of the temporal lobe were also 

examined, with no reliable connections identified). The fiber tracking algorithm implemented in 

DSI Studio is a generalized version of the deterministic tracking algorithm that uses quantitative 

anisotropy as the termination index (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 

2013). The angular threshold was set at 70 degrees, with trilinear direction interpolation, and an 

Euler streamline tracking algorithm was used and set to terminate after 1 million seeds. 

3.2.2 Cerebellar Connectivity to ATL 

 The DTI connectivity analysis between cerebellar lobule VI and the ATL via the left 

thalamus identified streamlines within a tight, consistent bundle originating from a medial region 

of cerebellar lobule VI proximal to the region identified with fMRI where the contrast of Prime 

plus Target > Prime plus PH Foil was greater for object priming than for action priming. This 

white matter fibre bundle is consistent with an interpretation of the fMRI contrast whereby 

regions of the cerebellum including cerebellar lobule VI may be involved in visual object 

semantics and may represent an additional sub-system in the semantic network (see Figure 3.7). 

These are inferred to be outgoing connections from the cerebellum to the cortex as they are 

mediated by the thalamus, while inputs to the cerebellum from the cortex (e.g., occipital lobe) 

are mediated by the middle cerebellar peduncle (see Keser et al., 2015). 
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Figure 3.7. DTI tractography from left cerebellar lobule VI to the left ATL via the left thalamus. 

3.3 Discussion 

 Results from Experiment 4 showed that the lexical processing contrast that was greater 

for object priming than for action priming included cerebellar activation in lobule VI, which has 

been implicated in picture naming (Raboyeau et al., 2004), broad category semantics (Braunlich, 

Gomez-Lavin, & Seger, 2015), and mental imagery not related to interaction (Schulz, Ischebeck, 

Wriessnegger, Steyrl, & Müller-Putz, 2018). Given that this is not a simple overlap of identified 

activation, but rather a higher contrast identifying lexical activation for one type of semantic 

processing (object) over another (action), this evidence suggests that the cerebellar lobule VI 

may play a role in interfacing orthographic lexical and object semantic information. Furthermore, 

Experiment 5 used DTI tractography to demonstrate that there is robust connectivity from the 

cerebellar lobule VI region identified in Experiment 4 (and that was robust for object priming) to 

the ATL, which supports the theory that this cerebellar region may act as an object semantic sub-

system in the semantic network, given that the ATL has been described as an integral semantic 

hub (Patterson et al., 2007). 
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CHAPTER 4: General Discussion 

 Based on the potential for ventral shared-stream processing between lexical and object 

semantic processing, it was hypothesized that lexical processing would be more sensitive to the 

modality of object semantic priming than to action semantic priming. Word reading (Experiment 

1) and lexical decision with NW foils (Experiment 2) did not produce this effect, but the 

anticipated result was confirmed in the case of orthographically constrained lexical decision 

using PH foils (Experiment 3), whereby the use of PH foils permits only orthographic lexical 

(but not phonological or semantic) differences between targets and foils to contribute to correct 

responses. FMRI investigation of this paradigm in Experiment 4 confirmed that the contrast 

isolating orthographic lexical processing was more sensitive to object semantic priming than 

action semantic priming in colour and shape related regions of the left FuG in the ventral stream, 

and also in cerebellar lobule VI.  One of these identified regions of the left FuG has previously 

been associated with mental rotation of tools (Seurinck, Vingerhoets, Vandemaele, Deblaere, & 

Achten, 2005), sensory effect of colour (Schoenfeld et al., 2003), representation of colour 

information (e.g., McKeefry & Zeki, 1997; Hadjikhani et al., 1998), attention to colour (e.g., 

Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1991; Clark et al., 1997), and object-based 

adaptation in a naming paradigm with no grasp-based adaptation in this region (Shmuelof & 

Zohary, 2005), and has also been activated using language related tasks such as picture naming 

in multilinguals (Vingerhoets et al., 2003), and naming embossed letters and words in acquired 

blind participants (Burton, McLaren, & Sinclair, 2006). A second identified region of the left 

anterior FuG has been shown to be activated by semantic tasks involving reading of food words 

but not tool and animal words (Carota, Moseley, & Pulvermüller, 2012), and has also been 

shown to be sensitive to word frequency during reading of visual-related words but not during 

reading of action-related words (Hauk, Davis, Kherif, & Pulvermüller, 2008). Regions of 

cerebellar lobule VI have been implicated in picture naming (Raboyeau et al., 2004), semantic 

categorization as opposed to specific item identification (Braunlich, Gomez-Lavin, & Seger, 

2015), and mental imagery paradigms that involve imagining grasping next to an object rather 

than grasping an object directly (Schulz, Ischebeck, Wriessnegger, Steyrl, & Müller-Putz, 2018). 
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Our DTI analysis in Experiment 5 demonstrated that this region of the cerebellum has the 

potential to act as an object semantic sub-system of the semantic network, in addition to the 

colour and shape sub-systems identified in the left FuG, given its robust connectivity to the ATL 

semantic hub. 

4.1 Implications 

While having implications for computational, cognitive, and neurobiological models of 

reading and semantics, this work also represents an example of the breadth of cognitive 

neuroscience, whereby behavioural hypotheses can be developed from a neurobiologically 

developed model. Studying the separable dimensions of object versus action semantics in this 

way represents a novel paradigm for semantic priming. Past research has examined priming of 

noun and verb targets, but not priming with noun and verb primes (e.g., Kersten & Earles, 2004; 

Moss, Ostrin, Tyler, & Marslen-Wilson, 1995). Borowsky et al. (2013) found that reading of 

nouns and verbs using a within-item design (i.e., noun-verb homographs presented in blocks 

where participants were instructed to process them as either nouns or verbs respectively) showed 

primarily shared activation across ventral and dorsal streams based on fMRI analyses. The 

current research extends this to the domain of semantic priming to demonstrate that there may be 

important differences in the way that object noun and action verb primes interact with the 

ventral-lexical stream during lexical processing. 

 Computational models of reading will need to account for the object prime advantage for 

words by implementing overlapping lexical processing with object semantic processing. The 

ventral stream could be activated by object semantic primes, and may give excitatory input to the 

orthographic lexical system. These visual streams overlapping with the dual-route model of 

reading could simulate the priming advantage for object primes. Current computational models 

of reading do not account for different types of semantic processing (e.g., Coltheart et al., 2001; 

Perry et al., 2007; Plaut et al., 1996), such as object and action semantics, and the current 

experiments suggest that sub-systems of semantic processing may play an important role in the 

lexical processing of words. 

This research also adds to a larger collection of research examining how semantic 

systems interact with lexical access. For example, Broca’s and Wernicke’s aphasics have been 

examined with respect to lexical access and semantic priming (e.g., Yee, Blumstein, & Sedivy, 

2008). Simulation models have also been used to demonstrate interesting dynamics of word 
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recognition with implications for the intersection of semantics and lexical access, in the context 

of aphasic brain damaged patients (e.g., Mirman, Yee, Blumstein, & Magnuson, 2011). Cases of 

‘pure’ alexia with comorbid semantic deficits have been documented in patient cases, suggesting 

that there is an important link between semantic and lexical processing (e.g., Graham, Hodges, & 

Patterson, 1994; Watt, Jokel, & Behrmann, 1997). Considering the shared-stream regions 

observed in Experiment 4 in the left FuG associated with lexical processing and object semantic 

processing, it may be that ‘pure’ alexia comorbid with semantic deficits, resulting from damage 

in the left FuG, would disproportionately impede object semantic processing more so than action 

semantic processing. 

The observed shared-stream object word priming of lexical identification in the ventral-

lexical stream in Experiment 4 suggests that sub-systems for processing of shape and colour 

semantics are separate from sub-systems for action semantics, to the extent that object semantic 

processing gives preferential, shared access to the ventral-lexical stream. Models of semantic 

processing have typically described either a distributed-only (sub-systems communicating 

directly with one another only) or a distributed-plus-hub model (sub-systems communicating 

directly and with an integrative semantic hub; see Paterson et al., 2007). The shared-stream 

priming effects observed in Experiment 4, combined with the behavioural object prime 

advantage observed in Experiment 3, suggest that semantic domain-specific sub-systems may 

also communicate directly with the lexical processing systems before integrating semantic 

information from other modalities in the ATL semantic hub. This direct communication before 

semantic integration would lead to the greater priming effects from shared-stream prime types 

and target types (e.g., object primes and lexical targets) observed in Experiment 3. 

The fMRI contrast observed in the cerebellum, along with past research (e.g., Raboyeau 

et al., 2004; Braunlich, Gomez-Lavin, & Seger, 2015; Schulz, Ischebeck, Wriessnegger, Steyrl, 

& Müller-Putz, 2018), suggest regions including the cerebellar lobule VI may act as part of an 

additional object semantic sub-system of the semantic network. This theory is supported by past 

functional connectivity research showing multiple areas of functional connectivity between the 

ATL and the cerebellum (Pascual et al., 2015), and the Experiment 5 DTI results that show 

structural connections between the region identified in cerebellar lobule VI and the ATL 

semantic hub via the thalamus (see Figure 3.7). Future research relating to object semantics and 

lexical processing should consider contributions beyond the ventral visual stream, and further 
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explore the cerebellum considering the possibility that regions of the cerebellum may act as 

additional object semantic sub-systems in the semantic network (e.g., see Figure 4.1). 

 

Figure 4.1. Visual streams of processing and semantic networks, with the addition of cerebellar 

lobule VI as a sub-system of the object semantic network. 

4.2 Future Directions  

In further research, the use of object-picture and action-video primes with word and PH 

targets could also be informative about the extent to which the effects observed here were limited 

to what could be evoked by word primes. To the extent to which participants were able to 

visualize the object primes and imagine performing the action primes, the use of picture and 

video primes of similar objects and actions to the primes used in these experiments would 

provide an interesting comparison. Faster presentation of the target word could also be examined 

in future studies, in order to determine whether a shorter SOA would potentially allow for 

automatic priming to be separately explored from automatic plus expectancy-based (long SOA) 

priming. Stimulus quality could also be examined in the context of the semantic priming effects 

observed in these experiments, to determine whether any priming effects feed back to the level of 
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orthographic encoding (e.g., Borowsky & Besner, 1993; 2006). 

 Outside of the ventral stream, the POJ, SOG, and V3 regions, which are all important for 

processing of motion information, were identified as being utilized to a greater extent for 

semantic processing (as identified by the Related > Unrelated prime contrast) involving action 

primes than semantic processing involving object primes. These findings suggest important 

regions for focus in future research investigating dorsal stream action semantic processing and 

potential shared-stream activation with phonological processing. For example, similar 

experiments could be conducted using a phonological lexical decision task (choose which 

letterstring sounds like a real word; e.g., Borowsky & Besner, 2000) to determine whether these 

semantic related motion processing regions may overlap and interface with the dorsal-sublexical 

stream when using action primes. Furthermore, given the posterior dorsal stream’s involvement 

in ‘where’ processing (e.g., Borowsky et al., 2005), future research should also explore temporal 

and spatial overlap of ‘where’ processing with sublexical phonological processing.  

Localization of shared-stream (versus unique region) reading and semantic processing 

will ultimately guide the development of comprehensive and fully implemented models of 

reading and semantic processing. In turn, the translation of this basic research could help identify 

forms of dyslexia corresponding to lexical (surface dyslexia) and sublexical (phonological 

dyslexia) impairments, as well as localization of function in neurosurgical cases, both of which 

can in turn provide unique tests of the theory. For example, surface dyslexia and ‘pure’ alexia 

patients with ventral-lexical impairments may exhibit disproportionately impaired object 

semantic processing more so than action semantic processing (see also Price & Devlin, 2004, 

Price, 2012, and Neudorf, Gould, Mickleborough, Ekstrand, & Borowsky, submitted, for 

discussion of co-location of object recognition and lexical processing). Neurosurgical cases 

could be guided by the localization of shared activation for reading and the semantic system, in 

order to avoid resection of eloquent cortex for semantic involvement in reading, specific to the 

individual patient (see Gould et al., 2015; Ekstrand et al., 2016; and Mickleborough et al., 2015 

for examples of patient-specific pre-surgical localization of eloquent cortex for guiding 

neurosurgery). 

4.3 Conclusions 

 The observed neurophysiological and neuroanatomical shared-stream priming for object 

priming of lexical identification (Neudorf, Ekstrand, Kress, & Borowsky, submitted) supports 
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and extends the behavioural research demonstrating a shared-stream object priming advantage 

(Neudorf, Ekstrand, Kress, Neufeldt, & Borowsky, 2019). Together, these findings suggest that 

semantic modalities may communicate directly with reading processes before semantic 

integration in the ATL, and this communication may be influenced by proximity to the language 

stream. Furthermore, the left cerebellum (including lobule VI) also demonstrated a lexical 

preference for object primes, suggesting that both object semantic and lexical processing 

networks rely on shared regions of the cerebellum, and that these regions of the cerebellum may 

act as part of an additional visual object semantic sub-system. DTI connectivity analysis 

confirmed that the cerebellar lobule VI has robust connectivity to the ATL semantic hub, 

supporting the theory that this region may act as an additional object semantic sub-system. This 

research has discovered important intersections between the lexical and semantic networks 

within the ventral visual processing stream and cerebellum, which provides important regions of 

interest for further investigation of these networks.  
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Appendix A - Stimuli 

Word Targets PH Foils NW Foils Action Primes Object Primes 

arm ahrm ard flex sleeve 

axe aks ane chop wood 

ball bahl baln bounce round 

bed behd bep sleep mattress 

belt behlt bect fasten strap 

bench behnch benck sit chair 

bike bycke bime pedal motorcycle 

boat bote boit paddled canoe 

boot bute bool kick sock 

box bawks boc open cardboard 

broom bruume broim sweep mop 

bug buhg bup swat beetle 

cake kaik gake bake icing 

car kahr gar drive van 

cash kahsh casp pay receipts 

chain chane shain lock necklace 

coat kote loat hang sweater 

coin koyn poin flip gold 

couch kowch louch lounge cushion 

cup kuhp nup drink mug 

dime dyme sime buy nickel 

dog dawg dop pet paw 

eye iye eyk squint pupil 

fist phist filt clench knuckle 

foot phuht folt walk heel 

fork phohrk nork skewer spoon 

gift gihpht kift unwrap ribbon 

glass glahs blass shatter window 

grape greyp glape pick cranberry 

hat haat het wear brimmed 

jeans jeenz jeats zip denim 

kite kyte kive flying parachute 

knife nyfe knire stab dagger 

lamp lahmp namp switch bulb 

leg lehg heg limp thigh 

lip lihp bip kiss cheek 

nail nale naig hammer tack 

neck nehk nuck strain throat 

pear payr peab bite peach 

pen pehnn pef write ink 

phone fohne phote tap screen 

pie pye pib slice crust 

pool pewl vool swim water 

purse perss lurse carry pouch 
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Word Targets PH Foils NW Foils Action Primes Object Primes 

quilt kwihlt quiln knitting patch 

rope rohpe fope untie knot 

sand sahnd yand dig beach 

shirt shert shirv unbutton plaid 

shoe shew shoy tie sneaker 

soap sope soat lather bubbles 

soup sewp voup slurp broth 

straw strah straj suck tube 

sword sord sworg unsheathe blade 

teeth teath feeth brushing gums 

thumb thuhm shumb twiddling finger 

toe tohw tob stubbed sockless 

tongue tung vongue lick mouth 

tree trea trep climb branch 

wheel wealle wheeg steer tire 

wrench rehnch wrenth tighten screwdriver 

 

 


