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Abstract 

Trace elements (TEs) play crucial roles in regulating ocean processes including marine 

biogeochemical cycles, and are therefore vital to support marine life. Understanding the 

biogeochemical cycling of TEs requires knowledge of their sources/ sinks and transport in 

the oceans. Radium isotopes (
223

Ra, 
224

Ra, 
226

Ra, and 
228

Ra) have shown to be suitable 

tools to study inputs of elements from the continental margins, as they are produced by 

the decay of particle-bound thorium isotopes in sediments, and are soluble in seawater. 

As Ra isotopes present a range of half-lives varying from days to thousands of years, and 

have relative conservative behaviors in the oceans, they can be applied to study 

oceanographic processes which occur within this time scale. Therefore, in this Ph.D. 

thesis, I used Ra isotopes to determine boundary TE fluxes from two diverse 

environments that constrain the major TE sources, including shelf sediments in an Arctic 

shelf region and in an eastern boundary system off the western African coast, as well as 

rivers such as the River Congo.  

First, the distributions of the dissolved and total dissolvable TEs (cadmium (Cd), iron 

(Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), and cobalt (Co)) 

were investigated in the Chukchi Sea during spring, and 
228

Ra isotope was applied as 

tracer of benthic TE inputs. The results show that elevated benthic TE inputs on the 

Chukchi shelf provided suitable conditions for phytoplankton blooms, and 10-25% of dFe 

from the Chukchi shelf sediments is transported to the central Arctic Ocean. Radium-228 

fluxes from Chukchi shelf sediments are some of the largest in the world. Seasonal 

variability of Ra is observed, as the 
228

Ra activities in spring appear to be 2-fold higher 

than in summer, which was a surprising observation and requires further investigation.  

Next, 
228

Ra was used to investigate the influence of the Congo River, the world’s second 

largest river by discharge volume, on surface ocean TE concentrations in the South 

Atlantic Ocean. The results show that the Congo River plume constitutes a large and 

unexpected input of bio-essential TEs (e.g., dissolved Fe, Mn, and Co) into the South 

Atlantic.  Limited removal of dFe is observed on the shelf linked to the Congo River 

outflow, which is in contrast to all other major river systems globally, where dissolved Fe 
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is rapidly removed from the water column upon entering the ocean. Yet, 
228

Ra 

distributions suggest that there must be an unknown Ra and TE source, which may be 

submarine groundwater discharge, that likely balances dFe removal in the Congo estuary. 

Radium-228 was used to quantify the fluxes of TEs from the Congo River plume into the 

Southeast Atlantic Gyre. As the supply of these elements into the Southeast Atlantic is 

dominated by the Congo discharge, the factors constraining marine primary production in 

this region will be sensitive to future climate change associated shifts in wind patterns and 

rainfall across the Congo Basin and western African shelf.  

Finally, Ra isotopes were used to investigate a number of key ocean boundary processes 

in the Southeast Atlantic Ocean, including Ra supply by the shelf, abyssal and slope 

sediments, the influence on Ra isotope distributions of the subantarctic waters, Benguela 

upwelling, and oxygen minimum zone along western Africa. The results show elevated 

228
Ra activities in the upper 300 m extending >1000 km from the African continental 

margin into the South Atlantic Ocean, indicating recent contact of water masses with 

shelf and slope sediments. Upwelling in the Benguela region is visible in the Ra 

distributions, and elevated Ra isotopes, Fe (II) and silicate concentrations were observed 

in the Benguela oxygen minimum zone, possibly due to inputs from the reducing shelf 

sediments as a result of silica dissolution, or submarine groundwater discharge along the 

Namibian shelf.   

This Ph.D. thesis was developed in the framework of the SUBICE (Study of Under Ice 

Blooms in the Chukchi Ecosystem) and the international GEOTRACES programs. 
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Zusammenfassung 

Spurenelemente spielen eine zentrale Rolle in der Regulation ozeanischer Prozesse einschließlich 

des marinen biogeochemischen Kreislaufs und sind dadurch eine zentrale Voraussetzung für das 

Leben im Meer. Das Verständnis der biogeochemischen Kreisläufe der Spurenelemente basiert 

auf dem Wissen um deren Quellen, Senken und Transportwege innerhalb des Ozeans. Die 

Radiumisotope (
223

Ra, 
224

Ra, 
226

Ra, and 
228

Ra), welche als Zerfallsprodukt von partikulär 

gebundenem Thorium in Sedimenten entstehen, sind wasserlöslich und haben sich als nützliche 

Werkzeuge herausgestellt, die den Input von solchen Elementen aus den kontinentalen Hängen 

nachvollziehen lassen. Generell haben Radiumisotope eine Bandbreite von Halbwertszeiten, die 

zwischen Tagen und Tausenden von Jahren liegen. Im Ozean selber verhalten sie sich 

konservativ, auch zueinander, und können deshalb für ozeanographische Studien, abhängig vom 

erwünschten Zeitfenster, verwendet werden. Diese verwende ich in der vorliegenden Dissertation, 

um die bedeutendsten Spurenelementquellen zu beleuchten, die den Austausch zwischen 

Schelfsedimenten und dem angrenzenden Ozean vornehmen. Dies geschieht anhand zweier 

kontrastierender Umgebungen, dem arktischen Schelf und des östlichen „Grenzsystems“ vor der 

Küste Westafrikas, das auch Flusseinträge wie zum Beispiel aus dem Kongo beinhaltet.  

Zunächst wurde die Verteilung der gelösten und säurelöslichen Spurenelemente (Cadmium (Cd), 

Eisen (Fe), Nickel (Ni), Kupfer (Cu), Zink (Zn), Blei (Pb), Mangan (Mn) und Cobalt (Co)) in der 

Tschuktschensee zum Frühling untersucht. Als Tracer zur Bestimmung benthischen Eintrags 

wurde dort 
228

Ra verwendet. Die Ergebnisse zeigen, dass sich der erhöhte Spurenelementeintrag 

vom Tschuktschenseeschelf für die Algenblüte eignet und 10–25 % des aus dem 

Tschuktschenseeschelfsediment gelösten Eisens in den Zentralen Arktischen Ozean transportiert 

wird. Die dortigen 
228

Ra-Durchflussmengen sind eine der größten der Welt. Auch wurden 

saisonale Schwankungen beobachtet. Im Vergleich zum Sommer scheinen die 
228

Ra-Aktivitäten 

im Frühling um das Doppelte erhöht zu sein; eine überraschende Erkenntnis, die es weiter zu 

untersuchen gilt. 

Des Weiteren wurde 
228

Ra verwendet, um den Einfluss des Kongo, der gemessen an dem 

Ausflussvolumen der weltweit zweitgrößte Fluss ist, auf die im oberen Ozean befindlichen 

Spurenelemente im Südatlantik zu untersuchen. Die Ergebnisse zeigen, dass die Flusswasserfahne 

des Kongo einen unerwartet großen Eintrag bioessentieller Spurenelemente (z. B. gelöstes Fe, Mn 

und Co) in den Südatlantik ausmacht. Im Gegensatz zu anderen großen Flusssystemen der Welt, 

wo die Abscheidung des Eisens aus der Wassersäule schnell nach Kontakt mit dem Ozean erfolgt, 
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ist nur eine begrenzte Abtrennung auf dem vom Kongo beeinflussten Schelf ersichtlich. Dennoch 

weist die Verteilung des 
228

Ra auf eine weitere, unbekannte Radium- und Spurenelementquelle 

hin, die möglicherweise unterseeisch als Grundwasseraustritt existiert und eventuell der 

Eisenabscheidung in der Mündung des Kongo entgegenwirkt. Weiterhin wurde 
228

Ra verwendet, 

um den Eintrag an Spurenelementen aus der Kongoflussfahne hin zum Südatlantischen Wirbel zu 

quantifizieren. Da die Zuführung dieser Elemente in den Südost-Atlantik vom Eintrag des Kongo 

dominiert wird, sind die Faktoren, die die marine Primärproduktion in dieser Region begrenzen, – 

Regen- und Windverhältnisse im Kongo-Becken und auf dem westafrikanischen Schelf – 

empfindlich gegenüber dem zukünftigen Klimawandel. 

Mit Hilfe der Radiumisotope wurden abschließend eine Reihe von Schlüsselprozessen im 

Grenzflächenaustausch des Südost-Atlantiks untersucht. Dies beinhaltet deren Freisetzung von 

Schelf-, Tiefsee- und Kontinentalhangsedimenten und deren Einfluss auf die 

Radiumisotopenverteilung im Subantarktischen Wasser, dem Benguela-Auftriebsgebiet sowie der 

Sauerstoffminimumzone entlang der westafrikanischen Küste. Die Ergebnisse zeigen erhöhte 

228
Ra-Aktivität in den oberen 300 m, welche mehr als 1000 km von der afrikanischen 

Kontinentalküste in den Südatlanischen Ozean hinein reicht. Dies deutet auf vorherigen Kontakt 

der Wassermasse mit Sedimenten des Kontinentalschelfs bzw. des Kontinentalhangs hindeutet. 

Der Auftrieb der Benguela-Region ist ebenfalls in der Radiumverteilung ersichtlich. Gleichzeitig 

weisen erhöhte Konzentrationen der Radiumisotope, Fe (II) und Kieselsäure in der Benguela-

Sauerstoffminimumzone auf Zufuhr aus reduzierenden Schelfsedimenten als Resultat der 

Auflösung von Kieselgesteinen oder aus unterseeischem Grundwasseraustritt entlang des 

Namibianischen Schelfs hin. 

Diese Doktorarbeit ist im Rahmen des SUBICE (Study of Under Ice Blooms in the Chukchi 

Ecosystem) und des internationalen GEOTRACES Programms entstanden.  
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Chapter 1 - Introduction 
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1 Introduction 

The supply of macro-nutrients (nitrate (NO
3-

), phosphate (PO4
3-

) and silicate (SiO4
-
)) and 

bio-essential trace elements (hereafter, TEs) to the oceans is vital for supporting marine 

life, as they play an important role  in a range of metabolic processes in marine organisms 

and are essential for phytoplankton growth (Morel and Price, 2003). It is well established 

that in regions of high nitrate and low chlorophyll-a (HNLC), the major factor that 

restricts the growth of phytoplankton is inadequate iron (Fe) supply. Recent studies 

suggest that other than Fe, trace elements such as cadmium (Cd), copper (Cu), zinc (Zn), 

manganese (Mn) and cobalt (Co), may also be (co-) limiting factors for phytoplankton 

growth  (Moore et al., 2013; Morel and Price, 2003). Nonetheless, our understanding of 

the biogeochemical cycles of trace elements and their influence on ocean productivity is 

still limited, and sources, sinks and boundary processes that control the distributions of 

these elements are poorly constrained.  

Radionuclides from the uranium (U) and thorium (Th) decay series (Fig. 1.1) have been 

used as tracers and chronometers of processes in the oceans (Bourdon et al., 2003). 

Because the radionuclides have distinct chemical properties and half-lives ranging from 

seconds to millions of years, they can provide valuable information about a variety of 

processes which occur within this time scale. Thus, radionuclides can be used to 

investigate the cycling of TEs that have similar geochemical behavior or similar sources/ 

sinks, and can provide a time constraint on the biogeochemical processes of these TEs in 

the oceans. For example, Th and polonium (Po) are particle-reactive in seawater and can 

be useful for quantifying scavenging rates of carbon and TEs onto particles in the water 

column (e.g., Buesseler, 1998; Nozaki et al., 1997). In contrast, Th daughters, i.e., radium 
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(Ra) isotopes, do not interact strongly with particles in seawater, and can therefore be 

suitable tracers for ocean mixing processes (Ku and Luo, 2008), and powerful tools to 

investigate exchange rates between the ocean boundaries (Moore et al., 2000 a; Dulaiova 

et al., 2009; Charette et al., 2016).  

The complex links between the biological, physical and geochemical processes at the 

land-ocean interface control the distribution of TEs and radionuclides in coastal 

environments. Understanding the factors that control the export of Ra isotopes to the 

oceans helps to evaluate physical and chemical processes that regulate inputs of other 

dissolved elements in the coastal and open ocean. Therefore, the main objective of this 

study was to apply the naturally occurring radium isotopes (
223

Ra 
224

Ra, 
226

Ra, and 
228

Ra) 

to provide insights into the distribution and behavior of TEs and quantify their boundary 

inputs into the ocean (see section 1.3). Trace elements reported in this Ph.D. thesis are 

Cd, Fe, Cu, Zn, Co, Mn, nickel (Ni), and lead (Pb). This introductory chapter presents an 

overview of the sources/ sinks, biogeochemical behavior, and distributions of both TEs 

and Ra isotopes in the oceans.  
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Figure 1.1: Scheme of the 
238

U, 
232

Th, and 
235

U decay series. The grayscale reflects half-life, with darker shades corresponding to longer half-lives (modified from Ivanovich and 

Harmon, 1992). Ra isotopes are highlighted. 
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1.1 Trace elements and Ra isotopes in the oceans 

Some of the most common elements in the Earth's crust (e.g. Fe) are found in the present 

ocean as traces, with very low concentrations of a few pmol L
-1

 to nmol L
-1

, and higher 

concentrations near the continental margins (Bruland and Lohan, 2003). The concentrations 

of TEs and Ra isotopes in the worlds’ oceans are controlled by their input and removal 

balance. Both Ra isotopes and TEs may be supplied to the ocean through river discharge, 

shelf and abyssal sediment release, atmospheric deposition and hydrothermal venting (Libes, 

2009; Bruland et al., 2014; Krishnaswami and Cochran, 2008). Trace elements undergo 

biogeochemical cycling in the oceans that are mediated by redox reactions and formation of 

particulate matter. Thus, the removal of TEs can occur by biological uptake, and 

incorporation into or onto organic and inorganic settling particles (Chester and Jickells, 2012; 

Bruland and Lohan, 2003). While biological activity strongly affects the distributions of 

biogenic TEs in the oceans, Ra isotopes are much less affected by biological processes; 

therefore inputs, mixing, and decay are the major factors controlling Ra distributions. 

Because Ra isotopes present a range of half-lives (t ½) between 3.66 days to 1600 year (Fig. 

1.1), and behave  essentially conservatively in the oceans, they can be applied to study the 

age of water masses (Moore, 2000 b; Charette et al., 2001), shelf-ocean mixing processes 

(Moore and Dymond, 1991; Moore et al., 1995; 2000 a; Knauss et al., 1978), ocean 

circulation (Ku and Luo, 2008; Chung and Craig, 1980), mixing across the thermocline and 

between the benthic boundary layers (Sarmiento et al., 1990; Sarmiento et al, 1982; Moore, 

1972), and more recently as traces of TE fluxes in the oceans (Vieira et al., 2019; Sanial et 

al., 2018; Charette et al., 2016; Dulaiova et al., 2009). 
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1.1.1 Biogeochemistry and distribution of TEs and Ra isotopes in the oceans 

Trace elements  

Trace elements in the ocean are typically classified as (i) nutrient-type elements (Cd, Cu, Ni, 

and Zn), whose distribution is controlled by biological activity and decomposition of organic 

matter; (ii) scavenged elements (aluminum (Al), Pb and Mn) which are removed from the 

water column through particle adsorption processes (Bruland et al., 2014); (iii) “hybrid-type” 

trace elements, i.e., a combination of nutrient-type and scavenging-type behaviors; and (iv) 

conservative-type (e.g., U, molybdenum (Mo) antimony (Sb), tungsten (W), rhenium (Re), 

cesium (Cs), and rubidium (Rb)), whose concentrations present a nearly constant ratio to 

salinity in the oceans, and their long residence time (on the order of 10
5
 years)  is greater than 

the vertical mixing (Bruland and Lohan, 2003).  

Nutrient-type elements are depleted in surface waters due to biological uptake and enriched 

in deep waters owing to remineralization and dissolution of sinking organic matter (Fig. 1.2). 

Iron and Co display nutrient-like depletion in surface waters, but they are often referred to as 

hybrid-type trace elements since their distribution is controlled by both biological uptake and 

scavenging processes (Bruland et al., 2014). In contrast, Mn usually exhibits a surface 

enrichment due to the photochemical reduction of Mn oxides to soluble Mn (II), although it 

is also considered to be a hybrid-type element at high latitudes, where nutrient drawdown 

occurs (Bruland and Lohan, 2003). In addition, like Ra isotopes, Mn can be used as a tracer 

of lateral transport from continental margins (Aguilar-Islas and Bruland, 2006), whilst Pb is a 

good tracer of anthropogenic inputs to surface seawater through aerosol deposition (Maring 

and Duce, 1990). Moreover, elements such as Cd, Cu, Ni, and Zn follow the profiles of the 
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major macronutrients, nitrate, phosphate, and silicate, indicating their involvement in 

biological cycles (Boyle and Edmond, 1975; Bruland, 1980). Figure 1.2 shows an example of 

vertical profiles of 3 types of elements.  

 

Figure 1.2: Profiles of dissolved cadmium and phosphate (A), dissolved cobalt (B) and dissolved aluminum (B) 

representing the nutrient-type, hybrid-type, and scavenged-type elements, respectively.  Data taken from IDP 

2017 data base (Schlitzer et al., 2018); GEOTRACES section GA03 in the North Atlantic Ocean, station 12 

(56°81 W, 29°70 N). 

The bioavailability and solubility of TEs in the oceans are governed by their redox-speciation 

in seawater and their aggregation into organic and inorganic complexes. The redox potential 

of a specific trace element and redox conditions of seawater dictate the oxidation state of this 

element in the ocean. Iron, Co, and Mn, for example, are typically present in seawater as 

trivalent cations as Fe (III), Co (III) and Mn (III), which are less soluble and more 

thermodynamically stable than their reduced form, Fe (II), Co (II), and Mn (II) (Stumm and 

http://www.sciencedirect.com/science/article/pii/S0304420308001163?via%3Dihub#bib4
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Morgan, 1981, 1995). When the reduced TEs undergo oxidation process, they can 

subsequently bind to particles forming, for example, colloidal Fe and Mn, and particulate Fe 

oxyhydroxide and Mn oxides, which can remove TEs by particulate scavenging and sinking 

(Lohan and Bruland, 2008). Moreover, oxidizing bacteria may also play an important role in 

biotic Mn (II) (and Co (II)) oxidation (Sunda and Huntsman, 1988; Moffett and Ho, 1996).   

Radium isotopes 

There are no stable isotopes of Ra, and each Ra isotope is derived from the decay of a 

corresponding isotope of Th (see Fig. 1.1). Radium-226 (t ½= 1600 years) and 
223

Ra (t ½ = 

11.4 days) are member of the 
238

U and 
235

U decay series, respectively; 
224

Ra (t ½= 3.66 days) 

and
 228

Ra (t ½ = 5.75 years) derive from the 
232

Th radioactive decay series. The decay 

energies and percentage of emission of each Ra isotope are shown in Table 1.1. The most 

abundant Ra isotope is 
226

Ra. As an alkaline earth metal, with atomic number Z = 88, all Ra 

isotopes, as well as the other alkaline earth metal (e.g. Be, Mg, Ca, Sr, and Ba), are only 

present in the environment in the +2 oxidation state.  
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Table 1.1: Energies (E) and emission percentage (I) of the natural occurring Ra isotopes. Values reported in: 

https://www.nndc.bnl.gov/nudat2/ (accessed 14. March 2019) 

Radionuclide 
Half-life  

(t ½) 

Alpha (α) Beta (β) Gamma (γ) 

E (keV) I (%) E (keV) I (%) E (keV) I (%) 

223
Ra 11.43 days 

5539.8 9.2 
  

114.232 3.22 

5606.73 25.7 
  

154.21 5.62 

5716.23 52.6 
  

269.459 13.7 

5747 9.2 
  

323.871 3.93 

224
Ra 3.66 days 

5448.6 5.06 
  

240.986 4.1 

5685.37 94.92 
    

226
Ra 1602 years 

4601 5.55 
  

186.211 3.59 

4784.34 94.45 
    

228
Ra 5.75 years 

  
12.83 30 

  

  
25.71 20 

  

  
39.23 40 

  

  
39.62 10 

  

Radium is present in the environment, manly in seawater, at very low molar concentration 

(Broecker et al., 1967, Kaufman et al., 1973). The distribution of each isotope in the ocean 

varies significantly from one isotope to another and within ocean basins. For example, 
226

Ra 

activities in the surface Atlantic Ocean are around 7.8 dpm 100 L
-1

 (Broecker et al., 1976), 

much lower than the surface activities in the Southern Ocean (>13 dpm 100 L
-1

; Ku and Lin, 

1976), due to upwelling of the 
226

Ra enriched deep waters in the Antarctic region. The lowest 

surface 
226

Ra activities are found in the Pacific Ocean (6.69 - 7.2 dpm 100 L
-1

; Sanial et al., 

2018; Chung, 1980), likely due to dilution in this larger size basin.  

Radium-228 activities in surface waters of the Atlantic Ocean (1-3 dpm 100 L
-1

) and Indian 

Ocean (2.6 - 10.7 dpm 100 L
-1

) are generally an order of magnitude higher than the Pacific 



Chapter 1 - Introduction  

9 

 

and Southern Oceans (Li et al., 1980;  Kaufman et al., 1973; Moore 1969). This is a result of 

inputs from the larger Atlantic/ Indian continental margins (Moore et al., 2008; Kwon et al., 

2014), due to decay and mixing in the significantly larger Pacific basin, and due to low 
228

Ra 

levels in upwelled Antarctic waters (see Okubo et al., 1979; Moore, 1969; Kaufman et al., 

1973; Sanial et al., 2018; van Beek et al., 2007). Unlike 
226

Ra, whose surface activities are 

relatively uniform within the basins, surface 
228

Ra activities vary significantly across the 

same basin, due to its much shorter half-life relative to 
226

Ra. Because of their very short 

half-life of few days, 
223

Ra and 
224

Ra are only found in regions close to their sources, such as 

continental margins and abyssal sediments. For this reason, the short-lived Ra isotopes are 

not typically detected beyond 50-100 km offshore (Levy and Moore, 1985; Moore, 2000 a, 

2000 b), and 100 m above the seafloor (Charette et al., 2015).  

Radium-226 is depleted in surface layers relative to deep waters (Fig. 1.3). However, the fact 

that Ra is present in the ocean at very low molar concentration makes direct precipitation of 

Ra phases difficult. Radium export from the water column may therefore occur by co-

precipitation of phases in which Ra can be incorporated as solid form. The Ra removal rate is 

only relevant for the longest-lived and most abundant isotope (
226

Ra) and is negligible 

relative to the loss through decay for 
223

Ra, 
224

Ra, and 
228

Ra. Due to the similarity of Ra and 

barium (Ba) ionic radii, their chemical behavior is similar. Indeed, the linear relationship 

between Ba and 
226

Ra in the global ocean, with a slope of 2.2 ± 0.2 dpm µmol
-1

 (Roy at al., 

2018 and reference therein) lead scientists to hypothesize that barite (BaSO4) formation plays 

an important role in the marine 
226

Ra cycle, as barite can incorporate Ra as Ba(Ra)SO4. A 

linear correlation has also been reported between 
226

Ra and silicate (Si) from the surface 

ocean to about 2000 m, which suggests that 
226

Ra is scavenged by marine diatoms, which are 
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siliceous organisms (see Chung, 1980; Moore and Dymond, 1991; Ku and Lin, 1976; Ku et 

al., 1970; Broecker et al., 1967; Charette et al., 2015). As a result, 
226

Ra exhibits a nutrient-

like profile. Below 2000 m, 
226

Ra and Si relationship is more variable owing to the 

enrichment of 
226

Ra relative to Si in deep waters, most likely due to diffusion of 
226

Ra from 

abyssal sediments (Chung, 1980) (see Fig. 1.3 and 1.4). Because the mean life of 
228

Ra is 

much shorter than the vertical ocean mixing, little 
228

Ra penetrates into the thermocline 

(Moore, 1969); in addition, the rates of biological uptake and export are small compared to 

the 
228

Ra supply to the oceans. As a result, a decrease in 
228

Ra activities with depth is 

typically observed (Moore, 1972; Kaufman et al., 1973; Li et al., 1980) corresponding with 

an increase in water density that likely precludes vertical mixing. An example of the 

distributions of 
226

Ra, 
228

Ra, Si, and Ba in the ocean is shown in Figure 1.3 and Figure 1.4. 
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Figure 1.3: Radium-226 and 
228

Ra distributions along a GEOTRACES section GA03 in the Atlantic Ocean (IDP 

2017 data base (Schlitzer et al., 2018). This data is published in Charette et al. (2015).  
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Figure 1.4: Silicate and barium along a GEOTRACES section GA03 in the Atlantic Ocean (IDP 2017 data base 

(Schlitzer et al., 2018). This data is published in Charette et al. (2015) and Roy et al. (2018). 

.  
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1.1.2 Sources of TEs and Ra isotopes to the ocean 

1.1.2.1 Rivers  

Rivers are major sources of dissolved and particulate materials to the oceans (Bruland et al., 

2014). The delivery of terrestrial materials from rivers to the oceans depends on the river 

water composition, as well as on the biogeochemical changes that occur preferentially in the 

mixing zone between the river and ocean waters (Macias et al., 2014; Tovar-Sanchez et al., 

2016). Although dissolved TEs (dTEs) (e.g., Mn and Fe) are present in rivers, in colloidal 

form (defined by < 0.02 – 0.2 µm filtration), at micromolar concentrations (Gaillardet et al., 

2003), their concentrations tend to decrease with increasing ionic strength in the river-ocean 

interface, due to particle scavenging, rapid aggregation of colloids and complexes in saline 

waters (Boyle et al., 1977; Sholkovitz et al., 1978; Johnson et al., 1999). Whilst a transfer of 

river-derived TEs from the dissolved to particulate phase does not necessarily result in its 

immediate removal from the water column (Gustafsson et al., 2000; Hong and Kester, 1985), 

settling of these particles on the shelf diminishes the role of rivers in supplying TEs to the 

offshore ocean. Nonetheless, TE concentrations derived from rivers are often augmented by 

interactions with shelf sediments in estuaries (see sections 1.1.2.2 and 1.1.2.3). Moreover, 

TEs can be stabilized by organic material, which keeps TEs in solution. In this way, the total 

TE supply from rivers/ estuaries may be significant, regardless of removal in estuaries.   

 In contrast to TEs, dissolved Ra concentrations in rivers are generally low, with activities 

ranging between 3 and 120 dpm 100 L
-1

 for both 
226

Ra and 
228

Ra (Vandenhove et al., 2010). 

Amongst the largest rivers in the world (Fig. 1.5), the long-lived Ra activities lie within a 

narrow range, with 
226

Ra and 
228

Ra varying from 3.3 to 20 dpm 100 L
-1

 and 3.2 to 16.3 dpm 



Chapter 1 - Introduction  

14 

 

100 L
-1

, respectively. Radium desorption from riverine particle surfaces occurs as the 

particles enter the high ionic strength waters of the estuary (Li et al., 1977; Elsinger and 

Moore, 1980; Key et al., 1985; Moore, 1986). Consequently, unlike TEs, Ra activities in the 

river-ocean mixing zone increase compared to the riverine levels (Fig. 1.5). Furthermore, 

large fluxes of Ra from coastal sediments and submarine groundwater discharges contribute 

significantly to enhance Ra activities in estuaries (Moore et al., 1996; Shaw et al., 1998; Cai 

et al., 2003).  

 

Figure 1.5: Activities of 
226

Ra (A) and 
228

Ra (B) across the estuarine salinity gradient in the Amazon
1
, Orinoco

2
, 

Yangtze
3
, Ganges

4
 and Mississippi

5
 estuaries. 

1
 Key et al., 1985; 

2
 Moore and Todd, 1993; 

3
 Elsinger and 

Moore, 1984; 
4
 Carroll et al.,1993; 

5
 Krest et al., 1999. 

1.1.2.2 Submarine Groundwater Discharge 

Submarine groundwater discharge (SGD) has received considerable attention over the last 

two decades, as it appears to be a source of nutrients, TEs and radionuclides to coastal 

environments (e.g., Valiela et al., 1990; Windom et al., 2006; Moore, 1996). Burnett et al. 

(2003) defined SGD as “any and all flow of water on continental margins from the seabed to 

the coastal ocean, regardless of fluid composition or driving force”. Most of the 
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groundwaters have high levels of Fe (II) and Mn (II) (Clark, 2015) which are turned into Fe 

(III) and Mn (III) under oxidizing conditions. As mentioned previously, this process leads to 

the formation of solid phase Fe-oxyhydroxides and Mn-oxides, in which other TEs tend to be 

incorporated through co-precipitation. Thus, the extent to which TEs are transported via 

groundwaters, as well as the biogeochemical behavior of TEs in coastal regions influenced 

by SGD are likely dependent on the TE solubility and sorption capacity, on the hydraulic 

conductivity, presence of Fe oxyhydroxide, Fe-sulfides and Mn oxides, and groundwater 

flow rates (Tang and Johannesson, 2006; Burnett et al., 2003, 2006).  

Radium presence in groundwater results from the interaction of groundwater with U- and Th-

bearing phases (e.g., soils, rocks, and ores). Radium isotopes have shown to be effective 

tracers of groundwater inputs to coastal regions (e.g., Rodellas et al., 2017; Moore, 1996). 

This method is based on the principle that Ra is strongly adsorbed to particles in freshwaters, 

while in brackish-saline waters they are primarily dissolved, due to rapid desorption resulted 

from ion exchange competition with the major constituents of seawater (Li et al., 1977; Key 

et al., 1985; Elsinger and Moore, 1984; Webster et al., 1995). In this way, Ra isotopes are 

valuable tools to study groundwater and regions influenced by SGD, where mixing of fresh 

and salty waters occur. As Ra isotopes are produced according to their decay constants, a 

short-time scale (day to months) seawater recirculation through permeable sediments only 

allows the in-growth of the short-lived Ra isotopes (
223

Ra and 
224

Ra). On the other hand, 

SGD are also commonly enriched in long-lived Ra isotopes in large seawater recirculation 

cells and long groundwater flow paths. Moore et al. (2008) suggested that SGD is the 

primary source of 
228

Ra in the upper layer of the Atlantic Ocean, with flux of 1.9 ± 0.8 x 

10
23

atoms yr
−1

  corresponding to 54% of the total 
228

Ra input to the Atlantic basin. They also 
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suggested that SGD fluxes may exceed the riverine nutrient fluxes. More recently, Kwon et 

al. (2014) estimated that the SGD contribution on the global 
228

Ra budged was 5.6 ± 1.4 x 

10
23

 atoms yr
-1

, corresponding to 58% of the total 
228

Ra input to the global ocean. 

1.1.2.3 Sediments  

Continental shelf sediments are important sources of TEs to the oceans (Elderfield and 

Hepworth, 1975; Elrod et al., 2004; Heggie and Lewis, 1984). Trace elements derived from 

river and atmosphere are deposited in sediments by settling particles, but they can eventually 

return back to the water column by diffusion (Elderfield and Hepworth, 1975) upon 

reductive/ non-reductive dissolution (Homoky et al., 2016; Lohan and Bruland, 2008), 

sediment resuspension, and submarine groundwater discharge (SGD) (Homoky et al., 2012; 

Chase et al., 2007; Windom et al., 2006). When organic matter is remineralized in the 

sediments, oxygen is consumed and upon full oxygen removal, nitrate is used as electron 

acceptor followed by TE reduction (e.g., Fe (III) and Mn (III)) (Lohan and Bruland, 2008). 

As reduced Fe and Mn are more soluble than their oxidized forms, they can diffuse back to 

the overlying waters. Thus, the TE supply from the sediments will depend on several factors 

including the organic matter and oxygen concentrations in the sediments, oxygen 

concentration in porewaters/ bottom waters and sediment type (Lohan and Bruland, 2008). 

Further discussion on the processes and the magnitude of benthic TE fluxes can be found in 

chapter 3.  

Sediments also form a major source of Ra isotopes to the oceans (e.g., Moore, 1969; Cochran 

and Krishnaswami, 1980; Koczy, 1958) and represent, for example, the source of 25% of 

228
Ra present in the global ocean (Kwon et al., 2014). As Ra parents (Th isotopes) are highly 
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insoluble and particle-reactive in seawater, they strongly adsorb onto mineral surfaces, and 

are complexed by humic acids and other organic ligands, and can be subsequently exported 

to the sediments (Langmuir and Herman, 1980; Buesseler, 1998), where Ra is produced. 

From sediment pore waters Ra is transported through advective and diffusive processes into 

the water column. Several factors control the Ra fluxes from the sediment, including: (i) the 

production rates governed by the specific Ra isotope decay constants (Moore, 1996); (ii) the 

concentrations of Ra parents and the nature of the sediment, e.g., non-carbonate sediments 

are enriched in 
232

Th, and therefore may represent a significant source of 
228

Ra and 
224

Ra 

(Hancock et al., 2006); black shales and marine phosphates are commonly rich in 
238

U 

(Bourdon et al., 2003) and may therefore be source of 
226

Ra to the oceans; (iii) sedimentation 

rates; (iv) diffusive pore water transport; and (v) bioturbation (Cochran, 1980; Rutgers van 

der Loeff et al., 1984). Radium-228 flux from the sediment is discussed in detail in chapter 3, 

where a comparison between several systems is presented.  

1.1.2.4 Atmospheric deposition   

Atmospheric dust has been recognized as a major source of bioactive TEs (e.g. Fe, Mn, Cd, 

Co, Zn, and Ni) to the surface ocean (e.g. Duce et al., 1991), where phytoplankton grow. 

Volcanic ashes can also be an important TE source to the oceans (Achterberg et al., 2013). 

Aerosol transport is particularly important to primary productivity in remote regions of the 

ocean, where the influences of continental margins are limited. However, atmospheric 

deposition flux can vary significantly from one region to another by over two orders of 

magnitude (Mahowald et al., 2005), which suggests that the influence of aerosol inputs on TE 

biogeochemistry in surface oceans differs significantly over global scales (Boyd et al., 2010). 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Achterberg%2C+Eric+P
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For example, in the Arctic region atmospheric dust fluxes to the ocean is the lowest with <0.5 

g m
-2

 yr
-1

 due to absence of proximal dust sources (Jickells et al., 2005; Mahowald et al., 

2005); whereas atmospheric dust deposition is the major source of TEs to the surface of the 

North and Equatorial Atlantic (Rijkenberg et al., 2014) due to inputs from the Sahara desert 

(>5 g m
-2

 yr
-1

) (Jickells et al., 2005).  

Radium isotopes are present in the air as soil dust. Moore et al. (2008) and Kwon et al. 

(2014) estimated the 
228

Ra release from fine grained sediments contributes less than 1% of 

the total 
228

Ra to the Atlantic Ocean.   

1.1.2.5 Hydrothermal vents 

Hydrothermal vents are fissures on the seafloor through where seawater can penetrate, be 

heated (up to 500°C) and chemically modified, as seawater-rock interaction enriches the 

circulating fluid with TEs, gases, and radionuclides (e.g., Resing et al., 2015; Kadko and 

Moore, 1988). The circulating fluid can rapidly be expelled back into the overlying waters in 

the form of black or white smoke. Elevated Ra activities were observed in the vicinity of 

hydrothermal vents (Kadko, 1996; Kadko and Moore, 1988), as the low pH and high 

temperature of the hydrothermal fluids may release Ra when the circulating fluid interacts 

with basalt. Once released from the hydrothermal vents, TEs can be rapidly scavenged onto 

particles, form sulfide and metal-oxides (e.g. Fe oxyhydroxides and Fe-sulfide and Mn 

oxides) and precipitate (Bruland and Lohan, 2003). In this way, hydrothermal vent form an 

important source (and sink in the case of TEs) for TEs and Ra in the deep ocean.  

 

https://en.wikipedia.org/wiki/Fissure_vent
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Figure 1.6: Schematic representation of the main TE and Ra sources, sinks, transport mechanisms, and 

processes that affect their distributions. Gravitation implies the sink terms (sorption and settling/ scavenging). 

The term “Th” represent thorium isotopes present in sediments.  

1.2 Characteristics of the study regions  

In order to study TE boundary fluxes in diverse ocean environments, this Ph.D. project 

focused on two regions with different oceanographic features that constrain the major sources 

and transport mechanisms controlling TE distributions, such as shelf sediments and rivers. 

One of these regions is the Chukchi Sea, the Pacific gateway to the Arctic and an important 

source of nutrients to the Arctic Ocean productivity. Pacific-origin waters that reach the 

Arctic basin through the Bering Strait are modified on the large Chukchi shelf before 

entering the Arctic Ocean, due to interaction between sediment and near-bottom water, ice 
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formation and melting, and primary production (Cooper et.al., 1997). The importance of the 

Chukchi shelf sediments in contributing TEs to primary productivity in the Arctic Ocean has 

been pointed out (Taylor et al., 2013; Nakayama et al., 2011). However, few studies focused 

on TEs other than Fe in the Chukchi Sea (Cid et al., 2012; Kondo et al., 2016); in addition, 

they focused on regions beyond the slope boundary between Chukchi Sea and Canada Basin. 

Before this Ph.D. project, an extensive TE and Ra isotope sampling over the Chukchi shelf 

had never been conducted, and TE data for the spring period was not available. As this region 

is unique because of its susceptibility to climate change (see chapter 3), the study of TE 

biogeochemical processes in the Chukchi Sea, as well as the comprehension of the role of 

shelf sediment in delivering TEs to the central Arctic basin, are crucial in the evaluation of 

the potential response of the biogeochemical cycles to future changes in the Arctic Ocean. 

The second study region is the Southeast Atlantic Ocean, an important eastern boundary 

region that not only receives the discharge of one of the major world’s rivers (Congo River), 

but is also influenced by the Benguela Upwelling system and the associated high biological 

productivity and low oxygen levels in subsurface waters. The Congo River is the world’s 

second largest river by discharge volume of water (1.3 x 10
12

 m
3 

yr
-1

) and drainage basin size 

(~ 3.7 x 10
6
 km

2
) (Hopkins et al., 2013; Spencer et al., 2014), after the Amazon River. The 

Congo canyon is directly connected to the river mouth, which makes the bathymetry drop 

abruptly to 100 m still in the estuary. The Congo River plume can reach over 800 km 

offshore during the austral summer (Hopkins et al., 2013). Despite of the importance of the 

Congo River waters in the SE Atlantic, its influence on the TE biogeochemistry and chemical 

oceanography of the SE Atlantic has not been yet investigated comprehensively and there is 

far less information available than for other ocean regions. For example, it has been reported 
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that about 15% of the 
228

Ra in the Atlantic Ocean is derived from the Amazon River (Moore 

et al., 1995) with most of the Ra originating from desorption from suspended particles in the 

estuary (Key et al., 1985); before this Ph.D. project however, comparable data for the Congo 

River was not available. Several studies have investigated the biogeochemical implications 

on nutrient and carbon cycling of the Congo River inputs in the coastal discharge region 

(e.g., Spencer et al., 2012; Vangriesheim et al., 2009; Braga et al., 2004), but little is known 

about fluxes of dissolved TEs from the Congo River and their influence on the primary 

productivity of the coastal and open (oligotrophic) waters of the southeastern Atlantic Gyre. 

Thus, to address this knowledge gap, this thesis evaluated the fate of the Congo River inflow 

in its far field in the SE Atlantic Ocean, and TE inputs from the Congo River waters and 

continental margin into the SE Atlantic Ocean were quantified by using Ra isotopes.  

The southern portion of the study domain in the SE Atlantic Ocean is influenced by the 

Benguela Upwelling system. Benguela is one of the four major systems located on an eastern 

boundary of the worlds' oceans, and its oceanographic characteristics are somewhat similar to 

those found in the northwest of the Canaries in Africa, on the coast of California to the west 

of the USA, and in the current of Humboldt off Peru and Chile (Shannon and Nelson, 1996). 

However, the Benguela region is unique, as it constrains the boundaries of the 3 major 

oceans, such as the Atlantic, Indian, and Southern Oceans. The Benguela Current is therefore 

formed by three components: the South Atlantic Current as the southern limb of the South 

Atlantic subtropical gyre; the subantarctic water from the Antarctic Circumpolar Current 

(ACC); and the Agulhas Current, which is responsible for a leakage of Indian Ocean water 

masses into the Atlantic Ocean (Garzoli and Gordon, 1996). Waters from the Indian Ocean 

enter the Atlantic through relatively warm and salty eddies from the Agulhas retroflection, 
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while subantarctic surface waters from the ACC enter the South Atlantic Current through 

exchange processes across the Subtropical Front (Stramma and Peterson, 1989). In addition, 

like in the other named eastern boundary systems, the Benguela region is characterized by 

wind-driven offshore surface water drift resulting in strong upwelling episodes that extent 

along the SW African margin, adjacent to the coasts of Angola, Namibia and South Africa 

(Shannon and Nelson, 1996). The permanent upwelling results in a high input of TEs into the 

photic zone, thereby inducing an increase in primary productivity and consequently a 

formation of an intense oxygen minimum zone. All these features make of this region a 

critical environment for understanding the cycling of TEs in the ocean, and an important site 

for examining land-ocean export.  

1.3 Objectives and structure of the thesis 

The major objective of this thesis was to investigate the source and fate of TEs in the ocean, 

and to quantify boundary TE inputs to coastal and open ocean, in order to better understand 

their biogeochemical cycling and evaluate how that might change in response to a changing 

climate. To this end, the naturally occurring Ra isotopes (
223

Ra 
224

Ra, 
226

Ra, and 
228

Ra) were 

applied as tracers of TE fluxes from different ocean boundaries (shelf-sediments and rivers). 

The specific objectives included: (i) improve our understanding on the TE (i.e., Cd, Fe, Ni, 

Cu, Zn, Mn, Pb, and Co) distributions in shelf regions and their transport off-shelf; (ii) 

investigate and quantify the release of TEs from the shelf-sediments; (iii) identify the driving 

factors of the TE and Ra distributions along the western African coast, which includes the 

Benguela Upwelling System and the Congo River outflow; (iv) apply a novel technique by 
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using Ra isotopes to quantify TE fluxes from a river plume (Congo River) into the open 

ocean.  

The study conducted in the Chukchi Sea was part of the SUBICE program (Study of Under 

Ice Blooms in the Chukchi Ecosystem). The major aim of SUBICE was to investigate the 

driving factors of the under-ice phytoplankton blooms observed in the Chukchi Sea, as an 

increase in light penetration associated with the loss of sea ice has led a dramatic increase in 

primary productivity in this region. The current study may therefore shed light into the role 

of TE inputs in the formation of large phytoplankton blooms that occur beneath the sea ice. 

The study conducted in the Southeast Atlantic Ocean was part of the GEOTRACES 

international program (section GA08). The GEOTRACES program succeeds the GEOSECS 

(Geochemical Ocean Sections Study) and TTO (Transient Tracers in the Ocean) programs, 

and has the mission to “identify processes and quantify fluxes that control the distributions of 

key trace elements and isotopes in the ocean, and to establish the sensitivity of these 

distributions to changing environmental conditions.” The current study in the Southeast 

Atlantic therefore helps to fulfill the major objective of the GEOTRACES program.  

To address the aims of this Ph.D. project, the thesis is structured with 6 chapters, including 

this introductory section. Chapter 2 has been written to provide a detailed description of the 

sampling and analytical methods used in this study. A succinct method section has been 

provided in each of the following chapters; therefore, chapter 2 only describes details that 

have been omitted in chapters 3, 4, and 5. Chapter 3 presented a discussion about the 

biogeochemical processes controlling the distribution of TEs in the shelf regions of the 

Bering and Chukchi Seas. The long-lived Ra isotopes (
226

Ra and 
228

Ra) were used as tracers 

http://www.geotraces.org/about-us/about-geotraces/geotraces-key-parameters
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of TE fluxes from shelf sediments and the subsequent TE export to the Arctic Ocean. In 

chapter 4, the influence of the Congo River plume on the TE (Fe, Mn and Co) 

biogeochemistry and distributions is investigated. The processes governing the distributions 

of TEs in the river-ocean interface are discussed. Radium isotopes (
224

Ra and 
228

Ra) were 

applied to identify TE sources and to determine TE fluxes into an oligotrophic region of the 

South Atlantic Gyre. In chapter 5, the dominant sources of Ra isotopes along the western 

African coast and their inputs to the South Atlantic are discussed in detail. A comparison has 

been made between the northern region influenced by the River Congo and the southern 

region influenced by the Benguela Upwelling System. Chapter 6 finalizes this thesis with a 

summary of the main findings, their implications on the oceanographic studies; future 

recommendations are given in order to fill the gaps in the current knowledge on TE cycling 

and boundary exchange. 
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2 Methods 

This chapter will describe the analytical methods and sampling procedures that are not 

already discussed within later chapters of the thesis.  

2.1 Trace elements  

2.1.1 Sample preparation and collection  

Seawater samples are highly susceptible to contamination during sampling, filtration, storage 

and analysis procedures, due to the ubiquitous presence of trace elements, mainly Fe, on 

research vessels, working materials, and laboratories. To prevent contamination, strict clean 

working procedures must be adopted, from the initial bottle cleaning through the final 

analysis procedure. Therefore, before usage, all bottles, manufactured-laboratory materials, 

such as tubing, filters, hoses, were rigorously acid-cleaned (section 2.1.1.1).  

In this study, dissolved trace element (dTE) samples, defined as anything which pass through 

a 0.2 - 0.45 μm pore sized filter, were collected by filtering seawater through an acid washed 

inline filter (0.2 µm pore size filter, Sartobran-Sartorious P-300). Total dissolvable trace 

element (TdTE) samples were collected without filtration. After collection, the samples were 

immediately acidified to pH 1.9 using concentrated HCl (OPTIMA, Fisher Scientific); 

samples were stored double-bagged for >12 months for further land-based analysis. 
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2.1.1.1 Cleaning procedure  

Trace element samples were collected at sea in low-density polyethylene (LDPE, Nalgene) 

125 mL bottles, which had been acid-cleaned following three main steps: (i) soaking for 24 

hours in Mucasol Universal detergent (e.g., Sigma-Aldrich), in order to remove any residual 

grease on the bottle walls, rinsing with warm tap water to remove the soap, and subsequently 

rinsing three times with de-ionized water (18.2 MΩ cm
-1

, Milli-Q, Millipore) (ii) soaking for 

a week in 20% v/v Hydrochloride acid (6.7 M - HCl) bath (e.g., Sigma-Aldrich, reagent 

grade 37%) and rinsing three times with de-ionized water, (iii) soaking for a week in 20% v/v 

Nitric acid (8.3 M - HNO3) bath (e.g., Sigma-Aldrich, reagent grade 37%), and (vi) rinsing 

five times with de-ionized water and stored double-bagged until usage at sea.  

New bottles used in the laboratory for trace element analysis (fluorinated ethylene propylene 

(FEP), Nalgene) (section 2.1.2.1) passed through the same cleaning process described above; 

additionally, the bottles were  soaked for a day in 1 M HCl (e.g. Sigma-Aldrich, analytical 

grade) at 50°C, UV irradiated for 4 h and rinsed five times with de-ionized water. After this 

first cleaning step and the first usage, the FEP bottles were acid-cleaned after every usage by 

rising them three times with de-ionized water and completely filled with ~ 0.3 M (Ultra-pure 

Acid grade, Romil), UV- irradiated for 4 h, or heated at 45°C overnight and left aside for a 

week. This cleaning procedure showed to be efficient, as no contamination was observed 

when re-using the bottles.  

Polypropylene (PP) 4 ml vials used in the last part of the analysis, described in section 

2.1.2.2, were cleaned prior to use as follows: (i) soaking in Mucasol detergent (Sigma 

Aldrich) for a day and rinse 3 times with warm tap water and deionized water; (ii) heating in 
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a HCl bath (analytical grade as described for bottles) at 50°C for 24 hours and rinse 3 times 

with deionized water; (iii) heating in a  HNO3 bath (analytical grade as described for bottles) 

50°C for 24 hours and rinsing 5 times with deionized water. After cleaning, the vials were 

stored double-bagged until the preconcentration procedure.  

2.1.2 Analytical methods 

Trace element analyses described in this section correspond to the study conducted in the 

Chukchi Sea. Trace element data from the GEOTRACES GA08 cruise (used in chapter 4 and 

5) was provided by Stephan Krisch and Mark J. Hopwood. 

2.1.2.1 Sample preconcentration in the SeaFAST 

The ultra-low concentrations (nM-pM) of TE species in seawater require analytical 

techniques with appropriate detection limits. Thus, TE analysis started with offline 

preconcentration using an automated system SeaFAST (Sc-4 DX SeaFast pico; Elemental 

Scientific Inc. (ESI)), equipped with a TE chelating Wako resin (Wako Pure Chemical 

Industries, Japan). After the preconcentration step, the samples were subsequently analyzed 

in an inductively coupled plasma mass spectrometry (ICP-MS, Element-XR, Thermo Fisher 

Scientific).  

The automated system SeaFAST consists of 6 reservoirs;(i) de-ionized water; (ii) a fresh 

ammonium acetate buffer solution (NH4Ac, 1.5 M) prepared at pH 8.5 ± 0.05 and used to 

adjust the pH of the samples from 1.9 to the optimal pH of the chelating process of the resin 

(pH 6.4); (iii) elution acid (1 M sub-boiled HNO3, SpA – Romil,  purified by single 

distillation in a sub-boiling perfluoroalkoxy-polymer (PFA) distillation unit (DST-1000, 
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Savillex)); this solution was spiked with indium (In) solution (1µg L
-1

) for correction of any 

instrumental drift during ICP-MS analysis and TE elution from the preconcentration column; 

(iv) 1 M HNO3 (sub-boiled) used to clean up the resin; (v) and (vi) two additional 4 L 

reservoirs containing 1 M HNO3 (rinsing solutions) used to rinse the valves, the tubing, and 

the autosampler needle.  

The functioning principle of automated system SeaFAST is described as follows: First, the 

sample is loaded into a coil (10 mL) by a vacuum pump, and mixed with buffer in a 5 mL 

mixing column until the mixture reaches the pH 6.4 ± 0.05; whilst this mixture passes 

through the preconcentration column, trace elements are loaded onto the resin. The resin is 

then rinsed with de-ionized water to remove the seawater matrix and subsequently eluted 

with 1 M sub-boiled HNO3 (spiked with In) to release the trace elements into a 4 mL 

Polypropylene (PP) vial for further analysis in the ICP-MS. The resin is then cleaned with 1 

M sub-boiled HNO3. The valves, the tubing, and the autosampler needle are finally rinsed 

with 1 M HNO3 (rising solutions). 

For TE preconcentation, sub-samples were prepared containing 15 mL and 9 mL of seawater 

samples for dTE and TdTE analysis, respectively. Less volume of seawater samples was used 

in the preconcentration of TdTEs since the unfiltered samples were highly enriched in TEs 

(see chapter 3). The concentrations of dTEs and TdTEs (i.e., Cd, Fe, Ni, Cu, and Zn) were 

determined by isotope dilution, whereas the method of standard addition was used for Pb and 

the monoisotopic elements Mn and Co (see section 2.1.3). Prior to preconcentration, the sub-

samples were spiked (100 µL) with an isotope dilution spike solution (IDspike1) and a 

multielement standard solution (MEstandard). The first contains isotopically-enriched multi-
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elements (
111

Cd, 
57

Fe, 
62

Ni, 
65

Cu and 
68

Zn, ISOFLEX USA). These enriched isotopes were 

initially in a solid form, but were dissolved in concentrated HNO3 (sub-boiled); the resulting 

solution was externally calibrated by ICP-OES and reverse ID-ICP-MS (Rapp et al., 2017), 

and subsequently diluted several times in 1 M HNO3 (sub-boiled) until the desired 

concentration of my isotope dilution spike solutions. As the TdTE (e.g., TdFe and TdMn) 

concentrations of my samples were high (see chapter 3), isotope spike solutions (IDspike1) 

with different concentrations had to be used for dTEs and TdTEs. Therefore, for the dTE 

analysis, the concentrations of 
111

Cd, 
57

Fe, 
62

Ni, 
65

Cu, and 
68

Zn in my isotope dilution spike 

were respectively: 46.9 nM, 133 nM, 48.5 nM, 140 nM, and 92.3 nM; while for the TdTE 

analysis their concentrations were 462 nM, 1312 nM, 477 nM, 1404 nM, and 908 nM, 

respectively. The final concentrations of Td- and d-Cd, Fe, Ni, Cu, and Zn were calculated as 

in section 2.1.3. 

For analysis of Mn, Co and Pb, I prepared a multielement standard solution by serial dilution 

of individual stock standards (CertiPur, Merck) in 0.45 M sub-boiled HNO3, with 

concentrations of 110 nM, 17.8 nM, and 9.30 nM for dMn, dCo, and dPb respectively; 

whereas for TdTE analysis their concentrations were respectively, 1006 nM, 161 nM, and 

84.6 nM. After spiking the sub-samples, they were UV irradiated for 4 h in a home-made box 

equipped with four low-pressure mercury vapor lamps (25 Watt, Phillips), in order to 

increase TE recovery, in particular, Co and Cu, that are strongly complexed to organic 

compounds (Milne et al., 2010). Their calibrations were performed by standard additions to 

every 10
th

 sample, and concentrations were calculated based on linear regressions of the 

sequentially-spiked samples, i.e. the mean slope, from one standard addition run before and 



Chapter 2 –Methods  

30 

 

one after the sample, was used to calculate the concentrations of Co, Mn, and Pb (section 

2.1.3).   

The accuracy and precision of the method were evaluated by analyzing SAFe (D1) reference 

seawater treated in exactly the same way as the seawater samples (see supplementary 

material of chapter 3).  

2.1.2.2 Analysis in the ICP-MS 

Inductively coupled plasma mass spectrometry not only offers extremely low detection limits 

(pM) with good precision but has also a multielement capability and provides fast analysis. 

The sample, collected from the 4 mL PP vials by the autosampler needle, is pumped into a 

nebulizer where it is transformed into droplets of aerosol with argon. Subsequently, fine and 

large aerosol droplets are separated in a spray chamber. When the fine aerosol exits the spray 

chamber, it is transported to the inductively coupled plasma (ICP) at a very high temperature 

(6000 – 10000 °C) where it is converted into positively charged ions. The ions are directed 

into the interface of the mass spectrometer (sampler and skimmer) under high vacuum (1 x 

10 
-7

 mbar). The interface consists of metallic cones with tiny orifices where the ions pass 

through to reach the ion optics. The lenses in the ion optics are used to focus the ion beam 

through a 1 mm gap into the electrostatic and magnetic sectors and separate the ions by their 

mass to charge ratio. The ion separation is done by alternating AC and DC voltage before the 

ions reach the detector. Subsequently, the ions are detected in a Faraday detector combined 

with a dual mode Secondary Electron Multiplier (SEM) detector where an electrical signal is 

produced proportional to the number of ions reaching the detector surface. 
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Three more solutions were prepared and analyzed together with the preconcentrated samples 

in the ICP-MS. These solutions are: (i) a spike solution (IDspike2) containing the artificial 

isotope ratios of the elements (i.e., 
110

Cd/
111

Cd, 
56

Fe/
57

Fe, 
60

Ni/
62

Ni, 
63

Cu/
65

Cu, and 

66
Zn/

68
Zn), prepared by diluting the concentrated isotope dilution spike (described in the 

previous section) in 1 M sub-boiled HNO3; (ii) a multielement spike solution (MEspike) 

containing the natural ratio of isotopes of the elements analyzed (i.e., Cd, Fe, Ni, Cu and Zn), 

prepared by dilution of individual stock standards (CertiPur, Merck) in1 M sub-boiled HNO3; 

and (iii) a solution of 1 M sub-boiled HNO3 used as acid blank (AB). These solutions were 

measured 10 times at the beginning and at the end of each ICP-MS run and every 10
th

 

samples. They were used to obtain the natural (ME) and enriched (spike) isotope ratios in 

order to calculate trace element concentrations as described in the following section. 

2.1.3 Trace element concentration estimates  

Trace element concentrations using the isotope dilution technique (Cd, Fe, Ni, Cu, and Zn) 

were determined as follows:  

 Csample = Cspike (Rsample – RID_spike)/(RME_spike – Rsample)/x  (Equation 2.1) 

where Csample is the TE concentration in the sample before the buffer correction; Cspike is the 

TE concentrations in the IDspike1 added to the sample; Rsample is the isotopic (natural) ratio 

measured in the sample; RID_spike is the artificial isotopic ratio of the isotope dilution spike 

(IDspike2) prepared for the ICP-MS analysis; RME_spike is the natural isotopic ratio of the 

multielement spike (MEspike) prepared for the ICP-MS analysis; and x is the natural 

abundance of the isotope. 
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Blank contributions were corrected for the final TE concentrations. They were determined 

from the manifold and the NH4Ac buffer blanks obtained in the preconcentration procedure, 

as well as the acid blank prepared for the ICP-MS analysis and used to dilute the IDspike and 

MEspike. The manifold blank (MB) contribution accounts for the TEs present in the elution 

acid and any component of the preconcentration procedure and was determined as the 

concentration of TEs in 1 M HNO3 (spiked with In) after processing through the first three 

steps from the sample preconcentration method described in section 2.1.2.1. Five manifold 

blanks were collected at the beginning and at the end of the preconcentration and two were 

collected every 10
th

 samples. Therefore, the isotope ratios of equation 2.1 were determined 

by taking into account the manifold and acid blanks contributions as follows:  

 Rsample = (n1 – MB1)/(n2 – MB2)  (Equation 2.2) 

where n1 and n2 are the number of counts in the sample for isotope 1 and isotope 2, 

respectively; MB1 and  MB2 are the number of counts in the manifold blank for isotope 1 and 

isotope 2, respectively. After the sample was analyzed, trace element concentrations were 

corrected by the average of counts of one manifold blank before and two manifold blanks. 

 RID_spike = Average [(spike1 – AB1)/(spike2 – AB2)]  (Equation 2.3) 

where spike1 and spike2 are the number of counts in the IDspike2 for isotope 1 and 2, 

respectively (measured every 10
th

 sample before and after the sample); AB1 and AB2 are the 

number of counts in the acid blank for isotope 1 and 2, respectively. Similarly, RME_spike was 

determined by replacing the ID spike in equation 2.3 by the multielement spike (both 
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measured every 10
th 

sample before and after the sample). Final concentrations were 

determined after the correction of the buffer blank. 

The NH4Ac buffer blank was determined using two batches of filtered (0.2 µm) South 

Atlantic seawater diluted 1:10 with de-ionized water and acidified to pH 1.9 and 1.6 with 

HCl (UpA, Romil). Seawater was diluted in order to reduce the concentration of TEs in the 

solutions. The solutions were treated as the samples and preconcentrated in replicates of 5. 

Different amount of buffer had to be added to these solutions during the preconcentration in 

order to increase the pH from 1.9 or 1.6 to pH 6.4. Therefore, buffer contribution in the 

samples (Cbuffer) was determined as the difference between the mean TE concentrations in 

these solutions as follow:  

 Cbuffer = Vsample x Csolution/Vsolution   (Equation 2.4) 

where Vsample  is the volume of buffer added to samples collected at sea, Vsolution  is the 

difference in volume of buffer added to the different solutions described above; and Csolution is 

the difference of TE concentrations in the two solutions. The final trace element 

concentrations (Cfinal) were obtained as follows:  

 Cfinal = Csample – Cbuffer (Equation 2. 5) 

The final TE concentrations determined by the standard addition method (Mn, Co, and Pb) 

were calculated as follows: 

 Cfinal = (nsample/nIndium)/slope  (Equation 2. 6) 
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where nsample is the number of counts in the sample; nIndium is the number of counts of Indium 

in the sample (from the elution acid); and the average slope of the linear regressions (every 

10
th

 samples).  

2.2 Radium isotopes  

Radium sampling and analysis during SUBICE and GEOTRACES GA08 research cruises 

discussed in this thesis were performed in similar ways, and differences are described where 

appropriated. 

2.2.1 Sample collection and preconcentration 

Radium isotopes (e.g.,
 226

Ra, 
228

Ra, 
224

Ra, and 
223

Ra) are present in open ocean waters at very 

low concentrations; therefore, large volumes of water (200-1000 L) are required to 

preconcentrate Ra and to obtain measurable quantities for the analytical methods used.  

Surface samples were collected by pumping ca. 200-260 L of seawater into a barrel using (i) 

the ship’s seawater intake and Niskin bottles of the CTD rosette frame (SUBICE cruise); and 

(ii) a high flow submersible and in-line booster pump (12 V d.c., Whale) that was lowered to 

about 3 m depth (GEOTRACES GA08 cruise). In order to check if the seawater collected 

from the ship’s intake during the SUBICE cruise was not contaminated by thorium isotopes 

and the pipes did not contribute additional Ra to the sampled seawater (Charette et al., 2007),  

we compared samples collected from the intake line with water collected from the CTD at 

selected stations (see details in chapter 3). Subsequently, Ra isotopes were preconcentrated 

by pumping (<1 L min
-1

; Solinst Peristaltic Pump, 410) from the barrel through a single PVC 

column loaded with 18 g of MnO2-coated fibers (hereafter Mn-fiber), which were then rinsed 
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and partially dried for further analysis (chapter 3). In order to check the extraction efficiency 

of the Mn-fibers, two identical columns filled with 18 g of Mn-fiber were used in line (in 4 

stations). The extraction efficiency of 95% ± 3% during the GEOTRACES cruise was 

obtained (using 
224

Ra and 
223

Ra), while during the SUBICE cruise the extraction efficiency 

was 94 ± 4% (using 
228

Ra and 
226

Ra). The extraction efficiencies (E) were determined using 

the activity ratios of column 1 and column 2 as follows:   

 E = 1 – (column 2/column 1) (Equation 2.7) 

Deep seawater samples were collected during the GEOTRACES GA08 cruise by using five 

in-situ Stand-Alone Pumping Systems (SAPS; Challenger Oceanic) equipped with a 

membrane filter (1 μm pore size, polycarbonate Whatmann) to collect suspended particles; 

the filtrate then passed through MnO2-coated polypropylene filter cartridges (1µm grooved 

Micro-Klean G Series cartridges, 3 M; hereafter Mn-cartridges) to extract the Ra isotopes 

(see Moore et al., 1985; Charette et al., 2015; Henderson et al., 2013). The in-situ pumps 

were fixed on steel wire of the CTD-Rosette and lowered to the desired depths (100 m, 200 

m, 300-400 m; 500-650 m, and 1000-1250 m). The pumps operated for approximately 1 h, 

pumping around 1000 L of seawater through the Mn-cartridges at a mean flow rate of 

approximately 15 L min
-1

. Before every deployment, the Mn-cartridges were first cut in half 

(~15 cm each piece), and a plastic spring was placed below each Mn-cartridge inside the 

holder in order to avoid seawater bypass through the cartridge, hence improving the Ra 

extraction efficiency on the Mn-cartridges (Sanial et al., 2018). The scavenging efficiency of 

radium on the MnO2 cartridges (65% ± 12%) was determined by measuring Ra-226 in a 

discreet water sample (1 L), via co-precipitation of Ra with BaSO4 (Moore et al., 1985), 
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using high purity, well-type germanium detectors (HPGe) for a period of 55 days (see section 

2.2.2); and by placing two cartridges in series in the in-situ pump at certain stations, and 

applying equation 2.7. Our extraction efficiency is consistent with reported values (Sanial et 

al., 2018; Charette et al., 2015). 

 

Figure 2.1: Photography of the MnO2-coated fibers (A) and the MnO2-coated cartridges (B). 

2.2.2 Analytical methods 

Several techniques for Ra isotope analysis are available, for example: (i) the RaDeCC system 

(Radium Delayed Coincidence Counter), developed by Moore and Arnold. (1996) can be 

used to measure both short-lived (Moore, 2008; Garcia-Solsona et al., 2008) and long-lived 

Ra isotopes such as 
226

Ra via 
222

Rn ingrowth  (e.g., Geibert et al., 2013) and 
228

Ra via 
228

Th 

ingrowth; (ii) γ-spectrometry for all radium isotopes (e.g., Michel et al., 1981; Charette et al., 

2001 van Beek et al., 2010; Moore et al., 1995; Reyss et al., 1995); (iii) a  radon-in-air 
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monitor (e.g. RAD-7, Durridge) for 
226

Ra determinations (Kim et al., 2001); (iv) mass 

spectrometry for 
226

Ra and 
228

Ra (e.g., Foster et al., 2004, Bourquin et al., 2011; Varga, 2008; 

Hsieh and Henderson, 2011); (v) Lucas cell (
226

Ra, e.g. Key et al., 1979). In this research 

work, the RaDeCC system was applied to measure the short-lived Ra isotopes, while the 

long-lived 
228

Ra and 
226

Ra were analyzed by γ-spectrometry.  

2.2.2.1  Short-lived Ra isotope analysis by the RaDeCC  

The RaDeCC system offers a fast and precise analysis of 
224

Ra and 
223

Ra in water samples 

(Moore, 2008) and consists in (i) a scintillation cell; (ii) a photomultiplier tube; (iii) a pump 

used to pump helium through the samples (a column filled with Mn-fibers/ Mn-cartridges). 

The system is based on the measurement of alpha particles from the decay of 
223

Ra and 
224

Ra 

daughters (i.e. 
219

Rn and 
220

Rn, respectively), and their decay products (
215

Po and 
216

Po, 

respectively). First, helium (He) circulates through the Mn-fibers/ Mn-cartridges (5-7 L min
-

1
), where 

219
Rn and 

220
Rn produced by the decay of Ra isotopes are swept into the alpha 

scintillation cells. The alpha particles generated by the decay of Rn and Po-daughters 

produce a signal that is directed to a delayed-coincidence system composed of three different 

counter channels: two distinct channels that record the counts of the 
219

Rn-
215

Po and 
220

Rn-

216
Po pairs (219 and 220 channels) and one channel that records all decay events. The 

delayed-coincidence system uses the differences in decay constants of 
215

Po and 
216

Po to 

detect the alpha particles corresponding to the 
219

Rn and 
220

Rn decay, and hence to determine 

the 
223

Ra and 
224

Ra activities in the sample. The principle of the RaDeCC system is described 

in details in Moore and Arnold (1996).  
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Activities of 
223

Ra and 
224

Ra were determined using 4 radium RaDeCC systems (Fig. 2.2). 

The fibers and cartridges were first counted on-board the ship to determine the total activities 

for the short-lived Ra isotopes. The total activity of a daughter (e.g., 
224

Ra) consists in a 

component which is supported by secular equilibrium with its parent (i.e. 
224

Ra activity is 

equal the activity of its parent 
228

Th) and an “excess” component which decays with time. 

The Mn-fibers/ cartridges were aged for 6 weeks in order to allow initial excess 
224

Ra to 

equilibrate with 
228

Th, which is also adsorbed to the Mn-fibers/ cartridges. The samples were 

then recounted to determine 
228

Th activities and thus correct for 
224

Ra supported by dissolved 

228
Th.   Thus, 

224
Ra in excess (

224
Ra ex) can be obtained as follows:  

 224
Ra ex = 

224
Ra total – 

224
Ra supported    (Equation 2.8) 

Before every sample counting, a background measurement was performed for the correction 

of the results and uncertainties according to Garcia-Solsona et al. (2008). In order to avoid 

counts build up in the total channel due to the ingrowth of 
222

Rn from the 
226

Ra decay, the 

measurement of every sample was split in two measurements of 3 h each (Garcia-Solsona et 

al., 2008). The system was flushed with air for 10 minutes, then with helium for 5 minutes 

before every measurement.  

The calibration of the detectors for analysis of 
224

Ra was performed by adsorbing known 

activities of 
232

Th to Mn-fibers as described in Scholten et al. (2010). Three standards were 

prepared and counted periodically when the samples were analyzed. The standard material 

(
232

Th) was provided by the International Atomic Energy Agency (IAEA) (Jan Scholten, 

pers. comm.). The RaDeCC detector efficiency for 
223

Ra was calibrated with 
224

Ra, taking 
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into account the different isotope half-lives, the time the counting gates are open, and 

detector volume (Moore and Cai, 2013). 

 

Figure 2.2: RaDeCC system on board the GEOTRACES GA08 cruise. 

2.2.2.2 Sample preparation for the long-lived Ra isotope analysis 

Two different sample preparations for Ra analyses were applied for SUBICE and 

GEOTRACES GA08 cruises. During the SUBICE expedition, only surface samples were 

collected and therefore only Mn-fibers were used to preconcentrate radium from seawater. 

Radium-228 and 
226

Ra were extracted from the Mn-fibers via chemical leaching followed by 

co-precipitation with Ba(Ra)SO4. Details of this procedure are given in the method section of 

chapter 3 and therefore there will be no further discussion at this point here. The blanks were 

determined from acids and solutions used in the leaching procedure, as well as from the Mn-

fibers: the same amount of fiber as used for the sample collection were leached and analyzed 
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as described for the samples. The recovery of this method is described in details in chapter 3. 

Blank and background contributions were considered in the calculation of final Ra activities. 

The analyses of the samples were then performed by gamma spectrometry using a single 

high-purity, well-type germanium detector (HPGe; Canberra, EGPC 150) (see section 

2.2.2.3). 

Samples obtained during the GEOTRACES GA08 cruise were first analyzed for the short-

lived Ra isotopes by the RaDeCC. Then the Mn-cartridges and Mn-fibers used to 

preconcentrate Ra were ashed at 600°C for 16 h (muffle oven Nabertherm, LE14/11/B150); 

after cooling, the cartridges were turned over and ashed again at 600°C for 16 h. The Mn-

fibers were ashed only once. This procedure reduced the volume of the Mn-fibers by 90% 

with a final mass of about 2 g. The final mass of the cartridges ranged between 5 g to 25 g. 

The remaining amount of ash of the cartridges was too large to fit inside the well of the 

HPGe detector (Canberra Eurisys GMBH, EGPC 150) (see Fig. 2.3). Therefore, the Mn-

fibers/ cartridges ashes were subsequently leached followed by co-precipitation with BaSO4 

as described below.  

The leaching procedure consisted in boiling the ashes in 3.5 M hydroxylamine (e.g., VWR 

Chemicals) until all the ash was totally dissolved. Subsequently, concentrated HCl (e.g., Carl 

Roth, reagent grade 37%) was added until completely discoloring the solution. Radium 

present in the solution was co-precipitated with BaSO4 when the solution was still warm. 

After precipitation, the solution was kept warm (60°C) and stirred with a magnetic stirring 

bar for > 1 h, in order to increase the crystal sizes of Ba(Ra)SO4. After removing the stirring 

bar, the solution was left to settle overnight. The supernatant was then discharged and the 
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precipitated matter washed with de-ionized water three times. After drying at 105°C (8 h) 

(Heratherm Oven, Thermo Scientific), the precipitate was transferred to a 1 mL vial sealed 

with Parafilm (Moore et al., 1985), in order to avoid loss of sample material (Michel et al., 

1981). The precipitate was stored for at least 3 weeks before analysis to allow 
222

Rn to grow 

into equilibrium with 
226

Ra, and analyzed by gamma spectrometry. In order to check the 

recovery of this method, Mn-cartridges and Mn-fibers were spiked with known 
226

Ra and 

228
Ra activities followed by the same purification procedure as described above. The 

recovery of Ra from Mn-cartridges was 93% ± 3%, while the recovery on Mn-fibers was 

94% ± 6%. 

2.2.2.3 Long-lived Ra isotope analysis by Gamma Spectrometry  

Gamma-ray spectrometry has been widely used for qualitative and quantitative analysis of 

natural radioactivity in environmental samples. In a well-type germanium detector, such as 

used during this research work (Fig. 2.3), the samples are virtually surrounded by active 

detector material, which provides good detection efficiency. The gamma photons emitted by 

the sample with known energies interact with the germanium crystals and emits signals 

corresponding to the energy of the incoming photons. The signals are displayed as a spectrum 

plotted as the number of counts versus the radionuclide energy (Fig. 2.4). Each radioisotope 

emits gamma-rays with specific energies. Radium-226, for example, emits a single 

measurable line in 186 keV with an intensity of 4%. However, interference is caused by the 

185.7 keV line emitted by the 
235

U. Therefore, 
226

Ra activities are determined by the energies 

of its daughters lead-214 (
214

Pb, 352 keV) and bismuth-214 (
214

Bi, 609 keV). As 
228

Ra has no 

significant gamma emission (see Table 1.1), actinium-228 (
228

Ac, t ½ = 6.15 h; 911 keV), 
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which is in radioactive equilibrium with 
228

Ra, is used to determine 
228

Ra. The peaks were 

analyzed by the software Gamma Acquisition & Analysis (Gennie 2000, v.3.2.1, Canberra 

Industries).  

 

Figure 2.3: (A): Photography of the well-type germanium detector (HPGe; Canberra, EGPC 150), used during 

this research work, based in Kiel at GEOMAR (Helmholtz Centre for Ocean Research Kiel). (B): The well 

inside the detector (5.5 cm height and 1.5 cm diameter).  
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Figure 2.4: Example of spectra for long-lived Ra isotope analysis. Red peaks represent 
214

Pb peak at 352 keV 

and 
214

Bi peak at 609 keV used for 
226

Ra analysis and 
228

Ac peak at 911 keV for 
228

Ra analysis.  

The detector counting efficiency was calibrated by measuring Mn-fibers spiked with 

increasing amounts of 
228

Ra and 
226

Ra, with activities varying between 2 and 35 dpm 100 L
-1

 

for 
228

Ra and 5 to 50 dpm 100 L
-1

 for 
226

Ra. The calibration curves obtained for each peak 

analyzed is shown in figure 2.5. The standards were prepared in the same BaSO4 matrix and 

geometry as per samples in order to avoid different gamma photon adsorption. The Ra spike 

solutions were provided by the International Atomic Energy Agency (IAEA) (Jan Scholten, 

pers. comm.) and have a reported activity accuracy of 6% for 
226

Ra and 5% for 
228

Ra. 
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Figure 2.5: Calibration curves for each peak analyzed, as 
214

Pb, 
214

Bi used to determined 
226

Ra and 
228

Ac used to 

determined 
226

Ra activities in the samples. 
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Abstract 

The Chukchi Sea is a primary site for shelf-ocean exchange in the Arctic region and modifies 

Pacific-sourced water masses as they transit via the Bering Strait into the Arctic Ocean. The 

aim of this study was to use radium and trace element distributions to improve our 

understanding of biogeochemical cycles in the Bering and Chukchi Seas, and evaluate their 

potential response to future changes in the Arctic. We investigated the distributions of 

dissolved and total dissolvable trace elements (Cd, Fe, Ni, Cu, Zn, Mn, Co, and Pb) in the 

Bering and Chukchi Seas during spring. In addition, the long-lived radium isotopes (
226

Ra 

and 
228

Ra) were measured as tracers of benthic trace element inputs. Trace element 

concentrations, especially Fe and Mn, were highly elevated in Chukchi shelf waters 

compared with the open Arctic Ocean and Bering Strait. Trace element, nutrient, and Ra 

patterns suggested that Fe, Mn, and Co concentrations were predominantly controlled by 

reductive benthic inputs, whereas the other trace elements were influenced by biological 

uptake and release processes. We propose that Fe, Mn, and Co in the Chukchi Sea are 

supplied from shelf sediments during winter overturning, and we combine the 
228

Ra fluxes 

with the distributions of Fe, Mn, and Co to provide a first estimate of their benthic fluxes in 

the region. The average benthic flux of 
228

Ra was 1.49 x 10
8
 atoms m

-2
 d

-1
, which is among 

the highest rates reported globally. Estimated dissolved Fe (dFe) flux from the sediments was 

2.5 µmol m
-2

 d
-1

, whereas dMn and dCo fluxes were 8.0 µmol m
-2

 d
-1

 and 0.2 µmol m
-2

 d
-1

, 

respectively. The off-shelf transport of dFe to the Arctic Ocean is estimated to be about 10-

25% of the benthic Fe flux, with the remainder retained on the shelf due to scavenging and/or 

phytoplankton uptake. Our results highlight the importance of the Chukchi Sea as a major 

source of the micro-nutrients to the Arctic Ocean, thereby supporting primary production. 
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Long-term changes in factors that affect cross-shelf mixing, such as the observed reduction in 

ice cover, may therefore enhance shelf nutrient inputs and primary productivity in the Arctic.   
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3.1 Introduction 

Pacific water inflow forms an important source of freshwater, heat, and nutrients to the 

Arctic Ocean (Aagaard and Carmack, 1989; Woodgate and Aagaard, 2005; Shimada et al., 

2006). Pacific water helps ventilate the Arctic halocline, determine nutrient budgets, and 

maintain the stratification of the Arctic Ocean (Woodgate et al., 2005). As Pacific-sourced 

waters pass through the Bering Strait and enter the Arctic Ocean, they are modified by 

biogeochemical processes in the Chukchi Sea (Brown et al., 2015; Mills et al., 2015). 

Remineralized nutrients and resuspended sediment particles from the Bering and Chukchi 

shelves are entrained in dense bottom water as it flows northward (Cooper et al., 1997; 

Mathis et al., 2007), contributing to the development of an Arctic nutrient maximum (Jones 

and Anderson, 1986; Moore et al., 1983; Aagaard et al., 1981), which forms the main source 

of nutrients for primary productivity in the Arctic Ocean. Since the Bering and Chukchi Seas 

are along the only pathway of Pacific water to the Arctic, changes in the Bering and Chukchi 

Seas have profound impacts on the physical and chemical states of Arctic Ocean ecosystems. 

Long term climate effects are driving changes in the Bering and Chukchi Seas, such as 

reduced ice cover (Serreze et al., 2007) and an increase in primary productivity (Arrigo et al., 

2008; Arrigo and Van Dijken, 2015), changes in runoff  (Peterson et al., 2002; Yang et al., 

2002), permafrost thawing (e.g. Hinzman et al., 2005; Romanovsky et al., 2002), increases in 

groundwater inputs to streams (Walvoord and Striegl, 2007) and increased inflow of Pacific 

water through the Bering Strait to the Chukchi Sea and wider Arctic Ocean (Woodgate, 

2018). These changes may alter chemical budgets and biogeochemical cycles in the Chukchi 

Sea, with subsequent consequences for Arctic ecosystems. Although changes to the climate 
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are becoming better understood, little is still known about their consequences for the 

biogeochemical cycles of trace elements in the oceans. The vertical flux of particulate carbon 

from surface waters to sediments increases substantially upon phytoplankton blooms in the 

Arctic, whilst the surface water is still cold and zooplankton growth rates are low (Michel et 

al., 2006). Increases in carbon export, in turn, stimulate denitrification rates in sediments due 

to reduced sediment redox potentials, resulting in decreased nitrate concentrations in the 

water column of the Chukchi Sea (Arrigo et al., 2008). Moreover, the sedimentary trace 

element release (e.g. iron (Fe)) into the overlying water column of a North Pacific shelf 

region was proportional to the input flux of particulate organic matter to the sediments (Elrod 

et al., 2004). Therefore, climate change effects may be altering Arctic biogeochemistry, and a 

thorough study of trace element and nutrient dynamics on the shelf is needed to access 

potential impacts throughout the region.   

A number of studies have evaluated the distributions of dissolved trace elements, chiefly Fe, 

in the Arctic Ocean. The concentrations of Fe varied considerably between the Arctic basins, 

with the lowest concentrations observed in the central basin (e.g. Klunder et al., 2012a, 

2012b; Thuróczy et al., 2011; Moore, 1983). The few studies in the western Arctic Ocean 

(Chukchi Sea and Canada Basin), argued that high trace element concentrations in surface 

waters were due to input from Chukchi shelf sediments, melting sea-ice, and river waters 

(Cid et al., 2012; Kondo et al., 2016; Aguilar-Islas et al., 2013).  However, because these 

studies focused on regions beyond the slope boundary between Chukchi Sea and Canada 

Basin, they may not have captured biogeochemical processes occurring on the Chukchi shelf. 

A better knowledge of the processes controlling the distributions and cycling of trace 
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elements on the Chukchi Sea shelf, one of the most productive Arctic shelves, is therefore 

fundamental for our understanding of trace element export to the Arctic Ocean.  

Organic matter-rich, reducing sediments of the Chukchi Sea shelf (Mathis et al., 2014; 

Grebmeier et al., 2006) appear to be a major source of trace elements to the water column, 

mainly Fe, manganese (Mn), cobalt (Co), and aluminum (Al) (Cid et al., 2012). The 

importance of sedimentary trace elements to primary production relies on their transfer to 

surface waters, as well as the extent to which they are transported offshore into the halocline 

layer of the Arctic Ocean. Reducing conditions in the sediments and frequent sediment 

resuspension events, such as those found in the Chukchi Sea, may influence the magnitude of 

benthic trace element fluxes. Subsequent delivery of these elements to the Arctic Ocean is 

controlled by physical transport processes such as advection, wind-driven upwelling, and 

slow ventilation, and the extent to which each element is retained on the shelf is determined 

by biological uptake and/or scavenging. Similar to trace elements, Ra isotopes (e.g. 
228

Ra, 

half-life = 5.75 yr, and 
226

Ra, half-life = 1600 yr) have a strong benthic source because they 

are constantly produced by radioactive decay of particle adsorbed thorium isotopes in 

sediments (
232

Th  
228

Ra, and 
230

Th  
226

Ra). In contrast to thorium, Ra is soluble in 

seawater and is released, together with trace elements, from the sediments into the water 

column by processes such as diffusion, advection, and convective mixing. Radium-226 is 

regenerated very slowly in sediments due to its long half-life; in contrast, more 
228

Ra is 

produced and released to the overlying waters, related to its shorter half-life. Thus, high 

228
Ra/

226
Ra activity ratios indicate recent shelf sediment inputs to the water column. The 

geochemical behavior and radioactive nature of these nuclides make them powerful tools to 
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investigate the inputs of trace elements to the oceans (e.g. Charette et al., 2007, 2016; 

Dulaiova et al., 2009; Sanial et al., 2018).  

 The present study was part of the “Study of Under Ice Blooms in the Chukchi Ecosystem” 

(SUBICE) program, whose objectives were to investigate the key determinants of under-ice 

phytoplankton blooms in the Chukchi Sea. Our study aimed to investigate the processes that 

control trace element and Ra distributions in the Bering and Chukchi Seas, and quantify shelf 

trace element fluxes and transport to the Arctic Ocean, in order to better understand potential 

effects of future changes in the Arctic Ocean. First, we describe the distributions of the 

dissolved and total dissolvable trace elements (cadmium (Cd), Fe, nickel (Ni), copper (Cu), 

zinc (Zn), Mn, Co, and lead (Pb)), and the radium isotopes 
226

Ra and 
228

Ra. Then, we 

estimate sedimentary fluxes of 
228

Ra, and, combine these fluxes with the distributions of the 

redox-sensitive elements Fe, Mn, and Co to estimate their benthic fluxes. To our knowledge, 

this is the first study to present data of both trace elements and Ra isotopes in the Chukchi 

Sea during the spring season and to determine their benthic fluxes in the Chukchi Sea. 

3.2 Methods  

3.2.1 Hydrography of the study region 

The shelf of the Bering Sea is highly productive (Walsh et al., 1989) and commonly divided 

into 3 main domains based on seafloor depth: inner (~50 m), middle (50 – 100 m), and outer 

shelf (100 – 180 m) (Fig. 3.1). During the spring-summer period, the water column structure 

on the inner shelf is well mixed or weakly stratified, while the middle shelf is two layered; on 

the outer shelf, the upper and lower-mixed layers are separated by a subtle density interface 
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(Stabeno et al., 1998 and references therein). The surface waters on the continental shelf of 

the Bering Sea have high Fe and low nitrate concentrations, with sediments forming an 

important source of micronutrients to the productive area along the continental slope known 

as the “Green Belt” (Springer et al., 1996; e.g. Aguilar-Islas et al., 2007, 2008, 2013; Hurst et 

al., 2010; Tanaka et al., 2015; Cid et al., 2011). Phytoplankton in surface waters of the deep 

basin of the Bering Sea are Fe-limited under high-nitrate low-chlorophyll (HNLC) conditions 

(Aguilar-Islas et al., 2007).  

On their way to the Arctic Ocean, Pacific waters flow through the Bering Strait and the 

Chukchi Sea. In general, the current flow is from south to north across the study region and 

this transport occurs along three main pathways (Coachman et al., 1975; Weingartner et al., 

2005; Corlett and Pickart, 2017). On the eastern side of the inflow is Alaskan Coastal Water 

(ACW), which is warm, fresh and nutrient-depleted water that flows to the northeast from the 

Bering Strait into Barrow Canyon, predominantly in summer. On the western side of the 

inflow is Anadyr Water (AW), cold, salty and nutrient-rich water from the Gulf of Anadyr. 

The middle branch that passes through the Central Channel contains Bering Sea Shelf Water 

that is intermediate between ACW and AW in temperature and salinity characteristics. In 

summer, the Bering Shelf Water and AW combine north of the Bering Strait on the southern 

portion of the Chukchi shelf to form Bering Summer Water (BSW). Additionally, other water 

masses are found on the Chukchi shelf such as the cold winter water (near freezing point) 

known as Newly Ventilated Winter Water (NVWW), and the warmer Remnant Winter Water 

(RWW) which is the NVWW modified by heating via solar radiation or lateral mixing with 

summer waters  on the shelf. A comprehensive description of the hydrography in our study 

https://www.sciencedirect.com/science/article/pii/S0967064505002158#bbib13
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area during the SUBICE field campaign is given in Lowry et al. (2018) and further details are 

provided in Arrigo et al. (2017).  

Salt rejection during ice formation creates dense brine-enhanced waters that sink to the 

seafloor in the Chukchi Sea before flowing off the continental shelf into the Arctic Ocean. 

This surface water is replaced by nutrient-enriched bottom water through convection, thereby 

mixing the water column. Remineralization in organic-rich Chukchi Sea sediments leads to 

high benthic nutrient fluxes (Mathis et al., 2014), and convective mixing leads to the 

formation of a relatively uniform and nutrient-rich water mass throughout the Chukchi Sea 

(Arrigo et al., 2017), known as the NVWW described above. The water column mixing that 

occurs throughout the winter (Woodgate and Aagaard, 2005) makes the Chukchi Sea one of 

the most productive Arctic shelves when the sea ice retreats in late spring and early summer 

(Hill and Cota, 2005). 

3.2.2 Sample collection and analysis  

Seawater samples for trace element (TE) and Ra isotope analyses were collected during the 

SUBICE field campaign, from 13 May to 24 June 2014, onboard the research vessel 

U.S.C.G.C. Healy. For TE profiles, 44 hydrographic stations were sampled in the Chukchi 

Sea and 7 surface water samples in the Bering Sea (Fig. 3.1; see supplementary material 

Table S 3.1); in addition, a total of 69 surface water samples for Ra isotopes were collected 

(Fig. 3.2).  The sampling and analytical methods are described below.   

  



Chapter 3 – Benthic fluxes of TEs in the Chukchi Sea and their transport to the Arctic Ocean  

55 

 

 

Figure 3.1: Stations in the Bering and Chukchi Seas sampled for trace elements. The stations sampled in the 

main flow path discussed in Figure 3.3 are indicated by red circles. The black square indicates the location of 

the station S3 in Nakayama et al. (2011) used to estimate the off-shelf dFe flux into the Canada Basin. Fish 1-7 

represent the stations sampled using a trace element clean towed fish. Water depth (m) is indicated by color 

coding. 

3.2.2.1 Trace elements 

In the open waters of the Bering Sea, we conducted surface water sampling up to the sea ice 

edge using a trace element clean towed fish. In the ice-covered area, mostly in the Chukchi 

Sea, the samples were obtained using acid-cleaned PVC hose that was manually deployed at 
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the starboard side of the vessel, lowered to specific depths (12-15 m, 20-25 m, 35 m, and 40-

50 m, preferentially). Seawater was transferred using a Teflon diaphragm pump (ALMATEC 

A15) into a shipboard clean laboratory container. Trace element samples were collected in 

low-density polyethylene (LDPE) 125 mL bottles that had been rigorously acid-cleaned as 

described in Achterberg et al. (2001). Dissolved trace element (dTE) samples were filtered 

through an acid washed inline filter cartridge (0.2 µm pore size filter, Sartobran-Sartorious P-

300), whereas total dissolvable TE (TdTE) samples were collected without filtration. 

Immediately after sample collection, the samples were acidified to pH 1.9 (0.01 M) using 

concentrated HCl (OPTIMA, Fisher Scientific). All sample preparation was conducted in a 

HEPA-filtered Class 100 laminar flow clean area inside a clean laboratory container. The 

samples were stored double-bagged for >12 months. The TdTE concentrations measured in 

acidified unfiltered samples include both the dissolved fraction and a leachable fraction of the 

particulate pool.  

The concentrations of dissolved and total dissolvable TEs (i.e. Cd, Fe, Ni, Cu, Zn) were 

determined by isotope dilution, whereas the method of standard addition was used for Mn, 

Co, and Pb. Elements were preconcentrated using an automated system (SeaFAST, ESI) with 

subsequent analysis using a high resolution inductively coupled plasma-mass spectrometer 

(HR-ICP-MS; Thermo Fisher Element XR) (Rapp et al., 2017). For the preconcentration 

step, we used 10 mL of sample for dTE analysis and 4 mL for TdTE analysis. Briefly, the 

samples were spiked with an isotopically-enriched multi-element solution containing 
111

Cd, 

57
Fe, 

62
Ni, 

65
Cu, and 

68
Zn. The concentrations of Cd, Fe, Ni, Cu, and Zn were calculated 

following the standard isotope dilution equation described in de Jong et al. (2008). Similarly, 

a standard addition working solution containing Co, Mn, and Pb was prepared by dilutions of 
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individual stock standards (CertiPur, Merck), and calibrations were performed by standard 

additions to every 10
th

 sample. Their concentrations were calculated based on linear 

regressions of the sequentially-spiked sample, i.e. the mean slope, from one standard addition 

run before and one after the sample, was used to calculate the concentrations of Co, Mn, and 

Pb. The accuracy and precision of the method were evaluated by analyzing SAFe (D1) 

reference seawater (Bruland, 2009) (see supplementary material Table S 3.2).  

3.2.2.2 Radium isotopes 

The long-lived Ra isotopes (
228

Ra and 
226

Ra) were extracted from 200 L of surface seawater 

collected from 7 m depth either from the ship’s seawater intake or from Niskin bottles 

attached to the CTD rosette frame. We ensure that the seawater collected from the ship’s 

intake was not contaminated by thorium isotopes and the pipes did not contribute additional 

Ra to the sampled seawater (Charette et al., 2007), as we compared samples collected from 

the intake line with water collected from the CTD at selected stations (n = 4, see 

supplementary material Table S 3.3). After collection, seawater was slowly pumped from the 

drums over a single column filled with MnO2-coated acrylic fiber (Mn-fiber) at a flow rate of 

<1 L min
-1

. The Mn-fiber was then rinsed with Ra-free tap water, dried, and stored for land-

based isotope analysis.   

In the laboratory, 
226

Ra and 
228

Ra were removed from the Mn-fiber via a chemical leach 

followed by co-precipitation with BaSO4. Briefly, the fiber was boiled in 6 M HCl, until 

bleached white but otherwise intact, then rinsed with 1 M HCl, and vacuum-filtered through 

a glass fiber filter (Whatman GF/F 47 mm). Radium present in the filtrate was co-precipitated 

with BaSO4 and stored in a 1 mL vial sealed with Parafilm (Moore et al., 1985). Since Ra is 
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tightly bound in the crystal lattice of BaSO4, Parafilm is only used to avoid loss of sample 

material (Michel et al., 1981).  Precipitates were stored at least 3 weeks before analysis to 

allow 
222

Rn to grow into equilibrium with 
226

Ra. Radium activities were then measured by 

gamma spectrometry using a high-purity, well-type germanium detector (HPGe). The 
226

Ra 

activities were determined using the 
214

Pb peak (352 keV) and 
214

Bi peak (609 keV), and 

228
Ra activities were determined using the 

228
Ac peak (911 keV). To confirm that the 

leaching procedure quantitatively removed Ra from the fibers, six leached bulk fiber remains 

were ashed at 600°C for 48 h and analyzed by gamma spectrometry. Ra activities close to the 

background and blank values in the leached fiber ash confirm ~ 95 % (1-σ) extraction 

efficiency of Ra using this leaching procedure (Table S 3.4). Blank fibers (the same amount 

of fiber as used for the sample collection) were leached and analyzed as described for the 

samples. Sample activities were corrected for detector backgrounds and fiber blank activities. 

The detector efficiency was determined by measuring Mn-fibers spiked with known amounts 

of 
228

Ra and 
226

Ra. The Ra spike solution was provided by the International Atomic Energy 

Agency (IAEA) and had a reported activity accuracy of 6% for 
226

Ra and 5% for 
228

Ra.  

3.3 Results and Discussion 

3.3.1 Distribution of trace elements and radium isotopes in the Bering Sea 

During the study period, the Bering Sea was ice-free up to the vicinity of St. Lawrence Island 

(north of station Fish 7; Fig. 3.1). Further north, the study domain was ice-covered (see Fig. S 

3.1). Surface water temperature and salinity decreased from Fish 1 (T = 6.73°C and S = 31.2) 

to Fish 7 (T = 1.22°C and S = 30.3). In the Bering Strait surface temperature was ~ -0.47°C 
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and salinity 31.4. Details on water column stratification and other hydrographic data are not 

available for those stations.  

In the Bering Sea, Fe, Mn, Zn, and Pb existed mainly in the leachable particulate phase (LP-) 

(calculated here as the difference between TdTE and dTE concentrations), while Cd, Ni, Cu, 

and Co were largely found in the dissolved phase. Trace element concentrations and Ra 

activities were low close to the Aleutian Islands (e.g. dMn = 4.69 nM and TdMn = 7.69 nM). 

The dFe concentrations at the outer shelf stations, Fish 1 (0.77 nM) and Fish 2 (1.8 nM), 

were somewhat higher in comparison to 0.1 – 0.9 nM reported by Aguilar Islas et al. (2007), 

Aguilar Islas et al. (2008) and Hurst et al. (2010) during the summer. However, the current 

study was conducted in mid-spring, when the phytoplankton communities had likely not yet 

depleted micronutrients.  

Concentrations of trace elements and Ra isotopes increased northwards to the Bering Strait 

(e.g. dMn = 15.2 nM and TdMn = 31.4 nM). This is likely due to the shallower water depths, 

with benthic derived trace elements and Ra reaching surface waters through turbulent mixing, 

and the influence of frontal processes at the shelf-breaks between outer/middle and 

middle/inner shelves causing vertical mixing of TE-and Ra-enriched deeper waters.  

Enhanced dZn (1.99 nM), dCd (0.53 nM), dNi (8.55 nM), and dCu (8.21 nM) concentrations 

were observed in surface waters of the northern middle shelf/inner shelf boundary region 

(Fish 5; Fig. 3.1), relative to the southern stations Fish 1-4. The lowest Ra activities in the 

Bering Sea were found on the middle shelf (4.75 dpm 100 L
-1

 for 
226

Ra and 1.64 dpm 100 L
-1

 

for 
228

Ra; Fish Ra 1). On the northern inner shelf between Fish 6 and the station in the Bering 

Strait, trace element concentrations were relatively high and variable (dFe: 2.66 – 6.87 nM; 
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dNi: 3.65 – 6.71 nM; dCu: 3.24 – 7. 17 nM; dMn: 4.67 – 15.2; dCd: 0.22 – 0.30 nM; dPb: 

0.002 – 0.009 nM; dCo: 0.34 – 0.45 nM). 

The highest concentrations of trace elements were observed in inner shelf ice-free waters 

(Fig. 3.1 and Table S 3.1; Fish 7) with dFe and TdFe concentrations of 6.87 nM and 707 nM, 

respectively.  The station 70 km from St. Lawrence Island (Fish Ra 3; Fig. 3.2) was located 

near Norton Sound (Fig. 3.1) and 200 km off the Yukon River delta, where the highest 
228

Ra 

activity (11.8 dpm 100 L
-1

) was observed. The Yukon River plume is unlikely to be the 

source of trace elements and Ra at those stations at the time of our sampling, as our sample 

collections in the Bering Sea occurred in May, prior to peak discharge (Yang et al., 2014) 

 

Figure 3.2: Distribution of 
228

Ra/
226

Ra activity ratio (AR) in surface waters of the Bering and Chukchi Seas and 

Bering Strait. Fish Ra 1-3 represent the stations sampled for Ra using a trace element clean towed fish. 
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3.3.2 Distribution of trace elements and radium isotopes in the Chukchi Sea 

The weakly stratified water column of the Chukchi Sea was almost exclusively composed of 

near freezing NVWW (excluding the stations beyond the shelf-break and those north of the 

Bering Strait), with a mean temperature of -1.65°C and salinity of 32.2. In the incoming 

waters, north of the Bering Strait, the Bering Summer Water (BSW) was prevalent. Beyond 

the shelf-break, the water column was composed mostly of RWW, which was highly 

stratified due to a shelf-break front separating the NVWW on the shelf from the warmer and 

fresher water over the slope (Lowry et al., 2018) (see isopycnals in Fig. 3.3). Sample 

collection (May-June 2014) in the Chukchi Sea occurred prior to the major phytoplankton 

bloom and melt pond formation, within extensive sea ice coverage where leads of open water 

in the sea ice were prevalent (Lowry et al., 2018). 

Dissolved Fe ranged from 1.45 to 46.3 nM (average: 4.71 nM), and dMn varied from 2.94 to 

59.6 nM (average: 15.5 nM). For TdFe and TdMn, the concentrations ranged from 6.05 nM 

to 4.71 µM (average: 552 nM) and 7.23 to 123 nM (average: 38.2 nM), respectively (Table 

3.1). These elements existed mainly in a leachable particulate form, which represented >98% 

of TdFe and ~60% of TdMn (Table 3.1). TdPb was also predominantly in the leachable 

particulate form, which accounted for ~80% of TdPb.  In contrast, Cd, Ni, Co, and Cu existed 

mainly in the dissolved form, and 50% of TdZn was found as leachable particulates.  
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Table 3.1: Minimum and maximum concentrations of dissolved and total dissolvable trace elements (standard 

deviations 1 σ), with average percentage of the leachable particulate phase (L.P.) observed in the Bering Strait 

and Chukchi Seas. All samples and depths are included. 

Bering Sea Chukchi Sea 

Trace 

element 

Dissolved 

(nM) 

T. 

Dissolvable 

(nM) 

LP 

(%) 

Trace 

element 

Dissolved 

(nM) 

T. 

Dissolvable 

(nM) 

LP 

(%) 

Cd 
0.22 ± 0.03 0.25 ± 0.03 

13 Cd 
0.11 ± 0.03 0.18 ± 0.01 

9 
0.53  ± 0.04 0.56 ± 0.01 0.79 ± 0.06 0.80 ± 0.01 

Co 
0.25 ± 0.02   0.27 ± 0.02  

18 Co 
0.27 ± 0.02 0.32 ± 0.04 

28 
0.50 ± 0.05 0.76 ± 0.06 0.73 ± 0.07 1.98 ± 0.15 

Cu 
2.70 ± 0.29  2.75 ± 0.05 

4 Cu 
0.22 ± 0.03 1.91 ± 0.04 

26 
8.21 ± 0.17 8.91 ± 0.96 8.79 ± 0.18 9.77 ± 1.13 

Fe 
0.77 ± 0.01 20.7 ± 1.13 

97 Fe 
1.45 ± 0.03 6.38 ± 0.34 

98 
6.87 ± 0.40 707 ± 42.1 46.8 ± 0.66 4715 ± 231 

Mn 
4.02 ± 0.42 7.69± 0.65 

62 Mn 
2.94 ± 0.32 7.23± 0.60 

59 
15.2 ± 1.57 42.7 ± 3.59 59.6 ± 1.71 123 ± 9.70 

Ni 
3.65 ± 0.12 4.58 ± 0.10 

5 Ni 
3.75 ± 0.36 4.35 ± 0.27 

14 
8.55 ± 0.26 8.73 ± 0.48 8.31 ± 0.19 9.24 ± 0.66 

Pb (pM) 
1.86 ± 0.18 14.0 ± 0.93 

80 Pb (pM) 
2.51 ± 0.24 12.6 ± 0.94 

83 
13.1 ± 0.78 109 ± 7.32 83.1 ± 5.93 516 ± 32.1 

Zn 
0.29 ± 0.02 0.97 ± 0.08 

64 Zn 
0.75 ± 0.06 2.51 ± 0.20 

49 
1.99 ± 0.08 5.87 ± 0.40 7.19 ± 0.33 33.7 ± 2.97 

The Pacific water entering the Chukchi Sea as the BSW and the RWW beyond the shelf-

break were depleted in trace elements (and Ra), while over most of the Chukchi shelf their 

concentrations were elevated at all depths. Dissolved Fe, dCd, dCo, dNi, dCu, and dMn were 

~1.5 – 2 fold higher on the Chukchi shelf, while dPb and dZn were ~4 times higher than in 

the Bering Sea. Sections of dissolved TE concentrations are shown in Fig. 3.3 for stations in 

the Central Chukchi Sea to the shelf-break parallel to the dominant currents (stations in red in 

Fig. 3.1). A depletion of all TE at stations beyond the shelf-break (except dPb, which shows 

some elevated concentrations off-shelf) is shown in Fig. 3.3. Elevated levels of trace 
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elements were found in near-bottom waters, (5-7 m above the seafloor) suggesting a 

sediment source. 

Sediment and pore water resuspension is likely to occur in the shallow Chukchi Sea due to 

convective mixing caused by winter overturning. Thus, pore water release and desorption 

from resuspended sediment particles are likely sources of trace elements to bottom waters. 

Furthermore, refreezing leads were found throughout the study area and, as a result of brine 

rejection, the water column can become fully mixed in less than 9 hours (in some cases in 

less than 1 hour) (Pacini et al., 2016; Lowry et al., 2018), stirring trace elements, Ra and 

nutrients from the bottom waters into the surface layers. The enhanced 
228

Ra activities, and 

consequently high 
228

Ra/
226

Ra ARs (1.1 < AR < 2.8; Fig. 3.2) indicate benthic inputs to the 

water column. Furthermore, remineralization of organic matter in sediment consumes oxygen 

first, followed by nitrate and then Fe and Mn reduction (Lohan and Bruland, 2008). Reduced 

Fe (II) and Mn (II) produced in sediments are mobile and diffuse into to the oxygenated 

bottom water, where they are oxidized to their less soluble forms, Fe (III) and Mn (IV). 

Oxidized colloidal Fe and Mn, and particulate Fe oxyhydroxide and Mn-oxides, can be 

removed from the water column by particulate scavenging and sinking (Lohan and Bruland, 

2008). Oxidizing bacteria play an important role in Mn oxidation (Sunda and Huntsman, 

1988).  The oxidation processes are consistent with the low dTE/TdTE ratios measured in the 

current study for Fe (0.00067 – 0.22) and Mn (0.14 – 0.81), indicating that these elements 

were mainly in leachable particulate phases. Cobalt, in turn, is readily scavenged by Fe or 

Mn-oxide phases and is released into solution when the oxides undergo reductive dissolution 

(Moffet and Ho, 1996).   
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Figure 3.3: Sections of dissolved trace elements (in nM) along main flow path of Pacific-origin waters. Iso-

contours represent potential density (kg m
-3

). Stations along this transect are marked in red in Figure 3.1. 
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In addition to the reductive supply of Fe (II) and Mn (II) from shelf sediments, resuspended 

sediments tend to have elevated Fe and Mn content. Strong negative correlations were 

observed between transmission and the TdFe (r = 0.86; n = 34) and TdMn (r = 0.74 n = 34) 

(data not shown), suggesting coinciding Fe and Mn inputs from particle resuspension. Trefry 

et al. (2014) observed Fe/Mn ratios in surface sediments of the Chukchi Shelf of 82.6 ± 33.5 

(their Table 3); in near-bottom waters, we found a similar LP-Fe/LP-Mn ratio of 44 ± 9.6. 

The difference in ratios between sediment (dashed line in Fig. 3.4A) and suspended particles 

in bottom waters (black line in Fig. 3.4A) indicates an excess of LP-Mn relative to LP-Fe in 

near-bottom waters. This could be because Fe and Mn are released from pore water and 

resuspended sediment particles, likely in their dissolved form, but they are transferred to their 

leachable particulate forms and/or are removed from the water column at different rates. 

Because the Fe/Mn ratio is so much lower in the dissolved phase (0.19 ± 0.04) than in the 

leachable particulate phase (44 ± 9.6) (Fig. 3.4A and B), there is likely preferential 

precipitation of Fe. It is possible that more Fe (II) is being released from the sediment relative 

to Mn (II), but Fe oxidizes faster to Fe (III) in the well-oxygenated bottom waters (O2 ~355 

µmol kg
-1

) and precipitates rapidly; while Mn, because of its slower oxidation rate, persists 

longer in the dissolved phase (Stumm and Morgan, 1981). Indeed, the slow oxidation kinetics 

of Mn greatly reduces the net formation of Mn oxides (Sunda and Huntsman, 1988). This is 

consistent with the lower dFe/dMn (0.07 ± 0.03) and LP-Fe/LP-Mn (12.2 ± 3.17) ratios 

found in surface waters relative to bottom waters (0.19 and 44, respectively). A recent study 

reported that, during periods of sediment resuspension, the dFe released from sediment pore 

water via diffusive processes rapidly adsorbs onto particles, and that inputs of suspended 

particles to overlying waters lead to rapid scavenging of dFe into its leachable particulate 
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phases (Homoky et al., 2012). This is consistent with the large amount of LP-Fe found in our 

study (Table 3.1) and the frequent sediment resuspension episodes observed during the 

SUBICE campaign.   

The high concentrations of dissolved and leachable particulate Fe found in surface waters of 

the shallow shelf of the Bering Sea (see Table 3.1) are also related to the benthic supply 

processes. Hurst et al. (2010) showed that LP-Fe averaged 81% of the total particulate Fe in 

the bottom waters of the Bering Sea, and suggested that elevated flux of reduced Fe at the 

sediment-bottom water interface and its subsequent oxidation and precipitation could lead to 

the formation of elevated concentrations of LP-Fe. 

 

Figure 3.4: Plots of Mn versus Fe in deep waters of the Chukchi Sea in their leachable particulate (LP) form (A) 

and dissolved (d) form (B). The dashed line in (A) presents Fe/Mn ratio in the sediments of the Chukchi Shelf 

found in Trefry et al. (2014).  

Interestingly, we observed a strong positive correlation between LP-Fe and LP-Pb in near-

bottom waters (r = 0.97, n = 34) (Fig. S 3.2A) as well as between LP-Fe and LP-Co (r = 0.92; 

n = 34) (Fig. S 2B), while there was no close correlation between their dissolved forms (Fig. 

S 3.2C and D). In contrast, the relationships between LP-Mn and LP-Pb, as well as between 
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LP-Mn and LP-Co, were weaker (r = 0.67 n = 34 and r = 0.81 n = 34, respectively) (Fig. S 

3.2E and F), suggesting that Pb and Co are preferentially scavenged by Fe-oxides, although 

Co is considered to be incorporated into Mn-oxides through the co-precipitation by 

manganese oxidizing bacteria (Moffet and Ho, 1996). The enhanced dPb and LP-Pb 

concentrations observed near the seafloor may indicate a sedimentary Pb source to the 

overlying waters (Noble et al., 2015). Although the biogeochemical processes that control 

benthic Pb release are poorly known, studies have suggested that anthropogenic Pb supplied 

to the water column may be scavenged onto Fe-Mn oxides to the sediments, and their 

subsequently reductive dissolution allows the diffusive benthic input of Pb into the water 

column (Noble et al., 2015; Rusiecka et al., 2018).  

Copper existed mainly in dissolved form, unlike Fe, Mn, and Pb. Dissolved Cu may also 

have a benthic source under moderately reducing conditions (Heggie, 1982), but in highly 

reducing shelf sediments, such as found in the Chukchi Shelf, Cu may form inorganic sulfide 

compounds and precipitate, limiting its benthic source under very low O2 conditions (Biller 

and Bruland, 2013). This could explain the distinct distribution of Cu relative to Fe, Mn, and 

Co in our study (see Fig. 3.3 and PCA results, below).  

Principal Component Analysis (PCA) was performed to clarify relationships among the 

different constituents in the Chukchi Sea (Fig. 3.5). Only data from the surface waters of the 

Chukchi Sea were considered in the PCA to allow the inclusion of Ra isotopes, as they were 

collected only in surface waters. The PCA shows that the TEs, nutrients, and Ra fall clearly 

into two separate groupings. The TEs such as Cu, Pb, Zn, Ni, Cd in surface waters were 

associated with the major macronutrients (Fig. 3.5), suggesting that phytoplankton 
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uptake/surface adsorption and remineralization were the main factors controlling their 

distribution in this region. Fe, Mn, Co, Ra, and NH4
+
 grouped separately, suggesting that 

their distributions were strongly influenced by a common source, most likely sediments, as 

discussed above for Fe and Mn. See supplementary material (Table S 3.5) for details of the 

variance on the principal components. Previous studies also reported enhanced NH4
+
 in 

bottom waters of the Chukchi Sea shelf and slope regions (Wang et al., 2006; Connelly et al., 

2014). The high primary production over the shallow shelf of the Chukchi Sea likely leads to 

a high flux of organic carbon to the seafloor (Grebmeier et al., 2006), and NH4
+
 produced by 

remineralization in sediments is released to the overlying waters (Brown et al., 2015).  

 

Figure 3.5: Principal component analysis (PCA) plot that characterizes the trends exhibited by dissolved trace 

elements, nutrients and 
228

Ra/
226

Ra ratios in surface waters of the Chukchi Sea.
 228

Ra/
226

Ra ratios are referred 

here as Activity Ratios (AR). 
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Dissolved Cd and phosphate showed a moderate correlation (r = 0.77; Fig. S 3.3A) with the 

following equation: [dCd nM] = 0.36 [PO4 µM] - 0.038, n = 97. This agrees closely with 

previous work in the Chukchi and Beaufort Seas (Cid et al., 2012) and the North Pacific 

(Bruland, 1980). In those studies, dissolved Cd and phosphate were related according to:  

[dCd nmol kg
–1

] = 0.33 [PO4 µmol kg
–1

] + 0.050, r = 0.62 (Cid et al., 2012); and [dCd nmol 

kg
–1

] = 0.347 [PO4 µmol kg
–1

] - 0.068, r = 0.99 (Bruland, 1980). The observed Cd/phosphate 

relationship is consistent with replete levels of dFe that are not limiting primary production 

(Cullen, 2006). Dissolved Zn and silicate showed no correlation (Fig. S 3.3B). Dissolved TE 

involved in biological cycles (Cd, Cu, Ni, and Zn) typically follow the profiles of the major 

macronutrients in the open ocean, but showed a nearly uniform vertical distribution in the 

current study (Fig. 3.3), due to a vertically well-mixed water column. The dCo distribution 

appears visually similar to the latter elements, but the PCA results (Fig. 3.5) shows that its 

distribution matches better with dFe and dMn. The more uniform Co distribution may be 

because Co is transported farther from the sediments than reduced Fe and Mn before it is 

removed by particulate scavenging and precipitation (Heggie and Lewis, 1984; Moffet and 

Ho, 1996). The PCA suggests that, like dMn and dFe, dCo is released from the sediments, 

but it remains longer in the water column and can be easily transported to surface waters, 

which could explain its nearly uniform distribution.     

The 
226

Ra activities measured in in the Chukchi Sea varied from 4.68 ± 0.41 to 10.9 ± 0.94 

dpm 100 L
-1

 (average: 7.83 ± 1.69 dpm 100 L
-1

), while 
228

Ra activity presented a broad range 

of 4.49 ± 0.22 to 24.4 ± 1.16 dpm 100 L
-1

 (average: 15.6 ± 4.39 dpm 100 L
-1

). The 

distribution of the 
228

Ra/
226

Ra activity ratios (AR) (Fig. 3.2) shows high AR over most of the 

shelf, where stratification was weak or nonexistent due to convective mixing. Because of the 
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shallow bathymetry of the Chukchi Sea, convective mixing can also lead to sediment and 

pore water resuspension, with subsequent supply of 
228

Ra. Furthermore, sediment type plays 

an important role in the amount of 
228

Ra delivered to the water column, and variations in 

water column Ra activities may reflect differences in the underlying sediments (see section 

3.3.4). 

Based on the spatial distribution of 
228

Ra/
226

Ra, the Chukchi Sea shelf can be divided into 

four sections (Fig. 3.2). The northwest and southeast sections (NW and SE) presented high 

228
Ra/

226
Ra ratios ranging from 2.0 to 2.8 (average = 2.25; n = 27). The lowest 

228
Ra/

226
Ra 

ratios, ranging from 1.1 to 2.5 (average = 1.91; n = 26), were observed in the southwest 

section (SW), as well as beyond the shelf-break in the northeast sections (NE). The SW 

section in our study was mostly sampled at the end of the cruise when the NVWW water 

mass was being replaced by Pacific summer water containing low 
228

Ra. The cross-shelf 

station in the NE section appeared to be composed mostly of the highly stratified RWW. The 

low 
228

Ra value beyond the shelf-break is consistent with low activities previously observed 

in surface water at this site and further north (Kadko and Muench, 2005). The 
228

Ra gradient 

observed in the NE section may indicate Ra removal (see section 3.3.5) or mixing between 

the 
228

Ra enriched NVWW and RWW within the shelf-break front. Furthermore, the water 

that exits the Chukchi Shelf is denser relative to the near-surface water on the slope in the 

boundary between the Chukchi Sea and Canada Basin, and tends to sink below the surface 

slope water (Stabeno et al., 2018). Enhanced Ra activities were observed by Kadko and 

Muench (2005) at depth from 75 to 200 m compared to the surface waters on their cross-shelf 

transects. Moreover, due to the stratification of the water column, the absence of newly 

injected 
228

Ra from bottom waters to the surface could also explain the lower activities in 
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surface waters in this region. In contrast, within the same NE section, stations located on the 

shelf exhibited high 
228

Ra/
226

Ra, elevated trace element concentrations (Fig. 3.3) and a fully 

mixed water column, suggesting that convection likely increased 
228

Ra activities and trace 

element concentrations in the surface waters of these stations. Furthermore, a strong shelf-

break signal was observed at these stations (Fig. 3.3), where the difference in density at the 

edge of the shelf between the NVWW and RWW supports a bottom-intensified shelf-break 

jet (Mathis et al., 2007). 

3.3.3 Other potential sources and sinks of trace elements and Ra isotopes in the 

Chukchi Sea 

Melting ice has been identified as an important source of trace elements, especially Fe, to 

polar surface ocean waters (Lannuzel et al., 2007; Aguilar-Islas et al., 2008; Measures, 1999; 

Tovar-Sanchez et al., 2010). Sediment resuspension events are rather common in the Chukchi 

Sea, and sediment particles can be incorporated into the ice during frazil ice formation 

(Eicken et al., 2005). Release of sediment and brines from the melting ice may consequently 

contribute TE to surface waters in spring. Most of the study region was covered by 1.0 – 1.5 

m of sea ice and 0.02 – 0.15 m of snow (Arrigo et al., 2017), with ice concentrations around 

80 – 95% (Fig. S 3.1). The high ice cover suggests that melting sea ice was unlikely to be a 

major source of trace elements for most of the study region, although some dissolved TE 

release can begin during early ice melt (van der Merwe et al., 2011). In the coastal ice zone, 

however, melting ice might have contributed additional trace elements to surface waters, 

since enhanced sediment entrainment into the sea ice and advanced melting at the end of 

sampling period were observed in this region (Fig. S 3.1). The station nearest to shore 
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presented the highest concentrations of trace elements, especially dFe, dMn, and dNi. This 

region was occupied twice, once on 19-21 May and again on 8 June. During the first 

occupation, sea ice covered ~80% of the coastal area and trace elements in surface waters 

were lower than those observed during the second occupation. The mean dissolved Fe, Mn, 

and Ni concentrations on the first occupation were 4.38 nM, 12 nM, and 7.02 nM, 

respectively, while 
228

Ra activity was 11.6 dpm 100 L
-1

. On the second occupation, the 

sediment-laden ice had mostly melted, and ice concentration decreased to ~25% (Fig. S 3.1); 

the water column was stratified and dFe, dMn, and dNi concentrations and 
228

Ra activity in 

the surface layer had increased to 46.3 nM, 59.6 nM, 8.31 nM, and 24.4 dpm 100 L
-1

, 

respectively.  After the ice melt, dMn was five times higher and dFe increased by an order of 

magnitude. Indeed, sea ice can accumulate Fe at concentrations one to two orders of 

magnitude higher than the under-ice seawaters, and release Fe to surface waters during its 

melting in a matter of weeks (Breitbarth et al., 2010 and reference therein). Activities of 

228
Ra varied by 12.8 dpm 100 L

-1
 in this region. The 

228
Ra content of melting ice of the 

Chukchi Sea is on the order of 0.55 dpm L
-1

 (Kipp et al., 2018). Given the observed salinity 

decrease from 32.7 to 29.9 at this station, an input of 
228

Ra from the melting waters using the 

Kipp et al. (2018) numbers would have been only 4.72 dpm 100 L
-1

, or about 20% for the 

most nearshore station, suggesting that melting ice was not a significant source of 
228

Ra. 

However, the reported value of 0.55 dpm L
-1

 from Kipp et al. (2018) may be underestimated, 

as they estimated 
228

Ra activity using sediment in melted sea ice collected late in the season, 

when sea ice had warmed and may have already lost chemical- and particle-rich brines. 

Nonetheless, Ra behavior during brine formation would likely mirror that of sea salts and 

would be enriched in brines proportional to seawater salinity (Loose et al., 2017). Thus, it 
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seems unlikely that such processes could enhance the ice source sufficiently to explain the 

increase in dissolved Ra, and a substantial portion of the Ra and trace element increase is 

therefore due to benthic input. 

Atmospheric deposition and river runoff can represent important sources of trace elements to 

the ocean. However, extensive ice-cover during the current study would have prevented 

appreciable aerosol deposition reaching the surface waters. The major contribution of 

riverine water in the Chukchi Sea comes from the Yukon River on the northern Bering Sea 

shelf (Fig. 3.1). Its freshwater and terrestrial materials are transported by the Alaskan Coastal 

Current northward into the Chukchi Sea (Iken et al., 2010; Baskaran and Naidu, 1995; 

Stabeno et al., 2016).  However, no clear low salinity signal from the Yukon was observed 

and the lower concentrations of trace elements found in the southern portion of our study 

domain (Fig. S 3.4) suggest a limited contribution of the Yukon River in the Chukchi Sea at 

the time of our sampling. This may be because the peak discharge occurs from early to late 

June (spring flood period) (Yang et al., 2014), i.e. one month after our sampling in the Bering 

Strait. Moreover, because of the lower Ra activities found in the Bering Sea (in the vicinity 

of the Yukon River mouth), the Bering Strait, and southern portion of the Chukchi Sea (Fig. 

3.2), it is also unlikely that the Yukon River contributed to the elevated Ra signals observed 

on the Chukchi shelf. 

3.3.4 Trace element fluxes derived from 
228

Ra   

Benthic inputs on the Chukchi shelf supplied dissolved 
228

Ra to the inflowing waters from 

the Bering Sea, increasing activities by approximately a factor of two to three. In order to 

determine the magnitude of the fluxes that are required to sustain the observed enrichment, 
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excess 
228

Ra activities were obtained at each station on the Chukchi shelf by subtraction of 

the average activities found in the Bering Strait and in the southern portion of our study 

domain (7.35 dpm 100 L
-1

) from the observed activities. The inventory of excess 
228

Ra (I, 

atom m
-2

) was determined using the water depth (m) at each station. A uniform distribution 

of 
228

Ra in the water column was assumed given the observed extensive vertical mixing and 

lack of stratification (Lowry et al., 2018), and these inventories therefore represent lower 

limit estimates. The stratified station localized beyond the shelf-break, as discussed in section 

3.3.2, was excluded from our calculations. The excess 
228

Ra inventory (I) ranged from 0.40 ± 

0.09 x 10
10 

to 3.87 ± 0.18 x 10
10

 atoms m
-2

 (average = 1.81 ± 0.82 x 10
10

 atoms m
-2

). 

However, the inventory determined here based on surface 
228

Ra activities does not consider 

seasonal variations in the Ra supply to surface waters. Nonetheless, as the water column was 

actively overturning during our survey and experienced convective mixing throughout the 

winter, we assume that the inventory of 
228

Ra was relatively constant over the months prior to 

our sampling.    

Assuming sediments are the primary source of Ra to the water column, a steady state flux of 

Ra from sediments (Jseds) was balanced by loss due to exchange with low Ra waters off-shelf 

(Jexchange) and radioactive decay (Jdecay) (e.g., Moore et al., 1995). The residence time (τ) of 

Pacific water in our study domain is ~4 months (Arrigo et al., 2017; Woodgate, 2018), giving 

a water exchange rate (K) of 0.008 d
-1

. Hence, the flux of 
228

Ra is therefore given by: 

 Jseds = Jdecay + Jexchange = λI + KI  (Equation 3.1) 

where λ is the decay constant of 
228

Ra. However, because the half-life of 
228

Ra is long 

relative to the residence time of water in the Chukchi Sea, no significant decay occurs and the 
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term Jdecay can be neglected. The 
228

Ra flux is then the inventory multiplied by the water 

exchange rate (K).  

 Jseds = J exchange = KI (Equation 3.2) 

The sediment 
228

Ra flux estimated from equation 2 using the average inventory is 1.49 ± 0.71 

x 10
8
 atoms m

-2
 d

-1
. The mean flux estimated here ranks among the highest reported globally 

and is similar to that reported for shelf systems such as the Amazon (3.01 x 10
8
 atoms m

-2
 d

-1
; 

Moore et al., 1995); Bega River, Australia (2.27 x 10
8
 atoms m

-2
 d

-1
; Hancock et al., 2000); 

Long Island Sound, USA (1.56 x 10
8
 atoms m

-2
 d

-1
; Cochran, 1984); and Narragansett Bay 

(1.42 x 10
8
 atoms m

-2
 d

-1
; Santschi et al., 1979) (Fig. 3.6). Moore et al. (2008) compiled 

estimates of sedimentary 
228

Ra flux and showed that 
228

Ra fluxes from fine-grained 

sediments are 1 – 2 orders of magnitude higher than those found in coarse-grained sediments. 

They suggested a global average flux of 50 ± 25 × 10
9
 atoms m

−2
 yr

−1
 (1.37 x 10

8
 atoms m

-2
 

d
-1

) for fine-grained sediments and 1.0 ± 0.5 × 10
9
 atoms m

−2
 yr

−1
 ( 0.03 x 10

8
 atoms m

-2
 d

-1) 

for coarse shelf sediments. These literature values were used to calculate benthic fluxes at 

each station in the current study using the sediment type maps in Trefry et al. (2014) (see 

supplementary materials Fig. S 3.5). Calculated fluxes ranging from 0.4 - 1.3 × 10
8
 atoms m

-2
 

d
-1

 show that a completely independent estimate of benthic fluxes matches well with the 

average 
228

Ra flux derived from the water column Ra inventory (1.49 ± 0.71 x 10
8
 atoms m

-2
 

d
-1

), reinforcing the argument that benthic input is the primary source of 
228

Ra to the system. 
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Figure 3.6: Shelf sediment 
228

Ra fluxes. Values reported by: Li et al. (1979); Moore et al. (1987); Moore et al. 

(1995); Cochran (1984); Santschi et al. (1979); Rama and Moore (1996); Crotwell and Moore (2003); Hancock 

et al. (2000); Hancock et al. (2006); Hsieh et al. (2013). Most of the data are summarized in Moore et al. (2008).  

Several factors can control sedimentary 
228

Ra fluxes in the marine environment, such as 

diffusive pore water transport, bioturbation, sediment grain size and mineralogy (particularly 

non-carbonate sediments contain an enhanced abundance of 
232

Th (Moore et al., 2008)). 

Although the sediment texture is quite variable in the Chukchi Sea shelf, silt and clay are 

dominant in the central Chukchi Basin (Trefry et al., 2014 and references therein). Overall, 

muds dominate (64%), with a substantial contribution from sands (31%) and gravel (5%) 

(Trefry et al., 2014). Marine clays are often enriched in 
232

Th series radionuclides in 

comparison to quartz and carbonate-rich marine sediments (Hancock et al., 2006), which 

could explain the high sedimentary 
228

Ra flux observed in the Chukchi Sea. Sediment 

resuspension and Ra desorption contribute to the benthic source. However, assuming a 
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sediment 
228

Ra activity of 1.1 dpm g
-1

 and a 32% desorbable fraction (Kipp et al., 2018), a 

bulk density of 1.5 g cm
-3

 and 12% annual ingrowth rate, resuspension of sediment to a depth 

of 1 cm across the entire shelf could support only ~5% of the measured flux. Given that 
210

Pb 

profiles in Chukchi Sea sediments indicate that mixing is limited below 1 – 2 cm (Lepore et 

al., 2009; Baskaran and Naidu, 1995), it is unlikely that sediment resuspension can represent 

more than 10% of the benthic 
228

Ra flux in the Chukchi Sea, suggesting that diffusive release 

from shelf sediment is the major source of 
228

Ra to the system. 

Because dFe, dMn, and dCo in the Chukchi Sea have a benthic source similar to Ra (see 

section 3.3.2; Fig. 3.5), the 
228

Ra flux can be used to estimate the sedimentary fluxes of these 

trace elements on the shelf (Table 3.2). Trace elements fluxes from the sediments were 

estimated by multiplying the average 
228

Ra flux from the shelf sediments (derived from 

equation 2) by the shelf-averaged ratio between dTE concentrations observed in the near-

bottom waters (5-7 m above the bottom) and 
228

Ra activity (dTE/
228

Ra). Trace element fluxes 

for the Chukchi Sea derived in this way are within the range of the sedimentary fluxes 

observed elsewhere (Table 3.2). For example, the estimated Fe flux in the current study is 

about 2.5 ± 2.4 µmol m
-2

 d
-1

. This compares well with the global range of 2.5 –7.4 µmol m
-2

 

d
-1

 (Tagliabue et al., 2014; Elrod et al., 2004; Dale et al., 2015). Our estimated Mn and Co 

fluxes were 8.0 ± 7.1 µmol m
-2

 d
-1

 and 0.2 ± 0.1 µmol m
-2

 d
-1

, respectively. Benthic Mn 

fluxes reported elsewhere range between 0.4 (Monterey Shelf, Landing and Bruland, 1987) 

and 7.9 µmol m
-2

 d
-1

 (Oregon/California shelf, McManus et al., 2012). However, unlike Ra, 

trace elements are taken up by phytoplankton, oxidized and precipitate, and/or are scavenged 

onto biogenic or lithogenic/sediment particles. Sediment resuspension during the current 

study may have increased LP-Fe transport on the shelf (section 3.3.2). Suspended particles 
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may have scavenged a fraction of the dFe supplied from reducing sediment as LP-Fe, 

buffering the concentrations in the water column (Homoky et al., 2012; Milne et al., 2017). 

Therefore, if a significant amount of dFe released from the sediments was lost by scavenging, 

our sedimentary dFe fluxes may be underestimated given that they were calculated from 

near-bottom water dFe concentrations.  This may also explain why the dMn flux estimates 

were much higher than dFe fluxes. Mn removal rates from the water column are slower than 

for Fe, so the original Mn/Ra ratio is more likely to be preserved in bottom waters (see 

section 3.3.2). Dale et al. (2015) argued that Fe scavenging rates as inorganic particulates and 

colloidal aggregates in bottom waters are far higher than previously thought, and the fraction 

of dFe that is scavenged close to the seafloor may be poorly estimated.  

Nonetheless, regardless of the dFe removal processes described above, dFe fluxes in the 

Chukchi Sea appear to be sufficient to allow for complete consumption of macronutrients, 

i.e., the replete dFe concentrations do not limit primary productivity.  The net primary 

production (NPP) during SUBICE varied from 76.7 to 104 mg C m
-2

 d
-1 

(Arrigo et al., 2017). 

Following the argument of Tanaka et al. (2015), who estimated the Fe consumption in the 

Green Belt, and equally using Fe:C uptake ratios of 3 – 33 μmol Fe/mol C for coastal 

diatoms, biological Fe uptake in the Chukchi Sea can be estimated as 76.7 (mg C m
-2

 d
-1

)/ 

12000 (mg C/mol C) x 3 (μmol Fe/mol C). This gives an estimate of NPP Fe consumption in 

the Chukchi Sea of ~ 0.02 – 0.27 µmol Fe m
-2 

d
-1

, which is well below the mean sedimentary 

dFe flux of 2.5 µmol m
-2

 d
-1

 (Table 3.2). However, this estimate of Fe consumption was 

based on the NPP rate before the spring phytoplankton bloom, and it may be higher during 

bloom periods. 
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3.3.5 Trace element and radium transport to the Arctic Ocean   

A recent study suggested that the shelf 
228

Ra fluxes to the Arctic Ocean have risen sharply 

over the period 2007-2015, and most of the increase was ascribed to shelf sediment inputs 

(Kipp et al., 2018). Their surface water 
228

Ra activities on the Chukchi shelf in summer 

appeared low (<10 dpm 100 L
-1

) compared to our observations, and they suggested that the 

228
Ra activities in the Chukchi Sea did not increase during that period. In contrast, the current 

study observed 
228

Ra activities in the winter waters of the Chukchi Sea as high as 24 dpm 100 

L
-1

, levels similar to those reported for the central Arctic (Kipp et al., 2018), Kara and Laptev 

Seas (Rutgers van der Loeff et al., 1995). Further field observations in the Chukchi Sea in the 

summer, two months after our SUBICE cruise (Li et al., 2017), also found lower 
228

Ra 

activities (average 9.18 dpm 100 L
-1

), supporting the notion that 
228

Ra activities are lower in 

summer than in the winter waters. Given a water residence time of four months, by the time 

of their sampling in the summer season, up to 50% of the Ra-enriched shelf surface water we 

observed would have been transported off the shelf. As a result, instantaneous water 

sampling collection may miss (or coincide with) important transport periods, i.e. seasonal and 

interannual variability in 
228

Ra inventories may lead to different conclusions about the 

Chukchi Sea contribution to the overall Ra budget in the Arctic, depending on when samples 

are collected. One reason for the discrepancy could be because, with the progress of the 

melting season and consequent stabilization of the water column, convective mixing ceases, 

diminishing the input of benthic derived Ra to the surface waters. Another reason would be 

due to biological or scavenging removals of Ra that may play an important role on the Arctic 

shelves (Rutgers van der Loeff et al., 2012).  This is also reflected in the 
226

Ra activities, 

which varied by 6.2 dpm 100 L
-1 

with a minimum activity of 4.68 dpm 100 L
-1

, well below 
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that expected for Pacific surface waters (7-10 dpm 100 L
-1

) (Chung and Craig, 1980). This 

suggests a strong potential Ra control by biological cycling and may be closely linked to the 

cycling of Ba as observed in other Arctic shelves (Rutgers van der Loeff et al., 2012), and in 

the Bering Sea (W.S. Moore, personal communication). If the biological removal is indeed 

important, the Ra benthic fluxes calculated in section 3.3.4 represent conservatively low 

values.  

The importance of the Chukchi Sea in the off-shelf export of nutrients and trace elements to 

the Arctic Ocean has recently been reported (Nakayama et al., 2011; Cid et al., 2012; Kondo 

et al., 2016; Taylor et al., 2013; Aguilar-Islas et al., 2013). The concentrations of dFe (1.45 - 

46.3 nM) and TdFe (6.05 nM – 4.71 µM) observed in our study in the western Arctic Ocean 

are substantially higher than in the eastern Arctic Ocean. On the shelves of the Barents and 

Kara Seas, for example, TdFe ranged between 6 and 60 nM (Thuróczy et al., 2011), whereas 

dFe concentrations (0.4 – 0.54 nM) were close to that for the slope and open ocean regions 

(Klunder et al., 2012a, 2012b). The Laptev Sea, although being as shallow as the Chukchi 

Sea (~50 m) and containing high suspended particle concentrations, has levels of Td and dFe 

reaching only 20 to 40 nM (Klunder et al., 2012b). Nakayama et al. (2011) suggested that 

high concentrations of dFe observed within the halocline waters of the shelf, slope and basin 

regions of the western Arctic Ocean were due to transport from the shallow shelves (≤∼100 

m depth) of the Chukchi Sea and Canada Basin (see also Aguilar-Islas et al., 2013). 

Furthermore, the elevated Ni, Zn and Cd concentrations within the halocline layer in the 

western Arctic Ocean are reported to come from the Chukchi Sea shelf (Cid et al., 2012; 

Kondo et al., 2016).  
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In section 3.3.4, we determined the areal trace element flux from sediments (mean dFe flux = 

2.5 µmol m
-2

 d
-1

). However, as the ecosystem in the central Arctic Ocean strongly depends 

on the surface water exchange between shelves and central basins, it is important to quantify 

the off-shelf transport of trace elements into the interior basin. Previous studies have 

combined the 
228

Ra flux with trace elements to determine off-shelf fluxes of trace elements in 

a range of global ocean regions (see Charette et al., 2016; Dulaiova et al., 2009; Sanial et al., 

2018).  The shelf dFe flux from the Chukchi Sea to the Arctic Ocean (Flux dFe) can then be 

determined using the 
228

Ra flux and shelf-enriched dFe/Ra ratios, according to Charette et al. 

(2016). 

 Flux  dFe = Flux Ra   x   [
dFeshelf − dFeoffshelf
Rashelf  − Raoffshelf

]   (Equation 3.3)  

where Flux Ra is the 
228

Ra flux over the Chukchi Sea derived from equation 2 (taken as the 

average flux of 1.49 ± 0.71 x 10
8
 atoms m

-2
 d

-1
).  dFeshelf and dFeoffshelf, as well as 

228
Rashelf 

and 
228

Raoffshelf, are the concentration of dFe and 
228

Ra of the shelf and off-shelf endmembers, 

respectively. Given that trace elements concentrations in surface waters can be affected by 

melting ice and river runoff, these shelf and off-shelf values were calculated using the depth-

interval weighted average of dFe between the surface and 70 m (this study) and 75 m 

(Nakayama et al., 2011; black square in Fig. 3.1), respectively. The dFe/Ra ratio in equation 

3 takes the difference between the weighted average of dFe at the shelf-edge station and (i.e. 

dFeshelf = 1.55 nM) and the off-shelf Arctic basin (dFeoffshelf = 0.66 nM; Nakayama et al., 

2011). The dFe concentration ranges observed at the shelf-edge station between 15 m and 70 

m (1.62 – 1.91nM) matches well with the results of Nakayama et al. (2011) at the same 

location (their S3 station) and similar depth range (1.08 – 2.24 nM). Furthermore, the upper 
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halocline waters in the Canada Basin are an extension of the Pacific Winter Water that exits 

the Chukchi Sea shelf. The excess 
228

Ra activities are calculated as the difference between 

the mean shelf 
228

Ra activity (Rashelf  = 15.8 dpm 100 L
-1

) and off-shelf values (Raoffshelf  = 3.3 

dpm 100 L
-1

; Kadko and Muench, 2005). We considered our initial
 228

Ra value as the mean 

activity found on the shelf assuming that 
228

Ra radioactive decay and particle removal are 

negligible within the short residence time of water in the Chukchi Sea. Hence, these 

considerations give a shelf dFe input to the Arctic Ocean of ~ 2.5 x 10
4
 mol d

-1
 (considering 

our sampling area over the Chukchi Shelf as 400 x 250 km). Given the mean benthic dFe flux 

of ~ 25.2 x 10
4
 mol d

-1
, this implies that approximately 10% of dFe produced on the Chukchi 

shelf is transported to the Arctic Ocean and the remainder is retained on the shelf by 

scavenging and/or phytoplankton consumption. This is consistent with previous estimates 

that 10 to 50% of the shelf sediment-derived Fe flux is transported off the shelf (Siedlecki et 

al., 2012).  However, if there is substantial Ra removal, the shelf-edge may be a more 

accurate 
228

Ra endmember, rather than the average of 
228

Ra activities. In that case, it would 

suggest 25% export. It is not clear which is the most appropriate endmember, and the 

phenomena on Ra removal certainly requires further investigation, as the assumption that Ra 

behaves conservatively has a large impact on the estimates of the trace element fluxes. 

Regardless, whilst the Chukchi shelf is not limited by Fe, the input of dFe from the shelf to 

the basin is rapidly attenuated (Aguilar-Islas et al., 2013), and may therefore be an important 

source for the phytoplankton that accumulate in the nutricline of the Canada Basin during the 

growing season (Taylor et al., 2013). Dissolved Mn and dCo concentrations at the edge of the 

shelf in the current study were similar to or lower than off-shelf concentrations reported by 
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Cid et al. (2012) and Kondo et al. (2016), suggesting that, unlike Fe, the elements Mn and Co 

are mostly not retained on the shelf. 

The benthic trace element and Ra fluxes on the shelf and their off-shelf export to the central 

Arctic Ocean are likely to increase in response to climate change. The annual mean transport 

and velocity of Pacific waters through the Bering Strait are increasing (Woodgate, 2018), 

which may increase coastal erosion in the Bering Strait and Chukchi Sea regions, and 

consequently increase the input of trace elements and Ra to the system. Coastal erosion is 

accelerating along the Alaskan coast, for example, in the vicinity of Barrow and along the 

North Slope coastal region due to changes in climate (Peckham et al., 2001), and recent 

warming of permafrost in Alaska has been reported (Osterkamp, 2007). All these changes 

may increase the input of trace elements and Ra to coastal zones.  Furthermore, changes in 

the redox chemistry in the sediments may also cause an increase in fluxes of redox-sensitive 

trace elements (including Fe, Mn, Co) to the water column in the Chukchi Sea. Reduced ice 

cover and longer open-water seasons drive increases in primary production and are expected 

to subsequently increase the vertical carbon export in the Chukchi Sea (Grebmeier et al., 

2006; Arrigo and Van Dijken, 2015). Increased export of labile carbon to the sediments will 

change the redox potential by creating a more reducing sedimentary environment, which in 

turn, may lead to an increase in diagenetic mobilization of redox-sensitive TEs (Trefry et al., 

2014). An increase in benthic fluxes to the water column may result in higher shelf trace 

element fluxes to the central Arctic in future, as an increase in off-shelf water transport due to 

a reduction in ice cover (Woodgate, 2018) will result in a shorter residence time of the water 

in the Chukchi Sea and consequently less nutrients and TEs will be retained on the shelf. 



Chapter 3 – Benthic fluxes of TEs in the Chukchi Sea and their transport to the Arctic Ocean  

84 

 

Table 3.2: Mean sedimentary fluxes of dissolved iron (dFe), dissolved manganese (dMn) and dissolved cobalt 

(dCo) from the Chukchi Sea shelf, and off-shelf transport of dFe into the Canada Basin. * No removal, off-shelf 

flux is equal to benthic flux. ** Considering the area of our sampling region (400 x 250 km) over the Chukchi 

Shelf. 

 
Benthic TE flux             

(µmol m
2
 d

-1
) 

Off-shelf TE flux 

(x 10
4
 mol d

-1
)** 

TE flux retained 

on the shelf (x 10
4
 

mol d
-1

)** 

Fe 2.5 2.5 - 6.0 19.2 - 22.8 

Mn 8 * 
 

Co 0.2 * 
 

 

 

Figure 3.7: Schematic of trace element (TE) and 
228

Ra enrichment in the Chukchi Sea. Brine rejection during ice 

formation leads to convective mixing of the water column. Pacific water entering the Chukchi Sea is depleted in 

trace elements and 
228

Ra, but is enriched by benthic inputs in the Chukchi Sea as waters move northward to the 

Arctic Ocean. Given the mean benthic dFe flux over the Chukchi Shelf of ~ 25.2 x 10
4
 mol d

-1
 (Table 3.2), 

approximately 19.2  –  22.8 x 10
4
 mol d

-1
 (75-90%) is retained on the shelf, and 2.5 – 6.0 x 10

4
 mol d

-1
 (10-25%) 
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is transported to the Arctic Ocean. The water exchange rate in the Chukchi Sea is represented by K, and Th 

represents the thorium isotopes present in the sediments.  

3.4 Conclusion 

 This study is unique because it represents the only TE dataset for spring in the Chukchi Sea, 

a time when sea ice presence over the Chukchi shelf inhibits stratification and summer 

production has not yet substantially altered water column TE inventories. Thus, we were able 

to show that trace elements were considerably elevated throughout the Chukchi Sea shelf 

relative to open ocean waters, especially Fe and Mn, and that 
228

Ra fluxes from the Chukchi 

Sea sediments are one of the highest reported in the literature. High concentrations of LP-Fe 

and the frequent sediment resuspension episodes observed during the SUBICE campaign 

suggest that dFe supplied by diffusive inputs from sediment pore water are scavenged by 

suspended particles and thereby form labile particulate phases. Trace element sedimentary 

fluxes of dFe (2.5 µmol m
-2

 d
-1

), dMn (8.0 µmol m
-2

 d
-1

), and dCo (0.2 µmol m
-2

 d
-1

) were 

determined using 
228

Ra fluxes.  

Geochemical enrichment of inflowing Pacific waters highlights the importance of the 

Chukchi Sea as one of the major sources of (micro-) nutrients to the Arctic Ocean, which 

sustains Arctic primary productivity.  The 
228

Ra-derived shelf dFe input to the Arctic Ocean 

was about 10-25% of dFe produced on the Chukchi shelf, with the remainder retained on the 

shelf due to scavenging and/or phytoplankton consumption.   

The predicted future increase in primary productivity due to sea ice loss and a longer open-

water season is likely to increase the benthic source of trace elements in the Chukchi Sea.  

Even with rising temperatures, the shallow northern Bering and Chukchi Seas are expected to 
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continue to freeze in winter (Hunt et al., 2013), and consequently, brine rejection during ice 

formation will continue to drive convective overturning, likely supplying nutrients and trace 

elements from bottom to surface waters. An increase of the Pacific inflow and primary 

productivity will likely have a profound impact on the future carbon budget and behavior of 

redox-sensitive elements in the sediments, altering the biogeochemical cycles of trace 

elements supply in the Chukchi Sea and, consequently, their transport to the Arctic Ocean. 

Longer ice-free season increases primary productivity and off-shelf transport. The increase of 

the vertical carbon export on the shelf, due to the higher primary productivity will drive 

changes in the denitrification rates and redox potential in the sediments, consequently 

enhancing nutrient inputs to the water column. Consequences of climate change for sea ice 

cover may not directly affect the magnitude of benthic chemical fluxes, but timing of sea ice 

cover does control how benthic derived elements are mixed within the water column and 

transported off the shelf. This effect likely has a major impact on primary productivity in 

coastal Arctic seas, and increased carbon export may stimulate further positive feedbacks in 

benthic-pelagic chemical cycling in the Arctic Ocean. 
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3.5 Supplementary material  

 

Figure S 3.1:  Sea ice concentration on A) 14 May 2014; B) 25 May 2014 and C) 08 June 2014. Imagery from the NASA MODIS instrument - courtesy of the National 

Snow & Ice Data Center (NSIDC) DAAC. The red square represents the coastal ice zone discussed in section 3.3. National Snow & Ice Data Center (NSIDC). 

https://nsidc.org/data (accessed 14 May 2018). 
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Figure S 3.2: Relationships between Fe, Mn, Co, and Pb for deep samples of the Chukchi Sea in their leachable 

particulate forms and their dissolved forms  
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Figure S 3.3: Scatter plots of dCd versus Phosphate (A) and dZn versus Silicate (B). The plots include all 

samples and depths in the Chukchi Sea. 
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Figure S 3.4: Distributions of dFe, dMn, and dCo in surface and bottom waters (5-7 m above the seafloor). 

Maximum values of 46 nM for dFe and 59 nM for dMn in surface waters were excluded. 
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Figure S 3.5: Contour map of sediment type. The color dots represent 
228

Ra/
226

Ra activity ratios (AR) and tan-

brown contours and numbers represent the percentage of silty + clay, redrawn after Trefry et al. (2014). The 

depth contours are also shown.   
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Table S 3.1: Concentration of dissolved trace metals in the Bering Sea (Fish 1-7) and Chukchi Sea. 

Station Depth (m) Latitude Longitude dCd (nM) dFe (nM) dNi (nM) dCu (nM) dZn (nM) dPb (pM) dMn (nM) dCo (nM) 

Fish 1 0 53.98 -166.48 0.43 ± 0.01 0.77 ± 0.01 4.85 ± 0.15 3.15 ± 0.06 0.99 ± 0.10 6.78 ± 0.41 4.69 ± 0.49 0.25 ± 0.02 

Fish 2 0 56.11 -166.43 0.37 ± 0.01 1.79 ± 0.05 4.34 ± 0.20 2.70 ± 0.29 0.29 ± 0.02 1.86 ± 0.15 4.02 ± 0.42 0.35 ± 0.03 

Fish 3 0 56.95 -166.40 0.39 ± 0.04 2.23 ± 0.04 4.84 ± 0.19 3.56 ± 0.39 0.31 ± 0.02 3.03 ± 0.18 6.26 ± 0.65 0.50 ± 0.05 

Fish 4 0 57.56 -166.74 0.35 ± 0.03 3.08 ± 0.04 5.11 ± 0.12 4.57 ± 0.50 0.75 ± 0.07 6.98 ± 0.46 6.13 ± 0.63 0.49 ± 0.04 

Fish 5 0 58.43 -167.26 0.53 ± 0.04 4.19 ± 0.06 8.55 ± 0.26 8.21 ± 0.17 1.99 ± 0.08 2.33 ± 0.18 9.70 ± 1.00 0.49 ± 0.04 

Fish 6 0 59.34 -167.81 0.30 ± 0.01 2.91 ± 0.06 6.71 ± 0.14 7.17 ± 0.18 0.77 ± 0.03 2.45 ± 0.15 4.68 ± 0.48 0.45 ± 0.04 

Fish 7 0 61.38 -168.40 0.22 ± 0.00 6.87 ± 0.40 3.65 ± 0.12 3.24 ± 0.09 0.59 ± 0.04 4.02 ± 0.24 15.19 ± 1.57 0.34 ± 0.03 

1 20 63.95 -168.39 0.25 ± 0.00 2.66 ± 0.07 5.26 ± 0.30 3.33 ± 0.37 1.71 ± 0.14 13.09 ± 0.78 8.46 ± 0.88 0.35 ± 0.03 

2 10 65.61 -168.27 0.27 ± 0.01 4.56 ± 0.06 5.92 ± 0.12 4.43 ± 0.48 0.76 ± 0.01 8.77 ± 0.53 19.09 ± 1.98 0.48 ± 0.04 

2 25 65.61 -168.27 0.06 ± 0.01 5.85 ± 0.13 2.28 ± 0.10 0.41 ± 0.05 1.94 ± 0.06 5.02 ± 0.32 20.97 ± 2.17 0.51 ± 0.05 

9 15 67.67 -168.95 0.33 ± 0.01 5.76 ± 0.20 4.48 ± 0.08 2.77 ± 0.06 1.26 ± 0.10 9.71 ± 0.67 7.51 ± 0.78 0.23 ± 0.02 

10 15 70.69 -168.93 0.72 ± 0.05 6.26 ± 0.09 6.94 ± 0.13 4.64 ± 0.09 4.28 ± 0.10 12.28 ± 0.76 22.03 ± 2.29 0.57 ± 0.05 

10 30 70.69 -168.93 0.73 ± 0.06 5.88 ± 0.10 7.03 ± 0.21 4.30 ± 0.12 3.43 ± 0.09 8.06 ± 0.49 21.59 ± 2.24 0.57 ± 0.05 

16 20 70.71 -166.89 0.65 ± 0.04 6.65 ± 0.13 6.30 ± 0.20 3.79 ± 0.14 3.95 ± 0.07 8.48 ± 0.51 20.45 ± 2.12 0.47 ± 0.04 

19 15 70.71 -166.27 0.64 ± 0.04 5.18 ± 0.11 6.34 ± 0.14 3.68 ± 0.06 3.51 ± 0.15 5.98 ± 0.36 19.08 ± 1.97 0.47 ± 0.04 

19 30 70.71 -166.27 0.63 ± 0.05 5.10 ± 0.11 6.12 ± 0.10 3.42 ± 0.08 3.12 ± 0.24 6.53 ± 0.40 19.00 ± 1.97 0.44 ± 0.04 

24 15 70.53 -164.88 0.56 ± 0.04 4.42 ± 0.06 5.98 ± 0.13 *   2.82 ± 0.12 42.01 ± 2.50 14.47 ± 1.49 0.41 ± 0.04 

24 25 70.53 -164.88 0.58 ± 0.01 4.37 ± 0.05 5.78 ± 0.25 6.40 ± 0.16 2.65 ± 0.10 18.51 ± 1.12 13.95 ± 1.44 0.41 ± 0.04 

24 35 70.53 -164.88 0.57 ± 0.01 7.42 ± 0.08 5.79 ± 0.09 4.81 ± 0.09 2.49 ± 0.09 11.94 ± 0.71 15.33 ± 1.58 0.40 ± 0.04 

30 15 70.24 -163.25 0.41 ± 0.02 5.81 ± 0.36 8.01 ± 0.57 6.57 ± 0.68 1.25 ± 0.12 5.01 ± 0.47 11.91 ± 1.31 0.73 ± 0.07 

30 25 70.24 -163.25 0.58 ± 0.01 4.60 ± 0.06 8.04 ± 0.57 6.20 ± 0.12 1.67 ± 0.13 4.12 ± 0.29 13.28 ± 1.37 0.50 ± 0.05 

31 15 70.45 -162.95 0.58 ± 0.01 4.33 ± 0.07 7.01 ± 0.17 5.32 ± 0.09 4.30 ± 0.20 4.18 ± 0.25 13.29 ± 1.37 0.47 ± 0.04 

31 25 70.45 -162.95 0.59 ± 0.02 4.10 ± 0.08 6.68 ± 0.16 4.43 ± 0.48 2.55 ± 0.17 4.10 ± 0.27 13.47 ± 1.39 0.46 ± 0.04 

36 15 71.05 -164.99 0.61 ± 0.05 4.55 ± 0.06 6.19 ± 0.32 3.74 ± 0.40 3.49 ± 0.31 4.50 ± 0.31 18.55 ± 1.91 0.51 ± 0.05 

36 25 71.05 -164.99 0.62 ± 0.05 5.93 ± 0.09 6.57 ± 0.29 4.22 ± 0.07 3.63 ± 0.34 21.89 ± 1.32 20.19 ± 2.09 0.51 ± 0.05 

36 35 71.05 -164.99 0.73 ± 0.06 7.73 ± 0.12 7.08 ± 0.11 3.87 ± 0.09 3.67 ± 0.12 15.30 ± 0.91 22.21 ± 2.30 0.49 ± 0.04 

44 15 71.88 -165.10 0.70 ± 0.06 4.56 ± 0.06 6.12 ± 0.43 4.66 ± 1.07 4.40 ± 0.07 36.73 ± 2.18 16.72 ± 1.73 0.54 ± 0.05 

55 15 72.95 -167.08 0.68 ± 0.05 4.85 ± 0.09 6.75 ± 0.76 4.54 ± 0.53 4.12 ± 0.20 10.03 ± 0.71 15.07 ± 1.56 0.57 ± 0.05 

55 25 72.95 -167.08 0.69 ± 0.02 3.48 ± 0.08 6.57 ± 0.10 4.13 ± 0.10 2.87 ± 0.21 3.38 ± 0.21 13.21 ± 1.37 0.50 ± 0.05 

55 35 72.95 -167.08 0.69 ± 0.02 3.23 ± 0.08 6.33 ± 0.17 4.05 ± 0.11 2.86 ± 0.07 2.76 ± 0.22 13.78 ± 1.42 0.54 ± 0.05 

57 15 72.56 -168.88 0.66 ± 0.05 3.69 ± 0.44 6.43 ± 0.29 4.20 ± 0.46 3.88 ± 0.28 11.12 ± 0.96 19.82 ± 2.86 0.67 ± 0.06 
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59 15 72.44 -168.30 0.69 ± 0.02 4.47 ± 0.18 6.80 ± 0.20 4.22 ± 0.15 3.53 ± 0.19 4.35 ± 0.32 22.25 ± 2.32 0.57 ± 0.05 

59 30 72.44 -168.30 0.69 ± 0.06 4.90 ± 0.13 6.71 ± 0.18 4.18 ± 0.07 3.19 ± 0.11 5.87 ± 0.35 21.64 ± 2.25 0.55 ± 0.05 

59 40 72.44 -168.30 0.66 ± 0.02 5.36 ± 0.08 6.37 ± 0.07 3.87 ± 0.08 3.03 ± 0.11 6.54 ± 0.41 23.86 ± 2.47 0.57 ± 0.05 

59 50 72.44 -168.30 0.34 ± 0.02 14.72 ± 0.20 6.57 ± 0.09 4.22 ± 0.11 3.95 ± 0.19 15.84 ± 0.95 39.82 ± 4.12 0.65 ± 0.06 

70 15 72.07 -163.55 0.71 ± 0.05 4.15 ± 0.07 7.35 ± 0.40 4.66 ± 0.10 3.48 ± 0.14 8.77 ± 0.55 20.40 ± 2.11 0.58 ± 0.05 

70 25 72.07 -163.55 0.72 ± 0.03 5.31 ± 0.15 7.45 ± 0.18 4.53 ± 0.16 3.61 ± 0.10 6.41 ± 0.38 22.19 ± 2.30 0.60 ± 0.05 

70 35 72.07 -163.55 0.72 ± 0.05 5.42 ± 0.09 7.39 ± 0.23 4.71 ± 0.10 3.22 ± 0.12 6.55 ± 0.40 24.08 ± 2.49 0.61 ± 0.06 

78 15 72.72 -162.97 0.64 ± 0.05 3.15 ± 0.07 7.15 ± 0.27 4.87 ± 0.14 3.10 ± 0.13 3.75 ± 0.25 14.93 ± 1.54 0.56 ± 0.05 

78 30 72.72 -162.97 0.65 ± 0.05 4.31 ± 0.07 6.65 ± 0.39 4.79 ± 0.51 3.07 ± 0.42 7.29 ± 0.53 17.67 ± 1.47 0.53 ± 0.04 

78 40 72.72 -162.97 0.67 ± 0.05 6.71 ± 0.38 7.20 ± 0.23 5.05 ± 0.54 1.25 ± 0.12 7.53 ± 0.61 12.62 ± 1.40 0.57 ± 0.05 

78 50 72.72 -162.97 0.68 ± 0.01 8.14 ± 0.20 6.87 ± 0.42 4.66 ± 0.14 3.35 ± 0.09 4.39 ± 0.33 25.23 ± 2.74 0.66 ± 0.06 

78 60 72.72 -162.97 0.65 ± 0.05 6.66 ± 0.24 6.96 ± 0.22 4.81 ± 0.17 3.13 ± 0.06 3.95 ± 0.32 22.25 ± 2.43 0.59 ± 0.08 

81 15 73.08 -162.77 0.35 ± 0.03 2.35 ± 0.06 4.42 ± 0.29 4.24 ± 0.98 1.65 ± 0.08 5.58 ± 0.46 5.29 ± 0.57 0.33 ± 0.04 

81 30 73.08 -162.77 0.49 ± 0.01 2.62 ± 0.06 3.95 ± 0.27 0.93 ± 0.22 2.31 ± 0.09 4.30 ± 0.30 8.23 ± 0.89 0.45 ± 0.06 

81 50 73.08 -162.77 0.51 ± 0.04 3.25 ± 0.05 4.14 ± 0.28 2.96 ± 0.68 2.62 ± 0.07 3.52 ± 0.25 10.27 ± 1.11 0.49 ± 0.06 

81 70 73.08 -162.77 0.53 ± 0.06 3.85 ± 0.10 4.15 ± 0.28 2.32 ± 0.53 3.04 ± 0.09 3.94 ± 0.32 20.29 ± 2.20 0.53 ± 0.07 

83 15 73.21 -162.00 0.35 ± 0.01 1.62 ± 0.04 4.47 ± 0.32 1.78 ± 0.50 1.55 ± 0.08 6.70 ± 0.45 2.20 ± 0.25 0.32 ± 0.02 

83 25 73.21 -162.00 0.35 ± 0.01 1.45 ± 0.03 4.49 ± 0.32 1.74 ± 0.40 1.43 ± 0.08 20.95 ± 1.47 4.34 ± 0.47 0.31 ± 0.02 

83 50 73.21 -162.00 0.36 ± 0.01 1.69 ± 0.03 4.80 ± 0.32 *   1.83 ± 0.09 39.03 ± 2.68 4.13 ± 0.45 0.32 ± 0.03 

83 70 73.21 -162.00 0.39 ± 0.01 1.91 ± 0.05 5.14 ± 0.35 4.31 ± 0.99 *   36.64 ± 2.51 3.59 ± 0.39 0.29 ± 0.04 

91 50 73.08 -165.14 0.67 ± 0.06 7.21 ± 0.12 4.60 ± 0.30 *   4.25 ± 0.11 0.00 ± 8.00 16.70 ± 1.81 0.58 ± 0.08 

96 25 72.54 -165.75 0.67 ± 0.05 6.28 ± 0.08 5.29 ± 0.36 5.66 ± 1.30 3.37 ± 0.15 19.55 ± 1.37 29.53 ± 3.20 0.62 ± 0.08 

96 40 72.54 -165.75 0.65 ± 0.03 6.37 ± 0.21 5.88 ± 0.41 4.13 ± 0.95 4.42 ± 0.19 31.91 ± 2.20 28.27 ± 3.13 0.58 ± 0.08 

104 15 71.59 -166.38 0.67 ± 0.06 3.00 ± 0.05 5.19 ± 0.35 4.10 ± 0.94 3.24 ± 0.12 5.58 ± 0.45 13.44 ± 1.45 0.52 ± 0.07 

104 20 71.59 -166.38 0.65 ± 0.06 3.76 ± 0.07 5.15 ± 0.34 3.83 ± 0.88 5.23 ± 0.23 4.89 ± 0.34 13.42 ± 1.45 0.51 ± 0.07 

104 25 71.59 -166.38 0.68 ± 0.03 3.22 ± 0.07 5.25 ± 0.38 2.52 ± 0.58 3.35 ± 0.09 4.05 ± 0.32 12.79 ± 1.39 0.49 ± 0.07 

104 30 71.59 -166.38 0.70 ± 0.06 3.43 ± 0.08 4.72 ± 0.31 3.39 ± 0.78 3.51 ± 0.11 4.37 ± 0.31 12.87 ± 1.39 0.50 ± 0.07 

104 40 71.59 -166.38 0.70 ± 0.06 3.72 ± 0.08 5.24 ± 0.35 0.28 ± 0.07 3.77 ± 0.12 8.83 ± 0.62 16.30 ± 1.77 0.52 ± 0.07 

106 15 71.68 -165.98 0.66 ± 0.06 3.15 ± 0.05 4.87 ± 0.33 5.03 ± 0.16 3.30 ± 0.08 4.78 ± 0.36 12.47 ± 1.35 0.51 ± 0.07 

106 20 71.68 -165.98 0.70 ± 0.06 3.10 ± 0.05 5.19 ± 0.35 4.28 ± 0.98 3.49 ± 0.44 4.79 ± 0.34 14.48 ± 1.21 0.46 ± 0.04 

107 15 71.68 -165.78 0.67 ± 0.07 2.94 ± 0.11 5.13 ± 0.34 3.70 ± 0.85 3.64 ± 0.41 3.92 ± 0.28 15.07 ± 1.26 0.46 ± 0.04 

107 20 71.68 -165.78 0.66 ± 0.06 2.96 ± 0.13 5.00 ± 0.33 4.59 ± 1.06 4.23 ± 0.50 10.20 ± 0.74 14.85 ± 1.23 0.48 ± 0.04 

107 30 71.68 -165.78 0.69 ± 0.06 2.93 ± 0.06 5.14 ± 0.34 4.55 ± 0.13 3.32 ± 0.37 3.96 ± 0.29 14.62 ± 1.23 0.43 ± 0.03 

107 40 71.68 -165.78 0.79 ± 0.06 5.62 ± 0.09 7.19 ± 0.47 3.60 ± 0.10 4.46 ± 0.58 16.09 ± 1.15 28.78 ± 2.39 0.55 ± 0.04 

112 15 71.15 -165.69 0.68 ± 0.06 3.93 ± 0.08 5.04 ± 0.37 3.78 ± 0.87 4.07 ± 0.57 5.71 ± 0.41 21.27 ± 1.78 0.43 ± 0.03 

112 25 71.15 -165.69 0.65 ± 0.05 3.59 ± 0.09 5.03 ± 0.33 2.98 ± 0.04 3.96 ± 0.49 6.81 ± 0.49 20.91 ± 1.76 0.43 ± 0.03 

112 35 71.15 -165.69 0.65 ± 0.06 5.25 ± 0.04 4.85 ± 0.32 0.66 ± 0.15 6.15 ± 0.67 10.04 ± 0.73 24.58 ± 2.04 0.46 ± 0.04 
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120 15 70.70 -165.55 0.46 ± 0.01 3.49 ± 0.12 5.61 ± 0.62 2.61 ± 0.31 *   36.16 ± 2.59 12.82 ± 1.08 0.31 ± 0.02 

120 25 70.70 -165.55 0.47 ± 0.04 3.80 ± 0.07 5.64 ± 0.14 3.35 ± 0.40 1.81 ± 0.23 4.79 ± 0.34 13.61 ± 1.14 0.33 ± 0.03 

120 35 70.70 -165.55 0.46 ± 0.02 4.61 ± 0.09 5.63 ± 0.19 0.28 ± 0.03 2.01 ± 0.29 4.87 ± 0.35 14.52 ± 0.47 0.33 ± 0.03 

124 15 70.34 -164.29 0.56 ± 0.01 2.97 ± 0.06 7.07 ± 0.18 5.58 ± 0.08 5.05 ± 0.57 3.57 ± 0.26 8.32 ± 0.24 0.38 ± 0.03 

124 25 70.34 -164.29 0.53 ± 0.02 2.76 ± 0.05 6.87 ± 0.10 2.42 ± 0.28 2.13 ± 0.24 3.74 ± 0.27 8.79 ± 0.25 0.39 ± 0.03 

124 35 70.34 -164.29 0.60 ± 0.02 4.34 ± 0.05 7.18 ± 0.16 2.95 ± 0.35 2.70 ± 0.31 5.24 ± 0.38 14.26 ± 0.40 0.41 ± 0.03 

127 12 70.09 -163.36 0.32 ± 0.02 46.33 ± 0.66 8.31 ± 0.19 3.92 ± 0.45 3.57 ± 0.40 8.88 ± 0.64 59.64 ± 1.71 0.61 ± 0.05 

127 20 70.09 -163.36 0.44 ± 0.01 7.28 ± 0.16 6.78 ± 0.19 0.77 ± 0.09 2.70 ± 0.37 6.13 ± 0.45 13.18 ± 0.37 0.40 ± 0.03 

137 12 69.95 -167.00 0.11 ± 0.00 2.34 ± 0.05 3.95 ± 0.15 4.49 ± 0.54 0.91 ± 0.05 3.01 ± 0.21 7.39 ± 0.80 0.33 ± 0.04 

151 15 70.48 -167.02 0.36 ± 0.01 3.19 ± 0.06 5.79 ± 0.16 4.75 ± 0.11 3.13 ± 0.22 2.88 ± 0.25 7.60 ± 0.82 0.38 ± 0.05 

151 25 70.48 -167.02 0.35 ± 0.00 3.10 ± 0.05 5.62 ± 0.15 4.10 ± 0.47 1.41 ± 0.06 2.83 ± 0.23 7.91 ± 0.86 0.38 ± 0.05 

152 15 70.69 -165.90 0.41 ± 0.01 4.26 ± 0.09 5.58 ± 0.18 3.18 ± 0.37 2.18 ± 0.14 3.55 ± 0.28 8.45 ± 0.92 0.36 ± 0.05 

152 30 70.69 -165.90 0.34 ± 0.01 3.11 ± 0.10 5.49 ± 0.16 3.57 ± 0.42 1.33 ± 0.08 2.51 ± 0.24 8.10 ± 0.89 0.34 ± 0.05 

156 15 70.70 -167.20 0.21 ± 0.01 2.66 ± 0.08 4.87 ± 0.12 3.93 ± 0.46 1.81 ± 0.12 5.90 ± 0.42 3.38 ± 0.37 0.32 ± 0.04 

156 25 70.70 -167.20 0.17 ± 0.00 2.39 ± 0.04 5.01 ± 0.18 5.16 ± 0.15 0.75 ± 0.06 8.05 ± 0.56 2.94 ± 0.32 0.30 ± 0.04 

160 15 70.71 -168.52 0.58 ± 0.02 3.48 ± 0.06 *   8.79 ± 0.18 2.89 ± 0.10 37.82 ± 2.60 13.32 ± 1.44 0.40 ± 0.05 

168 15 71.76 -168.73 0.68 ± 0.05 4.46 ± 0.09 *   *   7.19 ± 0.33 0.00 ± 6.55 15.57 ± 1.69 0.52 ± 0.07 

168 25 71.76 -168.73 0.68 ± 0.05 3.25 ± 0.06 7.29 ± 0.21 7.63 ± 0.22 4.05 ± 0.07 37.57 ± 2.63 14.70 ± 1.59 0.50 ± 0.07 

168 40 71.76 -168.73 0.70 ± 0.05 4.22 ± 0.13 7.13 ± 0.18 5.48 ± 0.63 3.72 ± 0.14 23.05 ± 1.59 22.59 ± 2.48 0.56 ± 0.08 

175 15 72.56 -168.78 0.66 ± 0.05 3.10 ± 0.06 6.55 ± 0.20 5.64 ± 0.66 3.32 ± 0.12 43.91 ± 3.02 19.80 ± 2.15 0.56 ± 0.08 

175 30 72.56 -168.78 0.65 ± 0.01 2.96 ± 0.06 6.18 ± 0.09 4.82 ± 0.56 2.98 ± 0.09 21.03 ± 1.45 18.86 ± 2.04 0.57 ± 0.08 

175 40 72.56 -168.78 0.68 ± 0.06 3.95 ± 0.06 6.53 ± 0.11 4.60 ± 0.10 3.24 ± 0.14 16.26 ± 1.11 23.93 ± 2.59 0.59 ± 0.08 

175 50 72.56 -168.78 0.74 ± 0.06 6.20 ± 0.10 6.63 ± 0.22 4.25 ± 0.49 3.97 ± 0.11 14.69 ± 1.03 40.19 ± 4.36 0.65 ± 0.09 

178 15 72.35 -167.82 0.71 ± 0.05 3.41 ± 0.06 7.47 ± 0.83 *   3.40 ± 0.45 70.09 ± 5.00 10.52 ± 0.88 0.44 ± 0.03 

188 15 71.67 -164.02 0.73 ± 0.02 4.28 ± 0.06 *  
 

8.14 ± 0.75 6.06 ± 0.71 *   10.90 ± 0.31 0.43 ± 0.03 

188 25 71.67 -164.02 0.67 ± 0.05 4.53 ± 0.10 7.27 ± 0.80 6.31  0.74 4.34 ± 0.59 83.05 ± 5.93 9.94 ± 0.83 0.45 ± 0.04 

188 35 71.67 -164.02 0.74 ± 0.06 11.05 ± 0.16 7.68 ± 0.11 6.18  0.72 3.96 ± 0.40 62.44 ± 4.45 32.27 ± 0.92 0.54 ± 0.04 

192 15 71.57 -165.47 0.70 ± 0.05 2.98 ± 0.07 7.52 ± 0.82 9.77  1.13 3.85 ± 0.46 37.71 ± 2.69 12.96 ± 0.42 0.42 ± 0.03 

192 25 71.57 -165.47 0.68 ± 0.05 2.59 ± 0.05 7.23 ± 0.25 6.79  0.79 3.78 ± 0.41 27.40 ± 1.95 11.50 ± 0.35 0.40 ± 0.03 

192 35 71.57 -165.47 0.71 ± 0.06 2.91 ± 0.04 6.70 ± 0.07 5.43 ± 0.63 3.91 ± 0.45 25.47 ± 1.82 15.23 ± 0.44 0.44 ± 0.03 

201 15 71.20 -167.93 0.32 ± 0.01 2.44 ± 0.04 5.17 ± 0.12 4.75 ± 0.55 1.56 ± 0.22 15.37 ± 1.10 5.11 ± 0.15 0.27 ± 0.02 

201 25 71.20 -167.93 0.37 ± 0.01 2.48 ± 0.03 5.63 ± 0.07 4.04 ± 0.47 1.70 ± 0.21 11.64 ± 0.84 5.63 ± 0.16 0.30 ± 0.02 

201 35 71.20 -167.93 0.56 ± 0.02 3.14 ± 0.05 6.08 ± 0.06 4.46 ± 0.53 2.79 ± 0.34 14.17 ± 1.01 12.61 ± 0.36 0.38 ± 0.03 

201 45 71.20 -167.93 0.60 ± 0.01 3.16 ± 0.06 6.35 ± 0.15 5.76 ± 0.68 2.91 ± 0.36 16.94 ± 1.22 15.85 ± 0.47 0.41 ± 0.03 

205 15 71.58 -167.88 0.66 ± 0.05 3.06 ± 0.07 7.59 ± 0.83 5.61 ± 0.66 3.94 ± 0.47 18.19 ± 1.30 15.72 ± 0.47 0.47 ± 0.04 

205 25 71.58 -167.88 0.66 ± 0.05 2.72 ± 0.07 6.80 ± 0.47 5.42 ± 0.56 3.35 ± 0.27 14.51 ± 1.04 13.02 ± 0.37 0.44 ± 0.03 

205 40 71.58 -167.88 0.69 ± 0.05 2.76 ± 0.04 6.63 ± 0.14 5.12 ± 0.53 3.65 ± 0.49 16.54 ± 1.18 12.67 ± 0.36 0.43 ± 0.03 
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209 15 71.64 -165.54 0.67 ± 0.05 2.54 ± 0.03 6.56 ± 0.42 3.32 ± 0.35 3.70 ± 0.50 15.99 ± 1.16 10.63 ± 0.30 0.39 ± 0.03 

209 25 71.64 -165.54 0.67 ± 0.05 2.90 ± 0.06 6.28 ± 0.44 4.96 ± 0.51 3.13 ± 0.36 14.29 ± 1.02 8.78 ± 0.25 0.39 ± 0.03 

209 35 71.64 -165.54 0.70 ± 0.05 3.09 ± 0.15 6.36 ± 0.60 5.06 ± 0.52 3.93 ± 0.31 27.60 ± 2.21 14.98 ± 1.61 0.52 ± 0.05 

215 15 71.40 -167.31 0.24 ± 0.02 4.08 ± 0.36 5.11 ± 0.46 4.05 ± 0.42 1.48 ± 0.12 18.67 ± 1.51 3.77 ± 0.42 0.34 ± 0.03 

215 25 71.40 -167.31 0.28 ± 0.02 3.23 ± 0.16 4.79 ± 0.46 5.01 ± 0.51 1.27 ± 0.10 20.72 ± 1.79 3.85 ± 0.41 0.40 ± 0.04 

215 35 71.40 -167.31 0.50 ± 0.03 5.92 ± 0.28 5.90 ± 0.39 0.22 ± 0.03 2.35 ± 0.19 16.88 ± 1.36 10.85 ± 1.17 0.54 ± 0.05 

221 15 71.25 -167.96 0.17 ± 0.01 6.07 ± 0.31 3.75 ± 0.36 6.35 ± 0.65 2.56 ± 0.22 19.09 ± 1.74 3.43 ± 0.37 0.29 ± 0.03 

221 25 71.25 -167.96 0.22 ± 0.01 5.14 ± 0.23 5.15 ± 0.47 4.69 ± 0.48 1.51 ± 0.13 20.61 ± 1.70 4.03 ± 0.43 0.40 ± 0.03 

 

*Not determined or contaminated
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Table S 3.2: Analyzed reference seawater D1 and standard deviation and the respective consensus value 

 

 

 

 

 

 

Table S 3.3 : Long-lived radium activities in surface waters of the Bering Sea (Fish Ra 1-3) and Chukchi Sea. 

Station 
Collection 

date 
Latitude Longitude 

Ra-226 

(dpm 100 L-1) 

Ra-228 

(dpm 100 L-1) 
AR 

FISH Ra 1 May 14 2014 56.65 -166.41 4.75 ± 0.41 1.64 ± 0.10 0.35 

FISH Ra 2 May 14 2014 58.20 -166.12 6.39 ± 0.56 6.38 ± 0.32 1.00 

FISH Ra 3 May 15 2014 63.52 -168.40 6.79 ± 0.58 11.83 ± 0.56 1.74 

8 May 16 2014 65.72 -168.84 5.07 ± 0.43 4.49 ± 0.22 0.89 

9 May 17 2014 67.67 -166.94 7.05 ± 0.61 6.69 ± 0.32 0.95 

23 May 19 2014 70.62 -165.20 4.68 ± 0.41 7.38 ± 0.35 1.58 

27 May 19 2014 70.27 -163.87 5.81 ± 0.50 12.01 ± 0.57 2.07 

29 May 20 2014 70.25 -163.24 5.82 ± 0.68 14.42 ± 0.87 2.48 

32 May 22 2014 70.66 -164.13 7.84 ± 0.67 12.81 ± 0.60 1.63 

33 May 22 2014 70.83 -165.33 4.94 ± 0.42 7.45 ± 0.35 1.51 

35 May 23 2015 70.91 -164.99 4.88 ± 0.42 9.54 ± 0.45 1.95 

36 May 23 2014 71.05 -164.99 5.14 ± 0.44 10.57 ± 0.50 2.05 

38 May 23 2014 71.41 -164.43 5.20 ± 0.45 9.97 ± 0.47 1.92 

40 May 23 2014 71.53 -164.24 4.77 ± 0.57 9.47 ± 0.66 1.99 

46 May 24 2014 72.02 -166.06 8.02 ± 0.69 18.59 ± 0.88 2.32 

49 May 24 2014 72.36 -166.28 5.74 ± 0.49 13.84 ± 0.66 2.41 

51 May 25 2014 72.56 -166.41 6.53 ± 0.56 15.07 ± 0.71 2.31 

53 May 25 2014 72.74 -166.72 5.49 ± 0.47 11.98 ± 0.57 2.18 

56 May 26 2014 72.80 -167.78 5.81 ± 0.50 12.25 ± 0.58 2.11 

59 May 26 2014 72.44 -168.25 5.44 ± 0.47 12.31 ± 0.58 2.26 

64 May 27 2014 72.16 -166.61 7.07 ± 0.61 16.28 ± 0.77 2.30 

68 May 27 2014 72.09 -167.36 8.88 ± 0.77 21.01 ± 1.00 2.37 

70 May 28 2014 72.07 -163.55 6.86 ± 0.59 17.39 ± 0.83 2.54 

75 May 29 2014 72.27 -162.44 8.98 ± 0.78 22.24 ± 1.06 2.48 

77 May 29 2014 72.59 -162.82 9.20 ± 0.80 17.86 ± 0.85 1.94 

79 May 29 2014 72.85 -163.12 7.28 ± 0.63 18.12 ± 0.86 2.49 

81 May 30 2014 73.08 -162.77 7.44 ± 0.65 8.36 ± 0.39 1.12 

96 Jun 02 2014 72.55 -165.76 8.57 ± 0.74 19.89 ± 0.95 2.32 

99* Jun 02 2014 71.93 -166.35 8.78 ± 0.77 18.05 ± 0.87 2.06 

99 Jun 02 2014 71.93 -166.35 8.94 ± 0.70 18.30 ± 0.81 2.05 

104 Jun 04 2014 71.59 -166.38 8.70 ± 0.75 17.43 ± 0.83 2.00 

106 Jun 05 2014 71.68 -165.98 8.93 ± 0.77 18.87 ± 0.90 2.11 

107 Jun 06 2014 71.68 -165.78 8.70 ± 0.75 18.58 ± 0.88 2.14 

112 Jun 07 2014 71.15 -165.77 10.90 ± 0.94 19.23 ± 0.91 1.76 

124 Jun 08 2014 70.34 -164.29 7.68 ± 0.66 16.87 ± 0.80 2.20 

127 Jun 08 2014 70.09 -163.36 8.85 ± 0.77 24.42 ± 1.16 2.76 

133 Jun 09 2014 69.96 -165.47 7.79 ± 0.67 17.19 ± 0.82 2.21 

137 Jun 09 2014 69.95 -167.00 5.84 ± 0.50 11.45 ± 0.54 1.96 

 
SAFe D1 n= 12 

(nM) 

SAFe consensus 

Value (nM) 

Cd 0.942 ± 0.017 0.991 ± 0.031 

Fe 0.677 ± 0.053 0.670 ± 0.040 

Ni 8.320 ± 0.236 8.580 ± 0.260 

Cu 2.079 ± 0.033 2.270 ± 0.110 

Zn 7.386 ± 0.461 7.400 ± 0.350 

Pb 0.028 ± 0.003 0.028 ± 0.003 

Mn 0.352 ± 0.036 0.350 ± 0.050 

Co 0.047 ± 0.004 0.045 ± 0.005 
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142 Jun 09 2014 69.85 -168.68 7.77 ± 0.67 12.22 ± 0.58 1.57 

143 Jun 10 2014 69.94 -168.93 8.90 ± 0.77 14.53 ± 0.69 1.63 

146 Jun 10 2014 69.94 -167.78 8.62 ± 0.74 13.79 ± 0.65 1.60 

148 Jun 10 2014 70.08 -167.06 8.98 ± 0.78 17.46 ± 0.83 1.94 

152 Jun 11 2014 70.69 -165.90 8.02 ± 0.69 10.51 ± 0.50 1.31 

156 Jun 11 2014 70.70 -167.20 9.41 ± 0.81 15.58 ± 0.74 1.65 

160 Jun 11 2014 70.71 -168.51 8.59 ± 0.74 13.19 ± 0.63 1.54 

162 Jun 12 2014 70.94 -168.78 7.53 ± 0.65 15.16 ± 0.72 2.01 

168 Jun 12 2014 71.76 -168.73 6.11 ± 0.53 12.43 ± 0.59 2.03 

173 Jun 13 2014 72.29 -168.84 8.72 ± 0.75 19.00 ± 0.90 2.18 

175 Jun 13 2014 72.56 -168.78 10.28 ± 0.89 22.20 ± 1.06 2.16 

178* Jun 13 2014 72.36 -167.82 10.16 ± 0.88 20.85 ± 0.99 2.05 

178 Jun 13 2014 72.36 -167.82 10.09 ± 0.87 20.46 ± 0.97 2.03 

182 Jun 14 2014 72.08 -166.28 8.62 ± 0.75 19.16 ± 0.91 2.22 

188 Jun 14 2014 71.67 -164.02 8.41 ± 0.73 18.59 ± 0.88 2.21 

192 Jun 15 2014 71.57 -165.47 9.06 ± 0.78 18.83 ± 0.89 2.08 

196* Jun 15 2014 71.61 -166.05 10.05 ± 0.87 16.87 ± 0.80 1.68 

196 Jun 15 2014 71.61 -166.05 9.23 ± 0.80 15.82 ± 0.75 1.71 

209* Jun 18 2014 71.62 -165.55 9.08 ± 0.79 18.13 ± 0.86 2.00 

209 Jun 18 2014 71.62 -165.55 9.12 ± 0.73 18.21 ± 0.89 2.00 

215 Jun 18 2014 71.40 -167.31 9.03 ± 0.78 13.21 ± 0.63 1.46 

221 Jun 19 2014 71.25 -167.96 8.31 ± 0.72 16.03 ± 0.76 1.93 

223 Jun 19 2014 70.98 -167.19 10.45 ± 0.91 21.43 ± 1.02 2.05 

*Water sample collected from the CTD in order to compare with the sample water collected from the intake 

line.  

 

 

 

Table S 3.4: Leached fiber blanks and detector backgrounds. The ash residue of some sample fibers was 

measured after leaching (“leached-ashed fibers”) to evaluate the completeness of the leaching procedure. The 

last column corresponds to the Ra activity in leached-ashed fiber relative to the original sample (%). 

 

 

 

 

  

Isotope Peak 
Background 

(cpm) 

blank fibers 

(cpm) 

leached-ashed 

fibers (cpm) 

Residual activity 

in the leached-

ashed fiber (%) 

226
Ra 

214
Pb 0.01 ± 0.005 0.03 ± 0.007 0.08  ± 0.02 5.6 ± 0.3 

214
Bi 0.01 ± 0.004 0.01 ± 0.007 0.04 ± 0.03 3.6 ± 0.5 

228
Ra 

228
Ac 0.009 ± 0.003 0.02 ± 0.005 0.03 ± 0.01 6.6 ± 1.4 
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Table S 3.5: The variance and coefficients of the principal components. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Eigenvalue 

Percentage of 

Variance 
Cumulative  

Coefficients 

of PC1 

Coefficients 

of PC2 

Coefficients 

of PC3 

1 6.45 49.58% 49.58% Cd 0.37 0.10 -0.10 

2 2.57 19.76% 69.34% Fe 0.20 -0.32 0.31 

3 1.49 11.49% 80.83% Ni 0.28 0.24 0.30 

4 0.76 5.83% 86.66% Cu 0.06 0.35 0.31 

5 0.72 5.50% 92.16% Zn 0.28 0.28 0.03 

6 0.38 2.94% 95.10% Pb 0.13 0.36 0.44 

7 0.28 2.13% 97.23% Mn 0.31 -0.27 -0.08 

8 0.14 1.08% 98.31% Co 0.26 -0.38 0.25 

9 0.13 0.99% 99.30% NH4 0.25 -0.40 -0.15 

10 0.06 0.47% 99.77% PO4 0.37 0.08 -0.23 

11 0.02 0.14% 99.92% Si 0.35 0.14 -0.26 

12 0.01 0.05% 99.96% NO3- 0.31 0.23 -0.36 

13 0.005 0.04% 100% AR 0.23 -0.21 0.41 
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Abstract  

Rivers are a major supplier of particulate and dissolved material to the ocean, but their role as 

a source of bio-essential dissolved iron (dFe) is thought to be limited due to rapid, efficient 

Fe removal during estuarine mixing. Here, we use trace element and radium isotope data to 

show that the influence of the River Congo on surface ocean Fe concentrations can be traced 

over 1000 km from the Congo outflow. Due to an unusual combination of high Fe input into 

the Congo-shelf-zone and rapid lateral transport into the South Atlantic, the Congo plume 

constitutes an exceptionally large offshore dFe flux of 5.8 ± 2.1 x 10
8
 mol yr

-1
. This 

corresponds to 40% of the dFe atmospheric input into the entire South Atlantic Ocean and 

makes a higher contribution to marine dFe availability than any other river system. Congo 

dFe outflow is therefore likely responsible for the relief of Fe-limitation of phytoplankton 

growth observed across this oligotrophic region of the South Atlantic Gyre.  
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4.1 Introduction  

Elevated dissolved trace element (dTE; defined by < 0.2 µm filtration) concentrations in 

coastal regions are derived from riverine inputs (Buck et al., 2007; Figuères et al., 1978), 

benthic pore-water and re-suspended sediment supply (Elrod et al., 2004), atmospheric 

deposition (Jickells, 1995) and submarine groundwater discharge (SGD) (Windom et al., 

2006). Whilst riverine fluxes of dTEs into the ocean are significant, estuarine processes 

remove a high, but variable, fraction of riverine dFe. Typically 90-99% of dFe is removed at 

low salinity in estuaries due to the rapid aggregation of Fe and organic species with 

increasing ionic strength (Boyle et al., 1977), with further removal by biological uptake and 

scavenging in estuarine and shelf regions (Birchill et al., 2019). Whilst riverine Fe 

concentrations are 3-5 orders of magnitude greater than those in seawater (Gaillardet et al., 

2013), rivers provide only ~3% of the new Fe delivered annually to the oceans (Raiswell and 

Canfield, 2012). Consequently, there is typically limited potential for river-derived Fe to 

directly affect productivity in offshore ocean regions where Fe often limits, or co-limits, 

primary production (Browning et al., 2017).  

The Congo is the second largest river on Earth by discharge volume (Hopkins et al., 2013), 

and is the only major river to discharge into an eastern boundary ocean region with a narrow 

shelf (Stramma and England, 1999), producing a unique near-equatorial river plume 

(Hopkins et al., 2013). Although the Congo is an important source of freshwater to the SE 

Atlantic (Eisma and van Bennekom, 1978), little is known about associated TE fluxes and 

their influence on SE Atlantic productivity. In November-December 2015, the GEOTRACES 

cruise GA08 proceeded along the SW African shelf to determine the lateral extent of 
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chemical enrichment from the Congo plume. Here we use a conservative terrigenous tracer, 

the naturally occurring radium isotopes (
228

Ra and 
224

Ra), in combination with TE 

distributions to derive TE fluxes from the Congo plume into the South Atlantic. Radium 

isotopes are produced by sedimentary thorium decay, released from river plumes and shelf 

sediments, and then transported to the open ocean by turbulent mixing and advection. In 

seawater, only mixing and decay processes control the Ra distribution. 

4.2 Methods 

4.2.1 Sample collection and analysis  

Surface seawater samples (3 m) for Ra isotopes and dissolved Fe (dFe) analyses were 

collected onboard R/V Meteor during the GEOTRACES GA08 cruise in the Southern 

Atlantic between 22 November and 27 December 2015 (Fig. 4.1).  



Chapter 4 – Unprecedented Fe delivery by the River Congo to the South Atlantic Gyre  

107 

 

 

Figure 4.1: Satellite-derived surface seawater salinity (from 25
th

 December 2015 to 1
st
 January 2016) during 

GEOTRACES cruise GA08 with the 
228

Ra stations sampled along the Congo River plume. Arrow indicates the 

Congo River mouth. Inset provides a detailed view of stations along the coastal transect, and circled stations 

represent the Congo-shelf-zone (see text). Offshore plume is shown in detail in the inset and extends along the 

3°S transect (1218-1247) (data from https://opendap.jpl.nasa.gov/).  

4.2.1.1 Radium isotopes 

Surface samples (3 m) were collected by pumping ca. 250 L of seawater into a barrel. 

Seawater was then filtered through MnO2-impregnated acrylic fiber (Mn-fibers) at a flow rate 

<1 L min
-1

 to quantitatively extract Ra isotopes. Next, the Mn-fibers were rinsed and air 

(partially) dried. Activities of 
224

Ra were determined using four Ra delayed coincidence 

counters (RaDeCC) (Moore and Arnold, 1996). The fibers were counted onboard and then 

recounted six weeks later in order to determine 
224

Ra in excess of 
228

Th (
224

Ra ex). RaDeCC 

counters were calibrated with International Atomic Energy Agency (IAEA) reference 

solutions (Scholten et al., 2010).  

https://opendap.jpl.nasa.gov/
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After measurement of 
224

Ra, fibers were ashed and subsequently leached in order to 

determine the activities of long-lived Ra (
228

Ra and 
226

Ra) isotopes using a high-purity, well-

type germanium (HPGe) gamma spectrometer. The fibers were ashed twice at 600° C for 16 

h, leached in 3.5 M Hydroxylamine and concentrated HCl followed by co-precipitation with 

BaSO4. The precipitate was then sealed in 1 mL vials and analyzed after at least 3 weeks to 

allow 
222

Rn to reach equilibrium with its parent 
226

Ra. Radium-226 activities were 

determined using the 
214

Pb peak (352 keV) and the 
214

Bi peak (609 keV). 
228

Ra activities 

were determined using the 
228

Ac peaks (338 keV and 911 keV). Sample counting efficiencies 

were determined by spiking Mn-fibers with known amounts of 
228

Ra and 
226

Ra, and 

processing similar to samples. Sample activities were corrected for detector background 

counts and fiber blank activities. Ra reference solution was provided by the IAEA had a 

reported activity accuracy of 6% for 
226

Ra and 5% for 
228

Ra. Measured precisions for 
228

Ra 

and 
226

Ra was ~ 5% (1-σ). These levels of accuracy and precision lead to an uncertainty on 

the sample activities of <10%. 

4.2.1.2 Trace elements 

Surface trace element sampling was conducted using a tow fish deployed alongside the ship 

at about 3 – 4 m depth. Seawater was collected in a shipboard clean laboratory container and 

stored in acid-cleaned low-density polyethylene (LDPE) 125 mL bottles. Samples for 

dissolved trace elements (dTE) were collected using a cartridge filter (0.8/0.2 µm, Acropak 

500 – PALL). All seawater samples were acidified onboard with ultra-clean HCl (UpA grade, 

Romil) to pH 1.9. Freshwater River Congo samples were collected at three time-points 

(April, July, and October 2017), retained for analysis of dFe after syringe filtration (0.20 µm, 



Chapter 4 – Unprecedented Fe delivery by the River Congo to the South Atlantic Gyre  

109 

 

Millipore), and acidified as per seawater. Samples in the concentration range below 20 nM 

dFe/dMn were measured following Rapp et al. (2017). Samples with higher concentrations 

were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) after dilution 

with ultra-pure 1 M HNO3 (Romil SpA grade, sub-boiled), and calibration by standard 

addition. The accuracy and precision of measurements were evaluated by analysis of SAFe S, 

SAFe D2, and CASS6 reference seawater (table S 4.2).  

4.2.2 Radium-228 inventory and TE flux estimates  

4.2.2.1 The Congo-shelf-zone 

The 
228

Ra Congo-shelf-endmember was determined by the average 
228

Ra activities (14.5 ± 

3.5 dpm 100 L
-1

; Table 4.1) of samples with salinity less than 32 PSU, which best reflect 

river influenced waters in the Congo-shelf-zone. We estimated the 
228

Ra inventory (I228) in 

the surface water of our Congo-shelf-endmember as 3.7 ± 0.4 x 10
9
 atoms m

-2 
by considering 

a plume thickness of 5 m in the Congo-shelf-zone (see Figure S 4.1 - supplementary 

material) and assuming a uniform 
228

Ra distribution within this plume thickness. Radium-228 

flux from the Congo-shelf-zone was determined using the Ra inventory of our Congo-shelf-

endmember and the residence time of the waters in the Congo-shelf-zone (Flux 
228

Ra = 

inventory / residence time). A residence time of 3 days (Eisma and van Bennekom, 1978) is 

consistent with the Congo discharge volume required to produce the observed salinity within 

the plume region (Bowden, 1980). As our Congo-shelf-endmember is ~100 km away from 

the river mouth, the area of our sampling region was considered as a square of 100 x 100 km 

(whenever referring to the Congo-shelf-zone). Taking the Ra at the lowest measured 

salinities (S<32) as representative of the entire Congo river mouth zone probably represents a 
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lower estimate of the true inventory because activities are likely higher at mid-salinities 

nearer to the river mouth and shoreline (Fig. S 4.2). Note that the regional satellite-derived 

salinity in Figure 4.1 does not correspond directly with measured salinity for the Ra samples 

in the Congo-shelf-zone (~30 PSU). 

Because dFe, dMn, and dCo in our study appear to have a source similar to Ra, the 
228

Ra flux 

was used to determine the fluxes of these TE in the Congo-shelf-zone, by multiplying the 

228
Ra flux in this region by the averaged ratio between dTE concentrations (Table 4.1) 

observed in samples with lowest measured salinity (i.e., <29 PSU; TE Congo-shelf-

endmember) and the 
228

Ra Congo-shelf-endmember (dTE/
228

Ra). Samples with salinity <29 

represent intermediate TE endmembers that reflect mixing between the river and seawater 

(S>33 PSU). Ra and TE sampling locations do not coincide exactly, as unlike for Ra 

samples, TE samples were collected using a tow fish, i.e., while the R/V Metor was sailing.  

4.2.2.2 The off-shelf transect (3°S) 

The residence time of 7 ± 2 days at the start of the off-shelf transect (3°S; between st.1218 

and the station at the shelf-break st.1229) was determined using the 
224

Ra/
228

Ra ratios as per 

Moore, (2004). We used the 
224

Ra/
228

Ra ratio at st.1218 as our initial ratio. 
224

Ra was 

detectable over the next 40 km at the next 2 stations along this transect (st.1229). Once Ra 

isotopes are released into the water column, their activities decrease with increasing distance 

from the source as a result of dilution and radioactive decay. Both isotopes are affected by 

dilution, but radioactive decay is negligible for 
228

Ra (T1/2 = 5.8 yr) over short distances, so 

changes in the 
224

Ra/
228

Ra ratio reflect the time elapsed since the water was isolated from the 

source. Strong density stratification isolates the freshwater plume from bottom waters, so 
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surface waters are unlikely to be affected by additional Ra input. Therefore, the residence 

time (T) can be derived as: 

 T= ln [
(

224Ra/228Ra)i

(
224Ra/228Ra)o

] × 1
λ224

  (Equation 4.1) 

where (
224

Ra/
228

Ra)i is the initial ratio at st.1218, (
224

Ra/
228

Ra)o is the ratio observed away 

from the source (offshore) at station 1229, and λ224 is the decay constant of 
224

Ra.  

Previous studies have combined the 
228

Ra flux with water column dissolved trace elements to 

228
Ra ratios (TE/ 

228
Ra) in order to quantify the shelf-ocean input rates (Charette et al., 2016; 

Sanial et al., 2018). We propose the use of this approach to estimate the fluxes of TE (dFe, 

dMn, and dCo) from the Congo River plume to the Atlantic Ocean following Charette et al. 

(2016).  

 Flux  dTE = Flux Ra   x   [
dTEshelf − dTEoffshelf
Rashelf  − Raoffshelf

] (Equation 4.2) 

where dTE-shelf and 
228

Ra-shelf are the average concentrations of the dTE and 
228

Ra activities in 

surface waters over the shelf (between st.1218 and the station at the shelf-break st.1229), 

respectively; and dTE-off-shelf and 
228

Ra-off-shelf are the dTE concentration and 
228

Ra
 
activities in 

surface waters of the open ocean station (st. 1234). Note that a diffusion-dominated system 

between the stations 1218 and 1234 was observed as indicated by a linear gradient in both 

dFe and 
228

Ra distributions. The dTE/Ra ratios are presented in Table 4.1.  
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4.3 Results and Discussion 

4.3.1 Trace element and Radium distributions in the Congo-shelf-zone and offshore 

plume 

On the shelf where Congo waters first encounter the Atlantic Ocean, hereafter the “Congo-

shelf-zone”, the mean dFe concentrations was ~15% of the Congo River concentration. 

About 50-85% of river-derived dFe is removed from solution at low salinities (0-5) in the 

Congo estuary, with the greatest removal in large size fractions (Figuères et al., 1978). Mean 

dFe concentration in the River Congo freshwater was 7380 ± 3150 nM, similar to previous 

measurements (~9000 nM) (Figuères et al., 1978). Extrapolating the linear regression line of 

dFe vs. salinity in the Congo-shelf-zone (Fig. 4.2A) to zero salinity indicates an effective 

zero-salinity-endmember concentration of 3480 ± 550 nM (R
2
 = 0.75), indicating that only 

~50% of dFe is removed, consistent with prior work (Figuères et al., 1978), but yet limited 

removal compared to other river systems (90-99%) (Figuères et al., 1978; Boyle et al., 1977). 

Slow removal of Fe in some estuaries (Powell and Wilson-Finelli, 2003) has been attributed 

to stabilization of the dFe pool by organic material, making the dFe pool resistant to 

flocculation (Krachler et al., 2005). Alternatively, sources of Fe other than river-water may 

simply offset the loss from estuarine mixing. Indeed, similar 
228

Ra and other TE enrichments 

over the Congo-shelf-zone (Fig. 4.2B; Fig. S 4.3) suggest they have a common source, most 

likely from shelf-sediments (Elrod et al., 2004; Elderfield and Hepworth, 1975;
 
Lohan and 

Bruland, 2008) or submarine groundwater discharge (SGD) (Windom, et al., 2006)  

indicating that the apparently low removal primarily reflects additional sources of dFe rather 

than stabilization of the  river dFe.  



Chapter 4 – Unprecedented Fe delivery by the River Congo to the South Atlantic Gyre  

113 

 

Covariation of dissolved manganese (dMn) and cobalt (dCo) with salinity indicate an 

effective-zero-salinity-endmember higher than measured in the river (Table 4.1), indicating 

non-conservative inputs relative to simple mixing of river and seawater (Fig. S 4.3). An 

additional TE source in the Congo-shelf-zone is also evident in the lower Fe:Mn (6.3 ± 6.0) 

and Fe:Co (525 ± 490) ratios compared to those in river water (Fe:Mn = 71.2 ± 37.5; Fe:Co = 

4290 ± 2345).  

The enhanced signatures of 
228

Ra and TEs in the Congo River plume can be traced off-shelf 

at 3°S over 1000 km from the Congo River mouth (Fig. 4.2C). Benthic input supplies 
228

Ra 

and TEs between the river mouth and Congo-shelf-zone (here considered 10000 km
2
 plume 

area; Methods), but the shallow Congo River plume is isolated from the seafloor off-shelf 

(Hopkins et al., 2013). Indeed, a conservative 
228

Ra mixing behavior (Fig 4.2B) indicates no 

additional 
228

Ra inputs beyond the Congo-shelf-zone, and similarity between the 
228

Ra and 

TE distributions with salinity (Fig. 4.2C-D, Fig. S 4.3) indicates that the plume forms the 

only major source of Ra and TEs in this region. Salinity increased offshore along the 3°S 

transect, with occasional fresher ‘pockets’ coincident with elevated 
228

Ra and TE 

concentrations (e.g., at 1100 km; Fig. 4.2C-D). These freshwater ‘pockets’ likely come from 

filaments, meanders, or eddies originating near the Congo River mouth (Vangriesheim et al., 

2009; Palma and Matano, 2017), which can transport elevated Ra and TE concentrations. The 

linear 
228

Ra gradient with distance beyond 360 km offshore (R
2
 0.91) (Fig. S 4.4) indicate 

that the 
228

Ra distribution is controlled by eddy diffusion near the shelf-break (Moore, 2000 

a). Beyond the shelf-break, there appears a break in the slope of 
228

Ra versus distance, likely 

caused by offshore advection.  
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Figure 4.2: (A) and (B): Mixing diagram between River and open ocean waters from the Congo-shelf-zone to 

the end of the 3°S transect (st.1202-1247) for dFe and 
228

Ra concentrations, respectively. Open triangles 

represent the samples collected in the Congo-shelf-zone and circles represent the samples in the off-shelf 3°S 

transect. Dashed blue line in A represents the regression line for the Congo-shelf-zone, and the red line 

represents linear regression for the off-shelf-transect. Intercepts are represented as y0 and considered as the 

effective-zero-salinity-endmembers. Inset in A is an expanded version of the off-shelf-transect. The regression 

line for 
228

Ra (green line in B) includes all data. (C) and (D): 
228

Ra, dFe (note log scale) (solid black squares), 

and inverse salinity distributions (open circles) in plume surface waters from the Congo-shelf-zone to the end of 

the 3°S transect (st.1202-1247). Dashed vertical lines in C and D represent the beginning of the off-shelf 

transect at 3°S.    

The effective-zero-salinity-endmember concentration for Fe was 90% lower for the off-shelf 

samples compared with the Congo-shelf-zone samples (270 vs. 3480 nM; Fig. 4.2A), 

indicating substantial removal of Fe along the Congo plume at distances <400 km from the 

river mouth. Nevertheless, elevated dFe is still observed at the start of the off-shelf transect 

(~25 nM; Fig. 4.3), despite major Fe removal in the initial outflow of the Congo plume. 
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Dissolved-Fe concentrations in other shelf systems decline sharply at the shelf-break to less 

than 1 nM (Wu and Luther, 1996; Rijkenberg et al., 2012) and thus the influence of major 

rivers (e.g. the Amazon) on surface ocean Fe concentrations is limited (Rijkenberg et al., 

2014). Unlike other major river systems, however, the Congo River plume carries elevated 

dFe concentrations (20-30 nM) up to 600 km from the river mouth (Fig. 4.3). Dissolved-Fe 

concentrations of ~15 nM were observed up to 100 km beyond the shelf-break and remained 

>2 nM for 500 km beyond the shelf-break. These features indicate a sustained Fe flux into 

the South Atlantic Gyre where Fe limitation or co-limitation of primary production has been 

observed (Browning et al., 2017). 

4.3.2 Radium-228 and TE fluxes within the Congo-shelf-zone  

Ra isotopes were used to quantify the TE fluxes for (i) the Congo-shelf-zone, where 

additional TE and Ra inputs created an intermediate endmember that mixed approximately 

conservatively along the Congo plume (Fig. 4.2A-B), and (ii) the 3°S off-shelf, where there 

were no additional TE and Ra inputs.  

The highest 
228

Ra activities (
224

Ra = 8.15 dpm 100 L
-1

; 
228

Ra = 17.2 dpm 100 L
-1

) was found 

at the lowest observed salinity (S = 30, 100 km from the river mouth; Fig. 4.2B). At salinity 

30, all surface-associated Ra from river particles is desorbed (Key et al., 1985; Elsinger and 

Moore, 1984; Li et al., 1977)
 
(Fig. S 4.2); therefore, the 

228
Ra Congo-shelf-endmember 

(Methods) includes all dissolved 
228

Ra derived from: (i) desorption from river-borne 

particles; (ii) river dissolved phase; and (iii) shelf sediments near the river mouth. The water 

residence time in the Congo-shelf-zone is approximately 3 days (Eisma and van Bennekom, 

1978; Bowden, 1980). Assuming steady state and negligible loss by decay, the residence time 
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and 
228

Ra inventory in the Congo-shelf-zone (Methods), indicate a 
228

Ra flux to this region of 

3.9 ± 0.4 x 10
11

 atoms m
-2

 yr
-1

, or ~3.9 ± 0.4 x 10
21

 atoms yr
-1

 when scaled to the 

approximate 10000 km
2
 plume area.   

Conservative mixing between the Congo-shelf-endmember and offshore waters (Fig. 4.2B) 

gives a 
228

Ra effective-zero-salinity-endmember activity of 85 ± 4 dpm 100 L
-1

. Together 

with the river discharge (1.3 x 10
12

 m
3
 yr

-1
) (Milliman and Farnsworth, 2011), this suggests a 

fluvial Ra flux of 4.8 ± 0.3 x 10
21

 atoms yr
-1

, which is similar to the 
228

Ra flux estimated for 

the Congo-shelf-zone (3.9 ± 0.4 x 10
21

 atoms yr
-1

). If this Ra flux derives solely from the 

river, the effective-zero-salinity-endmember and actual river activities must be similar.  

Radium-228 data is not available for the Congo River, but global rivers activities are 

generally less than 20 dpm 100 L
-1

 (McKee, 2008) (Fig. S 4.2). Assuming the Congo is 

similar to other major rivers (<20 dpm 100 L
-1

), the average Congo river discharge (Milliman 

and Farnsworth, 2011) would supply maximum 2.6 x 10
14

 dpm yr
-1

, or ~ 10 x 10
20

 atoms yr
-1

 

of dissolved 
228

Ra. Desorption of surface-bound Ra from river-borne particles generally 

supplies <2 dpm g
-1

 (Moore and Shaw, 2008). The Congo suspended sediment load is 43 Mt 

yr
-1

 (Milliman and Farnsworth, 2011), so desorption can supply no more than ~3.75 x 10
20

 

atoms yr
-1

, or an equivalent dissolved 
228

Ra activity of 6 dpm 100 L
-1

. Thus, the supply of 

228
Ra from the Congo River itself is approximately 1.4 x 10

21
 atoms yr

-1
, or only ~30-35% of 

the flux into the Congo-shelf-zone. If the remainder was supplied by benthic diffusion, it 

would represent a flux on the order of 400 x 10
9
 atoms m

-2
 yr

-1
, nearly four-fold higher than 

the maximum reported globally (Moore et al., 2008). This suggests that either (i) the 

dissolved 
228

Ra activity in the Congo River is exceptionally high compared to other large 
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rivers (~79 dpm 100 L
-1

, vs <20 dpm 100 L
-1 

elsewhere); (ii) 
228

Ra diffusion from shelf 

sediments in this region is anomalously high compared to other regions globally; or (iii) there 

is another source of Ra such as submarine groundwater discharge (Moore, 1996; Rodellas et 

al., 2015).  

Radium-228 and TEs have a common source in the estuarine mixing zone up to our Congo-

shelf-endmember, and combining the 
228

Ra flux and concentration ratios of TE:
228

Ra 

(Methods) for the Congo-shelf-zone provides dFe flux (dFe-Flux-Congo-shelf) of 5.6 ± 4.2 x 10
5
 

µmol m
-2

 yr
-1

 (5.6 ± 4.2 x 10
9
 mol yr

-1
), dMn Flux-Congo-shelf of 4.4 ± 0.7 x 10

8
 mol yr

-1
; and 

dCo-Flux-Congo-shelf of 5.3 ± 0.8 x 10
6
 mol yr

-1
 (Table 4.1).  

4.3.3 Radium-228 and TE off-shelf fluxes along 3° S transect  

The shelf width at 3°S is 70 km, giving an offshore 
228

Ra inventory within this plume cross-

section of 2.6 ± 0.2 x 10
13

 atoms m
-2

. With a residence of 7 ± 2 days (Methods), a 
228

Ra input 

from the Congo plume into the open Atlantic Ocean is 1.4 ± 0.4 x 10
15

 atoms m
-2

 yr
-1

, or 

assuming a plume thickness of 15 m (Fig. S 4.1), 22 ± 6.2 x 10
15

 atoms yr
-1

 m-shoreline
-1

. 

Satellite-derived surface salinity at 3°S (Fig. S 4.5) indicates a shoreline plume width of ~300 

km, so the total offshore 
228

Ra flux is 6.2 ± 2.0 x 10
21

 atoms yr
-1

. Within uncertainties, this 

flux matches that estimated for the Congo-shelf-zone (3.9 ± 0.4 x 10
21

 atoms yr
-1

), consistent 

with the observed conservative mixing behavior of 
228

Ra in the plume. The flux represents 

4% of previous estimates of total annual 
228

Ra input into the Atlantic Ocean (Moore et al., 

2008).  



Chapter 4 – Unprecedented Fe delivery by the River Congo to the South Atlantic Gyre  

118 

 

Table 4.1: Radium-228 and trace element fluxes 

 
Congo River 

a
 

Congo-shelf-

zone 
b
 

Off-shelf transect 

(3°S)
 b

 
228

Ra-Flux (atoms yr
-1

) 4.8 ± 0.4 x 10
21

 3.9 ± 0.4 x 10
21

 6.2 ± 2.0 x 10
21

 

dFe-Flux (mol yr
-1

) 9.6 ± 4.1 x 10
9
 5.6 ± 4.2 x 10

9
 5.8 ± 2.1 x 10

8
 

dMn-Flux (mol yr
-1

) 1.3 ± 0.4 x 10
8
 4.4 ± 0.7 x 10

8
 3.1 ± 1.5 x 10

8
 

dCo-Flux (mol yr
-1

) 2.2 ± 0.8 x 10
6
 5.3 ± 0.8 x 10

6
 4.6 ± 1.8 x 10

6
 

dFe/
228

Ra gradient (pmol atoms
-1

) - 1.45 ± 1.0 0.09 ± 0.02 

dMn/
228

Ra gradient (pmol atoms
-1

) - 0.11 ± 0.01 0.05 ± 0.02 

dCo/
228

Ra gradient (fmol atoms
-1

) - 1.4 ± 0.2 0.7 ± 0.2 

Average 
228

Ra activity (dpm 100 L
-1

) - 14.5 ± 3.5 8.62 ± 0.86 

Average dFe concentration (nM) 7380 ± 3150 920 ± 670 20.9 ± 1.67 

Average dMn concentration (nM) 105 ± 30 73 ± 4.0 14.7 ± 4.48 

Average dCo concentration (nM) 1.72 ± 0.59 0.88 ± 0.05 0.20 ± 0.03 

a
 Trace element (TE) fluxes from the Congo River were determined using the measured TE 

concentration in the River Congo (Supp. Material. Table S 4.1) and river discharge reported in 

Milliman and Farnsworth (2011). Radium-228 flux from the Congo River was estimated by 

extrapolating the regression line to zero salinity (Fig. 4.2B) and multiplying the intercept by the river 

discharge. 
b
 See methods for details on TE and 

228
Ra concentrations and fluxes in the Congo-shelf-zone and off-

shelf transect. 

 

Tracer-estimated fluxes in dynamic cross-shelf regions are complicated by mesoscale 

features like eddies (Palma and Matano, 2017), which may influence TE and Ra 

distributions. Nevertheless, our data unambiguously indicate that the Congo plume is a 

dominant regional source of Fe, Mn, and Co to the South Atlantic Gyre. The similarity 

between the TE and 
228

Ra distributions suggests that the fluxes scale proportionally (Charette 

et al., 2016). Given a Fe:
228

Ra ratio of 0.09 pmol atoms
-1

, the off-shelf dFe-Flux from the 

Congo River plume into the South Atlantic Ocean is 5.8 ± 2.1 x 10
8
 mol yr

-1
 (or  130 ± 45 

mol m
-2

 yr
-1

), which represents approximately 40% of the total dFe atmospheric deposition 

into the entire South Atlantic Ocean (Duce and Tindale, 1991). The similarity between the 

dMn and dCo fluxes in the Congo-shelf-zone and in the off-shelf transect (Table 4.1) is 



Chapter 4 – Unprecedented Fe delivery by the River Congo to the South Atlantic Gyre  

119 

 

consistent with their conservative behavior along the Congo River plume, likely because of 

slow Mn and Co oxidation (Sunda and Huntsman, 1988; Moffett and Ho, 1996) and Mn 

photo-reduction in surface waters (Sunda et al., 1983), which keeps Mn in solution and 

facilitates its transport to the open ocean. 

The enhanced dFe flux from the Congo, relative to other rivers, into the South Atlantic may 

result from stabilization by organic ligands (Spencer et al., 2012). However, elevated 

dissolved organic carbon (DOC) concentrations are commonly found in many major river 

systems (Sholkovitz et al., 1978; Benner and Opsahl, 2001), and dFe removal in the Congo 

estuary has been explicitly demonstrated (Figuères et al., 1978). Therefore high DOC alone 

cannot explain the unique dFe distribution observed along the Congo plume. Near-

conservative behavior of Fe has however been found in some estuaries with rapid flushing 

(Mayer, 1982). Indeed, rapid lateral advection appears to enhance TE transport from the 

Congo compared with other rivers (Fig. 4.3). A similar feature has been reported in the 

Arctic Ocean, where rapid transport of river-derived terrestrial materials, including carbon 

and TEs, through the Transpolar Drift leads to nanomolar TE concentrations in the central 

Arctic (Rijkenberg et al., 2018).  
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Figure 4.3: Comparison of dFe concentrations vs. distance from the river mouth in other riverine systems 

(Rijkenberg et al., 2014;  Joung and Shiller, 2016; Symes and Kester, 1985; Windom et al., 2006; Zhang et al., 

2019; Buck et al., 2007; Rijkenberg et al., 2018). TPD indicates Transpolar Drift, and NY Bight indicates New 

York Bight. 

4.4 Conclusion 

The elevated dFe export observed in our study appears to impact phytoplankton in the South 

Atlantic Gyre. Primary production across extensive regions of the SE Atlantic is proximally 

limited, or co-limited by the availability of the micronutrients Fe and Co due to limited 

atmospheric supply beyond the equatorial dust-belt (Browning et al., 2017). However, 

primary productivity within the offshore region in the current study was instead found to be 

limited by nitrogen availability (Browning et al., 2017), likely due to the large TE input from 

the Congo plume. Changes to the spatial orientation of the plume due to shifts in wind 

patterns or changing freshwater discharge may therefore directly affect TE supply and thus 
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offshore primary production within the South Atlantic Gyre. Wind speeds are likely to 

decrease in the Congo region over the coming century (Mcinnes et al., 2011) and future 

reduction in Atlantic thermohaline circulation is projected to further alter prevailing wind 

patterns in the intertropical convergence zone (Zhang and Delworth, 2005; Dong and Sutton, 

2002). On a decadal timescale, total annual rainfall across the Congo River Basin is not 

expected to change significantly, but an amplification of the seasonal variability of Congo 

River runoff is predicted (Hänsler et al., 2013). Whilst the Congo basin is understudied due 

to geopolitical instability, there is thus clear potential for changes in Congo runoff to affect 

nutrient availability and marine primary production downstream of the Congo-shelf zone.  
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4.5 Supplementary Material  

Throughout the SE Atlantic region, Congo River waters are confined to the upper layers, 

which are decoupled from bottom influence (Yankovsky and Chapman,1997; Hopkins et al., 

2013). Proceeding downstream within the Congo River estuary, the bathymetry drops 

abruptly to 100 m depth due to the presence of a deep canyon at the river mouth which exerts 

a strong influence on the hydrography of the plume and ensures its detachment from shelf 

sediments (Jansen et al., 1984). Seasonal variations in wind direction and intensity strongly 

affect the Congo River plume dispersion (Signorini et al., 1999; Denamiel et al., 2013) as 

well as the complex circulation within the SE Atlantic Ocean (Stramma and Scott, 1999). 

Congo River plume dynamics have not been thoroughly investigated and models concerning 

its off-shelf distribution are not entirely consistent (Denamiel et al., 2013, Vic et al., 2014, 

Nof et al., 2012; Palma and Matano, 2017). Some studies suggest that the typical orientation 

is west-north-west, due to a combination of the unique geomorphology of the Congo River 

estuary, ocean currents and wind patterns (Hopkins et al., 2013; Denamiel et al., 2013; Eisma 

and van Bennekom, 1978). A more recent study however suggests that the near-equatorial 

river discharge of the Congo River generates a β-plume and is characterized by a train of 

eddies propagating westward (Palma and Matano, 2017). 
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Figure S 4.1: Salinity profiles within the Congo River plume. Numbers on the top represent the stations sampled 

during this study (see Fig. 4.1 in the main text). 

 

Figure S 4.2: Radium-228 activities across the estuarine salinity gradient in the Amazon1, Orinoco2, Yangtze3, Mississippi4 

estuaries and this study5. River endmembers range between 3.2 to 16.3 dpm 100 L-1, with non-conservative input at mid-

salinity. 1 Key et al., 1985; 2 Moore and Todd, 1993; 3 Elsinger and Moore, 1984; 4 Krest et al.,1999. 
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Figure S 4.3: (A) and (B): Mixing diagram between River and open ocean waters from the Congo-shelf-zone to 

the end of the 3°S transect (st.1202-1247) for dMn and dCo concentrations, respectively. Open triangles 

represent the samples collected in the Congo-shelf-zones and circles represent the samples in the off-shelf 

transect. Dashed blue lines represent conservative mixing between freshwater and seawater, which connect two 

points that represent the lowest salinity (average of the samples with salinity < 29) and highest salinity (average 

of the samples with salinity > 36) measured during our whole study. Solid red line represents the linear 

regression for samples in the off-shelf transect (for TE); their intercept values (y0) area notated. (C) and (D): 

dMn and dCo concentrations (solid black squares), and inverse salinity distributions (open blue circles) in 

surface waters from the Congo River-shelf-zone to the end of the 3°S transect (st.1202-1247), respectively. 

Dashed vertical lines in C and D represent the beginning of the off-shelf transect at 3°S. 
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Figure S 4.4:  Radium-228 and dFe distributions in surface waters of the 3°S transect. Red lines represent the 

linear fit in the inner 360 km of the 3°S transect, and arrows represent the location of the shelf-break.   

 

 

 

 

 

 

 

 

 

Figure S 4.5: Satellite-derived salinity and schematic of 

228Ra flux across a shelf-ocean interface represented in 

red (atoms/m2 vertical plane/year; note scale distortion for 

clarity). Offshore fluxes are calculated over the 70 km x 

300 km region approximated by the black inset. The cruise 

track is offcenter within this region to match the observed 

plume distribution. 
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Table S 4.1: Trace element concentrations measured in the Congo River at 6°027 S, 12°603 E. 

 

 Table S 4.2:  Values for TE analyses for SAFe S, D2 and CASS6 Certificate Reference Material (CRM) 

 

 

 

 

 

 

 

 

 

 

 

Table S 4.3: Analytical Blanks (n = 30) 

 

 

 

 

 

Collection 

date 
dFe (nM) dMn (nM) dCo (nM) TdFe (nM) TdMn (nM) TdCo (nM) 

04.05.2017 10827 ± 416 138 ± 4.2 2.4 ± 0.0 17016 ± 877 138 ± 4.21 2.4 ± 0.0 

22.07.2017 4638 ± 219 76 ± 4.1 1.2 ± 0.2 19975 ± 1290 250 ± 12 3.6 ± 0.1 

08.10.2017 6689 ± 771 97 ± 8.4 1.5 ± 0.4 11046 ± 266 266 ± 17 3.3 ± 0.1 

 
TEs Consensus value (nM) Reported value (nM) 

SAFe S 
a
 

dMn 0.790 ± 0.060 0.860 ± 0.099 (n = 2) 

dFe 0.093 ± 0.008 0.106 ± 0.013 (n = 2) 

dCo 0.005 ± 0.001 0.004 ± 0.002 (n = 2) 

CASS6 
b
 

dMn 40.51 ± 2.23 42.8 ± 0.76 (n = 3) 

dFe 27.97 ± 2.19 26.79 ± 2.75 (n = 3) 

SAFe D2 
a
 dCo 0.046 ± 0.003 0.054 ± 0.004 (n = 2) 

a
 Bruland K.W., 2009. GEOTRACES and SAFe Intercalibrations, Consensus Values 

for the GEOTRACES 2008 and SAFe Reference Samples. In: 

http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html (accessed 05 

March 2019). SAFe S and D2 were determined via pre-concentration follow by 

ICPMS analysis. 

b
 In: https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/crm/certificates/cass_6.html 

(accessed 05 March 2019). CASS6 were determined by isotope dilution alongside high 

TE samples (> 20 nM Fe) 

  TEs Value (pM) 

System Blank 

(SeaFAST & ICP-MS) 

dMn 9 ± 4 

dFe 61 ± 24 

dCo 1.9 ± 1 

Buffer Blank 

dMn 42 ± 15 

dFe 102 ± 53 

dCo 2.6 ± 2 

http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html
http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html
http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html
http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html
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Abstract  

The southeast (SE) Atlantic Ocean is strongly influenced by boundary inputs of terrestrially 

derived material, including the discharge of the world’s second largest river (Congo River), 

and benthic fluxes related to the Benguela Upwelling system and its associated oxygen 

minimum zone (OMZ). This study used naturally occurring Ra isotopes (
226

Ra, 
228

Ra, 
224

Ra, 

and 
223

Ra) as tracers of shelf sediment and river water inputs into the South Atlantic in order 

to quantify the relative importance of these ocean boundary processes in different regions of 

the SE Atlantic. Fluxes from the Congo-Angola shelf sediments (Flux Ra-Congo = 2.9 - 4.8 x 

10
9
 atoms m

-2 
yr

-1
) were of the same order of magnitude than those in the Benguela region 

(Flux Ra-Benguela = 5.5 - 9.2 x 10
9
 atoms m

-2 
yr

-1
), and in agreement with reported values in the 

East Pacific Ocean and Southern California (USA), for example. In addition, all four Ra 

isotopes and Fe (II) in bottom waters may indicate oxygen deficient submarine groundwater 

discharge (SGD) along the Namibian shelf. The magnitude of this feature, with Fe (II) 

concentrations >200 nM indicates that it may play a major role in Ra and trace element (TE) 

distributions in the SE Atlantic. The influence of the Congo River was reflected in elevated 

228
Ra and 

226
Ra activities in its extensive surface plume extending up to 1000 km from the 

river mouth.  The 
224

Ra to 
228

Ra ratios indicated that the plume transport along the coast was 

at a speed of 0.30 ± 0.04 m s
-1

. In addition to these strong coastal influences, northward 

flowing subantarctic waters in the Benguela region appeared to drive a large variability of 

226
Ra to silicate (Si) ratios between the northern and southern portion of our study domain.  
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5.1 Introduction 

The southeast (SE) Atlantic Ocean features an important eastern boundary ocean region that 

is influenced by the discharge of the world’s second largest river and the Benguela 

Upwelling system. The Benguela Upwelling system is one of the four major global eastern 

boundary upwelling systems, in addition to those found off the coasts of California, Peru, 

Chile, and northwest Africa. Wind-driven offshore Ekman surface water drift in these regions 

results in the upwelling of nutrient-rich deep waters facilitating primary productivity in shelf 

waters. However, this intense productivity also leads to the formation of extensive oxygen 

minimum zones (OMZs) due to the resultant sinking, and remineralization of particulate 

organic matter. The SE Atlantic shelf region therefore constitutes a region of particularly 

active TE exchange at its boundaries, with pronounced TE inputs expected from the 

atmosphere (Southern African dust plume) (e.g., Prospero et al., 2002; Mahowald et al., 

2005), OMZ overridden shelf sediments from the continental margins (e.g., Elrod et al., 

2004; Chase et al., 2007; Moore, 1969), and the Congo River (Figuères et al., 1978; chapter 

4). The Congo River is the only major river in the world discharging into an eastern boundary 

region and plays a significant role in delivering radium (Ra) isotopes and trace elements 

(TEs) into the SE Atlantic Ocean (see chapter 4). 

The naturally occurring isotopes of Ra present a range of half-lives (
226

Ra, T1/2=1600 y; 

228
Ra, T1/2= 5.75 y; 

223
Ra, T1/2=11.4 d; 

224
Ra, T1/2= 3.66 d), and have relative conservative 

behaviors in the oceans, and therefore are applied as geochemical tracers in oceanographic 

studies (e.g., Moore, 2000 a, 2000 b; Charette et al., 2001; Chung, 1980; Sarmiento, 1982; 

Moore and Dymond, 1991). Radium isotopes are more soluble in seawater in contrast to their 
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parent thorium isotopes, and diffusion from marine sediments and inputs from rivers are 

major Ra sources to the oceans (Kaufman et al., 1973; Moore, 1969). Previous studies in the 

Atlantic Ocean have reported average 
226

Ra activities in the offshore surface waters of ca. 7.8 

dpm 100 L
-1

 (Broecker et al., 1976), with increasing activities towards Antarctica coinciding 

with increasing nutrient concentrations, such as silicate (Ku and Lin, 1976; Hanfland, 2002). 

The nutrient-like depth profiles of 
226

Ra, and the similarities between 
226

Ra and silicate (Si) 

distributions in the ocean, led scientists to propose that biogeochemical processes such as 

phytoplankton uptake, particularly tests of siliceous phytoplankton, and particle scavenging, 

play a role in the oceanic 
226

Ra cycle (Broecker et al., 1967; Ku et al., 1970; Ku and Lin, 

1976). Enhanced 
228

Ra activities are typically observed in surface waters relative to 

intermediate and deep waters, due to inputs from continental margins (shelf and slope 

sediments, rivers and submarine groundwater discharge (SGD) (e.g., Li et al., 1980; Charette 

et al., 2015). Yet, as the mean half-life of 
228

Ra is much shorter (5.75 y) than that of vertical 

ocean mixing, little 
228

Ra penetrates into the intermediate ocean (Moore, 1972).  

Radium-228 inventories were determined in the upper 1000 m of the Atlantic Ocean using 

data obtained in the period 1981 to 1989 as part of the Transient Tracers in the Ocean (TTO) 

program (Moore et al., 2008). This allowed the estimation of total fluxes of SGD to the 

Atlantic Ocean. Stations were grouped within 15° ×15° boxes and 
228

Ra data from 0-1000 m 

used to estimate the 
228

Ra inventory in each box. Charette et al. (2015) used the same 

technique to determine the 
228

Ra inventory in each 15° × 15° box from 15° to 45°N in the 

North Atlantic Ocean, and by comparison with the inventories derived from the TTO 

program, showed that the 
228

Ra inventory is at steady state on a time scale of ~30 years in the 
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North Atlantic. However, no such temporal comparison has, to date, been conducted in the 

South Atlantic region described herein.  

GEOTRACES cruise GA08 to the SE Atlantic Ocean was conducted to investigate the 

sources, sinks, and biogeochemical cycling of TEs in this region. As Ra isotopes are 

powerful tracers of inputs of TEs to the oceans and their off-shelf transport (Sanial et al., 

2018; Dulaiova et al., 2009; Charette et al., 2016), here we report the overall distributions of 

Ra isotopes related to dominant boundary sources and biogeochemical and physical 

processes in the SE Atlantic. Significant features investigated within this region include: (i) 

the Benguela Current as the eastern boundary of the South Atlantic subtropical gyre; (ii) the 

Angola-Benguela Front; (iii) wind-driven coastal upwelling; (iv) oxygen minimum zone 

(OMZ); and (v) the Congo River plume. In this way, our study demonstrates how Ra isotopes 

can be applied to improve our understanding of these biogeochemical processes and helps 

subsequent quantification of TE fluxes from these boundaries, and therefore fulfill a major 

goal of the international GEOTRACES program. 

5.2 Methods   

The GEOTRACES section GA08 occurred from 22 November to 27 December 2015. The 

distributions of Ra isotopes were determined in shallow shelf waters (N-S section, Fig. 5.1) 

of the: (i) Angola Basin; and (ii) northernmost Cape Basin. These sections were 

complemented by two E-W sections perpendicular to the coast at 3°S (referred to here as ‘the 

Congo-Angola region’) and at ~29°S (referred to here as ‘the Benguela region’). 
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5.2.1 Sample collection and analysis  

Approximately 250 L of surface seawater (~3 m depth) was filtered through MnO2-

impregnated acrylic fiber (Mn-fibers) at a flow rate <1 L min
-1

 to quantitatively extract Ra 

isotopes. In addition, 5 in-situ Stand-Alone Pumping Systems (Challenger Oceanic) were 

used to collect depth profiles of dissolved Ra isotopes, deployed at 100 m, 200 m, 300-400 

m, 500-650 m, and 1000-1250 m depths. For this, seawater (~1000 L) was pumped by the 

SAPS through a membrane filter (1 μm pore size, polycarbonate; Whatman) to collect 

suspended particles, and the filtrate passed through a cartridge filled with MnO2 coated fiber 

(Mn-cartridge) to extract the Ra isotopes (Henderson et al., 2013). Before pump 

deployments, the Mn-cartridges were cut in half (~15 cm each piece), and a plastic spring 

was placed below each Mn-cartridge inside the holder. A Ra extraction efficiency on the Mn-

cartridges of 65% ± 12% was determined by (i) co-precipitation of a sample (1 L) with 

BaSO4 (Moore et al., 1985) and subsequent analysis in a high purity, well-type germanium 

detector (HPGe; Canberra, EGPC 150) for an interrupted period of 55 days; and (ii) 

placement of two cartridges in series on an in-situ pump at certain stations (chapter 2).  

Surface Ra samples were collected at all stations (Fig. 5.1). Vertical profiles of Ra were 

obtained at all stations along the Congo-Angola transect, the 29°S transect, and the Namibian 

shelf between stations 1316 and 1331. After collection, the Mn-fibers and Mn-cartridges 

were rinsed with Ra-free tap water and partially dried using compressed air. Radium-223 and 

224
Ra activities in the Mn-fibers and Mn-cartridges were determined using four Ra Delayed 

Coincidence Counters (RaDeCC) (Moore and Arnold, 1996). The first measurements were 

performed onboard and the samples were then recounted after 6 weeks in order to determine 
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224
Ra in excess with 

228
Th (

224
Ra ex) (

223
Ra were not corrected for 

227
Ac). The RaDeCC 

counters were calibrated by measuring reference solutions containing known activities of 

224
Ra adsorbed on columns of acrylic-MnO2 fibers (Scholten et al., 2010).  

After the measurements of 
223

Ra and 
224

Ra, the fibers and cartridges were ashed and 

subsequently leached in order to determine the activities of long-lived Ra (
228

Ra and 
226

Ra) 

using the HPGe gamma spectrometer. Ashing was conducted at 600°C for around 16 h with a 

subsequent chemical leach followed by co-precipitation of Ra with BaSO4 (Moore et al., 

1985) (see more details in chapter 2). The precipitate was stored in 1 mL vials, tightly closed 

with Parafilm and analyzed after at least 3 weeks to allow 
222

Rn to achieve equilibration with 

its parent 
226

Ra. Radium-226 activities were determined using the 
214

Pb peak (352 keV) and 

214
Bi peak (609 keV), while 

228
Ra activities were determined using the 

228
Ac peaks (338 keV 

and 911 keV). The detector efficiency was determined by spiking Mn-fibers and Mn-

cartridges with known amounts of 
228

Ra and 
226

Ra, ashing, leaching and measurement in the 

gamma spectrometer as per the samples. Activities of the sample were corrected for detector 

background counts and fiber blank activities. The Ra reference solution was provided by the 

International Atomic Energy Agency (IAEA) and had a reported activity accuracy of 6% for 

226
Ra and 5% for 

228
Ra. Measured precisions for 

228
Ra and 

226
Ra was ~ 5%; i.e., these levels 

of accuracy and precision lead to an uncertainty on the sample activities of <10%. 

For trace element clean sample collection, Ocean Test Equipment samplers mounted on a 

powder coated sampling rosette with a Kevlar conducting cable were deployed complying 

with GEOTRACES specifications for trace metal work. After conducting profiles, samplers 

were carried into an over-pressured trace element sampling container on deck equipped with 
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an air filtration system. Samplers were over-pressured (0.2 atm N2) and subsamples for Fe 

(II) (unfiltered) and dissolved Fe (dFe) collected within 2 h of arrival on deck using flow-

through 0.8/0.2 µm filters (Acropack 500). Low-density polyethylene (LDPE) bottles (125 

mL) for dFe samples were pre-cleaned according to GEOTRACES protocol (1 week in 

Mucasol detergent, 1 week in 1.2 M HCl, 1 week in 1.2 M HNO3, with 3 de-ionized water 

rinses after each stage). Opaque LDPE bottles for Fe (II) were prepared similarly and filled 

with no headspace. After collection, dFe samples were acidified by addition of HCl (UPA 

grade, ROMIL) to pH <2.0. Fe (II) samples were analyzed at sea within 1 h of sample 

collection using a dual Fe (II)/H2O2 luminol flow injection analysis system (Jones et al., 

2013) exactly as per Hopwood et al. (2017). Fe (II) analysis was calibrated daily by standard 

additions of 0.2-20 nM, with standard additions made to both aged surface and aged sub-

surface waters. Dissolved trace element concentrations were determined after >6-month 

storage at pH 1.9 via ICPMS after offline pre-concentration using a SEAFAST trace element 

pre-concentration system exactly as per Rapp et al. (2017). Macronutrient samples were 

collected unfiltered from OTE samplers into 30 mL LDPE bottles which were rinsed once 

prior to filling and then refrigerated until analysis. The analysis was conducted at sea via an 

autoanalyzer (Hansen and Koroleff, (1999) with daily analysis of a certified reference 

solution. 
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Figure 5.1: Study region with sampling stations in the SE Atlantic Ocean during the GEOTRACES GA08 

section cruise. In-set provides detailed view of stations discussed in this chapter. 

5.3 Results and Discussion  

5.3.1 Shelves, slopes, and abyssal sediments as sources of Ra isotopes  

The Congo River plume determines the Ra isotope distributions in surface waters of the 

Congo-Angola region (Fig. 5.2), as discussed later. Yet, in subsurface waters up to <300 m 

(σ0 < 26.75), elevated 
228

Ra activities (>1 dpm 100 L
-1

) were also observed, relative to 

Congo-Angola region 

Benguela region 
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intermediate waters (< 0.6 dpm 100 L
-1

). This feature was also observed in the Benguela 

region (Fig. 5.2) suggesting a source mechanism unrelated to riverine inputs. Enhanced 
228

Ra 

activities observed in the upper 300 m that extends >1000 km from the African continental 

margin may indicate lateral transport along isopycnal surfaces with Ra derived from shelf 

and slope sediments (hereafter, shelf 
228

Ra plume). 

 

Figure 5.2: Radium-226 and 
228

Ra distributions (dpm 100 L
-1

) along the A) Congo-Angola region (stations 

along the shore and the 3°S transect) and B) Benguela region along the ~29°S. Iso-contours represent silicate 

concentrations and the potential density anomaly σ0 (kg m
-3

) for 
226

Ra and 
228

Ra distributions, respectively. 

Radium-228 inventories for each station along the 3°S and 29°S transects were calculated by 

linear interpolation of datapoints between (i) the surface and <300 m; and (ii) the surface and 

1000-1250 m. The average 
228

Ra inventories (I) for <300 m (σ0 < 26.75), were about 1.2 x 

10
10

 atoms m
-2

 for the Congo-Angola region (3°S transect; from st.1218 to st.1247) and 2.5 x 

10
10

 atoms m-
2
 for the Benguela region (29°S transect; from st.1325 to st.1291). We 
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excluded the surface waters of the Congo River plume from these calculations, as we here 

focus on 
228

Ra inputs from the shelf and slope sediments into the Atlantic Ocean. The Ra flux 

from the Congo River plume is presented in chapter 4. In order to determine the 
228

Ra fluxes 

(Flux Ra) from the shelf sediments in both regions, 
228

Ra activities were corrected for the 

intermediate water background activities (Sanial et al., 2018) derived from the average 
228

Ra 

activities between 400 m and 1000-1250 m across the 3°S and 29°S transects. Thus, the 
228

Ra 

supply rate from the shelves would be balanced by losses due to transport and radioactive 

decay (λ) along both transects, and can be determined as:  

 Flux Ra = I [λ+ 1
τ
]   (Equation 5.1) 

The transport loss of 
228

Ra is estimated by dividing the inventory of 
228

Ra (I) in the upper 300 

m (σ0 < 26.75) by the residence time (τ) of the water within this layer (equation 5.1). 

Considering that the water residence time within the thermocline (<300 m depth, 

corresponding to the depth of the observed 
228

Ra shelf plume) in the SE South Atlantic 

ranges between 4 to 10 years (Gordon and Bosley, 1991), 
228

Ra fluxes from the Congo-

Angola shelf (Flux Ra Congo) ranged between 2.9 x 10
9
 atoms m

-2 
yr

-1
and 4.8 x 10

9
 atoms m

-2 

yr
-1

, while 
228

Ra input from the Benguela shelf (Flux Ra Benguela) were somewhat higher 

varying from 5.5 x 10
9
 atoms m

-2 
yr

-1
to 9.2 x 10

9
 atoms m

-2 
yr

-1
, but of the same order of 

magnitude. The calculated 
228

Ra fluxes from shelf sediments are comparable with reported 

228
Ra inputs from continental shelves. For example, in the eastern tropical South Pacific 

Ocean,
 
the 

228
Ra fluxes from the slope and shelf sediments were respectively 3.8 x 10

9
 atoms 

m
-2

 yr
-1

 and 6.0 x 10
9
 atoms m

-2
 yr

-
1 (Sanial et al., 2018); also similar to those found in San 

Pedro (5.2 x 10
9
 atoms m

-2
 yr

-1
) and San Nicolas (11 x 10

9
 atoms m

-2
 yr

-1
) on the Southern 
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California (USA) (Hammond, et al., 1990), but an order of magnitude lower than the shelf 

228
Ra fluxes in Western North Atlantic Ocean (~57 x 10

9
 atoms m

-2
 yr

-1
) (Kwon et al., 2014; 

Charette et al., 2016) and in the Chukchi Sea (54 x 10
9
 atoms m

-2
 yr

-1
) (Vieira et al., 2019).   

Our inventory of 
228

Ra between the surface and 1250 m depth in the box corresponding to the 

Congo-Angola (4.2 ± 2.0 x 10
10

 atoms m
-2

) and the Benguela (3.4 ± 0.9 x 10
10

 atoms m
-2

) 

regions are somewhat higher than those presented by Moore et al. (2008) for the same 

regions (i.e., 3.0 x 10
10

 atoms m
-2 

and 1.6 x 10
10

 atoms m
-2

, respectively). However, in the 

Congo-Angola region, the inventories from TTO and GA08 are not statistically different (at 

p< 0.01; t-test; 1σ), suggesting that 
228

Ra may have also been at steady state for about 3 

decades in that region. In contrast, the inventories between the two programs are significantly 

different in the Benguela region. This suggests that
 228

Ra fluxes in the Benguela region may 

have increased over the last 30 years, which implies that 
228

Ra is not at steady state. Another 

possible cause for the difference is that the TTO samples were collected farther offshore. Our 

inventory was determined using a long transect of 10 stations including five along the shelf, 

while the Moore et al. (2008) inventory was based on only three stations as far as ~ 1600 km 

from the coast. Our most open ocean station (st.1291) showed a 
228

Ra profile that was similar 

to from the same site in the TTO program.  

During the GA08 cruise, Ra isotopes were sampled in bottom waters at 10 m, 50 m, 100 m 

and 300 m above the seafloor (stations 1247, 1295, and 1303). The average 
226

Ra activity 

near the seafloor was 19.4 dpm 100 L
-1

, consistent with reported values (19-21 dpm 100 L
-1

) 

for bottom waters in the SE Atlantic Ocean (Broecker et al., 1976). Our highest 
226

Ra activity 

(24.5 ± 2.5 dpm 100 L
-1

) was observed at 4418 m (st.1303) in the Benguela region (Fig. 5.3) 
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and was three-fold higher than for surface waters (7.8 ± 0.8 dpm 100 L
-1

). The enhanced 

228
Ra, 

224
Raex and 

223
Ra activities observed in the first 100 m above the seafloor (Fig. 5.3) are 

likely due to abyssal sediment inputs. Enhanced suspended particulate loads in the near-

bottom nepheloid layer were observed, particularly at station 1295, indicated by turbidity 

measurements (Fig. 5.3). 

 

Figure 5.3: Distributions of the Ra isotopes and turbidity in the water column of stations 1247 (orange squares), 

1295 (pink triangles) and 1303 (blue diamonds). 

5.3.2 The Angola-Benguela front, upwelling, OMZ, and SGD along the African coast 

Along the Benguela shelf (considered here as south of 15°S on Fig. 5.1), surface Ra activities 

were quite variable. The activities of 
224

Raex and 
228

Ra varied by an order of magnitude from 

0.95 ± 0.04 dpm 100 L
-1 

to 0.10 ± 0.04 dpm 100 L
-1

and 12.0 ± 0.8 to 1.3 ± 0.1 dpm 100 L
-1

, 

respectively, with the highest activities of both isotopes found in the freshest waters (salinity 

= 34.7) at the most southern station (st.1325). Surface 
226

Ra activities were quite variable 

ranging between 8.0 ± 0.8 and 15.2 ± 0.5 dpm 100 L
-1

.  
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The 
228

Ra to 
226

Ra ratio is a useful tracer when comparing water bodies (e.g., Moore, 1986; 

Moore, 2000 a, 2000 b; Moore and Todd, 1993). The cold and nutrient-rich northward flow 

of the Benguela Current usually meets the nutrient-poor and warm southward propagating 

waters of the Angola Current at the so-called Angola–Benguela front (ABF) at approximately 

15°-17°S (Nelson and Hutchings, 1983; Lass et al., 2000). The ABF is also noticeable in the 

228
Ra/

226
Ra distributions where two mixing lines meet (Fig. 5.4), indicating two different 

water masses on the north and south side of this transect. This observation indicates that 

rapid mixing is controlling the distribution of Ra in this region. The three blue points that fall 

off the line on Fig 5.4 (i.e. st.1325, st.1331, and st.1334) may reflect waters with different 

sources. The colder, fresher and nutrient-rich waters of stations 1331 and 1334 suggest 

stronger influence of upwelling. On the other hand, the enhanced 
228

Ra surface activities at 

the shallow station 1325 (~60 m deep) may suggest input from the highly Ra enriched bottom 

waters, as discussed later. The high 
228

Ra/
226

Ra ratios found in the northern station on the 

Angola shelf (red line in Figure 5.4) may reflect influences of the Congo River, as part of the 

Congo River discharge may be carried southward by the Angola Current during summer 

months (Tchipalanga et al., 2018). 
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Figure 5.4: 
228

Ra/
226

Ra activity ratios plotted against salinity (R
2
= 0.96) along the Angola-Namibia shelf region 

(A); oxygen (B), temperature (C) and salinity (D) distributions along the Angola-Namibia shelf zone 

Prevailing southeasterly trade winds in the Benguela region drive an offshore surface water 

drift resulting in strong upwelling of cold and nutrient-rich waters originating from depths 

which roughly correspond to the South Atlantic Central Water (Shannon, 1985; Lutjeharms 

and Valentine, 1987). This upwelling can clearly be observed in the 
226

Ra distribution (Fig. 

5.2). The mean 
226

Ra activity in the East South Atlantic Central Water (ESACW; ~300-500 

m deep)  was 11.2 ± 1.8 dpm 100 L
-1

, which corresponds to that found in surface waters off 

Namibia (11.3 ± 2.0 dpm 100 L
-1

). The same feature can be observed in the temperature (Fig. 

5.4 C), Si (Fig. 5.7), density, and salinity distributions. The permanent upwelling that occurs 

in this region is linked to the development of the OMZ, as the nutrient-rich upwelled waters 

A) 

B) 

C) 

D) 
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result in an increase in primary productivity and the sinking particulate organic matter 

consequently induces pronounced oxygen depletion in subsurface shelf waters and sediments.  

Furthermore, the Ra enrichment (e.g. 
226

Ra) in the water column may be related to TE 

cycling within the OMZ along the Namibia coast. Todd et al. (1988) reported that the 
226

Ra 

maxima in the permanent anoxic waters of the Framvaren Fjord in Norway was associated 

with particulate iron (Fe)-manganese (Mn)- oxyhydroxide cycling in the water. Reduced Mn 

(Mn (II)) and Fe (Fe (II)) diffuse upwards from the anoxic sediments into overlying waters 

where they are subsequently precipitated as Mn (IV) and Fe (III) particulate phases, which 

scavenge 
226

Ra. Oxidized colloidal Fe and Mn, and particulate Fe oxyhydroxide and Mn-

oxides upon settling through the oxic-anoxic interface of the water column re-dissolve in the 

reducing zone, releasing Fe, Mn, and the radionuclides back into solution, which could 

potentially contribute for example to the observed maxima in 
226

Ra (e.g. 21.8 dpm 100 L
-1

 at 

100 m of st.1328; Fig. 5.5).  
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Figure 5.5: Radium isotope, Fe (II) and Si distributions along the Namibian coast. Radium vertical profiles 

comprise stations from 1325 to 1331.  
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Near-bottom Ra activities and Si concentrations were enhanced on the Namibian shelf (Fig. 

5.5). Radium-224 was enriched by over an order of magnitude compared to surface waters, 

while 
228

Ra and 
226

Ra were enriched by factors of 2 to 6, likely due sedimentary inputs. 

Similarly, enhanced Fe (II) concentrations of 222 nM were observed in bottom waters of the 

shelf stations (Fig. 5.5), with coinciding distributions of the four Ra isotopes and Si 

distributions. Such an Fe (II) distribution provides unambiguous evidence of a large 

sedimentary Fe source associated with reducing conditions. The resolution of Si and Fe (II) 

data is higher than for Ra isotopes, and it is plausible that the activities of Ra isotopes might 

have been higher still at stations with Fe (II) and Si maxima. High concentrations of Si close 

to the seafloor indicate silica dissolution, which may potentially release 
226

Ra into the water 

column. Along the Namibian coast, a belt of anoxic and organic-rich diatom mud has been 

reported in shelf sediments, composed of organic matter, diatomaceous silica, calcium 

carbonate, and phosphorite (Calvert and Price, 1983). This type of sediment is expected to 

form a source of 
226

Ra, but not 
228

Ra or 
224

Ra (Moore and Shaw, 1998). A submarine fluid 

input as a unique source of Ra, Fe (II) and Si, such as (anoxic) SGD, could potentially 

explain the enrichment of all four Ra isotopes (Fig. 5.5). Inputs from SGD along the 

Namibian coast have already been postulated (Emeis et al., 2004).  

Seasonal occurrence of H2S-rich waters occurs occasionally during austral summer along the 

Namibian coast (e.g., Copenhagen, 1934; Mohrholz et al., 2008; Ohde and Mohrholz, 2011). 

Emeis et al. (2004) hypothesized that the sporadic H2S eruptions on the Namibian shelf, 

which can occur after periods of inland rains (Weeks et al. 2004), could be explained by 

SGD.  The Kuiseb River is reported to disappear into the Great Namib Desert dunes before 

reaching the sea, but may continue underground through drowned valleys, filled with alluvial 
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sediments, transmitting a hydraulic pressure signal of a rising water table after rain storms. 

This signal could trigger the release of trapped gasses in the organic-rich coastal sediments 

(Emeis et al., 2004). H2S and reduced metals in the SGD form a potential source of reducing 

fluids to coastal waters that could prolong the duration and strength of the anoxic events in 

this region.  However, rainfall in Namibia is highly variable both spatially and temporally 

(Eckardt et al., 2013). Although studies have suggested that annual rainfall did not show a 

clear trend over the last 30 years (Fauchereau et al., 2003; Morishima and  Akasaka, 2010), 

dry periods in Namibia have become longer and more intense (Morishima and  Akasaka, 

2010), and rainfall variability has increased with an increase in heavy rainfall  (Lu et al., 

2016). Changes in the precipitation regimes in Namibia induced by climate change may 

therefore alter the SGD inputs along the coast leading to a change in the intensity of H2S 

events and Ra, Fe (II) and Si release into the water column.   

5.3.3 The influence of Subantarctic waters on 
226

Ra distributions 

Along the coast of the Benguela region, the activities of the long-lived Ra isotopes were 

elevated relative to offshore waters (mean 
226

Ra = 11.1 ± 2.0 dpm 100 L
-1

), likely due to the 

influence of the 
226

Ra enriched Antarctic waters (Ku and Lin, 1976) and upwelled waters off 

the Namibian coast. Subantarctic waters in the Benguela region may drive the large 

variability of 
226

Ra and Si ratios between the northern and southern portion of our study 

domain. 
226

Ra showed a nutrient-like profile and strongly correlated with Si (Fig. 5.6), as also 

reported by e.g., Chung (1980), Moore and Dymond (1991), Ku and Lin (1976), Ku et al. 

(1970), Broecker et al. (1967), Charette et al. (2015), and Hanfland (2002). We here present 

the first 
226

Ra and Si correlation for the South Atlantic Ocean between 100-1250 m (Fig. 5.6) 

https://www.sciencedirect.com/science/article/pii/S2214581816300404#bib0030
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and compare this with the historical open ocean Ra and Si distributions in the Atlantic Ocean.  

In the current study, a 
226

Ra/Si slope of 0.11 dpm 100 L
-1 

µM
-1

 observed in the Benguela 

region was almost 2-fold lower than observed further north in the Congo-Angola basin (0.21 

dpm 100 L
-1 

µM
-1

) (with Si concentrations > 5µM). The 
226

Ra to Si ratio in Antarctic waters 

is reported to be 0.07 dpm 100 L
-1 

µM
-1

 (Ku and Lin, 1976; Hanfland, 2002), while in the 

North Atlantic, this ratio is two and three times steeper (0.24 dpm 100 L
-1 

µM
-1

) than that 

observed in the Benguela and Antarctic regions (Charette et al., 2015). Thus, the 
226

Ra and Si 

ratios not only appear to vary significantly between ocean basins (Li et al., 1973; Chung, 

1980), a strong variability is also observed across the Atlantic Ocean. It has been suggested 

that the northward increase in 
226

Ra/Si ratios in the Atlantic intermediate water may be the 

result of the mixing of water mass with different
226

Ra and Si signatures, such as that between 

the upper North Atlantic Deep Water (uNADW), depleted in Si but enriched in 
226

Ra (i.e. 

high 
226

Ra/Si) with the Antarctic Intermediate Water (AAIW) with lower 
226

Ra/Si ratios 

(Charette et al., 2015; Broecker et al., 1967). Indeed, the different 
226

Ra and Si ratios in the 

northern and southern regions of our study appear to be more related to the large variability 

in the Si concentrations within the same water masses across the South Atlantic Ocean (Fig. 

5.7). The variability may be defined by the concentrations of preformed nutrient of the waters 

derived from the surface Southern Ocean, which feed into the main thermocline of the 

Atlantic Ocean (Sarmiento et al., 2007). 
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Figure 5.6: Radium-226 and Si relationships during the GEOTRACES GA08 cruise in the Congo-Angola (3°S 

transect) and Benguela regions (29°S transect). Blue lines represent the 
226

Ra/Si correlation within all samples, 

while red lines are for samples with silicate higher than 5 μM. 

In contrast to the Congo-Angola basin, Si is depleted in a greater water depth interval in the 

Benguela region (up to a 500 m thick layer) (Fig. 5.7). Using data from the GEOSECS 

program, van Bennekom and Berger. (1984) suggested that, in the upper water column of the 

Angola Basin (100-400 m), the increase from south to north of dissolved Si due to in situ 

regeneration was 50 g m
-2

. Below 900 m however, our deep-water-Si concentrations are 

higher by a factor of 2 or 3 in the Benguela region relative to the same water depths in the 

Congo-Angola basin (Fig. 5.7); water mass analysis suggests that the waters below 900 m 

correspond to a mixture of AAIW and uNADW in both regions (σ0 ~ 27.4). The difference in 

Si concentration within this layer may be due to the influence of the Si enriched waters from 

the Subantarctic Zone, and as it flows northward from the source region, its Si concentration 

may decrease as it mixes with Si poorer water from the north. This could explain the lower 

226
Ra/Si ratio observed with increasing latitude. The 

226
Ra to Si ratios in surface waters 

appear more variable, likely because the concentration of both 
226

Ra and Si in surface waters 

(Si < 5µM) are affected by uptake and scavenging processes that occur at different rates.  
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Figure 5.7: Silicate distribution in the first 1500 m  in the Congo-Angola and Benguela regions. Iso-contours 

represent potential density anomaly σ0 (kg m
-3

). 

5.3.4 The influence of the River Congo on Ra isotope distributions in the SE Atlantic 

Activities of 
226

Ra and 
228

Ra were elevated in coastal surface waters of the Congo-Angola 

region (mean = 8.3 ± 2.3 dpm 100 L
-1 

and 8.81 ± 3.83 dpm 100 L
-1

, respectively) due to the 

influence of the Congo River. The Congo River plume forms a buoyant low salinity surface 

outflow of up to 15 m deep (Yankovsky and Chapman, 1997; Hopkins et al., 2013). The Ra 

distribution indicates that the Congo plume can be traced in the offshore region (3°S transect; 

Fig. 5.1) up to ~ 1000 km from its mouth (st.1241) (e.g., 5.2 dpm 100 L
-1

; Fig. 5.2). The 

presence of enhanced 
228

Ra signatures in surface waters several hundreds of km offshore 

suggests rapid horizontal transport of the river plume. The highest Ra activities (
224

Ra = 8.15 

dpm 100 L
-1

; 
223

Ra = 0.97 dpm 100 L
-1

; 
228

Ra = 17.0 dpm 100 L
-1

; and 
226

Ra = 13.5 dpm 100 

L
-1

) were observed in surface waters of station 1210 at the edge of the shelf (Fig. 5.2) and at 

the observed lowest salinity (S = 30). In the northward extension of the plume, that follows 

the Congo River canyon nearshore (st.1214), the long-lived Ra activities in surface waters 

decreased by a factor of 2 with distance from st.1210 (
228

Ra: ~ 8.04 dpm 100 L
-1

; 
226

Ra ~ 
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7.33 dpm 100 L
-1

), while the short-lived Ra decreased by an order of magnitude (
224

Ra ~ 0.74 

dpm 100 L
-1

; 
223

Ra ~ 0.17 dpm 100 L
-1

). Radium activities decrease with increasing distance 

from the source, due to dilution, mixing and radioactive decay. If both the 
224

Ra and 
228

Ra 

activities are above their limit of detection at a certain distance from the Congo mouth, and 

224
Ra/

228
Ra ratios have the same source and no additional sources of Ra exist along the plume 

length, then the apparent age (T) of waters at st.1214 in comparison to the shelf-edge st.1210 

can be derived following Moore (2000 b): 

 T = ln [
(

224Ra/228Ra)i

(
224Ra/228Ra)o

] × 1
λ224

  (Equation 5.2) 

where (
224

Ra/
228

Ra)i is the initial ratio at st.1210, (
224

Ra/
228

Ra)o is the ratio observed away 

from the source (offshore) at station 1214, and λ224 is the decay constant of 
224

Ra. Sediment 

inputs to surface waters between st.1210 and st.1214 are unlikely due to the vertical 

stratification resulting from strong density gradients between the surface Congo plume and 

deeper waters, and also due to the abrupt drop of the bathymetry to 1500 m between the 

stations (Fig. 5.2). In this way, the apparent age of the water mass above the canyon is ~ 9 

days, which indicates that the plume following the Congo River canyon flows along the coast 

at 0.30 ± 0.04 m s
-1

.  

A decrease of 
228

Ra with salinity in surface waters indicated a conservative mixing between 

the river plume and Atlantic waters (Fig. 5.8; Vieira et al., in review). Thus, a simple mixing 

model between ocean and rivers waters can be constructed using 
228

Ra distributions and 

salinity. Using this approach, we are able to derive the 
228

Ra content on a fraction of river or 
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Atlantic water and plot the non-conservative 
228

Ra (
228

Ra non-cons) distribution (Moore et al., 

1995). 

 228
Ra non-cons = 

228
RaM – (

228
Raes  fes) – (

228
RaO  fO)  (Equation 5.3) 

where fO and fes are the fractions of the ocean and estuary, respectively, determined by the 

salinity endmembers; 
228

RaO and 
228

Raes are the 
228

Ra activity in the ocean and Congo-shelf-

endmember (st.1210), respectively; and 
228

RaM is the 
228

Ra activity measured in a sample. 

The ocean endmembers for 
228

Ra (2.00 ± 0.4) and salinity (36.4) were determined from the 

average of 
228

Ra activities and salinities in open ocean surface waters of the meridional 

transect of the GA08 cruise.  

 

Figure 5.8: (A): River and open ocean waters mixing diagram. (B) 
228

Ra (black squares) and salinity (blue open 

circles) distributions in surface waters from st.1202 to the end of the 3°S transect (st.1247). Note inverse salinity 

scale. This figure is based on Figure 4.2 of chapter 4. 

Figure 5.8 indicates that all surface samples fall on or close to the conservative mixing line; 

in addition, all
 228

Ra non-cons values in equation 5.1 were ≤ 0, suggesting no additional Ra 

inputs. This indicates that the Congo River plume is the major source of 
228

Ra to surface 

waters of that region, as also reported in chapter 4. The offshore stations at around 500 km 
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from the Congo River mouth (e.g. st.1230) showed 83% of their surface layers consisted of 

open ocean waters, while the river-derived 
228

Ra (
228

Ra R) was greater than 70%. Moreover, 

the dilution did not appear to be homogeneously distributed and pockets of freshwater were 

observed along the 3°S transect with high 
228

Ra activities at ~1000 km from the Congo 

outflow (Fig.5.8). The freshwater pockets, possibly originating from filaments, meanders, or 

eddies from the river mouth (Vangriesheim et al., 2009), were composed for 75% of ocean 

water and > 83% of river-derived 
228

Ra (e.g. st.1241).  

5.4 Conclusion  

Ra isotope distributions in the SE Atlantic Ocean show evidence of significant inputs from 

the Congo River waters and the continental shelf of southwest Africa, an eastern boundary 

region influenced by the Benguela Upwelling system and an OMZ. In the Benguela region, 

mixing occurs rapidly; the mixing pattern is consistent with the Angola – Benguela front, and 

the dispersion of the currents matches the trends we see in the 
228

Ra/
226

Ra ratios.  Ra sources 

and behavior in the Benguela OMZ, as enhanced Ra isotopes and Fe (II) and Si 

concentrations were observed in bottom waters along the Namibian shelf, suggest silica 

dissolution, input of anoxic SGD, or that Ra can participate in the TE cycles within the OMZ, 

where reductive dissolution of Fe-Mn oxyhydroxides may remobilize Ra in this region. 

Our results show an increase in 
228

Ra inventories along the Benguela region (< 15°S) relative 

to that reported during the TTO program in the late 1980s. Possible causes include the closer 

proximity of our stations to the shelf influenced zone, compared to the (offshore) TTO 

stations; or variations in the 
228

Ra input to the Benguela zone, suggesting that 
228

Ra may not 

be in steady state in this region. Shelf-fluxes of 
228

Ra in this region (5.6 x 10
9
 to 9.4 x 10

9
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atoms m
-2 

yr
-1

) are not significantly different than that from the Congo-Angola shelf (2.5 x 

10
9
 to 4.1 x 10

9
 atoms m

-2 
yr

-1
). If, as suggested by Ra, Fe, and Si distributions, sporadic SGD 

varying in intensity, space and time, may affect TE, Si and Ra distribution and export to the 

South Atlantic.  
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6 Conclusions and future directions 

 The major aim of this study was to identify boundary sources and sinks of TEs, and quantify 

land-ocean exchange rates of these elements, in order to better understand their 

biogeochemical cycling in the ocean and how their sources and cycling might respond to 

future climate change. Using Ra isotopes, I determined boundary TE fluxes from two regions 

that constrain the major TE sources: (i) a broad ice-covered Arctic shelf region; (ii) an 

eastern boundary system off the western African coast, influenced by the discharge of the 

world’s second largest river and the Benguela Upwelling system in the southern portion of 

the study domain.  

In chapter 3, the first TE data on the Chukchi Sea shelf collected during spring is presented. 

The Chukchi Sea is not only one of the most productive Arctic shelf seas (Hill and Cota, 

2005), but has crucial importance on delivering TEs and other shelf-derived materials to the 

Arctic Ocean. Thus, in this chapter, I investigated the dissolved and total dissolvable TE (Cd, 

Fe, Ni, Cu, Zn, Pb, Mn, and Co) distributions in the Chukchi Sea during spring, and applied 

228
Ra as tracer of benthic TE inputs in the Chukchi Sea shelf and the subsequent dFe flux to 

the Arctic Ocean. I showed that convective mixing induced by ice formation during spring 

led to extremely high TE concentrations over the shelf. Sediment resuspension events caused 

by mixing processes played a major role in buffering dFe released from shelf sediments, as 

sediment particles likely scavenged dFe and formed labile particulate phases. Nonetheless, 

regardless of TE removal processes, this study showed that elevated benthic TE inputs and 

subsequent geochemical enrichment of the Pacific-origin waters on the Chukchi shelf 
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provided suitable conditions for phytoplankton blooms. In addition, 10-25% of dFe produced 

over the shelf is transported to the central Arctic, indicating the importance of the Chukchi 

Sea shelf as one of the major sources of TEs that sustains the Arctic primary productivity. 

Therefore, changes in the Bering and Chukchi Seas will have significant impacts on the 

biogeochemical cycles of the Arctic Ocean. 

Some key indicators of major climate changes in the Chukchi Sea are becoming evident, 

including reduced ice cover (Shimada et al., 2006), an increase in primary productivity 

(Arrigo et al., 2008) and an increase in the Pacific water inflow from the Bering Strait to the 

Arctic (Woodgate et al., 2018). The increase in primary productivity, and subsequent 

increase of carbon export, is projected to enhance denitrification rates in the sediments 

(Arrigo et al., 2008), favoring TE reduction and increasing benthic TE diffusive release. In 

addition, changes in denitrification rates may further diminish nitrate concentrations in the 

already nitrate depleted waters transported from the Arctic Ocean to North Atlantic (Arrigo et 

al., 2008) lowering the N:P ratio of the overflow waters from the Arctic to the North Atlantic. 

As N2-fixation is favored in waters with a low N:P ratio, an increase of N2 fixation in the 

North Atlantic is expected (Yamamoto-Kawai et al., 2006); the question whether  the waters 

transported from the Arctic to the North Atlantic would contain enough Fe to sustain such 

enhanced N2-fixation (Arrigo et al., 2008) remains unanswered. Therefore, similar to this 

study, further work focused on identifying Fe sources and quantifying its subsequent input to 

the Arctic basin is urgently needed.  

In the current study, 
228

Ra fluxes from the Chukchi Sea sediments were within the largest 

reported globally. Radium-228 activities I found during spring were 2-fold higher than 
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previously reported during the summer months, indicating that seasonal variability of Ra, and 

possibly TE, over the Chukchi Sea shelf may be of crucial importance to understand the 

influence of the shelves on the chemical budget of the Arctic Ocean. However, the reason 

why 
228

Ra is higher during spring is unclear. Recently, Kipp et al. (2018) showed that the 

levels of 
228

Ra in the central Arctic have increased by a factor of 2 over the past 10 years, due 

to an increase of benthic 
228

Ra fluxes from the Arctic shelves. They hypothesized that longer 

open water season allows more wind-driven mixing, which likely drives the increase in 
228

Ra 

fluxes. They also suggested that this may be the case for other shelf-derived materials such as 

TEs. These changes may be altering the influence of the shelves on the chemical budgets and 

biogeochemical cycles in the Arctic Ocean, with subsequent effects on the primary 

productivity of the Arctic and Atlantic Oceans. As the extensive continental shelves cover 

about one-third of the Arctic Ocean, an important next step is to conduct continued 

measurements of TEs and Ra on the Arctic shelves and in the basins, in order to elucidate 

temporal trends and evaluate the consequences of climate change on the shelf TE supply to 

the Arctic Ocean.  

Chapter 4 and 5 focused on the boundary processes that control the distribution of Ra and 

TEs in the Southeast Atlantic Ocean. In chapter 4, I used 
228

Ra as a geochemical tracer to 

track the horizontal TE (dFe, dCo, and dMn) dispersions of the Congo River plume and to 

quantify the input rates of these elements from the River Congo into the South Atlantic Gyre. 

The results of this study indicated limited removal of dFe on the shelf linked to the Congo 

River outflow (called throughout this thesis “Congo-shelf-zone”). As strong dFe removal 

(50-85%) has been demonstrated within low salinity (0-5) of the Congo estuary waters 

(Figuères et al., 1978), I concluded that the dFe removal within the Congo estuary is 
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balanced by dFe inputs into the Congo-shelf-zone. The constrained river inputs for dissolved 

and desorbed Ra fractions do not supply the amount of Ra required to maintain the Ra 

inventory observed in the Congo-shelf-zone. Based on the principle that Ra and TEs have 

common sources (see chapter 1), I suggested that indeed there must be a significant, 

‘missing’ Ra and TE source between the river and the Congo-shelf-zone, which may be 

SGD. Although shelf inputs increased 
228

Ra and TE concentrations in the Congo-shelf-zone, 

the lower salinity in surface waters isolated the plume from the seafloor influences due to the 

density gradient once the plume was removed from the Congo-shelf-zone. Thus, proceeding 

along the river plume pathway in the off-shelf transect (3°S), the linear decrease of 
228

Ra 

with salinity in surface waters indicated a conservative mixing between the river plume and 

Atlantic waters, and the similarity between the 
228

Ra and TE distributions with salinity 

indicated that the plume was the only major source of Ra and TEs in offshore region. 

Combining the 
228

Ra fluxes with the distributions of dissolved TEs, I could provide the first 

estimate of Ra-derived TE fluxes from a river plume into the ocean. Thus, I showed that the 

presence of TEs and 
228

Ra in surface waters several hundreds of kilometer off-shelf 

indicating rapid horizontal mixing of the river plume, which consequently influences the 

delivery of high levels of TEs from the Congo River outflow into the Southeast Atlantic 

Ocean, a reportedly oligotrophic region (Browning et al., 2017). Indeed, primary productivity 

within the offshore region of the current study was not Fe-limited; instead the region was 

limited by nitrogen availability (Browning et al., 2017). This led to the conclusion that the 

large TE input from the Congo River plume relieves micro-nutrient limitation (Fe and Co) 

(Browning et al., 2017) and potentially increases N2 fixation in the eastern South Atlantic 

Gyre. Changes in the Congo runoff regime, as well as the surface ocean circulation patterns 
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driven by winds, will therefore potentially alter the magnitude of TE fluxes and consequently 

affect the primary productivity in the Southeast Atlantic Ocean.  

Signorini et al. (1999) reported that seasonal variations of the wind and the river discharge 

can strongly affect the Congo River plume dispersion, as well as the complex ocean 

circulation within the SE Atlantic Ocean (Stramma and Schott 1999). Although in the near 

future the Congo River Basin (catchment) might not experience significant changes in the 

annual total precipitation in response to a changing climate, more intense rainfall is likely to 

occur during the African wet season (Hänsler et al., 2013); hence intensifying the seasonal 

and interannual variability of Congo River runoff (Alsdorf et al., 2016). In addition, it has 

been suggested that the Congo Basin is very sensitive to changes in potential 

evapotranspiration, which may affect the total Congo runoff (Tshimanga and Hughes, 2012). 

Due to rising temperatures, evaporation is likely to increase, and a reduction of more than 

10% of the total Congo runoff is predicted (Tshimanga and Hughes, 2012), which will 

potentially decrease the TE delivery to the Atlantic Ocean. Moreover, changes in 

atmospheric-ocean interactions, Sea Surface Temperatures, wind patterns, and the location of 

the Inter-Tropical Convergence Zone may have profound impacts on the hydrological 

conditions of the Congo River Basin (Balas et al., 2007; Farnsworth et al., 2011; Poccard et 

al., 2000). However, little is still known about the hydrological response of the Congo River 

to future changes in climate, due to a lack of experimental research in the Congo Basin; in 

addition, projected changes in this region may not be completely consistent, due to the usage 

of different hydrological models and climate scenarios (Hänsler et al., 2013). Therefore, 

continued river discharge data has to be collected to improve our knowledge of the long-term 

changes of the Congo River Basin hydrology. Additional TE and Ra sampling in the Congo 
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River itself and in the Southeast Atlantic would also aid prediction of how changes in river 

water chemistry and its plume will affect TE distributions and consequently primary 

production in the South Atlantic Gyre.   

In chapter 5, the impacts of the main sources and geochemical processes on the distribution 

of Ra in the Southeast Atlantic Ocean are discussed. As such, Ra isotope distributions were 

presented along two East-West sections (3°S and 29°S) in the SE Atlantic Ocean and in shelf 

waters along the western African coast. The study region constrains the boundaries of 3 

major oceans such as Atlantic, Indian, and Southern Oceans, in addition to the major TE and 

Ra sources such as a river (Congo River) and a large continental shelf influenced by the 

Benguela Upwelling system and oxygen minimum zone. In this chapter, I presented the 

correlations between 
226

Ra and Si in the Southeast Atlantic. Although the coupling between 

226
Ra and Si cycles in the oceans has been well established, their relationship in the Southeast 

Atlantic is for the first time presented during this study. I showed that there is a strong 

variability in the 
226

Ra and Si correlations (up to 1000 m depth) across the Atlantic Basin. 

The 
226

Ra/Si ratios increased significantly with increasing latitude, likely due to the influence 

of the Si-enriched subantarctic waters that supply nutrients into the thermocline of the 

Atlantic Ocean. Whilst the distribution of 
226

Ra reflects the properties of the major water 

masses present in the study region, 
228

Ra is a tracer of continental sources in the upper ocean. 

As such, 
228

Ra was enriched in the first 250-300 m over the entire 3°S and 29°S transects, 

indicating strong shelf influences over 1000 km in the SE Atlantic Ocean. Similar fluxes 

were observed in the Benguela (29°S) and the Congo-Angola region (3°S) with reported 

values in the East Pacific Ocean and Southern California coast (USA).  
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The 
228

Ra inventories along the 3°S and 29°S transects were determined and compared to 

historical 
228

Ra inventories in that region (Moore et al., 2008). I showed that the inventories 

seem to have increased over the past 30 years in the southern transect (29°S). The reason for 

the observed increase could be because the current study may have more efficiently captured 

the influence of the shelf, as more samples were collected in this undersampled region, or 

228
Ra is not at steady state in this region, and fluxes from the continental shelf may have 

increased over last 3 decades. The later hypothesis indicates that increased shelf fluxes may 

not only affect Ra isotopes but also other shelf-derived TEs. In addition, increased Ra 

isotopes (and Fe (II)) concentrations were observed in the oxygen minimum zone of the 

Benguela region, which may be explained by inputs from additional Ra sources, such as the 

reducing shelf sediments as a result of silica dissolution, or SGD along the Namibian shelf. 

Studies have suggested that rainfall episodes in the Namibian coastal hinterland could further 

lead to a subterranean aquifer recharge and its subsequent discharge as SGD into the 

Namibian coast; such process may be related to the nearshore hydrogen sulfide (H2S) 

eruptions observed off Namibia (Emeis et al.; 2004; Weeks et al., 2004) and may therefore 

influence the duration and extent of the hypoxia events in this region. The sporadic H2S 

events appear to be more frequent and longer lasting than previously thought, and simple 

upward advection during the upwelling may not be sufficient to explain the range of H2S 

events observed (Weeks et al., 2004). This may also support the idea of the existence of 

SGD. However, in order to make predictions on how the Benguela system will change in the 

future relative to Ra and TE fluxes to the Atlantic Ocean, we must test if (i) the hypothesis of 

SGD is true, and for that, Ra isotopes are powerful tools (Moore et al., 1996) (ii) the 

correlation and lag between rainfall episodes and aquifer recharge-discharge. Although 
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studies have investigated the macro-nutrient inputs from SGD (e.g., Valiela et al., 1990; 

Wang et al., 2018), little is known about the SGD supply of the bio-essential TEs (Windom et 

al., 2006). Paired studies of TEs and Ra in this region should certainly continue to improve 

our knowledge of the driving factors for their observed distributions, and how these 

distributions can be altered with climate-induced changes in this system.    

In summary, this Ph.D. thesis had an original multidisciplinary approach which showed that 

the quantification of TEs from continental margins, such as from shelf sediments and rivers, 

is vital to provide constraints on the TEs biogeochemical cycling in the oceans. Thus, this 

study has shown how Ra isotopes can be used to identify TE sources and quantify TE supply 

rates to the oceans, hence improving our capability to constrain the ocean boundary TE 

inputs and to evaluate how this TE supply may change in response to future changes in 

climate. Future research should therefore continue to focus on identifying Ra sources and 

quantifying their fluxes in diverse ocean environments in order to improve their applicability 

as tracers in oceanographic studies.  
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