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Abstract

Long-circulating nanoparticles are essential for increasing tumor accumulation to provide 

therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few 

studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how 

the presence of a tumor can change the local and global immune system, which dramatically 

increases particle clearance. We found that tumor presence significantly increased clearance of 

PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the 

liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to 

better understand interactions between immune status and nanoparticle clearance, and suggest that 

further consideration of immune function is required for success in preclinical and clinical 

nanoparticle studies.
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Advances at the intersection of material science and biology have led to improved and 

expanded treatment options in the field of oncology. Research in nanomedicine has resulted 

in improved therapeutic index, targeting strategies, and biocompatibility of nanoparticle 

treatments against cancer in the clinic.1 Major strides in parallel work have also resulted in 

benefits to the biology component of oncology research, including the development of a 

human cancer cell line library, which can be used to control variability and identify 

treatment platforms for preclinical studies.2 This has led to a variety of selectively optimized 

particle platforms, which prove successful under narrow preclinical conditions using a 

particular therapy and model. In clinical settings, however, tumor heterogeneity in patients 

inhibits the effects of targeted nanotherapies that have proven successful in preclinical 

models.3 For example, varying tumor cell growth, incongruous cancer cell genotypes, and 

different intratumoral immune responses can affect the properties, structure, and content of 

the tumor microenvironment.4,5 Certain clinically relevant preclinical models can address 

and model tumor heterogeneity, such as some patient-derived xenografts and genetically 

engineered mice (GEM) models, but these systems still exhibit varied responses to different 

nanoparticle platforms.6,7 Decades of research have shown that particles must demonstrate 

certain universal attributes for maximizing circulation persistence, a necessary tenet for 

passive tumor accumulation.1 There is, however, an inherent variability among particle 

characteristics that may depend on the platform or fabrication technology, resulting in a 

variety of unique optimal combinations of properties for effective therapy.8 This variability 

is further complicated by the status of the immune system, which adds a significant layer of 

complexity.9

Regardless of how particle properties are manipulated, the eventual fate of a nanoparticle is 

typically the liver and spleen, which occurs largely through sequestration by the immune 

system, specifically by the mononuclear phagocyte system (MPS).10,11 Interestingly, most 

studies investigate interactions between nanoparticles and the immune system in either 

healthy or in immune-compromised mice (e.g., tumor-bearing), but they ignore proper side-

by-side comparisons in these models. A better understanding of nanoparticle-immune 
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system interactions in healthy versus immune-compromised mice is necessary, as tumor 

burden has been shown to cause both local and systemic polarization of the normal balance 

in the immune system, depending on the model used.12 In humans, it is well-established that 

local immune suppression within the tumor microenvironment prevents a natural 

intervention by the body, mainly through a shift from a Th1 (pro-inflammatory) to a Th2 

(anti-inflammatory) or Treg (regulatory) response (reviewed extensively by ref 13). 

Additionally, a multitude of studies in both humans and animals have shown enhanced 

myelopoiesis in the marrow and spleen in response to tumor-burden, resulting in a system-

wide shift and increased populations of granulocytes and monocytes.14–16 The bone 

marrow-derived myelomonocytic cells that reach the tumor often differentiate into tumor-

associated macrophages, which are polarized toward a M2-like phenotype (Th2-biased).17 

Recently, Th2 bias in healthy mice was shown to enhance nanoparticle clearance. A study 

by Jones et al. uncovered preferential particle uptake in Th2-prone murine strains.18 

Monocytes, granulocytes, and macrophages in the blood and spleen were responsible for the 

difference in nanoparticle clearance. However, the final gap between the effect of tumor 

presence on the immune system and nanoparticle behavior has yet to be bridged.

Ultimately, anecdotal evidence is not sufficient to predict the behavior of a given 

nanoparticle in a biological setting. Consequently, to increase the chance of successful 

translation, preclinical efforts should seek to understand particle behavior in the most 

relevant preclinical animal models available in addition to performing traditional efficacy 

and toxicity assays. The aim of this study was to investigate the effect of tumor-presence on 

the behavior of nanoparticles in several orthotopic allograft and xenograft models of cancer, 

and evaluate the influence of the tumor on immune status and resultant particle clearance. 

With the use of the Particle Replication in Nonwetting Templates (PRINT) platform, particle 

parameters were independently and systematically controlled to determine precisely how the 

immune system affects nanoparticle behavior.19,20 The modulus, shape, and surface 

chemistry of PRINT hydrogels were previously optimized to achieve long-circulation.21,22 

Herein, we report the effects of tumor presence on the in vivo behavior of PEGylated PRINT 

hydrogel nanoparticles.

Results

Tumor Burden Induces Pharmacokinetic Modulation

Intravital microscopy (IVM) was used to investigate the circulation profile of nanoparticles 

in several tumor models.23,24

A far-red fluorescent dye was polymerized into PRINT particles to facilitate imaging, and 

the mouse ear was chosen since the proximity of blood vessels to the surface minimizes the 

effects of tissue autofluorescence and attenuation. To ensure a valid comparison between 

different animals, all particles used in these studies were from the same batch, the same dose 

was injected in each animal, and the instrument settings were kept constant. Three tumor 

models were investigated and compared to naïve mice. Orthotopic locations were used to 

mimic clinical conditions for tumor growth and microenvironment. A human lung xenograft 

(A549) and mouse lung allograft (344SQ) were selected as examples of non-small cell lung 

cancer (NSCLC), a typical nanomedicine target. A mouse melanoma (LKB498) allograft in 
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the ear was included to address any effects caused by disrupting the physiology of the lung, 

an organ with prominent immune function.25

Time-lapse imaging of particle fluorescence in the vasculature of the mouse ear 

postinjection of nanoparticles, shown in Figure 1A, indicated decreased circulation 

persistence in tumor-bearing mice compared to naïve mice. Quantification of the 

fluorescence is illustrated in Figure 1B, represented as normalized fluorescence as a function 

of time. The initial fluorescence for nanoparticles injected in tumor-bearing animals was 

lower compared to the naïve mice, despite equivalent dosing. Additionally, the initial 

fluorescence level decreased as a function of tumor model; 344SQ lung was lower than 

LKB498 ear, and A549 lung was markedly lower than both 344SQ lung and LKB498 ear. 

Analysis of the fluorescence curves also revealed significantly lower particle exposure in the 

blood, represented by the area-under-the-curve (AUC), in the presence of a tumor (Figure 

1B, inset). Similar to the initial fluorescence trend, the A549 lung had the lowest AUC of the 

three tumor models investigated.

Upon discovering that circulation of PRINT hydrogels is reduced in tumor-bearing mice 

compared to naïve controls, longer time points were investigated in order to determine the 

fate of the nanoparticles in the A549 and 344SQ lung tumor models. To analyze 

pharmacokinetic (PK) behavior at longer time points, inductively coupled plasma mass 

spectroscopy (ICP-MS) was employed as an analytical technique.26 Platinum was 

incorporated into the particles via cisplatin drug complexation and used to track particles in 

the blood, spleen, and liver. Limited release of the drug from the particle in plasma was 

validated in previous studies, ensuring platinum detection correlated directly to particle 

concentration.27 The circulation profile was examined to extended time points (0.083, 0.5, 1, 

6, and 24 h) using ICP-MS. Using this method, we observed the same trend as in the IVM 

study, as both tumor-bearing models demonstrated faster particle clearance compared to 

naïve mice (Figure 2A). The A549 lung model also exhibited an initial concentration 2.8-

times lower than that for the other particle arms, again despite initial equivalent dosing. This 

confirmed the phenomenon observed in the IVM fluorescence experiments. Additionally, 

the circulation behavior of free cisplatin was not altered by the presence of a tumor. This 

indicated that the mechanism responsible for the difference in clearance was size-dependent. 

Specific parameters of PK behavior were also evaluated (Figure 2B). As previously 

discussed, the AUC represents particle exposure or presence in the blood, which correlates 

to the amount of an entity reaching circulation. The rate of removal of an entity is measured 

as clearance (CL). The volume of distribution (Vd) is a theoretical value representing the 

propensity for an entity to stay in the blood compartment (low Vd) compared to being tissue-

bound and widely distributed (high Vd). Examination of these PK parameters confirmed the 

results from the fluorescence experiments. A lower AUC of particles in tumor-bearing mice 

indicated decreased exposure compared to naïve mice. Increases in CL and Vd for particles 

in mice with tumors further pointed to more efficient removal of particles from circulation. 

For all three parameters, particles had favorable values compared to free drug. Figure 2C 

illustrates the absence of a tumor-based effect on free drug PK parameters.

The primary organs responsible for removing particles from circulation are the liver and 

spleen. Consequently, these organs were also analyzed for platinum content via ICP-MS to 
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evaluate the fate of the PRINT hydrogel nanoparticles in mice with and without lung tumors 

(Figure 2D,E). An increase in platinum was observed at early time points in tumor-bearing 

mice, corresponding with higher particle concentrations. The increased activity by these 

organs with salient immune cell activity inversely correlated to the plasma circulation 

profiles; the presence of a tumor decreased plasma circulation and increased sequestration in 

the liver and spleen compared to naïve mice. Additionally, a large portion of particles were 

isolated within the first 5 min after injection in the A549 lung mice, indicated by the higher 

initial level in both the liver and spleen. As observed in plasma, the effect of a tumor on the 

disposition of free cisplatin was also negligible.

These surprising results suggest that tumor presence dramatically impacts nanoparticle 

circulation, possibly due to differences in immune status among the groups. The lung has 

prominent immune function, and if its function is disrupted (e.g., surgery, tumor burden), 

this could provoke an unintended immune response.28 We validated that the shift in 

clearance was not caused by the surgical procedure for tumor inoculation, as tumor-bearing 

and sham mice experienced the same exact surgical procedure. Tumor-bearing mice 

received an injection of PBS and Matrigel with A549 cells into the lung as described in 

Methods, while sham mice received PBS and Matrigel without A549 cells. Naïve mice did 

not have any surgical procedure or lung injection. No significant difference in circulation 

was observed between the sham and naïve mice (Supporting Information Figure 1), 

confirming that the shift in particle circulation was caused by the presence of cancer cells 

and not by the surgery.

Serum from Tumor-Bearing Mice Increases Macrophage Activity ex Vivo

Increased particle clearance within tumor-bearing animals compared to naïve animals of the 

same strain suggested that tumor presence might influence immune cell function even in 

regions distal to the tumor. This prompted us to investigate the presence of circulating 

secretory factors within the serum of tumor-bearing animals that may enhance immune 

function and particle clearance. To interrogate this ex vivo, we harvested bone marrow-

derived macrophages and tested their activity in response to control and serum-spiked 

media, with serum collected from naïve mice and mice bearing A549 lung, 344SQ lung, or 

LKB498 ear tumors. After incubating macrophages with serum-spiked media for 24 h, we 

exchanged this media for fresh, nonspiked media, and fluorescent particles were dosed onto 

the cells. Macrophage activity, demonstrated by fluorescent particle uptake, was 

significantly enhanced after incubation in serum-spiked media from tumor-bearing mice 

(Figure 3). The median fluorescent intensity (MFI) of each macrophage, indicating the 

number of particles internalized, was significantly higher when the cells were incubated with 

serum collected from tumor-bearing mice compared to naïve mice. Only a slight increase in 

macrophage activity was observed between macrophages incubated in control media versus 

spiked media containing serum from naïve mice. These ex vivo results support the 

hypothesis that the difference in particle clearance and sequestration by the liver and spleen 

is, at least in part, caused by a secreted factor within the serum of tumor-bearing mice.

Kai et al. Page 5

ACS Nano. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tumor Presence Increases Particle Recognition by Immune Cells

A shift in the status of immune cells in cancer has been well documented, though less is 

known about the effect of such polarization on particle behavior. We used flow cytometry to 

pinpoint the cell populations responsible for increased uptake in the presence of a tumor. 

Mice with and without A549 lung tumors were injected with fluorescent PRINT hydrogels, 

and after 2 h, blood, liver, lung, and spleen were collected and digested into single cell 

suspensions for analysis. This time point exhibited a balance between a large difference in 

organ accumulation of particles and a sufficient concentration still in circulation. Depicted in 

Figure 4, several differences in both the cell association and MFI of particles were observed 

following the introduction of a tumor. In blood, no significant difference in association was 

observed among the cell populations; however, an increase in the MFI of particles in 

monocytes (macrophage precursors) was observed (Figure 4A). Lung populations revealed 

an increase in macrophage association and MFI of particles, and a significant increase in the 

MFI of particles in dendritic cells (DCs) (Figure 4B). Analysis of the spleen showed 

negligible differences in association, but an increase in particle MFI for granulocytes (Figure 

4C). Finally, the liver displayed a clear increase in particle association with granulocytes and 

macrophages, with the same trend in MFI for those two populations (Figure 4D). Similar to 

the lung, a marked increase in the particle MFI in DCs was observed. Overall, the 

macrophage population was affected most by the presence of a tumor. This manifested as 

increased recognition of PRINT hydrogel nanoparticles in tumor-bearing mice, evidenced by 

consistently higher numbers in both cell association and particles per cell across organs. 

Finally, there was no significant difference in the macrophage population relative to total 

immune cells (Supporting Information Figure 2).

This consistent difference in particle recognition by macrophages prompted a more detailed 

analysis of macrophage subpopulations. Macrophages can be skewed toward a M1 or M2-

like phenotype; M1 macrophages are associated with an inflammatory response, such as 

defense host infection, whereas M2-like macrophages are associated with an anti-

inflammatory response, such as tissue repair.29 M2-like polarization is common in tumor-

associated macrophages,30 and results from this work revealed a difference in subpopulation 

distribution in mice with A549 tumors. Flow cytometry was used to identify M1 versus M2-

like phenotypes based on a difference in the expression of CD206, the macrophage mannose 

receptor (MMR), which is significantly up-regulated in M2-like macrophages.31 

Representative histograms illustrate the difference in CD206 expression on macrophages 

isolated from mouse livers (Figure 5A). Quantification of this MMR expression revealed a 

shift in the proportion of macrophage subsets in the spleen and liver of mice with and 

without A549 lung tumors (Figure 5B). In the spleen, the percentage of macrophages that 

expressed CD206 increased from 29.6% in naïve mice to 45.8% in tumor-bearing mice. The 

same trend in MMR expression was observed in liver macrophages, which shifted from 

13.7% to 37.1% in naïve and A549 lung mice, respectively. Overall, macrophages in the 

spleen and liver of tumor-bearing mice were skewed toward a M2-like phenotype. There 

was no significant difference in populations among the lung macrophages.

When the particle association was measured in these two macrophage populations, 

differences were observed between the organs of naïve and tumor-bearing mice (Figure 6). 
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When a tumor was present, particles associated more with M1 macrophages in the lung and 

liver compared to the naïve mice (Figure 6A,C; top). In the liver, the M2-like population 

also had higher particle association when a tumor was present. This was consistent with the 

overall increase in macrophage association seen in Figure 4B,D. The spleen had no 

significant difference in association for either population. Quantification of the median 

fluorescence in each organ revealed a higher uptake of fluorescent particles in both 

macrophage subsets from tumor-bearing versus naïve mice. Upon examination of the MFI in 

M1 macrophages of the lung and liver, there was a higher number of particles taken up per 

cell in tumor-bearing mice (Figure 6A,C; bottom). The M2-like macrophages in all three 

organs were more active in particle uptake when a tumor was present, as the MFI increased 

significantly between the naïve and A549 lung mice. Overall, we observed that all 

macrophages were more efficient at particle sequestration in the tumor-bearing animals, 

where the M2-like macrophage population was up-regulated and showed increased 

recognition of particles.

Discussion

Tumor presence is known to alter the status of the immune system from Th1 to Th2,13,17 but 

only recently have studies emerged on the effect of this shift on particle behavior. Previous 

work in healthy mice discovered a particle clearance difference in strains with genetically 

biased immune function.18 Increased clearance was observed in Th2-biased mice compared 

to Th1-biased strains. The current study showed a comparable trend in particle behavior 

based on tumor presence. Our results show that a normally Th1-biased mouse strain 

(C57BL/6 background) can exhibit particle clearance behavior more similar to Th2-biased 

mouse strain following the induction of a tumor. This study highlights the impact of shifting 

immune status with disease progression and how this in turn can dramatically impact 

nanoparticle behavior.

Increased particle clearance was observed in both IVM and ICP-MS studies between 

nontumor and tumor bearing mice. The quantitative analysis by ICP-MS reported herein 

revealed the tumor-induced immune shift was the most prominent in the liver, where early 

rapid accumulation was evident in mice with tumors compared to controls. This large 

difference in the initial level of PRINT hydrogel nanoparticles in the liver and plasma could 

be explained by a shift in macrophage activity, with an increase in M2-like macrophages. 

The liver receives nearly two-thirds of the blood volume per minute and contains over 75% 

of the total tissue macrophage population.32,33 An increase in the particle affinity of 

macrophages in the liver would have a dramatic effect on particle clearance, which could be 

induced through the presence of a tumor. The tumor microenvironment displays a local Th2-

bias and, in some cases, can cause a systemic shift as well.13,34 Several studies have shown 

that the presence of a tumor activates the M2-like macrophage subset population, which 

corroborates our results in Figure 5.17,31,35 M2-polarized macrophages have increased 

phagocytic and scavenging ability, which resulted in more efficient particle sequestration.36 

The increased recognition of PRINT particles by macrophages, especially by M2-like 

macrophages, can account for the decrease in particle circulation in the presence of a tumor; 

however, the increase in both subsets suggests other factors may also be responsible for the 

difference in clearance. For instance, in a study by Caron et al., increased phagocytic 
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activity of circulating monocytes was correlated with increased nanoparticle clearance in 

humans.37 This trend was also observed in our results of Figure 4A. Another study 

investigated the effect of certain chemokines on the circulation and accumulation of 

PEGylated liposomal doxorubicin (Doxil) in both naïve and tumor-bearing animals, with 

results similar to those reported here.38 These studies provide further evidence that multiple 

factors can be responsible for a shift in particle behavior.

The changes in immune status and the activation of M2-like macrophages led us to 

hypothesize that the tumor cells or microenvironment was secreting a factor capable of 

skewing phagocytic capacity. The ability to mimic the difference in particle recognition in 

ex vivo macrophages showed a serum-resident factor was at least partially responsible for 

the increase in liver and spleen sequestration upon tumor presence. Literature evidence 

suggests that tumor cells secrete factors that can directly affect and change macrophage 

activity. Previous studies have shown the ability of cancer cells to polarize macrophages, 

utilizing cytokine analysis, immunohistochemistry, and gene amplification to characterize 

the effects of coculturing macrophages with cancer cells.39–41 In a study by Muller-

Quernheim et al., both the coculture of tumor cells with macrophages and the treatment of 

macrophages with media taken from tumor cell cultures resulted in an increased activity for 

both M1 and M2-like macrophages, with a slight skewing toward a M2-like phenotype.42 

Furthermore, this study used A549 cells, the same line investigated in the work presented 

here. Similar results would be expected in the other two tumor models, although potentially 

to a lesser degree due to the syngeneic nature of the cancer cells. In the A549 model 

investigated, the initial bias toward a M1 macrophage phenotype in the liver and spleen is 

supported by the genetic predisposition of the C57BL/6 background nude mice used in this 

study toward a Th1-bias immune system.43 More in-depth studies to identify the specific 

factor(s) responsible for the shift in immune cell activity are needed and currently underway. 

The tumor microenvironment is heterogeneous, and identifying a specific factor among the 

myriad of cytokines, chemokines, growth factors, cell signaling molecules, and countless 

other moieties presents unique challenges. However, recent work has provided several areas 

to focus on in the search, such as galectins, MHC protein homologues, CTLA-4, PD-1, and a 

variety of anti-inflammatory interleukins (i.e., IL-4, IL-13).44

The results presented here demonstrate that the presence of a tumor can alter a local and 

global immune system, which in turn has dramatic effects on nanoparticle circulation and 

potential efficacy. Interestingly, we observed a decrease in particle circulation between 

tumor-bearing and nontumor-bearing mice regardless of tumor type and location. However, 

there were slight differences observed between the various models chosen; the human lung 

xenograft (A549) showed the largest increase in particle clearance, with the mouse lung 

allograft (344SQ) and mouse melanoma allograft (LKB498) in the ear also showing an 

increase compared to naive controls. All of these models were induced in female Foxn1nu 

(athymic nude, C57BL/6J background) mice, yet a considerable difference was still apparent 

based on tumor presence. We hypothesize that a similar shift from a Th1- to Th2-biased 

immune status was responsible for the increased clearance in each of these tumor models. 

Understanding the role of these changing phenotypes on nanoparticle interaction offers an 

opportunity for increasing nanoparticle efficacy; mitigation or reversal of the systemic shift 
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could be achieved by incorporating a scavenging moiety onto the particle to sequester the 

circulating factor and reduce immune evasion by the tumor. Alternative approaches using 

immunotherapy could harness the macrophage's affinity for particles and co-opt a change in 

status by delivering a stimulant to the macrophage, reversing the polarization to promote an 

antitumor M1 phenotype.

Conclusion

Our work highlights the important interplay between immune status, disease progression, 

and nanoparticle properties. To evaluate nanoparticle efficacy, an animal model must be 

chosen which has an immune status similar to the actual disease. For a given tumor cell line, 

mouse strain, and tumor location, differences in secreted factors and resultant changes in 

cellular function will affect particle clearance properties. Thus, prior characterization of the 

model itself will be essential to evaluating the preclinical success of a given nanoparticle 

therapeutic. Furthermore, a given immune status may be predictive of nanoparticle success. 

This has important clinical ramifications. Further evaluation of a patient's immune function 

following similar evaluations to those presented here may be important predictors of 

nanoparticle success in a clinical setting.

Methods

Materials

Commercially available polyethylene glycol diacrylate (PEG700-DA) (Mn = 700 Da), 2-

aminoethyl methacrylate hydrochloride (AEM), diphenyl(2,4,6-trimethylbenzoyl)-phosphine 

oxide (TPO), poly(vinyl alcohol) (PVOH, Mn = 2000 Da), succinic anhydride, cis-

diaminedichloroplatinum(II) (CDDP), and sucrose were purchased from Sigma-Aldrich. 

PTFE syringe filters (13 mm membrane, 0.220 μm pore size), Dylight 488 maleimide, 

Dylight 650 maleimide, dimethylformamide (DMF), triethylamine (TEA), pyridine, sterile 

water, borate buffer (pH 8.6), methanol, trace-metal grade concentrated nitric acid (HNO3), 

Corning Matrigel Membrane Matrix (LDEV-free), EDTA-treated collection tubes, cell 

strainers, 4% paraformaldehyde (PFA), and ACK buffer were obtained from Fisher 

Scientific. Methoxy PEG (5k)-succinimidyl carboxy methyl ester (mPEG5k-SCM) was 

purchased from Creative PEGWorks. Tetraethylene glycol monoacrylate (HP4A) was 

synthesized in-house as previously described.45 Conventional filters (2 μm) were purchased 

from Agilent, and poly(vinyl alcohol) (Mw 2000) (PVOH) was purchased from Acros 

Organics. PRINT molds (80 nm × 320 nm) were obtained from Liquidia Technologies 

(Morrisville, NC). Polyethylene terephthalate (PET) was purchased in 1000-foot rolls from 

3M. Cisplatin was acquired from the University of North Carolina Pharmacy. Water, where 

used, was sterile-grade and 0.2-μm filtered. A549-luc, LKB498, and L929 cells were 

purchased from American Type Culture Collection. 344SQ cells were a gift from The 

University of Texas M.D. Anderson Cancer Center (Jon Kurie Lab). All cells were 

maintained per vendor specifications. Fetal bovine serum was purchased from Atlanta 

Biologicals. Hank's Balanced Salt Solution (HBSS), RPMI 1640 Medium, and Dulbecco's 

Modified Eagle Medium (DMEM) were purchased from Gibco. All commercially available 

materials were used as received. Anti-mouse antibodies (CD45-Pac Blue, CD11c-PE, 
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CD206-PE, CD11b-Brilliant Violet 605, CD19-PE-Cy7, F4/80-APC, Ly6G/C-PE-Cy5) 

were purchased from BioLegend, Inc. Lymphoprep, DNase, and collagenase were purchased 

from STEMCELL Technologies, Inc. AbC Anti-Mouse Bead Kit and anti-CD16/32 (Fc-

block) were purchased from Invitrogen. FACS buffer was prepared as HBSS plus 2% FBS.

Particle Fabrication and Characterization

PRINT 80 nm × 320 nm hydrogel particles were fabricated and functionalized with a PEG 

mushroom surface as described in ref 22, and a more detailed description can be found in 

Supporting Information. Particles were then succinylated by reaction with an excess of 

pyridine and succinic anhydride (100× molar excess with respect to amine groups). The 

reaction was carried out in a sonicator bath (Branson Ultrasonic Cleaner 1.4 A, 160 W) for 

30 min. Following succinylation, the particles were washed by centrifugation one time in 

DMF, followed by a borate buffer wash to neutralize any succinic acid side product, and 

then three washes with sterile water.

Cisplatin complexation was achieved by incubating the particles in a solution of CDDP (2× 

molar excess with respect to carboxyl groups) in water at room temperature for >24 h under 

constant agitation (Eppendorf, 1400 rpm). After incubation in the complexation solution, 

particles were washed with sterile water by centrifugation and resuspended in 9.25 wt % 

sucrose (aq) at the appropriate dose concentration. Aliquots were flash frozen in liquid 

nitrogen and stored at −20 °C until needed. Dylight 650 and 488 were used for the intravital 

and flow cytometry studies, respectively. PRINT-cisplatin was used without a fluorophore 

for the inductively coupled-mass spectroscopy (ICP-MS) studies.

Particle concentrations were determined by thermogravimetric analysis (TGA) using a 

TAInstruments Q5000 analyzer. Particle size and zeta potential were verified by dynamic 

light scattering (DLS) on a Zetasizer Nano ZS (Malvern Instruments, Ltd.) at 37 °C. 

Cisplatin loading was assessed using an Agilent 1200 series high-performance liquid 

chromatography system with an ultraviolet detector. The mobile phase consisted of 90% 

0.9-wt % NaCl (aq) and 10% methanol, by volume. A 5 min isocratic elution protocol was 

used with a ZORBAX Eclipse Plus C18 column (Agilent Technologies). The product was 

eluted at a flow rate of 1 mL/min and monitored at a wavelength of 210 nm. Drug loading 

was determined by analysis of the complexation solution pre- and postincubation. The net 

difference in cisplatin concentration was calculated as weight percent in the particle.

Animals

All experiments involving mice were performed in accordance with the National Research 

Council's Guide to Care and Use of Laboratory Animals (1996), under an animal use 

protocol approved by the University of North Carolina Animal Care and Use Committee. 

All studies used female Foxn1nu (athymic nude, C57BL/6J background) mice (5 weeks old, 

17–27 g, Jackson Laboratory). For the tumor-bearing mice, two orthotopic non-small cell 

lung models (A549-luc and 344SQ) and an orthotopic melanoma (LKB498) model were 

used. Cell cultures were prepared and maintained per vendor specifications. The orthotopic 

lung surgery was performed by injection of a 40 μL suspension of either A549 cells (5 × 106 

cells per mouse) or 344SQ cells (5000 cells per mouse) in a 50:50 Matrigel:PBS blend into 
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the lung via intrathoracic inoculations, as per published protocol.46 Tumors were grown to 

100–200 mm3 total cumulative volume (caliper measurement for LKB498, orthotopic 

A549luc and 344SQ verified by measurement following thoracotomy). Sham mice 

underwent the surgical procedure and received the Matrigel:PBS suspension injection 

without cells. For the orthotopic ear allograft, a single spheroid of approximately 4000 

LKB498 cells was injected intradermally as previously described.47 All nanoparticles were 

dosed in 9.25 wt % sucrose to maintain isotonicity upon intravenous administration.

Ex Vivo Macrophage Association

Primary macrophages were isolated from the bone marrow of nude mice per established 

protocol.48 Briefly, mice were euthanized, and the femur and tibia bones were resected. 

Bone marrow cells were collected by flushing the marrow cavity with HBSS + 2% FBS. 

Cells were filtered and plated with L929-conditioned medium (containing GM-CSF) to 

promote differentiation and growth of macrophages from precursor cells within the marrow. 

Cells were incubated with or without serum collected from naïve and tumor-bearing mice. 

After 24 h, the serum-spiked media was replaced with fresh, nonspiked media, and 

fluorescent PRINT hydrogel nanoparticles were dosed at 1 mg/mL for 3 h. Cells were then 

collected and fixed with 4% PFA for analysis by flow cytometry.

Intravital Microscopy Study

Particles containing Dylight 650 were injected and analyzed by intravital microscopy as 

described in ref 22. Briefly, experiments were performed using an IV 100 laser scanning 

microscope (Olympus). Mice (n = 5) were anesthetized with isofluorane, a tail vein catheter 

was applied, and animals were placed on a 37 °C heated stage in the prone position and kept 

under anesthesia. The ear was immobilized to an aluminum block with double-sided tape, 

and vasculature was visualized with a 488 nm laser; the nontumor-bearing ear was used in 

studies with the LKB498 mice. Mice were then dosed with a bolus injection of Dylight 650-

labeled nanoparticles. Fluorescence was measured using a 633 nm laser, and imaging scans 

were captured every 5 s for 2 h. For circulation analysis, the image files from each scan were 

exported to ImageJ. Following literature procedures, the images were stacked in groups of 

four, and fluorescent signal in each stack was analyzed in the region of interest (ROI).23,49 

Background corrections were obtained using the initial fluorescence in the ROI before 

injection. All instrument settings were kept constant for the duration of the study. Particles 

were dosed at 18.75 mg per kg of body weight.

ICP-MS study

Quantification of cisplatin and PRINT-cisplatin was performed using ICP-MS. Cisplatin and 

PRINT particles were dosed with a bolus intravenous injection at an equivalent of 3 mg per 

kg drug, which corresponded to a particle dose of 18.75 mg/kg. Liver, spleen, lung, and 

kidney were harvested and flash-frozen in liquid nitrogen at 0.083, 0.5, 1, 6, and 24 h 

postinjection. Tumor accumulation was not determined due to tumor cell heterogeneity with 

the lung cells within the organ in the orthotopic A549 model. Four mice per arm were 

examined at each time point. Blood was collected in EDTA by cardiac puncture at the same 

time points and centrifuged (300g, 5 min, 4 °C) to isolate plasma from the cell fraction. 
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Tissue sample preparation was performed as previously described.6 Briefly, tissue and 

plasma samples were digested in concentrated HNO3 spiked with 200 ng/mL Iridium (Ir; 

analytical internal standard, Inorganic Ventures) for 60–90 min at 90 °C. Deionized water 

was added to bring sample to volume and HNO3 concentration of 3.5%, and the samples 

were stored at 4 °C until platinum (Pt) analysis was completed. ICP-MS analysis (Agilent 

7500cx) was performed and validated as previously described.6,26 Pharmacokinetic analysis 

of the measured plasma concentrations was performed using PKSolver.50 Data was fit to 

either a one- or two-compartment model, and the Akaike information criterion (AIC) was 

used to compare goodness of fit for each nanoparticle type.51

Tissue Preparation for Immune Cell Analysis

Once the A549 lung tumors had grown to sufficient size, both tumor-bearing and naïve mice 

were injected with a bolus intravenous suspension of PRINT hydrogel particles containing 

Dylight 488 at 18.75 mg/kg (n = 5). Additional tumor-bearing and naïve mice were given a 

bolus intravenous saline injection for use as controls (n = 3). Two hours postinjections, mice 

were euthanized and blood was collected via cardiac puncture and stored on ice in EDTA-

treated collection tubes. The thoracic cavity was opened to visualize the heart. The right 

atrium was nicked, and organs were perfused with a HBSS flush via the left ventricle. The 

lung, spleen, and liver were resected and stored on ice. Spleens were mechanically forced 

through a cell strainer to dissociate tissue into FACS buffer. Lungs and livers were 

incubated at 37 °C, 5% CO2 in digestion media (HBSS + 2% FBS + 0.02 mg/mL DNase and 

1 mg/mL collagenase) until dissociated. ACK buffer was used to lyse red blood cells in 

blood, lung, and spleen, and samples were subsequently passed through a cell strainer to 

remove aggregates and excess debris. Immune cells were isolated from livers using 

Lymphoprep, per manufacturer's guidelines. This resulted in single cell suspensions of 

blood, lung, spleen, and liver tissues. Samples were blocked with anti-CD16/32 (Fc-block) 

and stained with a panel of antibodies. Lung, spleen, and liver samples were split into two 

equal aliquots. One aliquot, along with blood samples, received Panel A: CD45-Pac Blue, 

CD11b-Brilliant Violet 605, CD11c-PE, Ly6G-PE-Cy5, F4/80-APC, and CD19-PE-Cy7. 

The remaining lung, spleen, and liver aliquots received Panel B: CD45-Pac Blue, CD11b-

Brilliant Violet 605, F4/80-APC, and CD206-PE. All samples were fixed with 4% PFA and 

stored for analysis by flow cytometry.

Flow Cytometry

Samples of single cell suspensions from blood, lung, spleen, and liver of naïve and tumor-

bearing mice were analyzed with an LSRII (BD Biosciences) flow cytometer. AbC Anti-

Mouse Beads were labeled with each of the fluorophore-antibody and used to compensate 

for each fluorescence channel. Fluorescence minus one (FMO) samples were prepared from 

untreated cell suspensions for delineation of positive and negative antibody expression on 

cells. Representative sample gating for Panel A and Panel B is depicted in Supporting 

Information Figures 3 and 4, respectively. Samples from the ex vivo macrophage association 

study were analyzed as described, and utilized only forward scatter, side scatter, and the 

Dylight 488 fluorescence channel and did not require compensation or FMO samples. 

FlowJo software (Tree Star) was used to analyze data per literature precedence and 

guidance.18,52
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Statistics

Analysis of Variance (ANOVA) was performed in GraphPad Prism using the Bonferroni 

post-test. All error bars represent of standard error mean.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Circulation of intravenously injected PRINT hydrogels is reduced in tumor-bearing mice. 

(A) Still images from intravital microscopy in naïve and tumor-bearing mice depict lower 

initial fluorescence and faster clearance in tumor-bearing mice compared to naïve mice 

(scale-bar = 50 μm). (B) Particle fluorescence in blood over time and exposure (inset) 

expressed as area-under-the-curve reveals a tumor-induced pharmacokinetic modulation. 

(****p < 0.0001; one-way ANOVA).

Kai et al. Page 16

ACS Nano. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Tumor presence alters nanoparticle circulation and accumulation in organs with salient 

immune cell activity. The plasma profile (A) and pharmacokinetic parameters (B) of 

particles were significantly altered by the presence of a tumor, including exposure (AUC), 

clearance rate from circulation (CL), and volume of distribution (Vd). The behavior of free 

cisplatin, however, remained unaffected (C). Additionally, there was a significant increase in 

initial sequestration of particles in both liver (D) and spleen (E) in tumor-bearing mice 

compared to naïve mice. Measured as platinum (Pt) content via inductively coupled plasma 

mass spectroscopy (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way 

ANOVA).
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Figure 3. 
Serum collected from tumor-bearing mice induced an increase in ex vivo macrophage 

activity compared to serum collected from naïve mice. PRINT hydrogel nanoparticle 

association with ex vivo macrophages incubated with serum from naïve and tumor-bearing 

mice (****p < 0.0001; one-way ANOVA).
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Figure 4. 
Tumor presence alters immune cell interactions with particles. Immune cell distribution of 

PRINT hydrogel nanoparticles in blood (A), lung (B), spleen (C), and liver (D). Significant 

increases in association and MFI were seen for several populations, including macrophages 

and dendritic cells in the lung and liver. MFI = median fluorescence intensity (*p < 0.05, 

**p < 0.01, ***p < 0.001; two-way ANOVA).
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Figure 5. 
Presence of A549 tumors skewed macrophage populations from M1 to M2-like. 

Representative flow cytometry histograms (A) of CD206 expression in macrophages of the 

liver show an increase in M2-like phenotype in tumor-bearing mice. A significant increase 

in the population of liver and spleen M2-like macrophages (B) was observed in tumor-

bearing mice compared to naïve mice (**p < 0.01, ****p < 0.0001; two-way ANOVA).
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Figure 6. 
M1 and M2-like macrophages have higher affinity for nanoparticles in tumor-bearing mice. 

Macrophage subset association of PRINT hydrogel nanoparticles by flow cytometry in lung 

(A), spleen (B), and liver (C) of tumor-bearing and naïve mice. Differences in particle 

association and MFI were revealed: significant increases in the same macrophage subset 

between naïve and tumor-bearing mice, and also between different macrophage subsets 

within the same mouse model. MFI = median fluorescence intensity (*p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001; two-way ANOVA).
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