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Abstract

The protozoan parasite Toxoplasma gondii secretes a family of serine-threonine protein kinases 

into its host cell in order to disrupt signaling and alter immune responses. One prominent secretory 

effector is the rhoptry protein 18 (ROP18), a serine-threonine kinase that phosphorylates immunity 
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related GTPases (IRGs) and hence blocks interferon gamma-mediated responses in rodent cells. 

Previous genetic studies show that ROP18 is a major virulence component of T. gondii strains 

from North and South America. Here, we implemented a high throughput screen to identify small 

molecule inhibitors of ROP18 in vitro and subsequently validated their specificity within infected 

cells. Although ROP18 was not susceptible to many kinase-directed inhibitors that affect 

mammalian kinases, the screen identified several sub micromolar inhibitors that belong to three 

chemical scaffolds: oxindoles, 6-azaquinazolines, and pyrazolopyridines. Treatment of interferon 

gamma-activated cells with one of these inhibitors enhanced immunity related GTPase recruitment 

to wild type parasites, recapitulating the defect of Δrop18 mutant parasites, consistent with 

targeting ROP18 within infected cells. These compounds provide useful starting points for 

chemical biology experiments or as leads for therapeutic interventions designed to reduce parasite 

virulence.

Graphical Abstract

The serine threonine kinase ROP18 is an important virulence factor of Toxoplasma gondii. ROP18 

phosphorylates the immunity related GTPases such as Irga6, rendering them incapable of clearing 

parasites in interferon activated cells. The present work identifies inhibitors of ROP18 that block 

its ability to thwart IRG recruitment in interferon-activated cells.
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 Introduction

Toxoplasma gondii is a protozoan parasite that infects a wide range of warm-blooded hosts, 

including wild, companion, and agricultural animals 1. Toxoplasma is naturally transmitted 

by infection of rodents, which serve as intermediate hosts, and members of the cat family 

(Felidae), where sexual development in the intestinal epithelium leads to shedding of spore-

like oocysts into the environment 1. Humans become infected by ingestion of tissue cysts, 
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which are associated with chronic infections in food animals, or ingestion of food or water 

that is contaminated with oocysts 2, 3. Although healthy individuals are normally able to 

control the infection, chronic stages are thought to persist for life, leading to the risk of 

reactivation in the event the immune system wanes or becomes compromised 4. Limitations 

of existing therapies include drug intolerance, adverse effects of treatment, and an inability 

to eradicate the chronic tissue cyst forms of the infection 5.

Toxoplasma gondii has a highly unusual population structure that is dominated by three 

closely related clonal lineages that exist in North American and Europe where they are 

thought to have arisen recently as the product of a few genetic crosses in the wild, followed 

by recent expansion 6, 7. In contrast, strains of T. gondii from South America are genetically 

diverse and show greater evidence of genetic recombination 8–10. Crosses between the clonal 

strains have been used to map the genetic basis of difference in acute virulence in laboratory 

mice based on differences in time to death, LD50, or lethality vs. chronicity 11. Genetic 

mapping studies have identified a small number of polymorphic loci encoding rhoptry 

(ROP) kinases or pseudokinases as important in controlling these differences 11. ROP18 

contributes to the high virulence of type I strains and the intermediate virulence of type 2 

strains in comparison to avirulent type 3 strains. The basis for the avirulence in type 3 was 

shown to be due to under-expression of ROP18, and virulence was restored when ROP18 

from type 1 or 2 was re-expressed 12, 13. Consistent with this, deletion of ROP18 in a type 1 

background led moderate decreases in virulence of the RH strain 14 and a much stronger 

phenotype in the type 1 strain GT-1, which was used in the original cross 15. ROP18 alleles 

in South American strains also resemble type 1 alleles 16, and recent genetic studies reveal 

that ROP18 also plays a critical role in mouse virulence of these diverse lineages 17. The 

other major virulence determinant in the mouse is ROP5, a polymorphic locus of tandemly 

repeated genes that contributes to the acute virulence of type 1 strains, yet the corresponding 

cluster of ROP5 alleles in type II strains decreases virulence 18, 19.

Rodents are a natural host for T. gondii, and the major virulence factors that have been 

identified in this system target innate and adaptive immune responses that are important in 

control of infection 20. ROP18, ROP5, and a related kinase ROP17 are key participants in 

this dynamic. ROP18 and ROP17 are active kinases that phosphorylate immunity related 

GTPases 14, 21, 22, which are upregulated by interferon-γ (IFN-γ) and contribute to clearance 

of susceptible type 2 and 3 strain parasites 23–25. ROP17 and ROP18 show a preference for 

conserved Thr residues that occupy switch region 1 14, 21, 22, a flexible loop in the GTPase 

that is critical for binding nucleotides and for oligomerization. The major allele of ROP5 

from type 1 strains both enhances the activity of ROP18 26 and also binds directly to 

monomeric IRGs 27, 28, hence providing them as substrates for phosphorylation. ROP18 has 

also been shown to phosphorylate ATF6β, a transcription factor important in the unfolded 

protein response 29. Disruption of ATF6β in dendritic cells leads to impaired CD8 T cell 

development 29, suggesting that ROP18 also disrupts adaptive immunity. Although IRGs are 

largely confined to rodent and not thought to participate in human resistance to 

toxoplasmosis 30, ATF6β is conserved and may also be important in a wide range of hosts. 

Virulent alleles of ROP18 are associated with more severe ocular disease in patients from 

Colombia 31, suggesting this factor may also contribute to severity of human infection.
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Like their eukaryotic hosts, protozoan parasites contain a variety of protein kinases that 

comprise the major families of protein kinases with the exception of tyrosine kinases 32. 

Protein kinases have been useful targets for development of therapeutic agents in humans, 

with more than two dozen drugs being approved for cancer treatment in recent years 33. 

Given the importance of protein kinases, which in many cases control essential aspects of 

parasite biology, it has been suggested they may be effective targets for the development of 

drugs to combat infection 34. Efforts have been undertaken to screen the kinome of 

Plasmodium to define essential genes 35, 36, and thereby prioritize essential targets. 

Proteomic and computational studies indicate that the T. gondii genome encodes ~ 160 

kinases or pseudokinases, of which ~45 are thought to be contained in the rhoptry 37–39. 

ROP kinase expansion is shared among closely related tissue cyst forming coccidians but 

they are not found broadly in the Apicomplexa 39. Approximately half of the ROP kinases 

are predicted to be enzymatically active, while the other half, like ROP5 lack an intact 

catalytic triad and are likely not catalytically competent 38. Crystal structures are available 

for ROP2/ROP8 40, two pseudokinases that lack ATP binding, and also for ROP5 41, which 

binds ATP in an unconventional manner, and it is unlikely to catalyze hydrolysis. A recent 

crystal structure of ROP18 confirmed that it shares many features in common with the ROP2 

sub-family, including an N-terminal extension of the N-lobe, which in mutational studies has 

been shown to be important in regulating activity 40. ROP kinases are highly divergent, and 

do not closely resemble any of the major kinase families of eukaryotes 39. Although ROP18 

is not essential for growth, inhibitors that block its activity would be expected to decrease 

pathogenesis, a strategy that has been suggested to focus on pathogens over commensals 

while exerting less selective pressure for resistance 42.

Given the importance of ROP18 in controlling virulence in the mouse model, we were 

interested in identifying chemical inhibitors that could be used to probe the function of this 

kinase and if possible to block its activity to prevent virulence. We undertook a small 

molecule screen to identify specific inhibitors of ROP18. We identified multiple chemical 

scaffolds as low to sub micromolar inhibitors of ROP18 including oxindoles, 

pyridopyrimidines, pyrazolopyridines, and as well as several staurosporine-like compounds. 

Using a secondary assay to assess ROP18 biological function, we were able to confirm that 

one of these compounds target ROP18 in cells, blocking its ability to prevent IRG 

recruitment. These compounds may thus be useful to assess the function of ROP18 in host 

cells in a temporally controlled manner and without the need for genetic deletion from the 

parasite. The oxindole compound 2 has low host cell toxicity, and thus represents a 

promising lead for designing more potent inhibitors with greater selectivity, that could 

potentially be used to assess ROP18 inhibition in vivo.

 Results and Discussion

 Development of a High Throughput Screening assay for ROP18

To facilitate screening of ROP18 inhibitors, we developed a High Throughput Screening 

(HTS) compatible kinase assay using microfluidic capillary electrophoresis (MCE) 43, 44. In 

MCE, the phosphorylated and unphosphorylated forms of fluorescently labeled substrate 

peptides are separated and analyzed through a LabChip EZ Reader (Perkin Elmer). We 
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initially evaluated substrate peptides based on a native substrate of ROP18 from switch 

region 1 of Irga6 (FL-T: 5-Fam-GAAKTGVVEVT-Nle-KR-NH2) 14, 21, as well as a mutant 

that altered the first T to E (FL-E: 5-Fam-GAAKEGVVEVT-Nle-KR-NH2). We compared 

these two substrates since ROP18 has been shown to phosphorylate both Thr residues, which 

might potentially complicate the analysis of inhibitors. We also screened a library of known 

MCE compatible kinase substrate peptides (kindly provided by Perkin Elmer) to determine 

their suitability as substrates for ROP18. One such peptide (FL-8: 5-FAM-

IPTSPITTTYFFFKKK-COOH) that is a known substrate of ERK1,2 / p38 also proved to be 

a good substrate for ROP18, presumably because of the repeated TTT sequence, a motif that 

is preferred by ROP18 21.

Fam-conjugated peptide substrates (1 μM) were incubated with recombinant ROP18 

recombinant protein and varying concentrations of ATP for 1 h and samples were resolved 

on a LabChip MCE platform. Analysis using Michaelis-Menton kinetics revealed an ATP 

Km of approximately 15 μM for both FL-T and FL-E, and 3 μM for FL-8 (Figure 1 a–c). 

Reactions containing 1 μM of FL-T, 60 μM ATP, and varying concentrations of ROP18 were 

incubated to determine the extent of conversion of the peptide to the phosphorylated form 

over 3 h at room temperature (Figure 1d). Finalized reactions containing 1 μM FL-T, 60 μM 

ATP, 75 nM ROP18, and 1% DMSO incubated for 3 h using assay conditions defined in 

Table 1. This method resulted in approximately 30% conversion of substrate to product, 

which lies within the linear range of the reaction and is ideal for detecting inhibitors by 

MCE 45–47, while also allowing us to conserve enzyme over multiple runs.

The assay was then transitioned into a HTS format. Additions were performed using a 

Multidrop Combi for addition of enzyme, substrate, and positive and negative controls. 

Inhibitors to the 384 well plates were added with the NanoScreen liquid and plate handler. 

For HTS screening, each plate included negative controls (no ROP18, for 100% inactive, 

containing 1% DMSO) in rows 1 and 2, while positive controls (containing ROP18 and 1% 

DMSO but no inhibitor) occupied rows 23 and 24. Repeated runs using this configuration to 

monitor ROP18 phosphorylation yielded results consistent with HTS standards (i.e. 

Coefficient of Variation (CV) <10% and Z′ > 0.5 48). We then used a test library of inhibitors 

to validate the reproducibility for the FL-T screen. The 906 compound Published Kinase 

Inhibitor Set (PKIS) (GlaxoSmithKline (GSK)) library was run in duplicate on a single day 

(4 plates total). The assay demonstrated excellent results with Z′ values ≥ 0.9 for all plates 

and a high degree of correlation between duplicate runs (Figure 2).

Using this validated HTS assay, we undertook a discovery effort for ROP18 inhibitors by 

screening both the GSK PKIS and a previously assembled set of ~ 5,000 small molecules 

held in the University of North Carolina (UNC) Center for Integrative Chemical Biology and 

Drug Discovery (CICBDD) compound collection 49, 50.

 Analysis of hits from the HTS

Prior to undertaking the HTS, we tested a set of 32 known kinase inhibitors selected for 

broad kinome coverage by the CICBDD in dose response format. The known kinase 

inhibitor plate generated 3 hits with IC50 ≤ 1.5 μM (Table 2, compounds 14–16). These 

compounds were all broad-spectrum kinase inhibitors, including staurosporine, and two 
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related analogs lesaurtinib and K252a (Table 2). Although these compounds were potent 

inhibitors of ROP18, they are known to have broadly promiscuous activity against human 

kinases and hence they were not pursued further here.

The primary HTS screen tested 5,665 compounds using the MCE assay platform as 

described in the Methods. The compounds screened consisted of focused libraries selected 

for either known activity against kinases or similarity to known inhibitors of kinases. These 

included the 4,727 member kinase-directed library prepared and provided by the 

CICBDD 49,50(22, 40) (23, 41), and the first and second generation GSK PKIS libraries 51 

that contain 906 compounds in total.

Compounds exhibiting >50% inhibition of ROP18 kinase activity in the primary screen were 

designated ‘hits’ (marked red in Figure 2 and above the bar in Figure 3). These initial hits 

were then plated in 10-point dose response curves and tested in the same assay conditions as 

the primary screen against FL-T, FL-E, and FL-8 for hit confirmation, substrate specificity, 

and IC50 values. In total there were 15 hits; 2 from the kinase-directed library and 13 from 

the GSK PKIS. Out of these 15 hit compounds, 13 were confirmed to be active in dose 

response curves, including 1 from the kinase-directed library, and 12 from the GSK PKIS. 

As a reference, the historical hit rate for the kinase-directed library against 20 kinase targets 

tested in the UNC CICBDD is 2.2%. The hit rate for this non-mammalian kinase was 0.04% 

for the kinase-directed library and 1.43% for the GSK PKIS. This low active rate for the 

kinase-directed set presumably results from structural differences between the protozoan 

kinase and the mammalian kinases that were used in the derivation of this cassette 38–40, 52. 

The screen also generated 32 activators, defined as compounds where the enzymatic activity 

of ROP18 increased by more than 50% above the baseline control (Figure 3). Although we 

have not explored these activators further here, they could also be useful biological probes in 

future studies to interrogate the functions of ROP18 by enhancing its activity.

Interestingly, all of the inhibitors had similar potencies on different substrates that varied by 

2–3 fold at most for peptides FL-T or FL-E (Table 2). This result indicates that the 

sensitivity of ROP18 to inhibition of phosphorylation of the two separate Thr residues in this 

substrate is similar, and that the potential of doubly phosphorylated substrates does not 

confound the analysis of potential inhibitors. The slightly higher IC50 values for FL-8 may 

reflect the lower ATP Km (3 μM) for the generic substrate. The two most potent compounds 

from the PKIS and the kinase-focused library, compound 2 and compound 7, showed IC50 

values of 0.17 and 0.30 μM respectively. Both compounds 2 and 7 were ATP competitive 

using FL-T with Ki values of 130 nM and 270 nM respectively (Figure S1, S2). Together the 

active compounds group primarily into three chemical scaffolds, oxindoles (compounds 1–
4), 6-azaquinazolines (compounds 5–7) and pyrazolopyridines (compounds 8–10) (Table 2).

 Structure activity relationships (SAR)

Although the number of analogs in each of the chemical series was small, we are still able to 

glean some information about the relative potencies of related compounds. The oxindoles 1–
4 were originally generated in a drug discovery program as ATP-competitive inhibitors of 

human cyclin dependent kinase 2 (CDK2)53. These compounds were included in the first 

generation PKIS set 54. The 6-azaquinazolines 5–7, and pyrazolopyridines 8–10 were 
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identified as active in a phenotypic screen for antimalarial compounds 55. Both chemical 

series have structural features typical of ATP-competitive kinase ligands, including hydrogen 

bond donor and acceptor moieties that interact with the kinase hinge region. These 

compounds were included in the second generation PKIS. The observed activity of the three 

pyrazolopyridines 8–10 establishes a nascent structure-activity relationship. Compounds 9 
and 10 only differ in the R1 substituent and 10 is approximately one order of magnitude 

more potent in all three assays, pointing to the contribution of the 2,6-difluorophenyl group 

at this position. Compounds 8 and 10, which have the same R1 but different R2 substituents, 

are within twofold activity with FL-T and FL-E and slightly more with FL-8. The higher 

potency observed with R1 = 2,6-difluorophenyl relative to cyclohexyl may be explained by 

its ability to establish a favorable interaction with an edge or face of the aromatic ring.

 Molecular docking of candidate inhibitors

For molecular docking studies, we choose one member of each of the three major scaffolds 

that were identified in the screen (compounds 2, 7, and 10 respectively). All three chemical 

scaffolds that are expected to bind in the ATP-binding pocket of the kinase. To provide 

additional insight into their mode of binding, we used the previously described X-Ray 

crystal structure of ROP18 52 and performed molecular docking with compounds 2, 7, and 

10. We were not able to identify a consistent binding pose for 10, but a reliable docking 

models were produced for compounds 2 and 7. In the model, compound 2 occupies the ATP 

binding pocket of ROP18, and the oxindole scaffold makes a canonical double hydrogen 

bond with backbone atoms of M357 and A359, at the hinge region that links the N-and C-

terminal lobes of the kinase (Figure 4a). Hydrogen bonds are also engaged with surrounding 

side-chains, between the ester carbonyl oxygen and K281, and between the sulfonamide 

group and two C-lobe residues (D362, K365). Most of the other analogs of this scaffold, 

which share the sulfonamide group but have slight differences in the substituents at C 4,5 of 

the oxindole core, were also potent inhibitors of ROP18 in vitro (Table 2). Loss of the ester 

carbonyl interaction with K281 may explain the lower potency of compound 1, while 

substitution of tert-butyl alcohol group in compound 3 may preserve this interaction and 

hence potency.

Compound 7, and related analogs 5 and 6 all share a 6-azaquinazoline. Molecular docking of 

compound 7 revealed that the pyridone moiety of compound 7 forms a double hydrogen-

bond with the backbone of A359 and M357 at the hinge of ROP18 (Figure 4b), effectively 

mirroring interactions observed with the oxindole of compound 2. Additionally, K365 also 

forms a hydrogen bond with one of the oxygen atoms in the sulfonamide in the R1 group of 

compound 7, while this interaction is lost in related analogs such as compound 6, which has 

a 3,5-chlorophenyl group in R1, or in compound 5, which has a sulfone SO2 group oriented 

in a different trajectory than that of the sulfonamide 7 (Figure S3). The R1 group interacts at 

the opening of the cleft in ROP18 and although differences here may influence the potency 

among analogs (Table 2), this region is generally less important than the hinge in affecting 

inhibition potency.

Out computer docking models suggest that additional substitutions on the oxindole ring, or 

modification of the sulfonamide to exploit interactions at the other end of the pocket, may 
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lead to compounds with improved physicochemical properties. For example, decorating the 

phenol ring of 2 or 7 may capture additional interactions with the linker region of ROP18, 

for example the backbone carbonyl of E360 (Figure S4 a). Alternatively, hybrid scaffold 

might be designed that could capture the interactions observed in each individual compound. 

Finally, it might be possible to exploit a side cavity that is juxtaposed to the inhibitor-

binding pocket in order to increase potency and selectivity (Figure S4 b).

 Biological effects of candidate inhibitors

Compounds 2, 7, and 10 were profiled for toxicity against RAW 264.7 macrophages using 

an MTS-based assay to determine growth over 48 h (Figure 5a). The dose-response 

relationship was generated for all compounds to allow EC50 values to be calculated. 

Compounds 2 and 7 were relatively well tolerated with EC50 values of 7.4 μM and 14.2 μM, 

respectively, while compound 10 was less well tolerated and caused growth inhibition with 

an EC50 value of 1.3 μM (Figure 5a). In order to assess the acute effects of exposure to 

compounds, a cytotoxicity assay was conducted based on LDH release during a 4 h 

incubation period. Cytolytic effects were not observed upon treatment with any compound 

up to 10 μM (Figure 5b). At the highest concentration of 20 μM compound 7 caused a 12% 

increase in LDH release, suggesting at this concentration it was mildly cytotoxic. However, 

it was noted that compound 10 induced rapid morphological damage to the host cells in as 

little as 30 min with rounding up and vesiculation of the cells (Figure 5c). These findings 

suggest that this compound was acutely toxic albeit not directly cytolytic. Compound 10 was 

previously identified as active against P. falciparum in growth inhibition assays when used at 

2 μM compound concentration 55. At this dose, it showed 99% inhibition of 3D7 strain and 

75% inhibition of Dd2 strain (a multidrug resistant strain) over 48 h. In the counter screen 

against HepG2 hepatocarcinoma cells, the compound resulted in 78% growth inhibition over 

48 h when applied at 10 μM. Similarly, we observed that this compound inhibited the growth 

of mouse RAW 246.7 cells with an EC50 value of 1.3 μM, indicating that it has considerable 

toxicity. We were also unable to dock this compound to the structure of ROP18 or to 

establish if its mode of action is competitive with ATP. Although we have not tested this 

directly, it is possible that compound 10 represents a promiscuous inhibitor, a class of 

compounds that after works by forming aggregates or colloids that indirectly inhibit enzyme 

reactions 56. Regardless, due to the above complications, we did not pursue this scaffold 

further.

Based on the findings that compounds 2 and 7 are only mildly inhibitory of cell growth but 

not overtly toxic, we decided to test them in a bioassay to determine if they specifically 

inhibit ROP18 in host cells infected with T. gondii. The effects of ROP18 activity can be 

measured by observing the reduction in IRG loading to the PVM in a recruitment assay, as 

described previously 14. Mutants that lack ROP18 are highly susceptible to IRG recruitment, 

while expression of high level of the enzyme block recruitment 14, presumably due to 

phosphorylation of these targets and disruption of their loading into the vacuole. The ability 

of ROP18 inhibitor compounds 2 and 7 to phenocopy genetic ablation of ROP18 was 

therefore assessed based on recruitment of IRGs in IFNγ-activated macrophages.
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In order to determine if compounds 2 and 7 could inhibit ROP18 in vivo, the recruitment of 

Irga6 was visualized using immuno-fluorescence microscopy (Figure 6 a) and evaluated by 

visual assessment of positive vs. negative vacuoles (Figure 6 a–c) or by quantitative 

measurement of the intensity of staining (Figure 6 d,e). Compounds were applied to 

parasites that were allowed to invade IFN-γ-activated RAW macrophages for 30 min prior to 

washing, fixing and immunofluorescence staining. As expected, wild type DMSO-treated 

parasites resisted the recruitment of Irga6 to the PVM while the ROP18-deficient parasites 

were often observed with a coat of Irga6 surrounding the PVM (Figure 6 a). Vacuoles that 

judged to be uniformly positive for Irga6 had a mean fluorescent intensity of ~100 units, 

while those that showed partial labeling had reduced mean fluorescent intensity values of ~ 

50 units. We considered both categories as positive for recruitment of Irga6 to the PVM 

(Figure 6 b,c). In addition, we monitored the distribution of signal on randomly selected 

vacuoles, revealing that there is a wide distribution of staining intensities (Figure 6 d,e). 

These two methods were evaluated statistically, as described below. We initially tested 

compounds at concentrations of 1, 5 and 10 μM; and only observed in creased recruitment at 

the higher dose; hence it was used for quantitative experiments in IRG loading.

Treatment with 10 μM compound 7 led to partial recruitment of Irga6 on a minority of 

vacuoles (Figure 6 a); however, this did not result in a significant increase the proportion of 

Irga6 positive based on visual scoring (Figure 6 b). Treatment of Δrop18 parasites with 

compound 7 also caused a reduction in the proportion of parasites being labeled with Irga6 

(Figure 6 b), suggesting that the compound may be toxic and disrupt IRG trafficking. To 

remove any potential observer bias, this phenotype was assessed by quantitative 

immunofluorescence microscopy where Irga6 recruitment was measured over a region of 

interest encompassing the entire parasite/PVM in a large sample of parasites (Figure 6 d). 

By this quantitative assessment, no significant increase in the amount of Irga6 recruitment 

over the entire PVM was observed after the addition of compound 7 to wild type parasites 

compared to vehicle treated control samples (Figure 6 d). When compound 7 was applied to 

Δrop18 parasites, the amount of Irga6 recruitment was significantly lower than in the vehicle 

treated control parasites, as described above. Due to the apparent toxicity and lack of in vivo 
specificity of compound 7, our focus shifted towards compound 2.

The effect of addition of 10 μM compound 2 to wild type parasites resulted in Irga6 

recruitment to PVM in IFN-γ-activated RAW264.7 cells (Figure 6 a). Irga6 recruitment 

resulted in more complete staining of parasite-containing vacuoles following treatment with 

compound 2 when compared to parasites treated with compound 7 (Figure 6 a). Whether 

scored visually or monitored by quantitative immunofluorescence microscopy, this 

difference was highly significant (Figure 6 c,e). This increase in labeling phenol-copied the 

Δrop18 DMSO control sample (Figure 6 a,c,e), suggesting ROP18 was being inhibited in 
vivo in the wild type sample rendering the vacuole susceptible to IRG loading. Importantly 

the addition of compound 2 to Δrop18 parasites did not lead to a significant increase or 

decrease in the amount of Irga6 recruitment (Figure 6 a,c,e), suggesting that compound 2 
acts specifically on ROP18. Although not tested here, it is also possible that compound 2 
targets ROP17, a distantly related kinase that also phosphorylates IRGs and contributes to 
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parasite virulence 21, as dual inhibition of both kinases might appear phenotypically similar 

to inhibition of ROP18 alone.

Compound 2 was previously profiled as part of the GSK PKIS against mammalian PKs and 

has been extensively profiled in vitro against 220 of the 518 human protein kinases. 

Compound 2 exhibited > 90% inhibition at 1 μM of human protein kinases TBK1, IKK-

epsilon, MELK and CDK3/cyclinE (Table S1). It also inhibits a number of mammalian 

kinases at > 50% when used at 0.1 μM, including CDK2, PDGFRα, and PDGFRβ (Figure 

S5). It is noteworthy that the predicted interactions between compound 2 and ROP18 

described above are all conserved in crystallized complexes of human CDK2 and a family of 

oxindoles, including compound 2 53. Although compound 2 lacks specificity for TgROP18, 

it provides a useful chemical starting point that could allow the development of more 

specific inhibitors useful as research compounds. Furthermore, sequence alignment (not 

shown) indicates the key residues on CDK2 that interact with oxindole-based inhibitors are 

conserved in at least one other Toxoplasma protein kinase, namely TGME49_218220, which 

is a predicted CDK and an orthologue of Plasmodium falciparum MRK. The latter has been 

reported to be sensitive to oxindole-containing inhibitors 57, although compound 2 has not 

been specifically tested in this regard. Hence, although compound 2 was capable of 

inhibiting ROP18 within cells, and abrogating its effects on the host IRG pathway, it may 

also have other targets in the parasite. Hence, it would be interesting in future experiments to 

test the effect of compound 2 on growth of the parasite in vitro, although any such effect is 

unlikely to act on ROP18, as this kinase is not essential for growth. It may also be instructive 

to examine the ability of treated parasites to cause infection in vivo (i.e. in mice) where 

disruption of ROP18 activity is expected to play an important role.

In comparison, compound 7 demonstrated no clear effect on blocking ROP18 activity in vivo 
and may possess other deleterious effects on the host cell due to the reduction of Irga6 

recruitment to ROP18 deficient parasites. However, compound 7 was previously reported to 

inhibit growth of malarial parasites in red blood cells (asexual growth) and is also much less 

toxic to mammalian cells. In a prior screen, it demonstrated > 95% inhibition of P. 
falciparum growth at 2 μM and only 13% inhibition of Hep2G cells at 10 μM 55. Thus, while 

not being an immediately useful tool for chemical biology studies of ROP18, compound 7 
might be of worth in further studies to determine if it possesses growth inhibitory effects on 

T. gondii or other apicomplexan parasites.

 Conclusions

We have developed a HTS assay to detect inhibitors of ROP18, an important virulence 

determinant of T. gondii. Although many compounds that inhibit mammalian kinases were 

not effective against ROP18, we successfully identified several low micromolar inhibitors of 

ROP18 enzyme activity in vitro. One of these compounds was also able to inhibit ROP18 in 

infected cells, pheno-copying the defect in Δrop18 parasites. Compound 2 may be useful as 

a lead for developing more specific inhibitors to further probe the function of ROP18 in vitro 
and in vivo using chemical genetic approaches. One advantage of such an approach is that it 

allows temporal control of inhibition and does not suffer from the potential for 

compensatory changes that can confound conventional genetic approaches. Although the 
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primary role of ROP18 is in targeting IRGs, a potent immune defense in rodent, this system 

is largely lacking in humans 30. However, ROP8 has also been shown to phosphorylate 

ATF6β and this effect is thought to compromise dendritic cells presentation to CD8+ T 

cells 29, suggesting it may also have important roles in other hosts. Thus identification of 

more potent and specific inhibitors of ROP18 may allow chemical genetic dissection of its 

roles in a variety of host and cell types.

 Methods

 Biochemical materials

Fluorescein conjugated 5-Fam-GAAKTGVVEVT-Nle-KR-NH2 (FL-T) and 5-Fam-

GAAKEGVVEVT-Nle-KR-NH2 (FL-E) peptides were synthesized by the UNC High-

Throughput Peptide Synthesis and Array (HTPSA) Core Facility and reconstituted in 100% 

dimethylsulfoxide (DMSO) to 1.5 mM. The fluorescently labeled 5-FAM-

IPTSPITTTYFFFKKK-COOH (FL-8) peptide was purchased from Caliper Life Sciences. 

ProfilerPro separation buffer and coating-reagent 8 were purchased from PerkinElmer.

 GSK PKIS library

The first- and second-generation Published Kinase Inhibitor Sets (GSK PKIS and PKIS2) 

Libraries 51 were provided by GlaxoSmithKline (GSK) and used as an assay validation 

library. The 906 compounds were supplied as 10 μL samples (10 mM in DMSO) in 384-well 

polypropylene microplates (Grenier). On the day of screening, plates were thawed and 

diluted (1:10) to 1 mM (10x the final assay concentration) with assay buffer (Table 1) in a 

384-well plate. A Multidrop Combi Reagent Dispenser (ThermoScientific) was used to add 

9 μL of 10% DMSO to columns 1, 2, 23, and 24 that did not contain compound and served 

as control columns. A MultiMek NSX-1536 assay workstation system fitted with a 384-well 

head (Nanoscreen) was used to transfer 1 μL of each sample into 384-well ShallowWell 

Nunc assay plates (ThermoScientific).

 Kinase-directed library

The 4,727 compound kinase-directed library was prepared and provided by the UNC Center 

for Integrative Chemical Biology and Drug Discovery (CICBDD) 49, 50 (22, 40) (23, 41) (23, 

41). This compound set was selected from >100,000 compounds reviewed from Life 

Chemicals, ChemDiv, Asinex and Enamine kinase-focused libraries based on their similarity 

to known kinase inhibitors as well as to compounds having a hinge-binding motif (e.g. 

heterocycles with a high likelihood to bind the kinase hinge motif conserved in nearly every 

kinase-small molecule X-ray structure) and structure/ligand-based virtual screening. Plates 

were prepared as described for the PKIS library on the day of screening.

 Known kinase inhibitor plate

The known kinase inhibitor plate is a single 384 well plate provided by the CICBDD and 

composed of 32 compounds known to inhibit kinases including chelerythrine chloride, 

genistein, wortmannin, tozasertib, H-89, U0126, lapatinib di-p-toluenesulfonate, SB 203580, 

SP600125, SB202190, dovitinib, tyrophostin AG490, gefitinib, lestaurtinib, dasatinib, 

sunitinib, malate, imatinib, masitinib, sorafenib, tofacitinib, saracatinib, K252a, PD 184352, 
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staurosporine, erlotinib, enzastaurin, axitnib, canertinib, GDC-094, LY294002 and quercetin. 

The plate was prepared using a Tecan Genesis 200 (Research Triangle Park, NC) and 

arrayed in 10 point, 3-fold serial dilution dose curves ranging in concentration from 10 mM 

to 0.0005 mM. On the day of use, plates were prepared as described the PKIS library (see 

above). The final top concentration in the assay was 100 μM.

 Development of the HTS

A Multidrop Combi Reagent Dispenser (ThermoScientific) was used for the addition of all 

reagents to assay plates. First, 10 μL of assay buffer was added to each well in columns 1 

and 2 and served as negative control reactions. Four and one-half microliters of 2.2x enzyme 

solution was added to columns 3–24 of the plate. Plates were incubated at room temperature 

for 10 min then 4.5 μL of 2.2x substrate solution was added to each well of the entire plate. 

Assay plates were incubated in the dark for 3 h at room temperature. Twenty μL of 70 mM 

EDTA (in assay buffer) was then added to columns the plates to stop the reactions. 

Fluorescently conjugated (FL-T) and product, phosphorylated (FL-T) were analyzed in 

ProfilerPro separation buffer containing 0.5% CR-8 and detected using the LabChip EZ 

Reader II microfluidic capillary electrophoresis assay (MCE) platform from PerkinElmer.

Because the compound libraries are dissolved in 100% DMSO, reactions containing 1 μM 

FL-T, 15 μM ATP, 75 nM ROP18 and varying concentrations of DMSO were monitored 

using the LabChip MCE platform to determine DMSO tolerance. There was decreased 

activity in reactions containing ≥2% DMSO, but no effect at 1% or below (data not shown). 

Thus, compounds were prepared as 10 mM stocks in 100% DMSO and then diluted to a 

final concentration of 100 μM (1:100) in 10% DMSO resulting in a final concentration of 

1%, which is well within the DMSO tolerability of the reaction.

For dose response curves, compounds were plated as 3-fold serial dilutions starting with a 

high concentration of 10 mM or 30 mM. The lowest concentration tested in the 10-point 

dose response was either 0.0005 or 0.0002 mM respectively. Dose response compound 

plates were prepared using a Tecan Evo robotic platform. Dose response plates were heat-

sealed and stored at −20°C until day of use. On the day of use, plates were prepared as 

described for the PKIS library (see above). The final highest assay concentration was either 

10 μM or 30 μM.

 Data analysis

Screening data was analyzed using Screenable software (Screenable Solutions) to calculate 

the mean of the positive and negative controls, the percent inhibition (with respect to on-

plate controls) for each reaction and the common assay performance measure, Z′, for each 

plate.  Where max is the negative control (no compound; no inhibition) and 

min is the positive control (70 mM EDTA; 100% inhibition). A Z′ > 0.5 was considered 

acceptable for the plate to be included in the overall data analysis. The LabChip software 

calculated percent conversion for each reaction.

Hits were defined as compounds that inhibited ROP18 at ≥ 50%. The 50% threshold was 

determined as greater than 3 standard deviations from the mean percent inhibition for the 
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entire screen. Dose response curves were calculated using Screenable Software by 

converting the % conversion to % inhibition with respect to on-plate controls and using a 3 

or 4-parameter curve fit.

 Culture of parasite and host cell lines

RAW264.7 macrophages (ATCC TIB-17) were maintained in DMEM (Gibco) containing 

10% defined FBS (Gibco) at 37°C, 5% CO2 and passaged by dilution upon reaching 

confluency. T. gondii RH strain parasites were maintained by passage in HFFs, cultured in 

DMEM 3% FBS, as previously described 26. The genotypes of parasites used in recruitment 

assays were RHΔku80ΔhxgprtΔuprt::CBR (herein described as wild type) and 

RHΔku80Δrop18::HXGPRTΔuprt::CBR (herein described as Δrop18 mutant), as described 

previously 58. All cultures were determined to be mycoplasma negative using the e-Myco 

plus kit (Intron Biotechnology).

 Cell growth assays

Compound toxicity against host cells was determined by CellTiter 96 AQueous One MTS 

Assay (Promega, Madison, WI). RAW cells were harvested by gently scraping in PBS, 

resuspended in DMEM at a concentration of 1×105 cells/ml, and seeded into 96-well tissue 

culture plates (Corning) at 104 per well. Cells were allowed to adhere to the plate overnight. 

Compounds were added to a concentration of 10 μM and serially diluted in steps of 1:3, 

keeping a constant volume of 100 μl/well. Vehicle addition (0.1% DMSO) and media only 

controls were included in each plate. Cells were incubated for 48 h at 37°C, 5% CO2 after 

which 20 μl of MTS reagent was added to wells and plates were incubated for a further 4 h 

at 37°C, 5% CO2. The absorbance of the reaction product was read at 490 nm in an EL-800 

Plate Reader (Biotek). Three technical replicates were performed for each sample and the 

assay was performed three separate times.

 Cell lysis assays

Compounds were assessed for acute cytolytic effects by performing a CytoTox 96 Non-

Radioactive Cytotoxicity Assay (Promega). RAW cells were seeded into 96-well tissue 

culture plates at a density of 104 per well. Compounds were added and serially diluted as 

previously described. After 4 h incubation at 37°C, 5% CO2, 50 μL of supernatant was 

collected from the each well and transferred to a new 96-well plate. Wells containing 

untreated cells were lysed by freezing at −80°C and then thawed at 37°C, to provide a 100% 

lysis control. LDH assay reagent (50 μL) was added to the supernatants and incubated at 

room temperature, protected from light, for 30 min. The reaction was halted by the addition 

of stop solution and read at 490 nm in an EL-800 Plate Reader (Biotek).

 IRG recruitment assays

Recruitment of Irga6 to the parasitophorous vacuoles (PV) was used as a biological readout 

of ROP18 function. RAW macrophages were harvested and seeded onto coverslips in 24-

well tissue culture plates (Corning Inc) at a density of 105 cells per well and allowed to 

adhere overnight. Monolayers were activated with 100 U/ml recombinant mouse IFNγ 

(R&D Systems) and 1 ng/ml LPS (Sigma) for 24 h. Freshly harvested T. gondii tachyzoites 
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were diluted to 105 cells / ml, treated with compounds 2 and 7 at a concentration of 10 μM 

for 30 min at 37°C and then applied to RAW cell monolayers. Parasites were allowed to 

invade for 30 min at 37°C after which the coverslips were washed 3 times with PBS, fixed 

with 4% formaldehyde PBS, and permeabilized with 0.05% Triton X-100 in PBS. 

Coverslips were blocked in 10% goat serum (Life Technologies) PBS and then stained with 

the mouse monoclonal antibody 10D7, which recognized GTP-bound Irga6 59, at a 1:500 

dilution and the rabbit polyclonal anti-TgAldolase 60 at 1:1,000. Alexa-fluor conjugated 

secondary antibodies were applied at 1:1,000 and counterstained with 0.1 μg/ml Hoechst 

33258. Coverslips were mounted in Prolong Gold Antifade reagent (Life Technologies). 

These experiments consisted of 3 biological replicates, with 3 technical replicates in each, 

between 200 and 400 parasites were imaged from these replicates per treatment group.

 Microscopic imaging and quantification of Irga6 loading

Images were acquired using a Zeiss Axioskop 2MOT Plus epifluorescence microscope 

equipped with a 63x oil immersion objective using Axiovision software. Vacuoles were 

scored as “positive” vs. “negative” based on visual assessment. In addition, quantitative 

measurement of digital images was conducted using Volocity software (PerkinElmer). 

Parasites were manually identified by drawing a region of interest around the perimeter and 

the mean fluorescent intensity was calculated for each parasite. The average intensity for 

each parasite was adjusted by subtraction of three representative background regions taken 

from an uninfected host cell and from two infected host cells. Samples were compared to the 

wild type control using a nonparametic Kruskal-Wallace test with Dunn’s correction for 

multiple comparisons in Prism (GraphPad).

 ROP18 cloning and protein purification

The ROP18 gene was cloned and expressed as described previously 14, 26. In brief, an 

expression construct starting from the sequence ERAQ (Glu83 based on the second ATG of 

GenBank CAJ27113) and continuing through the C-terminus was cloned into pGEX-6p-1 

vector between BamH1 and SalI sites with the addition of a 6xHIS tag before the stop 

codon. The plasmid was then transformed into E. coli BL21(DE3)V2RpAcYc-LIC+LamP-

phosphotase cells 40. A single colony was inoculated into 5 ml of TB with ampicillin (100 

μg/ml) + chloramphenicol (34 μg/ml), and cultured overnight at 37°C. The culture was into 

250 ml of fresh TB with ampicillin (100 μg /ml) + chloramphenicol (34 μg /ml) and grown 

for 6 h at 37°C. This culture was then supplemented with 1 mM IPTG and induced at 12°C 

overnight. The cell pellet was lysed in CelLyticB 2x (Sigma-Aldrich) supplemented with 

benzonase (SIGMA) and protease inhibitor cocktail (Sigma). The protein was purified with 

glutathione Sepharose 4B (GE-Healthcare), and dialyzed in 250 mM NaCl, 10 mM MgCl2, 

20 mM Tris-HCl pH 8.0. Glycerol was added to 20% and the protein was stored at −80°C. 

Protein concentrations were measured by SDS PAGE separation and staining with SYPRO-

Ruby (Invitrogen) in comparison to a BSA standard.

 Molecular docking

Superimposition of the ROP18-ATP complex structure (PDB code 4JRN) with a structure of 

CDK2 bound to an analog of compound 2 (PDB code 4FKT) indicated that the 
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conformation of ROP18 Lys365 was incompatible with the position of the analog. 

Therefore, compound 2 was docked to an in silico mutant of ROP18 that altered Lys365 to 

Ala using ICM (Molsoft LLC, San Diego) 61. Docking was performed by a Monte Carlo 

energy minimization procedure with a continuously flexible ligand and a grid representation 

of the ATP binding pocket that accounts for hydrophobic, electrostatic and hydrogen-

bonding potentials. The top docking pose recapitulated the binding conformation of the 

shared scaffold co-crystallized with CDK2 (PDB: 4FKT). Ala 65 was then mutated back to 

wild type Lys and the preferred rotameric state of the Lys365 side-chain of ROP18 was 

identified by energy minimization in the internal coordinates space with ICM 62. Separately, 

compound 7 was docked into the ROP18 crystal structure, using similar methods.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

ATF6β activating transcription factor 6β

CDK1 cyclin dependent kinase 2

DMSO dimethyl sulfoxide

HTS high throughput screening

IFN-γ interferon γ

LD50 lethal dose 50

MCE microfluidic capillary electrophoresis

PKIS Published Kinase Inhibitor Set

PV parasitophorous vacuole

PVM parasitophorous vacuole membrane

ROP rhoptry protein
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Figure 1. 
Kinetic analysis of ROP18 kinase. Determination of the apparent ATP Km for three 

fluorescently labeled ROP18 substrates in their respective microfluidic assays: (a) FL-T, a 

native ROP18 substrate peptide from Irga6 (b) FL-E, a threonine point mutation of the native 

peptide from Irga6, and (c) FL-8, an unrelated peptide substrate. Percent substrate 

conversion to phosphorylated product was plotted against ATP concentration and fit to the 

Michaelis-Menton equation to determine the ATP apparent Km for each of the three 

substrates. All titrations contained 1 μM peptide; a and b were conducted with 50 nM 

ROP18, while c was conducted with ~15 nM ROP18. (d) Determination of optimal enzyme 

concentration for assay. Recombinant ROP18 kinase was titrated using FL-T substrate to 

determine the amount of enzyme needed to obtain ~30% conversion to phosphorylated 

product after a 3 h room temperature incubation.
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Figure 2. 
Reproducibility of the Caliper assay for ROP18. Duplicate runs of the PKIS (Public Kinase 

Inhibitor Set, GSK) were plotted on separate axes to assess the reproducibility of the assay. 

Compounds with inhibitory activity are marked in red. Linear regression, r2 = 0.87.
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Figure 3. 
Summary of high-throughput screening data. Percent inhibition of ROP18 phosphorylation 

of FL-T was plotted for the three compound libraries screened. Compounds with inhibition 

≥ 50% activity threshold (black line) were reconfirmed and tested for IC50 concentrations 

(Table 1). Compounds where the enzymatic activity of ROP18 increased by more than 50% 

above the baseline control were considered activators (black line)
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Figure 4. 
Docking model of compounds 2 and 7 bound to ROP18 (PDB: 4JRN). (a) Compound 2 
(mustard) occupies the ATP binding pocket of ROP18 (light blue), making extensive 

hydrogen bonds with surrounding side-chains and the backbone of the hinge region (M357, 

A359). Additionally the sulfonamide group makes hydrogen bonds with D362 and K365 

from the C-lobe. (b) Similarly, compound 7 binds to M357 and A 359 in the hinge region 

and interacts with K365 in the C-lobe.
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Figure 5. 
Cellular toxicity screening. (a) Inhibition of cell proliferation using an MTS-based assay 

developed 48 h after compound addition to RAW264.7 macrophages. Data points indicate 

mean ± SD, N=3 experiments, n=9 total data points. (b) LDH-release assay to detect acute 

cytolytic activity of compounds on RAW264.7 macrophages after 4 h exposure. Data points 

indicate mean ± SD, N=3 experiments, n=9 total data points. (c) Phase contrast microscopy 

depicting morphological disruption caused by 10 μM compound 10 after 30 min incubation, 

scale-bar denotes 50 microns.
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Figure 6. 
Biological validation of ROP18 inhibitors. (a) Qualitative immuno-fluorescence microscopy 

demonstrating the recruitment of Irga6 to parasitophorous vacuoles (PV) in activated (100 

U/ml IFNγ / 1 ng/ml LPS) RAW macrophages. Parasites were detected by labeling with 

rabbit anti-TgAldolase (secondary antibody: Alexi Fluor 594) loading of Irga6 was detected 

using the mouse maybe 10D7 (secondary antibody: Alexi Fluor488). Nuclei were labeled 

with Hoechst 33258, scale-bar denotes 20 μm. (b, c) Visual scoring of Irga6 positive 

vacuoles surrounding wild type (RH) or Δrop18 parasites in the presence of compound 7, 
compound 2, or 0.1% DMSO vehicle control. Bars indicate mean ± standard deviation, data 

were analyzed by ANOVA with Holm-Side multiple comparison correction. Significant 

differences (P≤0.05) are denoted by *; for clarity non-significant comparisons are not 
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indicated. (d) Quantification of Irga6 loading to the PV of wild type (RH) or Δrop18 
parasites in the presence of compound 7 or 0.1% DMSO vehicle control. Background 

fluorescence was subtracted and parasites with negative values were removed from the 

analysis, data were analyzed using a Kruskal-Wallace non-parametric test, multiple 

comparisons were conducted using Dunn’s correction, P≤0.05. Bars indicate median ± 

interquartile range, significant differences (P≤0.05) are denoted by *. (e) Quantification of 

Irga6 loading to the PV of wild type (RH) or Δrop18 parasites in the presence of compound 

2 or 0.1% DMSO vehicle control, data analysis as previously described for compound 7.
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Table 1

Assay Conditions for microfluidic mobility shift ROP18 assay.

Assay buffer 50 mM HEPES pH 7.4, 0.01% Triton X-100, 10mM MgCl2

Separation buffer ProfilerPro separation buffer with 0.5% coating reagent 8 (CR-8)

Separation conditions −100 V downstream voltage, −1000 V upstream voltage, −1.0 psi pressure, post-sample sip time of 29 seconds, and 
final delay of 110 seconds.

Enzyme 75 nM, prepared in assay buffer 1 mM DTT

Substrate 1 μM prepared in assay buffer with 60 μM ATP (4x Km)

Endpoint assay setup 4.5 μL 2.2x enzyme solution added to compound plate (1 μL of 1 mM in 10% DMSO), incubate 10 minutes, 4.5 μL 
2.2x substrate solution added, incubate 3 h, 20μL stop solution added

Incubation 3 h at room temperature

Reaction plate Nunc shallow 384 well

Stop solution 70 mM EDTA, pH 7.5 in assay buffer
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