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In most observational studies, treatments or other “exposures” (in an epidemiologic sense) do not occur at random. Instead,

treatments or other such interventions dependon several patient-related and patient-independent characteristics. Such factors,

associated with the receipt vs nonreceipt of treatment, may also be—independently—associated with outcomes. Thus, con-

founding exists making it difficult to ascertain the true association between treatments and outcomes. Propensity scores

(PS) represent an intuitive set of approaches to reduce the influence of such “confounding” factors. PS is a computed probability

of treatment, a value that is estimated for each patient in an observational study and then applied (in a variety of ways such as

matching, stratification, weighting, etc.) to reduce distortion in the true nature of the association between treatment (or any

similar exposure) and outcomes. Despite several advantages, PS-basedmethods cannot account for unmeasured confounding,

ie, for factors that are not being included in the computation of PS.
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INTRODUCTION
Summarizing discussions at a “Roundtable on Value and
Science-Driven Health Care,” authors noted the need for
improvements in the conduct of randomized clinical tri-
als (RCTs). They emphasized that large simple RCTs,
that compare one treatment with another, can yield inter-
nally valid results if conducted efficiently and effectively.1

Several other articles have also focused on strategies to
improve RCTs.2 This focus on RCTs, as the “gold stan-
dard of clinical research”, comes from the fundamental
assurance that RCTs provide—that outcomes are being
compared across groups of patients that differ only in
treatment (vs no treatment) and no other factors. In other
words, patients’ likelihood of treatment in an RCT is in-
dependent of baseline attributes and determined by
random assignment. Consequently, differences in out-
comes are attributable to the differences in treatments.
In observational settings, in contrast to RCTs, treatment
is not randomly assigned and several patient-related
and patient-independent attributes can influence the
type of treatment received (or the receipt vs nonreceipt
of treatment) and can also influence differences in out-
comes independent of the differences in treatments. In
other words, observational studies of health care inter-
ventions are subject to confounding where systematic dif-
ferences between groups of patients—that were treated
vs not—result in difficulties in estimating the effects of
treatment independent of all other factors.3 Propensity
scores (PS) can be used to enable more accurate estima-
tion of treatment effects in observational studies (see
Figs 1 and 2). In this article, we discuss how PS-based ap-
proaches can be used to account for confounders in
observational research and also discuss some limitations
of PS-based methods.

PS WORK: A CONCEPTUAL SIMILARITY WITH RCTs
PS-based methods offer an intuitive solution to the
problem of confounding in observational research.4 By
objectively quantifying a patient’s likelihood of
receiving a particular treatment or exposure, based on
measured baseline characteristics, ie, the PS value, re-
searchers can construct “pseudo-populations,” where
it is possible to estimate treatment effects more accu-
rately. In these pseudo-populations, patients with
hronic Kidney Dis. 2016;23(6):367-372
more similar likelihoods of treatment, ie, patients with
similar baseline attributes (predisposition to treatment
in routine clinical practice) differ in whether the treat-
ment was actually received vs not. Thus, comparing
outcomes, in pseudo-populations (chosen from the
actual population), enables estimation of treatment ef-
fects in ways that emulate the baseline “exchange-
ability” of treatment groups in RCTs. Populations of
patients that were actually treated vs not treated are
more comparable.
Consider an RCT designed to test a hypothesis using a

simple 2-arm study design—patients could randomly
receive treatment A or B (in a 1:1 ratio). For every patient
randomly assigned to receive A, there is 1 patient
randomly assigned to receive B. Outcomes can be
directly compared because before the actual receipt of
treatment A or B, each patient in the entire study sample
had exactly the same probability of receiving A or B,
completely independent of all other baseline characteris-
tics. Chance alone determined whether a particular pa-
tient received A or B. Because, in theory, the assigned
treatment is the only systematic difference between
groups, differences in outcomes (between groups) are
presumed to be causally related to the differences in
actual treatments. In contrast to RCTs, in an
367
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observational study (of treatment A or B), without
explicit randomization, direct comparisons of the out-
comes are not feasible because several factors (indepen-
dent of treatment) can contribute to the observed
differences in outcomes. To address this problem, re-
searchers can compute the PS. It is calculated as the
probability of treatment, ie, the likelihood of treatment,
conditional on observable characteristics.5 Groups of pa-
tients with similar calculated PS values have comparable
likelihood of treatment but although some patients may
actually receive treatment, others may not. Thus, we
can compare patients with similar PS as they are
“exchangeable.”
The PS is generally estimated using a multivariable

model, typically logistic regression although other tech-
niques may be used, with the exposure (ie, receipt vs
nonreceipt of treatment) as the dichotomous dependent
variable and with observable characteristics of patients
as independent variables. The outcome itself should not
be included in the PS model because treatment cannot
“depend on” the outcome. Temporally, the outcome occurs
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after treatment. Once each
patient’s propensity or prob-
ability for treatment is calcu-
lated (value ranging from
0 to 1), it can be applied in a
number of ways to minimize
confounding. Rather than
building a mathematical
model purely predictive of
treatment,6 the intent of PS
models is to balance con-
founders across treatment
groups.7 In other words, the
goal of using PS is to ensure
balance on all known con-
founders across the groups
being compared. Known
risk factors for the outcome
can be included as predictors
to improve precision, but

factors that are only predictive of the exposure (and unre-
lated to the outcome, ie, instrumental variables) should not
be included in the PS model—these factors are not con-
founders as they are not independently related to the
outcome.8 As a corollary, the purpose of “flipping a
coin” in an RCT is to ensure that patients where the coin
landed on one side are on average similar to patients
where the coin landed on the other side. The purpose of
the coin is not to “predict treatment”—it is to ensure
exchangeability across treatment groups. PS estimates
can also help determine whether comparisons (of groups
with vs without treatment) are appropriate. To do this, re-
searchers need to plot the distributions of PS scores in the
treatment groups to see if treated and untreated groups
show a considerable overlap in PS distributions or not
(see Figs 3 and 4). Comparisons are not appropriate if
patients are not in fact exchangeable, ie, if there is
considerable nonoverlap. In the event of such large-scale
nonoverlap of PS distributions, investigators need to
realize that patients who were actually treated vs not are
too dissimilar in other ways than treatment alone. The op-
tions here are to reconsider the choice of comparator or
consider additional inclusion or exclusion criteria to arrive
at a more exchangeability.

THE APPLICATION OF PS

A. Stratification: After estimation of PS, patients can be
divided into several strata—quintiles, deciles, or
more, depending on the size of the study. Each strata
will have patients with very similar PS and that are,
therefore, comparable on the distribution of baseline
factors that predispose to treatment. However, in every
stratum, only some patients are actually treated vs not
treated and comparingwithin each stratum can, hence,
estimate unconfounded treatment effects.9 These
effects should be understood as minimally affected
by confounding.9 If there are differences in treatment
effects across strata, this could imply either effect
modification10 or the presence of unmeasured con-
Adv Chronic K
founding (particularly in
the tails of the PS distri-
bution).11 Effect modifi-
cation means that the
effects of treatment
depend on the likelihood
of treatment, a particular
stratum of patients that
is unlikely to be treated
may only show small or
no benefits of actual
treatment while another
stratum of patients that
is highly likely to be
treated may have signifi-
cantly different benefits.
If treatment effects are
consistent across strata,
researchers can collapse
stratum-specific esti-
mates into a single overall estimate. Conversely, if ef-
fects vary across strata, investigators may consider
reporting them separately or if the difference is likely
because of bias, apply methods like trimming or
matching to deemphasize the effect of the tails of the
distribution.

B. Matching: Individuals with similar PS values that were
actually treated vs not treated can be matched using
various algorithms. In 1 common algorithm, “pair-
wise greedy matching without replacement,” each pa-
tient with a given PS value who was treated is matched
toanotherpatientwithan identical or nearly identical PS
value (“greedy” in terms of how many decimal places
are used to match PS values). The match is chosen
from the group of patients who were not treated to
create a pair and then both patients are removed from
further matching. This approach creates groups with
pairs of patients with the same PS distributions, and
therefore, the same covariate distributions. In this
idney Dis. 2016;23(6):367-372
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Figure 1. A “typical” observational study: Differences in outcomes need to be adjusted for differences in baseline charac-
teristics.
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pseudo-population, confounding has been “broken”
and outcomes can be directly compared like in an RCT
where there is baseline exchangeability. The resulting
risk estimate—difference in outcome between treated
and untreated groups—is called the average effect of
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treatment in the treated (ATT). This answers the ques-
tion “what is the effect of treatment among patients
who received the treatment vs those that did not.”There
are a variety of other methods for matching (with
replacement, closest neighbor, caliper matching etc.).
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Figure 3. Propensity Density Plot: Propensity Scores (on the
x-axis, range from 0-1) are plotted against the Number of
Patients (on the y-axis). This figure shows fewpatients being
matched.
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Although the sample size can be reduced by matching,
excluding patients who failed to match removes those
without good exchangeability. Unmatched patients
have no corresponding counterpart (patients that have
similar PS but with opposite treatment assignment).
However, in instances of poor PS overlap, the matched
population may represent a very small, atypical
pseudo-population that is not representativeof the over-
all population; if there is effect measure modification
along the distribution of the PS, then the matched sam-
ple may yield an effect measure estimate in only a small
subset, which may differ from the overall population.

C. Weighting: The PS can also be transformed into
weights and applied back to the original study popula-
tion to create pseudo-populations of treated and un-
treated patients with similar PS distributions (and
thus similar balance of covariate distributions). One
type of weights, called standardized mortality ratio
weights, or ATT weights, leaves the treated patients
as is (ie, assigned weight ¼ 1), but “re-weights” the
comparison group to have a similar PS distribution as
the treated (weight ¼ PS/(1 2 PS)).12 The treatment
Propensity score 

N
 

0 1 

Exposed to A 

Exposed to B 

Large group of pa�ents 
with similar propensity 
scores (could have been 
exposed to either A or B)
but actually exposed to A
or B 

Figure 4. Propensity Density Plot: Axes are Similar to Figure
3 butwith good overlap in densities. This figure showsmany
more patients being matched.
effect estimated in this weighted pseudo-population
also yields the ATT (similar to the matching approach);
however, all patients are retained in this analysis.
Although there are no “unmatched” patients, out-
comes are weighted down by untreated patients
(with lower propensities). Another approach is to use
inverse probability of treatment weights that are also
estimated from the PS. When applying these weights
to the population, the treated and comparison groups
are weighted by the inverse of their actual exposure
(treated weight ¼ 1/PS; comparator weight ¼ 1/(1 2
PS)). For practical purposes, weights can be stabilized
by the marginal prevalence of exposure (Pe) to reduce
the influence of small group sizes (treated
weight ¼ Pe/PS; comparator weight ¼ (1 2 Pe)/(1 2
PS)). When these weights are applied, both treatment
groups are weighted to the overall population, and
hence, treatment effects that are estimated (in this in-
verse probability of treatment weights-weighted
pseudo-population) yield the average treatment effect.
The question being answered here “what is the effect of
treatment if the entire population were treated vs none
of the population were treated?.”13 This approach may
not be appropriate in settings where individuals are
unlikely to receive treatment (eg, comparing treatment
with no treatment in a population without indications
for treatment or with contraindications to treatment).
Restriction of the comparison group to those with indi-
cations for treatment or with an active comparator (eg,
users of acceptable alternatives) may result in better
comparisons.14
OTHEROPTIONSANDDEVELOPMENTS IN THE FIELD
OF PS
There is considerable ongoing research on the estimation
and application of PS in observational research. High-
dimensional PS estimation is a tool developed for the auto-
mated selection of large numbers of empirically identified
potential covariates available in administrative health care
databases,15 potentially including hundreds of diagnoses,
procedures, and medications that may be confounders or
associated with confounders when researchers are trying
to use observational data to estimate treatment effects.
Another development, preference score, is a transforma-
tion of the PS to study groups of patients with the greatest
equipoise between strategies. By removing individuals
very unlikely to be treated or very likely to be treated,
the sample is restricted to, and the analysis performed
only on, individuals with reasonable expectation of
receiving vs not receiving treatment in the real world (ie,
groups with PS values closer to 0.5 are identified and
groups with PS values close to 0 or 1 are excluded).16

Disease risk scores (DRS) are similar to PS, in that they
are composite scores of multiple covariates, but rather
than modeling the likelihood of treatment, DRS model
the likelihood of experiencing the outcome. DRS can be
applied in similar matching strategies as PS, but they do
not balance covariates between treatment groups like the
PS do. Estimation of DRS can be more challenging than
Adv Chronic Kidney Dis. 2016;23(6):367-372
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the PS, but DRS may perform better in settings of PS non-
overlap. DRS may be more stable over time because while
treatment patterns can change (ie, propensity for treat-
ment can change over time), the etiology of disease pro-
cesses remains constant.17

THE EXAMPLE
Consider 2 hypothetical epidemiologic studies evaluating
the effect of statins on changes in estimated glomerular
filtration rates among patients with CKD: one investi-
gating whether initiating a statin is more beneficial than
not and another investigating the comparative effective-
ness of 2 different statins. These 2 research questions are
related, but they reflect 2 very different comparisons be-
tween treatment groups. Although the statin vs no statin
comparison considers new users and nonusers, the statin
A vs statin B analysis compares 2 treatment groups which
have both been evaluated by a physician and prescribed a
statin: the confounders surround the choice of statin in the
second example, but in the first, they surround the deci-
sion about whether to treat.
In the statin new user (treatment initiator) vs nonuser

study, the users are identified at initiation, and a relevant
index date is selected to begin the comparison with pa-
tientswith CKDwho are not receiving a statin. A PSmodel
would be estimated, including relevant covariates
measured before the index date, but statin nonusers may
have clinical and behavioral characteristics which make
them so different from the users of statins (eg, reduced ac-
cess to health care, poor adherence, frailty, poor health
habits, etc.) that confounding (and the risk for worse out-
comes) may not be fully controllable.18-20 Distributions
and plots of PS values reflect this lack of
exchangeability21 with a high likelihood of residual con-
founding. PS matching would result in identification of
only a small minority, while weighting may exaggerate
treatment effects among atypical users. A more thought-
fully identified comparison group (eg, initiators of another
medication, or a more restricted, similar group of nonus-
ers) may be warranted to avoid such residual confound-
ing.14

In the comparative effectiveness analysis of 2 groups of
patients (initiating statin A or statin B), identified at initi-
ation of the medication, relevant baseline covariates
measured before initiation can be used to obtain PS
values and then to plot them, revealing good overlap.21

This is because both groups of patients met criteria for
initiation of statins and only a few relevant factors deter-
mined the choice of statin Avs B. Stratifying along the PS
distribution would result in many strata with adequate
numbers of patients receiving A or B for comparisons
to be meaningful. Matching would exclude few patients
and retain the vast majority. Comparisons in the pseudo-
populations (created by stratification, matching, or
weighting) should all yield estimates free of observable
confounding.

Real-World Examples
PS methods have been widely used in clinical and epide-
miologic research of kidney disease to control for differ-
Adv Chronic Kidney Dis. 2016;23(6):367-372
ences between exposure groups. Various PS matching
and weighting applications can be found in studies evalu-
ating the safety22 and effectiveness23 ofmedications in kid-
ney disease patients, evaluating the strength of risk factors
in predicting kidney replacement therapy,24 estimating the
protective effect of medications against renal events,25 esti-
mating the long-term effects of acute kidney injury,26 and
many others.

STRENGTHS
PS-based methods are useful in settings where outcomes
are uncommon because covariates (used to mathemati-
cally model treatment as the dependent variable) tend to
be more prevalent, especially in observational settings
with large numbers of covariates available in electronic
medical records or administrative claims databases.4,27

Additionally, PS estimates yield treatment effects in
defined subpopulations, so after stratification, matching,
or weighting, the new pseudo-population’s covariate
distributions can be plotted, the balance of covariates
inspected, and the actual population on which inferences
are being derived is known.

LIMITATIONS
Although PS methods allow for intuitive visualization of
exchangeability between treatment groups, like in an
RCT, and although PS-based methods yield estimates
that are not confounded by measured factors (that were
included in the PS model), unmeasured characteristics
that are not captured in data or not included in the PS
model will remain “unbalanced” and capable of causing
confounding. Last, although PS methods can be used to
guide the choice of a comparison group, application of
these methods cannot compensate for fundamental study
design flaws, such as improper choice of comparator,
selection bias, measurement error, or missing data.
Conceptually, an analogy may be made to civil prosecu-
tions. To prove the effects of treatment by “a preponder-
ance of the facts,” observational studies can only “build
the case” using available evidence. Facts that are relevant,
but that are not available to the prosecutor, can lead to
wrongful convictions. After all, without random assign-
ment, no observational study can truly be an “open and
shut” case.
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