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Abstract

The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans 

killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. 

Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to 

generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting 

secondary amines were reacted with NO to form N-diazeniumdiolate NO-donor modified 

dendrimer scaffolds (total NO ~1 μmol/mg). The bactericidal action of the NO-releasing 

dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing 

alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to 

increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing 

membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, 

increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile 

N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most 

effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold 

cytotoxicity.
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1. Introduction

Dental caries is one of the most costly and prevalent diseases worldwide, with 94% of the 

population experiencing cavities [1, 2]. The presence of Gram-positive lactobacilli and 

streptococci acidogenic species is considered a risk factor for dental caries [3-6]. Cariogenic 

bacteria like Streptococcus mutans metabolize dietary sugars and produce lactic acid, which 

demineralizes tooth enamel [6, 7]. The resulting acidic environment promotes preferential 

biofilm colonization by acidophilic species over native flora, furthering tooth decay [8]. 

Although the oral microbiome is complex and exhibits extreme microbial diversity, a select 

few bacteria are overwhelmingly acidogenic and strongly associated with the etiology of 

dental caries. These cariogenic bacteria tend to be Gram-positive, often belonging to the 

lactobacilli or streptococci genus [2, 9, 10]. While multiple bacteria are cariogenic and 

linked to dental caries [9], S. mutans is considered the main etiological agent of dental 

caries. Current treatments are thus focused on eliminating acidogenic S. mutans biofilms.

Dental plaque biofilms are more difficult to treat than planktonic bacteria for a number of 

reasons [4, 8, 11]. Secreted exopolymers create a physical boundary that limits drug (e.g., 

antibiotics) penetration and prevents biofilm eradication [11]. Phenotypic differences in 

surface-attached bacteria alter potential antibiotic targets, ultimately mitigating drug/bacteria 

interactions [11]. The slower metabolic activity of biofilm bacteria also decreases antibiotic 

efficacy [8, 11]. Lastly, antibiotic action is often inhibited by either the acidic environment 

or gingival fluid-derived β-lactamases within oral biofilms [8, 11-13]. Collectively, these 

factors require greater drug concentrations to effectively eradicate dental biofilms at the 

expense of undesirable systemic side effects (e.g., pseudomembranous colitis and promoting 

antibiotic-resistant bacteria) [14].

Although the use of local antibiotic delivery systems has been shown to reduce systemic 

toxicity, continued emergence of antibiotic-resistant bacteria remains a concern, 

necessitating alternative treatments for dental caries [15, 16]. Antiseptic mouthwash rinses 

including chlorhexidine (CHX; 0.20% w/w) have been used to combat oral infections [17], 

but with modest success. Vitkov et al. reported only minor structural alterations to the 

exterior of mature biofilms upon CHX exposure [18]. Moreover, CHX may cause changes in 

taste, mouth discoloration, mucosal irritation, and desquamation of the gums [19, 20]. Due 

to the undesirable side effects and insufficient biofilm suppression associated with CHX, the 

search for new anti-plaque therapeutics remains a continuing research focus.

Nitric oxide (NO) is an endogenous, diatomic radical that plays a pivotal role in wound 

healing, neurotransmission, and the immune response to pathogens [21, 22]. Nitric oxide's 

antimicrobial activity results from its reaction with superoxide and oxygen to form 

peroxynitrite and dinitrogen trioxide, respectively. These species kill bacteria through lipid 

peroxidation, DNA cleavage, and protein dysfunction [23]. The multiple bactericidal 

pathways of NO [23, 24] make it a potent broad-spectrum antimicrobial agent with low risk 

for promoting bacterial resistance [25, 26]. Due to the highly reactive nature of NO gas, the 

design of storage vehicles that controllably release biocidal levels of NO is crucial to its 

application as a dental therapeutic [27, 28].
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Our laboratory has previously reported on the synthesis of silica and dendrimer-based 

macromolecular NO-release scaffolds capable of eradicating planktonic and biofilm cultures 

of Gram-positive, Gram-negative, and fungal pathogens [23, 29-31]. More recently, we 

reported on the controlled delivery of exogenous NO to kill S. mutans [32, 33]. In these 

studies, large instantaneous concentrations of NO were required to eradicate S. mutans. Such 

NO levels are generally toxic. To further enhance S. mutans killing, the use of non-depleting 

secondary biocides in combination with NO release was proposed to create dual-action NO-

releasing antibacterial agents. Carpenter et al. previously functionalized NO donor-modified 

silica nanoparticles with long alkyl chain quaternary ammonium (QA) groups to improve 

bactericidal efficacy over the solely NO-releasing silica particles [34]. Likewise, Worley et 

al. described the modification of NO-releasing poly(amidoamine) (PAMAM) dendrimers 

with alkyl chain QA moieties, which exhibited improved antibacterial activity over both 

single-action (i.e., non-NO-releasing) QA-modified dendrimers and NO-releasing QA-

modified silica nanoparticles [35]. Due to the reduced concentrations required to kill 

bacteria, NO-releasing QA-modified dendrimers proved less toxic to mouse fibroblasts than 

the dual-action silica particles [34, 35]. The greater bactericidal action of the QA-modified 

NO-releasing dendrimers was attributed to both the increased cell damage via membrane 

intercalation of the hydrophobic alkyl chains and small size of the dendrimers allowing for 

greater interaction with bacteria [34-36]. Subsequently, we demonstrated that short (i.e., 

butyl and hexyl) alkyl chain-modified dendrimers were also effective at eradicating 

pathogenic Pseudomonas aeruginosa and Staphylococcus aureus biofilms, with the addition 

of NO release facilitating anti-biofilm action for the macromolecules not capable of biofilm 

penetration [37]. Due to their increased biocidal activity against nosocomial pathogens, we 

hypothesized that dual-action dendrimers would be more effective at eradicating the NO-

resistant cariogenic pathogen S. mutans than NO-release agents alone. Herein, we report the 

bactericidal and anti-biofilm activity of NO-releasing alkyl-modified dendrimers against 

cariogenic S. mutans as a function of alkyl chain length, pH, and NO-release kinetics.

2. Materials and Methods

2.1 Materials

Streptococcus mutans (ATCC #27517) and human gingival fibroblast cells (HGF-1; ATCC 

CRL-2014) were purchased from the American Type Tissue Culture Collection (Manassas, 

VA). Brain heart infusion (BHI) broth and agar were purchased from Becton, Dickinson, 

and Company (Franklin Lakes, NJ). Hydroxyapatite (HA) disks (5 × 2 mm) were purchased 

from Clarkson Chromatography Products, Inc. (South Williamsport, PA). Common 

laboratory salts and solvents, including Tris(hydroxymethyl)aminomethane (Tris) and Tris 

hydrochloride, were acquired from Fisher Scientific (Fair Lawn, NJ). Dulbecco's modified 

Eagle's medium (DMEM) and Dulbecco's phosphate buffered saline (PBS) were purchased 

from Lonza Group (Basel, Switzerland). Trypsin, penicillin streptomycin (PS), phenazine 

methosulfate (PMS), 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium inner salt (MTS), fetal bovine serum (FBS), rhodamine B 

isothiocyanate (RITC), triethylamine (TEA), propylene oxide (PO), epoxybutane (EB), 

epoxyhexane (EH), epoxyoctane (EO), and epoxydodecane (ED) were purchased from 

Sigma-Aldrich (St. Louis, MO). Sodium methoxide (NaOMe; 5.4 M solution in methanol) 
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was bought from Acros Organics (Geel, Belgium). Argon (Ar), carbon dioxide (CO2), 

nitrogen (N2), and nitric oxide (NO) calibration (25.87 PPM, balance N2) gases were 

acquired from National Welders (Raleigh, NC). Nitric oxide gas (99.5%) was purchased 

from Praxair (Sanford, NC). Distilled water was purified with a Millipore Milli-Q Gradient 

A-10 water purification system (Bedford, MA) to 6 ppb organic content and a final 

resistivity of 18.2 mΩ·cm. Other solvents and reagents were analytical grade and used as 

received.

2.2 Synthesis of Alkyl Chain-Modified Nitric Oxide-Releasing Dendrimers

Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimer core scaffolds were synthesized 

as described previously [38, 39]. Primary amine-terminated G1 PAMAM dendrimers (200 

mg) were then dissolved in MeOH (2 mL) with TEA and an alkyl epoxide (i.e., PO, EB, EH, 

EO, or ED) at a 1:1:1 molar ratio (TEA:alkyl epoxide:primary amines on the PAMAM 

dendrimer) to synthesize propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized G1 

PAMAM dendrimers, respectively [37]. After 3 d of constant stirring, the MeOH solvent 

and unreacted epoxides were removed under vacuum to purify the dendrimer product. 

Purfication was confirmed via 1H NMR as described previously [37].

Representative 1H NMR data of alkyl chain-modified G1 PAMAM included the following 

peaks. G1 propyl: 1H NMR (400 MHz, MeOD, δ) 2.28 (s, NCH2CH2C(O)NH), 1.08–1.03 

(t, NHCH2CH(OH)CH2CH3). G1 butyl: 1H NMR (400 MHz, MeOD, δ) 2.28 (s, 

NCH2CH2C(O)NH), 1.41–1.35 (m, NHCH2CH(OH)CH2CH3), 0.87–0.85 (t, 

NHCH2CH(OH)CH2CH3). G1 hexyl: 1H NMR (400 MHz, MeOD, δ) 2.28 (s, 

NCH2CH2C(O)NH), 1.34–1.20 (m, NHCH2CH(OH)C(H2)3CH3), 0.85–0.81 (t, 

NHCH2CH(OH)C(H2)3CH3). G1 octyl: 1H NMR (400 MHz, MeOD, δ) 2.29 (s, 

NCH2CH2C(O)NH), 1.35–1.23 (m, NHCH2CH(OH)(CH2)5CH3), 0.83–0.80 (t, 

NHCH2CH(OH)C(H2)5CH3). G1 dodecyl: 1H NMR (400 MHz, MeOD, δ) 2.30 (s, 

NCH2CH2C(O)NH), 1.40–1.20 (m, NHCH2CH(OH)(CH2)9CH3), 0.83–0.80 (t, 

NHCH2CH(OH)C(H2)5CH3).

Secondary amines on the alkyl-modified dendrimers were converted to N-diazeniumdiolate 

NO donors by combining alkyl-modified G1 PAMAM dendrimers (30 mg) with 1 molar 

equivalent NaOMe (with respect to the primary amines on the unmodified G1 PAMAM 

scaffold) in 1mL of varying ratios of methanol (MeOH) to tetrahydrofuran (THF) based on 

alkyl chain length: 100% MeOH (G1 propyl, butyl), 8.5:1.5 MeOH:THF (G1 hexyl), 3:2 

MeOH:THF (G1 octyl, or 2:3 MeOH:THF (G1 dodecyl). The mixtures were placed in a 

stainless steel Parr reaction vessel, flushed with Ar three times to a pressure of 7 bar, and 

then filled with Ar three times for longer durations (10 min) to remove trace oxygen from 

the solutions. Following deoxygenation, the reaction chamber was filled with NO and held 

at 10 bar with constant stirring. After 3 d, the chamber was flushed again with Ar three times 

at short durations prior to extended Ar purges (3 × 10 min) to remove unreacted NO. The 

solutions were then collected and excess solvent was removed under vacuum. The NO-

releasing dendrimers were resuspended in MeOH and stored at −20 °C until further use.
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2.3 Characterization of Nitric Oxide Release

Nitric oxide release was measured in real time using a Sievers 280i Chemiluminescence 

Nitric Oxide Analyzer (Boulder, CO) [40]. Nitric oxide release parameters were 

subsequently determined via chemiluminescence, including total NO release (t[NO]), total 

NO released after 2 h (t[NO]2h), NO-release half-life (t1/2), and maximum NO flux 

([NO]max) [41]. Briefly, NO-releasing dendrimers (0.5 or 1.0 mg aliquots in methanol) were 

added to a flask containing 30 mL of deoxygenated phosphate-buffered saline (PBS; 37 °C) 

at either pH 7.4 or 6.4. Nitrogen was bubbled continuously through the solution to carry 

liberated NO to the analyzer at a flow rate of 80 mL/min. The NO analysis was terminated 

when NO levels fell to <10 ppb/mg dendrimer.

2.4 Planktonic Bactericidal Assays

To evaluate the bactericidal efficacy of the alkyl-modified dendrimers against planktonic S. 

mutans, the 2 h minimum bactericidal concentration (MBC2h) (i.e., the minimum dendrimer 

concentration required to achieve a 3-log reduction in bacterial viability) was determined 

under static growth conditions. Briefly, bacteria was cultured overnight at 37 °C in ~3 mL 

BHI broth from a frozen stock (15% (v/v) glycerol in PBS at −80 °C). The next day, a 1 mL 

aliquot of the resulting bacterial suspension was inoculated into 50 mL fresh BHI broth and 

grown at 37 °C with moderate shaking to a concentration of 108 colony forming units per 

milliliter (CFU/mL) as confirmed by optical density (OD; 600 nm). The bacteria were then 

collected by centrifugation (2355 × g; 10 min), resuspended in distilled water, and diluted to 

106 CFU/mL in either Tris-PBS (pH 7.4) with 1% (v/v) BHI broth or PBS (pH 6.4) with 5% 

(v/v) BHI broth. Tris-PBS buffer was prepared by supplementing PBS with 100 mM Tris 

base and adjusting the pH to 7.4. The bacterial solutions were then added to vials containing 

NO-releasing or non-NO-releasing dendrimers (0.006 – 48 mg/mL), mixed, and incubated at 

37 °C with moderate shaking. Untreated controls (blanks) were included in each experiment 

to ensure the bacteria remained viable (at 106 CFU/mL) over the 2 h assay. After 2 h, the 

bacteria suspensions were diluted and plated on BHI agar using an IUL Eddy Jet spiral 

plater (Farmingdale, NY). Plates were incubated at 37 °C for 72 h before viable colonies 

were enumerated using a Flash & Go colony counter (IUL; Farmingdale, NY). The 

dendrimer concentration resulting in bacterial viability below 2.5 × 103 CFU/mL (the limit 

of detection for this plating method) from the initial 106 CFU/mL culture was taken to be the 

MBC2h [42].

2.5 Biofilm Eradication Assays

Suspensions of S. mutans (108 CFU/mL) were prepared as described above and collected by 

centrifugation (2355 × g; 10 min). Following centrifugation, bacteria were resuspended in 

distilled water and diluted to 106 CFU/mL in 40 mL of 50/50 BHI/distilled water with 1% 

w/v glucose and sucrose. The bacterial suspension (3 mL) was added to a 12-well culture 

plate with each well containing one hydroxyapatite (HA) disk. Each disk was incubated with 

bacteria at 37 °C and gentle shaking. After 24 h, the disks were removed, rinsed in distilled 

water, and added to test suspensions of NO-releasing or non-NO-releasing dendrimers (0.25 

– 64 mg/mL) in Tris-PBS (pH 7.4) or PBS (pH 6.4). Untreated control biofilms (blanks) 

were included in each experiment to ensure the biofilms remained viable over the 2 h assay. 
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After 2 h of moderate shaking under static growth conditions, the disks were removed, 

rinsed in distilled water again, and sonicated in 3 mL of distilled water at low power for 10 

min. The resulting bacterial solutions were then plated on BHI agar using the 

aforementioned spiral plating system, and incubated further at 37 °C. After 72 h, viable 

colonies were enumerated as described above. The dendrimer concentration resulting in a 3-

log or greater reduction in viable bacteria to below 2.5 × 104 CFU/mL was determined to be 

the 2 h minimum biofilm eradication concentration (MBEC2h).

2.6 Confocal Microscopy to Assess Dendrimer-Bacteria Association

Fluorescently labeled G1 PAMAM dendrimers were synthesized as described previously 

[29, 35, 43]. Briefly, 100 mg G1 PAMAM were added to a vial containing one molar 

equivalent of RITC (3.75 mg) per mole of dendrimer in methanol (2 mL). One mole 

equivalent of triethylamine (with respect to the number of dendrimer primary amines) was 

then added to the vial and the solution was stirred for 24 h in the dark. After removal of the 

solvent under vacuum, dendrimers were dissolved in water, purified via dialysis against 

water at room temperature (2 L DI water versus 5 mL sample; 3–4 water changes over 1 d), 

and then lyophilized. The dendrimers were functionalized with alkyl chains per the above 

procedure in the dark to create fluorescently labeled butyl-modified G1 PAMAM 

dendrimers.

S. mutans was cultured as described above and diluted to 106 CFU/mL in Tris-PBS (pH 7.4) 

or PBS (pH 6.4), each containing 3% (v/v) BHI broth. Aliquots of the bacteria solution were 

incubated in a glass bottom confocal dish (MatTek Corporation; Ashland, MA) at 37 °C for 

45 min. A Zeiss 510 Meta inverted laser scanning confocal microscope with a 543 nm HeNe 

excitation laser (1.0 mW, 25.0% intensity) and a 560–615 nm band-pass filter was used to 

obtain fluorescence images of the RITC-modified dendrimers. Both bright field and 

fluorescence images were collected using an N.A. 1.2 C-Apochromat water immersion lens 

with a 40x objective. Solutions of RITC-labeled butyl-modified dendrimers (200 μg/mL) in 

Tris-PBS or PBS (1.5 mL) were added to 1.5 mL of the respective bacteria solution in the 

glass confocal dish to achieve a final concentration of 100 μg/mL. Images were collected in 

2 min intervals to temporally monitor dendrimer association with the bacteria. The image 

colors were inverted for clarity using ImageJ software.

2.7 In Vitro Cytotoxicity

Human gingival fibroblasts (HGF-1) were grown in DMEM supplemented with 10 vol% 

FBS and 1 wt% PS and incubated in 5 vol% CO2 under humidified conditions at 37 °C. 

After reaching 80% confluency, the cells were trypsinized with 1 mL 0.25% trypsin for 15–

20 min with light agitation. After removal from the plate, cells were diluted using 11 mL 

DMEM and seeded onto tissue culture-treated polystyrene 96-well plates at a density of 104 

cells/mL. The plates were then incubated for 6 d at 37 °C using fresh media every second 

day. The supernatant was then aspirated and replaced with 200 μL of fresh growth medium 

and 50 μL of varying concentrations of dendrimer in PBS. Dimethyl sulfoxide (10%) and 50 

μL PBS were used as positive and negative controls, respectively. After 2 h incubation at 37 

°C, the supernatant was aspirated and 120 μL of a mixture of DMEM/MTS/PMS (105/20/1, 

v/v/v) was added to each well. After 1.5 h incubation at 37 °C, the absorbance of the colored 
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solutions was quantified at 490 nm using a Thermoscientific Multiskan EX plate reader 

(Waltham, MA). The mixture of DMEM/MTS/PMS and untreated cells were used as a blank 

and control, respectively. Results were expressed as percentage of relative cell viability as 

follows:

Eq. 1

Statistical analysis of the resulting cell viabilities was performed using a two-tailed student's 

t-test with p < 0.05 (95% confidence interval).

3. Results

3.1 Characterization of Nitric Oxide-Releasing Dendrimers

Generation 1 poly(amidoamine) (PAMAM) dendrimers were modified with alkyl chains of 

varying length (i.e., propyl, butyl, hexyl, octyl, or dodecyl) via a ring-opening reaction at the 

peripheral primary amines, and the resulting secondary amines were subsequently modified 

with N-diazeniumdiolate NO donors at high pressure (10 bar NO) under basic conditions 

(Scheme 1) [35, 44]. Nitric oxide release was measured in PBS at both pH 7.4 and 6.4 to 

mimic the more acidic conditions in the oral cavity (Table 1) [45]. Of note, we observed 

little to no change in dendrimer NO-release characteristics between pH 5.4 and 6.4 (data not 

shown). However, maintaining biofilm integrity in the absence of treatment at pH 5.4 was 

considerably more difficult than at pH 6.4. The acidic experiments were thus carried out at 

pH 6.4. At pH 7.4, the total NO released (0.90–1.12 μmol/mg) and maximum instantaneous 

NO concentrations (3980–5700 ppb/mg) were similar for each dendrimer system, 

independent of alkyl chain modification, while the NO-release half-life increased slightly 

(~21 to 37 min) with longer alkyl chains (i.e., increased hydrophobicity). Of importance, 

similar total NO payloads were delivered at 2 h (~0.9 μmol/mg) regardless of alkyl chain 

length, although NO release continued for several hours (durations of 7–9 h). Alternatively, 

faster NO release was observed under acidic conditions (pH 6.4) as evidenced by the greater 

maximum NO flux (15100–26000 ppb/mg) and the shorter NO-release half-life (4–9 min). 

Despite the faster NO-release kinetics, the 2 h total NO release was comparable at pH 6.4 

(~1.0 μmol/mg) compared to pH 7.4 (~0.9 μmol/mg).

3.2 Bactericidal Efficacy of Alkyl-Modified Dendrimers

The bactericidal efficacy of alkyl-modified G1 PAMAM dendrimers against planktonic 

cultures of S. mutans was evaluated at both pH 7.4 and 6.4 by determining the minimum 

bactericidal concentration (MBC2h) required to elicit a 3-log reduction in bacterial viability 

relative to untreated cultures (Table 2). At pH 7.4, the non-NO-releasing short alkyl chain 

(i.e., propyl and butyl) dendrimers were ineffective at killing S. mutans, with no reduction in 

bacterial viability up to a concentration of 48 mg/mL. Compared to the shorter alkyl chains, 

the longer alkyl chain (i.e., hexyl, octyl, and dodecyl) dendrimers were considerably more 

bactericidal (MBC2h values ≤2 mg/mL). Under more acidic conditions (pH 6.4), little to no 

antibacterial action was again observed for the propyl-modified dendrimers (MBC2h >48 

mg/mL). The bactericidal efficacy of butyl-modified dendrimers was improved at pH 6.4, 

but still required large dendrimer concentrations (32 mg/mL) to elicit killing. In contrast, the 
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bactericidal action of longer alkyl chain-modified dendrimers was enhanced at lower pH 

(6.4), as evidenced by the reduced MBC2h values relative to those at pH 7.4 (Table 2).

The incorporation of NO release capabilities did not improve the biocidal action of the 

hexyl-, octyl-, or dodecyl-modified dendrimer scaffolds at either pH (Table 2). The addition 

of NO release moderately improved the bactericidal activity for propyl- and butyl-modified 

dendrimers at pH 7.4, albeit requiring large doses of NO (39.4 and 46.6 μmol/mL, 

respectively) to elicit a 3-log reduction in bacterial viability (MBC2h = 48 mg/mL). In 

contrast to the long alkyl chain-modified dendrimers, the antibacterial action of NO-

releasing propyl- and butyl-modified dendrimers was significantly enhanced at pH 6.4, 

exhibiting bactericidal concentrations 6-fold lower at pH 6.4 (8 mg/mL) versus pH 7.4 (48 

mg/mL) for both NO-releasing propyl- and butyl-modified dendrimers. The lower MBC2h 

values translate to reduced bactericidal NO doses for propyl-modified (39.4 to 8.7 μmol/mL) 

and butyl-modified (46.6 to 7.8 μmol/mL) dendrimers.

3.3 Anti-Biofilm Activity of Alkyl-Modified Dendrimers

The ability of NO-releasing and control alkyl-modified dendrimers required to elicit at least 

a 3-log reduction in bacterial viability for S. mutans biofilms grown on hydroxyapatite disks 

(MBEC2h) was also evaluated at pH 7.4 and 6.4. As expected, the anti-biofilm activity for 

control (non-NO-releasing) propyl- and butyl-modified dendrimers was negligible at pH 7.4 

(MBEC2h >64 mg/mL) (Table 3). Biofilm eradication was substantially improved by 

increasing the alkyl chain length, with significantly reduced MBEC2h values for hexyl- (8 

mg/mL) and octyl- and dodecyl-modified dendrimers (≤ 2 mg/mL) at both pH 6.4 and 7.4. 

Similar to planktonic studies, however, the combination of NO release and long alkyl chains 

(i.e., hexyl, octyl, and dodecyl) did not improve biofilm killing over control dendrimers at 

either pH.

Alternatively, the addition of NO release capabilities improved the anti-biofilm activity of 

propyl- and butyl-modified dendrimers at pH 7.4, with MBEC2h values of 64 and 48 

mg/mL, respectively, corresponding to significant bactericidal NO doses (52.5 and 46.6 

μmol/mL, respectively). However, anti-biofilm action was significantly enhanced for the 

NO-releasing short alkyl chain dendrimers at pH 6.4, with NO-releasing propyl- and butyl-

modified dendrimers eradicating biofilms at 8 mg/mL (~8–9 μmol NO/mg).

3.4 In Vitro Cytotoxicity of Alkyl-Modified Dendrimers

Human gingival fibroblasts (HGF-1), a common cell line used to evaluate the toxicity of 

dental composites [46, 47], were exposed to NO-releasing and control dendrimers for 2 h at 

the maximum concentrations required to kill S. mutans biofilms (Figure 1). Short chain 

propyl-modified dendrimer controls were non-toxic to L929 fibroblasts (>95% cell viability 

relative to untreated cells) at the concentrations required for anti-biofilm activity (8 and 64 

mg/mL at pH 6.4 and 7.4, respectively). Nitric oxide-releasing propyl dendrimers exhibited 

greater toxicity to mammalian cells, reducing cell viability by approximately 50 and 70% at 

8 and 64 mg/mL, respectively. While the butyl-modified control dendrimers were relatively 

non-toxic at 8 mg/mL (~90% cell viability), substantial toxicity was observed at higher 

concentrations. Further, the addition of NO release to the butyl-modified scaffold proved 
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lethal to mammalian cells (0% cell viability), even at the concentration necessary for biofilm 

eradication at pH 6.4 (8 mg/mL).

The cells also showed poor tolerance to hexyl-modified control dendrimers (~4% cell 

viability) at 8 mg/mL, with the NO-releasing hexyl dendrimers proving similarly lethal as 

the short chain modifications (0% cell viability). The octyl- and dodecyl-modified control 

dendrimers exhibited similar toxicity, with cell viabilities of 8 ± 1 and 4 ± 1%, respectively. 

Interestingly, the addition of NO to the octyl- and dodecyl-modified dendrimers reduced 

their toxicity, with cell viabilities of 17 ± 4 and 19 ± 3%, respectively.

4. Discussion

We have previously reported on the modification of PAMAM dendrimers to create 

secondary amine-functionalized scaffolds that store and spontaneously release NO [29]. The 

chemistry of NO storage was also combined with non-depleting, membrane-disrupting QA 

biocides and shorter (i.e., butyl and hexyl) alkyl chains, which proved highly effective at 

killing nosocomial pathogens (i.e., Pseudomonas aeruginosa and Staphylococcus aureus) 

[35, 37]. To further investigate the effects of alkyl chain length independent of functional 

group density (i.e., dendrimer generation), modifications consisting of shorter and longer 

alkyl chains were tethered to the G1 PAMAM scaffold. In the present study, we investigated 

the effects of exterior dendrimer hydrophobicity, pH, and NO release on the antibacterial 

and anti-biofilm activity of NO-releasing propyl-, butyl-, hexyl-, octyl-, and dodecyl-

modified G1 PAMAM dendrimers against S. mutans, an etiological agent of dental caries.

In addition to physiological pH (7.4), NO release from alkyl-modified G1 PAMAM 

dendrimers was characterized at pH 6.4 to more accurately mimic the in vivo environment 

associated with dental caries. While the NO-releasing dendrimers exhibited similar initial 

NO fluxes and total NO payloads at pH 7.4, the NO-release half-lives were somewhat 

extended for the longer octyl and dodecyl alkyl chains over the shorter modifications. The 

slight increase in NO-release half-life for the longer alkyl chains was attributed to a decrease 

in water diffusion to the proton-labile N-diazeniumdiolate NO donors with increasing 

hydrophobicity. The total NO released after 2 h was similar (~0.9 μmol/mg) regardless of 

alkyl chain length, allowing us to examine the effect of exterior hydrophobicity on 

bactericidal efficacy and anti-biofilm activity independent of NO-release totals. As 

expected, faster NO release was observed under acidic conditions due to the proton-initiated 

decomposition of N-diazeniumdiolate NO donors, resulting in greater initial NO fluxes and 

shorter half-lives. As with pH 7.4, the dodecyl-modified dendrimers exhibited a slightly 

longer half-life than the other modifications, although all dendrimers exhibited half-lives of 

less than 10 min. Despite the faster NO-release kinetics, the 2 h total NO release was 

comparable at pH 6.4 (~1.0 μmol/mg) compared to pH 7.4 (~0.9 μmol/mg), corresponding to 

the NO dose delivered during 2 h bactericidal assays.

Bactericidal action was evaluated against planktonic and biofilm cultures of S. mutans at 

both pH 7.4 and 6.4 under static conditions. While neither propyl- nor butyl-modified 

dendrimers were capable of eradicating planktonic cultures of S. mutans at pH 7.4, the 

bactericidal action of the butyl-modified dendrimers was slightly improved at lower pH. 
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However, large concentrations of butyl-modified dendrimers were still required for S. 

mutans eradication, as minimal membrane intercalation by the shorter, less hydrophobic tails 

limits the bacterial membrane damage caused by these scaffolds [34, 35]. Alternatively, the 

longer alkyl chain (i.e., hexyl, octyl, and dodecyl) modifications were considerably more 

bactericidal at substantially lower concentrations. The dramatic improvement in antibacterial 

activity is attributed to the membrane intercalation of these longer chains causing significant 

membrane damage [29, 34, 35, 37]. Further, the bactericidal efficacy of these longer chains 

was also enhanced at lower pH, requiring lower biocidal concentrations to eradicate S. 

mutans than at pH 7.4. The increased bactericidal action at pH 6.4 is likely due to greater 

protonation of pendant amines on the dendrimer scaffold (i.e., increased positive surface 

charge) promoting more efficient dendrimer-bacteria association and improving membrane 

intercalation of the hydrophobic chains.

Dendrimer diffusion to bacteria in real-time was visualized with confocal microscopy to 

confirm enhanced dendrimer-bacteria association at lower pH (Figure 2). At pH 6.4, a 

substantial fluorescence signal from RITC-labeled butyl-modified dendrimers associating 

with S. mutans was observed after only 30 min of dendrimer exposure. This signal continued 

to increase in intensity up to 60 min. In contrast, the fluorescence signal intensity at pH 7.4 

was negligible, and did not change through the same period of study. The greater 

fluorescence signal at pH 6.4 both initially and over time suggests more rapid and extensive 

dendrimer-bacteria association under acidic conditions. Enhanced dendrimer-bacteria 

association would translate to more extensive bacterial damage as alkyl chain-induced death 

is contact-based [34, 35, 37]. This hypothesis is consistent with the lower MBC2h values 

observed for butyl-, hexyl-, octyl-, and dodecyl-modified dendrimers at pH 6.4 compared to 

pH 7.4.

The addition of NO-release capabilities had little impact on the antibacterial action of the 

longer alkyl chain-modified dendrimers at either pH. The hydrophobic alkyl chains of these 

PAMAM analogues likely compromise the bacterial membrane prior to significant 

accumulation of intracellular NO, thus limiting NO-induced killing [35]. Upon lowering the 

pH to 6.4, similar behavior was again observed, with NO-releasing and control dendrimers 

exhibiting no difference in killing efficiency. The highly efficient membrane disruption of 

hydrophobic alkyl chains clearly precludes intracellular NO accumulation, alleviating NO-

mediated cell death [35].

For the propyl- and butyl-modified dendrimers, the addition of NO release moderately 

improved their biocidal action at pH 7.4 but still required large NO doses to achieve 

bacterial killing. However, lowering the pH significantly enhanced the bactericidal efficacy 

of these short chain dendrimers, resulting in reduced bactericidal NO doses from ~40 

μmol/mL to ~8 μmol/mL. This dramatic improvement in antibacterial action for the NO-

releasing propyl- and butyl-modified dendrimers at pH 6.4 over both the NO-releasing 

dendrimer at pH 7.4 and the non-NO-releasing controls at pH 6.4 suggests the increased 

biocidal activity is due to faster NO-release kinetics afforded by the lower pH. Indeed, while 

the bacterial association of butyl-modified dendrimers was enhanced at lower pH (Figure 2), 

the lack of antibacterial activity by the butyl-modified controls at pH 6.4 suggests minimal 

membrane disruption via alkyl chain intercalation. Similarly, the propyl-modified controls 
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were relatively ineffective at pH 6.4. The disparity in killing efficiency between the NO-

releasing and control propyl- and butyl-modified dendrimers at pH 6.4 unequivocally 

demonstrates that rapid NO release in combination with enhanced dendrimer-bacteria 

association are responsible for the improved bactericidal efficacy. These findings suggest 

that large instantaneous NO concentrations are more effective for eradicating S. mutans, an 

important consideration when using solely NO-releasing macromolecular scaffolds to kill S. 

mutans and possibly other cariogenic bacteria as well [32]. Although the assay medium was 

supplemented with nutrient broth, we elected not to evaluate bacteria killing in artificial 

saliva (e.g., high protein concentration) to avoid NO scavenging. Nevertheless, the 

antibacterial action of the dendrimer scaffold would likely not change under such conditions.

Although studying microbes in planktonic, nutrient-rich batch cultures is useful for initial 

drug activity screening, in vivo infections are typically caused by bacterial biofilms [5, 48]. 

Dental caries is associated with persistent biofilms composed of mainly streptococci and 

lactobacilli, with S. mutans considered a primary causative agent [2, 7, 10, 49-51]. Thus, the 

eradication of cariogenic S. mutans biofilms is important for the treatment of dental caries. 

As such, we evaluated the ability of alkyl chain-modified dendrimers to eradicate S. mutans 

biofilms grown on hydroxyapatite disks to simulate tooth enamel at pH 6.4 and 7.4 [52].

As expected, non-NO-releasing propyl- and butyl-modified dendrimers were incapable of 

eradicating S. mutans biofilms at pH 7.4, most likely due to insufficient membrane 

disruption by the shorter alkyl chains [34, 35]. Biofilm killing was again significantly 

enhanced for the longer alkyl chain modifications. Similar to planktonic killing, this 

enhancement in anti-biofilm activity is attributed to increased membrane disruption and 

biofilm penetration by the long hydrophobic chains compared to minimal membrane damage 

caused by shorter alkyl chains [34, 35, 37]. Interestingly, the anti-biofilm action of the 

longer alkyl chains was not improved at lower pH. The addition of NO release to the longer 

alkyl chain-modified dendrimers did not improve the biofilm eradication capabilities over 

the control dendrimers at either pH, most likely due to efficient membrane disruption 

precluding significant intracellular accumulation of NO and mitigating NO-mediated killing 

[35]. Similarly, the difference in biofilm killing for longer alkyl chain-modified NO-

releasing dendrimers at pH 7.4 versus 6.4 was negligible, indicating that greater dendrimer-

bacteria association in combination with faster NO release does not enhance biofilm 

eradication capabilities for these modifications.

Nitric oxide-releasing propyl- and butyl-modified dendrimers exhibited slightly increased 

anti-biofilm capabilities over control dendrimers at pH 7.4, albeit at large bactericidal NO 

doses. Reducing the pH to 6.4, however, significantly enhanced the biofilm eradication 

capabilities of the NO-releasing short chain dendrimers. The bactericidal NO doses required 

to eradicate the S. mutans biofilms were decreased from 52.5 to 8.7 μmol/mL for propyl- 

and 46.6 to 7.8 μmol/mL for butyl-modified dendrimers. The dramatic improvement in 

biofilm eradication cannot be attributed to increased membrane damage via greater 

dendrimer-bacteria association, as control propyl- and butyl-modified dendrimers displayed 

little to no antibacterial activity at either pH. Rather, the enhanced anti-biofilm activity of 

propyl- and butyl-modified NO-releasing dendrimers at pH 6.4 must be the result of more 

efficient dendrimer-bacteria association (Figure 2) combined with faster NO-release kinetics 
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(Table 1). This dramatically improved killing of S. mutans biofilms could have implications 

for the future design of NO-releasing materials to treat cariogenic dental plaque biofilms.

While the control propyl modifications were non-toxic at large dendrimer concentrations, 

the addition of NO release to these dendrimers resulted in increased toxicity to human 

gingival fibroblast cells. Similarly, while the butyl-modified control dendrimers were 

relatively non-toxic at lower concentrations (8 mg/mL), their NO-releasing counterparts 

were completely lethal to HGF-1 cells. This toxicity is attributed to the large dose of NO 

required to eradicate S. mutans biofilms, as evidenced by the tolerance of mammalian cells 

to the control dendrimers at similar concentrations.

Unlike the short chain modifications, hexyl-modified control dendrimers exhibited 

significant toxicity at anti-biofilm concentrations, likely the result of membrane disruption 

by the hydrophobic alkyl chains. Not surprisingly, the addition of NO release to these 

dendrimers resulted in additional toxicity. The octyl- and dodecyl-modified control 

dendrimers exhibited similar toxicity to the hexyl modifications, again attributed to 

significant membrane disruption caused by the long alkyl chains. Interestingly, the NO-

releasing long alkyl chain modifications were appreciably less toxic at equivalent 

concentrations. We have previously observed that low levels of NO are capable of 

improving cell viability for NO-release systems over controls [34, 35]. The reduced toxicity 

observed for NO-releasing long alkyl chain dendrimers, while maintaining superior anti-

biofilm activity, demonstrates their potential utility as dental caries therapeutics. Indeed, the 

toxicity levels exhibited by the NO-releasing octyl- and dododecyl-modified dendrimers is 

comparable to that of clinical doses of chlorhexidine, which have been found to reduce 

HGF-1 cell viability by ~80% after 2 h [33].

In conclusion, the bactericidal and anti-biofilm activity of NO-releasing PAMAM 

dendrimers was increased with greater exterior hydrophobicity at both pH 7.4 and 6.4. 

Improved bactericidal action was observed at lower pH (6.4) as a result of enhanced 

dendrimer-bacteria association and faster NO-release kinetics. Long alkyl chain (e.g., octyl 

and dodecyl) dendrimer modifications were characterized as having superior anti-biofilm 

activity. The NO release from these dendrimer scaffolds partially mitigated the cytotoxicity 

of the dendrimer to mammalian cells. Collectively, these results demonstrate the potential 

utility of NO-releasing long alkyl chain-modified dendrimers as anti-biofilm agents for the 

treatment of dental caries. Studies involving poly-microbial biofilms that more closely 

resemble dental plaque are necessary to better predict the clinical utility of alkyl chain-

modified NO-releasing dendrimers.
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Figure 1. 
Cytotoxicity of NO-releasing and non-NO-releasing dendrimers against HGF-1 human 

gingival fibroblasts at the concentrations required for biofilm eradication. 10% DMSO was 

used as a positive control. Numbers following each dendrimer modification (i.e., 2, 8, 48, 

and 64) represent the MBEC2h in mg/mL. Error bars represent the standard deviation of the 

mean. For all values, n ≥ 3 replicate measurements. Asterisk indicates significant differences 

(p < 0.05) using two-tailed student's t-test.
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Figure 2. 
Confocal microscopy images of planktonic S. mutans exposed to 100 μg/mL RITC-labeled 

G1 butyl dendrimers at pH 6.4 and 7.4 imaged at (A) 0, (B) 30, and (C) 60 min. Image 

colors modified and inverted for clarity. Scale bar = 10 μm.
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Scheme 1. 
Reaction of PAMAM scaffold with epoxides to yield alkyl-modified dendrimers, followed 

by reaction with high pressures of NO to yield dual-action, NO-releasing dendrimers.
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Table 1

Characterization of NO-releasing alkyl-modified G1 PAMAM dendrimers in PBS (37 °C) at pH 7.4 and 6.4 

by means of a chemiluminescent nitric oxide analyzer.
a

pH Dendrimer Modification t[NO]
b
 (μmol/mg) t[NO]2h

c
 (μmol/mg) t1/2

d
 (min) [NO]max

e
 (ppb/mg)

7.4

Propyl 0.90 ± 0.20 0.82 ± 0.10 21.8 ± 3.9 5700 ± 2290

Butyl 1.06 ± 0.10 0.97 ± 0.10 21.7 ± 5.0 4930 ± 690

Hexyl 0.98 ± 0.11 0.90 ± 0.14 23.5 ± 5.5 4340 ± 1070

Octyl 1.07 ± 0.13 0.88 ± 0.08 29.8 ± 5.4 3980 ± 940

Dodecyl 1.12 ± 0.10 0.90 ± 0.05 37.3 ± 6.3 4200 ± 950

6.4

Propyl 1.09 ± 0.19 1.09 ± 0.19 4.2 ± 0.8 26000 ± 3780

Butyl 0.98 ± 0.22 0.98 ± 0.22 4.4 ± 0.5 21400 ± 6960

Hexyl 1.04 ± 0.34 1.03 ± 0.34 4.3 ± 0.2 22600 ± 6220

Octyl 1.06 ± 0.24 1.04 ± 0.24 5.0 ± 0.1 20500 ± 4840

Dodecyl 1.10 ± 0.31 1.07 ± 0.29 8.9 ± 0.8 15100 ± 1850

a
Results shown as mean ± standard deviation for n ≥ 3 pooled experiments.

b
Total amount of NO released.

c
Total amount of NO released after 2 h.

d
Time to release half of total NO payload.

e
Maximum NO flux achieved.
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Table 2

Minimum bactericidal concentrations (MBC2h) and bactericidal NO doses of alkyl-modified G1 PAMAM 

dendrimers against planktonic S. mutans at pH = 7.4 and pH = 6.4.
a

pH = 7.4 pH = 6.4

MBC2h (mg/mL) NO Dose (μmol/mL) MBC2h (mg/mL) NO Dose (μmol/mL)

Propyl >48 >48

Propyl-NO 48 39.4 8 8.7

Butyl >48 32

Butyl-NO 48 46.6 8 7.8

Hexyl 2 1

Hexyl-NO 2 1.8 1 1.0

Octyl 0.05 0.012

Octyl-NO 0.1 0.1 0.025 <0.1

Dodecyl 0.05 0.025

Dodecyl-NO 0.05 0.1 0.025 <0.1

a
Results of n ≥ 3 pooled experiments.
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Table 3

Minimum biofilm eradication concentrations (MBEC2h) and bactericidal NO doses of alkyl-modified G1 

PAMAM dendrimers against S. mutans biofilms at pH 7.4 and 6.4.
a

pH = 7.4 pH = 6.4

MBEC2h (mg/mL) NO Dose (μmol/mL) MBEC2h (mg/mL) NO Dose (μmol/mL)

Propyl >64 >48

Propyl-NO 64 52.5 8 8.7

Butyl >64 48

Butyl-NO 48 46.6 8 7.8

Hexyl 8 8

Hexyl-NO 8 7.2 8 8.2

Octyl 2 2

Octyl-NO 2 1.8 2 2.1

Dodecyl 2 1

Dodecyl-NO 2 1.8 2 2.1

a
Results of n ≥ 3 pooled experiments.
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