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Abstract

Methyllysine post-translational modifications (PTMs) of histones create binding sites for 

evolutionarily conserved reader domains that link nuclear host proteins and chromatin-modifying 

complexes to specific genomic regions. In the context of these events, adjacent histone PTMs are 

capable of altering the binding activity of readers toward their target marks. This provides a 

mechanism of “combinatorial readout” of PTMs that can enhance, decrease, or eliminate the 

association of readers with chromatin. In this Perspective, we focus on recent studies describing 

the impact of dynamic phospho-serine/threonine/tyrosine marks on the interaction of methyllysine 

readers with histones, summarize mechanistic aspects of the phospho/methyl readout, and 

highlight the significance of crosstalk between these PTMs. We also demonstrate that in addition 

to inhibiting binding and serving as a true switch, promoting dissociation of the methyllysine 

readers from chromatin, the phospho/methyl combination can act together in a cooperative manner

—thus adding a new layer of regulatory information that can be encoded in these dual histone 

PTMs.

Graphical Abstract

The nucleosome is a basic building block of chromatin that facilitates the compaction and 

stabilization of eukaryotic DNA. Structural and functional alterations in nucleosome 

organization provide the ability to control fundamental DNA-mediated nuclear processes, 

including gene transcription and DNA replication, recombination, and repair. Over 500 

PTMs or epigenetic marks have been identified in the nucleosomal histone proteins.1 A 
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number of these modifications have been shown to modulate chromatin activities through 

altering DNA–protein and protein–protein interactions.

Methylation of lysine residues represents one of the primary and frequently occurring 

histone PTMs. Recent mass spectrometry-based proteomic analysis uncovered 82 

methylation sites in the four core histones (H2A, H2B, H3, and H4) and the linker histone 

H1.1 Although the precise role for the majority of these marks is yet to be elucidated, several 

methyllysine PTMs have been studied extensively and their functions established to some 

degree.2,3 The canonical methyllysine PTMs include mono-, di-, and trimethylated K4, K9, 

K27, K36, and K79 of histone H3, as well as K20 of histone H4 and K26 of histone H1. 

These PTMs are implicated in mediating a wide range of biological processes, particularly 

transcription and DNA damage response. The trimethylated species, H3K4me3, is found 

around transcription start sites and is a hallmark of gene expression.4 Actively transcribed 

gene bodies are characterized by high levels of H3K36me3.3 In contrast, H3K27me3 

strongly associates with transcriptional repression, and H3K9me3 is enriched in condensed 

pericentric heterochromatic regions. H4K20me2, which is present in >80% of nucleosomes 

in mammalian cells, plays an important role in DNA damage repair.5,6

A set of domains, found in nuclear proteins and broadly named histone readers or epigenetic 

readers, bind methyllysine PTMs with a remarkably similar low-micromolar affinity (Kd ~ 

1–50 μM) although with a variable degree of specificity.7–10 Currently, 16 methyllysine 

readers have been identified and structurally and functionally characterized. Recognition of 

methyllysine PTMs by readers recruits proteins, often enzymes and components of 

multisubunit complexes, to particular genomic regions. This, in turn, initiates and/or 

propagates nuclear signals that are translated into specific biological outcomes. In many 

cases, the biological outcome depends on a combinatorial readout of multiple PTMs by 

spatially linked readers and on crosstalk between PTMs.7 The readout and crosstalk can be 

cooperative, antagonistic, or independent in nature.

The concept of interplay between histone PTMs that can influence the ability of 

methyllysine readers to associate with chromatin was first introduced by Fischle et al. in 

2003.11,12 The authors proposed that phosphorylation of a serine or threonine residue 

adjacent to a site of histone methylation could disrupt binding of a reader to this methylation 

site. The idea of binary “phospho/methyl” switching markedly expanded the epigenetic field 

and illuminated a possible mechanism for the release of readers from chromatin.11,13 This 

mechanism can be especially pertinent to the readers of stable marks with a low turnover 

rate, such as some methyllysine PTMs. Since the conception of the phospho/methyl switch 

hypothesis, a substantial body of work has been carried out in support of it. Of 48 

phosphorylation sites identified in histones,1 many are located nearby or adjacent to lysine 

residues that can be methylated. The coexistence of PTMs, including H3T3phK4me, 

H3K9meS10ph, H3K27meS28ph, and H3S31phK36me, has been confirmed 

experimentally.14 The pervasiveness of histone lysines being juxtaposed to potential 

phosphorylation sites suggests that phospho/methyl switching might be a common feature of 

effector protein regulation.

Andrews et al. Page 2

ACS Chem Biol. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this Perspective, we summarize recent findings on the impact of phosphorylation on 

binding of methyllysine readers and highlight the significance of interplay between the 

methyllysine and phospho-serine/threonine/tyrosine PTMs. We also demonstrate that, in 

addition to impeding binding and serving as a true switch, the phospho/methyl combination 

can act together in a cooperative manner (i.e., enhancing binding)—thereby expanding 

potential of the epigenetic language.

REGULATION OF H3K9ME READERS BY H3S10PH

The first example of the phospho/methyl switch was reported for the H3K9me3S10ph 

combination of PTMs.11,12 Several groups independently found that the chromodomain 

(CD) of heterochromatin protein 1 (HP1) associates with the H3K9me3 mark, recruiting 

HP1 to heterochromatic regions and mediating the formation and maintenance of 

heterochromatin.15–18 However, during mitosis, HP1 is released from heterochromatin as a 

result of phosphorylation of H3S10 by Aurora B-type kinases, even though the H3K9me3 

mark persists.11,13 Conversely, inhibiting Aurora B kinase activity and eliminating H3S10 

phosphorylation causes HP1 to remain attached to heterochromatin, which disrupts normal 

chromatin decondensation and chromosome segregation during mitosis.11,13 In further 

support of the antagonistic effect of H3S10ph, in vitro binding assays demonstrate a ~50–

100-fold decrease in affinity of chromodomains of three HP1 isoforms for the dually 

modified H3K9me3S10ph peptide as compared to the affinity of these CDs for H3K9me3 

peptide.11

A similar significant loss of binding activity has been observed for several other 

chromodomain-containing proteins. Incorporation of S10ph in the H3K9me3 peptide results 

in a 350-fold decrease in binding of CD of yeast chromodomain protein 1 (Chp1).19 

Structural analysis of the Chp1 CD bound to histone H3K9me3 peptide provides a possible 

explanation for the inhibitory role of S10 phosphorylation and the displacement of CD from 

H3K9me3S10ph (Figure 1a). In the complex, H3K9me3 adopts a β-strand conformation.19 

The trimethylated K9 inserts into a canonical aromatic cage consisting of three aromatic 

residues and an aspartic acid, whereas the adjacent S10 residue forms hydrogen bonds with 

Glu55 and Asn59 via its hydroxyl group. Phosphorylation of S10 not only eliminates the 

hydrogen bonds but also creates electrostatic repulsion between the negatively charged 

moieties (i.e., the phosphate group of H3S10ph and the carboxylic group of Glu55), as well 

as causes a steric clash with Glu55, Pro56, and Asn59.

Chromodomains of CDY and CDYL2, two members of the chromodomain Y chromosome 

(CDY) family of proteins, have been shown to be sensitive to the presence of H3S10ph.20 

Interaction of these CDs with histone H3K9me3S10ph peptide was ~76–100 fold weaker as 

compared to their interaction with H3K9me3 peptide. Phosphorylation of H3S10 abolishes 

binding of the CD- and BAH domain-containing plant protein CMT3 and the homologous 

protein, ZMET2, to H3K9me2.21 The structure of the ZMET2 CD-H3K9me2 complex 

reveals that the hydroxyl group of S10 is hydrogen bonded to the carboxylate of Glu477.21 

Phosphorylation of S10 would result in the loss of the hydrogen bond and introduce 

unfavorable electrostatic forces.
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Due to extensive intermolecular contacts, the ankyrin repeats of histone methyltransferases 

G9a and G9a-like protein (GLP) display high specificity for H3K9me2/1.22 The H3K9me2 

peptide binds between the fourth and fifth ankyrin repeats in GLP, with dimethylated K9 

occupying a four-aromatic residue-binding cage. The S10–G13 residues of the H3K9me2 

peptide are involved in multiple interactions that enhance affinity and specificity. The 

hydroxyl group of S10 forms a hydrogen bond with the carboxylate group of Glu870. 

Substitution of Glu870 with an arginine or inclusion of H3S10ph eliminates binding of the 

ankyrin repeats to the methylated histone peptide, implying that phospho/methyl switching 

may play a role in regulating activities of these methyltransferases.

The ATRX-DNMT3-DNMT3L (ADD) domain of the alpha thalassemia/mental retardation 

syndrome X-linked protein (ATRX) is an example of an H3K9me3 reader that is insensitive 

to phosphorylation of H3S10.23–25 The ADD domain of ATRX exhibits relatively similar 

binding affinities for the H3K9me3S10ph and H3K9me3 peptides (Kds = 0.19 μM and 0.11 

μM, respectively).23 As in the complex with H3K9me3 peptide, in the ATRX ADD-

H3K9me3S10ph complex, K9me3 is restrained through hydrophobic and cation–π contacts 

and nonconventional carbon–oxygen hydrogen bonds.23,24,26 Although the phosphorylated 

H3S10 residue is positioned away from the protein surface and does not make direct contact 

with the ATRX ADD domain, it is stabilized via a salt bridge with the guanidinium group of 

H3R8 (Figure 1b). The significance of this intrapeptide contact in the complex was 

substantiated by the observation that binding of the ATRX ADD domain to the mutated 

H3R8AK9me3S10ph peptide was nearly 30-fold weaker than binding of this domain to the 

H3K9me3S10ph peptide. In contrast, the phosphorylation marks H3T6ph and, to a lesser 

extent, H3T3ph disrupt the association of the ATRX ADD domain with histone H3.23

Another example of an H3S10ph-insensitive reader of H3K9me3 is the tandem tudor 

domain (TTD) of UHRF1,27 an E3 ubiquitin ligase required for the maintenance of DNA 

methylation. Studies show that both isolated TTD and combined TTD-PHD domains of 

UHRF1 bind H3K9me3 regardless of S10 being phosphorylated or not.27,28 The structure of 

the TTD-H3K9me3S10ph complex reveals that the H3S10ph residue is positioned outward 

from the TTD aromatic cage and displays a high degree of rotational freedom.27,28 These 

findings are in agreement with the observation that UHRF1 remains associated with highly 

phosphorylated mitotic chromatin.27

Similar to the ATRX ADD domain, the second plant homeodomain (PHD2) finger of 

chromodomain helicase DNA binding protein 4 (CHD4) prefers H3K9me3 to the 

unmodified histone H3 tail.29,30 However, the PHD2 finger does not tolerate 

phosphorylation of either T3, T6, or S10, as observed in an on-beads combinatorial H3 

peptide library assay.29 The solution structure of PHD2 in complex with H3K9me3 peptide 

shows that both T3 and T6 are involved in the interaction.30 The side chains of T3 and T6 

are positioned in shallow hydrophobic pockets, leaving insufficient space for the addition of 

phosphate groups to the hydroxyl moieties of these residues.30
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REGULATION OF H3K4ME3 READERS BY H3T3PH AND H3T6PH

Unlike the relatively stable H3K4me3 mark, H3T3ph and H3T6ph are transient PTMs that 

rise sharply during mitosis.31 The H3T3ph and H3T6ph marks are produced by the kinases 

Haspin and protein kinase CβI, respectively, and are found to be essential for proper 

condensation and segregation of chromosomes.32,33 Recent mass spectrometry and 

antibodies-based analyses confirmed the coexistence of H3T3ph and H3K4me3 on the same 

histone H3 tail.34

The double chromodomain (DCD) of the ATP-dependent chromatin-remodeling factor 

CHD1 binds tightly to the H3K4me3 mark.35 Phosphorylation of H3T3, adjacent to K4me3, 

results in a 25-fold decrease in binding. A structural comparison of the H3K4me3-bound 

and H3T3phK4me3-bound CHD1 DCD reveals that the free hydroxyl group of H3T3 forms 

a hydrogen bond with the backbone amide of H3Q5; however this intrapeptide bond is lost 

when H3T3 becomes phosphorylated (Figure 2a). More distal to K4me3 modifications, 

including H3S10ph, appear to have no effect on the interaction of the CHD1 DCD with 

H3K4me3.

Phosphorylation of H3T3 has a profound impact on binding of PHD fingers to H3K4me3 

and acts as a binary switch, abrogating the interaction in vitro and releasing the PHD finger-

containing proteins from H3K4me3-enriched chromatin in vivo. The inhibitory role of 

H3T3ph has been reported for the PHD fingers of death inducer obliterator 3 (DIDO3), 

inhibitor of growth 2 (ING2), mixed lineage leukemia 5 (MLL5), recombination activating 

gene 2 (RAG2), and transcription initiation factor TFIID subunit 3 (TAF3).36–39 The 

presence of H3T3ph reduces the TAF3 PHD finger affinity toward H3K4me3 by ~80-fold,37 

substantially compromises binding of MLL5 PHD,39 and completely eliminates binding of 

the DIDO3, ING2, and RAG2 PHD fingers.36,38 The effect of the H3T6ph mark varies, 

preventing binding of DIDO3 and RAG2 but leading to a modest ~10-fold decrease in 

binding of ING2.36,38

The crystal structure of the H3K4me3-bound PHD finger of DIDO3 shows an extensive 

binding site, with the first six residues of the peptide, including T3 and T6, making direct 

contacts with 16 residues of the PHD finger.38 The K4me3 residue of the peptide occupies a 

characteristic aromatic/hydrophobic cage, composed of Tyr270, His277, Met282, and 

Trp291 (Figure 2b). H3T3 is buried in a narrow cleft, flanked by Trp291 and Glu308. The 

hydroxyl group of T3 forms a hydrogen bond with Glu308, the side chain of which 

protrudes over T3, making it essentially solvent inaccessible. The hydroxyl group of T6 is 

hydrogen bonded to the backbone amide of Phe281 and the backbone carbonyl group of 

Asn279. The net of hydrogen bonding and hydrophobic interactions involving both T3 and 

T6 would likely be disrupted by phosphorylation of either threonine. Furthermore, addition 

of the negatively charged phosphate group to H3T3 is electrostatically unfavorable due to 

repulsion with the negatively charged side chain of Glu308. The interaction can also be 

precluded as a result of steric hindrance.

The TTD module of lysine-specific demethylase 4A (KDM4A) recognizes H3K4me3.40 

However, H3T3ph abolishes this interaction, and H3T6ph causes a 2-fold decrease in 
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affinity.36 The structure of the KDM4A TTD-H3K4me3 complex provides an explanation 

for the observed different effects of T3ph and T6ph.40 In the complex, T3 forms a hydrogen 

bond with the side chain of Asn940 and a water-mediated hydrogen bond with the 

carboxylate group of Asp939, whereas the only interaction observed between the hydroxyl 

group of T6 and the TTD is a water-mediated hydrogen bond with the carboxyl oxygen of 

Asp934. Therefore, phosphorylation of T6 may result in only a small decrease in binding.

EFFECTS OF H3.3S31PH AND H3Y41PH ON H3K36ME3 READERS

Two phosphorylation sites, H3.3S31ph and H3Y41ph, have been identified around the 

methylation site H3K36me3, suggesting that phosphorylation could modulate binding 

activities of the H3K36me3 specific readers. Phosphorylation of H3.3S31 is catalyzed by 

serine/threonine kinase CHK1 and occurs only in the histone variant H3.3 (the canonical 

histone H3.1 and H3.2 variants contain an alanine at this position) in late prometaphase and 

metaphase in mammalian cells.41,42 The protein tyrosine kinase JAK2 phosphorylates 

H3Y41, producing the H3Y41ph mark that excludes HP1α from chromatin.43 The H3Y41ph 

PTM is positioned near the DNA entrance/exit sites in the nucleosome and is found to 

increase nucleosome unwrapping and enhance DNA accessibility to transcription regulatory 

complexes.44

To determine the effect of H3.3S31ph and H3Y41ph, we synthesized the histone H3.3 

peptides, H3.3H36me3, H3.3S31phK36me3, and H3.3K36me3Y41ph (residues 27–45 of 

H3.3) and examined their interactions with the PHF1 Tudor domain and the BRPF1 PWWP 

domain—two previously identified readers of the H3K36me3 mark45,46 by NMR (Figure 3). 

Titration of the H3.3H36me3 peptide to the 15N-labeled PHF1 Tudor domain caused large 

chemical shift perturbations (CSPs) in the intermediate exchange regime on the NMR time 

scale, confirming tight binding (Kd = 37 μM, as calculated based on CSPs; Figure 3c and 

Table 1). The addition of the two phosphorylated peptides induced CSPs mostly similar in 

direction to CSPs observed upon the addition of the H3.3K36me3 peptide, inferring that the 

binding mode is conserved. However, an intermediate-to-fast exchange regime for the 

binding of H3.3S31phK36me3 and a fast exchange regime for the binding of 

H3.3K36me3Y41ph indicated that both phosphorylation marks impair the Tudor-

H3K36me3 interaction. The Kds calculated from the NMR experiments revealed a 7- and 

13-fold decrease in binding for the H3.3S31phK36me3 and H3.3K36me3Y41ph peptides, 

respectively (Table 1).

Surprisingly, titration of the phosphorylated peptides to the 15N-labeled PWWP domain of 

BRPF1 induced CSPs larger in magnitude than CSPs seen upon titration of 

unphosphorylated H3.3K36me3 peptide (Figure 3d). The Kd values were found to be 3.9 

mM, 2.3 mM, and 1.8 mM, for the interaction with H3.3H36me3, H3.3S31phK36me3, and 

H3.3K36me3Y41ph, respectively. These data imply that phosphorylation, particularly of 

H3Y41, enhances binding of the BRPF1 PWWP domain to the H3K36me3 PTM by ~2 fold.

The structure of the PHF1 Tudor in complex with the H3.3K36me3 peptide (residues 31–40 

of H3.3) shows a very acidic binding site, especially where S31 is bound.45 The electrostatic 

repulsion between the negatively charged surface of the protein and the negatively charged 

Andrews et al. Page 6

ACS Chem Biol. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



S31ph of the peptide may contribute to the decreased binding of the Tudor domain. 

Furthermore, the side chain of S31 forms intrapeptide hydrogen bonds with backbone atoms 

of T32 and G34. Modeling the S31ph mark results in steric clashes with T32 and G34 and 

with the carboxylate group of Glu66. A shorter peptide used for crystallization of the Tudor-

H3.3K36me3 complex does not contain Y41, which prevents similar evaluation of the effect 

of Y41ph.

Unlike the negatively charged H3K36me3-binding site in the PHF1 Tudor domain, the 

H3K36me3-binding site in the BRPF1 PWWP domain contains many basic residues,46 

which would favor electrostatic contacts with the negatively charged S31ph and Y41ph. 

Furthermore, the side chains of both A31 and Y41 point away from the binding interface, 

and there is no apparent steric clash upon modeling in the S31ph and Y41ph marks, 

inferring that the addition of a bulky phosphate group is permissible. Together, these 

findings demonstrate that the effect of H3.3S31 and H3Y41 phosphorylation on binding 

activities of the H3K36me3-recognizing proteins varies and depends on a particular reader.

CONCLUDING REMARKS

A wide array of cellular events, including the regulation of gene transcription, chromatin 

compaction, and DNA damage response, require methylation of lysine residues in histones. 

Methyllysine PTMs serve as docking sites for various evolutionarily conserved reader 

domains that function to recruit chromatin-modifying complexes to specific sites within the 

genome. These complexes can further modify the structure and dynamics of chromatin and 

alter the DNA accessibility to downstream effectors. As some methyllysine PTMs appear to 

be stable and persist throughout mitosis, a mechanism must exist to dismiss the readers of 

these marks when the association with chromatin is no longer needed. One of the releasing 

mechanisms, which was initially proposed by Fischle et al.12 and since then has been 

supported by a wealth of observations, is based on the fact that highly dynamic phospho-

serine/threonine/tyrosine marks coexist with other PTMs during mitosis. Consequently, 

phosphorylation can serve as a functional “switch,” promoting dissociation of the 

methyllysine readers from chromatin. Accumulating evidence also suggests that 

phosphorylation PTMs can prevent demethylation of the methyllysine marks by blocking the 

recruitment of epigenetic erasers (enzymes that remove PTMs), thereby contributing to the 

maintenance of epigenetic memory. The accurate transmission of epigenetic information, 

including bookmarking PTMs responsible for reactivation of transcriptional and chromatin-

remodeling programs, from mother to daughter cells is required to maintain cellular 

identity.47,48 Thus, phospho-methyl switching may be a broad and fundamental mechanism 

used by the cell to preserve epigenetic information during cell division and transfer it 

faithfully to the next generation.

In addition to impeding binding and serving as a true binary switch, the phospho/methyl 

combination can act together in a cooperative manner, as shown herein. This finding is 

significant, because it illustrates the complexity of the histone code and suggests that the 

functional outcome associated with phospho/methyl switches is site and context dependent 

and varies for individual readers. Furthermore, it is expected that other adjacent PTMs such 

as lysine ubiquitination and acetylation may affect activities of these switches. We anticipate 
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that a more complex rulebook is likely in play regarding how PTMs cross talk, fine-tuning 

the end biological result. Understanding the mechanistic underpinnings of this rulebook and 

how it contributes to genome function will be a target of future research. Finally, as 

misregulation of the epigenetic machinery is at the heart of various human disorders, it will 

be essential to determine whether disruption of specific phospho/methyl switches plays a 

role in disease development and progression.

MATERIALS AND METHODS

Peptide Synthesis

Peptides were synthesized by UNC peptide synthesis core.

DNA Cloning, Expression, and Protein Purification

The Tudor domain of human PHF1 (aa 14–87) was expressed and purified as described.45 

The BRPF1 PWWP domain (aa 1064–1214) was cloned in pCOOL expression vector from 

full-length cDNA. The 15N-labeled PWWP was expressed as GST fusion protein in 

BL21(DE3) RIL cells grown in minimal media supplemented with 15NH4Cl (Sigma). Cells 

were lysed by sonication in 100 mM Tris-HCl (pH 8), 150 mM NaCl, and 1% (v/v) Triton 

X. Cellular derby was removed by centrifugation at 20 000g, and the supernatant was 

incubated with glutathione agarose resin for 2 h at 4 °C. Resin was washed with 100 mL of 

100 mM Tris-HCl (pH 8) supplemented with 150 mM NaCl. The GST tag was removed by 

cleavage with Thrombin overnight, and the cleaved protein was concentrated into PBS at a 

pH of 6.8.

NMR Spectroscopy

NMR experiments were performed on a Varian INOVA 600 MHz spectrometer at the 

University of Colorado School of Medicine NMR Core facility. CSPs experiments were 

carried out at 298 K using a uniformly 15N-labeled PWWP domain of BRPF1 and Tudor 

domain of PHF1. 1H,15N heteronuclear single quantum coherence (HSQC) spectra were 

collected in the presence of increasing concentrations of either H3.3K36me3, 

H3.3S31pK36me3, or H3.3K36me3Y41p peptides in PBS buffer at a pH of 6.8. Kd values 

were estimated using the following equation:

where [L] is concentration of the peptide, [P] is concentration of the protein, Δδ is observed 

chemical shift change, and Δδmax is the difference in chemical shifts of the free and the 

ligand-bound protein.

Acknowledgments

This work was supported by National Institutes of Health grants R01 GM106416 and GM100907 to T.G.K. and 
R01 GM110058 to B.D.S. F.H.A. is supported by National Institutes of Health grant T32AA007464. J.G. is an 
National Institutes of Health NRSA predoctoral fellow (F31 CA189487).

Andrews et al. Page 8

ACS Chem Biol. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Huang H, Lin S, Garcia BA, Zhao Y. Quantitative proteomic analysis of histone modifications. 
Chem Rev. 2015; 115:2376–2418. [PubMed: 25688442] 

2. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, 
regulation, and biological impact. Mol Cell. 2012; 48:491–507. [PubMed: 23200123] 

3. Wozniak GG, Strahl BD. Hitting the ‘mark’: interpreting lysine methylation in the context of active 
transcription. Biochim Biophys Acta, Gene Regul Mech. 2014; 1839:1353–1361.

4. Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of writing 
and reading a single epigenetic mark. Mol Cell. 2007; 25:15–30. [PubMed: 17218268] 

5. Jorgensen S, Schotta G, Sorensen CS. Histone H4 lysine 20 methylation: key player in epigenetic 
regulation of genomic integrity. Nucleic Acids Res. 2013; 41:2797–2806. [PubMed: 23345616] 

6. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 
2014; 15:7–18. [PubMed: 24326623] 

7. Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving the epigenetic landscape through 
histone readers. Nat Struct Mol Biol. 2012; 19:1218–1227. [PubMed: 23211769] 

8. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret 
histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007; 
14:1025–1040. [PubMed: 17984965] 

9. Musselman CA, Khorasanizadeh S, Kutateladze TG. Towards understanding methyllysine readout. 
Biochim Biophys Acta, Gene Regul Mech. 2014; 1839:686–693.

10. Wagner T, Robaa D, Sippl W, Jung M. Mind the methyl: methyllysine binding proteins in 
epigenetic regulation. Chem Med Chem. 2014; 9:466–483. [PubMed: 24449612] 

11. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, 
Funabiki H, Allis CD. Regulation of HP1-chromatin binding by histone H3 methylation and 
phosphorylation. Nature. 2005; 438:1116–1122. [PubMed: 16222246] 

12. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S. Molecular basis for the 
discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 
chromodomains. Genes Dev. 2003; 17:1870–1881. [PubMed: 12897054] 

13. Hirota T, Lipp JJ, Toh BH, Peters JM. Histone H3 serine 10 phosphorylation by Aurora B causes 
HP1 dissociation from heterochromatin. Nature. 2005; 438:1176–1180. [PubMed: 16222244] 

14. Garcia BA, Barber CM, Hake SB, Ptak C, Turner FB, Busby SA, Shabanowitz J, Moran RG, Allis 
CD, Hunt DF. Modifications of human histone H3 variants during mitosis. Biochemistry. 2005; 
44:13202–13213. [PubMed: 16185088] 

15. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. 
Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 
2001; 410:120–124. [PubMed: 11242054] 

16. Jacobs SA, Khorasanizadeh S. Structure of HP1 chromodomain bound to a lysine 9-methylated 
histone H3 tail. Science. 2002; 295:2080–2083. [PubMed: 11859155] 

17. Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, 
Murzina NV, Laue ED. Structure of the HP1 chromodomain bound to histone H3 methylated at 
lysine 9. Nature. 2002; 416:103–107. [PubMed: 11882902] 

18. Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S. 
Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 
2001; 20:5232–5241. [PubMed: 11566886] 

19. Schalch T, Job G, Noffsinger VJ, Shanker S, Kuscu C, Joshua-Tor L, Partridge JF. High-affinity 
binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric 
heterochromatin. Mol Cell. 2009; 34:36–46. [PubMed: 19362535] 

20. Fischle W, Franz H, Jacobs SA, Allis CD, Khorasanizadeh S. Specificity of the chromodomain Y 
chromosome family of chromodomains for lysine-methylated ARK-(S/T) motifs. J Biol Chem. 
2008; 283:19626–19635. [PubMed: 18450745] 

21. Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, Vashisht AA, Terragni J, Chin HG, 
Tu A, Hetzel J, Wohlschlegel JA, Pradhan S, Patel DJ, Jacobsen SE. Dual binding of 

Andrews et al. Page 9

ACS Chem Biol. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in 
plants. Cell. 2012; 151:167–180. [PubMed: 23021223] 

22. Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X. The ankyrin 
repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding 
modules. Nat Struct Mol Biol. 2008; 15:245–250. [PubMed: 18264113] 

23. Noh KM, Maze I, Zhao D, Xiang B, Wenderski W, Lewis PW, Shen L, Li H, Allis CD. ATRX 
tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element 
silencing in neurons. Proc Natl Acad Sci U S A. 2015; 112:6820–6827. [PubMed: 25538301] 

24. Eustermann S, Yang JC, Law MJ, Amos R, Chapman LM, Jelinska C, Garrick D, Clynes D, 
Gibbons RJ, Rhodes D, Higgs DR, Neuhaus D. Combinatorial readout of histone H3 modifications 
specifies localization of ATRX to heterochromatin. Nat Struct Mol Biol. 2011; 18:777–782. 
[PubMed: 21666677] 

25. Kunowska N, Rotival M, Yu L, Choudhary J, Dillon N. Identification of protein complexes that 
bind to histone H3 combinatorial modifications using super-SILAC and weighted correlation 
network analysis. Nucleic Acids Res. 2015; 43:1418–1432. [PubMed: 25605797] 

26. Iwase S, Xiang B, Ghosh S, Ren T, Lewis PW, Cochrane JC, Allis CD, Picketts DJ, Patel DJ, Li H, 
Shi Y. ATRX ADD domain links an atypical histone methylation recognition mechanism to human 
mental-retardation syndrome. Nat Struct Mol Biol. 2011; 18:769–776. [PubMed: 21666679] 

27. Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, Barsyte-Lovejoy D, Martinez 
JY, Bedford MT, Fuchs SM, Arrowsmith CH, Strahl BD. Association of UHRF1 with methylated 
H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol. 2012; 19:1155–1160. 
[PubMed: 23022729] 

28. Rothbart SB, Dickson BM, Ong MS, Krajewski K, Houliston S, Kireev DB, Arrowsmith CH, 
Strahl BD. Multivalent histone engagement by the linked tandem Tudor and PHD domains of 
UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 2013; 
27:1288–1298. [PubMed: 23752590] 

29. Musselman CA, Mansfield RE, Garske AL, Davrazou F, Kwan AH, Oliver SS, O’Leary H, Denu 
JM, Mackay JP, Kutateladze TG. Binding of the CHD4 PHD2 finger to histone H3 is modulated 
by covalent modifications. Biochem J. 2009; 423:179–187. [PubMed: 19624289] 

30. Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, 
Kutateladze TG, Mackay JP. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding 
modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem. 2011; 
286:11779–11791. [PubMed: 21278251] 

31. Sawicka A, Seiser C. Histone H3 phosphorylation - a versatile chromatin modification for different 
occasions. Biochimie. 2012; 94:2193–2201. [PubMed: 22564826] 

32. Dai J, Sultan S, Taylor SS, Higgins JM. The kinase haspin is required for mitotic histone H3 Thr 3 
phosphorylation and normal metaphase chromosome alignment. Genes Dev. 2005; 19:472–488. 
[PubMed: 15681610] 

33. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM, Greschik H, Kirfel J, 
Ji S, Kunowska N, Beisenherz-Huss C, Gunther T, Buettner R, Schule R. Phosphorylation of 
histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature. 2010; 464:792–796. 
[PubMed: 20228790] 

34. Markaki Y, Christogianni A, Politou AS, Georgatos SD. Phosphorylation of histone H3 at Thr3 is 
part of a combinatorial pattern that marks and configures mitotic chromatin. J Cell Sci. 2009; 
122:2809–2819. [PubMed: 19622635] 

35. Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, Minor W, Rastinejad F, 
Khorasanizadeh S. Double chromodomains cooperate to recognize the methylated histone H3 tail. 
Nature. 2005; 438:1181–1185. [PubMed: 16372014] 

36. Garske AL, Oliver SS, Wagner EK, Musselman CA, LeRoy G, Garcia BA, Kutateladze TG, Denu 
JM. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat 
Chem Biol. 2010; 6:283–290. [PubMed: 20190764] 

37. Varier RA, Outchkourov NS, de Graaf P, van Schaik FM, Ensing HJ, Wang F, Higgins JM, Kops 
GJ, Timmers HT. A phospho/methyl switch at histone H3 regulates TFIID association with mitotic 
chromosomes. EMBO J. 2010; 29:3967–3978. [PubMed: 20953165] 

Andrews et al. Page 10

ACS Chem Biol. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Gatchalian J, Futterer A, Rothbart SB, Tong Q, Rincon-Arano H, Sanchez de Diego A, Groudine 
M, Strahl BD, Martinez AC, van Wely KH, Kutateladze TG. Dido3 PHD modulates cell 
differentiation and division. Cell Rep. 2013; 4:148–158. [PubMed: 23831028] 

39. Ali M, Rincon-Arano H, Zhao W, Rothbart SB, Tong Q, Parkhurst SM, Strahl BD, Deng LW, 
Groudine M, Kutateladze TG. Molecular basis for chromatin binding and regulation of MLL5. 
Proc Natl Acad Sci U S A. 2013; 110:11296–11301. [PubMed: 23798402] 

40. Lee J, Thompson JR, Botuyan MV, Mer G. Distinct binding modes specify the recognition of 
methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat Struct Mol Biol. 2008; 15:109–111. 
[PubMed: 18084306] 

41. Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD. Serine 31 
phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase 
chromosomes. Proc Natl Acad Sci U S A. 2005; 102:6344–6349. [PubMed: 15851689] 

42. Chang FT, Chan FL, JDRM, Udugama M, Mayne L, Collas P, Mann JR, Wong LH. CHK1-driven 
histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival 
in human ALT cancer cells. Nucleic Acids Res. 2015; 43:2603–2614. [PubMed: 25690891] 

43. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, Kouzarides T. JAK2 
phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009; 461:819–
822. [PubMed: 19783980] 

44. Brehove M, Wang T, North J, Luo Y, Dreher SJ, Shimko JC, Ottesen JJ, Luger K, Poirier MG. 
Histone Core Phosphorylation Regulates DNA Accessibility. J Biol Chem. 2015; 290:22612–
22621. [PubMed: 26175159] 

45. Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, 
Nunez JK, Nickoloff J, Kulesza CA, Yasui A, Cote J, Kutateladze TG. Molecular basis for 
H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol. 2012; 19:1266–1272. 
[PubMed: 23142980] 

46. Vezzoli A, Bonadies N, Allen MD, Freund SM, Santiveri CM, Kvinlaug BT, Huntly BJ, Gottgens 
B, Bycroft M. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. 
Nat Struct Mol Biol. 2010; 17:617–619. [PubMed: 20400950] 

47. Zaidi SK, Young DW, Montecino MA, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Mitotic 
bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet. 2010; 11:583–
589. [PubMed: 20628351] 

48. Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL. Gene bookmarking accelerates the kinetics of 
post-mitotic transcriptional re-activation. Nat Cell Biol. 2011; 13:1295–1304. [PubMed: 
21983563] 

Andrews et al. Page 11

ACS Chem Biol. Author manuscript; available in PMC 2016 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Analysis of the phospho/methyl binding interface for K9me3 readers. (a) The structure of 

Chp1 CD (gray) in complex with H3K9me3 peptide (yellow). Chp1 CD is shown in a 

surface model with residues forming the K9me3 aromatic cage and binding partners of S10 

depicted as sticks and labeled. Only the side chains are shown for clarity. (b) The structure 

of ATRX ADD (cobalt) in complex with the H3K9me3S10ph peptide (salmon). The ATRX 

ADD domain is represented as a surface model with residues forming the K9me3 aromatic 

cage shown as sticks. Red dashes represent hydrogen bonds. PDB ID codes: 3G7L and 

3W5A.
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Figure 2. 
Analysis of the phospho/methyl binding interface for K4me3 readers. (a) The structure of 

CHD1 DCD (orange) in complex with the H3K4me3 peptide (charcoal). CHD1 DCD is 

shown in a surface model with residues forming the K4me3 aromatic cage depicted as 

sticks. For clarity, only the side chains are shown. (b) The structure of the DIDO3 PHD 

finger (orange) in complex with the H3K4me3 peptide (white). The DIDO3 PHD finger is 

depicted as a surface model with residues involved in the stabilization of T3, K4me3, and T6 

shown as sticks. Red dashes represent hydrogen bonds. PDB ID codes: 2B2W and 4L7X.
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Figure 3. 
Phosphorylation of H3.3S31 and H3Y41. Phosphorylation affects binding of the H3K36me3 

readers. (a, b) The electrostatic surface potentials of PHF1 Tudor (PDB ID: 4HCZ) and 

BRPF PWWP (PDB ID: 2X4X) are shown with the histone peptide in green. Histone 

residues that are subject to phosphorylation are shown in closed or dotted circles. (c, d) 

From left to right: superimposed 1H, 15N-HSQC spectra of PHF1 Tudor (c) and BRPF 

PWWP (d) with the addition of H3.3K36me3, H3.3S31phK36me3, or H3.3K36me3Y41ph. 

The protein/peptide molar ratios are color coded accordingly.
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Table 1

Binding Affinities of the H3K36me3 Readersa

peptide PHF1 Tudor, Kd (μM) BRFP1 PWWP, Kd (mM)

H3.3K36me3 37 ± 1 3.9 ± 0.3

H3.3S31phK36me3 260 ± 40 2.3 ± 0.9

H3.3K36me3Y41ph 480 ± 50 1.8 ± 0.3

a
Values are means of at least three independent determinations ± standard error.
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