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This research derives z-score monthly groundwater storage (GWS) anomalies and

z-score monthly root zone soil moisture (RZSM) anomalies from products of Gravity

Recovery and Climate Experiment Data Assimilation (GRACE-DA). Z-score monthly GWS

and RZSM anomalies are compared to two drought indicators: Standardized Precipitation

Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) to investigate

the usefulness of GRACE-DA information to detect drought conditions at tree-ring sites.

This study also compares z-score monthly GWS and RZSM anomalies with the Tree Ring

Standardized Growth Index (TRSGI) that is resampled by bootstrapping to investigate the

capability of monitoring forest drought stress. Finally, this research uses multiple linear

regression to develop a model for predicting tree-ring widths at selected study sites.

The results of the comparisons of z-score monthly GWS and RZSM anomalies and

commonly-used drought indices (SPI and SPEI) indicate that GWS anomalies have strong

correlations (> 0.4) with long-term droughts (> 9 months) and RZSM anomalies have strong

correlations (> 0.5) with short-term droughts (< 3 months). The results of comparisons of

TRSGI suggest that z-score monthly GWS and RZSM anomalies are significantly related to

tree-ring widths with a significant level of 0.05. This research suggests that the relationships

between GWS anomalies and drought indices (SPI and SPEI) and TRSGI highly depend on

the geological formations, such as the types of the aquifers, and geographical environments

such as the soil texture. The multiple linear regression in this paper quantifies the impacts of



z-score monthly GWS and RZSM anomalies on tree-ring widths, which suggests GRACE-DA

products can provide useful information to detect and predict the growth of trees. The

results also suggest the predictor, monthly RZSM anomalies, is one of the most important

parameters in the regression model. Overall, the study suggests that GRACE-DA information

can be used to help detect and monitor the stress from drought impacts on trees at a large

spatial scale.
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Chapter 1

INTRODUCTION

1.1 Motivation

In recent years, the frequency and severity of drought extremes associated with global

climate change are increasing. Economic, social, and environmental damages and costs from

droughts are growing significantly as well (Wilhite, 2000; Wilhite et al., 2014). Droughts

arise in almost all forest ecosystems. With atmospheric moisture demand rising under a

drought condition, higher evapotranspiration and lower soil moisture would increase water

stress on trees (Dale et al.,2001; Allen et al.,2015; Bhuyan et al., 2017). In some regions

where the water table is near the soil column, groundwater recharging and discharging could

have notable impacts on soil moisture (Chen and Hu, 2004). Quantifying the relationship

between soil moisture and groundwater in forest areas is critical for monitoring long-term

forest drought stress, forest management, and drought recovery.

The growth of trees is sensitive to diverse local climates and the yearly time series

of effects from the changing environment (temperature, precipitation) are conscientiously

recorded by the sequence of tree rings in trees. Comparing modern climate records

with the tree-ring widths during in the same period and establishing a mathematical

equation for the relationship between them can calibrate modeled climate data and provide

valuable information such as the importance of different climate variables for the forestry
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management(Fritts, 2012).

The Gravity Recovery and Climate Experiment Data Assimilation (GRACE-DA)

products are processed by the National Aeronautics and Space Administration (NASA)

Goddard Space Flight Center (GSFC). The GRACE observations are used as inputs to a data

assimilation framework built upon the Catchment Fortuna 2.5 land surface model, which

produces a result of 35 variables per day. Terrestrial water storage, soil moisture content,

and snow water equivalent are three main products. These products are the most recent

satellite-derived datasets that can help in monitoring variations of forest-level soil moisture

and groundwater over time.

The primary objective of this study is to assess the monthly anomalies of the subsurface

water storage that are derived fromGRACE-DA as integrated drought impacts and comparing

them with the Standardized Precipitation Index (SPI), the Standardized Precipitation-

Evapotranspiration Index (SPEI) and the Tree-ring Standardized Growth Index (TRSGI)

across the Contiguous United States (CONUS) from 2003 to 2010. Specifically, the objectives

of this study to investigate the value of GRACE-DA products for drought monitoring over

forests include: (1) examining the patterns between TRSGI and GRACE-DA products to

understand the spatial and temporal patterns of forests response to drought at multiple time

scales (from 3 months to 24 months) and (2) understanding relationships among GRACE-

DA products and commonly-used drought indicators (SPI and SPEI), which represents to

analyze major components of the water cycle related to drought that include precipitation,

evapotranspiration, soil moisture, and groundwater, hence contributing to monitor forest

drought stress.
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1.2 Background

1.2.1 Drought

Drought is considered as one of the most complex natural hazards and causes broad

impacts. The development of drought is usually slow, and the impacts accumulate over a

substantial period. It is difficult to determine the onset and end of a drought. Although

drought is a common phenomenon for all climate regimes, there is not an exact definition of

drought. Definitions of drought depend highly on regional environments and the sector of

impacts, determining the extent of droughts that can spread over larger spatial areas and the

impacts that are less evident than other natural disasters. Therefore, tasks to quantitatively

monitor and predict the formation and impacts of drought are crucial but challenging (Wilhite,

1993).

Drought is generally defined as the consequence of persistent deficits of precipitation

over a prolonged period in a specific region (Wilhite, 1993; Zargar et al., 2011). However,

the types of drought vary by temporal and spatial extent, intensity, and the demands made by

vegetation and human activities. Wilhite and Glantz (1985) grouped droughts into four types

as follow: meteorological, hydrological, agricultural, and socioeconomic. Meteorological

drought is solely determined by the level of dryness (deficits between the average and normal

amount of precipitation) and the duration of the period in a specific region. Agricultural

drought is a result of various effects of meteorological drought which includes but not limited

to low soil moisture, high temperature, and high vapor pressure deficits. Hydrological

drought develops out of the shortage of surface or subsurface water supply (i.e., groundwater,

soil moisture, streamflow, reservoir, and lake levels). It usually lags the occurrence of

both meteorological and agricultural drought. Socioeconomic drought links the supply and

demand for economic goods and services that are related to meteorological, hydrological,

and agricultural droughts. It occurs when the demand exceeds the supply, which is a result of
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weather-related deficits in the water supply (Wilhite and Glantz, 1985). By these definitions,

water is the most critical factor in all kinds of drought, and monitoring changes of water is a

primary objective to all relevant studies.

Drought has multiple impacts on forests. Physiological and morphological character-

istics of trees have changed to adapt in regions where seasonal droughts are common. In

areas where drought is less common, responses of forests can be substantial since the forest

ecosystems are not well adapted to drought conditions. Vulnerability to drought differs by

species as consequences of differences in their biophysical attributes of the root, xylem,

and mycorrhizal. In general, the effects of high vapour-pressure deficits and soil moisture

deficits combined with high temperature provoke stress of forest, leading to carbon stress,

the disorder of hydraulic function, and even mortality (Vose et al., 2016).

The ecological functions and services of forests are progressively rising in the United

States and around the world. Forests can protect the watershed and prevent soil erosion.

After oceans, forests are the second vast storehouses of carbon in the world that can offset

10%-40% of annual carbon emissions each year (Sun et al., 2015). Due to climate change,

the severity and intensity of drought are anticipated to increase in the future (IPCC, 2018).

Dynamic changes of drought and complex mechanisms of responses in forest ecosystems

make it challenging to analyze the relationships between forest water supply and productivity

at large scales (Sun et al., 2015). Hence, understanding how drought affects forests becomes

essential and necessary.

Various techniques have been used to quantify the responses of forests to water stress

and drought. Analyzing relationships between drought indices at multiple time scales and

different variables that can reflect the growing status of trees becomes a prevalent and

robust approach (Williams et al., 2012; Babst et al., 2013; Vicente-Serrano et al., 2014;

Ogaya et al., 2015; Sun et al., 2015; Bhuyan et al., 2017; Gao et al., 2018). In these

prior studies, temperature, precipitation, and potential evapotranspiration are considered
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as the three most widely used variables to compare with the growth of trees. Some studies

have also used drought indices such as the Palmer Drought Severity Index (PDSI) (Bhuyan

et al., 2017), self-calibrating Palmer Drought Severity Index (scPDSI) (Bhuyan et al.,

2017), Standardized Precipitation Index (SPI) (Bhuyan et al., 2017), and Standardized

Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2014; Bhuyan et al.,

2017).

The PDSI (Palmer, 1965) was developed to measure the severity of meteorological

drought and wet situations. It is widely used in the U.S. and works effectively on monitoring

seasonal to long-term droughts. Eight variables related to soil moisture are computed

based on temperature, precipitation, and available water holding capacity of the soil that

include evapotranspiration, recharge, runoff, potential evapotranspiration, potential recharge,

potential runoff, and potential loss (Wells et al., 2004; Zargar et al., 2011).

The scPDSI is similar to the PDSI except for replacing all empirical constant coefficients

in Palmer’s equation with values calculated based upon the site-specific climatic data.

Compared with the PDSI, the scPDSI improves the statistical accuracy under severe and

extreme droughts and allows the comparison between different locations and times (Wells et

al., 2004).

The calculation of SPI is only based on precipitation. Precipitation records within a

moving window are compared with the same period in the historical records. The moving

window can be any period of length. 3, 6, 9, 12, 24, and 48-month periods are the most

common. Values are first fitted to a Gamma distribution that is then transformed into a normal

distribution by calculating the cumulative probability. Because aggravated precipitation

deficits in different periods are influenced by various water resources (e.g., snowpack, soil

moisture, groundwater), the various durations can be utilized to reflect the change in different

water features. For example, a 1-month SPI can efficiently monitor short-term changes of

soil moisture and crop stress in the growing season while a 12-month SPI performs higher
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correlations with stream flows, reservoir levels, and groundwater. The SPEI is calculated

from deficits of precipitation and potential evapotranspiration for multiple timescales. The

process of the SPEI calculation is similar to SPI, except that the deficits are fitted to the

log-logistic distribution (Bayissa et al., 2015; Bayissa et al., 2017).

Previous studies indicate that the behavior of the scPDSI is similar to the long-term SPI

and SPEI (9 months to 12 months). In addition, scPDSI, SPI, and SPEI all have significant

correlations with tree-ring width index data at long time scales (Vicente-Serrano et al.,

2014; Bhuyan et al., 2017). Although these studies have directly or indirectly considered

the effects of soil moisture, the impacts of groundwater and deep soil moisture are omitted.

Groundwater has significant implications on soil moisture of the root zone in the areas where

the groundwater table is near the surface (Chen and Hu, 2004). Since large woody tree roots

are primarily located within 1 to 2 meters (Perry, 1989), correctly considering relationships

between tree growth and deep soil moisture and groundwater is crucial to improving our

understanding how the water stress of trees is related to and affected by the groundwater

variations.

1.2.2 GRACE

Launched in March 2002, the GRACE mission is designed to measure variations

of Earth’s gravity field. It includes two satellites that fly in an Earth Polar Orbit at an

approximate distance of 220 km (137 miles). Using the global positioning system (GPS)

and a microwave ranging system, GRACE can detect changes of Earth’s gravitational by

accurately measuring the distance between the two orbiters. Beyond statics spatial variations

that are caused by geological features such as large mountain ranges, the gravity variations

over time are mainly attributed to four parts: ocean, runoff and groundwater, ice, and mass

within Earth. This mission also aims to improve the profile of Earth’s atmosphere (NASA,

2003; Tapley et al., 2014). Due to battery failure of one satellite, the GRACE mission
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concluded in October 2017. GRACE revolutionize investigations and quantification of

mass trends and fluctuations, providing over 163 months of data of variations in the Earth’s

gravity field. In May 2018, the GRACE Follow-On (GRACE-FO) mission was successfully

launched. GRACE-FO will continue data collection with a potential to increase the spatial

and temporal resolution and the accuracy of the satellite-to-satellite distance with evolved

versions of GRACE instrumentation (Tapley et al., 2019).

GRACE data are processed at three institutions including the University of Texas Center

for Space Research (CSR), the GeoForschungsZentrum Potsdam (GFZ), and the NASA Jet

Propulsion Laboratory (JPL), respectively. Although processing algorithms are different

in each center, the critical characteristics of procedures are the same. The effects of the

atmosphere and oceans are removed by several designed filters. The remaining signals

from the monthly GRACE observations are mostly related to variations of terrestrial water

storage (TWS) (Landerer and Swenson, 2012). The TWS is the sum of surface water, soil

moisture, groundwater, ice and snow, and biomass and has addressed the gap of monitoring

water storage variations at a large scale on a systematic basis. TWS has been used for

studying freshwater discharge, evapotranspiration, the mass balance of ice, water balance of

lakes, and extreme hydrological drought events (Houborg et al., 2012). While GRACE has

provided valuable data for climatic and hydrological studies, monthly temporal resolution

and coarse horizontal spatial resolution of 150,000 km2 are obstacles to advanced studies

and applications that require higher resolutions (Rowlands et al., 2005; Yeh et al., 2006).

Besides, TWS shows the changes in integrated water from groundwater to biomass and ice

and snow, representing an entire vertical column of water. Assimilating GRACE TWS with

the simulated land surface model (LSM) is utilized to disaggregate GRACE observations

in many studies. A few prior studies (Zaitchik et al., 2008; Su et al. 2010; Houborg et al.,

2012; Eicker et al., 2014; Tangdamrongsub et al., 2015; Kumar et al., 2016; Khaki et al.,

2017) have explored the use of GRACE TWS data for data assimilation.
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Among the LSMs, the Catchment Land Surface Model (CLSM; Koster et al., 2000;

Ducharne et al., 2000) is the only one in the North American and Data Assimilation System

(NLDAS; Mitchell et al.,2004) that can simulate variations of unconfined groundwater

storage, which typically 2-3 meter below the land surface (Houborg et al., 2012; Kumar et

al., 2016). CLSM defines the fundamental surface as hydrological catchments, instead of the

land surface, at the grid scale. There are three subsurface variables within each catchment:

catchment deficit, root zone excess, and surface excess, which simulates changes of water

at different vertical depths (Koster et al., 2000). These characteristics of CLSM make it

especially appropriate for the data assimilation with GRACE TWS. Therefore, Zaichik and

his research team assimilate monthly GRACE-derived TWS observations with CLSM by

using the ensemble Kalman filter and smoothers.

Several studies show that the assimilation of GRACE TWS with CLSM can contribute

to drought applications and GRACE-based drought indicators are developed to improve

drought detection and monitoring (Houborg et al., 2012; Li et al., 2012; Thomas et al., 2017).

First, GRACE TWS data have been downscaled in spatial and temporal resolutions and

disaggregated vertically into U.S. Drought Monitor products, address gaps of investigating

groundwater and soil moisture at a larger scale. GRACE TWS data assimilation products

can provide useful independent information that can improve the accuracy of soil moisture

estimations in the Eastern U.S. (Houborg et al., 2012). Additionally, a Groundwater Drought

Index (GWI) derived from GRACE TWS data assimilation products demonstrates that

GRACE improves correlations with GWI based in situ data as compared with other model-

based groundwater drought indices, indicating that GRACE data assimilation products can

improve groundwater storage estimations at a regional scale (Li and Rodell, 2014). Therefore,

this research utilizes GRACE-derived TWS data assimilation outputs to calculate anomalies

of GWS and RZSM, which are compared with forest drought stress and other drought indices

(SPI and SPEI).
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1.2.3 Tree Rings

Tree rings are universally known as one of the most robust proxies for tree vitality

(Dobbertin, 2005; Fritts et al., 2012; Ma et al., 2015; Bhuyan et al., 2017), and directly

connect with climate events such as drought. Temperature and water are two primary climatic

variables that restrict the growing period of trees, which hence affects the biomass of trees

and the tree-ring width. The temperature has a significant influence on tree-ring growth at

the beginning of the growing season. If the temperature decreases to an abnormal level as

compared with the historical record, it will lead to a delay in the start of the growing season.

Once the temperature increases and summer begins, water becomes the most critical climatic

variable that accounts for a large amount of tree-ring width variations. High temperature

and evaporative demands, combined with low soil moisture, can limit the cell division and

cell enlargement processes (Fritts et al., 2012).

dendroclimatology is the science of studying past climates using tree-ring data. The

effects of water stress depend upon not only the severity and duration of droughts but also

the ages and species of trees. In dendroclimatology, standardization of tree-ring width is a

necessary procedure to correct the effects of changing age and geometry of the tree from

the measurements of tree-ring width in dendroclimatology. After the data are standardized,

the values are called ring-width indices. The indices are unitless with a mean value of one.

Generally, they have no linear trend and there are more fluctuations when a tree is in the

younger fast-growing period as compared with the older slow-growing period (Fritts et al.,

2012).

This research aims to investigate the relationship between monthly anomalies of the

subsurface water storage derived from GRACE-DA products and a tree ring standardized

growth index (TRSGI), using the Pearson correlation and multiple linear regression models

to investigate the impacts of the subsurface water storage, precipitation, evapotranspiration
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and temperature on tree growth under drought and non-drought conditions. The results

from previous studies of GRACE TWS data assimilation products such as root zone soil

moisture and groundwater storage indicate a potential of GRACE-DA products on the

hydrological drought monitoring (Houborg et al., 2012; Li and Rodell, 2014; Thomas et al.,

2017). Additionally, a few studies are evaluating the correlation between drought indices and

tree-ring indices that support the concept that long-term observation records of SPI and SPEI

can reflect the water stress of trees (Vicente-Serrano et al., 2014; Bhuyan et al., 2017; Gao et

al., 2018). However, these studies omit the consideration of effects of hydrological drought

(e.g., decreasing of the groundwater level). Quantification of the relationship between

GRACE-DA products and the tree-ring widths is useful to investigate the impacts of a larger

scale drought on forests and how subsurface water storage affects the growth of trees. This

study analyzes the relationships between GRACE-DA products and drought indices (SPI and

SPEI), investigating the GRACE-DA products as predictors for the forest drought stress and

indicating the importance of subsurface water storage in forest drought stress monitoring.



11

Chapter 2

DATA AND METHODOLOGY

2.1 Data Descriptions and Processing

2.1.1 Monthly Anomalies Derived from GRACE-DA Products

This study calculates monthly anomaly data sets from GRACE-DA products. GRACE-

DA products are processed from 0.5-degree gridded GRACE solutions from the University

of Texas by assimilating with the Catchment Fortuna-2.5 land surface model, which increases

bedrock depths by 3meters ("readme", 2017). After data assimilation, the temporal resolution

of GRACE-DA products is daily, and the spatial resolution is 0.125 degree. This study

converts the daily temporal resolution to monthly to reduce variations. Monthly anomalies

of root zone soil moisture are derived from root zone soil moisture (RZSM) in the soil

profiles (0-100 centimeter) of the GRACE-DA products. The GRACE-DA products used in

this study are from April 2002 to December 2017. Equation (2.1) calculates mean values of

root zone soil moisture for each month, where i represents months in a year, j represents

years from 2002 to 2017. For i in the range from April to December, j starts from 2002. For

i in January, February, and March, j starts from 2003.

RZSMi =
1

2017 − J + 1

2017∑
j=J

RZSMi (2.1)
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Monthly anomalies are calculated to explore how root zone soil moisture affects

tree-ring width by Equation (2.2). Hence, z-score values are used to standardize monthly

anomalies of root zone soil moisture from 2003 to 2017 (Equation (2.3) and (2.4)). The

monthly RZSM anomalies in 2002 are not included in the z-score calculation since complete

datasets in years are required to compare with the annual ring-width index.

RZSMD = RZSM − RZSMi (i ∈ (1, 12)) (2.2)

RZSMDi =
1
15

2017∑
i=2003

RZSMDi (i ∈ (1, 12)) (2.3)

RZSMZ−score =
RZSMD − RZSMDi

σRZSMDi

(i ∈ (1, 12)) (2.4)

Since the depth of large woody tree roots can be over 1 meter, this study also calculates

groundwater storage (GWS) based on prior studies (Scanlon et al., 2012; Long et al., 2013).

GWS in this research represents all subsurface water storage below 1-meter depth. Equation

(2.5) shows how GWS is calculated from terrestrial water storage (TWS), snow water

equivalent (SWE), and RZSM.

∆GW S = ∆TW S − ∆RZSM − ∆SW E (2.5)

The monthly GWS anomalies and z-score monthly GWS anomalies are calculated in

the same procedure as RZSM (Equation (2.6), (2.7), (2.8), and (2.9)).

GW Si =
1

2017 − J + 1

2017∑
j=J

GW Si (2.6)
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GW SD = GW S − GW Si (i ∈ (1, 12)) (2.7)

GW SDi =
1
15

2017∑
i=2003

GW SDi (i ∈ (1, 12)) (2.8)

GW SZ−score =
GW SD − GW SDi

σGW SDi

(i ∈ (1, 12)) (2.9)

Z-score monthly RZSM anomalies and Z-score monthly GWS anomalies are produced

at 0.125-degree spatial resolution, which is approximately equal to 11.3*11.3 km in the

Conus Albers projection system from January 2003 to December 2017. Since observations

of tree-ring data terminated in 2010, a study period of 2003 to 2010 are utilized to compare

with the GRACE information with other drought indices. Figure 2.1 and Figure 2.2 are

examples for the z-score monthly GWS anomalies and the z-score monthly RZSM anomalies

in July 2012. All these procedures are done by python scripts with the package GDAL.

Figure 2.1: Example of z-score monthly GWS anomalies in July 2012
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Figure 2.2: Example of z-score monthly RZSM anomalies in July 2012

2.1.2 Standardized Precipitation Index (SPI)

SPI represents the standardized precipitation deficits between a period of i months (in

this study, i = 3, 6, 9, 12, 18, 24) and the same period in historical records (Mckee et al.,

1993). The daily historical precipitation records at twenty-five weather stations from 1970

to 2016 are collected from the High Plains Regional Climate Center (HPRCC). This study

calculates the distance between the weather stations and the tree sites. The precipitation

dataset from the nearest stations is used to calculate the index. The nearest distances are

varied from 0.013 to 0.787 degree (approximately from 1.43 to 85.8 km) and are listed in

Table 2.1. The study uses the SPI Generator application, which is released by the National

Drought Mitigation Center (NDMC). The generator reads a precipitation record and outputs

monthly SPI data in multiple accumulative periods. Since this research focuses on responses

of the tree-ring data from changes of hydrological environments, 3-month, 6-month, 9-month,

12-month, 18-month, and 24-month monthly SPI are calculated in the historical period. A

time-series dataset from 2003 to 2016 is extracted to compare with GRACE-DA products

and tree-ring widths.
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Tree Site ID Weather Station ID Distance (Degree)

az591 29156 0.013
az592 29156 0.013
az580 26716 0.070
ca677 48218 0.089
ca686 44997 0.163
ca687 44997 0.163
az583 26716 0.170
az585 26716 0.170
or092 357817 0.184
ms003 226009 0.185
wv006 447285 0.201
id015 101018 0.230
wv009 468614 0.257
or094 350694 0.258
nc026 319467 0.299
az596 21330 0.313
az595 21330 0.314
ca678 41072 0.318
az597 28820 0.345
az598 28820 0.345
or095 358029 0.346
or093 350501 0.351
wv007 464393 0.426
ca674 41497 0.460
ca676 40161 0.464
ca675 40161 0.474
wy046 245961 0.538
ca679 40161 0.540
ok040 348992 0.666
ok041 348992 0.666
nm589 21248 0.676
ok042 348992 0.706
wy047 486440 0.739
wy048 245080 0.787

Table 2.1: The distance between tree sites and weather stations, descending by the distance
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2.1.3 Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI efficiently shows the effect of evapotranspiration demand by using the difference

between precipitation and potential evapotranspiration (Vicente-Serrano et al., 2010). Like

SPI, SPEI is multi-scale and calculated from observation values at stations with data quality

control. This study uses climate data from the same nearest weather stations to calculate the

monthly SPEI data in different accumulation periods (3-month, 6-month, 9-month, 12-month,

18-month, and 24-month) from 1970 to 2016. The calculation is executed by a software

developed by the NDMC. With reading historical records of precipitation, temperature, and

the latitude of the weather station, the program uses the Penman-Monteith equation to obtain

potential evapotranspiration (PET) and outputs monthly SPEI. The same period from 2003

to 2016 is extracted to prepare the statistical analysis.

2.1.4 Tree Ring Standardized Growth Index (TRSGI)

A tree-width index is used to quantify the accumulative biomass in a year. This

study collects the Tree Ring Standardized Growth Index (TRSGI) from the International

Tree-Ring Data Bank (ITRDB) which is managed by the National Oceanic and Atmospheric

Administration (NOAA). TRSGI is calculated from measured tree-ring widths. First, several

growth curves are developed for each tree by fitting the ring-width series to the exponential

form. After an appropriate growth curve has been determined, the function is solved for the

expected yearly growth (Yt). Then, Equation (2.10) standardizes the ring-width data (Wt) by

dividing each measured data by the expected annual growth, where t represents the year of

each tree-ring width.

T RSGI =
Wt

Yt
(2.10)

Because of the limitation of the period of GRACE-DA products, this study is prevented
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from utilizing the long historical records of TRSGI. The period of TRSGI data is from

2003 to 2010. After filtering tree-ring data in the ITRDB database by the overlapped period

and quality, this study has thirty-four tree-ring sites across the contiguous U.S. Nation

forest resources are divided into nine regions based on the research (Sun et al., 2015) and

climatic characteristics (Figure 2.3). Twenty-six out of thirty-four trees are in the western

regions: Northwest, West, West North Central, Southwest. Eight out of thirty-four sites are

in Oklahoma, Mississippi, West Virginia, and North Carolina. The majority of trees (29 out

of 34) are conifers. In addition, twenty-five out of thirty-four trees are over 200 years old,

which indicates that some of studying trees have a good resilience of drought stress.

Figure 2.3: Distribution of tree-ring sites across the CONUS and the nine forest divisions:
Northwest, West, West North Central, Southwest, South, East North Central, Central,
Southeast, and Northeast

Table 2.2 shows the information of age and species which are collected in the TRSGI

dataset with the geographic coordination (degree) and elevations (meter) on each sites location.

To specify the topography of different tree sites, slopes in decimal degrees are calculated
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ID States Species Age

az580 Arizona Douglas-fir 402
az583 Arizona Douglas-fir 392
az585 Arizona Ponderosa pine 434
az591 Arizona Douglas-fir 365
az592 Arizona Ponderosa pine 482
az595 Arizona Arizona pine 180
az596 Arizona Ponderosa pine 150
az597 Arizona Arizona pine 149
az598 Arizona Ponderosa pine 198
ca674 California Ponderosa pine 560
ca675 California Western juniper 858
ca676 California Ponderosa pine 657
ca677 California Jeffrey pine 595
ca678 California Jeffrey pine 706
ca679 California Ponderosa pine 589
ca686 California California sycamore 310
ca687 California Valley oak 313
id015 Idaho Ponderosa pine 523
ms003 Mississippi Baldcypress 772
nc026 North Carolina Baldcypress 1645
nm589 New Mexico Ponderosa pine 1168
ok040 Oklahoma Shumard Oak 89
ok041 Oklahoma Pin Oak 76
ok042 Oklahoma Pin Oak 63
or092 Oregon Western juniper 1480
or093 Oregon Western juniper 1140
or094 Oregon Western juniper 1180
or095 Oregon Western juniper 673
wv006 West Virginia Eastern hemlock 154
wv007 West Virginia Eastern hemlock 256
wv009 West Virginia Pitch pine 186
wy046 Wyoming Engelman spruce 572
wy047 Wyoming Lodgepole pine 252
wy048 Wyoming Lodgepole pine 330

Table 2.2: The table describes the locations of tree sites and species and ages of trees
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ID Longitude Latitude Elevation Slope AWC Soil Texture

az580 -109.26 31.92 2316 6.96 59 Silt Loam
az583 -109.33 32 1828 3.59 31 Silt Loam
az585 -109.33 32 1828 3.59 31 Silt Loam
az591 -111.52 35.17 2057 0.06 63 Sandy Loam
az592 -111.52 35.17 2057 0.06 63 Sandy Loam
az595 -110.71 32.41 2534 4.69 59 Sandy Loam
az596 -110.71 32.41 2534 4.69 59 Sandy Loam
az597 -110.79 32.43 2577 6.37 59 Sandy Loam
az598 -110.79 32.43 2577 6.37 59 Sandy Loam
ca674 -120.63 40.1 1385 8.68 82 Sand
ca675 -120.88 41.83 1508 3.13 89 Loam
ca676 -120.98 41.67 1513 0.43 158 Loam
ca677 -120.28 39.57 1688 4.53 99 Sandy Loam
ca678 -119.15 37.95 2499 11.17 50 Sandy Loam
ca679 -120.57 42.03 1645 6.42 120 Loam
ca686 -121.85 37.55 89 5.99 90 Loam
ca687 -121.85 37.55 89 5.99 90 Loam
id015 -116.10 43.75 1825 6.79 69 Loamy Sand
ms003 -90.50 33.27 30 0.07 270 Silty Clay Loam
nc026 -78.22 34.32 2 0.19 89 Sandy Loam
nm589 -108.87 36.09 2650 2.27 108 Sand
ok040 -95.92 35.53 188 0.19 280 Silt Loam
ok041 -95.92 35.53 186 0.19 280 Silt Loam
ok042 -96 35.5 196 0.48 72 Silt Loam
or092 -120.88 43.17 1428 1.3 123 Sandy Loam
or093 -120.47 43.7 1475 0.47 54 Loam
or094 -121.05 43.95 1146 1.06 56 Loamy Sand
or095 -119.80 43.15 1514 1.19 26 Loam
wv006 -80 37.52 670 1.68 51 Sandy Loam
wv007 -82.37 37.98 250 1.77 105 Loam
wv009 -80.93 37.97 700 1.97 132 Silt Loam
wy046 -109.90 44.73 2961 4.58 56 Loam
wy047 -110.38 44.57 2395 2.02 108 Loam
wy048 -110.50 44.7 2349 1.25 108 Loam

Table 2.3: The table describes geographic environments of tree sites which include longitude
and latitude, elevation, slope, available water content (AWC), and soil texture
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from the digital elevation model (DEM). Available water capacity (AWC) and soil texture are

extracted respectively from Gridded Soil Survey Geographic (gSSURGO) Database and the

North American Land Data Assimilation System (NLDAS). 2.3 demonstrates the additional

information for investigating responses from trees in different climatic and hydrological

environments.

2.1.5 Normalized Difference Vegetation Index (NDVI)

This study uses Normalized Difference Vegetation Index (NDVI) data generated by

the U.S. Geological Survey’s (USGS) Earth Resources Observation and Science (EROS)

Center based on Moderate Resolution Imaging Spectroradiometer (eMODIS) to ascertain

the growing season in each forest region. This study calculates the monthly mean NDVI of

each forest region from the eMODIS NDVI masked by the national forest area from 2003 to

2017 and aggregates the NDVI values by forest regions. Founded on a prior research (Jeong

et al., 2001), Equation (2.11) is used to delineate the start and the end of each growth cycle,

where t is the month.

N DV Iratio(t) =
N DV It+1 − N DV It

N DV It
(2.11)
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This study calculates the NDVI ratio for all forest regions (Table 2.4). Positive ratios

reflect the month t when NDVI values ascend. The largest ratio represents the growing rate

of leaves is the highest in the month, which can be considered as the start of the growing

season in a year. Negative ratios reflect the month t when NDVI values descend. The

smallest ratio represents the deciduous stage in a year, which can be considered as the end

of the growing season. Since the annual growth of trees exhibit systematic changes in the

tree-ring width (Fritts, 2012), this study determines the period from March to October as the

forest growing season based on the N DV Iratio, which is used to compare with different tree

sites across the CONUS.

2.2 Statistical Methods

2.2.1 Simple Linear Correlation

The Pearson correlation is calculated between two dataset pairs including: (1) z-score

monthly GWS anomalies and SPI (3, 6, 9, 12, 18, 24 months); (2) z-score monthly GWS

anomalies and SPEI (3, 6, 9, 12, 18, 24 months); (3) z-score monthly RZSM anomalies

and SPI; and (4) z-score monthly RZSM anomalies and SPEI. The Pearson correlation

coefficient determines the strength of the association between two variables. This method

has two assumptions for the pairs of datasets being compared: (1) they are independent; and

(2) they follow a normal distribution. Positive Pearson correlation coefficients indicate that

both variables have similar increasing or decreasing trends, whereas negative coefficients

indicate that the two variables have an opposite linear trend. The higher positive values and

lower negative values indicate stronger relationships between the two datasets.

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(2.12)
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In this study, the comparisons of GRACE information and drought indicators (SPI

and SPEI) in different accumulation periods not only indicate the time lags between the

anomalies of subsurface water storage (GWS and RZSM) and the changes of precipitation

and evapotranspiration, but also are useful to understand the different accumulative effects

on tree growth from precipitation, groundwater, and soil moisture.

2.2.2 Bootstrapping

To investigate the relationships between the yearly dataset (TRSGI) and the monthly

datasets (z-score monthly GWS anomalies, z-score monthly RZSM anomalies, SPI, and

SPEI), a bootstrapping method is utilized to estimate the statistical distribution of the

population by randomly sampling 1000 times with replacement. After estimating the

distribution for all variables, Pearson correlation coefficients are calculated between the

TRSGI and monthly GWS anomalies, monthly RZSM anomalies, SPI (3, 6, 9, 12, 18, 24

months), and SPEI (3, 6, 9, 12, 18, 24 months). Since the TRSGI has already captured the

effect of previous year conditions, the correlation coefficients were calculated only for months

of ring formation (March to October). The results of bootstrapping Pearson correlation

involve all correlation coefficients that are calculated by month in the growing season for

the nine forest regions. The correlation values of tree sites in each area are averaged for

analyzing the spatial effects. The confidence intervals are set to confine the significant level

of 0.05. The results indicate the different impacts of GWS, RZSM, SPI, and SPEI on the

tree-ring growth in different months through a year and quantify the relationships among the

TRSGI and all other variables.

2.2.3 Multiple Linear Regression

Multiple linear regression is used to evaluate the relative contribution for each component

and develop a predictive model for the dependent variable. This study proposes and diagnoses
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multiple linear regression models to investigate the relationships between TRSGI and the

changes of GWS and RZSM anomalies with combined impacts of SPI and SPEI. The full

model is proposed as the Equation (2.13) to explore whether linear relationships between

TRSGI and a subset or all of SPI, SPEI, z-score monthly GWS, and RZSM anomalies. By

using the exhaustive algorithm in the regsubsets function of the R package leaps, this study

develops three possible reduced models (Equation (2.14), (2.15), (2.16) ), investigating

and quantifying respective relationships between tree-ring growth and subsurface water

anomalies (z-score monthly GWS and RZSM anomalies). The reduced Model (2.12)

illustrates the relationships between tree-ring width and RZSM anomalies. Model (2.13)

considers influences of SPEI. And based on the Model (2.13), the Model (2.14) adds impacts

of GWS anomalies. These reduced models are used to compare with the Model (2.15) and

test if the GWS or RZSM has the capability to predict the growth of trees. In this study, 2/3

of datasets are used to build models and the remaining 1/3 of the data are used to test the

models. For all models, the null hypothesis is that all slope coefficients are equal to zero,

and the alternative hypothesis is at least some of slope coefficients are not equal to zero. β1,

β2, β3, and β4 represent different slope coefficients in different models, where β0 is the

interception coefficient and ε is the independent normal random variable with mean zero

and a constant variance.

T RSGI = β0 + β1RZSM + ε (2.13)

T RSGI = β0 + β1SPEI + β2RZSM + ε (2.14)

T RSGI = β0 + β1SPEI + β2GW S + β3RZSM + ε (2.15)



25

T RSGI = β0 + β1SPI + β2SPEI + β3GW S + β4RZSM + ε (2.16)

This study calculates the adjusted R-Squared, the Akaike’s information criterion (AIC),

the corrected AIC, and the Bayesian information criterion (BIC) to evaluate the goodness of

fit of the full model and reduced models. A higher value of adjusted R-Squared or lower

values of AIC and BIC represent the estimated model with a better fitting capability. Mean

squared prediction error (MSPR), min-max accuracy, and mean absolute percentage error

(MAPE) are calculated on the testing datasets as forms of predictive accuracy measure.

LowerMSPR andMAPE and higher min-max accuracy imply that the observed and predicted

values are closer and the predictability is better. Based on the observations of the thirty-four

study sites, drought indicies (SPI, SPEI), and GRACE-DA derived outputs (monthly GWS

and RZSM anomalies), this study will investigate the impacts of subsurface water storage

anomalies on tree-ring widths by training and testing multiple linear regression models.
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Chapter 3

Results and Discussion

3.1 Correlation betweenmonthly GWS anomalies and drought indices

(SPI and SPEI)

This study calculates the Pearson correlation coefficients between the z-score GWS

monthly anomalies and the 3-month, 6-month, 9-month, 12-month, 18-month, and 24-month

SPI and SPEI values at the tree-ring sites. While the z-score GWS monthly anomalies

are computed as standard deviations of the subsurface water volume below 1 meter and

drought indices are accumulated over different time periods, the correlation values provide

valuable comparisons of variables at different time scales and responses from monthly GWS

anomalies when there is a drought.

Figure 3.1 is a boxplot of comparisons of SPI and monthly GWS anomalies at different

time scales. Mean, median, minimum, and maximum values are listed in Table 3.1. The

correlation increases when the cumulative period becomes longer among the 34 sites,

peaking at the 12-month SPI. In the comparison of SPI3, most correlation values are much

lower between 0.18 and 0.4 and with the mean value of 0.29. Correlation coefficients rise

significantly when the time scale increases to 6 months or longer. Most of the tree sites have

relatively stronger correlations, and the average value is 0.395. The correlations increase

steadily throughout the accumulation periods. SPI12 has the strongest relationship with
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GWS anomalies with a mean value of 0.45 and a median value of 0.47. The results for the

SPI18 and SPI24 are very similar to SPI 12 with slightly lower mean and median correlation

coefficients. The overall trend of these comparisons also indicates the time lag between

precipitation anomalies and GWS anomalies could be extended to 24 months in some regions.

However, the correlation coefficients in the same comparison have large spatial variations.

For example for SPI12, although over half of comparisons are over 0.47, the minimum value

is still negative. The negative correlation coefficients appear among different accumulation

periods, and they are highly similar at the spatial scale.

Mean Median Minimum Maximum

GWS-SPI3 0.29 0.28 -0.10 0.65
GWS-SPI6 0.40 0.44 -0.14 0.74
GWS-SPI9 0.44 0.46 -0.11 0.79
GWS-SPI12 0.45 0.47 -0.08 0.80
GWS-SPI18 0.43 0.46 -0.11 0.75
GWS-SPI24 0.44 0.46 -0.05 0.79

Table 3.1: The mean, median, minimum, and maximum of correlation coefficients between
GWS anomalies and SPI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods for the 34 tree-ring sites

The correlations betweenmonthly GWS anomalies and SPEI have the same homogeneity

as SPI through different accumulation periods. As displayed in Table 3.2, the relationship

becomes relatively stronger as the cumulative time increases. The comparison of SPEI12

and GWS anomalies has the highest correlation coefficient on the average of 0.53. The

correlation between SPEI and GWS also significantly increases when the accumulation

period extends from 3 months to 6 months. After the peak, the mean values of correlations

are fairly steady at 0.5. However, the median correlation coefficients decline to 0.46 and

0.48 over twelve months, respectively. Figure 3.2 indicates the correlation coefficients also

have a large variance in the same comparison.

Overall, the trend of the comparisons between SPI and monthly groundwater anomalies
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Figure 3.1: Boxplot of correlation coefficients between GWS anomalies and SPI in 3-month,
6-month, 9-month, 12-month, 18-month, 24-month accumulation periods for the 34 tree-ring
sites, where the black circles show the outliers

is similar to the comparisons between SPEI and monthly groundwater anomalies. Adding

the effect of evapotranspiration in the calculation make the correlations of SPEI slightly

higher than the precipitation-based SPI. The Comparisons indicate both SPI and SPEI have

the strongest correlations with GWS anomalies when the accumulation period is 12 months.

The correlation coefficients vary greatly at different study sites.

Figure 3.3 shows the spatial patterns of correlations between SPI in different accu-

mulation periods and GWS anomalies at each site. All comparisons have similar spatial

patterns across the different periods analyzed. The sites have stronger relationships in

California, Oklahoma, West Virginia, Mississippi, and North Carolina. The correlation

coefficients of SPI are lower in Oregon, Idaho, New Mexico, and some areas of Arizona
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Mean Median Minimum Maximum

GWS-SPEI3 0.34 0.32 0.03 0.66
GWS-SPEI6 0.46 0.45 0.04 0.76
GWS-SPEI9 0.50 0.49 0.06 0.82
GWS-SPEI12 0.53 0.53 0.15 0.83
GWS-SPEI18 0.51 0.46 0.09 0.81
GWS-SPEI24 0.50 0.48 0.05 0.85

Table 3.2: The mean, median, minimum, and maximum of correlation coefficients between
GWS anomalies and SPEI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods for the 34 tree-ring sites

because of the geological and climatic environment. The Pacific Northwest basaltic-rock

aquifers are under the sites in Oregon and Idaho. These igneous rocks can only be infiltrated

where they are cracked, which would suggest that precipitation has very slow influences

on groundwater recharge. Except for tree sites or092 and nm589, the remaining sites in

Oregon and Idaho have increasing correlations with the cumulative period being longer. In

the south of Arizona. the semi-arid hot climate determines that the evaporation becomes

very crucial for the water circulation. Lower correlations between SPI and monthly GWS

anomalies are rational at sites in the south of Arizona because the precipitation-based SPI

omits the effects of evaporation. The negative values are only found at three sites: az597,

az598, and or092 through all accumulation periods, and the az597 and the az598 have the

same geographic coordination. And the correlation coefficients at these sites remain around

zero for all accumulation periods. Time-series graphs of monthly GWS anomalies and SPI

at these sites are presented in Appendix I. Changes of local land use and land cover and the

quality of monthly GWS anomalies might be reasons why there are significant discrepancies

at these locations. But further studies need to be developed in these regions.

All sites have positive correlations between monthly GWS anomalies and SPEI in

all accumulation periods (Figure 3.4). The correlation maps of SPEI have similar spatial

patterns to the SPI. Sites in central parts of California, Oklahoma, West Virginia, Mississippi,
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Figure 3.2: Boxplot of correlation coefficients between GWS anomalies and SPEI in 3-month,
6-month, 9-month, 12-month, 18-month, 24-month accumulation periods for the 34 tree-ring
sites, where the black circles show the outliers

and North Carolina have a strong correlation between SPEI12 and GWS (0.63 - 0.83). By

considering the component of evapotranspiration through the addition of temperature in

the circulation, the long-term SPEI has a higher correlation with GWS in semi-arid areas

such as Arizona. However, the correlation in New Mexico is still at a relatively low value

(0.05 - 0.34). The correlation at the site or094 increases substantially when the accumulation

period expands from 3 months to 12 months (0.31 - 0.62), whereas the other sites in

Oregon have relatively lower coefficients at 12 months (0.18 - 0.40). Since the climatic and

geological environments are similar between upper California and Oregon, the comparisons

at sites (ca675, ca676, ca679) resemble sites in Oregon. Similar to the SPI, the correlation

coefficients of SPEI18 and SPEI24 decrease slightly in New Mexico, Oklahoma, and West
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Figure 3.3: Maps showing the spatial patterns of correlations between GWS anomalies and
SPI at 34 sites. The radius of the symbol represents the correlation coefficient. A larger
circle stands for a higher correlation. (a) GWS-SPI3, (b) GWS-SPI6, (c) GWS-SPI9, (d)
GWS-SPI12, (e) GWS-SPI18, (f) GWS-SPI24
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Figure 3.4: Maps showing the spatial patterns of correlations between GWS anomalies and
SPEI at 34 sites. The radius of the symbol represents the correlation coefficient. A larger
circle stands for a higher correlation. (a) GWS-SPEI3, (b) GWS-SPEI6, (c) GWS-SPEI9, (d)
GWS-SPEI12, (e) GWS-SPEI18, (f) GWS-SPEI24
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Virginia.

Generally, monthly GWS anomalies have strong relationships with both the long-term

SPI and SPEI in central California, Wyoming, Oklahoma, West Virginia, Mississippi, and

North Carolina. However, GWS anomalies have fewer connections with either SPI or SPEI

in New Mexico. In upper California, Oregon, Idaho, and Arizona, the long-term SPEI has a

better correlation with GWS anomalies than the SPI.

3.2 Correlation between monthly RZSM anomalies and drought in-

dices (SPI, SPEI)

Monthly RZSM anomalies reflect the changes of soil moisture within the top 1 meter

of soil. Being compared with GWS anomalies, RZSM anomalies have quicker responses to

drought conditions. It is a primary driver for water stress on vegetation. This study calculates

Pearson correlations between monthly RZSM anomalies and different accumulation periods

of SPI and SPEI (3-month, 6-month, 9-month, 12-month, 18-month, and 24-month). The

correlation coefficients indicate the impacts of varying accumulation periods on RZSM and

investigate the reaction of monthly RZSM anomalies on droughts.

Table 3.3 and Figure 3.5 indicate that monthly RZSM anomalies have the highest

correlation with SPI3. With the accumulation period increasing from 3 months to 24 months,

the average correlation coefficients between monthly RZSM anomalies and SPI decreases

from 0.53 to 0.38. Although the median correlation with SPI6 (0.53) is higher than SPI3

(0.52), the correlation of SPI3 has the smallest variance. When the time is accumulated

over nine months, the correlation coefficients continue reducing, and the variances increase.

Figure 3.6 demonstrates the spatial patterns of correlations across various accumulation

times. The correlation coefficients stay at a low level at sites ca678, id015, wy046, and

wy048. Aside from these locations, the remainder of the sites shows stronger correlations in
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the comparison of RZSM anomalies and SPI3.

Mean Median Minimum Maximum

RZSM-SPI3 0.53 0.52 0.28 0.67
RZSM-SPI6 0.49 0.53 0.17 0.75
RZSM-SPI9 0.47 0.48 0.06 0.76
RZSM-SPI12 0.45 0.43 0.06 0.76
RZSM-SPI18 0.41 0.39 0.06 0.72
RZSM-SPI24 0.38 0.39 0.09 0.76

Table 3.3: The mean, median, minimum, and maximum of correlation coefficients between
RZSM anomalies and SPI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods for the 34 tree-ring sites

The correlations between RZSM and multiple temporal-scale SPEI also decrease with

accumulation periods increasing. The SPEI exhibits, on average, a relatively stronger

relationship with RZSM anomalies than SPI among the 34 study sites. As shown in Table

3.4, SPEI3 has the strongest relationship with RZSM anomalies. The mean of RZSM-SPEI3

is 0.56 and the median is 0.58. In Figure 3.7, the correlation values of SPEI3 has the

smallest variance among the comparisons between RZSM anomalies and SPEI. The average

correlation coefficients reduce from 0.53 to 0.40 when the accumulation periods increase

from 6 months to 24 months.

Figure 3.8 displays the comparisons of RZSM anomalies and SPEI for different

accumulation periods in the U.S. The spatial patterns of the correlation between RZSM

anomalies and SPEI resemble those for the SPI. Although the impacts of evapotranspiration

on improving the correlations in the comparisons of RZSM anomalies are not as significant

as the comparisons of GWS anomalies, the most of stations still have a slightly stronger

relationship between RZSM anomalies and SPEI3 than the SPI3 except for sites ca678,

or092, wy046, and wy048. As the accumulation time expanded, the correlation coefficients

at most sites also decrease.

However, the comparisons at sites in central California (ca674, ca677, ca678, ca686,
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Figure 3.5: Boxplot of correlation coefficients between RZSM anomalies and SPI in 3-month,
6-month, 9-month, 12-month, 18-month, 24-month accumulation periods for the 34 tree-ring
sites, where the black circles show the outliers

ca687) have a contrary trend that the correlations between RZSM anomalies and two indices

(SPI, SPEI) are increasing as accumulation periods increased. The site ca678 has the most

significant increase and peaks at SPI24/SPEI24 compared to the other sites. The remainder

of sites have the highest correlation coefficients in the comparisons of SPI9 and SPEI9. The

time-series graphs at these sites show that the oscillation of RZSM anomalies is smaller

than other locations. Since the long-term SPI and SPEI have a smoother linear trend, the

correlation coefficients are increasing as the accumulation period increased. This result

may be caused by the changes in land use and the geophysical environment. For example,

sites ca674, ca677, and ca678 are located at the eastern side of the Sierra Nevada Mountain

where there is a semi-arid climate. The soil moisture might be relatively constant over a long
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Figure 3.6: Maps showing the spatial patterns of correlations between RZSM anomalies and
SPI at 34 sites. The radius of the symbol represents the correlation coefficient. A larger
circle stands for a higher correlation. (a) RZSM-SPI3, (b) RZSM-SPI6, (c) RZSM-SPI9, (d)
RZSM-SPI12, (e) RZSM-SPI18, (f) RZSM-SPI24



37

Mean Median Minimum Maximum

RZSM-SPEI3 0.56 0.58 0.31 0.72
RZSM-SPEI6 0.53 0.53 0.26 0.79
RZSM-SPEI9 0.50 0.48 0.12 0.79
RZSM-SPEI12 0.49 0.50 0.15 0.77
RZSM-SPEI18 0.43 0.41 0.12 0.79
RZSM-SPEI24 0.40 0.38 0.10 0.80

Table 3.4: The mean, median, minimum, and maximum of correlation coefficients between
RSZM anomalies and SPEI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods for the 34 tree-ring sites

period. However, further studies are required to investigate a possible relationship between

the 1-meter soil moisture anomalies and accumulative precipitation in California.

3.3 Comparison between monthly GWS anomalies and TRSGI

Tree Ring Standardized Growth Index (TRSGI) was developed to interpret the effects

of environmental signals in the tree-growth period ("Tree Ring Data Description", n.d.).

The comparison between monthly GWS anomalies and TRSGI is valuable to understand

the impacts of changes of subsurface water storage under 1-meter depth on the tree growth.

This study uses the bootstrapping method to resample the TRSGI dataset and calculates the

Pearson correlation coefficient between TRSGI and GWS anomalies by month in the growing

season (March to October). Different correlation coefficients in the growing season indicate

the same environmental variable has a different extent of impacts on tree-ring growth.

The heatmap (Figure 3.9) presents the mean Pearson correlations between monthly

GWS anomalies and resampled TRSGI for the ten states where the study sites are located. In

North Carolina, New Mexico, Oregon, and Wyoming, the average of correlation coefficients

within the state is insignificant during the entire growing season. The aquifer under the

sites in Oregon is a carbonate-rock aquifer, which makes groundwater hard to discharge and
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Figure 3.7: Boxplot of correlation coefficients between RZSM anomalies and SPEI in
3-month, 6-month, 9-month, 12-month, 18-month, 24-month accumulation periods for the
34 tree-ring sites, where the black circles show the outliers

recharge. The changes in groundwater do not have significant effects on tree growth. In

addition, this study also calculates the mean Pearson correlation between resampled TRSGI

and SPI/SPEI in different accumulation periods (see Appendix II). Both SPI and SPEI are

significantly correlated to TRSGI at the sites in Oregon. For the sites in Wyoming, there is

no considerable correlation between TRSGI and GWS anomalies, SPI, and SPEI. The tree

site in North Carolina has only one significant correlation between SPI12 and TRSGI. The

tree site in New Mexico (nm589) has significant comparisons of SPEI3, SPEI6, and SPI3.

In the previous results of the correlations between monthly GWS anomalies and drought

indicators (SPI and SPEI), the correlation value peaks at SPI9 and SPEI6 at the nm589,

respectively. A possible reason is that the local water table is relatively shallow and the
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Figure 3.8: Maps showing the spatial patterns of correlations between RZSM anomalies and
SPEI at 34 sites. The radius of the symbol represents the correlation coefficient. A larger
circle stands for a higher correlation. (a) RZSM-SPEI3, (b) RZSM-SPEI6, (c) RZSM-SPEI9,
(d) RZSM-SPEI12, (e) RZSM-SPEI18, (f) RZSM-SPEI24
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Figure 3.9: The heatmap showing the correlations between month GWS anomalies and
resampled TRSGI in ten states, where grey represents insignificant correlations, and brown
represents high correlations and black represents low correlations.

formation of the local aquifer is the sandstone. Deep moisture and groundwater have quicker

responses to precipitation. Thus, the growth of trees would have significant correlations with

SPI3, SPEI3, and SPEI6. However, further studies still need to be conducted in the local area

for a larger number of study sites. Additionally, except for the site in North Carolina, the

other insignificant sites have relatively low correlation coefficients between GWS anomalies

and SPI and SPEI. In the future, additional studies are required to explore possible reasons

why relationships between tree-ring growth and environmental variables are weak in these

regions.

As shown in Figure 3.9, the means of correlations at the sites in Arizona, California,

Idaho, Mississippi, Oklahoma, and West Virginia are significant during the growing season.

In Arizona, 33% of sites (az580, az583, az586) have significant correlations between GWS

anomalies. These tree sites are all located in the southeastern mountains areas of Arizona.

The GWS anomalies in June have the most significant correlation with TRSGI at these

locations, followed by May and July. There are 37.5% of tree sites (ca674, ca675, ca676)

that are significantly correlated with GWS anomalies in California. However, the site ca675
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that is located on the western slope of Blue Mountain has significantly negative coefficients

in March and April. Overall, the GWS anomalies in June have a major role in the tree-ring

growth in California. In Idaho, there is only one tree-ring site, and the correlation between

GWS anomalies and TRSGI is the most significant in September. This study suggests that

snowmelt which slowly recharges to deep soil moisture and groundwater and its accumulative

effects could have a notable contribution to the growth of tree rings at these study sites

and explain why the late growing season has the strongest correlation. In May, the GWS

anomalies have the most significant impact on the TRSGI at the site ms003 in Mississippi.

Generally, GWS anomalies in March have the most significant impact on tree-ring growth at

all of the tree sites (ok040, ok041, ok042) in Oklahoma. One of three sites (wv007) in West

Virginia has a significant correlation in June.

Since the TRSGI dataset is extracted based on the overlapping period of variables, the

species of trees are mixed among the sites with significant correlations. Different species

have different drought tolerances and chronology characteristics. This creates additional

variations when this study compares the consequences of the monthly GWS anomalies on the

tree-ring growth in different locations. In general, twelve of thirty-four sites have significant

relationships between GWS anomalies and TRSGI. The results of comparisons in California,

Idaho, and Oregon suggests that the geological environments, such as the depth of the water

table and the formation of the local aquifer and the climatic region, play crucial roles in the

relationship. The correlations in northern California and southeastern Arizona also suggest

that a tree grows on the unconsolidated and semi-consolidated sand and gravel aquifers with

a relatively higher water table tend to have a strong relationship between GWS anomalies

and TRSGI in the early or late growing season. Although snowmelt also has a considerable

impact on tree-ring growth in the mountains areas, the water that enters groundwater from

excessive snowmelt will result in a large increase of the water table and have a negative

influence on the tree-ring growth in the growing season.
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3.4 Comparison between monthly RZSM anomalies and TRSGI

This study also investigates the impacts of root zone soil moisture on tree-ring growth.

In comparison to GWS anomalies, the monthly RZSM anomalies indicate more rapid

variations of water in the 1-meter-depth soil layer. For the areas with a deep water table or a

relatively impermeable aquifer, such as Oregon and Idaho, the RZSM anomalies might have

a larger impact on tree growth than the GWS anomalies. Like the comparison of the monthly

GWS anomalies, this study calculates the mean of Pearson correlation coefficients between

the monthly RZSM anomalies and the resampled TRSGI by bootstrapping in each state

through the growing season. A higher absolute value of the correlation coefficient represents

a stronger positive or negative relationship between RZSM anomalies and resampled TRSGI

in a month of the growing season.

Figure 3.10 demonstrates the average correlation coefficients between monthly RZSM

anomalies and resampled TRSGI. The x-axis is the state where the sites are in, and the y-axis

is the month in the growing season. The sites in New Mexico and Wyoming are still not

significant in the comparison of RZSM anomalies. It matches the result in section 3.4 that

the tree-ring width is not directly related to environmental variables. This study suggests

that the different biological performances of trees in a drought event could be one of the

possible reasons. Trees can be grouped into two types: isohydric and anisohydric, based

on different reactions in the soil water stress. Isohydric plants will close the stomata to

maintain the daily leaf water potential at a constant level when the soil moisture is decreasing.

The daily leaf water potential of the anisohydric plants will fall when the soil moisture is

reducing. Therefore, the potential of observing a drought event in the tree-ring record of

an isohydric tree is higher than an anisohydric tree. This characteristic is not defined by

species. On the contrary, there are few species that correspond exactly to definitions of

isohydric or anisohydric (Hochberg et al., 2018). Since the local environments are various
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Figure 3.10: The heatmap showing the correlations between month RZSM anomalies and
resampled TRSGI in ten states, where grey represents insignificant correlations, brown and
black represents high positive and negative correlations respectively, and brighter color
represents lower correlation

and tree species are mixed in Wyoming and New Mexico, the trees in these regions might be

anisohydric (E. North, personal communication, June 23, 2019). However, this research

cannot exclude the effects of geographic and geological environments. Further studies are

needed to compare a larger number of TRSGI datasets with longer historical records of

climatic data in the same areas.

In Arizona, California, Idaho, Mississippi, North Carolina, Oklahoma, Oregon, and

West Virginia, correlations between the monthly RZSM anomalies and TRSGI are significant

in the growing season. RZSM anomalies in May have the largest correlation with TRSGI

in Arizona. The sites with significant correlations (az580, az583, az586) are the same as

the sites in comparison of GWS anomalies. 75% of sites in California have significant

correlations in different months of the growing season. Similar to the comparison of

GWS anomalies and the TRSGI at the site ca675, a significantly negative relationship is

observed between RZSM anomalies and the TRSGI at the same study site in March. These

results suggest that the tree-ring widths decrease as the values of GWS or RZSM anomalies
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increase at the study site. Based on the local climatic and geographic environments, this

study suggests that the drier conditions in March and April indicate that less snowpack is

accumulated during the winter and the early spring is relatively warm. In the same way, if

the values of GWS and RZSM anomalies are higher in March and April, there would be a

larger volume of snowpack during the winter, and the temperature in the early spring would

be relatively lower. Therefore, this study suggests the growth of a tree might be delayed due

to the low temperature in the early spring if the values of GWS and RZSM anomalies are

higher in March and April in the Blue Mountain areas (M. Hayes, personal communication,

July 31, 2019). However, since the ca675 is the only study site in the Blue Mountain areas, it

is hard to conclude a certain reason for this interesting observation. In order to investigate

the impact of local geographic environments and improve the reliability of results, further

studies need to be conducted with a larger number of study sites on the western slope of

Blue Mountain. Generally, the average correlation coefficients in California reach a peak in

May. The site id015 in Idaho has the strongest relationship between the RZSM anomalies

and TRSGI in September. For the site in Mississippi, the root zone soil moisture in May

has the most considerable impact on tree-ring width in the same year. In Oregon where the

precipitation can hardly recharge into the groundwater, the correlations between the RZSM

anomalies and TRSGI are significantly higher than the comparisons of GWS anomalies,

which matches to this study’s prospects. The sites in Oregon have the most significant

correlations, on average, in July. For the site in North Carolina, RZSM anomalies in June

are significantly correlated with TRSGI. The sites in Oklahoma have the most considerable

mean of correlation coefficients in March. For the sites in West Virginia, in general, the

RZSM anomalies are significantly correlated with TRSGI in July.

Overall, monthly RZSM anomalies have a stronger relationship with TRSGI as

compared with monthly GWS anomalies. Twenty out of the thirty-four sites have a

significant correlation between RZSM anomalies and TRSGI during the growing season in
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this study. The correlation also highly depends on local geological and climatic environments.

For example, the site ca678 in California is located at the steep eastern slope of the Mono

Dome where the soil moisture has a larger impact on the tree growth in the growing season.

And the site ca677 with the same geographic environment has similar correlation coefficients

in the growing season as compared to the site ca678. Although different species of trees and

geographic environments cause larger variations in comparisons, monthly RZSM anomalies

in the early and late growing season generally reflect the growth of trees in a year in locations

where the soil moisture has a significant influence on the tree-ring width.

3.5 Multiple linear regression analysis

Section 3.3 and 3.4 demonstrate that GWS anomalies and RZSM anomalies in the

growing season have a significant relationship with the tree-ring width in some areas. And

the previous study shows that the SPI and SPEI in a longer accumulation period have strong

relationships with tree-ring width (Bhuyan et al., 2017). This study also calculates the

correlation coefficients between TRSGI and SPI and SPEI in all accumulation periods

(see Appendix II). Based on the results, this study selects the sites in California, Arizona,

Oklahoma, and Mississippi to develop and test multiple linear regression models and

investigate the effects of months GWS or RZSM anomalies on predicting the tree-ring widths.

The SPI9, SPEI9, monthly GWS anomalies, and monthly RZSM anomalies are used as

predictor variables, while the TRSGI is the dependent variable. Based on the correlation

coefficients between environmental variables and resampled TRSGI, this study chooses

predictor variables in different months to present yearly influences in different locations

(Table 3.5).

Figure 3.11 is a scatterplot that demonstrates relationships between each of the two

variables. It indicates good linearities in two sets of predictors: SPI and SPEI, GWS
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SPI SPEI GWS RZSM

Arizona July May May June
California March April May June
Mississippi May May May May
Oklahoma March March March March

Table 3.5: The mean, median, minimum, and maximum of correlation coefficients between
RSZM anomalies and SPEI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods

anomalies and RZSM anomalies. Since both SPI and SPEI are defined by accumulated

precipitation, and GWS is calculated from an equation of RZSM, it is rational to have these

strong linear relationships. Moreover, based on the result in section 3.1 and 3.2, the average

Pearson correlation coefficients between SPI9, SPEI9 and GWS anomalies, RZSM anomalies

are from 0.4 to 0.5. In Figure 3.11, it shows a slightly positive trend in the relationship of

SPI-GWS, SPI-RZSM, SPEI-GWS, SPEI-RZSM.

3.5.1 Variable Selection

This study uses the regsubsets function in the R package leaps to calculate the best

subset from one predictor variable to four predictor variables. The regsubsets uses the

exhaustive selection function to filter the result (Table 3.6). For the linear regression with

one predictor variable, RZSM anomalies are the best option. And the combination of SPEI

and RZSM anomalies is the best in two-predictor regressions. The linear regression that

includes SPEI, GWS anomalies, and RZSM anomalies is the best compound of three subsets.

In order to define the best linear regression model, the adjusted R square, AIC, AICc,

BIC, and PRESS are calculated for all possible subsets in this study. Table b demonstrates

the values of these criterions in each model. As indicated in Table 3.6, except for the BIC,

the rest of the criterions all suggest the model with two subsets could be the best model.

Therefore, this study proposes the linear regression model (Equation (2.14)) to fit and predict
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Figure 3.11: The scatterplot showing relationships between every two variables
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Size SPI SPEI GWS RZSM

1 *
2 * *
3 * * *
4 * * * *

Table 3.6: The mean, median, minimum, and maximum of correlation coefficients between
RSZM anomalies and SPEI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods

the tree-ring width. The result of the variable selection also indicates that RZSM anomalies

might have the most significant relationship with tree-ring width in the study regions.

Size Adjusted R2 AIC AICc BIC PRESS

1 0.07 -298.11 -297.97 -291.86 7.86
2 0.09 -298.76 -298.52 -289.39 7.82
3 0.08 -296.77 -296.41 -284.28 7.93
4 0.07 -294.78 -294.27 -279.16 8.07

Table 3.7: The mean, median, minimum, and maximum of correlation coefficients between
RSZM anomalies and SPEI in 3-month, 6-month, 9-month, 12-month, 18-month, 24-month
accumulation periods

3.5.2 Model Diagnostics

To test the quality of the model, this study calculates the residuals and slope coefficients

for the proposed model, examining the standardized residuals plots of each predictor, the

fitting plot, the square root plot, and the normal Q-Q plot (Figure 3.12). The P values of

the two slope coefficients are 0.11 and 0.01. In the standardized residual plots, SPEI9 and

RZSM anomalies are randomly distributed. However, the linearity assumption between fitted

TRSGI and the actual TRSGI seems to be violated. The normal Q-Q plot is highly skewed

at the right tail. Overall, this model is not valid for this study. Accordingly, the Box-Cox

power transformation is used to reduce the non-linearity in this model. The function boxcox
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in R is used to compute an optimal power for the dependent variable TRSGI. Based on the

result (Figure 3.13), the previous model is modified to Equation (3.1).

T RSGI0.22 = β0 + β1SPEI9 + β2RZSM + ε (3.1)

The same procedure is adopted to diagnose the new model. The P values of two slope

coefficients are 0.05 and 0.02, which is considered as significant in this study. The diagnostic

plots (Figure 3.14) illustrate significant improvements over the original model in terms of

linearity, normality, and constant variance. Therefore, the new model is valid for the training

dataset.
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3.5.3 Model Validation

In order to validate the selected regression model, this study uses the testing dataset

to calibrate the predictive capability. The min-max accuracy, mean absolute percentage

error (MAPE), and mean squared prediction error (MSPR) are calculated to evaluate the

predictive accuracy of the final model, which are 0.80, 0.28, and 0.09, respectively. These

indicators indicate the model can provide reliable predictions of the tree-ring growth in the

study regions with acceptable errors.

According to the predictor variables in the final model, it can also indicate that RZSM

anomalies and SPEI have the most significant influences on the tree-ring width in California,

Arizona, Oklahoma, and Mississippi. However, there are still some minor issues with the

final model. For example, the non-linearity and the violation of constant variances might

lead to prediction errors. In future work, increasing the sample size of the training dataset

and adding more predictor variables could reduce errors.
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Figure 3.12: Diagnostic plots for the proposed model. (a) standardized residual plot of
SPEI9 (b) standardized residual plot of RZSM anomalies (c) standardized residual plot of
fitted value (fitted TRSGI) (d) Scatterplot where the x-axis is fitted TRSGI and the y-axis is
actual TRSGI (e) square root plot where the x-axis is fitted TRSGI (f) normal Q-Q plot
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Figure 3.13: The Profile of Log-likelihood for Box-Cox Transformations
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Figure 3.14: Diagnostic plots for the new model. (a) standardized residual plot of SPEI9
(b) standardized residual plot of RZSM anomalies (c) standardized residual plot of fitted
value (fitted TRSGI) (d) Scatterplot where the x-axis is fitted TRSGI and the y-axis is actual
TRSGI (e) square root plot where the x-axis is fitted TRSGI (f) normal Q-Q plot
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Chapter 4

Conclusions

This research derives monthly GWS and RZSM anomalies from the GRACE-DA

products and uses several statistical methods to calculate the correlations with commonly-

used drought indicators (SPI and SPEI) and investigate the capabilities to detect the stress

from drought impacts on trees at study sites. In general, this study suggests that the

information from the GRACE-DA products can help to identify both short-term droughts (<

3 months) and long-term droughts (> 9 months) in most of the study regions. This research

also suggests that monthly GWS and RZSM anomalies could provide timely and dependable

information at a large spatial scale to predict and assess the forest drought stress.

The comparisons between monthly GWS anomalies and the multiple time-scale drought

indices (3-month, 6-month, 9-month, 12-month, 18-month, and 24-month SPI and SPEI)

match with the results of previous studies (Zhao et al., 2017; Mucia, 2018) that GWS

anomalies have good correlations with long-term SPI and SPEI (over 9 months). The

correlation coefficients between monthly GWS anomalies and SPI are over 0.4 when

the accumulation period exceeds nine months. The correlations between monthly GWS

anomalies and SPEI are better than the comparisons of SPI, which are over 0.5 from the

9-month accumulation to the 18-month accumulation. Monthly RZSM anomalies, on the

contrary, have frequent fluctuations when the precipitation increases or decreases. They

have relatively stronger relationships with 3-month SPI and SPEI. Both GWS anomalies and
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RZSM anomalies have spatial homogeneities across the different accumulation periods. In

addition, their performance highly depends on local environments such as topography, soil

texture, climate, and vegetation. The geological formation, such as the aquifer types, also

plays a vital role in the relationships between GWS anomalies and drought indices (SPI and

SPEI). Therefore, this study suggests that decision-maker should consider the influences of

local environments before they employ monthly GWS and RZSM anomalies into predicting

drought events.

Through the results of comparisons between monthly GWS and RZSM anomalies and

resampled TRSGI, this study suggests that monthly GWS and RZSM anomalies have good

correlations with tree-ring widths. The previous study indicates that the characteristics

of the geological formation and the depth of the water table could determine the effect of

groundwater on the growth of trees (Gholami et al., 2015). The results in this research also

suggest that they could weaken correlations between GWS anomalies and TRSGI in some

areas such as the study sites in Oregon. Different responses of droughts among mixed tree

species and isohydric/anisohydric features of trees also create additional interferences to

quantify the impacts of GWS and RZSM anomalies on tree-ring widths. Although there

are many variations in these comparisons, six out of ten states (Arizona, California, Idaho,

Mississippi, Oklahoma, and West Virginia) have significant relationships between GWS

anomalies and TRSGI with the significant level of 0.05 (Figure 3.9), and it increases to

eight states (Arizona, California, Idaho, Mississippi, North Carolina, Oklahoma, Oregon,

and West Virginia) between RZSM anomalies and TRSGI (Figure 3.10). The results also

suggest that a majority of significant correlations between GWS and RZSM anomalies and

TRSGI are in the late spring or the early summer. Due to the variations of the soil moisture

content and the groundwater level, correlations have both negative and positive values. The

absolute values of them are in a range from 0.51 to 0.96. Therefore, this study suggests

that monthly GWS and RZSM anomalies can provide timely information about the growth



56

of trees before the end of the growing season. However, the percentage of tree sites with

significant correlations is just 35.3% for the comparison of GWS anomalies and 58.8% for

the comparison of RZSM anomalies. The small number of tree sites (34) and the short period

of observations (8 years) could be two main reasons to have a relatively low percentage of

significant sites and large variations of results.

This study uses multiple linear regression to quantify the impacts of monthly GWS and

RZSM anomalies on tree-ring widths. The analysis also includes commonly-used drought

indices (SPI, SPEI). The final model consists of SPEI9 and monthly RZSM anomalies. It

indicates the predictive variable, monthly RZSM anomalies, is one of the most important

parameters in the equation to predict the tree-ring widths. Thus, this study suggests that

monthly RZSM anomalies could provide additional information to decision-makers about

the stress from the drought on trees. Moreover, RZSM anomalies are collected remotely

and contain information for large areas. This study suggests that considering monthly

RZSM anomalies in forest drought stress detecting and monitoring could improve the

decision-makers’ efficiency.

Based on the results of this research, several improvements can be adopted in the future.

First, the tree sites are distributed across the CONUS because of the limitation of the tree-ring

database. To reduce the spatial variations, in future work, the study could focus on a national

forest region or a state. Second, increasing the number of tree sites and the length of the

observation period is necessary to improve the reliability of statistical results. Furthermore,

station-based SPI and SPEI data could be interpolated to gridded datasets to reduce the

effects of distance between weather stations and tree sites. Limiting the tree species could

help investigate the various responses of soil moisture stress among different species. And

the impacts of local environment could be assessed by comparing correlations of the same

species in different locations. In the end, future studies need a validation process to assess

the results of predictions from the GRACE-DA information. For example, prediction results
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could be compared with the U.S. Drought Monitor datasets.

In the future, additional studies can be developed to investigate the relationships between

environmental variables and the growth of trees. For example, long historical modeled

datasets such as the Catchment land surface model could be used as input variables. Other

geographic variables such as AWC could also be considered to provide supplementary

information. Finally, non-linear methods can be adopted in the model selection if the

non-linearity exists in future work.
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Appendix A

Time Series Plots of monthly GWS anomalies, SPI, and SPEI at az597,

az587 and or092

Figure A.1: The time series plot of monthly GWS anomalies and SPI3 at sites az597 and
az598 (they are at a same location)



59

Figure A.2: The time series plot of monthly GWS anomalies and SPI6 at sites az597 and
az598 (they are at a same location)

Figure A.3: The time series plot of monthly GWS anomalies and SPI9 at sites az597 and
az598 (they are at a same location)

Figure A.4: The time series plot of monthly GWS anomalies and SPI12 at sites az597 and
az598 (they are at a same location)
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Figure A.5: The time series plot of monthly GWS anomalies and SPI18 at sites az597 and
az598 (they are at a same location)

Figure A.6: The time series plot of monthly GWS anomalies and SPI24 at sites az597 and
az598 (they are at a same location)

Figure A.7: The time series plot of monthly GWS anomalies and SPI3 at the site or094



61

Figure A.8: The time series plot of monthly GWS anomalies and SPI6 at the site or094

Figure A.9: The time series plot of monthly GWS anomalies and SPI9 at the site or094

Figure A.10: The time series plot of monthly GWS anomalies and SPI12 at the site or094
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Figure A.11: The time series plot of monthly GWS anomalies and SPI18 at the site or094

Figure A.12: The time series plot of monthly GWS anomalies and SPI24 at the site or094
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Appendix B

Comparison between drought indices (SPI and SPEI) and TRSGI

Figure B.1: The heatmap showing the correlations between drought indices (SPI and SPEI)
and resampled TRSGI in ten states, where grey represents insignificant correlations, brown
and black represents high positive and negative correlations respectively, and brighter color
represents lower correlation
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