View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UNL | Libraries

University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Agronomy & Horticulture - Faculty Publications Agronomy and Horticulture Department

2019

Generating High Density, Low Cost Genotype Data in Soybean
[Glycine max (L.) Merr.]

Mary M. Happ
University of Nebraska-Lincoln, mhapp95@huskers.unl.edu

Haichuan Wang
University of Nebraska-Lincoln, hwang4@unl.edu

George L. Graef
University of Nebraska-Lincoln, ggraef1@unl.edu

David L. Hyten
University of Nebraska-Lincoln, david.hyten@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub

b‘ Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences
Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant
Biology Commons

Happ, Mary M.; Wang, Haichuan; Graef, George L.; and Hyten, David L., "Generating High Density, Low Cost
Genotype Data in Soybean [Glycine max (L.) Merr.]" (2019). Agronomy & Horticulture -- Faculty
Publications. 1259.

https://digitalcommons.unl.edu/agronomyfacpub/1259

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -
Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.


https://core.ac.uk/display/227199379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/agronomyfacpub
https://digitalcommons.unl.edu/ag_agron
https://digitalcommons.unl.edu/agronomyfacpub?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/105?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/109?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agronomyfacpub/1259?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages

G3.:

Genes | Genomes | Genetics

Generating High Density, Low Cost Genotype Data

in Soybean [Glycine max (L.) Merr.]

Mary M. Happ, Haichuan Wang, George L. Graef, and David L. Hyten’
University of Nebraska-Lincoln, Lincoln, NE 68503

ORCID IDs: 0000-0002-5897-2617 (M.M.H.); 0000-0001-6324-9389 (D.L.H.)

ABSTRACT Obtaining genome-wide genotype information for millions of SNPs in soybean [Glycine max
(L.) Merr.] often involves completely resequencing a line at 5X or greater coverage. Currently, hundreds of
soybean lines have been resequenced at high depth levels with their data deposited in the NCBI Short Read
Archive. This publicly available dataset may be leveraged as an imputation reference panel in combination
with skim (low coverage) sequencing of new soybean genotypes to economically obtain high-density SNP
information. Ninety-nine soybean lines resequenced at an average of 17.1X were used to generate a
reference panel, with over 10 million SNPs called using GATK's Haplotype Caller tool. Whole genome
resequencing at approximately 1X depth was performed on 114 previously ungenotyped experimental
soybean lines. Coverages down to 0.1X were analyzed by randomly subsetting raw reads from the original
1X sequence data. SNPs discovered in the reference panel were genotyped in the experimental lines after
aligning to the soybean reference genome, and missing markers imputed using Beagle 4.1. Sequencing
depth of the experimental lines could be reduced to 0.3X while still retaining an accuracy of 97.8%.
Accuracy was inversely related to minor allele frequency, and highly correlated with marker linkage dis-
equilibrium. The high accuracy of skim sequencing combined with imputation provides a low cost method
for obtaining dense genotypic information that can be used for various genomics applications in soybean.
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Genomics research has yielded a variety of tools which allow for more
efficient and precise translation of genetic variation into crop improve-
ments. Panels of single nucleotide polymorphisms (SNPs) obtained
through SNP arrays or genotyping-by-sequencing (GBS) are the most
common tool used to explore and make associations between genetic
and phenotypic variation. Genomics-assisted crop breeding continues
to demand increasing densities of genotype information to successfully
dissect and predict genetically complex traits (Hamblin et al. 2011;
Lorenz et al. 2011). Current approaches of directly ascertaining a high
density of SNP genotype data on large populations are cost prohib-
itive or fall short of being able capture the maximum amount of
genetic space.
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Fixed SNP arrays and GBS are popular options for SNP genotypingin
crops. Panels ranging in densities of up to ~600,000 variants are now
common in several crop species (Rasheed et al. 2017). However, recent
genomics studies are utilizing datasets consisting of one million or
more markers to answer complex, quantitative genetic questions. The
need for this high density of markers is rendering current arrays and
GBS approaches inadequate to generate the magnitude of data modern
genomic studies require (Tian et al. 2011; Patil et al. 2016; Li et al.
2018). High-depth whole genome sequencing can achieve these marker
densities. One study utilizing high-depth whole genome sequencing in
soybean found 9,107,000 high quality SNPs (Valliyodan et al. 2016).
Despite advances and the plummeting cost of next generation sequenc-
ing (NGS) data, this approach still presents a heavy financial burden, as
several reads are required at each variant site to ensure data quality and
completeness.

Decreasing genome coverage in the interest of cost savings intro-
duces missing data, which decreases power and can produce biased
results. Imputation of missing data has the potential to allow the
researcher to recover nearly all of the missing data points resulting
from skim sequencing, drastically reducing genotyping expenses asso-
ciated generating complete, high quality, high resolution SNP datasets.
By predicting the unobserved genotypes based on the surrounding
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variants and their correlation to a complete reference panel, missing
data can be amended to the correct allele genotype. This technique has
been developed and extensively used in human genomic research, and is
now commonly extended to other organisms (Pei et al. 2008; Howie
et al. 2009; Howie et al. 2011). Seen frequently in plants is the use of
imputation to fill missing data points in GBS data (Chan et al. 2016;
Chung et al. 2017). Specially designed populations such as bi-parental,
nested, and multi-parent where the founders are genotyped to a high
depth and used for the reference haplotypes has been shown to boost
accuracy (Tian et al. 2011; Swarts ef al. 2014; Huang et al. 2014; Bayer
et al. 2015; Cericola et al. 2018).

Crop breeding programs working with inbred species and/or inbred
lines are uniquely positioned to leverage imputation algorithms in an
extremely accurate manner. Near complete homozygosity through
inbreeding or double haploids allows calling of genotypes despite having
sampled one allele at the site. Large haplotype blocks in historically
inbred crops theoretically permit imputation accuracy to extend across
large physical regions, where genotyped markers are sparse but in high
correlation with each other. Success with such a combinatorial approach
has been reported in rice, using ~1X coverage sequence data of 517 in-
dividuals. Imputation of the missing genotypes in these individuals
without a reference panel to produce a SNP panel of ~3.6 million
markers with >98% accuracy (Huang et al. 2010). This was confirmed
in a later study that also included simulations performed down to
0.1X depth. Falling below a depth of 0.5X resulted in steep accuracy
consequences, with concordance falling to 76% at the 0.1X level. (Wang
et al. 2016).

Incorporation of a reference panel has been shown to result in large
accuracy improvements at sequencing coverage less than <1X in hu-
mans, where imputation at the 0.1X level was improved from less than
5% accuracy to ~70% (Pasaniuc et al. 2012). With the growing amount
of sequence data present in public databases for many common crops,
it is possible to generate an extensive reference panel that might im-
prove accuracy at ultra-low sequence coverage and further cut per
sample genotyping cost. In this study, we report on a low coverage
whole genome sequencing with imputation approach in a naturally
inbred crop, soybean, for producing a low cost, high quality, high
density SNP dataset. A reference panel was generated using publicly
available high-depth sequencing data for 106 lines, and employed for
imputing the missing genotypes of 114 lines sequenced at ultra-low
depth. Coverages from 0.1X - 1X depth at intervals of 0.1X were
evaluated. The factors influencing error rates and extensibility within/
outside soybean were investigated, and the consequences of error
rates and types of error on a typical genome-wide association study
(GWAS) were explored.

MATERIALS & METHODS

Reference Panel

The reference panel for genotype imputation was generated using
publicly available sequence data deposited in the NCBI Short Read
Archive from study number SRP062245 (Valliyodan et al. 2016). This
unfiltered, raw dataset consisted of 106 Glycine max lines sequenced at
an average of 17.1X coverage (Supplementary Table 1). The raw reads
were filtered for adapter sequence contamination, base quality, and
truncated reads using Trimmomatic (Bolger et al. 2014). Bowtie2 was
used to map reads to the Glycine max Wm82.a2.v1 reference genome
with the “very sensitive” option (Langmead and Salzberg 2012). Reads
with a mapping quality score of less than 20 were discarded. SNPs were
called using the GATK3.7 HaplotypeCaller tool for an initial panel of
13,052,759 SNPs across all lines (Poplin et al. 2017). SNP calls with five

2154 | M. M. Happ et al.

or less reads supporting the call were filtered out, as well as calls with a
confidence score of less than 20. To control for potential sample con-
tamination/mixing, the inbreeding coefficient, also called the F statistic
(Jain and Workman 1967), was calculated using the software Plink1.9
(Purcell et al. 2007). As soybean is historically an inbred crop, one
can expect F statistics close to one in Glycine max. Seven samples fell
below a cutoff of 0.9 and were discarded from the final reference panel.
All heterozygous calls in the remaining 99 lines were filtered, leav-
ing only biallelic SNPs for consideration. The final reference panel
spanned 10,803,148 biallelic homozygous SNPs in 99 lines compared
to 10,417,285 SNPs found by Valliyodan et al. using the same data set.

Imputation Panel

To generate a low sequence coverage panel for imputation, 114 exper-
imental lines selected from the University of Nebraska soybean breed-
ing program (Supplementary Table 1) were sequenced to a depth of 1X
or greater on an Illumina NextSeq 500 (Illumina Hayward, Hayward,
CA) using the manufacturer’s protocol and 150 base pair paired end
reads. DNA was isolated from lyophilized leaf tissue collected from
twenty plants per genotype using a CTAB based extraction method
(Keim 1988) scaled down for a 96 well plate by dividing all reagent
volumes by 40. Extracted genomic DNA was fragmented using a Cova-
ris $220 with the manufacturer’s recommended settings for generating
~350 base pair length fragments (Covaris, Inc., Woburn, MA 01801).
Double sided size selection was performed using KAPA Pure Beads to
retain only fragments within the 250-450 base pair range using the
manufacturer’s protocol and eluted in 40 pl of TE buffer (Roche Se-
quencing Solutions, Santa Clara, CA 95050). After testing DNA con-
centration, samples were standardized to 62.5 ng /pl. Libraries were
prepared using a custom protocol adapted from literature to perform
A-tailing and end-repair in one reaction, and avoid PCR after adapter
ligation by extending the incubation time (Kozarewa and Turner 2011;
Knapp et al. 2012) . To perform end repair and A-tailing, 16 wl of
fragmented genomic DNA for each sample was combined with 1 wl of
T4 polynucleotide kinase (PNK) (10U/ul), 1 wl of T4 DNA polymerase
(5U/ud), 1 pl of DreamTaq DNA Polymerase (5U/ pl), 2.7 pl of Cut
Smart Buffer (10x), 2.2 wl of dATP (10mM), 0.8 .l of ANTP (10 mM),
and 0.3 pl of ATP (10mM). Samples were incubated in a thermocycler
for 30 min at 20°, and then immediately ramped to 65° and held at this
temperature for 30 min. Samples then proceeded immediately to
adapter ligation. To the 25 pl of end repaired and A-tailed product
the following was added: 10 pl of T4 DNA Ligase Buffer, 3 ul of T4
DNA Ligase (2000U/pl), 3 ul of PEG 6000, 2 pl of PCR grade water,
and 2 pl of uniquely barcoded adapters (30mM). Samples were in-
cubated on a thermocycler for 45 min at 20°. After this time, samples
were immediately cleaned using KAPA Pure Beads to retain fragments
within the 350-550 base pair range and eluted in 20 pl of TE buffer.
Multiplexing was performed by combining 5 wl of each individual
library. Libraries were quantified using the KAPA Library Quantifica-
tion Kit for Illumina platforms.

To create subsets simulating depths from 0.1X to 1X at intervals
of 0.1X, reads were randomly selected from the raw datasets based
upon the total number of reads obtained for each genotype. Each dataset
was trimmed for adapter contamination, base quality and truncated
reads using Trimmomatic, and then mapped to the Glycine max
Wm82.a2.v1 reference genome with Bowtie2 using the “very sensitive”
option. Mapped reads below a quality score of 20 were filtered. The
genotypes at all 10,803,148 SNP positions in the reference panel
were called in the low coverage imputation panel using GATK3.7 Hap-
lotype Caller. Genotyping SNPs from a single read has been found
accurate in rice whole genome sequencing and maize GBS applications
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(Swarts et al. 2014; Wang et al. 2016) . Any heterozygous calls were
discarded, as well as calls not matching the two allele options at that
position. For each subset, a random 5% of calls were masked and
considered “true” genotypes for evaluating imputation accuracy.

To characterize how genetically distinct the experimental lines were
from one another, a genomic relatedness matrix was constructed
according to the van Raden metric using the R package “synbreed”.
Prior to calculation, the imputed dataset was filtered to retain variants
with a Beagle posterior genotype probability (GP) score above 0.9,
pairwise r? LD metric below 0.4, and variant site missing rate below
5% using Plink1.9 (Purcell et al. 2007).

Imputation Concordance Evaluation

For the sake of computational efficiency, imputation was performed
on a per chromosome basis using Beagle 4.1 (Browning and Browning
2016) with the low memory option. To assess accuracy, the imputed
genotype calls were compared to the masked calls, and the percent of
those in agreement constituted overall concordance using GATK 3.7’s
Genotype Concordance tool (McKenna et al. 2010). This accuracy
assessment was performed across sequencing depths and minor allele
frequencies. Three post imputation datasets were considered to quan-
tify any accuracy improvement obtained by filtering poorly imputed
sites. This included the raw imputed dataset, and two datasets filtered
on GP. Values with GP scores under 0.45 and 0.9 were filtered for the
latter two evaluation panels, respectively. VCFtools0.01.12a was used
to bin by minor allele frequency, and Plink1.9 (Purcell et al. 2007;
Danecek et al. 2011) was used to filter on GP score. GP score filtering
thresholds were determined after examining their relationship to error
rate (Supplementary Table 2)

Error and Linkage Disequilibrium

Error in relationship to linkage disequilibrium (LD) was examined as a
potential metric of extensibility to other soybean population and crop
species. D' and r? statistics were calculated for all pairwise reference
panel SNPs using Plinkl.9 (Gaunt et al. 2007; Purcell et al. 2007).
Proportion of errors made at each SNP site across was calculated by
comparing the imputed values to the masked values across all subsets
of depths. To reduce noise, data were smoothed through the application
of a rolling average window with a width of 1500 SNPs after ordering
by the respective pairwise LD metric. A second order polynomial was
fit to describe the D' and error relationship, and a simple linear re-
gression was fit to describe the relationship between r? and error.

Relationship Between Samples & Reference Panel

Close relatedness between the sample and reference genotypes has been
previously reported to increase imputation precision. Relatedness ma-
trices were generated based on five different coefficients and averaged
the top five scores from each sample genotype as a metric for gauging
degree of relatedness to the reference panel. These measures were plotted
against concordance scores from the imputed data filtered for GP scores
above 0.9 and averaged across all depth levels. A simple linear regression
model was fit to assess potential correlation. Relatedness matrices were
calculated using the R package “synbreed”, using options corresponding
to measures described by vanRaden, Astle and Balding, Reif, Hayes and
Goddard, and Euclidean distances (Wimmer et al. 2012).

Genome Representation

Genomic studies improve as the linkage between the genotyped poly-
morphism and underlying causative gene increases. The extent of LD
between two markers therefore constitutes proxy for the correlation

-=.G3:Genes| Genomes | Genetics
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of the marker and underlying gene(s) of interest. To assess how well
the panel represented variation across the genome, the distribution
of LD in the imputed experimental dataset was compared to the
SoySNP50k Array positions extracted from the imputed experimental
dataset (Song et al. 2015). SNPs with MAF below 0.05 were filtered out,
a quality control step implemented in most genomic studies. Both D'
and r? were calculated using Plink1.9, and distributions plotted in R3.4
(Team 2017).

Error and Beagle Posterior Genotype Probability

To explore the possibility of using GP values as a post imputation
filtering metric, proportion of error across depth subsets was plotted
against GP. A rolling average window with a width of 500 SNPs was
applied to the proportion error after ordering by GP, and a second degree
polynomial was fit to describe the relationship in R3.4.

Error Type: Allele frequencies exhibit some degree of influence on the
results of many genomics studies. Therefore, how imputation error
skews this metric is of significant interest. Masked and imputed data-
sets were coded according to the major allele in the reference dataset.
Errors were binned into four categories, homozygous major to minor,
homozygous minor to homozygous major, homozygous major to
heterozygous, and homozygous minor to heterozygous, based on which
allele was incorrectly imputed and which allele was true. Because all
heterozygous calls were filtered in the initial data generation, no
heterozygous to major, or heterozygous to minor category exists.

Power Analysis

In the interest of determining the potential cost of imputation error, a
basic power calculation for minor to major and major to minor errors
in a GWAS was performed. Using an R implementation of Purcell’s
“Genetic Power Calculator” (Purcell et al. 2003), power was calculated
to detect a moderate effect QTL across minor allele frequency bins
from <C0.025 to 0.5. Simulations assumed an additive genetic model,
300 genotypes, LD between the QTL and marker of 0.8 D', a signifi-
cance threshold that mirrored the Bonferroni correction for 1,716,234
SNPs (the final size of the SNP dataset after quality control filtering),
and a QTL effect size of 1 standard deviation. Error rates from 1-10%
were tested at intervals of 1%, with 100 iterations of the simulation
performed at each error level. To investigate the possibility of including
more genotypes to overcome power losses associated with imputation
error, simulations were also performed for 150, 500, and 1000 genotypes
for a 5% error rate at the same conditions as specified above.

Cost Analysis

Decreasing cost per sample allows a researcher to expand a study to
overcome power loss introduced through the imputation error. To
illustrate the impact of this, per sample sequencing costs were calculated
using current Illumina NextSeq500 high throughput 300 cycle sequenc-
ing kit prices, cost analysis of a custom library prep protocol, and CTAB
DNA extraction method (Supplementary Table 3). The retained cost per
sample and average raw concordance were plotted as depth decreased.

Data Availability

Raw sequencing data directly generated by this project for use in creating
the study panel has been deposited in the NCBI Short Read Archive
under accession number PRINA512147. The reference panel used for
genotype imputation was generated using previously publicly available
sequence data deposited in the NCBI Short Read Archive from study
number SRP062245 (Valliyodan et al. 2016). Supplementary figures
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Table 1 The number of markers and genotyping rate in each low
coverage subset from 0.1X to 1X sequencing depth. As coverage
decreases, the total number of markers captured and
completeness of the SNP panel decreases.

Mean Genotyping  Number of

Depth Rate SNPs Reads Base Pairs
1 32.44% 1,288,463 6,327,889 949,183,385
0.9 30.41% 1,240,823 5,695,100 854,265,047
0.8 27.77% 1,174,619 5,062,311 759,346,708
0.7 24.91% 1,097,843 4,429,522 664,428,370
0.6 21.80% 1,005,880 3,796,734 569,510,031
0.5 18.47% 895,596 3,163,945 474,591,693
0.4 14.98% 760,167 2,531,156 379,673,354
0.3 11.40% 590,786 1,898,367 284,755,016
0.2 7.85% 375,343 1,265,578 189,836,677
0.1 4.74% 133,747 632,789 94,918,339

and tables can be found in “Supplementary Figures and Tables.” The
114 x 114 relatedness matrix is available in Supplementary File 1.
Supplemental material available at FigShare: https://doi.org/10.25387/
g3.7975751.

RESULTS

SNP Genotyping & Imputation
The reference panel for imputation was constructed using 106 Glycine
max lines sequenced at an average of 17.1X coverage using publicly
available sequencing data deposited in the NCBI Short Read Archive
(Valliyodan et al. 2016) (Supplementary Table 1). After quality control
measures were applied to the raw and mapped sequence data (see
Materials & Methods), a final reference panel of 10,803,148 biallelic
homozygous SNPs across 99 lines was generated. SNPs discovered in
the reference panel were used to genotype experimental lines in the
study panel. This consisted of 114 lines that were sequenced to a depth
of at least 1X. Coverages from 0.1X to 1X were analyzed by randomly
subsetting reads from the raw sequence data. Of the 10,803,148 million
markers discovered in the reference panel, the number of SNPs
genotyped by this low coverage study panel subsets ranged from
133,747 to 1,288,463 markers. These subsets also ranged in missing
data rates from 95.26 to 67.56% for those markers (Table 1). Using
the reference panel, genotype values for all missing positions were
imputed.

Close relatedness between the lines in the experimental panel may
bias the overall accuracy of the imputation results. To evaluate this,
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vanRaden relatedness scores were calculated using real and imputed
genotypes. The resulting values ranged from -0.44858 t0 0.91112, with a
median value of -0.02851, mean of -0.00286, and standard deviation
of 0.17650. Strong relationships are generally indicated by values over
0.4. Our experimental panel exhibits few strongly related lines, with
only 2.7% of all possible pairwise combinations showing a relation-
ship above this threshold. Therefore, we would conclude the majority
of our experimental genotypes to be distally/non-related (Supplemen-
tary File 1).

An alternative to this whole genome sequencing approach are fixed
SNP arrays. However, this method provides less total SNPs for genomic
studies and may not capture as much of the genome. High LD between
SNPs can be extended to assume a strong correlation to other genomic
variation between them. Plotting the density distributions of r* and D'
LD measures for the Soy50KSNP Array and imputed dataset demon-
strated that whole genome sequencing with imputation had a greater
concentration of values toward higher linkage values. Generally, a D' or
r? of over 0.8 between is considered “strong linkage”. The imputed
dataset provided 1,716,234 SNPs after common quality control filters,
with 36.00% and 85.66% of r> and D' values above 0.8, respectively.
This is in comparison to the 42,133 SNPs in the fixed array, where
24.20% and 80.00% of r? and D' values are above 0.8 (Figure 1). If
high LD indicates a better tagging of underlying variation, the im-
puted dataset captures the genome’s SNP variation better than the
Soy50KSNP Array.

Imputation Accuracy
Prior to imputation, 5% of genotype calls from the skim sequencing data
were withheld to assess accuracy. Overall imputation accuracy was
consistent for raw and filtered datasets as sequencing depth decreased
from 1X until 0.3X, where accuracy drops off by an average of 3.5% from
0.3X to 0.1X (Figure 2A, Supplementary Table 2). Assessing the error
type of this study showed that 53.13% of the errors made were incorrect
imputation of the minor allele when the major allele was true. Of the
remaining errors, 35.10% were incorrect imputation of the major
allele when the minor allele was true, and 11.77% were incorrect im-
putation of heterozygous calls. No heterozygous to major/minor errors
exist as at heterozygous calls were filtered in the initial panels (Figure 3).
Filtering on Beagle’s posterior genotype probability (GP) to improve
dataset quality was successful. When imputed positions with a GP score
of less than 0.45 were discarded, accuracy improved by an average of
2.50% across sequencing depths. A more stringent filter that only kept
positions with a GP score over 0.9 resulted in a 4.26% increase in

Figure 1 Comparing density plots for LD mea-
sures D' (A) and r? (B) demonstrates that using
whole genome sequencing with imputation re-
sults in a dataset that has a higher proportion of
SNPs is strong pairwise linkage with each other,
represented in the heavier tails in red near D' and
r? values of 1.

0.75 1.00
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Figure 2 A) Overall accuracy of filtered and raw imputed datasets were
plotted across the evaluated depths. For all study panels, concordance
rapidly erodes below a sequencing depth of ~0.3X. B) Examining accu-
racy in the context of minor allele frequency (MAF) reveals that error
occurs at higher rates as MAF approaches a maximum of 0.5.

accuracy (Supplementary Table 2). This practice did reintroduce some
missing data, which varied across depth and filtering level. Data loss as a
result of post imputation filtering was below 5% for all depths at a
filtering level of GP > 0.45, but quickly inflates when filtering for
imputation quality of GP > 0.9 to a missing data rate of 20.82% at
0.1X (Supplementary Figure 1). While filtering on Beagle’s posterior
genotype probability may reduce falsely imputed genotypes, it must
be balance with the reintroduction of missing data it causes.

The error rate at individual marker loci may not be well captured by
the overall concordance across all SNPs. Examining concordance in the
context of minor allele frequency (MAF) reveals as MAF values ap-
proach a maximum of 0.5, concordance decreases. Application of post
imputation filters of GP values increases overall accuracy through
improved concordance at these increased MAFs (Figure 2B). This trend
is uniform across all sequencing depths (Supplementary Figure 2).
Through examining imputation accuracy in this manner, it is apparent
that higher error rates are occurring at SNP positions at MAFs nearest
0.5 than is described by the average concordance measure.

Error rates in imputation may be influenced by characteristics specific
to the population and crop species to which it is applied. The correlation
between variants is a cornerstone to the success of imputation. If the
correlation between alleles is high then imputation accuracy should also
be high and as the correlation between alleles decrease then the accuracy
of imputation should also decrease. This correlation between alleles can
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Error Type

True  Imputed Key

Major Minor -
Minor Major

Minor Het

Major Het

725% 4 52%

35.10%

53.13%

Figure 3 Proportion of errors made as categorized by whether
the minor/major/heterozygous alleles was misimputed. In over half
of all the errors made, Beagle overimputes the minor allele when the
major allele is the true genotype. Incorrect heterozygous imputations
make up a minor proportion of the total error and would likely be
filtered out in inbred panels.

be measured with LD. Soybean is a historically inbred crop with long
ranging LD (Zhou et al. 2015). As D' and r? approach 1, where neigh-
boring SNPs are in perfect linkage with each other, error rates are at their
lowest. Both relationships demonstrate a very strong correlation with
R? values of 0.98 and 0.89 for r? and D' respectively (Figure 4), in-
dicating LD is an important factor to consider when applying this
technique to other soybean populations or other crop species.

Relationship of the study genotypes to the reference panel genotypes
has been suggested as a strong influencer of imputation accuracy.
Plotting calculated values for five unique kinship metrics against con-
cordance for each genotype did not demonstrate any strong linear
relationships. The maximum correlation for any of the measures was
for Reif’'s method, at an R2 of 0.26. Examination of the standard error,
shows that the study population varies narrowly in terms of relatedness
to the reference panel. Additionally, assessing the raw values suggests
that the study population is weakly related to reference genotypes. This
is best illustrated with the vanRaden and Astle & Balding measure-
ments, where a “strong” relationship is usually indicated by values
approximately >= 0.4. In both these cases, the largest measure does
not exceed 0.18 and 0.16 (VanRaden 2008; Astle and Balding 2009).
The combination of diminished values and narrow standard error
indicates a weak relationship of the study panel to the reference panel
(Supplementary Figure 3). The evidence of a weak relationship suggests
that relationship was not a strong influencer of the high imputation
accuracies obtained.

GWAS Power

Understanding the effect error rate has on genomic studies is impor-
tant when selecting an appropriate genotyping technique. To deter-
mine the effect of the error rate of skim sequencing and imputation
has on GWAS we performed power simulations of detecting a mod-
erate effect QTL in a panel of 300 individuals. This power study showed
significantly decreased power to detect QTL with increasing errors at
MAF from 0.1-0.3. This was most pronounced when the minor allele
was incorrectly imputed as the major allele. Above 0.3 MAF, power for
QTL detection was minimally affected by error (Figure 5A). Studying
the effect of three additional sample sizes, while assuming a 5% error
rate demonstrates the potential for experimenters to recover power
losses through inclusion of more genotypes. Including 500 individuals
at this fixed error rate recovers and even slightly improves power at
mid-range MAFs over studying 300 genotypes with no genotyping
error (Figure 5B).
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DISCUSSION

This study illustrates the potential of low coverage sequencing with
imputation as an economical approach to obtaining high density SNP
genotype information in soybean. Accelerating improvement of com-
plex phenotypes through genomics necessitates high quality, high
resolution marker data. However, studies are often limited by the cost
required to obtain this information through high coverage sequencing.
The combination of low coverage sequencing with imputation presents
an option that drastically cuts costs while retaining a high level of
accuracy. Implementing a similar method in rice allowed researchers
to generate a high quality, dense SNP dataset using 1X depth whole
genome sequence (Huang ef al. 2010; Wang et al. 2016). This analysis in
soybean, which differs in the inclusion of a reference panel for impu-
tation, determined sequencing depth could be reduced to 0.3X with
no significant accuracy losses. Analogous results have been demon-
strated in humans, where it was concluded that a reasonably accurate
and dense dataset could be obtained from 0.2X coverage supplemented
with imputation using a reference panel (Pasaniuc et al. 2012). To our
knowledge, this is the first work to examine using imputation with
real sequence data at less than 1X coverage in the construction of a
high quality, highly affordable SNP dataset in plants. The effect of

Trendline R'= 0.8924198

Figure 4 Comparing the smoothed frequency of
errors made at individual SNP sites with LD
measures D' (A) and r2 (B) demonstrates the
strong influence of linkage disequilibrium on im-
putation accuracy.

0.6 oe

imputation method and structure of the reference panel have not been
specifically examined in the context of application to skim sequencing,
providing future avenues for research and improvement.

While SNP arrays and GBS are popular options for obtaining
genotype information, high precision genomics demands markers to
be in close linkage to the contributing genes. Regions of the genome with
sparsely correlated markers may therefore contain overlooked causal
variation (Hirschhorn and Daly 2005; Witte 2010). Skim sequencing
with imputation, as investigated here, tags a significantly larger portion
of the genome in tighter LD than the current soybean 50k array. This
effect may be presumed to extend to GBS datasets of a similar size. Such
a boost in resolution may therefore reveal QTL in regions of the ge-
nome that would not have been captured through smaller datasets.

The accuracy and extensibility of this approach in other soybean
populations, as well as other crops is based on several factors. To explore
potential limitations in this method, population LD and the relatedness
of reference panel to study lines were examined. Both of these factors
have been implicated as strong influencers of imputation accuracy due
to the innate reliance of the technique on the presence of sample haplo-
types within the reference panel, as well as the extent of correlation between
observed markers (Hickey et al. 2012; He et al. 2015). The strong
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inverse relationship observed between the proportion of SNPs incorrectly
imputed at a given position and LD measurements suggests that for
soybean populations and other crops with shorter range LD, imputation
accuracy will likely decrease. There was no significant relationship de-
tected between kinship measures and accuracy. However, the study ge-
notypes exhibited little variation for any of the calculated metrics, which
can be seen in the low standard deviations. Without a wide range of values
to examine, identifying a clear trend is unlikely. The positive effect of
relatedness on imputation accuracy is documented in other literature
(Hickey et al. 2012; Ma et al. 2013; Boison et al. 2015), and should
therefore be a consideration in expanding this method to other soybean
populations and crop species. The overall weak kinship between study
and reference panels in this data may also be viewed as a positive, since
high levels of imputation accuracy were achieved despite this populations
being interpreted as distally related.

The power to detect a QTL is partially dependent on the allele
frequency at that loci (Ardlie et al. 2002; Tabangin et al. 2009). There-
fore, the relationship between imputation accuracy, minor allele fre-
quency (MAF), and statistical power may be considered particularly
important. In agreement with an analysis performed with maize, the
data showed steadily decreasing imputation accuracy as MAF increased
with the exception of very rare alleles (MAF < 0.05) (Hickey et al.
2012). An opposite tendency was observed with respect to statistical
power losses across MAF, so it can be interpreted that at the loci a SNP
dataset would display the highest imputation error rates, the GWAS
is least affected by them. This trend has also been supported in human
imputation analyses looking at sample size inflation factors under dif-
ferent imputation error types (Huang et al. 2009). In both cases, power
consequences were greater for incorrect imputation of the minor
allele. It is unclear how a combination of error types at a SNP locus
would influence genomic studies. Decisions on the level of decreased
coverage that can be tolerated should consequently be made not on the
overall average concordance, but by examining the concordance
across minor allele frequencies in relation to the maximum allowable
error to retain power.

The cost savings associated with this method can be used to include
more sample genotypes, not only recovering power losses at low minor
allele frequencies, but potentially increasing total power. Similar results
in humans have indicated sampling more genotypes with small error is
more beneficial over fewer genotypes with perfect accuracy (Pasaniuc
et al. 2012). Comparing the raw accuracy along sequencing depths
along with per sample costs, shows that at the previously identified
critical threshold of 0.3X coverage, there is only a 0.85% loss of accuracy
relative to using a 1X sequence, while costs decreased 57% (Supple-
mentary Figure 4). Moreover, the use of public sequence data to con-
struct a broad reference panel eliminates the cost and limitations of
assembling special populations and sequencing the founders to a high
coverage to serve as the reference haplotypes.

CONCLUSION

Here it is demonstrated that low coverage sequencing accompanied
with imputation from a reference panel can be extended below 1X
depth in soybean to capture high density, reasonably accurate SNP
genotype information economically. The tremendous drop in per
sample sequencing cost over high depth methods may allow re-
searchers to expand the number of study genotypes in their inves-
tigations, while representing a larger portion of the genome than
fixed SNP arrays and GBS data. The potential for success of this
genotyping method within and outside of soybean is highly reliant
on population LD. Furthermore, researchers should examine accu-
racy and power within the context of minor allele frequency to make
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informed decisions about sequencing depth tolerances. As genomics
demands increasing SNP panel densities across a wide range of
genotypes, skim sequencing with imputation constitutes a financially
feasible and highly accurate way to meet these requirements.
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