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Abstract: Laser-induced periodic surface structures (LIPSS) provide an easy and cost-
effective means of fabricating gratings and have been widely studied in recent decades. To 
overcome the challenge of orientation controllability, we developed a feasible and efficient 
method for manipulating the orientation of LIPSS in real time. Specifically, we used 
orthogonally polarized and equal-energy femtosecond laser (50 fs, 800 nm) double-pulse 
trains with time delay about 1ps, total peak laser fluence about 1.0 J/cm2, laser repetition 
frequency at 100 Hz and scanning speed at 150 μm/s to manipulate the LIPSS orientation on 
silicon surfaces perpendicular to the scanning direction, regardless of the scanning paths. The 
underlying mechanism is attributed to the periodic energy deposition along the direction of 
surface plasmon polaritons (SPPs), which can be controlled oriented along the scanning 
direction in orthogonally polarized femtosecond laser double-pulse trains surface scan 
processing. An application of structural colors presents the functionality of our method. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Since their discovery in the 1800s, gratings have been extensively used in devices and 
applications such as spectrometers [1], solar cells [2], lasers [3], light-emitting diode 
illumination [4], and bionics [5]. To fabricate adequate gratings, the grating constant and 
large-scale uniformity must be ensured. Although traditional fabrication methods such as 
photolithography [6] and mechanical scribing with ruling engines [7] can ensure a suitable 
grating constant and large-scale uniformity and have been developed over a long time, these 
methods require complex fabrication processes and expensive devices. Self-organized 
structures called laser-induced periodic surface structures (LIPSS) have recently been 
discovered; the periods of such structures can be maintained constant and on the sub micro 
scale [8], and thus these structures could afford a new strategy for easy and cost-effective 
grating fabrication. In addition, LIPSS could be fabricated on virtually all materials, 
including metals [9], semiconductors [10], and dielectrics [11], which considerably expands 
the application range of gratings. Several parameters limit application of LIPSS, including 
uniformity, orientation, periodicity, and large-area consistency. In particular, the orientation 
of LIPSS plays a major role in the application fields. For instance, in holograms and surface 
color marking, the intensity and color of diffracted light change with the angle between the 
LIPSS orientation and incident white light. A well-designed LIPSS pattern could transform 
into a vivid hologram pattern when illuminated by white light [12]. In optical data storage, 
LIPSS with different orientations could record different types of information [13]. 
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The morphology of LIPSS is usually related to laser processing parameters such as laser 
fluence [14], total energy input influences [15], laser repetition frequency [16], laser 
wavelength [17], scanning speed [18], scanning direction [19], use of laser bursts [20], and 
processing environment [21]. In general, for linear polarized single-pulse femtosecond laser 
processing on a single spot, the orientation of LIPSS whose period is near the irradiation 
wavelength on silicon surfaces is determined by the laser polarization and perpendicular to it 
in most situations [8]. However, this cannot be extended to the surface scan processing, Liu 
et al. found that the orientation of LIPSS on silicon surfaces was also influenced by scanning 
direction and speed, and it would rotate by certain angles [19]. In addition, when relating to 
the single-spot irradiation on silicon surfaces using delayed parallel or orthogonally 
polarized, single- or two-color double-fs-pulse trains, the factors that determine the 
orientation of LIPSS could be more complicated. For parallel polarized double-pulse 
femtosecond laser processing, the orientation of LIPSS is perpendicular to the laser 
polarization [22]. However, for orthogonally polarized and unequal-energy femtosecond 
double-pulse laser processing, S. Höhm et al. found that when having time delays, the LIPSS 
orientation of single-spot irradiation on silicon surfaces was determined by the stronger pulse 
and was perpendicular to its polarization [23]. F. Fraggelakis et al. found that when time 
delay was zero, the LIPSS orientation of single-spot irradiation on silicon surfaces was 
determined by both the two pulses and was perpendicular to the vector addition of the two 
pulses’ polarizations [24]. They also found that the second pulse arrived at the silicon surface 
determined the LIPSS orientation in the case of equal-energy [24]. For even more 
complicated case of two-color double-pulse processing, S. Höhm et al. found that the time 
delay also had influence on the LIPSS orientation on silicon surfaces [25]. The LIPSS 
orientation was determined by IR-pulse and perpendicular to its polarization when larger 
time delay (>2 ps) was employed while the LIPSS induced by IR-pulse and UV-pulse 
coexisted when time delay less than 2 ps. 

When applying LIPSS to the fabrication of gratings, surface scan processing is always 
required. To manipulate LIPSS orientation during surface scan processing, the direction of 
laser polarization need to be changed. For instance, B. Dusser et al. fabricated a specific 
color LIPSS pattern of Van Gogh by using a half-wave plate to change the direction of laser 
polarization [26]. However, precisely and dynamically controlling complex LIPSS 
orientations in real time remains a major challenge. Special polarization states of radial- or 
azimuthal-polarized laser beams must be used to achieve complex LIPSS orientations 
[27,28]. Recent studies have demonstrated that the morphology of LIPSS can be controlled 
by manipulating the SPPs. For example, T. J. Derrien et al. controlled the area of LIPSS by 
controlling the “SPPs active area” through double-pulse irradiation [29]. Wang et al. 
developed a method for rapid fabrication of large-area LIPSS by shaping the excitation 
region of SPPs into a long ellipse using a cylindrical lens [30]. This effect is based on the 
SPPs-laser scattering dynamics control, which has been widely accepted as the main 
mechanism of the LIPSS formation as well as the grating-assisted SPPs-laser coupling 
enhancement effect [31]. Thus, it is vital to steer the precise control of the SPPs directions, 
which determine the final processed LIPSS orientations. However, aforementioned 
traditional method requires the use of complex devices for controlling the laser polarization 
state and computer programming procedure, rendering it relatively inefficient approach. 

In this study, we developed a feasible and effective method for manipulating the 
orientation of LIPSS on silicon surfaces in real time during surface scan processing. By 
employing orthogonally polarized and equal-energy femtosecond double-pulse trains with a 
short time delay, we were able to control the direction of SPPs along the scanning direction; 
thus, the LIPSS orientation could be controlled to be perpendicular to the scanning direction, 
regardless of the scanning path (i.e., straight or curved scanning paths). Moreover, by 
maintaining the time delay between the two sub pulses at approximately 1 ps, LIPSS with 
adequate uniformity were obtained. The underlying mechanism of the proposed method is 
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outlined as follows: the intensity of SPPs was determined to change with the angles between 
the scanning direction and laser polarization direction; thus, by adding SPPs vectors excited 
by orthogonally polarized and equal-energy femtosecond double-pulse trains, we could 
control the direction of SPPs along the scanning direction. To demonstrate the simplicity and 
superiority of our method, we applied it to generate structural colors; we determined that 
only one parameter, namely the scanning direction, needing to be adjusted in the application. 

2. Experimental setup 
A commercial chirped-pulse Ti: sapphire regenerative oscillator–amplifier laser system 
(Spitfire, Spectra-Physics Inc.) was applied to generate femtosecond laser pulses with a 
central wavelength of 800 nm, pulse duration of 50 fs and laser repetition frequency of 100 
Hz. A Michelson interferometer with a 45°-rotated quarter-wave plate placed in one of its 
arms was used to produce orthogonally polarized femtosecond double-pulse trains. Executing 
polarization at other angles simply required rotating the quarter-wave plate by the 
corresponding angles. Because the polarizing beam splitter (CM1-BP145B2, Thorlabs) used 
in the experiment had different reflectivity and transmittance for lasers of different 
polarization directions, two attenuators were placed on the two arms of the Michelson 
interferometer to ensure that the energies of the two different polarized laser pulses were 
equal. Polished crystalline silicon with crystal orientation of (1 1 1) was fixed on a six-axis 
translation stage that could be programmed to move at a constant speed in an arbitrary 
direction. A 5 × microscope objective lens (NA = 0.15) was used to focus the laser beams 
onto the sample surface. Figure 1 presents the detailed experimental setup; the dotted box 
indicates the corresponding scanning paths. 

LIPSS formation is triggered when the laser fluence is marginally higher than the 
material’s ablation threshold. In surface patterning, uniform and smooth LIPSS can be 
obtained by first determining an appropriate laser fluence and then maintaining the effective 
pulse number at a suitable value by controlling the laser repetition rate and scanning speed. 
Accordingly, in this study, we first determined an appropriate laser fluence for surface 
patterning. By measuring the diameter of the ablated spot (D) as a function of the incident 
pulse energy (Ein) [32], we derived a peak single-pulse ablation threshold of 0.52 J/cm2, 
which was in agreement with the value reported in a previous study [27], and an on-target 
Gaussian spot diameter of 9 μm (the laser beam diameter was maintained at 5 mm before the 
beam entered the objective lens). The laser repetition rate and scanning speed were 
maintained at 100 Hz and 150 μm/s, respectively. Hence, the number of effective pulses per 
beam spot diameter was calculated to be approximately 3.8. 
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speed, and time delay between the double pulses were maintained at 100 Hz, 150 μm/s, and 1 
ps, respectively. Figure 2(a) depicts the results obtained when the angle between the two 
pulses polarizations was 0° (i.e., parallel polarized femtosecond double-pulse trains). In the 
scanning path in which the scanning direction was parallel or perpendicular to the laser 
polarization direction, the orientation of the fabricated LIPSS was perpendicular to the laser 
polarization. However, in the other scanning paths, the orientation of the LIPSS was no 
longer perpendicular to the laser polarization; this finding was similar to the observations of a 
previous study that applied single-pulse scanning [19]. We can see that the orientation of the 
LIPSS was no longer fixed and that it rotated by certain angles. This phenomenon was 
verified when the angles between the two pulses polarizations were 30° and 60°, as presented 
in Figs. 2(b) and 2(c), respectively. Remarkably, when the angle between the two pulses 
polarizations was 90° (i.e., orthogonally polarized femtosecond double-pulse trains), we 
observed a notable phenomenon where the orientation of the LIPSS was perpendicular to the 
scanning direction, regardless of changes in the scanning direction; this study was the first to 
report this phenomenon. 

Inspired by the above phenomenon, this provides us with a feasible method for 
manipulating the orientation of LIPSS in real time. Figures 3(a)-3(d) display the results 
obtained for the straight scanning path of several special scanning direction; the angles 
between the scanning direction and positive direction of Y axis were as follows: 0°, 30°, 60°, 
and 90°. The X axis and Y axis is defined in Fig. 3(l). For the structures depicted in Figs. 3(a) 
and 3(d), the scanning direction was identical to the polarization direction of one of the 
orthogonally polarized double pulses. By contrast, for the structures presented in Figs. 3(b) 
and 3(c), the scanning direction differed from the polarization directions of the generated 
double pulses. As indicated by the results, the orientation of the LIPSS fabricated using 
orthogonally polarized femtosecond double-pulse trains was perpendicular to the scanning 
direction, regardless of the scanning direction. In addition to the straight scanning path, we 
applied a sine-curve scanning path (with a continually changing curvature) and circular 
scanning path (with a constant curvature) to investigate the dependence of the LIPSS 
orientation on the scanning direction. During the scanning processes, the polarization 
directions of the double pulses constantly remained orthogonal. Figures 3(e)-3(i) present the 
results obtained for the sine-curve scanning path, and Figs. 3(j) and 3(k) present the results 
obtained for the circular scanning path. As revealed by these figures, the orientation of the 
LIPSS remained perpendicular to the scanning direction, similar to the results in Figs. 3(a)-
3(d). Therefore, we determined that the observed orientation was a universal phenomenon, 
regardless of whether straight or curved scanning paths were used. We observed that the 
LIPSS fabricated through the curved scanning paths was no longer straight. Figures 3(f)-3(i), 
present magnified views of regions I–IV depicted in Fig. 3(e), indicating that the curvature of 
the path affected the bending degree of the LIPSS. The bending degrees of the LIPSS in 
regions I and III were greater than those of the LIPSS in regions II and IV, where the 
structures were nearly straight owing to the near-zero curvature. We also observed that the 
order of the horizontally polarized pulse and vertically polarized pulse did not alter the 
overall results. Therefore, we present only the results obtained for the vertically polarized 
pulse ahead of the horizontally polarized pulse. According to the preceding results, changing 
the laser polarization state was unnecessary; therefore, we were able to easily and steadily 
manipulate the orientation of the LIPSS such that it was perpendicular to the scanning 
direction. 
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situation where the vertically polarized pulse served as the leading pulse while “H+V” 
represents a situation where the horizontally polarized pulse served as the leading pulse 

3.2 Mechanism of LIPSS orientation perpendicular to the scanning direction 

As mentioned, SPPs play a major role in the formation of LIPSS. SPPs are a type of wave 
emerging at the air and the excited silicon interface when the ionized free electron density 
reaches critical value [34]. And the SPPs are usually oriented along the laser polarization 
[30,31]. If SPPs being sufficiently strong, clear ordered continuous LIPSS can thus be 
formed. One study reported that in single-pulse surface patterning, LIPSS formation was 
more likely when the scanning direction approached the laser polarization direction [18], 
implying that the SPP intensity became stronger owing to the positive feedback process of 
grating-assisted SPPs-laser coupling enhancement effect [31]. In addition, SPPs exhibit 
evanescent decay and the wavevector of SPPs is along the laser polarization direction [35]. 
Therefore, in the case of surface scan processing, when the laser irradiation point is in the 
direction of wavevector of the SPPs, it is more benefit for the excitation and propagation of 
SPPs. Figures 5(a)-5(d) depict images of the structures fabricated using two special scanning 
directions in single-pulse surface patterning in the present study. The peak laser fluence in 
each case was 0.54 J/cm2, which was slightly higher than the ablation threshold. Other 
parameters were the same as those used in the experiments involving orthogonally polarized 
double-pulse trains. It showed that for both the horizontally polarized and vertically polarized 
single-pulse surface scan processing, LIPSS came into being when the scanning direction 
was parallel to the laser polarization. By contrast, only a laser-modified zone was generated 
when the scanning direction was perpendicular to the laser polarization. In other words, the 
SPPs intensity changed with the angles between the scanning direction and laser polarization. 
The maximum intensity occurred at the angle 0°, and it was reduced to the minimum at the 
angle 90°, which was zero in our experiments. Considering the situation of exciting SPPs in a 
single spot, the electric field of the SPPs in the observing spot follows a cos (Θ) law [36], 
where Θ is the angle between the laser polarization and the line passing two spots above. 
Accordingly, we assume that the electric field of SPPs in single-pulse surface scan 
processing also follows a cos (Θ) law, with the electric field being correlated with SPPs 
intensity. Herein, a simple model is illustrated in Figs. 5(e)-5(g) to qualitatively analyze this 
phenomenon. The vector E


 represents the electric field of SPPs; its orientation is consistent 

with the direction of SPPs, same as the laser polarization, and its value matches the 
amplitude of the SPPs electric field. The blue arrows in Figs. 5(e)-5(g) represent the scanning 
direction and the double arrows indicate the laser polarization. 

0
E represents the maximum 

amplitude of the SPPs excited by a single pulse when the scanning direction is parallel to the 
laser polarization. In horizontally polarized single-pulse scanning, the amplitude of the SPPs 
electric field 

H
E


 can be expressed as follows: 

 
0

cos( )
H

E E θ=


 (1) 

where θ  is the angle between the horizontally laser polarization and scanning direction. In 
vertically polarized single-pulse scanning, the amplitude of the SPPs electric field 

V
E


 can be 

expressed as follows: 

 
0

cos( / 2 )
V

E E π θ= −


 (2) 

Figure 5(g) shows that SPPs excited by orthogonally polarized double-pulse trains can be 
derived by summing the vectors of SPPs excited by horizontally polarized and vertically 
polarized pulses. In the direction perpendicular to the scanning path, the following formula 
can be obtained: 

 sin( ) cos( )
H V

E Eθ θ=
 

 (3) 
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