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Abstract

Opioid therapeutics are excellent analgesics, whose utility is compromised by dependence. 

Morphine (1) and its clinically relevant derivatives such as OxyContin (2), Vicodin (3), and 

Dilaudid (4) are “biased” agonists at the μ opioid receptor (OR), wherein they engage G protein 

signaling but poorly engage β-arrestin and the endocytic machinery. In contrast, endorphins, the 

endogenous peptide agonists for ORs, are potent analgesics, show reduced liability for tolerance 

and dependence, and engage both G protein and β-arrestin pathways as “balanced” agonists. We 

set out to determine if marine-derived alkaloids could serve as novel OR agonist chemotypes with 

a signaling profile distinct from morphine and more similar to the endorphins. Screening of 96 

sponge-derived extracts followed by LC-MS-based purification to pinpoint the active compounds 

and subsequent evaluation of a mini library of related alkaloids identified two structural classes 

that modulate the ORs. These included the following: aaptamine (10), 9-demethyl aaptamine (11), 

demethyl (oxy)–aaptamine (12) with activity at the δ-OR (EC50: 5.1, 4.1, 2.3 μM, respectively) 

and fascaplysin (17), and 10-bromo fascaplysin (18) with activity at the μ-OR (EC50: 6.3, 4.2 μM 

respectively). An in vivo evaluation of 10 using δ-KO mice indicated its previously reported 

antidepressant-like effects are dependent on the δ-OR. Importantly, 17 functioned as a balanced 
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agonist promoting both G protein signaling and β-arrestin recruitment along with receptor 

endocytosis similar to the endorphins. Collectively these results demonstrate the burgeoning 

potential for marine natural products to serve as novel lead compounds for therapeutic targets in 

neuroscience research.
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INTRODUCTION

Opioids are exceptionally effective analgesics and the mainstay for the treatment of severe 

pain in many settings both acute and chronic.1,2 The first opioid (the alkaloid morphine, 1, 

Figure 1) has been used for centuries for pain relief and its euphoric properties, long before 

its target of action, the mu opioid receptor (μ-OR), and related delta (δ-OR) and kappa (κ-

OR) opioid receptors were identified.3 Since its discovery in 1804 from extracts of the 

opium plant Papaver somniferum, a number of different small molecules have emerged that 

share the mechanism of action (MOA) of morphine in terms of how they target the μ-OR.4 

Selected examples along with more detailed history are presented in Figure S1 (Supporting 

Information) with discovery dates in parentheses. Conversely, the endogenous ligands for the 

opioid receptors, collectively referred to as endorphins, are neuropeptides, which are 

structurally unrelated to morphine.2 Because the endorphins are rapidly hydrolyzed, do not 

easily cross the blood brain barrier, and were discovered many years after morphine, 

historically most therapeutic development of opioids has focused on compounds that 

resemble morphine rather than the endorphins.5,6 However, the utility of morphine and other 

clinically important therapeutic derivatives including oxycodone (2, OxyContin), 

hydrocodone (3, Vicodin), and hydromorphone (4, Dilaudid) is compromised by the 

development of tolerance to the analgesic effects of the drug,7 which, in turn, leads to dose 

escalation and a growing epidemic of increased liability for dependence.8 Consequently, 

there remains a great resistance among clinicians and the general population to use opioids 

for pain management because of perceived risk of addiction. These fears are not 

unwarranted. It is estimated that 2.5 million people begin abusing opioid painkillers each 

year and the number of users of both heroin and prescription opioids has doubled in the past 

10 years.9 Some have become dependent as a consequence of recreational use of 

prescription painkillers. Nevertheless, many abusers of prescription painkillers are among 
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the 40 million people suffering from chronic pain, and have developed dependence after 

using the opioids for legitimate purposes. Both of these trends highlight the need to develop 

new opioid therapeutics with a reduced abuse liability. Intriguingly, the endorphins show 

excellent analgesic activity but with reduced liability for tolerance and dependence 

compared to morphine providing a clue as to how to approach this goal.10,11

Recently, new information has emerged regarding key signaling differences between μ-ORs 

activated by classic morphine-like opioid agonists and those activated by the endorphin 

chemotype such as Met-enkephalin (5) and DAMGO(6). Specifically, it was discovered that 

morphine (1) and its derivatives are “biased” opioid agonists that potently activate one 

effector downstream of the receptor, the G protein, while only poorly engaging β-arrestins 

and the endocytic machinery, an important second effector of G protein-coupled receptor 

(GPCR) signaling (see Figure 1). More specifically, endorphin-occupied receptors are much 

better substrates for GPCR kinases (GRKs) than are morphine-occupied receptors.12,13 

Consequently, morphine-occupied receptors engage weakly with arrestins14 and are poorly 

endocytosed12,15 unless GRKs12 and/or arrestins15 are overexpressed. Importantly, increases 

in GRK/arrestin expression, not receptor expression, are required to achieve an Emax for 

arrestin recruitment14 and endocytosis.12,15 Consequently, morphine and its derivatives are 

not partial agonists in the classical sense whereby maximal effect is dependent on receptor 

reserve. Instead morphine and its derivatives are biased agonists for arrestin recruitment, 

signaling poorly to the arrestin effector regardless of receptor number. Therefore, any 

mathematical model used to quantify bias would benefit from incorporating such innate 

partial agonism that cannot be overcome with increased receptor expression into the 

calculation.

This signaling bias toward G protein is shared by all the opioid therapeutics derived from the 

scaffold of morphine (1), and it is distinct from the “balanced” engagement of G protein and 

arrestin effectors that is promoted by the endorphins (Figure 1). Interestingly, the small-

molecule agonists methadone (S6), fentanyl (S8), and etonitazine (S9) (shown in Figure S1), 

which are structurally distinct from morphine, all have a signaling profile somewhere 

between that of the morphinan and endorphin chemotype. Furthermore, these compounds all 

show a reduced liability to produce tolerance compared to morphine in rodent models when 

administered at equi-analgesic doses.16–24 On the other hand, buprenorphine (S5) has a 

signaling bias for G protein even greater than that of morphine and produces increased 

tolerance.24

While there are now many structurally distinct G protein biased agonists for the μ-OR (such 

as PZM21 (S14), TRV130 (S13), herkinorin (S12), and the morphinan chemotype shown in 

Figure S1), there is a scarcity of reported balanced opioid agonist chemotypes with a 

signaling profile similar to the endorphins. Among the existing opioids, only methadone 

(S6) approaches a signaling profile similar to the endogenous ligands. However, 

methadone’s variable and unpredictable pharmacokinetics and pharmacodynamics in the 

human population make it an unfavorable first-line analgesic. Therefore, to more thoroughly 

examine the hypothesis that a balanced opioid agonist could ameliorate the side effects of 

tolerance and dependence associated with long-term opioid use, there is a need to identify 
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additional balanced opioid agonists with a signaling profile comparable to the endorphins. 

The question was where to search for such small molecules.

The fact that marine natural products show a chemical diversity often strikingly different 

from their terrestrial-derived counterparts suggest that novel scaffolds could be obtained 

from these sources.25 In terms of structural classes, marine natural products represent a 

burgeoning source of distinct lead compounds in neurobiological research.26,27 Several have 

now emerged as therapeutics or are in clinical development for the treatment of neurological 

disorders as shown in Figure 2.28 Their structures include ziconotide (7, syn. Prialt)29 and 

tetrodotoxin (8),30,31 used for the treatment of severe pain, and bryostatin-1 (9), which is 

being investigated for Alzheimer’s disease (AD).32 Over a dozen chemotypes have displayed 

neuroactive efficacy in vivo, and nearly all have at least one or more ascribed MOA.25,28–35 

The first compounds to show in vivo antidepressant activity were bryostatin-1,36 5,6-

dibromo-N, N-dimethyltryptamine and aaptamine. However, a MOA for the latter two 

compounds has not been clearly defined.37 To date, greater than 50 different chemotypes of 

marine-derived compounds have been reported as either neuroactive chemical probes or in 
vitro therapeutic leads for peripheral and central nervous system (CNS) indications, 

particularly for pain, AD, or as neuroprotective agents.26,27,38–40 Most were initially 

investigated based on their (a) fortuitous discovery of biological activities of interest,25–27 

(b) unique chemical scaffold that fit well-defined pharmacophore models,41 or (c) 

environmental health and food safety issues.42 Surprisingly, there are few reports of 

neuroactive marine-derived lead compounds discovered using target-based high-throughput 

screening (HTS) to identify novel chemical probes or affect targets important in disease or 

treatment.43,44 One reason cited for this was that traditional methods for profiling natural 

products for therapeutic lead discovery were not amenable to HTS platforms.45 This has 

since been addressed by industry and academic research groups that have shown that using 

purified natural product libraries can streamline lead compound discovery using HTS 

methods.46–50

RESULTS AND DISCUSSION

To examine whether novel opioid agonists with distinct scaffolds could be identified from 

marine sources, we profiled 96 marine sponge-derived extracts and a purified mini library of 

marine sponge-derived alkaloids using activity based HTS.46 Our HTS utilized HEK293T 

cells stably expressing the human μ-OR and δ-OR.51 Our approach, shown in Scheme 1, 

generated purified libraries of marine natural products compatible with cell and target based 

HTS programs. The process involved four steps, which included the following: (a) 

generating a marine-sponge derived crude extract library, which was screened for μ-OR and 

δ-OR agonist and antagonist activity in cells expressing each of these two targets, (b) 

processing bioactive extracts using LC-MS based purification to provide (c) a library of 

purified marine natural products from each active extract, which were rescreened for μ-OR 

and δ-OR agonist and antagonist activity, in order to (d) identify the lead compound(s) using 

dereplication and or structure elucidation strategies.

Our first lead was a crude methanolic extract from an Indonesian sponge Aaptos aaptos 
(coll. no. 92553) that exhibited both μ-OR and δ-OR receptor agonist activity (not shown). 

Johnson et al. Page 4

ACS Chem Neurosci. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Follow up evaluation of the LC-MS based purification library pinpointed two LC-MS m/z 
ion peaks (213 m/z, and 215 m/z) shown in Figure 3a. These peaks corresponded to 

measurable δ-OR agonist activity (blue bars – A8, B4) on par with the standard D-Pen(2), 

D-Pen(5)]-enkephalin (DPDPE, S16) (A1, 100 nM) and greater than the crude extract 

(92553 FM, A2,) in Figure 3b, but unfortunately, only very weak partial agonism at the μ-

OR. Nevertheless, we quickly dereplicated these two LC-MS peaks as demethyl (oxy)–

aaptamine (11) and 9-demethyl–aaptamine (12) shown in Figure 4 using taxonomy, and 

mass spectrometry m/z ion and 1H NMR data that matched literature values.52,53

Aaptamine (10) is reported to have a significant effect on the immobility time of mice in the 

forced swim test (FST) mediated by an unknown target.37 The FST is commonly used to 

assess antidepressant like activity in mice. Several structurally distinct opioid receptor 

agonists have been shown to reduce immobility time on the FST.54–58 In addition mice 

lacking δ-ORs display increased depression like behavior on this test.59 We speculated that 

aaptamine, like demethyl (oxy)–aaptamine (11) and 9-demethyl–aaptamine (12) identified in 

our HTS, would exhibit δ-OR agonist activity based on its structural homology to 11–12, 

which it did as shown in Table 1. We further speculated that the antidepressant activity of 

aaptamine could be mediated through its agonist activity at the δ-OR.

To examine this hypothesis, we assessed the reduction in time spent immobile in the FST 

with administration of aaptamine (10) in both wild type (WT) mice and δ-OR knockout 

mice (δ-KO)60 (see Methods). Similar to a previous report,37 aaptamine (40 mg/kg, ip) 

showed antidepressant-like activity in WT mice as shown in Figure 5 (**p = 0.003, WT 

saline vs WT 10, each circle represents an individual animal). In Figure 5a, the WT mice 

treated with vehicle (saline, black open bar) were immobilized on average for ~30 s while 

those exposed to aaptamine (gray solid bar) were immobilized on average for ~10 s, with 

one-third of the mice swimming the entire duration of the test, indicative of an 

antidepressant-like effect. This dose of aaptamine had no effect on general locomotion in 

WT mice (Figure 5b compare saline, open black bars to 10, solid gray bars, p = 0.76)), 

indicating a specific effect of aaptamine on forced swim. Consistent with previous reports,59 

the δ-KO mice showed increased depression-like behavior on this forced swim test when 

exposed to saline (Figure 5a compare WT saline, black open bars, to δ-KO treated with 

saline, red open bars, #p = 0.013). More importantly, aaptamine had no effect on the δ-KO 

mice in the forced swim test (Figure 5a compare saline red open bars to 10 red solid bars, p 
= 0.20). Aaptamine likewise had no effect on general locomotion in δ-KO mice (Figure 5b, 

compare open and closed red bars), although δ-KO mice had reduced locomotion compared 

to WT mice as previously reported59,60 (Figure 5b compare WT saline, black open bar to δ-

KO saline, red open bar, **p = 0.01). Taken together, this data suggested the antidepressant 

like activity of aaptamine is mediated, at least in part, by activity at the δ-OR. Future 

experiments will determine the structure activity relationship (SAR) requirements of this 

class for the δ-OR, and whether it modulates other targets to influence anxiety. More 

importantly, the discovery of aaptamine as a δ-OR agonist provided incentive to continue to 

mine the marine environment for other opioid ligands in our search for a balanced μ-OR 

agonist.
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From here it seemed logical to evaluate compounds 10–12 alongside a mini library of 

marine-derived alkaloid heterocycles to gain insight into their SAR at the opioid receptor 

targets. This was based on a growing number of recent reports of structurally distinct 

marine-derived alkaloids that have shown potential as lead compounds by serving as GPCR 

ligands (including the opioid receptor agonists).41,61,62 We began by using compounds 

drawn from the UCSC marine natural products repository shown in Figure 4. We selected 

the following chemotypes with either a secondary or tertiary amine nitrogen atom (in bold) 

separated by either three or four bonds to an adjacent tertiary amine or quaternary nitrogen 

atom (in gray). This pattern has been observed in other selective μ-OR and δ-OR agonist 

chemotypes such as fentany1,63 etonitazine,64 and mitragynine.65 The structures we further 

evaluated included the aaptamines (10–12) the makaluvamines (13–16),66 fascaplysins 

(17,18)67 and the plakinidines (19,20).68 Compounds 10–20 were screened for their agonist 

and antagonist activity at the δ-OR, μ-OR, and κ-OR using as standard controls the peptide 

agonists DPDPE, DAMGO (6), hydrolysis resistant forms of the endorphins, and 

dynorphin.69 These results are summarized in Table 1. None of the compounds were more 

potent agonists than the standards (DPDPE, δ-OR: EC50 = 0.007 ± 0.002 μM or 6, μ-OR: 

EC50 = 0.001±0.002 μM). However, as expected the aaptamines (10–12) displayed low 

micromolar dual δ-OR and μ-OR agonist activity (10, δ-OR: EC50 = 5.1 ± 0.2 μM, μ-OR: 

EC50 = 10.1 ± 1.4 μM, 11, δ-OR: EC50 = 4.1 ± 0.1 μM, μ-OR: EC50 = 6.03 ± 1.2 μM, 12, δ-

OR: EC50 = 2.3 ± 0.1 μM, μ-OR: EC50 = 4.1 ± 1.2 μM). While 10–12 were full agonists at 

the δ-OR, they were only weak partial agonists at the μ-OR (Emax < 10% at 50 μM) and 

showed no κ-OR activity (not shown). The other tricyclic chemotypes (13–16) were not 

active in any of these assays up to 50.0 μM. Conversely, two of the pentacyclic chemotypes, 

fascaplysin (17) and 10-bromo-fascaplysin (18) displayed selective low micromolar potency 

and full efficacy for the μ-OR as shown in Tables 1, 2 and Figure 6 (17, EC50 = 6.3 ± 0.2 

μM, 18, EC50 = 4.2 ± 3.7 μM, Emax 100%) with no significant agonist or antagonist activity 

at δ-OR or κ-OR activity up to 50.0 μM (data not shown). Compounds 19,20 were not active 

in any of μ-OR, δ-OR, κ-OR assays up to 50.0 μM.

We found the identification of fascaplysin (17) as a μ-OR agonist intriguing, as it is 

structurally distinct from the major classes of the opioid chemotypes shown in Figure S1. 

We therefore proposed that fascaplysin might engage the μ-OR differently than the other 

opioid chemotypes and, thereby, signal with a different bias. Indeed, fascaplysin not only 

promoted G protein signaling as a full agonist (Figure 6, Table 2) but also promoted 

endocytosis of the μ-OR as shown in Figure 7. As previously reported13,70 the endorphin 

chemotype DAMGO (6, Figure 7b) and methadone (Figure 7c) also promoted endocytosis of 

the μ-OR, as evidenced by a redistribution of labeled receptors from the cell surface to 

intracellular compartments. Conversely morphine (Figure 7d) did not promote significant 

endocytosis, as evidenced by the receptors remaining on the plasma membrane as in the 

untreated control (no treatment, Figure 7a). In contrast, although fascaplysin (EC50 = 6.3 

μM) is significantly less potent than morphine (EC50 = 0.0068 μM) for G protein signaling 

at the μ-OR as shown in Table 1, 2 and Figure 6, it promoted substantial endocytosis as 

shown in Figure 7e. Fascaplysin (17) shares structural homology with another natural 

product μ-OR agonist, mitragynine (21), as shown in Figure 8. Surprisingly, we found that 

mitragynine functions as a G protein biased agonist, as it did not promote receptor 
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endocytosis as shown in Figure 7f, consistent with recent reports.71,72 We then examined 

endocytosis in a second non visual, biotin protection assay as previously described.73 In 

accordance with the results of the visual assay (Figure 7a–f), the biotin protection assay 

showed that DAMGO (6) and methadone promoted significant endocytosis (Figure 9). This 

was revealed by the intense signal (produced by the large protected pool of endocytosed 

receptors) compared to the no treatment (NT) control. In contrast, morphine induced no 

significant endocytosis beyond that in the cells that were not treated. Also, in agreement 

with results in Figure 7, fascaplysin promoted substantial endocytosis of the receptor while 

mitragynine did not do so.

To better quantify the varying bias of these compounds for G protein and β-arrestin 

effectors, we assessed β-arrestin-2 recruitment to the μ-OR using a dynamic BRET-based 

assay shown in Figure 10, Table 3. Fascaplysin was toxic at concentrations higher than 50 

μM, so a full dose–response curve was not achieved. Consequently, we could not determine 

whether fascaplysin is a full agonist at this effector. Nevertheless, the efficacy of fascaplysin 

at the β-arrestin-2 effector was significantly greater than that of morphine (Figure 10, Table 

3, Emax morphine 22%, Emax fascaplysin 78%), In short, fascaplysin by engaging both G 

protein and β-arrestin-2 effectors at a ratio comparable to DAMGO (6) functions as a new 

balanced μ-OR agonist similar to the endorphins and methadone and distinct from the 

traditional morphinan opioid chemotypes.

A number of natural and synthetic analogues of fascaplysin (17)67,74–77 and mitragynine 

(21)65,71,72 have been reported. Specifically, there are analogs of mitragynine from the 

medicinal plant Mitragyna speciosa that show 100-fold greater potency at the μ-OR versus 

morphine with significant analgesic activity and potentially reduced side effect liability in 

animal models.65,71,72 Extracts of M. speciosa (known as Kratom) have long been utilized in 

S. East Asia for the treatment of pain and for withdrawal symptoms of morphine (see ref 71 

and references therein). The recent classification of Kratom as schedule I by the U.S. Drug 

Enforcement Agency (DEA) reflects that the active compound(s) derived from this extract 

are potent opioid agonists on par with morphine. Kratom use worldwide has grown 

considerably in recent years, while definitive evidence for its therapeutic efficacy or 

addiction potential in humans is conflicting and warrants further investigaton. (see ref 71,72 

and references therein). Moving forward it will be helpful to assess the SAR of the 

fascaplysin analogues and other chemotypes with regards to their μ-OR signaling profile 

with the goal of identifying additional balanced agonists with greater potency than 

fascaplysin. Future work will focus on initiating new collaborations to screen other novel μ-

OR agonists to (a) determine if they engage G protein and the arrestins comparable to the 

endorphins and (b) more fully explore whether balanced opioid agonists retain analgesic 

potency that demonstrate reduced liability for tolerance and dependence similar to the 

endogenous ligands of the endorphin chemotype.

Several conclusions can be drawn from our pilot study screening marine sponge-derived 

extracts and our mini library of marine-derived alkaloids. First, crude extract and purified 

marine natural product libraries compatible with neuroactive target-based high-throughput 

screening can accelerate the discovery of lead compounds and their MOA. This approach 

allowed us to rapidly identify the aaptamines (10–12) as a new structural class of δ-OR 
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agonists with a previously undisclosed MOA. We believe this MOA for aaptamine could be 

responsible, at least in part, for its reported in vivo antidepressant-like effects37 as other δ-

OR agonists have shown anxiolytic and antidepressant activity in vivo.78–84 Second, using 

marine-derived alkaloids as seed compounds for GPCR SAR analysis can lead to the 

discovery of new chemotypes with unreported neuroactive MOA, and altered signaling bias. 

Using this process we discovered the fascaplysins (17–18) to be a novel class of μ-OR 

agonists. Here we report that fascaplysin functions as a balanced agonist that activates G 

protein, recruits β-arrestin, and promotes endocytosis, similar to the endogenous agonists 

(the endorphins) and distinct from the traditional opioid chemotypes.

There is mounting evidence that signaling bias can be leveraged to alter the side effect 

profiles of GPCR therapeutics, and opioids in particular. For example, opioid agonists that 

are G protein biased, including the clinical candidate TRV130 (S13), show excellent 

analgesic potency with reduced side effects of constipation and respiratory depression in 

animal models85 and healthy volunteers.86,87 However, buprenorphine, a clinically important 

drug with an extreme G protein bias on par with TRV130 produces significant respiratory 

depression and constipation both in rodent models and humans, suggesting that G protein 

bias per se is not sufficient to reduce these side effects.88 Instead, the high intrinsic efficacy 

of TRV130 for G protein signaling compared to morphine and buprenorphine and the 

consequent lower receptor occupancy necessary for pain control with TRV-130 could 

explain its reduced side effects. In fact, there is clear evidence that at least some of the 

effects of opioids, on respiration are mediated by activity from the G protein.89 Another G 

protein biased agonist, PZM21(S14)90 also shows reduced respiratory depression and a 

reduced ability to produce conditioned place preference (CPP), an indicator of reward. These 

results are consistent with the finding that constipation and respiratory depression in 

response to opioids are reduced in mice that lack β-arrestin-2.91 (see Figure 1). However, 

they conflict with the observation that disruption of β-arrestin-2 actually increases the 

rewarding properties of opioids,92 suggesting that the reduced CPP to PZM21 is due to 

another property of this compound rather than its bias away from β-arrestin-2. One likely 

explanation is the potent antagonist activity of PZM21 at the κ-OR, which has been shown 

to have significant influences on reward processing (for review, see ref 93).

To date, there remains conflicting evidence for the role of signaling bias in the development 

of tolerance and dependence. On one hand, balanced agonists that both signal to G protein 

and recruit β-arrestin along with driving endocytosis, such as methadone, fentanyl, and the 

endorphins have reduced liability for producing tolerance and dependence when 

administered at equi-analgesic doses.16–24 In addition, morphine produces reduced 

tolerance, reduced dependence, and reduced “addiction” while also showing enhanced 

analgesia and reward in mice who express a mutant μ-OR that engages both G protein and 

arrestins when occupied by morphine.94,95 These results suggest that balanced signaling can 

reduce the side effects of tolerance and dependence without compromising analgesic 

efficacy (see Figure 1). On the other hand, mice that lack β-arrestin-2 show enhanced 

analgesia96 and reward92 as well as reduced tolerance to morphine (but still show 

dependence),97 suggesting that preventing engagement with arrestin can reduce tolerance. 

Taken together, these results seem to contradict one another. Consequently, an important 
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goal in this field should be to resolve this conundrum. Several experiments have provided 

important clues as to how to proceed. For example, tolerance to opioids that normally 

engage arrestins (e.g., methadone) is not reduced in the β-arrestin-2 knock out mice.22 This 

suggests that receptors occupied by morphine may be interacting with arrestins in a distinct 

way, and that receptors occupied by other balanced agonists (like the endorphins or 

fascaplysin) would not do so. Indeed, there is evidence that this is the case. For example, 

morphine promotes receptor desensitization (one suggested candidate for acute tolerance) 

via phosphorylation of protein kinase C (PKC), whereas endorphins do not promote (PKC) 

phosphorylation (for review, see ref 98).

When considering the role of arrestins in the side effect profile of opioid drugs, it is also 

important to keep in mind that arrestins serve at least three important roles in modulating 

signaling from GPCRs: (1) they “arrest” G protein signaling by uncoupling the receptor 

from G protein; (2) they promote receptor-mediated signaling to diverse kinase cascade 

molecules including ERK, Akt, and Src, by scaffolding the proteins close to the receptor; 

and (3) they serve as a linker between the receptor and the endocytic machinery (see Figure 

S2, Supporting Information). Hence, G protein biased ligands that poorly recruit arrestins 

could be deficient in three distinct ways: (a) desensitization of G protein signaling, (b) 

interaction with intracellular kinase cascades, and (c) endocytosis, recycling, and 

resenstitization of receptors and receptor-mediated signaling. To date, there is no method 

that selectively disrupts only one of these three arrestin-mediated events. For example, 

genetic deletion of β-arrestin-2 prevents arrestin-mediated signaling (to ERK for example), 

but it also eliminates its modulatory role in titrating G protein signaling. Loss of either (or 

both) of these signal transduction roles could be responsible for the changes in effect/side 

effect profile of opioid drugs in β-arrestin-2 knock out mice. By extension, since the degree 

of bias of individual ligands is often measured by assessing recruitment of arrestin (as in 

Figure 10 here), or monitoring endocytosis (as in Figure 7 and 9 here), whether distinct G 

protein biased ligands are equally deficient at all three signaling roles of arrestin remains 

unclear.

In summary, one of the most effective ways to examine the role of signaling bias in the side 

effects of tolerance and dependence is to add new chemotypes to the short list of balanced μ-

OR small molecule agonists and compare them to the many biased agonist chemotypes with 

regard to effect/side-effect profiles. That being said, every compound has its own intrinsic 

set of pharmacological properties, and no two ligands differ only in signaling bias. 

Therefore, it is important to use caution when drawing conclusions as to the role of signaling 

bias. Furthermore, although changing the signaling profile of an opioid agonist can alter the 

rate at which tolerance and dependence develop, all the opioids, even the endorphins, 

produce tolerance and dependence with enough exposure (for review, see ref 99). It may not 

be possible to alleviate all the side effects of opioids with a single approach. G protein fully 

biased agonists may provide pain relief for acute indications with reduced risk of 

constipation and respiratory suppression. Balanced agonists (similar to the endorphin 

chemotype) may provide pain relief for chronic conditions with reduced liability for 

dependence. Ultimately identifying the correct signaling profile to reduce the development 

of tolerance to opioids could potentially solve all these issues, as reducing dose escalation 

would lower the risks of both fatal respiratory events and dependence.
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In conclusion, we have identified two new marine-sponge-derived natural product agonists at 

the opioid receptors. The first, aaptamine (10) is a δ-OR agonist on a scaffold distinct from 

other known δ-OR ligands. While aaptamine has previously been shown to have 

antidepressant like activity, here we demonstrate that activity is mediated at least in part by 

the δ-OR. The second, fascaplysin (17) is a selective μ–OR agonist. Most importantly, we 

have demonstrated that fascaplysin is a balanced agonist, adding a new chemotype to the 

short list of compounds with a signaling profile that resembles endorphins. Future work will 

interrogate the SAR of this structural class, with the hopes of improving potency without 

altering its signaling profile.

METHODS

General Experimental Procedures

LC-MS based purification was performed using a Waters purification system running 

Empower 2 software that utilized the following: (a) 717 Autosampler, (b) 510 HPLC pumps, 

(c) 996 PDA detector. The elution was split between a (1) Sedex model 55 evaporative light 

scattering detector (ELSD), (2) an Applied Biosystems Mariner electrospray ionization time-

of-flight (ESI-TOF) mass spectrometer, and (3) a sample collection tube. Sample collection 

was performed using a Gilson 215 liquid handler controlled with Gilson Unipoint LC 

software as reported in detail previously.46 NMR experiments were run on a Varian Unity 

500 spectrometer (500 and 125 MHz for 1H and 13C respectively). High accuracy mass 

spectrometry measurements were obtained using the Applied Biosystems Mariner ESI-TOF 

mass spectrometer.

Biological Material, Collection, and Identification

Specimens used for the 96-well plate crude extract library were prepared from extracts 

provided using the UCSC marine natural products repository. These extracts were derived 

from sponges obtained during a 1992 expedition in Waigeo, Indonesia. The active crude 

extract from sponge Aaptos aaptos (coll. no. 92553, FM) was taxonomically identified as A. 
aaptos by Dr. Christina Diaz (1992). Additional raw material of A. aaptos was obtained from 

a 2011 collection of Aaptos aaptos (coll. no. 11308) from Waigeo, Indonesia.

Scaled Up Isolation of Aaptamine for In Vivo Evaluation

Using a standard solvent partitioning scheme reported elsewhere,66 aaptamine (10) was 

obtained from the butanol extract (coded WB) of coll. no. 11308. The WB extract was 

further purified using repeated reverse phase HPLC (Phenomenex Luna 250 × 10 mm with a 

4.6 μm column) using gradient conditions of 10% → 100% CH3CN:H2O with 0.1% formic 

acid (45 min.) using a λmax = 254 nm, sensitivity = 2.0 AU and a flow rate of 2.0 mL/min. A 

series of injections ([4.0 mg/100 μL] × 30) of the WB extract were made which liberated 

approximately 41.2 mg of 10 which was used to conduct the Porsolt swim test and 

locomoter tests using 36 mice reported in Figure 5. Purity of 10 was confirmed from 1H 

NMR (Figure S3 in Supporting Information) and mass spectral data (not shown) that 

matched literature values.52,53
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Extraction and 96-Well Plate Crude Extract Library Preparation for HTS Bioassay

Sponge extracts evaluated in the 96-well plate crude extract library (shown in Scheme 1, step 

a) were prepared using a traditional solvent partition scheme to provide four sample codes, 

and a more detailed description is provided elsewhere.66 The process involved generating a 

butanol soluble extract (coded WB), hexanes soluble extract (coded FH), methanol soluble 

extract (coded FM), and dichloromethane soluble extract (coded FD). Approximately 1.0 mg 

of 24 selected sponge specimens from a 1992 expedition (which included their WB, FH, 

FM, and FD extracts) were prepared for evaluation into a 96-deep-well plate extract library 

and dissolved in methanol using 1000 μL. A 50.0 μL portion of DMSO was added to each 

well containing extract. The 96-well plate was then counter balanced with a duplicate blank 

96-well plate containing 1000 μL of methanol and evaporated using a Savant AES2010 

speed vac concentrator (room temperature) for 24 h. The remaining solution was devoid of 

methanol and contained a concentrated soluble extract solution of 1.0 mg/50 μL (20 mg/mL) 

in DMSO. This 96-well plate was shipped on dry ice (to prevent spillage and or chemical 

degradation) to UCSF for initial bioassay evaluation.

LC-MS-Based Purification To Generate a Library of Purified Marine Natural Products for 
HTS Bioassay

Approximately 15.0 mg/100 μL of the bioactive lead extract (coded 92553 FM) was 

processed using LCMS based purification into a 96-deep-well plate to generate a library of 

purified marine natural products as shown in Scheme 1, steps b and c. Automated separation 

(reported elsewhere46) was performed on a Luna 4.6 μm, C18(2) 100 Å 10 × 250 mm 

column (Phenomenex, Inc.) in conjunction with a guard column using a larger 10.0 × 10.0 

mm C18 (ODS) cartridge (holder part number: AJ0-7220, cartridge part number: AJ0-7221). 

This involved a gradient elution that consisted of 10:90 to 20:80 (acetonitrile:water, with 

0.1% formic acid) over 30 min with a flow rate of 2.0 mL/min which eluted 2.0 mL fractions 

into each of 48 wells. The library was split into a second 96-well plate for reference using a 

12-channel pipet withdrawing 1.0 mL/well fraction to create an exact copy and counter 

balance for centrifugal drying. A 25 μL aliquot of DMSO was then added to 48 of the 

original 96-well plate fractions and the solution was evaporated using a Savant AES2010 

SpeedVac. After 24 h, the plates were removed, and the original purified natural product 

library well fractions remained suspended in a solution of approximately ~0.15 mg/25 ul 

(~1–3 mg/mL) of DMSO. These values are based on assumed weights of an average of 

0.15mg/well estimated from the 15.0 mg/100 μL injection divided into the two library plates 

(containing fractionated material of 7.5 mg each total) that were equally fractionated into 48 

wells. The library of purified marine natural products was then transported on dry ice (to 

prevent spillage and or chemical degradation) to UCSF for follow up bioassay to pinpoint 

the lead compound(s) responsible for the activity. Once received it was stored at 4 °C and 

later evaluated using the δ-OR and μ-OR HTS assays.

G-Protein Signaling Assay

The 96 marine-sponge-derived extracts were assayed at a concentration of 10 μg/mL 

suspended in DMSO. The LC-MS-based natural product library of the bioactive methanol 

crude extract (coded 92553 FM) shown in Scheme 1, step c, and Figure 3, involved testing 
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all LC-MS based library well fractions (wells A3-D12) at a concentration of approximately 

20.0 μg/mL. The standard controls DPDPE (well A1) and the crude extract 92553 FM (well 

A2) were evaluated in the δ-OR assay at 100 nM and 20.0 μg/mL, respectively, in DMSO. 

Sponge-derived extracts, LCMS library fractions, and compound-induced intracellular 

calcium release in HEK-293 cells was detected using cells stably expressing the human δ 
and μ opioid receptors (δ-OR) and (μ-OR) cDNAS and a chimeric Gi/q G protein to couple 

receptor activity to release of intracellular calcium stores as previously reported.51 Results 

are expressed as the mean (±SEM) relative fluorescence units (RFU, calculated as agonist-

induced maximum Ca2+ peak/cell number × 1000) and as (mean ± SEM for n = 3) 

percentage of baseline response (calculated as the ratio of the agonist-induced RFU to that 

of untreated cells). Activation of δ-OR and μ-OR targets was detected using real-time 

calcium detection in a FLEX-3 apparatus. Full dose–response curves were generated for the 

purified compounds in Table 1. In all cases, ligand was added, and the calcium response was 

measured for 5 min to detect agonist activity. Then control ligand (DAMGO for μ-OR cell 

line and DPDPE for the δ-OR cell line) was added, and once again calcium release 

measured to detect whether the compounds had antagonist activity.

cAMP Assays

To measure μ opioid receptor (μ-OR) Gαi-mediated cAMP inhibition, HEK 293T (ATCC 

CRL-11268) cells were cotransfected with human μ-OR along with a luciferase-based 

cAMP biosensor (GloSensor, Promega) and assays performed similar to those previously 

described.90 After at least 16 h, transfected cells were plated into polylysine-coated 384-well 

white clear-bottom cell culture plates with DMEM+ 1%dialyzed FBS at a density of 15 

000–20 000 cells per 40 μL per well and incubated at 37 °C with 5% CO2 overnight. The 

next day, drug solutions were prepared in fresh assay buffer (20 mM HEPES, 1× HBSS, pH 

7.4, 0.1% bovine serum album) at 3× drug concentration. Plates were decanted and received 

20 μL per well of assay buffer (20mM HEPES, 1× HBSS, pH 7.4) followed by addition of 

10 μL of drug solution (3 wells per condition) for 15 min in the dark at room temperature. 

To stimulate endogenous cAMP via β adrenergic-Gs activation, 10 μL luciferin (4 mM final 

concentration) supplemented with isoproterenol (400 nM final concentration) were added 

per well. Cells were again incubated in the dark at room temperature for 15 min, and 

luminescence intensity was quantified using a Wallac TriLux microbeta (PerkinElmer) 

luminescence counter. Data were normalized to DAMGO-induced cAMP inhibition and 

analyzed using nonlinear regression in GraphPad Prism5.0.

β-Arrestin-2 Recruitment Assays

To measure μ-OR-mediated β-arrestin recruitment by BRET, HEK 293T cells were 

cotransfected in a 1:15 ratio with human μ-OR containing C-terminal renilla luciferase 

(Rluc8) and venus-tagged N-terminal β-arrestin-2, respectively. After at least 16 h, 

transfected cells were plated in polylysine-coated 96-well white clear bottom cell culture 

plates in DMEM + 1% dialyzed FBS at a density of 500 000–750 000 cells per 200 μL per 

well and incubated overnight. The next day, media was decanted and cells were washed 

twice with 100 μL of drug buffer. Then, 60 μL of the RLuc substrate, coelenterazine H 

(Promega, 5 μM final concentration) was added per well. After 5 min, 30 μL of drug (3 wells 

per condition) was added per well and incubated for 5 min in the dark, and plates were read 
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for both luminescence at 485 nm and fluorescent eYFP emission at 530 nm for 1s per well 

using a Mithras LB940 microplate reader. The ratio of eYFP/RLuc was calculated per well 

and the net BRET ratio was calculated by subtracting the eYFP/RLuc per well from the 

eYFP/RLuc ratio without venus–arrestin present. Data were normalized to DAMGO-

induced stimulation and analyzed using nonlinear regression in GraphPad Prism 5.0.

Fluorescent Endocytosis Assay

HEK293 cells stably expressing N-terminally FLAG-tagged μ-OR were plated to coverslips 

and allowed to recover overnight. To examine endocytosis, live cells were incubated with an 

antibody to the extracellular epitope tag to label-only receptors on the cell surface. Cells 

were then left untreated (Figure 7a) or treated with selective μ-OR agonists (Figure 7b–f) for 

30 min. Following endocytosis, cells were fixed, permeabilized, and stained with a 

fluorescently tagged secondary antibody to examine the distribution of the receptors that 

started on the cell surface. Endocytosis is visualized as a redistribution of receptors from the 

plasma membrane (Figure 7a, no treatment) to intracellular compartments, as only receptors 

that were on the cell surface and had access to antibody are revealed in intracellular 

compartments.

Biotin Protection Endocytosis Assay

HEK293 cells stably expressing N-terminal FLAG-tagged μ-OR were grown to 100% 

confluency in 10 cm poly D-lysine-coated plates and subjected to the biotin protection assay 

protocol as described previously.73 Briefly, cells were treated with 3 μg/mL disulfide-

cleavable biotin (Pierce) for 30 min at 4 °C. Cells were then washed in PBS and placed in 

prewarmed media for 15 min before treatment with ligand (or no treatment) for 30 min with 

10 μm of DAMGO, methadone, morphine, fascaplysin, ormitragynine. Concurrent with 

ligand treatment, 100% and strip plates remained at 4 °C. After ligand treatment, plates were 

washed in PBS, and the remaining cell-surface-biotinylated receptors were stripped in 50 

mm glutathione, 0.3 m NaCl, 75 mm NaOH, 1% FBS at 4 °C for 30 min. Cells were 

quenched with Tris-HCl buffer (pH 7.4) and then lysed in immunoprecipitation buffer (IPB), 

0.1% Triton X-100, 150 mm NaCl, 25 mm KCl, 10 mm Tris-HCl (pH 7.4), with protease 

inhibitors (Roche Applied Science). Cleared lysates were immunoprecipitated with anti-

FLAG M2 antibodies for 1 h at 4 °C and incubated for 1 h with protein G-Sepharose 

(Invitrogen). Samples were washed four times in 1 mL of IPB and twice in 1 mL of 10 mm 

Tris-HCl (pH 7.4) and deglycosylated by incubation with peptide: N-glycosidase F (New 

England Biolabs) for 1 h at 37 °C, resolved by SDS-PAGE, and visualized with streptavidin 

overlay (Vectastain ABC immunoperoxidase reagent, Vector Laboratories).

Forced Swim and Locomoter Tests

Animals—Male WT or δ-KO C57BL/6 mice (9 per group) between 8 and 10 weeks old 

were housed in a temperature controlled colony room (21 °C) on a 12-h reversed light/dark 

cycle (lights off at 10 a.m.). All experiments were performed during the dark (active) cycle. 

Food and water were available ad libitum. Experiments were conducted in accordance with 

the Guide for the Care and Use of Laboratory Animals (NIH) and were approved by the 

UCSF Institutional Animal Care and Use Committee.
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Forced Swim Test—Mice were allowed to habituate to the room and lights for 2 h before 

the start of the experiment and then were placed in a swimming task. Cylinders measured 30 

cm in diameter and 36 cm high, water depth ranged from 22 to 24 cm, and temperature was 

36.0 ± 0.2 °C. Mice were placed into the center of the bucket and allowed to swim freely for 

6 min before they were removed and towel dried. Sessions were video recorded and mice 

scored for seconds immobile from these videos.

Locomotor Activity—After towel drying, mice were placed in a locomotor exploration 

task. Clear plexiglass cubes measuring 19.5 cm in each direction were inserted in the corner 

of standard 43 cm locomotor chambers (Med Associates, St Albans, VT). Mice were placed 

into the cube, and locomotor activity was automatically digitally recorded for 30 min.

3D Overlay of 17 and 21—Molecular graphics and analyses were performed with the 

UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, 

Visualization, and Informatics at the University of California, San Francisco (supported by 

NIGMS P41-GM103311).100

Spectral Data of Isolated and Pure Compounds—Aaptamine (10) 1H NMR (D6-

DMSO, 500 MHz) δ 7.84 (d, J = 7.0 Hz, 1H), 7.38 (d, J = 7.0, 1H), 7.11 (s, 1H), 6.86 (d, J = 

7.0, 1H), 6.48 (d, J = 7.0, 1H), 3.97 (s, 3H, OCH3), 3.80 (s, 3H, OCH3). ESI-TOF-HRMS 

229.0977 m/z [M + H]+ (calcd for C13H13N2O2, 229.0856). 9-demethyl aaptamine (11). 1H 

NMR (D6-DMSO, 500 MHz) δ 7.69 (d, J = 6.5 Hz, 1H), 7.15 (d, J = 7.2, 1H), 7.04 (s, 1H), 

6.76 (d, J = 7.2, 1H), 6.24 (d, J = 6.5, 1H), 4.01 (s, 3H, OCH3). ESI-TOF-HRMS 215.0956 

m/z [M + H]+ (calcd for C12H11N2O2, 215.0921). 9-demethyl(oxy) aaptamine (12). 1HNMR 

(D6-DMSO, 500 MHz) 9.17 (d, J = 4.4 Hz, 1H), δ 9.12 (d, J = 5.5 Hz, 1H), 8.25 (d, J = 5.5 

Hz, 1H), 7.78 (d, J = 4.4 Hz, 1H), 7.20 (s, 1H), 3.94 (s, 3H, OCH3). ESI-TOF-HRMS 

213.0768 m/z [M + H]+ (calcd for C12H8N2O2, 213.0729). The marine sponge-derived 

alkaloids including the makaluvamines (13–16), the fascaplysins (17,18), and the 

plakinidines (19,20) were drawn from the UCSC marine natural products pure compound 

repository where their purity (≥95% HPLC) and spectral data (NMR) have been reported 

previously.66–68

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Possible signaling profiles at the μ-opioid receptor (μ-OR): biased versus balanced agonism 

and reported side effects.
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Figure 2. 
Selected examples of neuroactive marine natural products approved by the FDA as 

therapeutics (7) or in various stages of clinical development (8–9). Images of selected 

organisms above were reproduced with permission from Jeanette and Scott Johnson (C. 
magus and D. liturosus) and SFBay: 2K, California Academy of Sciences (B. neritina).
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Figure 3. 
(a) LC-MS library f ractions of parent 96-well plate with annotations including m/z ions of 

demethyl (oxy)–aaptamine (11) and 9-demethyl–aaptamine (12), (b) corresponding wells 

A3-C5 evaluated in the delta opioid receptor (δ-OR) assay. Wells A1 and A2 contained 

positive controls D-Pen(2), D-Pen(5)]-enkephalin (DPDPE) and the crude extract (92553 

FM). LC-MS fractions corresponding to wells C6-D12 (not shown) were inactive. Structures 

are shown in Figure 4.
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Figure 4. 
Structures of marine-derived alkaloid heterocycles (10–20) and mitragynine (21) evaluated 

in Table 1 for δ-opioid receptor (δ-OR) and μ-opioid receptor (μ-OR) agonist activity. 

Selection criterion based on chemotypes containing a secondary or tertiary nitrogen atom 

(bold) separated by 3–4 bonds from an adjacent tertiary amine or quaternary nitrogen (gray).
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Figure 5. 
Effects of aaptamine (10) in wild-type and δ-OR knock-out (δ-KO) mice. Each individual 

animal is represented by a circle, and the average is shown by the histogram. (a) Wild type 

(WT) mice (black and gray bars), and their littermates, mice with a disruption of the δ-OR 

(δ-KO, red bars), were injected with saline or 10 (40 mgs/kg ip) and then placed in a water 

bucket. Swimming was video recorded and time immobile scored. Aaptamine showed 

antidepressant-like activity in WT but not δ-KO mice (**p = 0.003). The δ-KO mice showed 

greater antidepressant-like activity than WT mice (# p = 0.013). (b) Following the swim test, 

mice were placed in a locomotor chamber and distance traveled was recorded automatically 

for 30 min. Aaptamine had no effect on general locomotion. δ-KO showed decreased 

locomotion compared to WT mice (**p = 0.01).
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Figure 6. 
Effects of μ-opioid receptor (μ-OR) agonists on inhibition of cAMP accumulation in HEK 

293T cells. The EC50 and Emax values are shown in Table 2. Data are normalized to 

DAMGO and are mean ± SEM of normalized results (n = 3 measurements).
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Figure 7. 
Assessment of μ-opioid receptor (μ-OR) endocytosis by immunofluorescence. (a–f) 

Fluorescent endocytosis assay. Cells stably expressing μ-OR were incubated with antibody 

to the extracellular epitope then treated with (a) water - no treatment (NT), (b) DAMGO (1 

μM), (c) methadone (10 μM), (d) morphine (10 μM), (e) fascaplysin (10 μM), or (f) 

mitragynine (10 μM), for 30 min, fixed, permeabilized, and stained for receptor. DAMGO, 

methadone, and fascaplysin promoted μ-OR endocytosis while morphine and mitragynine 

did not.
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Figure 8. 
3D overlay of fascaplysin (17) (top) and mitragynine (21) (bottom) highlighting structural 

similarity.
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Figure 9. 
Assessment of μ-opioid receptor (μ-OR) endocytosis using the biotin protection assay. Cells 

stably expressing μ-OR were incubated with thio-cleavable biotin to label surface proteins 

then treated with compound (10 μM each) as listed, or left untreated (NT). Remaining 

surface receptors were stripped of biotin with reducing agent, and endocytosed receptors 

were immunoprecipitated and those that were protected from reducing agent visualized with 

streptavidin overlay. DAMGO, methadone, and fascaplysin promoted μ-OR endocytosis 

while morphine and mitragynine did not.
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Figure 10. 
Effects of μ-opioid receptor (μ-OR) agonists on β-arrestin-2 recruitment in HEK 293T cells. 

The EC50 and Emax values are shown in Table 3. Data are normalized to DAMGO and are 

mean ± SEM of normalized results (n = 3 measurements).
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Scheme 1. 
Approach To Prepare Peak Libraries of Purified Marine Natural Products for Target-Based 

High-Throughput Screening (HTS) To Identify Lead Compounds Demethyl (oxy)–

Aaptamine (11) and 9-Demethyl–Aaptamine (12) with μ-Opioid Receptor (μ-OR) and δ-

Opioid Receptor (δ-OR) Agonist Activity
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Table 1

Agonist Activity against the δ-OR and μ-OR

compound

EC50 (μM)a EC50 (μM)a

δ-OR μ-OR

morphine (1) 0.426 ±0.1 0.0068 ±0.03

DAMGO (6) ND 0.002 ± 0.002

DPDPE (S16) 0.007 ± 0.002 ND

aaptamine (10) 5.1 ± 0.2 10.1 ± 1.4

9-demethyl aaptamine (11) 4.1 ± 0.1 6.03 ± 1.2

demethyl (oxy) –aaptamine (12) 2.3 ± 0.1 4.1 ± 1.2

makaluvamine C (13) NA NA

makaluvamine H (14) NA NA

makaluvamine D (15) NA NA

makaluvamine J (16) NA NA

fascaplysin (17) NA 6.3 ± 0.2

10 bromofascaplysin (18) NA 4.2 ± 3.7

plakinidine A (19) NA NA

plakinidine B (20) NA NA

mitragynine (21) ND 9.9 ± 0.2

a
Opioid agonist activity of 1, 6, and 10–21 was measured using the calcium mobilization assay in HEK-293 cells individually expressing the delta 

or mu opioid receptor (δ-OR, μ-OR). ND, not determined. NA (not active) ≤ 25.0 μM. Compounds 10–20 were inactive against κ-OR at ≤25.0 μM.
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Table 2

G Protein Signaling

Gi

compound EC50 Emax(%)

DAMGO (6) 1.844e-009 100

morphine (1) 1.670e-008 99.43

fascaplysin (17) 3.843e-006 111.4

mitragynine (21) 4.919e-006 107.5

methadone (S6) 8.538e-009 100.9
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Table 3

β-Arrestin-2 Recruitment

β-arrestin-2

compound EC50 Emax (%)

DAMGO (6) 1.731e-007 100

morphine (1) 4.190e-007 22.98

fascaplysin (17) 1.360e-005 76.80*

mitragynine (21) 0.0003581 54.09

methadone (S6) 1.871e-006 92.62

*
Emax shown is that achieved before compound became toxic
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