Edgar Cahoon

Umidjon Iskandarov
Hae Jin Kim
Jillian Collins-Silva

Follow this and additional works at: https:// digitalcommons.unl.edu/biochemfacpub
Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons

[^0]
(19) United States
 (12) Patent Application Publication Cahoon et al.

(10) Pub. No.: US 2016/0237448 A1
(43) Pub. Date:

Publication Classification
(51) Int. Cl.

> C12N 15/82 C12P 7/64
(52) U.S. Cl.

CPC C12N 15/8247 (2013.01); C12P 7/6463
(2013.01)

ABSTRACT

Provided herein are novel acyltransferases and methods of using such novel acyltransferases in making medium-chain fatty acids.

Figure 1

Cuphea pulcherrima

Root	Stem	Leaf	Flower	Developing seed	
					cpulpat3
					cpulpatzc
					Cpulpatzo
		,		,	Cpulpatza
,					CpuLPAT
				,	cpulpate
					Cpuelfa
\$2.).	约刮	CouActin

Cuphea viscosissima

Figure 2

Figure 3

Figure 4

Figure 5A

Figure 58

Figure 5C

Figure 50

Figure 5E

Figure 5 F

Figure 6

Figure 7

Figure 8

Figure 9

Tugure 10

Figure 11

		12	20	as	48	36	$s s^{3}$	78	980	sm	160													
C,pulcherina ront																								
Enspus=riont																								
cowshemsomi	 																							
		120	138	140	159	66	179	1e3	180															
9.mopes mify:																								
0. saties jemg:																								
Sxmsers																								
	2:	29	448	259	268	278	25%	29	398	3 E	328													
S																								
ㅇ. that asw wem?																								
B.napes semf																								
R, comounis jomat																								
sative DEATI	 																							
$5 \mathrm{Son} \times$																								
		3*a	353	368	370	30\%	389	49 C	$4: 3$	428	3a.													
	Lhy																							
9.that ing yomy																								
Entapus-dibat																								
0.evrovere_ Jbat 1																								
tive गGAT1																								
		* 5	45\%	479	4	495	Sem	sta	5															
dingerimandith																								
8. Hestanimenti																								
8-:3mus memid																								
commens beat																								
0 curpaex meny	 																							
: ivemeny																								

Figure 12

Cuphea pulchermma					CpDGAT
Root	Stem	Leaf	Flower	Developing s eed	
	,		\%.		cpDgatz-A
\h\%	²				CODGAT2-E
			2		cpdgatz-C
			\mathbb{K}		Cpelf 4
					CpActin

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18A

Figure 189

Figure 38L

Figure 380

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

NOVEL ACYLTRANSERASES AND METHODS OF USING

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Application No. 61/917,586 filed Dec. 18, 2013. The entirety of the prior application is incorporated by reference.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support under DE-SC0001295, 2009-05988, and IOS 0701919 awarded by the U.S. Department of Energy, the U.S. Department of Agriculture, and the National Science Foundation, respectively. The government has certain rights in the invention.

TECHNICAL FIELD

[0003] This disclosure generally relates to transgenic plants.

BACKGROUND

[0004] Plants in the genus, Cuphea (Lythracea), accumulate high levels of medium chain fatty acids (MCFAs) in their seeds. MCFAs are useful in the chemical industry in the production of detergents, lubricants and biofuels. Camelina sativa is a member of the Brassicaceae family, and has been found to be a sustainable source of oil for petroleum products. A high proportion of polyunsaturated fatty acids in Camelina oil, however, has limited its usefulness in the biofuel industry. Therefore, methods of engineering the oil properties in Camelina or other oil-producing organisms are desirable.

SUMMARY

[0005] In one aspect, a method of producing triacylglycerols (TAGs) comprising medium-chain fatty acids (MCFAs) in an organism is provided. Such a method typically includes introducing a transgene into the organism, wherein the transgene comprises at least one nucleic acid sequence encoding an acyltransferase, wherein the at least one acyltransferase exhibits a substrate specificity for saturated fatty acids, thereby producing TAGs comprising MCFAs in the organism.
[0006] In some embodiments, at least 20% (at least 40%, at least 50%, etc., etc.) of the TAGs comprising MCFAs have a C8:0 or a C10:0 at sn-2 position. In some embodiments, the saturated fatty acids are selected from the group consisting of C8:0 and C10:0.
[0007] In some embodiments, the at least one acyltransferase is a lysophosphatidic acid acyltransferase (LPAT) or a diacylglycerol acyltransferase (DGAT). In some embodiments, the at least one acyltransferase is a lysophosphatidic acid acyltransferase (LPAT) and a diacylglycerol acyltransferase (DGAT). In some embodiments, the nucleic acid sequence encoding the LPAT is selected from the group consisting of a sequence having at least 95% sequence identity to SEQ ID NO:1 and a sequence having at least 95% sequence identity to SEQ ID NO:3. In some embodiments, the nucleic acid sequence encoding the DGAT is selected from the group consisting of a sequence having at least 95% sequence identity to SEQ ID NO:7 and a sequence having at least 95%
sequence identity to SEQ ID NO:9. In some embodiments, the nucleic acid sequence encoding the at least one acyltransferase is selected from the group consisting of a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:1, a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:3, a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:7, and a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:9.
[0008] In some embodiments, the organism further comprises a nucleic acid sequence encoding a medium-chain fatty acid (MCFA)-specific thioesterase FatB. In some embodiments, the nucleic acid sequence encoding the MCFA-specific thioesterase FatB is selected from the group consisting of a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:11, a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:13, and a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:15.
[0009] In some embodiments, the organism is selected from the group consisting of a plant and a microbe. In some embodiments, the plant is Camelina sativa.
[0010] In some embodiments, the transgene comprises a promoter. In some embodiments, the promoter is a seedspecific promoter. In some embodiments, the at least one nucleic acid sequence encoding an acyltransferase is operably linked to a seed-specific promoter. In some embodiments, the medium-chain fatty acids are produced in the seed.
[0011] In some embodiments, the introducing step is performed using Agrobacterium transformation, particle bombardment, or electroporation of protoplasts.
[0012] In another aspect, a method of producing triacylglycerols (TAGs) comprising medium-chain fatty acids (MCFAs) is provided. Such a method typically includes providing an organism comprising a transgene, wherein the transgene comprises at least one nucleic acid sequence encoding an acyltransferase, wherein the at least one acyltransferase exhibits a substrate specificity for saturated fatty acids; growing the organism under appropriate conditions; and obtaining TAGs comprising MCGAs from the organism. In some embodiments, the TAGs are used in biofuel, jet fuel, detergents, and chemical feedstocks.
[0013] In still another aspect, a method of increasing the amount of triacylglycerols (TAGs) comprising mediumchain fatty acids (MCFAs) in the seed oil of a plant is provided. Such a method typically includes providing a plant comprising a nucleic acid encoding a FatB polypeptide; introducing a heterologous nucleic acid molecule into the plant comprising at least one nucleic acid sequence encoding an acyltransferase, wherein the at least one acyltransferase exhibits a substrate specificity for saturated fatty acids, thereby increasing the amount of TAGs comprising MCFAs in the seed oil of the plant without significantly changing the total oil content in the seed.
[0014] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the methods and compositions of matter belong. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the methods and compositions of matter, suitable methods and materials are described below. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.

DESCRIPTION OF DRAWINGS

Part A

[0015] FIG. 1 shows the phylogenic relationship in deduced amino acid sequences of LPATs. Amino acid sequences of 6 LPATs from Cuphea pulcherrima (black triangle) and 1 LPAT from Cuphea viscosissima (gray triangle) were aligned with putative orthologs of higher plants, which were obtained from the protein database of National Center for Biotechnology Information (NCBI). The phylogenic tree was built with the MEGA6 software, using the minimumevolution method with 1000 number of bootstrap replication.
[0016] FIG. 2 are the results of RT-PCR analysis showing spatial expression of Cuphea LPAT genes in diverse tissues. The Cuphea eIF4 and actin were used as internal controls.
[0017] FIG. 3 are photographs showing the subcellular localization of Cuphea LPATs. Single plane image of tobacco epidermal cells was obtained from confocal laser scanning microscopy. Left panels are YFP signals of Cuphea LPATs, middle panels are ER markers (A, C and D) and auto fluorescence of chloroplasts (B), and right panels are merged images. Bars $=10 \mu \mathrm{~m}$. (A) CpuLPATB; (B) CpuLPAT1; (C) CpuLPAT2a; (D) CvLPAT2.
[0018] FIG. 4 is data showing the complementation test of Cuphea LPATs in mutated E. coli. The new Cuphea LPATs were transformed into the E. coli JC201 strain, a mutant strain that will not grow at non-permissive temperatures without a functional LPAT.
[0019] FIG. 5A is a graph showing the fatty acid composition of lipids ($\mathrm{Mol} \%$ of TAG).
[0020] FIG. 5B is a graph showing the fatty acid composition of the sn-2 position of seed oil TAG.
[0021] FIG. 5C is a graph showing the total amount of FAME ($\mu \mathrm{g}$)/weight (mg).
[0022] FIG. 5D is a graph showing the fatty acid composition of lipids ($\mathrm{Mol} \%$ of TAG).
[0023] FIG. 5E is a graph showing the fatty acid composition of the sn-2 position of seed oil TAG.
[0024] FIG. 5F is a graph showing the total amount of FAME ($\mu \mathrm{g}$)/weight (mg).
[0025] FIG. 6 shows data demonstrating C14:0-containing TAG species detected by Neutral Loss ESI-MS/MS. Electrospray mass spectroscopy of TAG isolated from wild type (A) and 14:0 specific CpFatB2 (B) with CpuLPATB (C), CnLPATB (D), and CvLPAT2 (E). CN indicates the carbon number of TAG.
[0026] FIG. 7 provides the amino acid alignment of CpuLPATB homologs and information regarding the predicted transmembrane segments. (A) Amino acid alignment using the CLUSTAWL algorithm was generated using LPLAT-AG-PAT-like domains of LPATB and LPAT1 homologs. Graydotted boxes indicate acyltransferase motifs. Circles and black triangles are catalytic amino acids and binding site in acyltransferase motifs, respectively. (B) Predicted transmembrane region of CpuLPATB by different programs; SOSUI, PSORTII, HMMTOP, and TMHMM server 2.0. The numbers indicate the amino acid residue of CpuLPATB. (C) A schematic showing topological transmembrane and acyltransferse motifs of CpuLPATB.
[0027] FIG. 8 provides the amino acid alignment of CvL PAT2 homologs and information regarding the predicted transmembrane segments. (A) Amino acid alignment using the CLUSTAWL algorithm was generated using LPLAT-AG-PAT-like domains of LPAT2 and LPAT3 homologs. Graydotted boxes indicate acyltransferase motifs. Circles and black triangles are catalytic amino acids and binding site in acyltransferase motifs, respectively. (B) Predicted transmembrane region of CvLPAT2 by different programs; SOSUI, PSORTII, HMMTOP, and TMHMM server 2.0. The numbers are indicated the amino acid residue of CpuLPATB. (C) A schematic showing the topological transmembrane and acyltransferase motifs of CvLPAT2.
[0028] FIG. 9 are graphs showing LPAT activity expressed in Agro-infiltrated tobacco leaf.
[0029] FIG. 10 is data showing the C10:0-containing TAG species detected by Neutral Loss ESI-MS/MS. Electrospray mass spectroscopy of TAG isolated from wild type (A) and 14:0 specific ChFatB2 (B) with CnLPATB (C) and CvLPAT2 (D). CN indicates the carbon number of TAG. *: contains 10/10/18:1, §: contains 10/10/20:1.

Part B
[0030] FIG. 11 is an unrooted phylogram of C. pulcherrima DGAT1 (CpDGAT1) and other hypothetical and functionally characterized DGATs. The alignment was generated by the CLUSTAL W program and the unrooted phylogram was constructed by the neighbor-joining method in MEGA4 software (Tamura et al., 2007, Mol. Biol. Evol., 24:1596-9).
[0031] FIG. 12 is an alignment of deduced amino acid sequence of CpDGAT 1 with some of its orthologs.
[0032] FIG. 13 is data showing CpDGAT1, CpDGAT2_A, CpDGAT2_B and CpDGAT2_C expression analysis in C. pulcherrima tissues by SQRT-PCR of cDNA from total RNA. PCR products were obtained with gene specific primers for CpDGAT1, CpDGAT2_A, CpDGAT2_B or CpDGAT2_C.
[0033] FIG. 14 is a graph showing the short and medium chain fatty acid profile of CvFATb1+CpDGAT1 (T2) lines.
[0034] FIG. 15 is a graph showing the short and medium chain fatty acid profile in CvFatB1+CvLPAT2+CpDGAT1 (T2) lines.
[0035] FIG. 16 is a graph showing the fatty acid profile of TAG from transgenic Camelina plants
[0036] FIG. 17 is a graph showing the fatty acid profile of MAG species separated following the digestion of TAG from mature seeds of wild type and transgenic Camelina CvFatB1, CvFatB1+CvLPAT2, CvFatB1+CpDGAT1, CvFatB1+CvLPAT2+CpDGAT1 lines and C. pulcherrima and C. viscosissima.
[0037] FIG. 18A is a graph showing the fatty acid profile in developing seeds from wild type and transgenic Camelina lines expressing CvFatB1, CvFatB1+CpDGAT1, or CvFatB1 + CvLPAT2+CpDGAT1 at 10 DAF (days after flowering). At ten DAF, developing seeds contain very low amounts of 10:0 ($\sim 2.5 \mathrm{~mol} \%$); the main fatty acids were 16:0 ($\sim 14 \mathrm{~mol} \%$), $18: 1$ ($20 \mathrm{~mol} \%$), 18:2 ($40-44 \mathrm{~mol} \%$), and 18:3 ($18-20 \mathrm{~mol} \%$). The percent share of each fatty acid (16:0 through 20:1) in TFA in transgenic lines was similar to that of wild type Camelina plants.
[0038] FIG. 18B is a graph showing the fatty acid profile in developing seeds from wild type and transgenic Camelina lines expressing CvFatB1, CvFatB1+CpDGAT1, or CvFatB1+CvLPAT2+CpDGAT1 at 17 DAF. 17 DAF seeds contain more medium-chain fatty acids (8:0 ($4 \mathrm{~mol} \%$), 10:0
(up to $24 \mathrm{~mol} \%$), 12:0 ($2.5-4 \mathrm{~mol} \%$), $14: 0(3 \mathrm{~mol} \%)$) and higher amounts of 16:0 ($13 \mathrm{~mol} \%$) in transgenic lines. In CvFatB1+CvLpat2+CpDGAT1, the amount of $18: 1$ decreases, while 18:2, 18:3 and 20:1 are present in amounts of $15 \mathrm{~mol} \%, 16 \mathrm{~mol} \%$ and $6 \mathrm{~mol} \%$, respectively, as compared to $21.4 \mathrm{~mol} \%, 30 \mathrm{~mol} \%$ and $12.7 \mathrm{~mol} \%$ in wild type Camelina plants.
[0039] FIG. 18C is a graph showing the fatty acid profile in developing seeds from wild type and transgenic Camelina lines expressing CvFatB1, CvFatB1+CpDGAT1, or CvFatB1+CvLPAT2+CpDGAT1 at 22 DAF. 22 DAF seeds produce more medium chain fatty acids ($5 \mathrm{~mol} \% 8: 0,30 \mathrm{~mol}$ $\% 10: 0,7 \mathrm{~mol} \%(12: 0-14: 0)$). The amounts of 16:0, $18: 0$, 18:1, 18:2, 18:3 and 20:1 in CvFatB1 +CvLPAT2+CpDGAT1 line are $12 \mathrm{~mol} \%, 8 \mathrm{~mol} \%, 12 \mathrm{~mol} \%, 16 \mathrm{~mol} \%$, and 5 mol $\%$ as compared to $8 \mathrm{~mol} \%, 13 \mathrm{~mol} \%, 20 \mathrm{~mol} \%, 41 \mathrm{~mol} \%$, and $10 \mathrm{~mol} \%$ in seeds of wild type plants. Thus, the total share of 8:0 to 16:0 fatty acids in this line reaches $54 \mathrm{~mol} \%$ of TFA as compared to $39 \mathrm{~mol} \%$ in CvFatB1 line, 43% in $\mathrm{CvFatB1}+\mathrm{CpDGAT1}$ line and just $8 \mathrm{~mol} \%$ in wild type.
[0040] FIG. 18D is a graph showing the fatty acid profile in developing seeds from wild type and transgenic Camelina lines expressing CvFatB1, CvFatB1+CpDGAT1, or CvFatB1+CvLPAT2+CpDGAT1 at 30 DAF. In 30 DAF seeds from CvFatB1 line, there is $33.6 \mathrm{~mol} \%$ of 8:0-16:0, 22.4 mol \% 18:1, $13.7 \mathrm{~mol} \% 18: 2,16.0 \mathrm{~mol} \% 18: 3$ and $6.6 \mathrm{~mol} \%$ 20:1. CvFatB1+CpDGAT1 transgenic lines accumulate more 10:0, and 8:0-16:0 total fatty acid amount is $37 \mathrm{~mol} \%$ while amounts of $18: 1,18: 2,18: 3$ and $20: 1$ are similar to what is found in seeds from CvFatB1 line. In CvFatB1+CvLPAT2+ CpDGAT1 lines, the average share of 8:0-16:0 fatty acids is $43 \mathrm{~mol} \%$ of TFA, $18.5 \mathrm{~mol} \%$ being 10:0 and $13.2 \mathrm{~mol} \%$ 18:1, $12.8 \mathrm{~mol} \% 18: 2,18.3 \mathrm{~mol} \% 18: 3,6.3 \mathrm{~mol} \% 20: 1$.
[0041] FIG. 19 is a graph showing fatty acid profile of TAG from N. benthamiana leaves infiltrated with CvFatB1, $\mathrm{CvFatB} 1+\mathrm{CpDGAT} 1, \mathrm{CvFatB} 1+\mathrm{AthDGAT} 1$.
[0042] FIG. 20 is a graph showing DGAT activity in crude extracts of developing seeds from Wt and transgenic Camelina lines. Values are mean $\pm \mathrm{SD}(\mathrm{n}=3)$. Results are for assays using [1-14C] 10:0-CoA, and diacylglycerol (DAG) species: 10:0/10:0 (1,2-didecanoyl-sn-glycerol) or 18:1/18:1 (1,2-dioleoyl-sn-glycerol).
[0043] FIG. 21 is a graph showing the seed weight of mature seeds from Wt and transgenic Camelina.
[0044] FIG. 22 is a graph showing the germination efficiency of transgenic Camelina seeds.
[0045] FIG. 23 is data showing 10:0/10:0 DAG containing TAG species detected by Precursor $383.3 \mathrm{~m} / \mathrm{z}$ ESI-MS/MS scans.
[0046] FIG. 24 are graphs showing fatty acid profiles of a Camelina transgenic line.

DETAILED DESCRIPTION

[0047] This disclosure is based on the discovery of novel nucleic acids encoding acyltransferase polypeptides. Such nucleic acids, SEQ ID NOs: $1,3,5,7$, or 9 , and the polypeptides encoded thereby, SEQ ID NOs: $2,4,6,8$, or 10 , are described and characterized herein. Based on this discovery, such nucleic acid sequences can be used to produce particular and unique medium-chain fatty acids (MCFAs).
[0048] As described herein, lysophosphatidic acid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) catalyze sequential reactions in the Kennedy pathway that produce triacylglycerols (TAG) in seeds and other
plant tissues and organs. Triacylglycerols are the principal component of vegetable oils, which are used in a variety of edible applications (e.g., baking, frying) as well as non-food applications, such as biofuels, lubricants, and surfactants. LPAT uses fatty acids in the form of fatty acyl-Coenzyme A (CoA) as substrates for esterification to the sn-2 position of lysophosphatidic acid (LPA) to form phosphatidic acid (PA). Following dephosphorylation of PA, the resulting diacylglycerol (DAG) serves as a substrate for addition of a fatty acid in the form of fatty acyl-CoA to its $\mathrm{sn}-3$ position to generate triacylglycerol, via the activity of DGAT. LPAT activity in seeds of the typical oilseed crops, such as canola (Brassica napus), camelina (Camelina sativa), and soybean (Glycine max) have strong specificity for unsaturated C18 fatty acid acyl-CoA substrates such as oleoyl (18:1)-, linoleoyl (18:2)-, and linolenoyl (18:3)-CoA, but little or no activity with saturated fatty acyl-CoA substrates (Sun et al., 1988, Plant Physiol., 88, 56-60; Oo et al., 1989, Plant Physiol., 91, 12881295). This activity arises predominantly from LPATs of the LPAT2 class, but also with contributions from LPATs of the bacterial-type LPATB class [Arroyo-Caro, J. M., Chileh, T., Kazachkov, M., Zou, J., Alonso, D. L., Garcia-Maroto, F. (2013) Plant Sci. 199-200:29-40]. The strict substrate specificity of oilseed LPATs for unsaturated fatty acyl-CoA substrates represents a major bottleneck for metabolic engineering of oilseeds to produce TAG with high levels of saturated medium-chain fatty acids with C6-C14 chain-lengths for applications such as biofuels, including bio-based Jet fuel A. These metabolic engineering strategies typically involve expression of divergent forms of the FatB acyl-ACP thioesterase that are able to produce medium-chain fatty acids of differing chain-lengths. An LPAT from coconut of the LPATB class has been previously shown to be effective at esterifying lauroyl (12:0)-CoA to the sn-2 position of LPA to produce lauric acid-rich oils when co-expressed with a 12:0acyl carrier protein-specific FatB. The coconut LPATB enzyme, however, was ineffective for esterification of CoA forms of caprylic (8:0) or decanoic (10:0) acids to the LPA $\mathrm{sn}-2$ position to generate 10:0-rich TAG in an engineered oilseed (Wiberg et al., 2000, Planta, 212, 33-40). In addition, no plant LPAT2 enzymes have been previously shown to have significant activity with any saturated medium-chain fatty acids.
[0049] DGAT enzymes occur in two forms, DGAT1 and DGAT2, based on their primary structures. These enzymes also represent potential bottlenecks for the accumulation of high levels of saturated medium-chain fatty acids in TAG of engineered oilseeds. DGAT2 enzymes from plants such as castor bean have been shown to enhance the accumulation of modified fatty acids such as ricinoleic acid. However, no specific plant DGAT1 or DGAT2 has been previously been shown to be effective at promoting increased accumulation of saturated medium-chain fatty acids in engineered oilseeds or to be active with DAGs rich in medium-chain fatty acids such as decanoic acid (10:0).
[0050] The embodiment of this invention is the discovery of LPAT2 and DGAT1 genes that are demonstrated in this disclosure to enhance the accumulation of medium-chain fatty acids, in particular, C8:0 and C10:0, in TAG and in the sn-2 position of TAG when expressed together with specialized FatB genes in seeds of the oilseed crop camelina (Camelina sativa). The co-expression of the LPAT2 genes with the DGAT1 genes is also shown to yield synergistic increases in
medium-chain fatty acid accumulation in TAG and the sn-2 position of TAG in transgenic plants.

Nucleic Acids and Polypeptides

[0051] Novel nucleic acids encoding acyltransferases are provided herein (see, for example, SEQ ID NOs: 1,3,5,7, or 9). Acyltransferases (PF01553; EC 2.3.1) are well known in the art and are defined as transferase enzymes that act on acyl groups. The acyltransferases exemplified herein include a lysophosphatidic acid acyltransferase (LPAT; EC 2.3.1.51) and a diacylglycerol acyltransferase (DGAT; EC 2.3.1.20). The LPAT2 and LPAT2a polypeptides disclosed herein are unique in that they esterify saturated C8-C16 fatty acyl-CoA, including a high affinity for saturated C8 and C10 fatty acylCoA, at the sn-2 position of triacylglycerols (TAGs), while the DGAT1 polypeptides disclosed herein have unique specificity for diacylglycerols (DAGs) substrates having a saturated C10 and, to a lesser extent, a saturated C8, at the sn-2 position.
[0052] Novel nucleic acids encoding medium-chain fatty acid (MCFA)-specific thioesterase, FatB polypeptides also are provided herein (see, for example, SEQ ID NO: 15). FatB polypeptides are a class of thioesterases (EC 3.2.1.14) that release C8 to C16 saturated fatty acids from acyl carrier protein (ACP) during de novo fatty acid synthesis. The typical FatB releases C16:0 from ACP, but FatBs that release other saturated fatty acids are known.
[0053] As used herein, nucleic acids can include DNA and RNA, and includes nucleic acids that contain one or more nucleotide analogs or backbone modifications. A nucleic acid can be single stranded or double stranded, which usually depends upon its intended use. The novel nucleic acids provided herein encode novel polypeptides (see, for example, SEQ ID NOs: 2, 4, 6, 8, 10, or 16). Also provided are nucleic acids and polypeptides that differ from SEQ ID NOs: $1,3,5$, 7,9, or 15 , and SEQ ID NOs: $2,4,6,8,10$, or 16 , respectively. Nucleic acids and polypeptides that differ in sequence from SEQ ID NOs: $1,3,5,7,9$, or 15 , and SEQ ID NOs: $2,4,6,8$, 10 , or 16 , can have at least 50% sequence identity (e.g., at least $55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 81 \%, 82 \%, 83 \%$, $84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%$, $94 \%, 95 \%, 96 \%, 97 \%, 98 \%$, or 99% sequence identity) to SEQ ID NOs: $1,3,5,7,9$, or 15 , and SEQ ID NOs: $2,4,6,8$, 10 , or 16 , respectively.
[0054] In calculating percent sequence identity, two sequences are aligned and the number of identical matches of nucleotides or amino acid residues between the two sequences is determined. The number of identical matches is divided by the length of the aligned region (i.e., the number of aligned nucleotides or amino acid residues) and multiplied by 100 to arrive at a percent sequence identity value. It will be appreciated that the length of the aligned region can be a portion of one or both sequences up to the full-length size of the shortest sequence. It also will be appreciated that a single sequence can align with more than one other sequence and hence, can have different percent sequence identity values over each aligned region.
[0055] The alignment of two or more sequences to determine percent sequence identity can be performed using the computer program ClustalW and default parameters, which allows alignments of nucleic acid or polypeptide sequences to be carried out across their entire length (global alignment). Chenna et al., 2003, Nucleic Acids Res., 31(13):3497-500. ClustalW calculates the best match between a query and one
or more subject sequences, and aligns them so that identities, similarities and differences can be determined. Gaps of one or more residues can be inserted into a query sequence, a subject sequence, or both, to maximize sequence alignments. For fast pairwise alignment of nucleic acid sequences, the default parameters can be used (i.e., word size: 2 ; window size: 4 ; scoring method: percentage; number of top diagonals: 4 ; and gap penalty: 5); for an alignment of multiple nucleic acid sequences, the following parameters can be used: gap opening penalty: 10.0 ; gap extension penalty: 5.0 ; and weight transitions: yes. For fast pairwise alignment of polypeptide sequences, the following parameters can be used: word size: 1 ; window size: 5 ; scoring method: percentage; number of top diagonals: 5 ; and gap penalty: 3 . For multiple alignment of polypeptide sequences, the following parameters can be used: weight matrix: blosum; gap opening penalty: 10.0; gap extension penalty: 0.05 ; hydrophilic gaps: on; hydrophilic residues: Gly, Pro, Ser, Asn, Asp, Gln, Glu, Arg, and Lys; and residue-specific gap penalties: on. ClustalW can be run, for example, at the Baylor College of Medicine Search Launcher website or at the European Bioinformatics Institute website on the World Wide Web.
[0056] Changes can be introduced into a nucleic acid molecule (e.g., SEQ ID NOs: $1,3,5,7,9$, or 15), thereby leading to changes in the amino acid sequence of the encoded polypeptide (e.g., SEQ ID NOs: $2,4,6,8,10$, or 16). For example, changes can be introduced into nucleic acid coding sequences using mutagenesis (e.g., site-directed mutagenesis, PCR-mediated mutagenesis) or by chemically synthesizing a nucleic acid molecule having such changes. Such nucleic acid changes can lead to conservative and/or nonconservative amino acid substitutions at one or more amino acid residues. A "conservative amino acid substitution" is one in which one amino acid residue is replaced with a different amino acid residue having a similar side chain (see, for example, Dayhoff et al. (1978, in Atlas of Protein Sequence and Structure, 5(Suppl. 3):345-352), which provides frequency tables for amino acid substitutions), and a non-conservative substitution is one in which an amino acid residue is replaced with an amino acid residue that does not have a similar side chain.
[0057] As used herein, an "isolated" nucleic acid molecule is a nucleic acid molecule that is free of sequences that naturally flank one or both ends of the nucleic acid in the genome of the organism from which the isolated nucleic acid molecule is derived (e.g., a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease digestion). Such an isolated nucleic acid molecule is generally introduced into a vector (e.g., a cloning vector, or an expression vector) for convenience of manipulation or to generate a fusion nucleic acid molecule, discussed in more detail below. In addition, an isolated nucleic acid molecule can include an engineered nucleic acid molecule such as a recombinant or a synthetic nucleic acid molecule.
[0058] As used herein, a "purified" polypeptide is a polypeptide that has been separated or purified from cellular components that naturally accompany it. Typically, the polypeptide is considered "purified" when it is at least 70% (e.g., at least $75 \%, 80 \%, 85 \%, 90 \%, 95 \%$, or 99%) by dry weight, free from the polypeptides and naturally occurring molecules with which it is naturally associated. Since a polypeptide that is chemically synthesized is, by nature, separated from the components that naturally accompany it, a synthetic polypeptide is "purified."
[0059] Nucleic acids can be isolated using techniques routine in the art. For example, nucleic acids can be isolated using any method including, without limitation, recombinant nucleic acid technology, and/or the polymerase chain reaction (PCR). General PCR techniques are described, for example in PCR Primer: A Laboratory Manual, Dieffenbach \& Dveksler, Eds., Cold Spring Harbor Laboratory Press, 1995. Recombinant nucleic acid techniques include, for example, restriction enzyme digestion and ligation, which can be used to isolate a nucleic acid. Isolated nucleic acids also can be chemically synthesized, either as a single nucleic acid molecule or as a series of oligonucleotides.
[0060] Polypeptides can be purified from natural sources (e.g., a biological sample) by known methods such as DEAE ion exchange, gel filtration, and hydroxyapatite chromatography. A polypeptide also can be purified, for example, by expressing a nucleic acid in an expression vector. In addition, a purified polypeptide can be obtained by chemical synthesis. The extent of purity of a polypeptide can be measured using any appropriate method, e.g., column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
[0061] A vector or construct containing a nucleic acid (e.g., a nucleic acid that encodes a polypeptide) also is provided. Vectors, including expression vectors, are commercially available or can be produced by recombinant DNA techniques routine in the art. A vector containing a nucleic acid can have expression elements operably linked to such a nucleic acid, and further can include sequences such as those encoding a selectable marker (e.g., an antibiotic resistance gene). A vector containing a nucleic acid can encode a chimeric or fusion polypeptide (i.e., a polypeptide operatively linked to a heterologous polypeptide, which can be at either the N -terminus or C-terminus of the polypeptide). Representative heterologous polypeptides are those that can be used in purification of the encoded polypeptide (e.g., $6 \times \mathrm{His}$ tag, glutathione S-transferase (GST))
[0062] Expression elements include nucleic acid sequences that direct and regulate expression of nucleic acid coding sequences. One example of an expression element is a promoter sequence. Expression elements also can include introns, enhancer sequences, response elements, or inducible elements that modulate expression of a nucleic acid. Expression elements can be of bacterial, yeast, insect, mammalian, or viral origin, and vectors can contain a combination of elements from different origins. As used herein, operably linked means that a promoter or other expression element(s) are positioned in a vector relative to a nucleic acid in such a way as to direct or regulate expression of the nucleic acid (e.g., in-frame).
[0063] Vectors as described herein can be introduced into a host cell. As used herein, "host cell" refers to the particular cell into which the nucleic acid is introduced and also includes the progeny of such a cell that carry the vector. A host cell can be any prokaryotic or eukaryotic cell. For example, nucleic acids can be expressed in bacterial cells such as E. coli, or in insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art. Many methods for introducing nucleic acids into host cells, both in vivo and in vitro, are well known to those skilled in the art and include, without limitation, electroporation, calcium phosphate precipitation, polyethylene glycol (PEG) transformation, heat shock, lipofection, microinjection, and viral-mediated nucleic acid transfer.
[0064] Nucleic acids can be detected using any number of amplification techniques (see, e.g., PCR Primer: A Laboratory Manual, 1995, Dieffenbach \& Dveksler, Eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; and U.S. Pat. Nos. $4,683,195 ; 4,683,202 ; 4,800,159$; and $4,965,188$) with an appropriate pair of oligonucleotides (e.g., primers). A number of modifications to the original PCR have been developed and can be used to detect a nucleic acid.
[0065] Nucleic acids also can be detected using hybridization. Hybridization between nucleic acids is discussed in detail in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Sections 7.37-7.57, 9.47-9. 57, 11.7-11.8, and 11.45-11.57). Sambrook et al. discloses suitable Southern blot conditions for oligonucleotide probes less than about 100 nucleotides (Sections 11.45-11.46). The Tm between a sequence that is less than 100 nucleotides in length and a second sequence can be calculated using the formula provided in Section 11.46. Sambrook et al. additionally discloses Southern blot conditions for oligonucleotide probes greater than about 100 nucleotides (see Sections 9.47$9.54)$. The Tm between a sequence greater than 100 nucleotides in length and a second sequence can be calculated using the formula provided in Sections 9.50-9.51 of Sambrook et al.
[0066] The conditions under which membranes containing nucleic acids are prehybridized and hybridized, as well as the conditions under which membranes containing nucleic acids are washed to remove excess and non-specifically bound probe, can play a significant role in the stringency of the hybridization. Such hybridizations and washes can be performed, where appropriate, under moderate or high stringency conditions. For example, washing conditions can be made more stringent by decreasing the salt concentration in the wash solutions and/or by increasing the temperature at which the washes are performed. Simply by way of example, high stringency conditions typically include a wash of the membranes in $0.2 \times \mathrm{SSC}$ at $65^{\circ} \mathrm{C}$.
[0067] In addition, interpreting the amount of hybridization can be affected, for example, by the specific activity of the labeled oligonucleotide probe, by the number of probe-binding sites on the template nucleic acid to which the probe has hybridized, and by the amount of exposure of an autoradiograph or other detection medium. It will be readily appreciated by those of ordinary skill in the art that although any number of hybridization and washing conditions can be used to examine hybridization of a probe nucleic acid molecule to immobilized target nucleic acids, it is more important to examine hybridization of a probe to target nucleic acids under identical hybridization, washing, and exposure conditions. Preferably, the target nucleic acids are on the same membrane.
[0068] A nucleic acid molecule is deemed to hybridize to a nucleic acid but not to another nucleic acid if hybridization to a nucleic acid is at least 5 -fold (e.g., at least 6 -fold, 7 -fold, 8 -fold, 9 -fold, 10 -fold, 20 -fold, 50 -fold, or 100 -fold) greater than hybridization to another nucleic acid. The amount of hybridization can be quantitated directly on a membrane or from an autoradiograph using, for example, a PhosphorImager or a Densitometer (Molecular Dynamics, Sunnyvale, Calif.).
[0069] Polypeptides can be detected using antibodies. Techniques for detecting polypeptides using antibodies include enzyme linked immunosorbent assays (ELISAs),

Western blots, immunoprecipitations and immunofluorescence. An antibody can be polyclonal or monoclonal. An antibody having specific binding affinity for a polypeptide can be generated using methods well known in the art. The antibody can be attached to a solid support such as a microtiter plate using methods known in the art. In the presence of a polypeptide, an antibody-polypeptide complex is formed.
[0070] Detection (e.g., of an amplification product, a hybridization complex, or a polypeptide) is usually accomplished using detectable labels. The term "label" is intended to encompass the use of direct labels as well as indirect labels. Detectable labels include enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.

Medium-Chain Fatty Acids and Methods of Making Medium-Chain Fatty Acids

[0071] The nucleic acids described herein, and the polypeptides encoded thereby, can be used to engineer a variety of useful medium-chain fatty acids and triacylglycerols that incorporate such medium-chain fatty acids. As used herein, medium-chain fatty acids refer to 6 - to 14-carbon long saturated fatty acids; specifically, caprioc (C6:0), caprylic (C8:0), capric (C10:0), lauric (C12:0), and myristic (C14:0) acids. Coconut and palm-kernel oils naturally contain high amounts of medium-chain fatty acids. Medium-chain triacylglycerols (MCTs) usually contain unsaturated 6- to 14-carbon fatty acid esters of glycerol, but the nucleic acids described herein and the polypeptides encoded thereby can be used to produce TAGs containing predominantly C8:0, C10: 0 , or C12:0 fatty acid esters at the sn-2 position. As used herein, "predominantly" refers to at least 20% of the TAGs (e.g., at least $25 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 75 \%, 80 \%$, 90% or 95% of the TAGs) having a C8:0 or a C10:0 at the sn-2 position.
[0072] For example, FatBs that can generate C8 and C10 fatty acids (e.g., ChFatB2 or CvFatB1) can be used in combination with at least one of the novel acyltransferases described herein to strongly enhance the production of TAGs having a saturated C 8 or C 10 at the sn- 2 position. Also for example, a FatB that can generate C14 and C16 fatty acids (e.g., CpFatB 2) can be used in combination with at least one of the novel acyltransferases described herein to strongly enhance the production of TAGs having a saturated C14 or C16 at the sn-2 position. It would be appreciated that other FatB sequences can be used in combination with at least one of the acyltransferases described herein to engineer useful medium-chain fatty acids and the TAGs incorporating them. [0073] Significantly, the LPATs and DGATs described herein have unprecedented specificity for C8 and C10 fatty acids. Also significantly, the combination of one of the LPAT sequences disclosed herein and one of the DGAT sequences disclosed herein, in combination with a FatB sequence, results in a synergistic effect on the production of fatty acids and, consequently, the TAGs incorporating such fatty acids. Although not wishing to be bound by any particular mechanism, the observed synergy likely is because the LPATs described herein generate higher levels of DAGs with saturated fatty acids at the sn-2 position, which likely is the preferred substrate for DGATs described herein.
[0074] At least one of the acyltransferase sequences described herein can be expressed (e.g., overexpressed) in a transgenic organism in order to produce oils or triacylglycerols one or more medium-chain fatty acids. Therefore, trans-
genic organisms are provided that are transformed with at least one of the acyltransferase nucleic acid molecules described herein (e.g., SEQ ID NOs: $1,3,5,7$, or 9) or a functional fragment thereof, under control of a promoter that is able to drive expression. As discussed herein, a nucleic acid molecule used in a plant expression vector can have a different sequence than a sequence described herein, which can be expressed as a percent sequence identity (relative to, e.g., SEQ ID NOs: $1,3,5,7$, or 9) or based on the conditions under which the sequence hybridizes to, e.g., SEQ ID NOs: 1,3,5, 7 , or 9 .
[0075] As an alternative to using a full-length sequence, a portion of the sequence can be used that encodes a polypeptide fragment having the desired functionality (referred to herein as a "functional fragment"). When used with respect to nucleic acids, it would be appreciated that it is not the nucleic acid fragment that possesses functionality but the encoded polypeptide fragment. Based on the disclosure herein, one of skill in the art can predict the portion(s) of a polypeptide (e.g., one or more domains) that may impart the desired functionality.
[0076] In addition to at least one of the acyltransferases disclosed herein, the organisms also can contain a nucleic acid encoding a MCFA-specific thioesterase (FatB). Numerous FatB sequences are known in the art (e.g., without limitation, SEQ ID NOs: 11 and 13), or the novel FatB sequence disclosed herein (e.g., SEQ ID NO:15) can be used. In some embodiments, the FatB sequence is heterologous to the organism; in some embodiments, the FatB sequence is endogenous to the organism.
[0077] Methods of introducing one or more nucleic acids (e.g., one or more heterologous nucleic acids, one or more transgenes) into cells, including plant cells, are known in the art and include, for example, particle bombardment, Agro-bacterium-mediated transformation, microinjection, polyethylene glycol-mediated transformation (e.g., of protoplasts, see, for example, Yoo et al. (2007, Nature Protocols, 2(7):1565-72)), liposome-mediated DNA uptake, or electroporation. Following transformation of plant cells, the transgenic cells can be regenerated into transgenic plants. As described herein, expression of the transgene results in an organism that produces, or exhibits an increased amount of, medium-chain fatty acids (relative to a corresponding organism not containing or not expressing the transgene). The transgenic organisms can be screened for the amount of medium-chain fatty acids, and the medium-chain fatty acids can be obtained (e.g., purified) from the organism.
[0078] Methods of detecting medium-chain fatty acids, and methods of determining the amount of one or more mediumchain fatty acids, are known in the art and are described herein. For example, high performance liquid chromatography (HPLC), gas liquid chromatography (GLC), liquid chromatography (LC), and ESI-MS/MS scans can be used to detect the presence of one or more medium-chain fatty acids and/or determine the amount of one or more medium-chain fatty acids. Lipase digestion of triacylglycerols can also be used to establish the content of medium-chain fatty acids at the sn-2 position of triacylglycerols.
[0079] As used herein, an "increase" refers to an increase (e.g., a statistically significant increase) in the amount of medium-chain fatty acids or oils or triacylglycerols in plants by at least about 5% up to about 95% (e.g., about 5% to about 10%, about 5% to about 20%, about 5% to about 50%, about 5% to about 75%, about 10% to about 25%, about 10% to
about 50%, about 10% to about 90%, about 20% to about 40%, about 20% to about 60%, about 20% to about 80%, about 25% to about 75%, about 50% to about 75%, about 50% to about 85%, about 50% to about 95%, and about 75% to about 95%) relative to the amount from a non-transgenic organism. As used herein, statistical significance refers to a p -value of less than 0.05 , e.g., a p-value of less than 0.025 or a p-value of less than 0.01 , using an appropriate measure of statistical significance, e.g., a one-tailed two sample t-test.
[0080] When the organism is a microbe, a highly expressing or constitutive promoter can be used to direct expression of the at least one acyltransferase. Transgenic microbes then can be cultured or fermented in order to obtain the mediumchain fatty acids. When the organism is a plant, it generally is desirable, although not absolutely required, to use a seedspecific promoter to direct expression of the at least one acyltransferase. Significantly, the promoters of the acyltransferases described herein are seed-specific, and thus, can be used to direct expression of the sequences in a transgenic plant. Transgenic plants having increased amounts of medium-chain fatty acids, compared to the amount in a corresponding non-transgenic plant, can be selected for use in, for example, a breeding program as discussed in more detail below.
[0081] Following transformation, transgenic To plants are regenerated from the transformed cells and those plants, or a subsequent generation of that population (e.g., $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, etc.), can be screened for the presence of the at least one acyltransferase (e.g., SEQ ID NOs: $1,3,5,7$, or 9) or for the phenotype (e.g., an increase in the amount of medium-chain fatty acids compared to a non-transgenic plant or a transgenic plant not expressing the transgene). Screening for plants carrying at least one acyltransferase can be performed using methods routine in the art (e.g., hybridization, amplification, combinations thereof) or by evaluating the phenotype (e.g., detecting and/or determining the amount of one or more medium-chain fatty acids in the plant (e.g., in the seed)). Generally, the presence and expression of the at least one acyltransferase (e.g., SEQ ID NOs: $1,3,5,7$, or 9) results in an increase of one or more medium-chain fatty acids in the plants (e.g., in seeds from the plants) compared to a corresponding plant (e.g., having the same varietal background) lacking or not expressing the at least one acyltransferase.
[0082] A plant carrying the at least one acyltransferase (e.g., SEQ ID NOs: $1,3,5,7$, or 9) can be used in a plant breeding program to create novel and useful cultivars, lines, varieties and hybrids. Thus, in some embodiments, a $\mathrm{T}_{1}, \mathrm{~T}_{2}$, T_{3} or later generation plant containing the at least one acyltransferase is crossed with a second plant, and progeny of the cross are identified in which the at least one acyltransferase is present. It will be appreciated that the second plant can be one of the species and varieties described herein. It will also be appreciated that the second plant can contain the same transgene or combination of transgenes as the plant to which it is crossed, a different transgene, or the second plant can carry a mutation or be wild type at the endogenous locus. Additionally or alternatively, a second line can exhibit a phenotypic trait such as, for example, disease resistance, high yield, height, plant maturation, stalk size, and/or leaf number per plant.
[0083] Breeding is carried out using known procedures. DNA fingerprinting, SNP or similar technologies may be used in a marker-assisted selection (MAS) breeding program to transfer or breed the transgene(s) into other lines, varieties
or cultivars, as described herein. Progeny of the cross can be screened for the transgene(s) using methods described herein, and plants having the transgenes described herein (e.g., SEQ ID NOs: $1,3,5,7$, or 9) can be selected. For example, plants in the F_{2} or backcross generations can be screened using a marker developed from a sequence described herein or a fragment thereof, using one of the techniques listed herein. Seed from progeny plants also can be screened for the amount of one or more medium-chain fatty acids, and those plants having increased amounts, compared to a corresponding plant that lacks the transgene, can be selected. Plants identified as possessing the transgene and/or the expected phenotype can be backerossed or self-pollinated to create a second population to be screened. Backcrossing or other breeding procedures can be repeated until the desired phenotype of the recurrent parent is recovered.
[0084] Successful crosses yield F_{1} plants that are fertile and that can be backcrossed with one of the parents if desired. In some embodiments, a plant population in the F_{2} generation is screened for the transgene using standard methods (e.g., PCR with primers based upon the nucleic acid sequences disclosed herein). Selected plants are then crossed with one of the parents and the first backcross $\left(\mathrm{BC}_{1}\right)$ generation plants are self-pollinated to produce a $\mathrm{BC}_{1} \mathrm{~F}_{2}$ population that is again screened for the transgene or the phenotype. The process of backcrossing, self-pollination, and screening is repeated, for example, at least four times until the final screening produces a plant that is fertile and reasonably similar to the recurrent parent. This plant, if desired, is self-pollinated and the progeny are subsequently screened again to confirm that the plant contains the transgene and exhibits the expected phenotype. Breeder's seed of the selected plant can be produced using standard methods including, for example, field testing, confirmation of the presence of the transgene, and/or chemical analyses of the plant (e.g., of the seed) to determine the level of medium-chain fatty acids.
[0085] The result of a plant breeding program using the transgenic plants described herein are novel and useful cultivars, varieties, lines, and hybrids. As used herein, the term "variety" refers to a population of plants that share constant characteristics which separate them from other plants of the same species. A variety is often, although not always, sold commercially. While possessing one or more distinctive traits, a variety is further characterized by a very small overall variation between individuals within that variety. A "pure line" variety may be created by several generations of selfpollination and selection, or vegetative propagation from a single parent using tissue or cell culture techniques. A "line," as distinguished from a variety, most often denotes a group of plants used non-commercially, for example, in plant research. A line typically displays little overall variation between individuals for one or more traits of interest, although there may be some variation between individuals for other traits.
[0086] A variety can be essentially derived from another line or variety. As defined by the International Convention for the Protection of New Varieties of Plants (Dec. 2, 1961, as revised at Geneva on Nov. 10, 1972, On Oct. 23, 1978, and on Mar. 19, 1991), a variety is "essentially derived" from an initial variety if: a) it is predominantly derived from the initial variety, or from a variety that is predominantly derived from the initial variety, while retaining the expression of the essential characteristics that result from the genotype or combination of genotypes of the initial variety; b) it is clearly distinguishable from the initial variety; and c) except for the
differences which result from the act of derivation, it confirms to the initial variety in the expression of the essential characteristics that result from the genotype or combination of genotypes of the initial variety. Essentially derived varieties can be obtained, for example, by the selection of a natural or induced mutant, a somaclonal variant, a variant individual plant from the initial variety, backcrossing, or transformation.
[0087] Hybrids can be produced by preventing self-pollination of female parent plants (i.e., seed parents) of a first variety, permitting pollen from male parent plants of a second variety to fertilize the female parent plants, and allowing F_{1} hybrid seeds to form on the female plants. Self-pollination of female plants can be prevented by emasculating the flowers at an early stage of flower development. Alternatively, pollen formation can be prevented on the female parent plants using a form of male sterility. For example, male sterility can be produced by cytoplasmic male sterility (CMS), nuclear male sterility, genetic male sterility, molecular male sterility wherein a transgene inhibits microsporogenesis and/or pollen formation, or self-incompatibility. Female parent plants containing CMS are particularly useful. In embodiments in which the female parent plants are CMS, the male parent plants typically contain a fertility restorer gene to ensure that the F_{1} hybrids are fertile. In other embodiments in which the female parents are CMS, male parents can be used that do not contain a fertility restorer. F_{1} hybrids produced from such parents are male sterile. Male sterile hybrid seed can be interplanted with male fertile seed to provide pollen for seedset on the resulting male sterile plants.
[0088] Varieties, lines and cultivars described herein can be used to form single-cross F_{1} hybrids. In such embodiments, the plants of the parent varieties can be grown as substantially homogeneous adjoining populations to facilitate natural cross-pollination from the male parent plants to the female parent plants. The F_{2} seed formed on the female parent plants is selectively harvested by conventional means. One also can grow the two parent plant varieties in bulk and harvest a blend of F_{1} hybrid seed formed on the female parent and seed formed upon the male parent as the result of self-pollination. Alternatively, three-way crosses can be carried out wherein a single-cross F_{1} hybrid is used as a female parent and is crossed with a different male parent. As another alternative, double-cross hybrids can be created wherein the F_{1} progeny of two different single-crosses are themselves crossed. Selfincompatibility can be used to particular advantage to prevent self-pollination of female parents when forming a doublecross hybrid.
[0089] The microbial organisms used in the methods described herein include, without limitation, bacteria (E. coli, Pseudomonas sp.), cyanobacteria (Synechocystis sp), and green microalgae (C. reinhardtii, Phaeodactylum tricornutum, Chlorella sp., Nannochloropsis sp.) species, fungal (Yarrowia lipolytica, Saccharomyces cerevisiae) species. The plants used in the methods described herein can be oilseed plants such as, without limitation, Camelina spp. (e.g., Camelina sativa, Camelina alyssum, Camelina rumelica) or other Brassicaceae spp. (e.g., Brassica oleracea, Brassica rapa, Brassica napus, B. carinata), Limnanthes alba (meadowfoam), Glycine max (soybean), Linum spp. (e.g., Linum usitatissimum, flax), Crambe spp. (e.g. Crambe abyssinica), Ricinus communis (castor bean), Gossypium spp. (e.g. Gossypium hirsutum cotton), or non-oilseed plants such as, without limitation, legumes (e.g., peas, beans), tuberous crops (potato, cassava), or other crop plant.
[0090] The MCFAs or TAGs comprising MCFAs produced in the methods herein can be used in any number of products in which a medium-chain fatty acid or a TAG containing such a medium-chain fatty acid is desired. Such products include, without limitation, biofuel and/or jet fuel. For example, vegetable oils with TAGs containing fatty acid chains having 10 or less carbons are more desirable feedstocks for the biofuel industry due to their lower viscosity and because such vegetable oils may not require trans-esterification, which is usually a required step when converting vegetable oils to biodiesel. In addition, the MCFAs or the TAGs comprising MCFAs produced as described herein can be used in detergents, cosmetics, surfactants, or feedstocks for preparation of other specialized chemicals.
[0091] In addition, in some embodiments, one or more of the acyltransferases described herein can be used in industrial inter-esterification of fatty acids to generate particular TAGs or one or more of the acyltransferases described herein can be used in a bioreactor (e.g., one or more of the acyltransferases described herein can be immobilized) to make particular TAGs for specialized nutritional or industrial applications.
[0092] In accordance with the present invention, there may be employed conventional molecular biology, microbiology, biochemical, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. The invention will be further described in the following examples, which do not limit the scope of the methods and compositions of matter described in the claims.

EXAMPLES

Part A

Example 1

Plant Material, Growth and Transformation Conditions

[0093] Camelina sativa seed was sowed into $81 \mathrm{~cm}^{2}$ square green plastic pots with Fafard Germination Mix based soil. Natural ambient light was supplemented in the greenhouses with a combination of metal halide and high pressure sodium lights. Lights was provided for a 14 hour day-length. During the daytime temperatures were set at a range of $24^{\circ} \mathrm{C} .-26^{\circ} \mathrm{C}$. and during the nighttime temperatures were set at a range 18° C. $-20^{\circ} \mathrm{C}$. When outdoor temperatures were above $29^{\circ} \mathrm{C}$. the supplemental lights were shut off to reduce the need for extra cooling. Agrobacterium tumefaciens cells (strain C58C1) were transformed with the binary vectors containing LPAT cDNA by the electroporation. Camelina plants were transformed by floral dip followed by vacuum infiltration and a fluorescent protein (DsRed) was used as a visual selection marker (Lu \& Kang, 2008, Plant Cell Rep., 27:273-8). Segregation analyses were performed on the T2 showed fluorescence seeds to determine the number of T-DNA insertion loci. Plants homozygous for the transgene were identified by screening T3 seeds for 100% red fluorescence.

Example 2
 RNA Isolation from Cuphea Species and cDNA Conversion

[0094] Total RNAs were isolated from different Cuphea tissues such as roots, stems, leaves, flowers and developing seeds using slightly modified methods described in the pre-
vious report (Chang et al., 1993, Plant Mol. Biol. Report., 11:113-6) and RNeasy Plant Mini Kit (Qiagen). The first step was performed by the CTAB-based procedure. A pre-heated 10 ml of extraction buffer ($2 \% \mathrm{w} / \mathrm{v}$ CTAB, $2 \% \mathrm{w} / \mathrm{v}$ PVP, 2 M $\mathrm{NaCl}, 100 \mathrm{mM}$ Tris- $\mathrm{HCl} \mathrm{pH} 8.0,25 \mathrm{mM}$ EDTA pH 8.0 and $0.05 \% \mathrm{w} / \mathrm{v}$ of spermidine) was added to the sample (200-300 mg) ground in liquid nitrogen, mixed vigorously by vortexing and incubated at $65^{\circ} \mathrm{C}$. for 10 min . The sample was divided into several new microcentrifuge tubes. An equal volume of chloroform was added and the tubes, mixed vigorously and then centrifuged at $13,000 \mathrm{rpm}$ for 10 min at $4^{\circ} \mathrm{C}$. The supernatant was transferred to new microcentrifuge tubes and $1 / 3$ volume of 8 MLiCl was added. The mixture was incubated in ice for overnight, and the RNA was selectively collected after centrifugation at 13000 rpm for 1 hour at $4^{\circ} \mathrm{C}$. The pellet was resuspended in $500 \mu \mathrm{l}$ of RLT buffer in RNeasy Plant Mini Kit and was then carried out as indicated in the manufacturer's handbook including DNase I treatment. The firststrand cDNA was synthesized from 2 ug total RNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) with oligo-(dT) primer.

Example 3

Confocal Laser Scanning Microscope

[0095] The expression of transient fluorescent fusion proteins in tobacco leaves was performed using the agro-infiltration methods as described previously (Sparkes et al., 2006, Nature Protocols, 1:2019-25). Two days after infiltration, the abaxial leaf surface was observed with a confocal laser scanning microscope (Olympus). For YFP and mCherry, the excitation wavelengths were respectively 488 nm and 545 nm , and the emitted fluorescence was collected at $495 \sim 530 \mathrm{~nm}$ and $565 \sim 600 \mathrm{~nm}$, respectively.

Example 4

Complementation of Cuphea LPAT cDNAs by Expression in Escherichia coli Mutant

[0096] The thermo-sensitive strain, E. coli JC201, was used to complement the deficient of LPAT activity (Coleman, 1992, Mol. Gen. Genet., 232:295-303). The Cuphea LPAT cDNAs were cloned into the into the $\mathrm{pBluescript} \mathrm{SK}^{+}$multicloning site using SacI and NotI. JC201 was transformed via heat shock and was selected on ampicillin plates at $30^{\circ} \mathrm{C}$. Complementing colonies were inoculated into starter cultures and grown to an optical density at 600 nm of 0.5 at $30^{\circ} \mathrm{C}$. with or without 1 mM isopropylthio- β-galactoside (IPTG). Aliquots were grown in the presence of IPTG at $30^{\circ} \mathrm{C}$. and 44° C., and growth curves were constructed using data obtained from three individual complementation experiments.

Example 5

Fatty Acid Analysis of Seed Oils

[0097] Fatty acid methyl esters (FAMEs) were generated by grinding 10 mg of dry seeds in 2 mL of $2.5 \% \mathrm{H} 2 \mathrm{SO} 4(\mathrm{v} / \mathrm{v})$ in methanol including $900 \mu \mathrm{~g}$ of tri 17:0-TAG (Nu-Chek Prep, Elysian, Minn., USA) in toluene ($10 \mathrm{mg} / \mathrm{mL}$) as an internal standard and heated for 45 min at $90^{\circ} \mathrm{C}$. in tightly capped tubes. Following cooling, 1.5 mL of water and 1.5 mL hexane were added to tubes and mixed vigorously. The organic phase was transferred to autosampler vials and analyzed on an Agi-
lent Technologies 7890A gas chromatograph (GC) fitted with a 30 m length $\times 0.25 \mathrm{~mm}$ inner diameter HP-INNOWax column (Agilent, Santa Clara, Calif., USA) using H2 carrier gas. The GC was programmed for an initial temperature of $90^{\circ} \mathrm{C}$. (1 min hold) followed by an increase of $30^{\circ} \mathrm{C} \cdot \mathrm{min}-1$ to 235° C. and maintained for a further 5 min . Detection was achieved using flame ionization.

Example 6

Neutral Loss ESI-MS/MS Analysis

[0098] Mass spectrometry analyses were conducted using an Applied Biosystems (Foster City, Calif.) 4000 QTRAP linear ion trap quadrupole mass spectrometer to characterize TAG molecular species. The total neutral lipid extract for ESI-MS/MS analysis was prepared as described for seed oil content measurement below but without added internal standard and diluted 1:5000 in water/isopropyl alcohol/methanol (55:35:10 v/v/v) containing 25 mm ammonium formate and 4 $\mu \mathrm{L} / \mathrm{L}$ formic acid and directly infused into the mass spectrometer at a rate of $20 \mu \mathrm{~L}$ per minute. Instrument settings were as follows: Source temperature 400° C., ESI needle voltage 5.5 kV (positive mode), desolvation potential (DP) 90, entrance potential (EP) 10, Curtain gas (CUR) 10, and gas 1 (GS1) 50 arbitrary units, gas 2 (GS2) 40 arbitrary units. Neutral loss spectra showing the loss of a specific fatty acid from TAG species were generated by monitoring the loss of $189.1 \mathrm{~m} / \mathrm{z}$ (for C10:0) and $245.1 \mathrm{~m} / \mathrm{z}$ (for C14:0). Scans were taken over a mass range of $500-1475 \mathrm{~m} / \mathrm{z}$ with a cycle time of 3 s . Data was collected for five cycles.

Example 7

RNA Isolation from Developing Seeds and cDNA Library Construction

[0099] Total RNA was isolated from Cuphea pulcherrima and Cuphea viscosleaves and developing seeds collected from greenhouse grown plants and immediately frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. until use in RNA isolation. Total RNA was isolated according to a method described previously (Mattheus et al., 2003, Phytochemical Analysis, 14:209-15; Suzuki et al., 2004, Biotechniques, 37:542-44). In brief, developing seeds were grounded to a fine powder in liquid nitrogen. The powders were transferred to a chilled centrifuge tube containing cold extraction buffer consisting of 100 mM Tris-HCl, pH $8.0,50 \mathrm{mM}$ ethylenebis (oxyethylenenitrilo) tetraacetic acid, $\mathrm{pH} 8.0,100 \mathrm{mM}$ sodium chloride, 1\% 6-(p-toluidino)-2-naphthalenesulphonic acid, 6% sodium p-aminosalicylic acid, 1% SDS, 1% PVP- $40,3 \%$ PVPP:chloroform and $1 \% \beta$-mercaptoethanol. The sample was centrifuged for 10 min with Sorvall SS-34 rotor, 10500 rpm at $4^{\circ} \mathrm{C}$. The supernatant was transferred to a fresh tube. An equal volume of chloroform was added and the mixture was vortexed for 2 min , centrifuged for 10 min at 10500 rpm and 4° C. The aqueous phase was transferred to a fresh tube. The aqueous fraction was extracted twice with phenol:chloroform $(1: 1, \mathrm{v} / \mathrm{v})$, and extracted once with chloroform. The RNA was precipitated overnight with 0.1 volume of 3 M sodium acetate (pH 5.2) and 2.5 volume of 95% ethanol at $-20^{\circ} \mathrm{C}$. The RNA was precipitated by centrifugation for 30 min at 10500 rpm and $4^{\circ} \mathrm{C}$., rinsed once with 70% ethanol, briefly dried, and dissolved in DEPC-water.

Example 8-454

Transcriptome Analysis

[0100] 200 ng of polyA+-enriched RNA prepared from developing seeds of Cuphea pulcherrima and Cuphea viscosissma was used in the preparation of a single sequencing library with custom adaptors according to methods of Nguyen, H. T., Silva, J. E., Podicheti, R., Macrander, J., Yang, W., Nazarenus, T. J., Nam, J. W., Jaworski, J. G., Lu, C, Scheffler, B. E., Mockaitis, K \& Cahoon, E. B. (2013). The double-stranded cDNA library intermediate was partially normalized by DSN treatment (Evrogen) to reduce the representation of the transcripts of greatest abundance. Shearing prior to adaptor ligation was by nebulization ($30 \mathrm{sec}, 30 \mathrm{psi}$). The final library was assessed on a Bioanalyzer DNA7500 chip (Agilent) and showed a peak size of 660 bp .
[0101] Emulsion PCR and sequencing was done according to the manufacturer (Roche/454 Sequencing). Two regions of two-region plus three regions of four-region GS-FLX Titanium PicoTitre ${ }^{\text {TM }}$ plate were run to 800 cycles.
[0102] The Cuphea pulcherrima and Cuphea viscosissma transcriptome assemblies were matched by BLASTX using BLOSUM62 scoring matrix and a word size of 3 , to protein sequences of TAIR10 representative gene models (Arabidopsis.org on the World Wide Web) with an E-value limit of 1 e-5. The top hit(s) for each query sequence was retained based on best bit score and E-value. Secondly TAIR10 models (above) were matched to assembly elements (isotigs and singletons) using tBLASTN with an E-value limit of $1 \mathrm{e}-5$. Candidate acyl lipid metabolism gene sequences were retrieved from BLAST result sets above were trimmed to include only these genes. The best isotig for each isogroup was retained, trimming out putative alternative transcripts of the same gene (as described in Nguyen et al., 2013, Plant Biotechnol. J., 11(6), 759-769.

Example 9

Isolation of Multiple Putative LPAT Paralogs in Cuphea Species

[0103] To isolate specialized LPAT for medium chain acylCoA, we performed the RNA sequencing and assembly of over 2 million 454 sequencing pyrosequencing reads from the developing seeds of C. pulcherrima (recently re-classified as C. avigera var. pulcherrima) and C. viscosissima. Nucleotide sequence similarity to Arabidopsis LPAT2 was used for identification of potential LPAT orthologs. Six full-lengths of LPAT candidate genes were isolated in the 454 sequencing transcriptome of C. pulcherrima, and one full-length of LPAT candidate gene was found in the 454 sequencing transcriptome of C. viscosissima. We used the 7 full-lengths of putative LPAT genes for further studies.
[0104] The evolutionary relationship of cuphea LPAT genes was investigated based on their deduced amino acid sequences to collect more information about relationships and to predict function for TAG accumulation. The sequences were aligned with putative orthologs of higher plants, which were described by Manas-Fernandez et al. (2013, Europ. J. Lipid Sci. Technol., 115:1334-6) and Arroyo-Caro et al. (2013, Plant Sci., 199:29-40), and obtained the sequences from the protein database of the National Center for Biotechnology Information (NCBI). LPATs have been sub-grouped by plastid LPAT (LPAT1) and microsomal LPAT, and then the
latter was further categorized into two classes, A and B . The class A microsomal LPATs are typical enzymes involved in synthesis of membrane glycerolipids, they show ubiquitous expression in plants and have a substrate preference for 18:1CoA. Based on the category of Arabidopsis LPATs, the class A microsomal LPATs were further divided into 2 subgroups as LPAT2/LPAT3 group and LPAT4/LPAT5 group. The class B microsomal LPAT (LPATB) is classified as a seed-specific isoform and is found in plants accumulating unusual fatty acids in their seed oil. Even though LPATB is a microsomal LPAT, the class has a closer relationship with plastidal LPAT1 than other plant groups. However, LPATB is closer to the enzyme of other organisms, such as E. coli, yeast, and human.
[0105] Four genes of class A LPAT, one gene of LPATB, and one gene of LPAT1 were found in C. pulcherrima. Based on the classification, these LPATs were named as CpuLPAT1, CpuLPAT2a, CpuLPAT2b, CpuLPAT2c, CpuLPAT3 and CpuLPATB (FIG. 1). One LPAT gene from C. viscosissima was isolated, classified as class A, and named as CvLPAT2 (FIG. 1). CpuLPATB belonged to the same group as CnLPAT, which was isolated in coconut and related to increase of lauric acid by incorporating this fatty acid into the sn-2 position of TAG in transgenic plants seeds (Knutzon, et al., 1999, Plant Physiol., 109:999-1006). Based on the relationship between coconut LPATB and MCFA, we assumed that CpuLPATB might involve the increase of MCFA in TAG. So the studies were focused to reveal the function of CpuLPATB. Because CvLPAT2 was the only LPAT gene isolated from C. viscosissima, the functional studies of CvLPAT2 were performed in parallel.

Example 10

Acyltransferase Motifs and Topology of Transmembrane Domain in Cuphea LPATs

[0106] An amino acid alignment reveals a high level of amino acid identity among plant LPATBs (FIG. 2A). The LPLAT-AGPAT-like domain of CpuLPATB shared 82%, $79 \%, 77 \%, 74 \%$ and 70% identities with Vitis vinifera (XP 002278280), Ricinus communis [AFR42414], Oryza sativa (CAH66825), Cocos nucifera [Q42670], and Limnanthes douglasii [Q42870], respectively. The domain showed a low identity with other organisms such as 40% (Homo sapiens, NP006402), 39\% (Homo sapiens, NP006403), 36\% (Saccharomyces cerevisiae, SLC1, P33333), and 34\% (Escherichia coli, PlsC, AAA24397). We predicted that there were 4 conserved acyltransferase motifs in CpuLPATB, which are $\mathrm{NH}(\mathrm{X})_{4} \mathrm{D}$ (motif I, residues 137-143), GHLRIDR (motif II, residues 178-183), FPEGTR (motif III, residues 210-215), and LPIVPIVL (motif IV, residues 237-244) (FIG. 7A). These are significantly important on acyltransferase activities. Hydrophobic motif II was first characterized as an acyl-CoA-binding site in animal cells and might modulate acylCoA selectivity and residue "EGT" in motif III has been presumed to be involved in the binding of the LPA.
[0107] To predict transmembrane domain sequences, structural analysis of the gene model-translated protein sequences was carried out in silico using SOSUI [bp.nuap.nagoya-u.ac. jp /sosui/on the World Wide Web], PSORTII [psort.hgc.jp/ form2.html on the World Wide Web], HMMTOP [enzim.hu/ hmmtop/on the World Wide Web], and TMHMM server 2.0 [cbs.dtu.dk/services/TMHMM/ on the World Wide Web]. All programs predicted only one transmembrane domain in CpuLPATB in a similar region (FIG. 7B). Based on the analy-
sis of motif and transmembrane domain, the predicted topology of CpuLPATB was presented in FIG. 7C, where all acyltransferase motifs were on the cytosolic side of the ER membrane.
[0108] The deduced amino acid sequence alignment of CvLPAT2 with CpuLPAT2a, CpuLPAT2b CpuLPAT2c, and CpuLPAT3 showed the amino acid identities as $82 \%, 79 \%$, 79% and 66%, respectively, in full amino acid sequences, and $87 \%, 79 \%, 79 \%$ and 66%, respectively, in LPLAT-AGPATlike domain. The amino acid identity between CpuLPAT2b and CpuLPAT2c was the highest at 97% in LPLAT-AGPATlike domain. The key motifs in LPLAT-AGPAT-like domains were conserved well among the LPAT2s in diverse plant species (FIG. 8A). As for Motif I [$\left.\mathrm{NH}(\mathrm{X})_{4} \mathrm{D}\right]$ and motif III (FPEGTR), the same sequences with LPATTB, were observed in CvLPAT2 and in LPAT2/3 group from C. pulcherrima. Motif II (LPVLGW) and motif IV (NVLIPRTKGFV) were conserved in plant LPAT2/3 group, but those sequences were completely different with the LPATB's. There was a putative tyrosine phosphate site in motif $\mathrm{V}[\mathrm{R}(\mathrm{X})$ ${ }_{6} \mathrm{Y}(\mathrm{X})_{4} \mathrm{~A}$] from CvLPAT2 like the other LPAT2/3 group. Transmembrane domain of CvLAAPT2 was predicted as different numbers by different programs; 4 by SOSUI, 3 by PSORTII and HMMTOP and 5 by TMHMM (FIG. 8B). All programs predicted the N-terminal located in cytosol and C-terminal located in the ER lumen. Therefore, we predicted that there are five transmembrane domains in CvLPAT2 as seen in caster bean and presented the predicted topology of CvLPAT2 in FIG. 8C, where motifI is located in cytosol and motif II-IV is located in the ER lumen by separating the third transmembrane domain.

Example 11

Tissue-Specific Expression of Cuphea LPAT Isoforms

[0109] Different LPAT isoforms showed the various expression patterns and levels in the diverse tissues of a plant. Because LPAT has been considered a narrow substrate specificity, tissue specific expression is one of the clues to presume their function. RT-PCR was performed using cDNAs from diverse tissues, such as roots, stems, leaves, flowers and developing seeds, to investigate the tissue specificity and the expression level of LPAT genes in C. pulcherrima and C. viscosissima (FIG. 2). The transcripts of CpuLPAT1 were abundant in all tested tissues except developing seeds. CpuLPAT2b and CpuLPAT3 showed ubiquitous expression patterns with a low expression levels. CpuLPAT2c was undetectable at the same PCR cycle numbers as other LPAT genes, however, when PCR cycle numbers were increased it was slightly detected in all tissues tested. Interestingly, CpuLPAT2a and CvLPAT2, which have very high sequence similarity (82% in amino acid), showed the developing seedspecific expressions. CpuLPATB was also exclusively detected in the developing seeds. These results indicate that CpuLPATB, CpuLPAT2a and CvLPAT2 might be involved in the accumulation of MCFAs at the sn-2 position of TAG

Example 12

CpuLPATB, CpuLPAT2a, and CvLPAT2 Localize in the ER

[0110] The ER localization of LPAT2 was confirmed in Arabidopsis and Brasicca by immunofluorescence micros-
copy of tapetum cells and by immunoblotting of subcellular fraction. We investigated the subcellular localization of CpuLPAT2a, CpuLPATB, and CvLPAT2 by using a laser scanning confocal microscope. Yellow fluorescence protein (YFP) was fused with C-terminal of each LPAT driven by 35 S promoter. Each pro35S:LPAT:YFP was transiently co-expressed with the ER-rk CD3-959 as the ER marker (FIG. 3A-C) in tobacco leaves by agro-infiltration method. YFP signals of CpuLPAT2a, CpuLPATB, and CvLPAT2 were detected as the reticular shape and co-localized with ER marker. The result demonstrated that CpuLPAT2a, CpuLPATB, and CvLPAT2 are microsomal LPAT localized in the ER. We also tested the subcellular localization of CpuLPAT1, which is classified as a plastidal form. YFP signal of CpuLPAT1 was detected in the out membrane of chloroplasts (FIG. 3D).

Example 13

CpuLPATB Complemented the E. coli Mutant, JC201

[0111] To test the activities of Cuphea. LPATs, a complementation test was performed in an E. coli JC201 mutant, which is a temperature-sensitive mutant of p 1 sC and able to grow at $30^{\circ} \mathrm{C}$., but not at $42^{\circ} \mathrm{C}$. The full-length open reading frames of Cuphea LPATs were cloned into the pBluescript SK^{+}vector. FIG. 4A showed that all Cuphea LPATs and an empty vector grew at $30^{\circ} \mathrm{C}$. Occasionally the JC201 cells with an empty vector grew at $42^{\circ} \mathrm{C}$., and we increased the incubation temperature as $44^{\circ} \mathrm{C}$. Only JC201 containing CpuLPATB was able to grow at $44^{\circ} \mathrm{C}$., but few colonies were observed in the JC201 containing other LPATs (FIG. 4A). To confirm the result, we tested their growth rate by measuring the ODconcentration in process of time. As seen in FIG. 4B, the cell concentration of JC201 increased in all tested Cuphea. LPATs and empty vector control at $30^{\circ} \mathrm{C}$. However, only CpuLPATB showed the increase of OD concentration at $44^{\circ} \mathrm{C}$. We tested the LPAT activity in the inducible vector, pET-duet, but the results were the same as above, even in the presence or absence of IPTG, Only CpuLPATB complemented the E. coli mutant JC201 a LPAT activity. This result was correlated with the amino acid homology of LPATs between plant and E. coli. CpuLPATB shares the most similar homology with E. coli LPAT (34% in domain).

Example 14

CpuLPATB and CvLPAT2 Preferentially Incorporated 14:0 and 10:0, Respectively, into the Sn-2 Position of TAG
[0112] To investigate the activities of Cuphea LPATs in planta and its utility for oilseed metabolic engineering, the CpuLPATB and CvLPAT2 genes were introduced into Cam elina along with the variant FatB thioesterase genes. CpFatB 2 is 14:0 specific thioesterase of Cuphea palustris (Dehesh et al., 1996, Plant Physiol., 110:203-10) and ChFatB2 is 8:0 and 10:0 specific FatB thioesterase of Cuphea hookeriana (Dehesh et al., 1996, The Plant J., 9:167-72). The seed-specific glycinin promoter was used to drive the CpuLPATB and the seed-specific oleosin promoter was used to drive the CvLPAT2 for exclusive gene expression in seed. Lauric acidspecific CnLPAT was used for a comparison with CpuLPATB and CvLPAT2. The expression of CpFatB2 in Camelina showed $26.3 \mathrm{~mol} \%$ of 14:0 fatty acid. When CpFatB2 was
co-experessed with CnLPAT, CpuLPATB or CvLPAT2, the levels of 14:0 fatty acid were further increased as $33.1 \mathrm{~mol} \%$, $36.5 \mathrm{~mol} \%$ or $32.9 \mathrm{~mol} \%$, respectively. The expression of ChFatB2 in Camelina showed $7.4 \mathrm{~mol} \%$ of 10:0 fatty acid. Co-expression of ChFatB2 with CnLPAT or CvLPAT2 increased the $10: 0$ fatty acid as $10.2 \mathrm{~mol} \%$ or $11.8 \mathrm{~mol} \%$, respectively. However, CpuLPATB didn't increase the 10:0 fatty acid with ChFatB2 (FIG. 5). The positional distribution of the MCFA was also determined in TAG. Trace amounts of 16:0 and 18:0 were detected at the sn-2 position of TAG in wild type. The composition of MCFA at the sn-2 position of TAG was $2.9 \mathrm{~mol} \%$ (14:0) and $1.1 \mathrm{~mol} \%$ (16:0) in CpFatB 2 Camelina seeds. Myristic acid the sn-2 position of TAG from CpFatB2 Camelina seeds was significantly increased up to $14.2 \mathrm{~mol} \%$ with CnLPAT, $19.7 \mathrm{~mol} \%$ with CpuLPATB, and $14.8 \mathrm{~mol} \%$ with CvLPAT2 (FIG. 5B). The sn-2 position of TAG in ChFatB2 was not occupied by any MCFA or saturated fatty acid. Co-expression of ChFatB2 with CvLPAT2 resulted in the significant increase of $10: 0(15.4 \mathrm{~mol} \%)$ at the $\mathrm{sn}-2$ position of TAG. However, 10:0 fatty acid was barely detected in the coexpression line of ChFatB2 and CnLPAT. CpuLPATB didn't effect on the increase of 10:0 fatty acid with ChFatB2 in the transgenic Camelina seeds. These results indicate that CpuLPATB and CvLPAT2 enhance the accumulation of the saturated MCFAs in the TAG of Camelina seed by incorporating medium chain acyl-CoA into the sn-2 position of LPA. CpuLPATB has a preference toward 14:0 fatty acid and CvLPAT2 has a preference toward myristic acid and capric acid.

Example 15

The Distribution of MCFA in TAG Molecular Species

[0113] To further investigate the metabolism of MCFA in transgenic Camelina seeds, we performed ESI-MS analysis for the molecular species of TAG from Camelina producing the FatB TE. Absolute peak intensity of mass spectra of TAG species from seeds expressing the FatB TE and LPAT were presented in FIG. 6 and FIG.10. TAG species with at least one 14:0 represent in plants expressing CpFatB2 with CnLPAT, CpuLPATB, and CvLPAT2, respectively, while any MCFA was not detected in the TAG in wild-type Camelina (FIG. 6). The levels of tri-MCFA-TAG species increased when CpFatB2 expressed with LPATs and the highest amount tri-MCFA-TAG species was observed in CvLPAT2. Tri-MCFATAG species in transgenic Camelina seeds confirmed that tested LPATs contain the preference to saturated MCFAs and CvLPAT2 is the best FatB TE for those substrates.

Part B

Example 16

Cloning CpDGAT1 Sequence from C. pulcherrima

[0114] The CpDGAT1 gene sequence was identified in the C. pulcherrima 454 sequence data generated as described before (Nguyen et al., 2013, Plant Biotechnol. J., 11:759-69). The ORF designated as CpDGAT1 of 1482 bp encoding 484 amino acids was PCR amplified from C. pulcherrima cDNA using the gene specific primers.
[0115] For expression in yeast the native version of CpDGAT1 ORF was amplified using the primer pair CpDGAT1BamHIf and CpDGAT1XbaIr. The ORFs for N
terminus truncated and mutated versions were generated using the forward primers CpDGAT1trunc_BamHI and CpDGAT1AlaBamHIf, respectively. The ORF for the truncated version (CpDGAT1trunc) of CpDGAT1 is 70 amino acids shorter at N terminus than the native version. The alignment showed that the 70 amino acid N terminus of CpDGAT1 is unique and is different from that of other DGAT1s while the amino acid sequence downstream the 70 amino acids is highly similar to that of DGAT1s from A. thaliana, O. europea, B. napus and O. sativa. The length of the differing N terminus region of the DGAT1s from different plant species varies. In the mutated version the CAT coding for ${ }^{1} \mathrm{His}$ was replaced by GAG coding for Ala in the forward primer, CpDGAT1AlaBamHIf. Thus three constructs pYes2_CpDGAT1, pYes2_CpDGAT1Ala, and pYes2_CpDGAT1trunc were made for expression in yeast.
[0116] For generating plant transformation vectors the ORF encoding for CpDGAT1 and CpDGAT1 trunc were subcloned into NotI sites of pKMS3 vector generating Glycinin promoter and terminator containing CpDGAT1 gene cassette. The cassette was subsequently released by AscI to be cloned into MluI site of $\mathrm{pBinGlyRed} 3+\mathrm{CvFatB} 1$ yielding $\mathrm{pBinG}-$ lyRed3_CvFatB1+CpDGAT1 or pBinGlyRed3_CvFatB1+ CpDGAT1trunc. The backbone of the vector is derived from pCAMBIA0380 and was engineered with the DsRed marker gene under the control of the constitutively-expressed cassava mosaic virus promoter for selection of transgenic seeds by fluorescence (Lu and Kang, 2008, Plant Cell Rep., 27:273-8). Similarly, A. thaliana DGAT1 was subcloned into the binary vector generating pBinGlyRed3_CvFatB1+AthDGAT1 for transformation into Camelina.

Example 17

Phylogenetic Analysis

[0117] An unrooted phylogenetic tree of CpDGAT1 deduced amino acid sequence along with other amino acid sequences homologous to DGAT1 or DGAT2 including several functionally characterized ones was constructed. The functional and phylogenetic relationships were identified by the neighbor joining program in MEGA4 (Tamura et al., 2007, Mol. Biol. Evol., 24:1596-9). The bootstrap analysis was performed with 1,000 replicates.

Example 18

Yeast Transformation and Selection
[0118] The constructs pYes2_CpDGAT1, pYes2_ CpDGAT1Ala, and pYes2_CpDGAT1trunc were transformed into S. cerevisiae strain H1246 (W303; MAT α are1$\Delta::$ HIS3 are2- $\Delta::$ LEU2 dga1 $::$ KanMX4 1ro1- $\Delta::$ TRP1 ADE2 met ura3) (Sandager et al., 2002, J. Biol. Chem., 277:647882) using PEG/lithium acetate method (Gietz et al., 1995, Yeast, 11:355-60). The yeast cells harboring the empty pYes 2 vector were used as negative control. Transformants were selected by uracil prototrophy on yeast synthetic medium (YSM) containing 2\% (w/v) glucose and lacking uracil (Invitrogen, Carlsbad, Calif. USA). For functional expressionYSM containing 2% (w/v) raffinose was inoculated with the yeast transformants and grown at $28^{\circ} \mathrm{C}$. for 24 h in a shaker at 350 rpm . For induction, YSM containing $2 \%(\mathrm{w} / \mathrm{v})$ galactose was inoculated with raffinose-grown cultures to obtain an OD of 0.2 at 600 nm and grown at $28^{\circ} \mathrm{C}$. for 48 h . For fatty acid feeding experiments cultures were grown for 2.5 hs in YSM
containing 2% galactose followed by addition of 1% (w/v) Tergitol-40 and $250 \mu \mathrm{M}$ of the appropriate fatty acid substrate. Cells were harvested by centrifugation, washed twice with $0.1 \% \mathrm{NaHCO}$, freeze-dried and used for fatty acid, TAG analysis and microsome isolation.

Example 19

Camelina Transformation and Selection

[0119] The binary vector containing a cassette for seed specific expression of CpDGAT1, CpDGAT1trunc or AthDGAT1 was introduced into Agrobacterium tumefaciens by electroporation. Transgenic plants were generated by floral dip of Camelina wt plants (Lu and Kang, 2008, Plant Cell Reports, 27:273-8). Transgenic seeds among mature seeds were selected using DsRed marker and were also PCR confirmed. Expression of transgenes in developing seeds was confirmed by RT-PCR.

Example 20

TAG Quantification and FA Profiling

[0120] Total lipid extraction by Bligh Dyer: 30 mg of Camelina seeds was weighed in glass test tubes, followed by addition of $270 \mu \mathrm{l}(10 \mathrm{mg} / \mathrm{ml}) \mathrm{C} 17-\mathrm{TAG}$ and $50 \mu 1(1 \mathrm{mg} / \mathrm{ml})$ C17-PC. Seeds were crushed in 3 ml methanol: chloroform $(2: 1 \mathrm{v} / \mathrm{v})$ by grinding with a grinder and incubated for 1 h at room temperature with agitation. Extraction was continued by adding 1 ml of chloroform and 1.9 ml of water to a test tube and vortexed, centrifuged at 4000 rpm for 10 minutes. The organic (lower) phase was transferred to a new test tube, 400 $\mu 1$ was saved for transesterification. The rest was used for separation of TAG, DAG and Polar lipids using Supelco Supel Clean LC-Si SPE (Sigma) columns. Dried total lipids were redissolved in 1 ml of heptane and loaded onto LC-Si SPE columns equilibrated according to manufacturer's guidelines, once the sample ran through the column first wax esters were eluted with 1.5 ml of $95: 5$ heptane: ethyl ether, second TAG fraction was eluted with 5 ml of heptane: ethyl ether 80:20 (v/v). DAG was eluted with 3 ml chloroform: acetone 80:20 (v/v). Columns were washed with 6 ml of acetone followed by elution of phospholipids with 5 ml methanol: chloroform:water 100:50:40 ($\mathrm{v} / \mathrm{v} / \mathrm{v}$). Total phospholipids were pooled with addition of 1.33 ml chloroform and 1.31 ml water followed by vortexing and centrifugation at 4000 rpm for 10 minutes. The organic phase containing total phospholipids was transferred into a new tube.
[0121] $600 \mu 1$ of polar lipid fraction was dried and transesterified the rest was redessolved in $100 \mu \mathrm{l}$ chloroform and separated by TLC in a solvent system consisting of CHCl3: $\mathrm{MeOH}: \mathrm{H} 2 \mathrm{O}: 30 \%$ ammonium hydroxide (65:35:3:2.5 v/v/v/ v). Bands from the TLC plates corresponding to PC were scraped onto wax paper and transferred to $13 \times 100 \mathrm{~mm}$ test tubes. Transesterification of total lipids, TAG, and phospholipid fractions was done in 1 ml of 2% sulphuric acid in methanol by heating at $90^{\circ} \mathrm{C}$. for 30 min . Upon cooling the samples to room temperature $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and 1 ml heptane was added followed by vortexing and centrifuging. Heptane layer was transferred to GC vials and analyzed in GC.

Example 21
Isolation of C. pulcherrima DGAT1 and DGAT2 Genes
[0122] Potential genes identified as DGATs were blasted against A. thaliana gene database in TAIR BLAST 2.2.8. The
blast identified one gene model highly similar to A. thaliana DGAT1 thus named CpDGAT1. In addition three genes two of which are similar to R. communis, V. fordii DGAT2 were identified and designated as CpDGAT2_A and CpDGAT2_C, the third one is similar to A. thaliana DGAT2 and was named CpDGAT2_B. The ORF of CpDGAT1 is 1482 bp encoding a 484 amino acid polypeptide (Altschul et al., 1997, Nucl. Acids Res., 25:3389-402). Homology search blast analysis of 484 deduced amino acid showed it being most identical, 59 and 54%, to functionally characterized DGAT1s from A. thaliana and B. napus, respectively, while it shares $\sim 39 \%$ identity with mammalian DGAT1s (FIG. 11). The N terminus 78 amino acids has no sequence homology in other known homologous DGAT1s (FIG. 12), the hydrophilic N-terminus of 151 and 80 residues in plants and animals, respectively, were found to be unique for every DGAT1. Nevertheless, the rest is highly conserved and identical to DGAT1s from plant species such as A. thaliana, B. napus, R. communis and O. sativa (FIG. 12). The SOSUI secondary structure prediction program predicted ten transmembrane regions in CpDGAT1. Similarly 8-10 hydrophobic regions were identified in DGAT1s of different origins (Liu et al., 2012, Plant Biotechnol. J., 10:862-70). The average number of residues is higher for DGAT1s than that of DGAT2s corresponding to 20 kDa difference in molecular mass. Expression of CpDGAT1 in H1246 mutant, which contains disruptions of four acyltransferase genes that contribute to TAG synthesis, did not store TAG biosynthesis to the S. cerevisiae while AthDGAT1 expressing H1246 yeast cells make TAG. Expression of codon optimized CpDGAT1 in H1246 yeast cells did not lead to any differences. Similarly, DGAT assay using radiolabelled 10:0 and DAG 10:0/10:0 substrates with microsomes from CpDGAT1 expressing yeast cells did not result in formation of TAG.

Example 22

Tissue-Specific Expression of C. pulcherrima DGATs

[0123] Expression profile of CpDGAT1, CpDGAT2_A, CpDGAT2_B and CpDGAT2_C in root, stem, leaf, flower and developing seeds of C. pulcherrima was analyzed (FIG. 13). The transcript abundance of the genes was normalized to that of C. pulcherrima eukaryotic initiation factor and actin (CpeIF4 and CpActin) genes. It was found that CpDGAT1 is specifically expressed in developing seeds. The three C. pulcherrima DGAT2 genes expression was observed in all tissues, stronger expression of CpDGAT2_A, CpDGAT2_B can be seen in developing seeds while CpDGAT2_C is expressed at similar levels in all tissues analyzed.

Example 23

Seed-Specific Expression of CpDGAT1 and CvLPAT2 Enhances Decanoic Acid and Caprylic Acid Content in Camelina sativa Seeds
[0124] CpDGAT1 was expressed under seed specific gly-cinin-1 promoter along with the C. viscosissima thioesterase (CvFatB1), known to be specific for C10:0, C12:0, C14:0 and C16:0 Acyl-ACP. CvLPAT2 the ORF of 1155 bp was amplified from a cDNA prepared from total RNA from C. viscosissima from developing seeds. It was cloned into pBinGlyred vector under glycinin-1 promoter.
[0125] Analysis of seeds from T2 plants of 24 independent lines expressing $\mathrm{CvFatB} 1+\mathrm{CpDGAT} 1$ and $\mathrm{CvFatB} 1+\mathrm{CvL}-$ PAT2+CpDGAT1, as confirmed by reverse-transcription PCR, showed increased amounts of 10:0 (FIGS. 14 and 15). The 10:0 fatty acid levels in transgenic CvFatB1+CpDGAT1 and CvFatB1+CvLPAT2+CpDGAT1 T2 seeds reached as high as 13.5 and $21.5 \mathrm{~mol} \%$ of TFA as compared to 8.0 mol $\%$ in lines expressing only CvFatB1, while that of C12:0, C14:0 and C16:0 stayed similar (FIGS. 14 and 15). Significant decrease in the amounts of 18:2, 18:3 and 20:1 by 10,18 and $6 \mathrm{~mol} \%$, respectively, was seen in all $\mathrm{CvFatB} 1+\mathrm{CpD}-$ GAT1 transgenic lines. The oil content in seeds from T3 homozygous transgenic lines from CvFatB1+CpDGAT1 (FIG. 14) and CvFatB1+CvLPAT2+CpDGAT1 (FIG. 15), which had the highest amounts of $10: 0$, was not significantly affected. In addition to $\mathrm{C} 10: 0,3$ to $5 \mathrm{~mol} \%$ of $\mathrm{C} 8: 0$ was detected in TAG in the seeds engineered to express $\mathrm{CvFatB} 1+$ CvLPAT2+CpDGAT1.

Example 24

Enhanced Amounts of C8:0 and C10:0 are Detected at $\mathrm{Sn}-2$ Position of TAG from Seeds of Transgenic Camelina Lines Expressing CvLPAT2 or/and CpDGAT1
[0126] Stereospecific analysis of fatty acid species at $\mathrm{sn}-2$ position of TAG from engineered seeds was conducted to assess the efficiency of assembly of short and medium chain fatty acids in TAG. Fatty acid profile of sn-2 monoacylglycerol obtained by digesting with TAG sn-1 and sn-3 specific lipase from Rhizomucor miehei (Sigma) revealed that while trace amounts of 10:0 is seen at sn-2 position of TAG from seeds of CvFatB1+CpDGAT1 lines, there is a striking increase up to $20 \mathrm{~mol} \%$ in CvFatB1 +CvLPAT2 line and 33.1 $\mathrm{mol} \%$ in the relative content of 10:0 at $\mathrm{sn}-2$ of TAG from CvFatB1+CvLPAT2+CpDGAT1 line was observed (FIG. 17). In addition to $\mathrm{C} 10: 0,3$ to $5 \mathrm{~mol} \%$ of $\mathrm{C} 8: 0$ was detected in TAG sn-2 position in the seeds engineered to express CvFatB1+CvLPAT2+CpDGAT1.
[0127] The increase of 10:0 at the sn-2 position of TAG from CvFatB1 expressing lines is accompanied by reduction of $18: 2$ and significantly that of $18: 3$ which is $17.4 \mathrm{~mol} \%$ as compared to $44.3 \mathrm{~mol} \%$ at this position in TAG from Wt camelina seeds. In C. pulcherrima fatty acid species at $\mathrm{sn}-2$ position of TAG are 8:0 (up to $97 \mathrm{~mol} \%$) and C10:0 ($3 \mathrm{~mol} \%$) while in C. viscosissima it is $12.6 \mathrm{~mol} \%$ of C8:0 and 87.4 mol $\%$ of 10:0 (FIG. 17).

Example 25

DAG Species from C. sativa Transgenic Lines Overexpressing Cuphea Species Acyltransferases Contain Increased Amounts of Shorter Chain Saturated Fatty Acids
[0128] Fatty acid profile of DAG species from the transgenic lines was analyzed (FIG. 18). The data showed higher amounts of C10:0 and C16:0 fatty acids in lines expressing the Cuphea acyltransferases CvLPAT2 and CpDGAT1 in addition to the thioesterase, CvFatB 1 . The seeds of CvFatB 1 expressing lines contain $\sim 4 \mathrm{~mol} \%$ of $\mathrm{C} 10: 0, \sim 12 \mathrm{~mol} \%$ of C16:0, while that of $\mathrm{CvFatB} 1+\mathrm{CpDGAT} 1$ and $\mathrm{CvFatB} 1+$ CvLPAT2 contain up to $8 \mathrm{~mol} \%$ of C10:0, $3 \mathrm{~mol} \%$ of C14:0 and $20 \mathrm{~mol} \%$ of $\mathrm{C} 16: 0$. DAG species from $\mathrm{CvFatB} 1+\mathrm{CvL}-$ PAT2+CpDGAT1 contain highest amount of C10:0 up to 14
$\mathrm{mol} \%$. The increase in the amounts of short and medium chain fatty acids in DAG species is accompanied by substantial decrease of 18:3. DAGs from developing seeds of C. viscosissima contain up to $12,53,8$ and $32 \mathrm{~mol} \%$ of C8:0, C10:0, C14:0 and C16:0, respectively.

Example 26

Accumulation of Short- and Medium-Chain Fatty Acids in Transgenic Camelina Lines Starts at Midstage in Developing Seeds

[0129] Fatty acid composition of developing seeds from transgenic Camelina lines were analyzed at four stages after flowering: $10 \mathrm{DAF}, 17 \mathrm{DAF}, 22 \mathrm{DAF}$ and 30 DAF . Ten day developing seeds contain very low 10:0 ($\sim 2.5 \mathrm{~mol} \%$), main fatty acids are $16: 0(\sim 14 \mathrm{~mol} \%), 18: 1(20 \mathrm{~mol} \%), 18: 2$ ($40-44 \mathrm{~mol} \%$), and $18: 3$ ($18-20 \mathrm{~mol} \%$), the predominant one. The percent share of each fatty acid (C16:0 through 20:1) in TFA in transgenic lines is similar to that of wild type Camelina plants. 17 day seeds produce more of shorter chain fatty acids $8: 0(4 \mathrm{~mol} \%), 10: 0$ (up to $24 \mathrm{~mol} \%), 12: 0$ ($2.5-4 \mathrm{~mol}$ $\%), 14: 0(3 \mathrm{~mol} \%)$ and higher amounts of 16:0 ($13 \mathrm{~mol} \%$) in transgenic lines. In $\mathrm{CvFatB} 1+\mathrm{CvLpat} 2+\mathrm{CpDGAT} 1$ the amount of 18:1 decreases, while 18:2, 18:3 and 20:1 make 15 $\mathrm{mol} \%, 16 \mathrm{~mol} \%$ and $6 \mathrm{~mol} \%$, respectively, as compared to $21.4,30$ and $12.7 \mathrm{~mol} \%$ in wild type Camelina plants.
[0130] 22 day seeds produce more of short chain fatty acids $5 \mathrm{~mol} \% \mathrm{C} 8: 0,30 \mathrm{~mol} \% 10: 0,7 \mathrm{~mol} \%$ (12:0-14:0). The amounts of 16:0, 18:0, 18:1, 18:2, 18:3 and 20:1 in CvFatB1+ CvLPAT2+CpDGAT1 line are $12,8,12,16$, and $5 \mathrm{~mol} \%$ as compared to $8,13,20,41$, and $10 \mathrm{~mol} \%$ in seeds of wild type plants. Thus the share of 8:0 through 16:0 fatty acids total amount in this line reaches $54 \mathrm{~mol} \%$ of TFA as compared to $39 \mathrm{~mol} \%$ in CvFatB1 line, 43% in CvFatB1+CpDGAT1 line and $8 \mathrm{~mol} \%$ in wild type.
[0131] In 30 days in seeds from CvFatB 1 line there is 33.6 $\mathrm{mol} \%$ of 8:0-16:0, $22.4 \mathrm{~mol} \% 18: 1,13.7 \mathrm{~mol} \% 18: 2,16.0$ $\mathrm{mol} \% 18: 3$ and $6.6 \mathrm{~mol} \% 20: 1$. CvFatB1 +CpDGAT1 transgenic lines accumulate more 10:0, and 8:0-10:0 total fatty acids amount is $37.5 \mathrm{~mol} \%$ while amounts of 18:1, 18:2, 18:3 and 20:1 are similar to what is found in seeds from CvFatB1 line. In CvFatB1+CvLPAT2 + CpDGAT1 line the average share of 8:0-1 6:0 fatty acids is $43 \mathrm{~mol} \%$ of TFA, $18.5 \mathrm{~mol} \%$ being 10:0 and $13.2 \mathrm{~mol} \% 18: 1,12.8 \mathrm{~mol} \% 18: 2,18.3 \mathrm{~mol}$ \% 18:3, $6.3 \mathrm{~mol} \% 20: 1$.
[0132] As seeds develop oil content increases in both wild type and transgenic Camelina lines. Major oil accumulation started in 17 days at which oil content doubled 26.5% as compared to 13% of dry weight in 10 days, followed by 33.4% and 28%, after 22 and 30 days, respectively, in wild type. In CvFatB1+CvLPAT2+CpDGAT1 lines average oil content was $13 \%, 26 \%, 30 \%$ and 22.7%, as compared to thioesterase only expressing lines $11.8,23.0,24.6$, and 23.4%, in 10, 17, 22 and 30 days, respectively.

Example 27

CpDGAT1 has Preference for 10:0 Containing Substrates and Decanoyl CoA
[0133] Substrate preferences of CpDGAT1 were tested using extracts from 22 day developing seeds of CvFATB1, CvFatB1+CpDGAT1, and CvFatB1+CvLPAT2+CpDGAT1 (FIG. 20). Acyl-CoA dependent DGAT activity was examined by measuring the incorporation of $\left[{ }^{14} \mathrm{C}\right]$ acyl- CoA into

DAG acceptors 10:0/10:0 (1,2-didecanoyl-sn-glycerol) or 18:1/18:1 (1,2-dioleoyl-sn-glycerol). In seed extracts of CpDGAT1 expressing lines TAG formation from 1,2-DAG 10:0/10:0 and 10:0-CoA was enhanced. DGAT activity with 1,2-DAG 10:0/10:0 and 10:0-CoA was similar 80.6 ± 4.1 and $63.6 \pm 23.4 \mathrm{pmol} \mathrm{TAG} / \mathrm{min} / \mathrm{g}$ protein in Wt and CvFatB 1 expressing line, respectively. In CvFatB1+CpDGAT1 and CvFatB1+CvLPAT2+CpDGAT1 lines the activity was 346 ± 77.5 and $323 \pm 57.9 \mathrm{pmol} \mathrm{TAG} / \mathrm{min} / \mathrm{g}$ protein, respectively.

Example 28

Germination Efficiency of Short- and Medium-Chain Fatty Acid Rich Transgenic Camelina Seeds
[0134] High levels of short and medium chain fatty acids did not affect average seed weight observed for transgenic seeds obtained in greenhouse conditions (FIG. 20). The weight of 100 seeds from wild type Camelina was $79 \mathrm{mg}, 74$ mg for CvFatB1, 71 and 77 mg for $\mathrm{CvFatB1+CpDGAT1}$, CvFatB1+CvLPAT2+CpDGAT1 lines, respectively.
[0135] Germination efficiency of homozygous 10:0-16:0 rich transgenic Camelina seeds was not significantly affected by high levels of 10:0 or increased amounts of 16:0 (FIG. 22). Up to 93% of seeds from CvFatB 1 line germinated in 10 days in greenhouse conditions, for $\mathrm{CvFatB1}+\mathrm{CpDGAT1}$ it was 78% and 97% for $\mathrm{CvFatB} 1+\mathrm{CvLPAT} 2+\mathrm{CpDGAT}$, which contains highest amounts of short and medium chain fatty acids.

Example 29

Seed-Specific Expression of CpDGAT1 and CvLPAT2a Further Enhances Decanoic Acid Content in Camelina sativa Seeds
[0136] CpDGAT1 was expressed under seed specific gly-cinin-1 promoter along with the C. viscosissima thioesterase
(CvFatB1), known to be specific for C8:0 and C10:0 AcylACP. The CpuPAT2a ORF of 1164 bp was amplified from cDNA prepared from total RNA from C. pulcherrima developing seeds and was sub-cloned into pKMS3 vector under glycinin-1 promoters. A cassette comprising the glycinin-1 promoter and CpuLPAT2a gene was inserted into the pBinG-lyRed-CvFatB1+CpDGAT1 to make the pBinGlyRed-CvFatB1+CpuLPAT2a+CpDGAT1.
[0137] Analysis of seeds from T2 lines expressing CvFatB1+CvLPAT2+CpDGAT1 and T3 lines expressing CvFatB1+CpuLPAT2a+CpDGAT1 showed increased amounts of 10:0 in TAG (FIGS. 16 and 24). The 10:0 fatty acid levels in transgenic CvFatB1+CvLPAT2a+CpDGAT1 T3 seeds reached as high as 18.5 and $27 \mathrm{~mol} \%$ of TAG TFA as compared to $8.0 \mathrm{~mol} \%$ in lines expressing only CvFatB1, while that of C18:1, C18:2 and C18:3 stayed similar (FIGS. 16 and 24). The oil content in seeds from T3 transgenic lines from CvFatB1+CvLPAT2a+CpDGAT1 (7,11), which had high amounts of 10:0, was not significantly affected (FIG. 24A). The amount of C10:0 is even higher in seeds of Camelina lines expressing CpuLPAT2a in addition to CvFatB1 and CpDGAT1 (CvFatB1+CpuLPAT2a+CpDGAT1). Fatty acid profile of sn-2 monoacylglycerol obtained by digesting with TAG sn-1 and $\mathrm{sn}-3$ specific lipase from Rhizomucor miehei (Sigma) indicated a significant increase in 10:0 at sn-2 position of TAG from seeds of both CvFatB1+CvLPAT2+ CpDGAT1 (FIG. 17) and CvFatB1+CpuLPAT2a+CpDGAT1 (FIG. 24B) lines. It is notable also that 8:0 was detected in amounts of $\sim 3 \mathrm{~mol} \%$ in the total TAG and in the TAG sn-2 position in seeds engineered to express $\mathrm{CvFatB} 1+$ CvLPAT2CpuLPAT2a+CpDGAT1.

TABLE 1

Primers used for cloning CpDGAT1 and AthDGAT1 into yeast and Camelina expression vectors
C. pulcherrima primers used for expression in yeast and Camelina

CpDGAT1BamHIf	CTAGGATCCAccATGgctCATGAGGCAGTCAG	HisBamHI
CpDGAT1AlaBamHIf	CTAGGATCCAccATGgctGAGGCAGTCAGC	BamHI
CpDgat1trunc_BamH1f	GTCGGATCCAccATGGCTCACCGGACTTCA	BamHI
CpDGAT1XbaIr	ATATCTAGACTAGTCGATCCTTAATCCTC	XbaIr
CpDGlnot1F	ATAgcggccgcATGCATGAGGCAGTCAG	BamH1

TABLE 2

Primers used for SQRT-PCR of CpDGAT1, CpDGAT2_A, CpDGAT2_B, and CpDGAT2_C			
Gene name	Primer name	Primer sequence 5'-3' Forward/Reverse	Amplicon size (bp)
CpDGAT1	SQCpDG1f	CTTCAATCTCTGTATGGTCACTCTC/	298
	SQCpDG1r	GACATCAAGGCACAATCAAATCTC	
CpDGAT2_A	Cp1DGsqf	GGAGATTCGCGAGGAGCTTAAGTAGG/	347
	Cp1DGsqr	CATATGGAATGTCTCCTGCACACCAC	
CpDGAT2_B	CPDG2_2 sqF	GAGCGAGATGCTGAGATTGTGTTC CT/	308
	CPDG2_2 sqR	TCACTGTGCACCTCATTCACCTCTTC	
CpDGAT2 _C	CpDG2_3hinsq_F	TGGTGTGCAGGAGACATTCTACATGG/	381
	CpDG2_3xbsq_R	ACTTGTGCCTTGTGTCGCTCGAATAG	

TABLE 2-continued
$\left.\begin{array}{lccl}\hline & \text { Primers used for SQRT-PCR of CpDGAT1, CpDGAT2_A, CpDGAT2_B, } \\ \text { and CpDGAT2 C }\end{array}\right]$
[0138] It is to be understood that, while the methods and compositions of matter have been described herein in conjunction with a number of different aspects, the foregoing description of the various aspects is intended to illustrate and not limit the scope of the methods and compositions of matter. Other aspects, advantages, and modifications are within the scope of the following claims.
[0139] Disclosed are methods and compositions that can be used for, can be used in conjunction with, can be used in preparation for, or are products of the disclosed methods and compositions. These and other materials are disclosed herein, and it is understood that combinations, subsets, interactions,
groups, etc. of these methods and compositions are disclosed. That is, while specific reference to each various individual and collective combinations and permutations of these compositions and methods may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular composition of matter or a particular method is disclosed and discussed and a number of compositions or methods are discussed, each and every combination and permutation of the compositions and the methods are specifically contemplated unless specifically indicated to the contrary. Likewise, any subset or combination of these is also specifically contemplated and disclosed.

SEQUENCE LISTING

<160 $>$ NUMBER OF SEQ ID NOS: 16	
<210> SEQ ID NO 1	
<211> LENGTH: 1155	
<212> TYPE: DNA	
<213> ORGANISM: Cuphea viscosissima	
$<400>$ SEQUENCE: 1	
atggegattg cagcggcagc tgtcatcttc ctcttcggce ttatcttctt cgcetceggc 60	
ctcattatca atctcttcca ggcgetttgc tttgtcetta ttcggcetct ttcgaaaaac 120	
gcctaccgga gaataaacag agtttttgca gaattgttgt tgtcggagct tttatgccta 180	
ttcgattggt gggctggtgc taagctcaaa ttatttaccg accetgaaac ctttcgcctt 240	
atgggcaagg aacatgctct ggtcataatt aatcacatga ctgaacttga ctggatggtt 300	
ggatgggtta tgggtcagca ttttggttgc cttgggagca taatatctgt tgcgaagaaa 360	
tcaacaaat ttcttccggt attggggtgg tcaatgtggt tttcagagta cctatatctt 420	
gagagaagct gggceaagga taaaggtaca ttaaagtcac atatcgagag getgatagac	480
taccccetgc cettctggtt ggtaattttt gtggaaggaa ctcggtttac tcggacaaaa	540

$<210>$ SEQ ID NO 2
<211> LENGTH: 384
<212> TYPE: PRT
<213> ORGANISM: Cuphea viscosissima
<400> SEQUENCE: 2

Asp Trp Met Val Gly Trp Val Met Gly Gln His Phe Gly Cys Leu Gly100105110
Ser Ile Ile Ser Val Ala Lys Lys Ser Thr Lys Phe Leu Pro Val Leu115120125
Gly Trp Ser Met Trp phe Ser Glu Tyr Leu Tyr Leu Glu Arg Ser Trp
Ala Lys Asp Lys Ser Thr Leu Lys Ser His Ile Glu Arg Leu Ile Asp
145
150
155
Tyr Pro Leu Pro Phe Trp Leu Val Ile Phe Val Glu Gly Thr Arg Phe
Thr Arg Thr Lys Leu Leu Ala Ala Gln Gln Tyr Ala Val Ser Ser Gly
Leu Pro Val Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
195
200

Ser Cys Val Ser His Met Arg Ser Phe Val Pro Ala Val Tyr Asp Val		
210	215	220

Thr Val Ala Phe Pro Lys Thr Ser Pro Pro Pro Thr Leu Leu Asn Leu		
225	230	235


```
<210> SEQ ID NO 3
<211> LENGTH: 1164
<212> TYPE: DNA
<213> ORGANISM: Cuphea avigera var. pulcherrima
<400> SEQUENCE: 3
```

atgacgattg catcggcagc tgtcgtcttt ctgttcggca ttctcctctt cacctccggc
<210> SEQ ID NO 4
$<211>$ LENGTH: 387
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Cuphea avigera var. pulcherrima
$<400>$ SEQUENCE: 4

Phe Ala Glu Phe Leu Pro Leu Glu Phe Leu Trp Leu Phe His Trp Trp

Met Gly Lys Glu His Ala Leu Val Ile Ile Asn His Lys Ile Glu Leu	
85	90

Asp Trp Met Val Gly Trp Val Leu Gly Gln His Leu Gly Cys Leu Gly

Ser Ile Leu Ser Val Ala Lys Lys Ser Thr Lys Phe Leu Pro Val Phe	
115	120
125	

Gly Trp Ser Leu Trp Phe Ser Glu Tyr Leu Phe Leu Glu Arg Asn Trp
Ala Lys Asp Lys Lys Thr Leu Lys Ser His Ile Glu Arg Leu Lys Asp
145

150
Tyr Pro Leu Pro Phe Trp Leu Ile Ile Phe Val Glu Gly Thr Arg Phe

Asp Lys Phe Val Glu Lys Asp Ala Leu Leu Asp Lys His Asn Ala Glu
275
280

Asp	Thr Phe Ser Gly Gln Glu Val His His Val Gly Arg Pro	
290	295	300

Ser Leu Leu Val Val Ile Ser Trp Val Val Val Ile Ile Phe Gly Ala
305

310 $\quad 315$ | 320 |
| ---: |

Leu Lys Phe Leu Gln Trp Ser Ser Leu Leu Ser Ser Trp Lys Gly Lys

Ala Phe Ser Val Ile Gly Leu Gly Thr Val Ala Leu Leu Met Gln Ile	
340	345

Leu Ile Leu Ser Ser Gln Ala Glu Arg Ser Ile Pro Ala Lys Glu Thr

Pro Ala Asn Leu Lys Thr Glu Leu Ser Ser Ser Lys Lys Val Thr Asn 370 375	
Lys Glu Asn	
385	
$<210\rangle$ SEQ ID NO 5	
<211> LENGTH: 927	
<212> TYPE: DNA	
<213> ORGANISM: Cuphea avigera var. pulcherrima	
<400> SEQUENCE: 5	
atggcgagta tcggaatcag ctccttattg aagaacagga aactggagag ttctttcagc	60
actggetttg cgaaagattc gttcccgcat tcgectgaaa agacgatgat tagggatgat	120
tccgaacata ggactataat agctgatggc ttgtctgtcg atgatgacga tggatggatg	180
gctgtgttga tatcgtgggc gaggetcgtt atgtgttttg tgttggtgtt gatcacgaca	240
tccatttgga cettgatcat ggttattctt atccegtggc catgcgagcg gatcaaacaa	300
agcaacgtct tcggtcacgt ctcgggcaga atgctgatgt ggttattagg aaatcocgta	360
aagatcgaag gcgcegagca tgctaatgag agagctatct acatctgcaa tcatgcgtcg	420
cctctcgata tagttctcac catgtggttg acaccgaaag gcactgtctg tatcgcaaag	480
aaagagatcg tctggtaccc gctaattggg caactctatg cattggctgg tcatctccgt	540
atagatcgct cgaacceggt tgctgctatt caatctatga aggaggtagc tegtgctgtc	600
gttaaaacg acctgtcttt gatcatattt ccagagggca cecggtcgaa agacgggega	660
ctcettccat tcaaaajggg etttgtgcac ttggctctgc agactcggcg ceccattgtc	720
ccgatcgtgt tgacaggaac ccacatggcg tggagaaagg gtagtttgca catcagaccg	780
acgectctca cegtgaagta cetccogccg atagtaacca cegactggac accegataga	840
gtcgaagact acacaaagat gatccatgac atatacgtga atcatctgcc agagtctcag	900
cagcctctga ggcetaaaga aagctag	927

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 308
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Cuphea avigera var. pulcherrima
$<400>$ SEQUENCE: 6


```
<210> SEQ ID NO 7
<211> LENGTH: 1482
<212> TYPE: DNA
<213> ORGANISM: Cuphea avigera var. pulcherrima
<400> SEQUENCE: 7
```

atgcatgagg cagtcagcca ttttctccac cgccacgccc cactctctct ctccggcttc

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 493
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Cuphea avigera var. pulcherrima
$<400>$ SEQUENCE: 8
Met His Glu Ala Val Ser His Phe Leu His Arg His Ala Pro Leu Se
Leu Ser Gly Phe Ala Met Ala Ile Val Ser Gly Thr Leu Gly Val Ala

Leu Lys Leu Ala Glu Ser Pro Leu Ser Ser Arg Asn Ile Phe Lys Gln
85
90
Asn His Glu Gly Leu Phe Asn Leu Cys Met Val Thr Leu Val Ala Val
Ile Ile Arg Leu Phe Leu Glu Asn Leu Leu Lys Tyr Gly Trp Leu Met
115
120
Lys Arg Asp Phe Trp Leu Ser Thr Phe Thr Ala Trp Pro Leu Phe Ile130135140
Cys Ser Leu Gly Leu Pro Ile Phe Pro Leu Ala Ala Phe Val Val Glu
145


```
<210> SEQ ID NO 9
<211> LENGTH: 1419
<212> TYPE: DNA
<213> ORGANISM: Cuphea viscosissima
<400> SEQUENCE: 9
```

atggcgatcg ttggcgtcga cgcttcctcc ctcagtcccg actctctccg coggcgcaac 60
ttcgaccaag ettcactctc tcccaagace accggcggca gtgttgtcga tgacgctgat 120
aacttgaagc tggagcgcga cgccaagaaa gctcaccgga cttcatctcc ggtacactgg 180
aagttggctg agagtcctct cagctccacc aatatcttca agcagagtca tgcaggtctc 240
ttaaacctct gcatggtcgt tcttattgct gtcaacagcc gactcatcct cgagaatctc 300
atcaagtatg gttggctcat gaagaggaac ttttggttgc atacgtttac agactggcct 360
ctcttcatgt gtagcettgg tcttcccatt ttccctcttg cagcattcct agtcgagaag 420
ttggcgcagc ggaatcgttt gectgaacct attgtatttt gttctcatgt cattatcact 480
acggcatccg tcctttatcc cgcacttgta attctgggat ctgattctgc cttgatctct 540
ggtattgttc tgatgctcat tgcttgcact ctttggttaa aattggtgtc atatgcgcac 600
acaagttacg atatgagatg tgaggccaag tctcttcttg agggacaatc tagtgctgct 660
tcaaaaatg tagagcttcc ttaccgcgta aacttcaaag atcttgtgta tttcatggtt

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 472
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Cuphea viscosissima
$<400>$ SEQUENCE: 10

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 1260
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Cuphea viscosissima
$<400>$ SEQUENCE: 11
atggtggctg ctgcagcaac ttctgcattc ttcccegttc cagccccggg aacctccect 60
aaacccggga agtccggcaa ctggccatcg agcttgagcc ctaccttcaa gcccaagtca 120
atccccaatg gcggatttca ggttaaggca aatgccagtg cccatcctaa ggctaacggt 180
tctgcagtaa atctaaagtc tggcagcctc aacactcagg aggacacttc gtcgtcccct 240
cctccccggg ctttccttaa ccagttgcct gattggagta tgcttctgac tgcaatcacg 300
accgtcttcg tggcggcaga gaagcagtgg accatgcttg ataggaaatc taagaggcct 360
gacatgctcg tggactcggt tgggttgaag agtattgttc gagatgggct cgtgtccaga 420
cacagttttt cgattagatc ttatgaaata ggcgctgatc gaacagcctc tatagagacg 480
ctgatgaacc acttgcagga aacaactatc aatcattgta agagtttggg tcttcataat 540
gacggetttg gtcgtactcc tgggatgtgt aaaaacgacc tcatttgggt gcttacaaaa 600
atgcagatca tggtgaatcg ctacccaact tggggtgata ctgttgagat caatacctgg 660

ttctctcagt cggggaaat cggtatggct agcgattggc taataagtga ttgcaacaca	720
ggagaaattc ttataagagc a acgagcgtg tgggctatga tgaatcaaaa gacgagaaga	780
ttctcaagac ttccatacga ggttcgccag gagttaacac ctcattttgt ggactctcct	840
catgtcattg aagacaatga tcagaaattg cgtaagtttg atgtgaagac tggtgattcc	900
attcgcaagg gtctaactcc gaggtggaat gacttggatg tgaatcagca cgtaagcaac	960
gtgaagtaca ttgggtggat tctcgagagt atgccaatag aagttttgga gacccaggag	1020
ctatgctctc tcaccgttga atataggcgg gaatgcggaa tggacagtgt gctggagtcc	1080
gtgactgctg tggatccctc agaaaatgga ggccggtctc agtacaagca cettctgcgg	1140
cttgaggatg ggactgatat cgtgaagagt agaactgagt ggcgaccgaa gaatgcagga	1200
actaacgggg cgatatcaac atcaacagca aagacttcaa atggaaactc ggtctcttag	1260

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 419
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Cuphea viscosissima
$<400>$ SEQUENCE: 12

gctatggatc cetcaaagt tggagtccgt tctcagtacc agcaccttct gcggcttgag	1140
gatgggactg ctatcgtgaa cggtgcaact gagtggcggc cgaagaatgc aggagctaac	1200
ggggcgatat caacgggaaa gacttcaat ggaaactcgg tctcttag	1248

$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 415
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Cuphea hookeriana
$<400>$ SEQUENCE: 14

Glu Ile Leu Val Arg Ala Thr Ser Ala Tyr Ala Met Met Asn Gln Lys | 250 |
| ---: |
| 245 | (

Thr Arg Arg Leu Ser Lys Leu Pro Tyr Glu Val His Gln Glu Ile Val

Pro Leu Phe Val Asp Ser Pro Val Ile Glu Asp Ser Asp Leu Lys Val | 285 |
| ---: |
| 275 |

His Lys Phe Lys Val Lys Thr Gly Asp Ser Ile Gln Lys Gly Leu Thr	
290	295

| Pro Gly Trp Asn Asp Leu Asp Val Asn Gln His Val Ser Asn Val Lys | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 305 | 310 | 315 | 320 |

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 1245
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Cuphea avigera var. pulcherrima
$<400>$ SEQUENCE: 15
atggtggcta cegctgcaag etctgcattc ttcccegtgt egtccccggt cacctcctct 60
agaccgggaa agcccggaaa tgggtcatcg agcttcagcc ccatcaagcc caaatttgtc 120
gccaatggcg ggttgcaggt taaggcaaac gccagtgccc ctcctaagat caatggttcc 180
tctgttggtc taaagtcctg cagtctcaag actcaggaag acactccttc ggcccetgct 240
ccacggactt ttatcaacca gttgcccgat tggagtatgc ttcttgctgc aattactact 300
gcettcttgg cagcagagaa gcagtggatg atgcttgatt ggaaacctaa gaggcetgac 360
atgcttgtgg accegttcgg attgggaagt attgtccagc atgggcttgt gttcaggcag 420
aatttttcga ttaggtccta tgaaataggc gctgatcgca etgcgtctat agagacggtg 480
atgaaccact tgcaggaaac ggctctcaat catgttaaga gtgcggggct tatgaatgac 540
ggctttggtc gtactccaga gatgtataaa aaggacctta tttgggttgt cgcgaaaatg 600
caggtcatgg ttaaccgcta tcctacttgg ggtgacacgg ttgaagtgaa tacttgggtt 660
gacaagttag ggaaaaatgg tatgcgtcgt gattggctca ttagtgattg caatacagga 720
gaaattctta ctagagcatc aagcgtgtgg gtcatgatga atcaaaagac aagaagattg 780
tcaaaattc cagatgaggt tcgacgtgag atcgagcctc attttgtgga ctcacctcca 840
gtcattgaag acgatgaccg aaaacttccc aagctggatg acaagactgc tgactccatc 900
cgcaagggtc taactccgaa gtggaatgac ttggatgtca atcagcacgt caacaacgtg 960
aagtacatcg getggattct tgagagtact ccacaagaaa ttctggagac ccaggagcta 1020
tgttccetta ccetggaata caggcgagaa tgcggaaggg agagcgtgct ggagtccctc 1080
tctgctgcgg acccetctgg aaagggcttt gggtcccagt tccagcacct tctgagactt 1140
gaggatggag gtgagatcgt gaaggggaga actgagtggc gaccaaagac tgcaggtatt 1200
aatggggcga taccatccgg ggagacctca cetggagact ettag 1245
$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 414
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Cuphea avigera var. pulcherrima
$<400>$ SEQUENCE : 16
Met Val Ala Thr Ala Ala Ser Ser Ala Phe Phe Pro Val Ser Ser Pro


```
Glu Ile Val Lys Gly Arg Thr Glu Trp Arg Pro Lys Thr Ala Gly Ile
Asn Gly Ala Ile Pro Ser Gly Glu Thr Ser Pro Gly Asp Ser
    405 410
```

What is claimed is:

1. A method of producing triacylglycerols (TAGs) comprising medium-chain fatty acids (MCFAs) in an organism, comprising:
introducing a transgene into the organism, wherein the transgene comprises at least one nucleic acid sequence encoding an acyltransferase, wherein the at least one acyltransferase exhibits a substrate specificity for saturated fatty acids;
thereby producing TAGs comprising MCFAs in the organism.
2. The method of claim 1 , wherein at least 20% of the TAGs comprising MCFAs have a C8:0 or a C10:0 at sn-2 position.
3. The method of claim $\mathbf{1}$, wherein the saturated fatty acids are selected from the group consisting of C8:0 and C10:0.
4. The method of claim 1, wherein the at least one acyltransferase is a lysophosphatidic acid acyltransferase (LPAT) or a diacylglycerol acyltransferase (DGAT).
5. The method of claim 1, wherein the at least one acyltransferase is a lysophosphatidic acid acyltransferase (LPAT) and a diacylglycerol acyltransferase (DGAT).
6. The method of claim 4, wherein the nucleic acid sequence encoding the LPAT is selected from the group consisting of a sequence having at least 95% sequence identity to SEQ ID NO:1 and a sequence having at least 95% sequence identity to SEQ ID NO:3.
7. The method of claim 4, wherein the nucleic acid sequence encoding the DGAT is selected from the group consisting of a sequence having at least 95% sequence identity to SEQ ID NO:7 and a sequence having at least 95% sequence identity to SEQ ID NO:9.
8. The method of claim 1 , wherein the nucleic acid sequence encoding the at least one acyltransferase is selected from the group consisting of a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:1, a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:3, a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:7, and a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO:9.
9. The method of claim 1, wherein the organism further comprises a nucleic acid sequence encoding a medium-chain fatty acid (MCFA)-specific thioesterase FatB.
10. The method of claim 9 , wherein the nucleic acid sequence encoding the MCFA-specific thioesterase FatB is selected from the group consisting of a nucleic acid sequence
having at least 95% sequence identity to SEQ ID NO:11, a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO: 13, and a nucleic acid sequence having at least 95% sequence identity to SEQ ID NO: 15.
11. The method of claim 1, wherein the organism is selected from the group consisting of a plant and a microbe.
12. The method of claim 11, wherein the plant is Camelina sativa.
13. The method of claim 1 , wherein the transgene comprises a promoter.
14. The method of claim $\mathbf{1 3}$, wherein the promoter is a seed-specific promoter.
15. The method of claim 11, wherein the at least one nucleic acid sequence encoding an acyltransferase is operably linked to a seed-specific promoter.
16. The method of claim 15 , wherein the medium-chain fatty acids are produced in the seed.
17. The method of claim 1 , wherein the introducing step is performed using Agrobacterium transformation, particle bombardment, or electroporation of protoplasts
18. A method of producing triacylglycerols (TAGs) comprising medium-chain fatty acids (MCFAs), comprising:
providing an organism comprising a transgene, wherein the transgene comprises at least one nucleic acid sequence encoding an acyltransferase, wherein the at least one acyltransferase exhibits a substrate specificity for saturated fatty acids;
growing the organism under appropriate conditions; and
obtaining TAGs comprising MCGAs from the organism.
19. The method of claim 17, wherein the TAGs are used in biofuel, jet fuel, detergents, and chemical feedstocks.
20. A method of increasing the amount of triacylglycerols (TAGs) comprising medium-chain fatty acids (MCFAs) in the seed oil of a plant, comprising:
providing a plant comprising a nucleic acid encoding a FatB polypeptide;
introducing a heterologous nucleic acid molecule into the plant comprising at least one nucleic acid sequence encoding an acyltransferase, wherein the at least one acyltransferase exhibits a substrate specificity for saturated fatty acids,
thereby increasing the amount of TAGs comprising MCFAs in the seed oil of the plant without significantly changing the total oil content in the seed.

[^0]: Cahoon, Edgar; Iskandarov, Umidjon; Kim, Hae Jin; and Collins-Silva, Jillian, "NOVEL ACYLTRANSERASES AND METHODS OF USING" (2016). Biochemistry -- Faculty Publications. 432.
 https://digitalcommons.unl.edu/biochemfacpub/432

