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Abstract

Fast-scan cyclic voltammetry (FSCV) has been used for over 20 years to study rapid 

neurotransmission in awake and behaving animals. These experiments were first carried out with 

carbon-fiber microelectrodes (CFMs) encased in borosilicate glass, which can be inserted into the 

brain through micromanipulators and guide cannulas. More recently, chronically implantable 

CFMs constructed with small diameter fused-silica have been introduced. These electrodes can be 

affixed in the brain with minimal tissue response, which permits longitudinal measurements of 

neurotransmission in single recording locations during behavior. Both electrode designs have been 

used to make novel discoveries in the fields of neurobiology, behavioral neuroscience, and 

psychopharmacology. The purpose of this Review is to address important considerations for the 

use of FSCV to study neurotransmitters in awake and behaving animals, with a focus on 

measurements of striatal dopamine. Common issues concerning experimental design, data 

collection, and calibration are addressed. When necessary, differences between the two 

methodologies (acute vs chronic recordings) are discussed. The topics raised in this Review are 

particularly important as the field moves beyond dopamine toward new neurochemicals and brain 

regions.
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Techniques for Monitoring Molecules in Neuroscience

The monitoring of molecules in the brain has undergone significant advances in the past four 

decades. One of the earliest techniques for measuring neurotransmitter release was push–

pull perfusion, a method that uses a cannula for sample collection prior to downstream 

analysis.1,2 However, the direct interface of the perfusate with brain tissue raised concerns 

with sample contamination and flow-induced damage to the surrounding environment. To 

address these issues, this procedure was later adapted to incorporate a dialysis membrane, 

creating the technique known as microdialysis.3–6 Microdialysis restricts flow to the probe, 

which minimizes brain damage and maintains sample purity. Equilibration of analytes across 

the membrane according to their concentration gradients results in concentration changes in 

the dialysate reflective of fluctuations in the brain. Microdialysis is highly versatile, with its 

sensitivity, selectivity, and number of analytes that can be monitored simultaneously 

dependent on the detection method employed. Its main limitation is spatiotemporal 

resolution, as microdialysis probes are typically at least 200 μm in diameter, and samples are 

historically collected approximately every 5–20 min to allow sufficient sample volume 

accumulation at low flow rates.5–8 Recent improvements, largely due to reduction in the 

minimum volume needed for sample analysis, have permitted microdialysis measurements 

on a subminute time scale.9–12

For the subset of brain molecules that are electroactive, particularly biogenic amines, 

electrochemical monitoring has flourished as an alternative methodology.13,14 This approach 

was first attempted in the Ralph Adams lab with a carbon paste electrode implanted in the 

striatum of an anesthetized rat.15 Slow potential sweeps between −0.2 to +0.6 V vs Ag/AgCl 

revealed peaks in current corresponding to the oxidation and reduction of electroactive 

substances; however, the identity of the mole-cule(s) producing the signal was unclear, with 

the authors suggesting it could arise from dopamine, norepinephrine, or ascorbic acid. 

Indeed, early voltammetric measurements suffered from poor chemical resolution between 

catecholamines and other easily oxidized species, often present in the brain at higher 

concentrations.15–20 In response to these problems, criteria were developed to ensure that 

intended analytes were indeed the source of recorded signals, including electrochemical, 
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anatomical, pharmacological, and independent verification.21–23 A major advance to the 

field came with the development of fast-scan cyclic voltammetry (FSCV), a technique that 

utilizes rapid potential sweeps to oxidize and reduce analytes of interest.24–26 This process 

produces cyclic voltammograms, which display measured current as a function of the 

applied potential, that serve as “fingerprints” for compound identification, providing an 

advantage over single potential techniques.26–28 This moderate chemical selectivity allows 

the use of chemometric methods to separate, and subsequently quantitate, analytes with 

different current–potential characteristics (see Chemometric Data Analysis section below).
28,29

The development of carbon-fiber microelectrodes (CFMs) has aided the FSCV field in 

multiple ways.30–32 The small size, and thus reduced capacitance and time constant, of these 

electrodes permits rapid scan rates (>100 V/s), which enables measurements on a subsecond 

time scale. Additionally, this relatively small size compared to traditional probes increases 

spatial resolution and permits localized measurements in discrete brain regions. Moreover, in 

contrast to tissue damage observed near microdialysis probes, minimal damage is seen 

surrounding fiber implantation sites.33,34 These probes are also easily modified with a 

variety of surface coatings, which can improve chemical selectivity, electron transfer 

kinetics, and sensitivity.35–39 Lastly, carbon-based electrodes demonstrate strong 

biocompatibility, and are more resistant to biofouling than metal electrodes. These 

advantages make FSCV with CFMs an attractive measurement technique for rapid 

neurotransmitter dynamics.

Development of FSCV for Freely Behaving Animals

Measurements using FSCV with CFMs were originally conducted in anesthetized animals.
25,26,40,41 However, these studies could not reveal direct information about 

neurotransmission during behavior. The first FSCV measurements in freely moving animals 

detected dopamine release in terminal regions, evoked by electrical stimulation of afferent 

axonal pathways in rats. These experiments used acutely implanted glass-encased CFMs 

lowered into the brain using head-mounted microdrives.42–44 Later, behavioral evoked 

dopamine was detected by this approach,45 and these types of recordings became routine, 

primarily due to improved sensitivity obtained by increasing the anodic limit of the 

waveform46,47 to maintain oxygen-containing moieties on the electrode surface which 

enhance adsorption of positively charged analytes (such as dopamine).27 FSCV has been 

adapted for multimodal recordings with simultaneous extracellular electrophysiological 

recordings48–51 and iontophoresis51–54 at the same probe.

The most recent generation of FSCV use in behaving animals has been to adapt CFMs for 

chronic implantation, permitting longitudinal measurements over an extended time scale in 

the same animal. This is not a novel direction for electrochemical monitoring, as earlier 

methodologies had adopted such an approach.55–57 These papers, which utilize 

amperometry, are notable because they clearly show the need for more chemical specificity 

in the measurements due to difficulty assigning the source of the signal. The standard 

fabrication of CFMs for FSCV using a glass-encased design had limited success when 

chronically implanted.58 However, the chronic CFMs used today employ a basic design 
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where a carbon fiber is sealed in a small diameter fused-silica tube.59 Similar to results at 

acutely implanted CFMs33 and other miniaturized devices,60 these electrodes were 

demonstrated to avoid the progressive immune response and cell death that can impair 

measurements at larger probes.34

With the improved sensitivity27 and low-noise61 of modern approaches to using FSCV in 

vivo, recordings in striatal regions permit detection of dopamine elicited by task-related 

events such as the delivery of primary rewards,62,63 including pharmacological rewards,
29,64–67 or reward-associated stimuli.51,62,68–70 In addition, spontaneous dopamine 

“transients” (i.e., brief elevations in extracellular dopamine concentration above the ambient 

level, produced by release events) can be observed. These do not appear to be time locked to 

overt stimuli71–73 but are dependent upon activity in the ventral tegmental area,74 and have 

been suggested to be a contributor to ambient extracellular dopamine levels in the nucleus 

accumbens.75 While the function of these dopamine transients has not been fully 

characterized, their activity can be altered by behavioral context73 as well as 

pharmacological agents including drugs of abuse.64,71

The objective of this paper is to discuss the nuances of using FSCV in behaving animals, 

based primarily on experience on measuring striatal dopamine. We will attempt to discuss 

the potential pitfalls that can make the use of FSCV or related approaches challenging, and 

then summarize how these caveats differentially affect alternative approaches, with a 

particular focus on the use of acute or chronic electrodes.

Experimental Considerations

Electrode Materials and Design

The most common construction of recording electrodes for FSCV in behaving animals uses 

carbon fibers housed in glass or fused-silica capillaries. These carbon fibers host surface 

moieties, such as carbonyl, hydroxyl, or more complex groups,76,77 which can alter the 

electrochemical properties of the carbon fiber by changing its surface charge and steric 

properties. The constellation of functional groups on the carbon surface can be tuned with 

electrochemical,78 thermal,79 or chemical80 pretreatment, and will determine the selectivity 

of the adsorption of molecules to the surface, including fouling agents and electrochemical 

analytes. A popular approach using FSCV at CFMs is to use the applied waveform on each 

FSCV scan to electrochemically condition the electrode, essentially “pretreating” the 

electrode surface each time a measurement is made.47 Specifically, increasing the anodic 

limit of the waveform above 1.0 V versus Ag/AgCl substantially enhances the sensitivity to 

dopamine by increasing dopamine-adsorbing oxide groups on the carbon surface and slowly 

etching the fiber surface to mitigate the effects of irreversible fouling.27,47,77 This approach 

has the advantage over traditional pretreatment strategies in that equilibrium is maintained 

throughout the experiment, providing stable sensitivity.

Construction of CFMs involves housing a carbon fiber in a capillary insulator with an 

exposed length at one end (the sensor) and an electrical connection at the other. For glass-

based electrodes, a single carbon fiber is aspirated into a borosilicate glass capillary (600–

1000 μm outer diameter, 400–500 μm inner diameter) (Figure 1a, left panel). The capillary is 
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then pulled on a commercial glass-electrode puller (either vertical or horizontal) to produce 

a tapered seal onto the carbon fiber. Sometimes the glass seal is then deliberately broken and 

resealed using epoxy (Epon 828 with 14% m-phenylenediamine by weight). This approach 

increases the robustness (i.e. prevents unintentionally exposed carbon fiber from providing a 

low resistance path for current) and reduces the shunt capacitance of the electrode taper by 

providing a thicker insulating layer between the carbon fiber and the extracellular fluid. For 

fused-silica-based electrodes, a single carbon fiber is loaded into a polyimide-coated fused-

silica tube (90 μm outer diameter, 20 μm inner diameter, 8–12 mm length) submerged in 

isopropyl alcohol (Figure 1b). With the carbon fiber protruding, one end of the tube is sealed 

with epoxy (Devcon 20845). For either electrode type, the carbon fiber protruding from the 

seal is then trimmed to the desired length, and an electrical connection is made at the other 

end. Lengths of the trimmed carbon fiber usually range from 50 to 200 μm, where longer 

exposed fibers are more sensitive, but have lower spatial resolution. Typically, glass-based 

electrodes have been used for acute implantation, while fused-silica-based electrodes are 

favored for chronic implantation due to both their durability, and biocompatibility arising 

from their narrow diameter and polyimide coating.81

Not all electrodes are created equal. For glass electrodes, the structural integrity of the pulled 

seal is the most important determinant of electrode performance. Large cracks or gaps in the 

seal will lead to exposed fiber and/or increased fragility, which will impede electrochemical 

measurements. These problems can be alleviated by the use of epoxy to reinforce the seal 

(see above). For fused-silica encased CFMs, it is important that no epoxy remains on the 

fiber itself and that the seal forms a convex, rather than concave, seal (see Figure 1b for 

illustration). Electrochemical characteristics of either electrode design can be tested pre-

experiment, either in vitro (i.e., in buffer) or in vivo (i.e., during surgical implantation of 

chronic CFMs before cementation, or after lowering acute CFMs), to observe noise levels 

and ensure electrical connectivity.

Experimental Design for FSCV Recordings in Freely Moving Animals

Measurements in freely moving animals are conducted using head-mounted amplifiers 

(“headstages”), which connect to the CFM and reference electrodes and transduce the 

experimental current into voltages for downstream data collection and analysis.82,83 These 

headstages are anchored to the animal's heads either directly via an electrical connector or at 

a separate point, such as the pedestal for the stimulating electrode assembly (Figure 1a, 

middle panel). The headstage is also connected to a swivel and commutator that permits 

movement within the behavioral chamber. Depending on the type of electrode used, 

cannulae may be affixed to the skull for later implantation of fresh CFM or reference 

electrodes (Figure 1a, middle panel) or fused-silica CFMs can be cemented directly to the 

skull.

The electrode design used influences both the type of experimental questions that can be 

answered and the overall success rate of recordings. The fragility of borosilicate glass 

electrodes can lead to a lower yield of successful experiments with respect to fused-silica 

implantations. Moreover, tissue damage from repeated insertion limits the number of within-

subject recordings.42,83 Once successfully lowered, however, these electrodes tend to be 
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stable over the course of individual measurement periods. Thus, these electrodes are best 

served for studies in which experimentally relevant manipulations occur during single 

recording sessions.

Conversely, the flexibility of fused-silica electrodes permits a higher success rate for 

implantation compared to glass electrodes. For chronic recordings, fused-silica electrodes 

are affixed to the skull with dental cement and left unused for at least 1 month to allow the 

immune response to these probes to dissipate.59 Following this waiting period, it is possible 

to conduct many recordings at each electrode, increasing the data yield of chronic electrodes 

over acute electrodes. Longitudinal measurements permit the monitoring of dopamine over 

extended behavioral training and treatments. This is particularly relevant for models of 

disease states in which conditions develop slowly over time.84 These electrodes are routinely 

used for periods up to 4 months of recording. Naturally, there is some attrition of usable 

electrodes over that time. The majority of this attrition pertains to physical failures (e.g., 

separation of surgical implant from subject's head, loss of electrical continuity) and is much 

more infrequently due to altered electrochemical properties of the electrode (see Figure 3a, 

Supplementary Table 1 of Clark et al.59).

In Vivo Electrode Positioning

For different applications, recording electrodes can either be fixed in the brain, or can be 

housed in a microdrive that allows their position to be adjusted (Figure 1a, right panel). The 

former is amenable to multiple electrodes in the same animal,59 whereas the latter permits 

systematic mapping of heterogeneity of electrically or naturally evoked dopamine release 

along the dorsal-ventral axis.85 Microdrives also allow selection of a recording site within 

this heterogeneity by identifying “hot spots” (i.e., areas with a high density of release sites).
73,85 Placement of fixed electrodes does not typically use this type of feedback-based 

selection. Therefore, positioning of these electrodes is more akin to random sampling of the 

tissue, and so signals converge upon the population average rather than local maxima. 

Consequently, signals measured with fixed electrodes tend to be smaller than those from 

drivable electrodes due to unbiased selection of recording sites (Figure 2).86,87 Dopamine 

signals in regions without release or uptake sites rely on diffusion from nearby terminals, 

and these sites exhibit both slower rises and decays compared to “hot spots”.88 As a result, 

electrodes not deliberately targeted at regions of high terminal density would be expected to 

have slower signals due to heterogeneity of release sites.85 For similar reasons, one would 

intuit that fixed electrodes should detect fewer spontaneous transients. However, most 

studies using chronic electrodes focus on the analysis of task-related events, and so 

spontaneous transients have seldom been reported. Nonetheless, on the rare occasion when 

they were quantified, they were comparable in detected frequency as those measured with 

drivable electrodes.72 Figure 3 demonstrates examples of pharmacologically and 

behaviorally evoked dopamine transients, as well as spontaneous transients, measured at 

chronically implanted CFMs.

Acute electrodes have the advantage of being drivable. However, in addition to the concerns 

with electrode fragility during repeated use mentioned above, electrode insertion imposes 

restraint stress on the animals. This could impact behavioral assays that study stress under 
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controlled conditions.89 Because chronic electrodes do not require repeated insertion, they 

do not share these issues. Although chronic electrodes are not drivable in regular use, 

chronically implanted electrode arrays have been used that permit independent movement of 

electrodes within the array.90

Reference Electrodes

Experiments using FSCV in freely moving animals generally use chronically implanted Ag/

AgCl reference electrodes.83 An issue with this approach is that half-cell reaction is not 

maintained over time, producing a shift in the reference potential and polarizing the 

reference electrode, most likely due to dechlorination.91 Further, fouling of the reference 

electrode would be expected upon insertion. This status is evident from an altered shape of 

the background current.92 While the shift in reference potential can be compensated for by 

positive offsets to the applied potential, some nonlinearity may be introduced by the 

polarization if voltage error persists.93 Use of a polymer coating on the Ag/AgCl surface has 

been shown to delay dechlorination.91,94 Alternatively, reference electrodes can be 

implanted on the day of recordings through a guide cannula.46,95,96

Signal Stability

During each voltage scan with FSCV, a cyclic voltammogram (CV) is generated that 

contains faradaic (redox) current from electroactive neurochemicals. In addition, there are 

other sources of current, primarily from the electrode itself, which produces both faradaic 

current from redox processes at its surface moieties, and nonfaradaic current due to its 

resistive-capacitive properties. The “background” current from the electrode is quantitatively 

much greater than the current produced by physiological levels of neurochemicals. For this 

reason, background subtraction is used with FSCV to measure changes in analyte 

concentration from a baseline reference point: CVs obtained during the baseline period are 

averaged and subtracted from each of the subsequent CVs in the time series. This approach 

allows the detection of bidirectional changes in the concentrations of electroactive 

neurochemicals from the baseline. However, any changes in the other components of the CV 

following the baseline period will necessarily also contribute to background-subtracted CVs. 

The electrode background current described above is quite stable from scan to scan, but 

because it dominates the CV, even very small changes in the electrode's chemical or physical 

properties following the baseline period can contaminate background-subtracted CVs in the 

form of “drift”.

The first type of drift we will discuss is that relating to the chemical properties of the 

electrode surface. This type of drift is most prevalent when applying waveforms to the 

electrode that have anodic limits that exceed 1.0 V versus Ag/AgCl. Application of these 

waveforms in aqueous solutions such as the interstitial fluid in the brain, changes the surface 

chemistry of carbon fibers by introducing surface oxide groups,77 increasing the faradaic 

current in the CV. Until this “activation” process reaches equilibrium, there will be 

progressive increase in the overall current in the background CV, as well as a net negative 

potential shift in the background peak.
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To get to equilibrium more expediently, waveforms can be applied (“cycled”) at a higher 

repetition rate than that used for data collection (typically 60 Hz). The required time to reach 

equilibrium differs across electrodes and implantations. In practice, acutely implanted 

electrodes are cycled for 15–30 min at 60 Hz before use. Chronically implanted electrodes 

are typically cycled more extensively, as much as 2 h on the first use, followed by shorter 

durations (30–60 min) for each subsequent recording. As the necessary amount of cycling to 

reach equilibrium can vary between electrodes, however, it is more reliable to assess 

electrode stability via the background CV, which should remain relatively consistent in 

shape and amplitude following cycling. With either approach, additional cycling at the data-

collection repetition rate (usually 10 Hz) for at least 10 min is required to re-establish 

equilibrium at this waveform application frequency. Nonetheless, even with extensive 

cycling of the electrode before the experiment, some drift may still persist.

Another type of background-current drift can be caused by etching of the carbon fiber during 

voltage scans. Etching drives evolution of the electrode surface and thereby affects both the 

faradaic and nonfaradaic currents. The extent that an applied waveform will produce etching 

of carbon fiber is dependent on its duration at higher potentials, specifically the period in 

which the applied potential remains greater than 1.0 V versus Ag/AgCl.97 With the 

waveforms typically used in FSCV for in vivo dopamine detection, the excursion above 1.0 

V is relatively short (1.5 ms/scan) and so, any etching that takes place is incremental over 

millions of scans (∼0.002 Å/scan).97 Therefore, drift attributable to this process occurs at a 

much lower rate than that from changes in surface chemistry. Thus, two main sources of 

background drift are augmented using voltage waveforms that that have an anodic limit in 

excess in 1.0 V. This drift is a trade-off with the increase in sensitivity afforded by these 

waveforms.27

The structural quality of the electrode and its connection to the headstage can also impact 

the stability of the signal. For example, if the seal between the carbon fiber and the 

insulating capillary is compromised then fluid can leak into the capillary increasing the 

background size (i.e., producing drift). The likelihood of this problem occurring can be 

reduced using epoxy to make, or reinforce, the seal. The integrity of electrical connections 

between the electrode and headstage are also important, especially with regard to movement 

artifacts. These types of problems are largely eliminated with practice in electrode 

fabrication, combined with robust quality control prior to implantation.

These instabilities in the signal can interfere with reliable signal analysis. While the 

reduction of noise can lessen this issue (e.g., with good electrode quality control), 

background drift poses a particular problem. Background drift, by definition, is an 

accumulative process where the level of interference in an analytical signal increases from 

the baseline (subtraction) period, limiting the effective window of analysis. Heien and 

colleagues suggested, as a guideline, that with standard parameters for FSCV in behaving 

animals, chemometric data analysis (see below) remains reliable for CVs taken up to 90 s 

from the baseline.29 This window is sufficient for the routine use of peri-event histograms to 

test changes in analyte concentration time locked to a stimulus or action. However, as 

discussed below, the exact size of a reliable analysis window will be dependent upon the 

quality of the data, and will be assessed as part of the data-analysis process. To attempt to 
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remove the influence of drift, thereby increasing the analysis window, one strategy has been 

to incorporate CVs representing the drift in to the training sets used for analysis.98,99

When considering different types of electrode with respect to signal stability, a number of 

factors come into play. Glass-based electrodes are more fragile than fused-silica-based 

electrodes and are therefore more susceptible to noise from compromised seals or other 

structural damage. Fixed electrodes have a low profile with connectors cemented in place, 

reducing movement artifacts and overall noise due to the absence of pendulum effects from a 

microdrive, or movement of wires relative to the electrode and headstage. However, these 

electrodes cannot be easily replaced with a fresh electrode in the event of a failure. Drift 

relating to the surface chemistry of the electrode is dependent on the type of carbon fiber 

used and the waveform applied. These aspects are not systematically different between acute 

and chronic electrodes and so neither application appears to be more susceptible to this type 

of background drift.

By the same rationale, the rate of background drift due to etching should not differ between 

acute and chronic electrodes. However, because the cumulative duration of recording with 

chronic electrodes is substantially longer than for acute electrodes, it is likely that the total 
etching across the working lifetime of a chronic electrode will be greater. This may impact 

the sensitivity of the electrode. For this reason, it is advisable that positive controls are used 

to ensure that the sensitivity is not changing over the course of an experiment (e.g., Figure 

2E of Clark et al.100).

Chemometric Data Analysis

Extracellular dopamine is detected via its oxidation and reduction at the carbon-fiber 

surface, producing a voltammetric current proportional to its local concentration. However, 

how to obtain this concentration has been a matter of considerable debate and development 

within the field. Original calibrations of in vivo voltammetric data directly converted the 

voltammetric current at the peak oxidation potential for dopamine into a concentration using 

an externally obtained calibration factor. However, various electroactive substances can 

interfere at the oxidative peak for dopamine, including ascorbic acid,26,35,101,102 dopamine 

metabolites,17,26,102,103 pH,80,104–107 and other ions.104,107 Because this method is 

univariate (i.e., only uses a single measurement point to predict concentration), it cannot 

separate out these interferences.108,109 While anatomical and pharmacological criteria can 

increase confidence in the identity of the measured signal, univariate analysis will fail if 

interfering analytes significantly contribute.

To circumvent this problem, a method was developed to compare experimental CVs to 

electrically evoked templates collected at the same electrode.23,27,83,110–113 CVs with a 

lower correlation coefficient than a user-defined value (typically r2 < 0.75) were considered 

to have significant contribution from other electroactive substances and were not used for 

univariate prediction. In some cases, current contributions from pH111,112 and drift114 were 

manually subtracted by using currents from a potential where dopamine did not contribute to 

predict current interference at the peak oxidation potential for dopamine. However, this 

approach can miss dopamine events that are identified with more rigorous analysis.29
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A more reliable calibration methodology is the use of chemometric multivariate analysis. 

Instead of using measurements at a single potential to predict concentration, multivariate 

analysis uses the entirety of the potential window to separate and quantitate multiple 

analytes, taking advantage of the chemical selectivity afforded FSCV (Figure 4a).115–117 

While there have been a few different multivariate methods implemented with in vivo FSCV 

data,118,119 the most implemented and characterized method with FSCV data is principal 

component analysis (PCA) with inverse least-squares regression, also referred to as principal 

component regression (PCR).28,29,120–123 Therefore, the focus of this section of the Review 

will be on the use of PCR for analysis of FSCV data. Nonetheless, the fundamental theory 

behind PCR is similar to other multivariate methods.

Principal Component Regression

Data collected with FSCV tends to be complex. At high sample rates (>100 kHz), there are 

approximately 1000 data points per individual CV. One of the chief goals of PCR is to 

reduce the dimensionality of data. In this way, a large number of data points can be 

described by a handful of abstract vectors referred to as “principal components” (PCs). 

Despite this reduction in dimensionality, PCR extracts more information from the data than 

univariate methods, and allows resolution of simultaneously varying analytes with 

overlapping signals.29 PCR also functions as a noise removal technique, because PCs that 

represent nondeterministic variance (i.e., random noise) in the training set are discarded. 

This process improves the quality of its determinations and allows stronger confidence in the 

model. Lastly, this method provides objectivity and statistical validation of the measured 

signal.

Generally, the construction and application of a PCR model to predict concentrations from 

FSCV measurements consists of five steps: (1) training set construction, (2) generation of 

PCs, (3) discarding PCs that only represent noise (i.e., rank determination), (4) signal 

extraction, and (5) model validation. Importantly, free software (HDCV) is available that 

automatically carries out steps 2–5 and is compatible with data collected with TarHeel and 

other voltammetric software.124 This software also includes additional diagnostics to assess 

training set quality. Nonetheless, it is important to understand the basic concepts of PCR to 

use it effectively. With this aim in mind, each step will be described briefly. More detailed 

discussion of PCR115–117 and its use with FSCV is available elsewhere.28,29,120–123,125,126

1. Training Set Construction—The first step in building a PCR model is the collection 

of a group of CV standards known collectively as a “training set”. Several guidelines for 

building training sets have been outlined previously.115,120–123,125,126 First, the training set 

should comprise all expected contributions to the data. For measurements of striatal 

dopamine, this typically includes dopamine and pH changes, though background drift has 

also been included.98,99 Second, the CV standards should span the expected current range in 

the data to be analyzed, which prevents model extrapolation.115 Third, the training set 

should contain an adequate number of samples. While there is no strict consensus on the 

ideal number of standards, a minimum of three standards per analyte is needed to satisfy the 

requirements for regression.115 The use of a larger number of standards is preferred, 

however, and previous work has suggested that five CVs per analyte is sufficient to provide 
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reliable models.29,115,122,123 Fourth, to satisfy mutual independence, training set CVs should 

be selected from separate events, and not include CVs that will be analyzed by the final 

model. Finally, a training set should be generated in a recording environment that matches 

the experimental environment.

2. Principal Component Generation—Next, the training set standards are used to 

generate the PCs. As such, the quality and representativeness of training set standards is of 

critical importance. Importantly, the largest amplitude standards in the training set dominate 

the appearance and quality of these PCs; this is because FSCV standards are not usually 

mean-centered to avoid giving undue influence to the smallest standards in training set CVs, 

which typically have the lowest signal-to-noise ratio.115

These PCs are determined by singular value decomposition (SVD), a process that is 

described in detail elsewhere.126 With SVD, each successive PC is calculated to span as 

much of the remaining variance in the training set standards as possible. The maximum 

number of PCs for a particular model is equal to the number of measurements being made 

(i.e., for CVs with 1000 data points, there could be a maximum of 1000 PCs). However, the 

use of SVD limits the number of PCs to the total number of standards in the training set. The 

PCs were created from the same dimensions as the data, and thus can be visualized in the 

form of CVs.122,126 However, it is important to understand that PCs are by definition 

abstract, and thus should not be viewed as representing individual analytes.120 Indeed, it is 

extremely unlikely that PCs will precisely align to individual analytes because of the 

requirement of orthogonality between PCs in the PCA approach.

3. Rank Determination—While several PCs are provided by SVD, only a subset has 

information that is relevant to concentration prediction.122,127 These are primary PCs, which 

represent analytically relevant variance in the standards, while secondary PCs reflect any 

remaining variance (i.e., noise). The number of primary PCs is referred to as the rank of the 

PCR model. The exclusion of secondary PCs is desirable, as it prevents the use of noise in 

concentration prediction and allows for an estimation of noise levels for model validation 

(see below).

Rank selection in FSCV is customarily done with Malinowski's F-test.122,127 his procedure 

is objective, statistically validated, and does not require pre-existing knowledge of noise 

levels in the data, which can be difficult to obtain. Moreover, it has been demonstrated to 

discard more noise than other methods.122 This process is most suitable for training sets 

with a signal-to-noise ratio larger than 10.128 Rank tends to increase when there is more 

variability between training set standards (i.e., peak shifting and broadening). Therefore, 

while a rank of two maybe desirable for a moderate training set size (e.g., 10 total standards) 

representing a two component system (i.e., dopamine and pH changes), the rank will vary 

both with the consistency of the CVs and the signal-to-noise of the training set.122,126

4. Signal Extraction—The generated PCs are then used to extract concentrations of any 

analyte that was included in the training set. The first step is using the training set standards 

to generate “scores”, which are the dot products of each PC with each training set standard. 

Notably, CVs have higher score magnitudes with PCs they closely resemble in shape. Scores 
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arising from secondary PCs are discarded, as these PCs describe only noise. The 

concentrations are then regressed against retained scores, producing a regression that defines 

the calibration model. To predict the concentrations of experimental CVs, their scores are 

determined for the retained PCs and plugged into this regression equation. This entire 

process has been depicted visually (see Johnson et al.126).

5. Model Validation—As Douglas Adams states in The Hitchhiker's Guide to the Galaxy, 

“we demand rigidly defined areas of doubt and uncertainty”.129 Because multivariate 

calibrations are complex, it is important to verify that these models are of sufficient quality 

to capture experimental data and demonstrate what data remains uncaptured. This process is 

referred to as “model validation”. In other fields (e.g., spectroscopy), validation is performed 

by running independent standards on the instrument to determine the accuracy of the model.
115 However, this is not possible when building an in vivo training set (see below), as the 

concentrations of analyte signals are not known. Therefore, a “pseudovalidation” procedure 

is applied to PCR analysis of FSCV data in which the ability of the model to capture the 

experimental data is assessed.120,121,130 In other words, this validation procedures tests the 

applicability, rather than the accuracy, of the model. Nonetheless, if the model is considered 

“invalid” (i.e., not applicable) for a particular experimental datum, the concentration value 

obtained is rejected.

One method for evaluating model validity relies on the “first order advantage” of 

multivariate calibration, which allows for detection, but not removal, of interfering signals 

through residual analysis.108,109 During PCR, primary PCs are used to reconstruct 

experimental CVs. However, it is rare for these PCs to fit the data perfectly, with remaining 

uncaptured current referred to as the “residual”. Jackson and Muldholkar developed a 

procedure to statistically test residual values to validate the model.130 A significance 

threshold is determined using the secondary PCs that were discarded during rank selection at 

a user-defined confidence interval α (Qα), under which 100 × (1 – α)% of uncaptured 

random noise should fall.120,121 the squared sum o the residual current for a particular CV 

(Qt) is greater than Qα, it is determined that a significant current source is present that 

cannot be captured by the model, which invalidates its use for analysis of this data. The 

concern with deterministic variance being present in the residual is that this variance may be 

the result of misattribution of dopamine signal to the residual rather than the dopamine 

vector (false negative). Alternatively, it could be an indicator that a signal that is not 

identical to dopamine is attributed to the dopamine vector (false positive) since the 

remainder of that signal (i.e., the difference between the CV for the signal and that for 

dopamine) would be attributed to the residual. However, the source of deterministic variance 

could also be due to ancillary noise sources such as an unexpected electroactive 

neurochemical or movement artifacts in that absence of false positives or negatives. 

Therefore, the process is conservative inasmuch as the model will be rejected if Qt exceeds 

Qα because of false-negative or false-positive errors, but also due to the presence of other 

components that cannot be accounted for by the model. Importantly, this process does not 

statistically confirm whether the collected data contains dopamine; this can only be 

confirmed with pharmacological and/or histological tests, or selective (i.e., optogenetic) 

stimulation.
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The residual (Qt) is calculated for each CV in any given set of data, and these values can be 

plotted along the same time scale as the data (Figure 4b, top). Residual color plots can be 

used to visualize uncaptured current, which could reveal the source of variance uncaptured 

by the training set (Figure 4b, bottom). Residual failure outside of the time window in which 

concentrations are being predicted should not impair the ultimate success of the model. 

However, Qt may cross Qα for multiple CVs within the prediction window (i.e., during 

prolonged dopamine and/or pH events). Any individual data point that fails residual analysis 

(i.e., Qt > Qα) is excluded from the data set. The omission can be executed by replacing the 

data point with a new value based on interpolation between adjacent data points, or by 

designating the data point as “NaN” (not a number). Additional a priori exclusion criteria are 

also utilized if there are too many data points missing from a trace that represents the single 

unit of analysis (e.g., one trial around a task-related event). Any trial is removed from 

subsequent analysis if it fulfills either of the following two criteria: (1) a total of 10% or 

more of the data points have been excluded, or (2) a string of contiguous data points have 

been excluded that amounts to more than five percent of the data points.

Additional Diagnostics to Test the Quality of Training Sets

Further procedures are available to assess the quality of training sets. One such tool is a 

Cook's distance plot, which displays the scores for each analyte of interest with respect to 

the primary PCs.123 For the sake of simplicity, these are typically depicted with the x- and y-

axes representing the first two primary PCs, though for higher dimension models (i.e., 

training sets with a rank > 2), it should be understood that more projections exist. The use of 

these plots, along with calculation of Cooks' Distances, also allows the identification of 

outliers in the training set, described elsewhere.123

The robustness of a training set can also be assessed with the model k-vectors (sometimes 

referred to as a K-matrix). A k vector is typically calculated to represent the estimation of 

the CV for a pure unit analyte concentration change (i.e., 1 μM dopamine or a full pH unit 

change).123,126 A representative k vector indicates the success of the model in isolating 

analytes of interest from the training set standards. A k vector that does not resemble the 

desired species can arise from the poor quality of training set standards and/or significant 

differences between them.123,125,126 Notably, it has been shown that the quality o CVs for 

each analyte (i.e., DA and pH for typical training sets) can affect the predictions for the other 

analytes in the training set, making the quality of standards for each analyte in the training 

set an important experimental aim (in particular, see Figure 1 of Keithley and Wightman123).

PCR with Residual Analysis in Practice

The most controversial component of the chemometric PCR analysis for FSCV is the 

construction of a training set.125,126 The standard procedure for constructing a training set 

for chemometric analysis is to use a series of known concentration standards applied to the 

instrument in vitro, for example in a flow cell. However, even when collected at the same 

electrode, in vivo and in vitro CVs differ (see Supplementary Figure 3 of Clark et al.59). This 

is likely due to chemical and electrical (impedance) differences between the two 

environments23,29 and has led to the practice of acquiring training sets in vivo by stimulation 

of an afferent dopamine pathway following the experiment,29,123,125 which is an extensively 

Rodeberg et al. Page 13

ACS Chem Neurosci. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterized source of dopamine release in vivo.24,29,41,131 This stimulation evokes both 

dopamine release and a subsequent temporally resolved hemodynamic response, including a 

pH change.112 Notably, these pH changes are difficult to resolve from changes in other 

electroactive substances (e.g., H2O2/O2, adenosine) that also occur in response to electrical 

stimulation. As a result, in vivo pH CVs typically include contributions from these 

substances, and are thus difficult to simulate in vitro.132 Ultimately, with a series of 

stimulation intensities (e.g., current amplitude, pulse number, frequency), a training set can 

be constructed that spans the range of signals from dopamine and pH observed under 

experimental conditions. This method produces CVs that match the electrochemical and 

biological environment of the data to be analyzed, which is important for PC generation, 

signal extraction, and residual analysis (see above).

However, unlike a training set generated from exogenous standards, the analyte 

concentrations producing these in vivo signals are not inherently known. Therefore, to 

estimate the concentrations of analytes in the training set, an additional step is required. 

Common practice is to use in vitro standards to obtain a calibration factor to convert current 

to concentration. Thus, while the analyte identity is not determined from in vitro standards, 

the estimation of concentration is. As stated above, in vitro CVs do not perfectly map onto in 

vivo CVs and, as such, the mapping of a calibration factor also incorporates some level of 

inaccuracy. For this reason, it is important to recognize that analyte concentrations reported 

from in vivo FSCV experiments should be regarded as estimates.

An additional limitation of the use of in vivo training sets is that, rather than using chemical 

standards, biological signals of presumed chemical origin are employed. Therefore, under 

these conditions, the model extracts signals that are similar to those produced by the 

biological manipulation rather than signals that are necessarily specific to a particular 

chemical. This approach is tolerated as a proxy of a chemical signal when the signal evoked 

by the stimulus used to generate the training set has been well characterized (such as in vivo 

stimulation along the ascending dopaminergic pathway, discussed above).

Using the original incarnation of chememotric analysis of in vivo FSCV signals,29 training 

sets and experimental data are collected from the same recording site (or sometimes at 

different recording sites from the same subject), and thus lack full statistical independence. 

In these cases, the model identifies signals at a recording site evoked by one stimulus that 

resembles signals at the same recording site evoked by a different stimulus; or even by the 

same stimulus when electrically evoked signals are analyzed using a training set generated 

from electrical stimulation at the same location.46,133–135 One means utilized to avoid this 

circularity, and obtain greater independence, has been to construct in vivo training sets in a 

different subject to that from which the experimental data will be collected. However, for 

practical (and ethical) reasons, it is not always possible to take each electrode used in an 

experiment and collect a training set within a separate animal. Consequently, the use of 

“standard” training sets has evolved where a model is built from a training set generated at 

one electrode and used to analyze data from another electrode in a different subject. This 

approach assumes generalization of signals across electrodes. Indeed, electrochemical 

detection is founded on the premise that molecules exhibit consistent faradaic properties on 

a particular substrate when conditions are reproduced. Therefore, the key to the success of 
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this approach is to maintain reproducibility of electrode fabrication, a goal that may be more 

favorable for (non-pulled) fused-silica than for pulled borosilicate-glass based electrodes, 

which tend to have significant variation in their tapers. However, other sources of variability 

can also violate generalization across experiments, including reference electrode drift and 

electrochemical differences between different carbon fibers.

There are some additional advantages to using standard training sets. Models no longer need 

to be built at each individual electrode, which results in reduced analysis time. In addition, 

the use of a single standard training set could avoid the variability between experimenters in 

training set construction that has been demonstrated previously.122 Finally, a stimulating 

electrode, which could perturb the tissue and ultimately affect behavior,136 does not need to 

be implanted in the experimental animal.

Nonetheless, there are limitations to this approach. The ultimate characteristics of any PCR 

model are dependent on the CVs provided for the training set, and not the data to which it is 

being applied. The primary PCs, those used for concentration prediction, will exhibit 

characteristics of the signals seen at whichever electrode was used for training set 

construction. If there are differences in CV shapes between the experimental data and the 

training set, primary PCs will prove less able to extract and attribute experimental currents to 

the desired analytes. A recent study demonstrated that CVs differ between electrodes and 

experiments and, despite high correlation coefficients between k vectors, this leads to 

differences in predicted dopamine concentrations.125

A more significant problem is the impact on the reliability of model validation. Differences 

between experimental and standard training set CVs may lead to the assignment of 

deterministic currents (i.e., signals arising from analytes in the training set) to Qt, resulting 

in unrepresentative residual traces. In some cases, this can lead to data being discarded that 

would have been retained with a within-subject training set (i.e., a false negative).125 

Moreover, because Qα is determined from information in secondary PCs, it will be model-

specific and invariant across different sets of data even when noise levels vary from 

experiment to experiment. Lower than expected Qα values could increase the rate of false 

negatives; however, unrepresentatively high Qα values are also possible, which could lead to 

the retention of data that should have been discarded (i.e., false positives). This is more 

concerning, as it would permit the retention of poor data.

Ultimately, standard training sets suffer from the disadvantage of being unrepresentative of 

the experimental data. Nonetheless, standard training sets could provide similar qualitative 

results to within-subject training sets. Previous work has demonstrated that replacing 

dopamine CVs in a within-subject training set with CVs from a separate electrode (leaving 

pH CVs unaltered) resulted in a qualitatively similar trace (Figure 5),123 and comparison of 

data from different experiments using within-subject and standard training sets, respectively, 

has yielded similar results (Figure 2). However, current standard training set methodology 

precludes the ability to test whether the quantitative or residual analysis failures outlined 

above occur for any given application. Thus, improvements to standard training set 

methodology to reflect these concerns are important. One method that has been adopted to 

provide a level of validation between the generalized model (standard training set) and the 
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experimental data is to use positive controls at the start and end of the experiment to 

compare the evoked signals with those in the training set. Commonly for experiments where 

striatal dopamine is being recorded, the unexpected delivery of a food reward is used to elicit 

an electrochemical signal.100,137 This signal is then compared to the CVs in the training set. 

If there is poor correlation between the positive-control signal and the training set, then 

either the signal is not predominantly dopamine, or the model will not generalize to the 

electrode being tested. While one could not easily discern these two scenarios, in either case 

it would not be fruitful to continue to collect and analyze experimental data under these 

conditions. However, this procedure does not address similarity of pH signals or noise levels 

between the data and training sets, both of which influence the predictions and success of 

the PCR model. Therefore, improving this verification process is a warranted area for 

progress in future investigations.

In addition, the methodology for constructing and/or implementing standard training sets 

could be improved. Notably, multivariate calibration transfer between instruments or 

electrodes is a significant area of inquiry within the field of chemometrics.138,139 These 

methods often require independent standards being run on each instrument (not possible 

with in vivo measurements) or use data from the new instrument to update the model. 

Further collaboration between chemometricians and users of FSCV could improve standard 

training set methodology by incorporating differences between electrodes and 

instrumentation to better match the experimental environment.

Guidelines for Methods Presentation

Because variability exists in procedures for PCR, a few basic guidelines for reporting these 

procedures are warranted. First, it is important to make clear what methods were used to 

construct training sets for the study. In particular, it should be elucidated which electrodes 

were used to generate the training sets (i.e., specific or standard training sets) so that readers 

can understand the procedure used to acquire and select standards. Second, because these 

chemometric models will be used to analyze large amounts of data, it is important to report 

their general characteristics. This would include the analytes that comprise the training set, 

Qα values, and rank. The use of k-matrices could also illustrate the quality of these training 

sets. Third, the criteria for exclusion of data (i.e., residual analysis) should be made clear. 

Lastly, the use of additional methods to increase confidence in the acquired signal (e.g., the 

use of positive controls to verify the applicability of the model to experimental 

conditions100,137) should be reported.

Conclusions and Perspectives

The authors of this Review are in general agreement that, when appropriate caution is 

observed, both acute and chronic CFMs can be used for detection of behaviorally evoked 

dopamine release in regions of the striatum using FSCV. In support of the reliability of these 

measurements, there is generally high concordance between results from FSCV of dopamine 

concentration fluctuations in the striatum with either acute or chronic electrodes, and 

electrophysiological recordings of dopamine neurons in the midbrain, with many key 

findings reproduced across approaches. These replications include the characterization of 
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reward prediction-error signals62,70,140 that convey quantitative information.63,141 They 

include demonstrations that dopamine signals to reward-related cues are sensitive to factors 

that influence subjective value such as delayed reward delivery (temporal discounting),
62,142,143 or subjective risk preference,144–146 and concur that there is stronger encoding of 

reward size than effort-based response cost by dopamine signals.147,148 An uncertainty-like 

signal following presentation of a Pavlovian stimulus predicting probabilistic reward has 

been identified and replicated across methodologies149,150 as have observations of partial 

generalization between sensory stimuli that are associated with different economic values,
62,151 which can come in the form of a presumed sensory signal, temporally separated from 

a value signal.63,152,153 The success of chronic electrodes is notable, as it has long been held 

that chronically implanted electrodes are prone to failure. A recent review of glucose 

biosensors documents the importance of chronic sensors for monitoring in diabetes. The 

chief problem to their use is the foreign body response that impairs sensor performance.154 

It may be that the finding that very small electrodes remain functional will be very useful to 

other health related fields involving biosensors.

The chief remaining disagreement between the authors is the standard training set 

methodology (discussed in PCR with Residual Analysis in Practice subsection). In its 

current design, the use of PCR to analyze in vivo voltammetry data results in a trade-off 

between two separate guidelines for PCR: (1) matching instrumental and environmental 

conditions when generating calibration models and (2) independence between training set 

standards and data. Phillips and colleagues value the use of a training set that is generated 

from an independent source to that from which experimental data is collected. However, 

Wightman and colleagues maintain that the use of training sets obtained under 

unrepresentative conditions prevents definitive statements regarding statistical validation of 

PCR models when analyzing FSCV data, and has practical implications for signal 

extraction. Notably, this is true for training sets generated in vitro, in which it can be difficult 

to simulate the chemical environment of in vivo measurements, which is of particular 

importance for generating pH standards.

While the robustness of detection of striatal dopamine by FSCV in awake animals should 

inspire confidence, some of the greatest promise is beyond dopamine in the striatum. For 

detection of other electroactive neurochemicals in other brain regions,155–158 sensitivity and 

selectivity are more serious concerns because of lower analyte concentrations and a greater 

number of possible interferents. With this in mind, we believe that many of the caveats we 

have described in this Review will pose much greater challenges for these new applications. 

Specifically, key hardware changes could include more widespread use of chronically 

implanted electrode arrays that have moveable probes, and the use of stable polymer 

coatings on Ag/AgCl reference electrodes.
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Figure 1. 
Designs of (a) borosilicate glass (b) fused silica CFMs. (a) Carbon fibers are aspirated 

through borosilicate glass under vacuum. A seal is created by heating and pulling the 

capillary to a fine tip. The protruding fiber is then trimmed, typically between 75 and 125 

μm. For optimal electrochemical performance, epoxy resin is used to fill any leaks in the seal 

that occur during electrode fabrication. Left panel: Electron micrograph of CFM. Reprinted 

with permission from ref 113. Copyright 2003 American Association for Clinical Chemistry. 

Middle panel: A rat with dual cannulas for later acute implantation of a CFM and reference 

electrode. The rat is tethered to a swivel and commutator via fastening of the headstage to an 

implanted stimulating electrode. Right panel: Side view of cannula for acute implantation of 

electrodes (left) and a micromanipulator for precise driving of the CFM during in vivo 

recordings (right). (b) Carbon fibers are threaded through a small diameter fused silica 

capillary under isopropyl alcohol. After drying, epoxy is placed on the fiber and wicked into 

the fused silica capillary to create a hemispherical seal (inset image). The protruding carbon 

fiber is trimmed between 150 and 200 μm long. Electrical connection is established between 

a silver pin and the fiber with silver epoxy, which is later insulated with clear epoxy. 

Reprinted with permission from ref 59. Copyright 2010 Nature Publishing Group.
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Figure 2. 
Comparison of concentrations measured at acute and chronic CFMs without optimization for 

dopamine release sites. In a study with acute CFMs (Owesson-White et al., ref 87), electrode 

placement was optimized for extracellular electrophysiological signals rather than dopamine 

release, resulting in recording locations without (top) and with (middle) phasic dopamine 

release. The concentration profile corresponds well with values from chronically implanted 

CFMs that were not optimized for recording location (bottom), indicating the lower 

concentrations measured with chronic CFM may be a result of recording site selection. 

Reprinted with permissions from ref 86. Copyright 2012 PNAS.
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Figure 3. 
Dopamine transients at chronically implanted CFMs. (a) Pharmacologically induced 

dopamine transients at a chronic CFM in response to i.v. cocaine infusion (red bar, 1.5 s 

duration). Background subtraction is denoted by the white dashed line. (b) Measurements at 

a chronic CFM during a behavioral session of Pavlovian conditioning. Spontaneous 

dopamine transients are observed preceding cue onset (white asterisks). Moreover, both cue 

onset (left red dotted line) and reward delivery immediately following cue offset (right red 

dotted line) evoked phasic dopamine release. Background subtraction is denoted by the 

white dashed line. Dopamine traces were extracted with PCR using a standard training set. 

Both measurements were made in the nucleus accumbens core.
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Figure 4. 
Example of the use of principal component analysis to analyze cocaine-induced dopamine 

transients. (a) A 30 second color plot following cocaine (20 mg/kg) administration in an 

awake rat shows overlapping dopamine and pH changes. The dopamine (black) and pH 

(blue) changes are separated by PCA, and quantitated using inverse-least-squares regression. 

pH changes have a maximum contribution of +0.019 pH units (−0.76 nA) at 8.3 s, while 

dopamine maximizes at 262 nM (3.13 nA) at 28.9 s. (b) Residual analysis confirms that the 

PCA model is valid for analysis of this data. Qt values (black) fall below the model specific 

tolerance level (Qα, 379 nA2) for the data shown in panel (a). A residual color plot displays 

current uncaptured by the model.
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Figure 5. 
Training sets built with data from separate electrodes could capture qualitative information. 

Dopamine CVs from a training set built at the same electrode as the collected data were 

replaced with dopamine CVs from a separate electrode, while pH CVs were left unaltered. 

Analysis with this composite training set resulted in underestimation of signal, but tracked 

qualitative information for this electrical stimulation (red bar). Reproduced with permission 

from ref 123. Copyright 2011 American Chemical Society.
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