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Gas flaring is a commonly used practice for disposing of waste gases emerging 

from industrial oil drilling and production processes. It is a serious environmental and 

economic hazard with adverse impacts on air quality, climate, and the public health. 

Accurate determination of flare locations and estimation of associated emissions are 

therefore of prime importance. Recently developed Visible Infrared Imaging Radiometer 

Suite (VIIRS) Nightfire product (VNF) has shown remarkable efficiency in detecting gas 

flares globally, owing primarily to its use of Shortwave Infrared (SWIR) band in its 

detection algorithm. This study compares and contrast nocturnal hot source detection by 

VNF to detections by other established fire detection products (i.e., Moderate Resolution 

Imaging Spectroradiometer (MODIS) Terra Thermal Anomalies product (MOD14), 

MODIS Aqua Thermal Anomalies product (MYD14) and VIIRS Applications Related 

Active Fire Product (VAFP)) over an extensive gas flaring region in Russia - Khanty 

Mansiysk Autonomous Okrug, for the time period of April - August 2013. The surface 

hotspots detected by VNF were found to be much higher in magnitude than detected by 

other products. An attempt to replicate VNF algorithm locally for better comprehension, 

revealed threshold related discrepancies in VNF V1.0 in multiple spectral bands. Case 

studies for reconciliation between VNF-R (VNF replicated product) and VAFP hotspots 
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showed that convergence in hotspot detection between two products is possible by scaling 

up VNF-R thresholds, and, VAFP can detect large flares having strong spectral signature 

in SWIR bands. The efficacy of VNF hotspot detection was evaluated for 10 previously 

identified flare locations with varying hot source sizes over the period of April-August 

2013. VNF was able to detect all the test sites with frequency of detection varying between 

20% to 42% of the days tested. Mean areas of tested gas flares estimated by VNF showed 

good agreement with areas of flares computed using Google Earth with a linear correlation 

of 0.91; however, VNF estimated areas were found to be somewhat underestimated. 

Overall the results indicate significant potential of VNF in characterizing gas flaring from 

space.  
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1. Introduction 

   

 

Gas flaring is a global environmental hazard severely impacting air quality, 

economy, climate, vegetation and public health (Ismail and Umukoro 2012). According to 

World Bank estimates, over 140 bcm (billion cubic meters) of natural gas is being flared 

or vented globally each year, which adds about 350 million tons of carbon dioxide to the 

atmosphere in addition to other harmful impacts (World Bank 2018). Flaring is a 

high-temperature oxidation process used to burn combustible components, mostly 

constituting hydrocarbons of waste gases from industrial operations (Gervet 2007). Flaring 

is widely used to dispose of economically unprofitable waste gases emerging with oil, in 

addition to acting as a safety device for preventing overpressuring of vessels, however, 

because of lack of developed infrastructure flaring at large number of sites results in 

wastage of valuable energy resources. Profuse amounts of world’s energy supply are 

continuously lost through the flaring of gas, contributing to the global carbon emission 

budget (Casadio et al. 2012b). Apart from greenhouse gases like methane and carbon 

dioxide and pollutants like, nitrogen dioxide (NO2), sulphur dioxide (SO2) and carbon 

monoxide (CO), the flares contain widely-recognised toxins, such as benzene (C6H6), 

benzopyrene (C20H12), carbon disulphide (CS2), carbonyl sulphide (COS) along with 

harmful metals such as mercury, arsenic and chromium (Friends of the Earth International 

2005). Gas flare emissions pose a great threat to human health, built up environmental and 

social well-being of inhabitants from host communities (Nwanya 2011). Thus, it becomes 

pertinent to characterize gas flaring activity and its associated emissions, both spatially and 

temporally.  
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1.1 Background  

The earliest detection of gas flaring using satellite remote sensing dates back to the 

early 1970s, when Croft (1973) observed nighttime imagery (mainly over Africa) using a 

low-light sensor (operating in spectral range of 0.4-1.1 µm) belonging to the United States 

Air Force Data Acquisition and Processing Program (DAPP) [DAPP system is now called 

Defense Meteorological Satellite Program (DMSP)], and found gas flares to be the 

brightest features observed in the visible band. Croft (1978) used the imagery from the 

DAPP sensor along with Landsat Multi-spectral Scanner System to observe gas flares in 

many parts of the world including Algeria, Libya, Nigeria, the Persian Gulf, Siberia and 

Mexico.  Croft (1978) used visual identification and manual analysis procedures for the 

identification of flares from the images and reasserted that the gas flares associated with 

world’s major oil fields were the brightest human-made features observed from space. 

Further, Muirhead and Cracknell (1984) used the daytime imagery from NOAA’s 

Advanced Very High Resolution Radiometer (AVHRR) to detect offshore gas flaring sites 

in the North Sea. Their detections were based on the low brightness values observed during 

daytime in the infrared channel (3.55 µm - 3.93 µm) of AVHRR, from the pixels containing 

gas flares. Much later, the DMSP Operational Linescan System (OLS) products were used 

to produce maps of gas flares, fishing boats, fires and human settlements for 200 nations 

(Elvidge et al. 2001) as a part of a first study to detect gas flaring globally. Further analyses 

of DMSP-OLS products provided the first record of long-term (1994-2005) gas-flaring 

volumes (Elvidge et al. 2007) through an ad-hoc calibration method. Later, these flaring 
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and emission estimate products were extended to 2008 (Elvidge et al. 2009). Although 

these studies were able to characterize some gas flaring sites, their procedure relied on 

visual inspection of images (circularity and bright centers of flares), which was not time 

efficient. Also the spatial resolution of the instruments (e.g., smoothed nominal spatial 

resolution of 2.7 km for DMSP-OLS) wasn’t usually high enough to resolve accurately the 

flare location, particularly if the flares were situated in proximity of bright urban areas. 

 The first study that objectively identified hot sources such as flares was done by 

Matson and Dozier (1981) who found that gas flares could be identified using hot source 

signals in mid-wave infrared (MWIR) at approximately the 3.7 μm wavelength channel 

and the 11 μm  longwave infrared (LWIR) channel from AVHRR’s nighttime imagery, for 

determining surface temperatures of sub-pixel fires. The method highlighted pixels with 

combustion sources based on the brightness temperature difference between MWIR and 

LWIR channels. This formed the basis of fire detection algorithms for many sensors (e.g. 

Moderate Resolution Imaging Spectroradiometer (MODIS), AVHRR, Visible Infrared 

Imaging Radiometer Suite (VIIRS) in years to come (Giglio et al. 2003; Weaver et al. 2004; 

Csiszar et al. 2014).  These fire products were designed to detect wildfires and biomass 

burning; however, they lacked sensitivity to gas flare detections, as gas flares burn at much 

higher temperatures. Much later, an active flare detection algorithm for global flare 

monitoring was developed by Casadio et al. (2012b) using Along Track Scanning 

Radiometers (ATSR) short-wave infrared (SWIR) band imagery, which had previously 

been exploited for volcanic activity monitoring (Rothery et al. 2001). Their fixed threshold 

algorithm, based on SWIR radiance values, offered significant improvement in detecting 

hotspots over previous manual detection methods, although the low spatial resolution of 
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the ATSR instrument (1000 m at NADIR) still posed a limitation on the accuracy of flare 

detection, especially when more accurate estimations of flare locations and flaring volumes 

are desired (Anejionu et al. 2015).  Casadio et al. (2012a) further revised their algorithm 

by an integrated use of ATSR and Synthetic Aperture Radar (SAR) nighttime products for 

detecting flares in the North Sea.  

More recently, Elvidge et al. (2013) have developed an algorithm using SWIR bands 

(1.6 µm channel as primary detection band) data from high resolution VIIRS nighttime 

imagery for global fire activity monitoring, called VIIRS Nightfire (referred to as VNF 

product hereafter in this study).  The VNF algorithm also uses five other spectral bands in 

the near infrared, medium wave infrared region and a panchromatic Day-Night band 

(DNB) for additional quality checks on detections.  

Anejionu et al. (2014) also developed an objective flare detection method based on 

multispectral infrared band data from Landsat imagery (having high spatial resolution of 

30 m). The detections were nonetheless confined to Niger data only and their method was 

handicapped by limitations such as low frequency of available cloud-free images and 

unavailability of nighttime Landsat data. Anejionu et al. (2015) recently used MODIS data 

to develop a revised flare detection and flare volume estimation technique over Nigeria, 

because of the higher temporal resolution of the MODIS instrument and the availability of 

nighttime multi-spectral data. However, the drawbacks of using MODIS data are: 1) the 

lower spatial resolution (1km at nadir) as compared to Landsat and 2) the SWIR MODIS 

bands [band 6 (1.628-1.652 µm) and band 7 (2.105 -2.155 µm) that are more sensitive to 

flare detections] are turned off during nightmode scans (Ahmad et al. 2002), so they had to 

rely on MWIR bands (21-22, both centred on 3.96 µm, however differing in spectral 
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radiance and noise equivalent temperature difference sensitivity), used mainly for detecting 

biomass burning. Nevertheless, all these efforts have paved the way for more precise and 

automated detections of gas flares globally, and so moving forward, a comprehensive study 

of new active gas flaring products would be beneficial in this direction.  

 

1.2 About this study  

Despite the availability of high resolution data from new generation satellite sensors, 

there have been only a limited number of studies to monitor gas flaring from space and the 

products are not well-validated (Casadio et al. 2012b; Anejionu et al. 2015). Therefore, a 

detailed analysis of performance of nighttime fire products over gas flaring regions is 

necessary.  

The objective of this work is to evaluate the efficiency of using data from multiple 

satellite sensors to assess gas flaring activity from space over an extensive gas flaring 

region. The test region used for the study is Khanty Mansiysk Autonomous Okrug, Russia. 

The choice of the region is based on the fact that Russia has emerged as the biggest flaring 

region of the world lately (Elvidge et al. 2009)  and the satellite-based estimate of gas 

flaring volumes reported from Khanty Mansiysk region alone account for almost 50% of 

total Russian flaring (Elvidge et al. 2007; Casadio et al. 2012b). Russia is believed to be 

responsible for a quarter to a third of global associated gas flaring. Recent World Bank 

report using data from NOAA shows Russia flares about 35 bcm of gas per year and the 

related economic losses account for $5 billion per year (World Bank 2013). However, 

domestic assessments claim only about 15-20 bcm of gas is flared annually in Russia. 

These discrepancies are due to the lack of sufficient instrumentation required to generate 
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precise statistics on flaring volumes (Oil and Gas Eurasia 2009). According to the 

Government of Khanty Mansiysk Autonomous District, only half of the flare units 

operating were equipped with metering devices as of 2007, which worsens the problems 

for estimation of flaring volumes, required to assess added burden on global carbon budget 

(Knizhnikov and Poussenkova 2009). In view of these inconsistencies and the need to 

monitor gas flaring activity efficiently, it is highly important to study the large gas flaring 

regions in Russia such as Khanty Mansisyk using more effective and reliable methods.  In 

contrast to the ground-based observations, satellite remote sensing provides remarkable 

spatial (and sometimes temporal) advantages because of the routine and global coverage 

by the satellite sensors.   

This study primarily assesses the performance of the existing fire products 

quantitatively over the test region. It is well known that factors such as differences in sensor 

characteristics, spatial resolution and along-scan aggregation schemes play an important 

role in resultant fire detections differences (even when the satellites on which the sensors 

are aboard have similar orbital characteristics, as in the case of VIIRS on board Suomi  

National Polar-orbiting Partnership (NPP) & MODIS on board Aqua). This study 

investigates other important factors as well, such as the choice of a primary detection band, 

which determines the efficiency of hot source detections during nighttime. This work also 

looks into the working of newly developed (and seemingly more efficient, however, not 

well validated) VNF algorithm and reports some inconsistencies in the version 1.0 of the 

product. Additionally, this study attempts to reconcile the detection differences between 

VNF and other fire products, evaluate the performance VNF products on known flaring 

sites and perform validation of some key parameters reported by the VNF.  
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 Chapter 2 provides details about the datasets used in this study and the study region. 

Chapter 3 and Chapter 4 describe the methodologies and results respectively. Chapter 5 

presents conclusions of the study and, finally, Chapter 6 presents some important updates 

occurring between the completion of research and publication of this thesis.  
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2. Data & Region of Study 

 

2.1 Data 

Four different fire detection products based on satellite sensor data were used 

in this study to monitor gas flaring activity over the study region. The four products are:  

NASA’s MODIS fire products, MOD14 and MYD14; NOAA’s VIIRS Active Fires 

Applications Related Product, (called VAFP in this study); and NOAA’s VIIRS 

Nightfire (referred to as VNF in this study) product. Nighttime data from all four 

products were acquired for five summer months (April - August) of 2013. The 

following subsections describe the datasets used in this study.  

 

2.1.1 MODIS Fire Products (MOD14 and MYD14) 

The MOD14 and MYD14 are the level-2 Fire and Thermal Anomalies products 

derived from the radiances observed in the MWIR and LWIR channels of MODIS 

instruments residing on NASA Earth Observing System (EOS) Terra and EOS Aqua 

satellites respectively. Both Aqua and Terra acquire data twice a day (once each in 

nighttime and daytime) about three hours apart from each other and are used to produce 

level-2 swath data at 1 km resolution on a daily basis. The detection algorithm is based 

on the brightness temperatures derived from MODIS 4 µm and 11 µm channels (Justice 

et al. 2002; Giglio et al. 2003). The detection function on either an absolute test, where 

the derived brightness temperature of the potential fire pixel is more than the 

predetermined threshold, qualifying it as a fire containing pixel, or a contextual test, 

where a series of tests are employed to detect fire pixels having a temperature difference 

with the background large enough so as to be qualified as a fire pixel. Apart from 
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providing the geolocation of the fire detected, the science data sets in the product 

provide information on fire mask, fire radiative power and quality flags for the 

algorithm. For this study, MODIS Collection 5 Fire and Thermal Anomalies products, 

MOD14 and MYD14, were downloaded from NASA’s Lands Processes Distributed 

Active Archive Center (LPDAAC 2014). 

2.1.2 VIIRS Active fire product (VAFP) 

The VIIRS VAFP is the fire detection product derived from radiances obtained 

in MWIR and LWIR channels of VIIRS instrument aboard Suomi National Polar-

Orbiting Partnership (NPP), launched in October 2011. The EOS MODIS Collection 4 

Fire and Thermal Anomalies Algorithm (Giglio et al. 2003) forms the basis of the 

algorithm for this product (Csizar et. al 2014). The tests used to identify fire-containing 

pixels in VAFP product are similar to the ones used in the MODIS fire detection 

algorithm. The primary channels used for this algorithm are M13 (3.9 - 4.1 µm) and 

M15 (10.2 -11.2 µm) bands. Although the spectral placement of these channels is a little 

different from MODIS, the same basic algorithm is applicable to these channels. VIIRS 

on board Suomi NPP has a similar overpass time as MODIS on board Aqua but they 

differ in spatial resolution (VIIRS having higher spatial resolution than MODIS) and 

along-scanline aggregation schemes, so the difference in detection between these 

products stems mostly from these reasons. At present the VAFP only reports the 

geolocation of pixels detected as containing hot sources. VAFP data for this study were 

downloaded from NOAA’s Comprehensive Large Array Data Stewardship System 

(CLASS 2014). 
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2.1.3 NOAA’s VIIRS Nightfire product (VNF) 

The Nightfire product, VNF, developed by Elvidge et al. (2013), provides daily 

nocturnal fire monitoring data globally. The product operates on level-2 Sensor Data 

Records (SDR) data from VIIRS sensor aboard Suomi NPP. It uses radiances observed 

in visible, near-infrared (NIR), SWIR, MWIR and DNB spectra, which is primarily 

based on detections in SWIR band (1.6 µm) that corresponds to the M10 band in VIIRS. 

The SWIR bands prove advantageous for hot source detection during nighttime as high 

radiant emissions from the hot sources recorded by them stand out in contrast to the 

sensor noise recorded otherwise. The product provides crucial parameters such as 

subpixel fire area, radiant heat, radiant heat intensity and fire temperature based on 

Planck curve fitting, along with the geolocation and other metadata such as radiance 

thresholds, quality flags and cloud mask. VNF version 1.0 data for this study were 

downloaded from NOAA’s National Geophysical Data Center (NGDC 2014). 

Preliminary testing of nighttime detections by the four aforementioned fire 

products during the period May-July 2013, demonstrates that gas flares are quite 

abundant in the study region (Fig. 2.1), the VNF product is apparently able to detect 

them more efficiently than other products, as it explicitly utilizes the shortwave bands 

to detect hot sources, like flares, even with small surface areas on the order of only a 

few square meters. The cumulative impact on the number of detections is much larger 

when we observe detections over a larger area for a couple of months. 
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2.2 Study Region 

The Khanty Mansisyk Autonomous Okrug region chosen for this study has a 

moderate continental climate. The winters are very long, snowy and cold (temperatures 

can reach -30 C in winters), and, the summers are short and warm. A characteristic 

feature of the climate of this region is rapid changes of weather in spring and summer, 

and significant daily temperature drops (ADMHMAO, 2019). The average January 

precipitation is 25 mm and the average July precipitation is 59 mm, whereas, the 

average January temperature is -22.6 C and the average July temperature is 18.1 C 

(Federation Council, 2019).   

For this study, MOD14, MYD14, VAFP and VNF products were used over a 10° 

x 10° region (55° N - 65° N, 65° E -75° E) which covers areas from the region of interest 

Khanty Mansiysk Autonomous Okrug in Russia and some neighboring states such as, 

Yamalia and Tyumen Oblast (Fig. 2.2).  
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Figure 2.1 Nighttime fire detections by MOD14, MYD14, VAFP and VNF over the study 

area during summer 2013.  
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Figure 2.2 Test region (highlighted in green) covering parts of Khanty Mansiysk 

Autonomous Okrug (red boundaries), Russia. Image Courtesy: Google Earth. 

(65° N, 65° E) (65° N, 75° E)

(55° N, 65° E) (55° N, 75° E)
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3. Methods 

 

This chapter is divided into five sections, with each section detailing the 

methodology for a distinct objective. The following sections describe methods used for 

creating the gas flaring map using VNF data, replication of the VNF algorithm (creating 

the replicated product, VNF-R), reconciliation between VAFP and VNF-R, temperature 

and fire area sensitivity analysis, and evaluation of the VNF product, respectively.  

3.1 The gas flaring map and hotspot detection by multiple products 

 Preliminary analyses indicated that the VNF product detected a greater amount 

of nocturnal fire activity in the study area than any of the other products (Fig. 2.1). 

Therefore, the VNF product was used to produce a baseline map that would demarcate 

the gas flaring regions within the study area. This demarcation of flaring regions was 

done to quantify the number of detections made by different fire products within and 

outside the highlighted gas flaring regions, in order to evaluate the fire product 

performance. The entire study area was broken down into an array of 0.25° × 0.25° grid 

cells. Persistence of detection within the cells and associated high temperature were 

used as the criteria for delineating the gas flaring regions. The hotspots detected by the 

VNF were collocated over the reference grid for each day (a total of 153 days were 

used). Only the detections having cloud mask as clear and having temperatures higher 

than 1600 K (temperature criterion from Elvidge et. al 2013) were used and marked as 

valid, the rest of the detections were removed. The total number of valid detections 

within each cell were recorded for each day. For each cell, a frequency counter was set 

up to count the number of days when clear-sky, hot spot activity was observed. Finally, 
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the cells having at least 15 days (almost 10% of total days studied) of hotspot activity 

were highlighted as gas flaring regions.  

Once the gas flaring regions were determined, detections from MOD14, 

MYD15, VAFP and VNF falling within and outside of these demarcated gas flaring 

regions for five months (April to August) of 2013 were recorded. In addition, detection 

counts for each cells from the VNF product were divided into two categories based on 

associated brightness temperatures (TB), a) TB < 1600K and b) (TB  ≥ 1600K), to see 

how detections from both these temperature ranges align with the gas flaring regions, 

with the latter range representing hotter sources (temperatures characteristic of flares). 

The separation by TB is also helpful in the characterization of the hot source type (gas 

flares or forest fires, biomass burning etc.) found in the study area along with spatial 

pattern of their occurrence. The gas flaring regions determined using VNF product 

along with nighttime detections from MOD14, MYD14 and VAFP products for five 

months (March to August) of 2013 are shown in Section 4.1. 
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3.2 The VNF algorithm and its replication 

The observed higher detection counts from the VNF product in the study area 

motivated the need to understand the functioning of the VNF product better. The first 

part of this section present briefly to the readers the theoretical basis of the VNF 

algorithm and second part describes the VNF algorithm flow and compares it to MODIS 

fire product algorithm respectively. The third part of this section deals with the 

replication of VNF algorithm as performed (to the extent possible) on our local 

machines to comprehend VNF’s operation in greater detail. It discusses the procedures 

undertaken to replicate VNF locally and create the replicated product, VNF-R.   

3.2.1 The VNF algorithm theoretical background 

The VNF detection algorithm is a hotspot identification algorithm that detects 

and characterizes subpixel hot sources using nocturnal data from various VIIRS spectral 

bands.  

The hot source detection from space-borne instruments is based on Planck's law 

which states that the characteristic radiation emitted by a blackbody is dependent on its 

absolute temperature. 

𝑅(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5
1

𝑒(ℎ𝑐 (𝜆𝐾𝐵𝑇)⁄ )−1
                                                                                                    (1) 

where R is the spectral radiance (W.sr-1.m-2.m-1), T is the absolute temperature (K), λ 

is the wavelength (m), h is the Planck constant (6.62  10-34 m2.kg.s-1), KB is the 

Boltzmann constant (1.38  10-23 m2.kg.s-2.K-1), c is the speed of light (3.0  108 m.s-1). 

Planck’s law provides the basis for another important law used in fire detection, i.e., 

Wien's displacement law, which states that the warmer the object, the shorter the 

wavelength of its peak radiant emission. 
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λmax = Cw T⁄                                                                                                                 (2) 

where Cw is Wien's constant (2.89  10-3 m.K), T is the temperature of the object (K), 

λmax is the wavelength of peak emitted radiation (m). 

The peak radiation emitted from a typical flaming fire surface (temperature 

~1000 K) lies mostly near the MWIR region of the electromagnetic spectrum. However, 

gas flares burn at very high temperatures (~1600 K and above) and thus their peak 

radiant emissions are at much shorter wavelengths, i.e. in SWIR.  Planck function 

curves are shown in Fig. 3.1, to demonstrate how peak radiance shifts to shorter 

wavelengths for hotter sources. VIIRS has a unique collection of SWIR and near-IR 

bands that are used as imaging bands during the daytime and record sensor noise during 

nighttime with an exceptional ability to detect hot sources (Zhizhin et al. 2013). The 

VNF algorithm essentially exploits these bands, primarily the M10 band (centered on 

1.6 µm) for hot source detection. The other spectral bands used by VNF are M7, M8, 

M12, M13 and DNB (Table 3.1). 

A special property of VIIRS data are that the increase in M-Band pixel size from 

nadir to the edge of the scan is constrained by a varying on-board pixel aggregation 

scheme (Cao et al. 2014). From nadir up to scan angle  31.72°, signals from three 

pixels are aggregated together (zone 3:1), from 31.72° up to scan angles < 41.86°, 

signals from two pixels are aggregated (zone 2:1) and then from 41.86° up to scan 

angles 56.28°, no aggregation is done (zone 1:1). For detections in M10, M7 and M8 

bands, the VNF calculates separate sets of thresholds for these three aggregation zones 

by grouping pixels of same aggregation zone together. This is done to make detections 

as sensitive as possible in these bands since the aggregation scheme alters the signal to 

noise ratio in these aggregation zones, as it constrains the pixel size (Elvidge et al. 
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2013). Fig. 3.2 helps in better visualization of these aggregation zones in the VIIRS 

swath

 

Figure 3.1  Blackbody spectrum for different temperature sources.  

 

 

 

 

 

 

 

 

 

 



 

 

19 

 

 

Table 3.1 Suomi-NPP VIIRS channels used in the VNF algorithm. 

 

 

 

 

 

 

VIIRS band 

name 

Central  

wavelength (μm) 

Bandwidth  

(μm) 

Wavelength 

range (μm) 

Band Type 

     
M7 0.865 0.039 0.846-0.885 Near IR 

M8 1.240 0.020 1.230-1.250 Near IR 

M10 1.610 0.060 1.580-1.640 Short Wave IR 

M12 3.700 0.180 3.610-3.790 Med. Wave IR 

M13 4.050 0.155 3.970-4.130 Med. Wave IR  

DNB 0.700 0.400 0.500-0.900 Panchromatic 
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Figure 3.2  Aggregation zones in VIIRS swath. Source: (Polivka et al. 2015) 
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3.2.2 VNF and MODIS fire detection algorithms 

The VNF is an M10 band based algorithm, thus the candidate hot pixels are chosen 

on the basis of anomalously high values in the M10 band (Fig 3.3) All the pixels are first 

prescreened for solar contamination; to eliminate the solar glint, only pixels with solar 

zenith angles (SZA) greater than 95° are approved. The approved pixels are then pooled 

together according to their aggregation zones. Background statistics mean (µ) and standard 

deviation (δ) are calculated using M10 digital numbers (DN), unsigned integers recorded 

in VIIRS sensor data record files which can be converted to radiances using scale factor 

and offset values. Pixels with DN greater than 100 are excluded from background 

calculations to remove any bias caused by obviously hot pixels in threshold calculations. 

For each aggregation zone a threshold of (µ + 4× δ) is set and pixels having M10 DN higher 

than the threshold of their respective zone are designated as candidate hot pixels.  

Next, the VNF algorithm searches if these candidate pixels are hot in other bands 

as well. Corresponding pixels are located in M7 and M8 bands using line and sample 

numbers of M10 hot pixels. The background statistics are calculated for thresholds 

(calculated in radiance instead of DN) in M7 and M8 bands in the same manner as in M10. 

If the corresponding pixels have radiance values above the thresholds calculated for M7 

and M8 bands, then the pixels are marked as hot in these bands. 
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For M12 and M13 (both MWIR bands) the threshold calculation is different than 

SWIR bands as earth surface and cloud features complicates the analysis for them. The 

thresholds are calculated using a 10×10 window around the pixel corresponding to a M10 

hot pixel. Any pixels corresponding to other hot M10 pixels found within the 10×10 

window, are excluded from the 10×10 window background statistics calculations; that is, 

the mean and standard deviation for threshold calculation are calculated using the rest of 

pixels in the background. If fewer than 50 background pixels are found within the 10×10 

window, the window is expanded to 100×100. The hot pixel threshold in M12 and M13 is 

set as (µ + 3× δ). Candidate pixels (pixel in M12 and M13 corresponding to M10 hot pixel) 

exceeding this threshold are marked as hot in these bands.  

The VNF algorithm then uses line and scan angle to approximate a DNB location 

corresponding to an M10 hot pixel that is also local maxima (pixels where immediate 

neighbours have low DN values) in M10. Exact spatial matches are not possible because 

of different pixel width in DNB pixels in correspondence to M10 hotspots. If DNB local 

maxima are identified, metadata (DNB radiance, geolocation, quality flag etc.) for that 

pixel are recorded.  

The VNF algorithm then moves to noise filtering, atmospheric filtering, Planck 

curve fitting (for sub-pixel fire area and temperature calculations) and cloud cover analysis 

parts; however, the scope of this study is confined to hotspot detection and threshold 

calculation. 
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The nighttime fire detection algorithm for MODIS products (MOD14 and MYD14) 

begins with the pre-screening of  pixels for clouds and water bodies (Fig. 3.4). Nighttime 

pixels are classified as cloudy if the condition, T12 (Brightness temperature at 

12 µm) < 265 K, is satisfied. Water pixels are identified using 1- km resolution land sea 

mask contained in MODIS geolocation product. Next, the algorithm moves towards the 

elimination of obvious non-fire pixels and the identification of potential fire pixels. Pixels 

passing the tests, T4 (Brightness temperature at 4 µm) > 305 K and ΔT > 10 K (ΔT = T4 – 

T11 (Brightness temperature at 11 µm)), are considered for further evaluation, whereas, the 

pixels failing these tests are immediately discarded. The algorithm then follows two logical 

paths for fire pixels identification.  

The first path is the absolute threshold test, where a pixel is labelled as a fire pixel 

if T4 > 320 K. The second path consists of a series of contextual tests. This path requires 

characterization of background pixels. Valid background pixels are searched in a window 

centered around the potential fire pixel and are defined as those not contaminated by cloud, 

are on-land and are not background fire pixels (having T4 > 310 K and ΔT > 10 K). The 

initial 3 × 3 window around the potential pixel can scale up to a 21 × 21 window to find 

required number of valid background pixels (should be at least 25% of pixels within the 

window and at least eight in number).  Once sufficient number of valid background pixels 

are found, a series of statistical computations are done on them. µT4 and δT4 represent the 

mean and mean absolute deviation of T4 for valid background pixels respectively, and, 

µΔT and δΔT represent the mean and mean absolute deviation of ΔT for valid background 

pixels respectively. Post the background characterization stage, three contextual tests are 
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done for relative fire detection ( test 1: ΔT > µΔT + 3.5 δΔT, test 2: ΔT > µΔT + 6 K and 

test 3: T4 > µT4 + 3 δT4). In the end, the potential pixel is identified definitively by the 

algorithm as a nighttime fire pixel, if the pixel passes either all three contextual tests or the 

absolute threshold test done earlier.  

As mentioned earlier, the VAFP uses the equivalent of similar basic MODIS fire 

products algorithm described above for nocturnal fire detections (Csizar et. al 2014). 

While, VNF utilizes a SWIR band (VIIRS M10 band) as its primary detection band, 

nocturnal fire detections by VAFP and MODIS fire products (MOD14 and MYD14) are 

based on MWIR and LWIR bands. Since, the peak radiant emissions from gas flares are in 

SWIR, VNF is better suited to detect more gas flares. Another advantage that SWIR bands 

provide is that the background contribution to nighttime radiance in them is quite low 

compared to the detector noise that is recorded by them (Casadio and Arino 2008). The 

pixels containing hot sources stand out in these bands with their high radiance values and 

low contribution from background noise. Other than the choice of primary spectral band, 

another significant factor responsible for difference in hotspot detections is the treatment 

of clouds by these products. While MOD14, MYD14 and VAFP discard the pixels 

contaminated by clouds even partially, the VNF product doesn’t discard the pixels with 

cloud cover. During examination of cloud mask, the developers of VNF product found that 

flares were consistently being misidentified as having cloud cover because of a spectral 

confusion and the pixels containing them were being marked as partially or completely 

cloudy (Elvidge et al. 2013). Therefore, a cloud-clearing algorithm was used in VNF to 

reset the cloud mask values for isolated cloud patches associated with M10 hot pixels 
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(potentially having flares in them). This enables an improved detection of flares by the 

VNF. VNF also uses a more stringent condition for removal of solar glint (solar zenith 

angle > 95º) compared to MODIS and VIIRS fire products (SZA ≥ 85º), which adds to 

reduction in error in nocturnal fire detection.  Other known differences such as different 

spatial resolution of sensors and separate methods of potential pixel selection by their 

algorithm are also likely to contribute to hotspot detection differences amongst VNF, 

VAFP and MODIS fire products (Table 3.2). 
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Figure 3.3 Flow chart of VNF Algorithm. Shaded part shows the part of algorithm used 

for replication in this study. 
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Figure 3.4 Flowchart of nighttime MODIS fire products algorithm.  
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Table 3.2 Differences in algorithms of tested fire products

 
 MOD14/MYD14       VAFP VNF 

Primary Detection 

Band 

4µm , 11µm channels 4µm , 11µm channels 1.6µm channel 

Treatment of Clouds Cloudy Pixels Pre-

screened 

Cloudy Pixels Pre-

screened 

Completely or 

Partially Cloudy Pixel 

considered 

Solar 

Contamination 

Observations ≥ 85⁰ 

SZA 

Observations ≥ 85⁰ 

SZA 

Observations > 95⁰ 

SZA 

Auxiliary Info Fire Radiative Power, 

Geolocation, 

Geometry 

Geolocation, 

Geometry 

Sub-pixel fire area , 

temperature and 

radiant heat, 

Geolocation, 

Geometry 

Spatial Resolution 1 km at Nadir 750 m at Nadir Variable 

Aggregation  None Sub-pixel aggregation 

across scan 

N/A 

Potential Pixel 

Selection 

T
4
> 305 and ΔT > 10 T

4
> 305 and ΔT > 10 Radiance values 

above calculated 

threshold 
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3.2.3 The VNF-R product 

 The algorithm flow described in Section 3.2.2 (and shown in Fig. 3.1) was followed 

in an attempt to systematically replicate the VNF algorithm. The replicated product was 

named as VNF-R, where ‘R’ represents replica. A small sub-region of the study area 

showing hotspots persistently was chosen in Case Study I (Table 3.3) for replication and 

relevant VIIRS level-2 SDR data were collected for a random day. The VNF-R product 

was confined to threshold calculations and hotspot detections only. The VNF-R used level 

2 SDR data from five VIIRS bands - M10, M7, M8, M12 and M13 to determine hotspots 

in these bands. These hotspots were then compared to the detections from VNF in 

respective bands. DNB wasn’t used as it has a different pixel width than the M-bands and 

five bands were deemed sufficient from quality checks of the products. Maps were 

generated to demonstrate the similarities and differences in hotspot detections in each band 

by the two products within the test region. Section 4.2 discusses the results of replicating 

the VNF algorithm.  
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Table 3.3 Specifications of case studies. 

  

Case Study Date Region Purpose 

I 05 May 2013 Latitude: 60.5 N - 60.8 N 

Longitude: 72.7 E – 73.0 E 

Replication of VNF algorithm 

II 04 July 2013 Latitude: 60 N - 61.5 N 

Longitude: 70.5 E - 72.0 E 

Reconciliation between VAFP and 

VNF-R hotspots 

III 02 August 2013 Latitude: 60.5 N - 61.5 N 

Longitude: 70.0 E – 71.0 E 

Reconciliation between VAFP and 

VNF-R hotspots 
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3.3 Reconciliation between VAFP and VNF-R hotspots 

Two case studies (Case Study II and Case Study III) were undertaken to compare 

and reconcile the hotspots detected by VAFP and VNF-R as a part of understanding of the 

hotspot detection differences between them (Table 3.3). These test days were chosen 

randomly from the set of days on which both VNF and VAFP detected fire activity (~20% 

of the total days studied) in the study region.  

 VNF-R was used instead of VNF as it gave more flexibility to work with dynamic 

thresholds in order to reconcile with the VAFP product detections. Additionally, some 

discrepancies in the VNF product were found while replicating it, so VNF-R was preferred 

over VNF for reconciliation cases. VAFP was chosen to compare to VNF-R as it had higher 

detections than MOD14 and MYD14 products for all months under study; hence, was 

deemed a better candidate for reconciliation cases. For reconciliation, threshold scaling 

analysis was done to see if the VNF-R detections in M10 band could be made to match 

with VAFP detections. The results of reconciliation case studies are discussed in Section 

4.3. 
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3.4 Temperature and Fire Area Sensitivity Analysis 

 Since the detections by VAFP are mainly based on the 4 µm channel and the VNF 

is based on SWIR bands (principally M10 band centered on 1.6 µm), a simulation of 

radiance values in 4 µm and 1.6 µm channels was carried out for varying cases of 

temperatures and subpixel fire areas. The objective was to see how the top of the 

atmosphere (TOA) radiance seen by a sensor in these channels varies as the size of the fire 

contained in the pixel or the temperature of the fire changes. The TOA radiance, I, is 

represented as: 

I = (1-Af) Ib(λ,Tb) + (Af) If (λ,Tf)                                                                                       (3) 

where Af is the sub-pixel fire fraction, Ib is the spectral radiance (W.sr-1.m-2.m-1) 

contributed by the background pixels (computed by Planck function) and Ifrepresents the 

spectral radiance (W.sr-1.m-2.m-1) contributed by the flaming part of the pixel at the given 

wavelength. Tb and Tf represent surface kinetic temperatures of background and fire 

respectively (K). The background temperature was considered as 300 K uniformly for all 

simulations to represent average surface temperature during summer in West-Siberian, 

Russia (where the target region is located). Both the flaming part of the pixel and the 

background were considered as blackbodies (Giglio and Kendall 2001) and the 

atmospheric effects were neglected, so that computed radiances could represent TOA 

radiance values (Peterson et al. 2013). The subpixel fire fractions were varied from 0-100% 

and the temperatures were simulated for the range 1400-2000 K, to represent hot sources 

such as flares.  Results of fire area and temperature sensitivity analysis are discussed in 

Section 4.4. 
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3.5 Evaluation of the VNF Product 

As the VNF product proved to be more effective than other fire products in 

detecting gas flares by a considerable margin, the collected data (April - August 2013) were 

analyzed for further evaluation and validation of VNF. Ten known gas flaring locations 

were chosen within the test region boundaries and the efficacy of detection of these flares 

by VNF was studied. The detections where the distance between pixel center and the flare 

location exceeded 3 km were discarded and deemed as invalid. Many attributes such as fire 

area, fire temperature, viewing geometry, radiant heat, radiances in multiple bands, 

distance from actual flare location etc. associated with valid detections (distance < 3 km) 

were stored in a database for all 10 gas flaring sites for further evaluation. Histogram 

analysis of some important attributes such as view zenith angle  (VZA), the angle between 

local zenith and the line of sight of satellite, was performed using the database to investigate 

if there was a viewing geometry preference associated with flare detections. 

The mean subpixel fire areas reported by the VNF product for flares under study 

were also verified with Google Imagery. Triangular areas were drawn around the flare 

stacks over zoomed-in Google Imagery showing known flare locations and areas around 

the flares were calculated. It should be noted that the areas derived from Google Imagery 

are approximations of areas of the flares and are not representative of exact hot source areas 

as the size of flames emanating from flare stacks varies with factors like wind speed and 

fuel burned. Verification of areas could not be done for two locations of flares because of 

the limitation of the available zoomed-in Google Imagery there. In order to remove the bias 

from the outliers for mean area calculations from the VNF product, the interquartile range 
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(q0.25 –q0.75) of all recorded areas was used. The mean and the standard deviations were 

calculated using the data in this range only. Results associated with evaluation of the VNF 

product are discussed in Section 4.5. 
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4. Results 

 

4.1 The gas flaring map and hotspot detection by multiple products 

          Preliminary tests demonstrated large differences between the detections done by the 

VNF product and MOD14, MYD14 & VAFP fire products over the study region (Fig. 2.1). 

A large number of these detections are presumably due to the gas flares prevalent in the 

test region. Following the procedure described in section 3.1 to demarcate gas flaring 

regions, a total of 99 cells (0.25° × 0.25° resolution) out of the 1600 cells within the test 

region were found to have satisfied the criteria of persistence and high temperature and 

thus were labelled as gas flaring regions. Fig. 4.1 and 4.2 show these demarcated gas flaring 

regions and depicts how detections from VNF, MOD14, MYD14 and VAFP products are 

aligned with them. Detections from VNF are shown separately in Fig. 4.1 due to the sheer 

ubiquity of them and because they form the basis of development of flaring map. A 

quantitative analysis of detections from all four products is tabulated in Table 4.1, 

displaying total number of detections within and outside the delineated gas flaring regions 

on a monthly basis. The number of nighttime hotspots detected by the VNF product is 

much higher than MODIS and VIIRS official fire products. VAFP (a distant follower of 

VNF in number of detections) exceeds MOD14 and MYD14 by almost a factor of five. In 

terms of alignment with the gas flaring areas, ~ 47% of nighttime detections from MOD14 

are found to be within the gas flaring zones, whereas, ~ 67% and ~55% of nighttime 

detections by MYD14 and VAFP respectively are found in the gas flaring zones.  
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As described in Section 3.1, detection counts from the VNF product were divided 

into two categories based on associated brightness temperatures (TB): (a) TB < 1600K and 

(b) TB ≥ 1600K; with category (b) representative of hotter sources such as gas flares. About 

52% of the detections belonging to category (a) are found within the gas flaring zones and 

~ 95% of the detections from category (b) are found within the flaring zones. 

Approximately 77% of the total number of valid detections by the VNF product over the 

entire study region belong to category (b) (TB ≥ 1600 K), which indicates the dominance 

of the flaring activity in the area.  
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Figure 4.1 Nocturnal detections by VNF product over the gas flaring regions in the study 

area (April-August 2013). 
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Figure 4.2 Nocturnal detections by MOD14, MYD14 and VAFP products over the gas 

flaring regions in the study area (April-August 2013) 
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Table 4.1 Multi-sensor fire detection during summer 2013 over the study area. 
 
GFR* = Gas Flaring Regions shown in Fig. 4.1 

 
 

 

 

 

 

 

 

 

Nighttime 

Fire 

Detections 

  MOD14 

(MODIS Terra)  

 MYD14 

(MODIS Aqua)  

VAFP 

(VIIRS) 

                                 VNF  

       TB <1600K                         TB≥ 1600 

  

Total 

 

 

In  

GFR
* 

 

Out 

GFR 

 

Total 

 

In 

GFR 

 

Out 

GFR 

 

Total 

 

In 

GFR 

 

Out 

GFR 

 

Total 

 

In 

GFR 

 

Out 

GFR 

 

Total 

 

In 

GFR 

 

Out 

GFR 

 

April 2013 

 

7 

 

 

2 

 

 

5 

 

 

2 

 

 

2 

 

  

0 

 

 

17 

 

 

15 

 

 

2 

 

 

551 

 

 

301 

 

 

250 

 

 

2603 

 

 

2461 

 

 

142 

 
 

May 2013 

                   

 

11 

 

 

7 

 

 

4 

 

 

1 

 

 

1 

 

 

0 

 

 

45 

 

 

45 

 

 

0 

 

 

339 

 

 

161 

 

 

178 

 

 

1476 

 

 

1400 

 

 

76 

 
 

June 2013 

 

 

 

4 

 

 

2 

 

 

2 

 

 

5 

 

 

4 

 

 

1 

 

 

52 

 

 

36 

 

 

16 

 

 

86 

 

 

85 

 

 

1 

 

 

370 

 

 

357 

 

 

13 

 
 

July 2013 

 

 

 

56 

 

 

23 

 

 

33 

 

 

49 

 

 

26 

 

 

23 

 

 

314 

 

 

137 

 

 

177 

 

 

983 

 

 

569 

 

 

414 

 

 

3004 

 

 

2897 

 

 

107 

 
 

Aug. 2013 

 

59 

 

30 

 

29 

 

27 

 

23 

 

4 

 

138 

 

81 

 

57 

 

1359 

 

852 

 

507 

 

4952 

 

 

4706 

 

 

246 

3
9
 



 

 

40 

4.2 Replication of the VNF Algorithm 

The test case for VNF replication (Case study I) shows that the VNF-R is able to 

detect the same number of total hotspots and at similar geolocations as detected by VNF in 

M10, M7, M8 and M13 bands for the test region on the test date. The detections; however, 

differ between the two in the M12 band where the VNF detects more hotspots than the 

VNF-R. Fig. 4.3 shows the detections done in the M10 band by both VNF and VNF-R. 

(The replication results for M7, M8, M12 and M13 bands are shown in Fig. 4.4 and 

Fig. 4.5).  

Regardless of the similarities in hotspot detections between VNF and VNF-R in 

most M bands, the replication process brings forth some discrepancies in version 1.0 of the 

VNF product. As described in Section 3.2, to make hotspot detection more sensitive to 

different sample aggregation zones in VIIRS, three separate sets of thresholds are 

calculated for each aggregation zone in M10, M7 and M8 bands by the VNF algorithm. 

The case study; however, shows that the thresholds provided by the VNF product are 

inconsistent with the thresholds calculated by VNF-R as per the method described in 

Elvidge et al. (2013). For the M10 band, all ten detections from the VNF product are 

observed to have one threshold only, even though there is a change in the aggregation mode 

from 3:1 to 2:1 within the case study dataset. The VNF-R calculates two thresholds 

corresponding to the two aggregation modes and detects five hotspots each within pixels 

of both aggregation modes, satisfying their respective threshold criterion. The thresholds 

are expected to get higher as aggregation mode moves from 3:1 to 2:1 and then to 1:1 

(Elvidge et al. 2013). Therefore, VNF product’s constant threshold throughout the 

aggregation zones in M10 could lead to a serious miscalculation of surface hotspots. In the 
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M7 and M8 bands, although there are two thresholds provided by the VNF product 

corresponding to two aggregation modes in the case study dataset, the number of hotspots 

satisfying their respective threshold criterion differ between VNF and VNF-R for both the 

bands apart from slight difference in the calculated thresholds between the products. The 

discrepancies found in the M10, M7, and M8 bands for the test case are recorded in the 

Table 4.2. The M13 band shows a good fit between the two products with all hotspots 

detected at same geolocations and satisfying similar detection thresholds (as discussed in 

Section 3.2, the threshold calculations are different in M12, M13 bands than M7, M8 and 

M10 bands), whereas in M12 band, the VNF is found to overestimate the hotspots in M12 

compared to VNF-R. M12 is the only band where the total number of hotspots and 

geolocations of hotspots differ between the VNF and VNF-R. The differences in M12 band 

detection could be stemming from additional processing steps that VNF algorithm does 

such as cloud correction and atmospheric filtering, but are not done in this study. 
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Figure 4.3 Case study I (5 May 2013): Replication of VNF product. VNF and VNF-R 

nighttime M10 detections. 
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Figure 4.4 Case study I (5 May 2013): a) VNF and VNF-R nighttime M7 band 

detections. b) VNF and VNF-R nighttime M8 band detections. 
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a) 

 

b) 

 

Figure 4.5 Case study I (5 May 2013): a) VNF and VNF-R nighttime M12 band 

detections. b) VNF and VNF-R nighttime M13 band detections. 
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                  Table 4.2 Case Study I: 05 May 2013. Differences between VNF algorithm and VNF-R using VIIRS level 2 data. 
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4.3 Reconciliation between VAFP and VNF-R hotspots 

 

For Case Study II, the VAFP detected two counts of nighttime fire within the test 

region, whereas the VNF-R detected 13 counts (Fig. 4.6a,c). VNF-R is used to study the 

detection differences with VAFP, as it enables scaling of dynamic thresholds (calculated 

from VIIRS level 2 SDR data as per the VNF algorithm). Fig. 4.6d shows detections from 

VNF-R in M10 band within the test region on the test date.  

When the M10 threshold is augmented to five times, the original value, i.e., 5(µ + 

4 δ), out of a total of 13 detections earlier, only seven are able to withstand the new higher 

threshold (Fig. 4.6e). These 7 hotspots include the two hotspots that were detected by 

VAFP. When the M10 threshold is stepped up to 10 times the original value, VNF-R 

detections are reduced to four hotspots, still identifying the two hotspots seen by VAFP 

(Fig. 4.6f). As the threshold is increased to 30 times the original value in M10, the VNF-R 

detects only the exact two hotspots as VAFP did, indicating a convergence between the 

two products.  One of the hotspots detected by VAFP and VNF-R shows what appears to 

be an industrial settlement when viewed with zoomed-in Google imagery (Fig. 4.6b) and 

there is a good probability of it being a flow station for gas flares. Additional zooming in 

did not allow the confirmation of a flow station. The other hotspot could not be verified as 

a flare because of the granularity of image in that location.
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For Case Study III, four counts of fire were detected by the VAFP on the test date 

during nighttime within the test region, whereas VNF-R detected 30 hotspots on the same 

date within the test region (Fig. 4.7a,c). As in the previous case study, VNF-R is used to 

attempt reconciliation of hotspots between the VAFP and the VNF. Fig. 4.7d shows 

detections from VNF-R in M10 band within the test region on the test date.  

When the M10 threshold is increased to 10 times the original value, only nine 

hotspots out of 30 detected earlier by VNF-R, satisfy the new higher threshold (Fig. 4.7e). 

These nine hotspots include the four hotspots that were detected by VAFP. When the M10 

threshold is stepped up to 20 times the original value, VNF-R detections drop to six 

hotspots only, still containing the four hotspots seen by VAFP (Fig. 4.7f). A complete 

convergence between the two products doesn’t occur using just the threshold scaling, as 

the six hotspots detected by VNF-R (Fig. 4.7f) keep persisting even when the original M10 

threshold is stepped up higher than 20 times the original M10 value. At a significantly 

higher M10 threshold (70 times the original M10 value), the VNF-R hotspots recede to 

three in number, all of which are collocated with hotspots detected by the VAFP earlier. 

When observed through zoomed Google imagery, one of these three hotspots (picked up 

by VNF-R at all stepped up M10 thresholds and detected by VAFP) clearly shows a gas 

flare flow station within it (Fig. 4.7b).  

The case studies indicate that even though VAFP is primarily designed for detecting 

bigger and cooler fires such as biomass burning, big gas flares could still be picked up by 

VAFP during the nighttime, and a corresponding local maxima in SWIR radiance values 

could assist in discriminating them from cooler fires. Additionally, Since the VNF-R was 
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able to match detections by VAFP by stepping up detection thresholds, it is probable (and 

worth probing) that lowering of VAFP’s detection thresholds in known gas flaring regions 

could lead to more flare detections by VAFP and an appreciable match to VNF detections. 
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Figure 4.6 Case study II (4 July 2013): Reconciliation between VAFP and VNF-R. a) 

Demarcated gas flaring regions and detections by VAFP and VNF products on test date, red box 

highlights the test region. b) Satellite image of one of the hotspots within the test region showing 

presence of an industrial flare (Image courtesy: Google Maps).  c) Detections by VAFP within the 

test region. d) Detections by VNF-R in M10 within the test region. e) Detections by VNF-R in 

M10 when threshold in (d) is stepped up by a factor of 5. f) Detections by VNF-R in M10 when 
threshold in (d) is stepped up by a factor of 10. 

VAFP                 VNF                      VNF-R                     Gas Flaring Regions          
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Figure 4.7 Case study III (2 August 2013): Reconciliation between VAFP and VNF-R. a) 

Demarcated gas flaring region and detections by VAFP and VNF products on test date, red 

box highlights the test region. b) Satellite image of one of the hotspots within the test region 

showing presence of industrial flare (Image courtesy: Google Maps). c) Detections by VAFP 

within the test region. d) Detections by VNF-R in M10 within the test region. e) Detections 

by VNF-R in M10 when threshold in (d) is stepped up by a factor of 10. f) Detections by 

VNF-R in M10 when threshold in (d) is stepped up by a factor of 20. 

VAFP                 VNF                      VNF-R                     Gas Flaring Regions          
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4.4 Temperature and Fire Area Sensitivity Analysis 

 

As expected from applicable physics, the simulated 1.6 µm radiances increase 

in magnitude when both fire temperatures and subpixel fire area increase (Fig. 4.8a). 

4 µm radiances also increase for high temperature fires with bigger areas (Fig. 4.8b), 

which explains the sensitivity seen in MWIR-based fire products towards bigger area 

gas flares (case studies demonstrated some large flares were also picked up by VAFP). 

However, as expected from Planck’s law, the simulated 1.6 µm radiances are much 

higher in magnitude than the simulated 4 µm radiances for the same fire temperature 

and subpixel fire area increases. 

Fig. 4.9 shows the difference of simulated 1.6 µm and 4 µm radiances against 

fire temperature and sub-pixel fire area changes. A clear cut-off point between the 

sensitivity of the two channels can be seen at fire temperatures nearing 1200 K. Beyond 

the cut-off point (towards higher temperatures), the difference between the 1.6 µm and 

4 µm radiances is positive with the magnitude of difference increasing for hotter and 

bigger fires, whereas, below the cut-off point (towards lower temperatures), the 

simulated 4 µm radiances are higher than 1.6 µm counterparts. The higher sensitivity 

of 4 µm radiances below the cut-off point isn’t surprising, as the peak radiation tends 

to shift to longer wavelengths ranges for sources with cooler temperatures.  
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Figure 4.8 Simulation of a) 4 µm and b) 1.6 µm radiances for varying fire temperature 

and fire area fraction. The brightness temperature for background is considered 

uniformly at 300 K. 
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Figure 4.9 Simulation of difference between 1.6 µm and 4 µm radiances for varying 

fire temperature and fire area fraction. 
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4.5 Evaluation of the VNF product 

The evaluation of the VNF product over ten test sites with known gas flares shows 

that the gas flares are detected with a reasonably high frequency by VNF at almost all test 

sites (eight of the flares were detected on 50 or more days of the total 153 days observed) 

(Table 4.3). The mean retrieved subpixel fire area for these sites vary from ~1 m2 to ~25 m2, 

demonstrating the efficacy of VNF in detecting gas flares of varying sizes. The flares were 

also detected by VNF sufficiently close to the actual flare sites (mean distance between 

detection by VNF and the actual site remained under 500 m for eight of the test sites). 

Fig. 4.10 shows these parameters detected by VNF between April - August 2013 over one 

of the ten tested flaring sites. The tested site was picked consistently by VNF (60 days out 

of total 153) and associated retrieved temperatures were representative of gas flares (mean 

detected temperature was 1894.10 K ± 223 K). Almost no detections were observed in the 

month of June, which could be due to heavy cloud cover and precipitation, since the region 

is known for abrupt changes in weather in summer and spring and receives higher rainfall 

in summer months. With the exception of one data point, the flare detection distance 

remained under 1km. The detected area by the VNF for the site showed some outliers and 

the uncertainties could be a further area of investigation regarding hot source detection of 

smaller flares. 

Temperatures in the range of 1600-2000 K (typically associated with flares) were 

consistently observed with detections at each site studied. The histogram analysis of 

temperatures associated with valid detections shows a peak in the range of 1800-1900 K 

for most of the test sites (Fig. 4.11). The histogram analysis of VZA’s shows that there is 

no preferred geometry for flare detections and flare detections are done at almost all VZA’s 
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(except for very high angles > 70°), despite the small peak observed between observed 50°- 

60° for multiple flaring test sites (Fig. 4.12). The histogram points to the potential of VNF 

to detect flares across the range of viewing geometries.  

The scatter-plot between mean area of test sites retrieved from VNF and areas of 

test sites estimated from Google imagery, shows a correlation of 0.91 (Fig. 4.13). The areas 

estimated by Google imagery are larger, in general, however is noteworthy that VNF tends 

to underestimate the areas of the flares and reports conservative estimates of hot source 

sizes based on Planck curve fitting. 



 

 

 

             Table 4.3 Using VNF for long term study of pre-determined flaring locations.

VIIRS VNF 

Test Sites 

 

Geolocation 

(degrees) 

# of 

Detections 

Mean Fire Area 

(m2) 

Mean Retrieved 

Temperature (K) 

Mean distance of 

detection (m) 

Site 1: 

 

 

Site 2: 

 

 

Site 3: 

 

 

Site 4: 

 

 

Site 5: 

 

 

Site 6: 

 

 

Site 7: 

 

 

Site 8: 

 

 

Site 9: 

 

 

Site 10: 

Lat:  60.97 

Lon: 73.85 

 

Lat:  60.69 

Lon: 72.86 

 

Lat:  61.01 

Lon:72.62 

 

Lat: 61.64 

Lon: 72.17 

 

Lat: 61.28 

Lon: 72.97 

 

Lat: 60.78 

Lon:72.70 

 

Lat:62.45 

Lon:73.55 

 

Lat: 61.72 

Lon:73.89 

 

Lat: 62.49 

Lon: 74.40 

 

Lat: 60.74 

Lon: 69.91 
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4.59 ± 7.24 

 

 

5.37 ± 11.86 

 

 

3.66 ± 2.09 

 

 

2.42 ± 2.18 

 

 

5.96 ± 6.32 

 

 

3.23 ± 3.28 

 

 

11.04 ± 7.64 

 

 

1.19 ± 0.78 

 

 

24.89 ± 16.49 

 

 

5.19 ± 4.04 

1773.71 ± 140.87 

 

 

1789.61 ± 236.84 

 

 

1789.20 ± 109.47 

 

 

1773.72 ± 226.36 

 

 

1894.10 ± 223.00 

 

 

1710.96 ± 130.78 

 

 

1728.12 ± 123.71 

 

 

1757.84 ± 154.92 

 

 

1788.29 ± 90.11 

 

 

1733.50 ± 131.16 

 

402.64 ± 327.47 

 

 

768.96 ± 697.08 

 

 

420.56 ± 330.13 

 

 

370.54 ± 287.39 

 

 

333.06 ± 275.53 

 

 

358.89 ± 226.84 

 

 

418.89 ± 476.16 

 

 

505.73 ± 356.72 

 

 

344.19 ± 243.27 

 

 

480.738 ± 315.05 
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Figure 4.10 a) A test site in Khanty Mansiysk - Russia (Image courtesy: Google Maps). 

b) Fire area, temperature and distance of detected pixel from the flare location for this site 

over five months of 2013 retrieved from VNF (referred to as NOAA Nightfire in figure 

legend). The red lines represent the fire temperature reported by VNF for hotspots found 

in proximity to the flare, whereas the blue and navy blue lines represent the fire area and 

distance of flare from the centre of pixel detected, respectively. 
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 Figure 4.11 Histogram of fire temperatures reported by VNF for 10 test sites with flares 

over the five month period (Apr – Aug 2013). 
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Figure 4.12 Histogram of view zenith angles reported by VNF for 10 test sites with flares 

over the five month period (Apr - Aug) 2013. 
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Figure 4.13  Scatterplot of fire areas reported by VNF for different flare sites vs the area 

estimated using google imagery for the respective sites. 
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5. Summary & Conclusions 

 

Satellite-based fire detection products were tested for their hotspot detection 

capability over a large gas flaring region in Russia for the time period of April-August 

2013.  The analyses showed that the VNF product detected the greatest amount of nighttime 

gas flaring activity in the study region. A broad gas flaring map was developed using VNF 

data that highlights the cells in the study region with persistent flaring activity. The fire 

counts observed by the VNF product were much higher than the other products tested 

(MOD14, MYD14, VAFP) both within and outside the demarcated gas flaring zones. The 

strikingly large differences in hotspot detection between VNF and other products could be 

attributed to the choice of the primary detection band, among other factors, which are 

highlighted in Table 3.2.  

 

 The VNF algorithm was replicated using multispectral VIIRS level-2 SDR data in 

an attempt to better understand its function. A case study involving systematic replication 

of the VNF algorithm revealed discrepancies between the thresholds calculated for 

different bands by the VNF product (version 1.0) and by the replicated product VNF-R 

(which is based on theoretical methods described by the developers). Most notably in the 

M10 band, all the detections from the VNF product were observed to have one threshold, 

even though the sample aggregation mode changed from 3:1 to 2:1 within the case study 

dataset, which meant that a distinct higher threshold was expected for the pixels of 2:1 

sample aggregation. These discrepancies in threshold calculations by the VNF product 

should be investigated for corrections, as they could lead to a serious miscalculation of 

surface hotspots.
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Case studies seeking to reconcile the hotspot detection differences between the 

VNF-R and VAFP products show that upon increasing the hot spot detection thresholds 

(M10 based) manifold, the VNF-R was able to match the detections from VAFP. The factor 

by which thresholds for VNF-R needed to be multiplied to match with VAFP was found to 

be variable between the two case studies. However, as the VNF-R was able to match the 

detections by VAFP by stepping up detection thresholds, it is possible that lowering of 

VAFP’s detection thresholds in known gas flaring regions could lead to more flare 

detections by VAFP and an appreciable match to VNF detections could be achieved. The 

case studies also demonstrated that despite being primarily designed for detecting bigger 

and cooler fires such as biomass burning, large gas flares could still be picked up by VAFP 

during the nighttime, and a corresponding local maxima in SWIR radiance values could 

aid in discriminating them from cooler fires. 

In order to evaluate the performance of the VNF product to detect flares over a 

longer period of time, the product was tested on known flaring locations for a period of 5 

months (April-August 2013). A database was created using data associated with flare 

detections by the product for the test sites. The database included information such as 

viewing geometries, brightness temperatures, fire areas and multispectral radiances. An 

analysis of the database revealed some of the characteristic features of the flares, e.g., the 

temperatures associated with detected flares were consistently observed to be greater than 

1600 K. There seemed to be no view zenith angle preference for the detections of flares as 

the flare hotspots were reported for a wide entire range of VZAs. The mean areas of 

detected flares reported by VNF were compared to areas estimated with Google Imagery 
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and it was observed that VNF generally underestimates the area of the flares. Overall, the 

product did sufficiently well in detecting all the test flares with frequency of detection of 

flares varying between 20% to 42% of the days tested. Expectedly, the lowest and highest 

frequency of detection were for the smallest and largest area flare tested respectively. The 

high frequency of detection of pre-determined flaring sites corroborates VNF’s proficiency 

in hotspot detection in gas flaring regions. 

Taking into account VNF’s ability to detect gas flares efficiently, long-term data 

from VNF could be obtained in the future to form a database that could potentially be used 

for developing an objective gas flare mapping algorithm by employing unsupervised 

clustering techniques. The long-term observation of multispectral radiances associated 

with flares could be used to determine the minimum thresholds to prescreen pixels in SWIR 

bands and for establishing characteristic radiances of flares in SWIR bands for similarity 

assessment and labelling in post clustering stages. The minimum threshold for the potential 

pixel selection could be computed by assessing SWIR radiances from all observed flare 

sites in the database. Such prescreening of potential pixels could make the ensuing 

clustering algorithm much less computationally intensive. The clustering (grouping of 

pixels) operation could then be performed individually in each band and subsequently the 

clusters having similar spectral features (radiance values) as reported from database could 

be identified in each band. The iterative optimization or migrating means clustering 

algorithm could be used for this purpose. The advantage of using an unsupervised 

algorithm is that no foreknowledge of classes is required and thus it saves considerable 

time used in manual identification of spectral features. After the clustering process is 

complete, spectral means of all clusters from each band could be compared to the 
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characteristic radiance value stored in the database of the respective bands for similarity 

assessment. The pixels belonging to the cluster displaying maximum similarity to the 

database counterparts could then be labelled as hot pixels in their respective SWIR band. 

Pixels labelled hot in multiple bands could then be identified as gas flaring regions. The 

development of such an objective gas flaring algorithm would significantly help in 

reducing uncertainties in highly important domains such as gas flare emissions inventories, 

contribution of flare emissions to global carbon budget, global energy usage, policy 

assessment and formulation of regulations in gas flaring regions. 
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6. Updates 

 
The research for this study was completed in July 2015. This chapter presents some 

important updates related to this work that have occurred between the period of completion 

of research work and publication of this thesis. The research work related to this thesis was 

published in 2017 (Sharma et al. 2017). The histogram of view zenith angles for test flares 

detected by VNF (Figure 10 in Sharma et al. (2017) was found to be erroneous due to an 

anomalous calculation and a corrected version is included in the thesis (Fig. 4.11). Some 

minor aberrations related to hot spot numbers in figures related to case study for 

reconciliation between VNF-R and VAFP are also corrected in the thesis (Section 4.1 and 

Figure 6 in Sharma et al. (2017) vs. Section 4.3 and Fig. 4.6 in the thesis).  

The datasets used in the study have been upgraded to newer versions. 

MOD14/MYD14 were upgraded with the availability of MODIS collection 6 active 

products (Giglio et al. 2016). MODIS collection 6 products have been available since 

September 2015 and now offer coverage from November 2000 (for Terra) and from July 

2002 (for Aqua) to the present. Archiving of VAFP was discontinued at NOAA CLASS 

after 28 June 2017 and a higher quality replacement product, JPSS active fire, based on 

MODIS Collection 6 algorithm is available from the National Center for Environmental 

Information (NCEI 2019) from 15 March 2016 to the present. VNF’s new version, V3.0,  

is archived at NGDC and is available from December 2017 to the present. Another version 

of VNF, 2.1, is also available from NGDC (NGDC 2019), covering the time period of 

March 2012 to December 2017.  
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Some recent notable advances related to gas flaring characterization from space and 

using VNF for various purposes are summarized below.  

Caseiro et al. (2018) adapted a VNF algorithm for the characterization of persistent 

hotspots using observations from the Sea and Land Surface Temperature Radiometer 

(SLSTR) on-board the Copernicus Sentinel-3 satellite. The main differences between the 

newly adapted algorithm and the original VNF algorithm are the use of a non-statistical 

contextual methodology for hotspot detection that is independent of the number of hot 

sources present and their intensity, analysis of integrated radiances from clusters of 

hotspots rather than from individual pixels, and the correction of co-registration errors 

between hot source clusters in different spectral bands. Clustering was done to address 

interference of signal from a single hot pixel to adjacent pixels and was considered a more 

realistic way representing gas flaring facilities with large arrays of gas flares. The algorithm 

used two SWIR channels from SLSTR, S5 and S6 (centered at 1.61 m and 2.25 m 

respectively). Hotspot detections below the detection limits of M10 in Elvidge et al. (2013) 

were found in both SLSTR SWIR channels which indicated a capability for detecting 

smaller flares than detected by the original VNF product. The authors also suggested the 

ability for a better characterization of smaller gas flares through using Planck curve fitting, 

on account of presence of an extra SWIR channel compared to VNF methodology.  

On comparing VNF detections with SLSTR detections over several test regions 

(North Sea, Caspian Sea, Persian Gulf and West Africa) for a variable duration in the latter 

half of 2016, VNF product was found to detect more hotspots. The result was attributed to 

a larger swath width (3040 km for VIIRS vs 1420 km for SLSTR), shorter revisit time and 

the detection of single pixels by VNF against the detection of contiguous clusters by this 



 
 

 

67 

work.  The SLSTR computed temperatures were found to be slightly lower and the source 

areas were found to be slightly larger compared to VNF product. The difference in 

algorithms (analyzing clusters instead of single hot pixel) was considered the reason for 

this result. Persistent flaring locations detected by both products were found to be highly 

similar for all four tested areas. A single site study was also done for a flaring site in Yamal 

Peninsula in Siberia between December 2016 and January 2017. VNF product was found 

to detect more hotspots and computed slightly higher temperatures than SLSTR, although 

the computed hot source areas were similar for both products for the single site case.   

Faruolo et al. (2018) used a framework of MODIS based method for the detection 

of hotspots and the computation of gas flare volume called RST-FLARE. RST-FLARE is 

a specific configuration of Robust Satellite Techniques (RST) used for monitoring major 

environmental and industrial hazards (Tramutoli 2007; Faruolo et al. 2014). The three key 

steps of RST-FLARE include: detection of flare sites, computation of source emissive 

power, and gas flare volume estimation. The algorithm was tested for the Niger Delta 

region, well-known for significant gas flaring, for the period of 2000-2016. When 

RST-FLARE detections were compared to detections from VNF (data obtained for 2012-

2016), 95% of flaring sites were detected by both products regardless of differences in 

temporal aggregation (17 years of data aggregated on an annual scale by RST-FLARE vs 

five years of VNF data aggregated on monthly scale). Despite being MWIR based, the 

success in detection of gas flares was attributed to a differential, self-adaptive algorithm 

that used locally derived thresholds in spatio-temporal domains rather than fixed 

thresholds. It was suggested that the unmatched detections between the two products could 

be helpful in figuring out false positives in flare detections in future.  
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Franklin et al. (2019) used VNF to characterize flaring in the Eagle Ford Shale 

region of South Texas, from April 2012 to December 2016. The authors used the VNF 

product V2.1 to apply a spatiotemporal hierarchical clustering technique to determine gas 

flaring locations and filter isolated observations. Clustered VNF flares were then associated 

with flared gas volumes reported by Railroad Commission of Texas (TXRRC) at the county 

level. Subsequently, estimates of flared gas volumes at each flaring site were made using 

a regression model that linked VNF reported parameters (fire temperature, source area, 

radiant heat) to TXRRC reported flare volumes. The results show that VNF data can be 

exploited in future at a local scale for important applications in air quality monitoring, 

inventory emission estimation and regulatory analyses.  

More recently Elvidge et al. (2019), the developers of the original VNF algorithm, 

examined detection limits of combustion sources of nighttime VIIRS bands in Near-IR 

(M7, M8), SWIR (M10, M11), MWIR (M12, M13) and DNB. A global analysis of VNF 

data for January 2018 (first month where S-NPP VIIRS collected data in M11 spectral band 

at night) revealed that inclusion of NIR and SWIR channels resulted in two-fold increase 

of VNF detections with temperature fits compared to detections involving MWIR. The 

detection capability for hot sources with small areas was found to be enhanced across a 

wide range of temperatures due to the addition of SWIR bands. The DNB detection limits 

for hot sources were found to be even lower, enabling it to detect much smaller combustion 

sources for temperatures mimicking gas flares. A test case study for India in 2015 showed 

that detections in DNB were 15 times more than detections by VNF. It is suggested that 

low detection limits from DNB could be useful in detecting hot sources that are not detected 

by VNF.  



 
 

 

69 

Some crucial updates on the VNF algorithm are also mentioned in Elvidge et al. 

(2019). An important development is the inclusion of another SWIR band, M11, centered 

at 2.2 m, in the VNF algorithm. For processing in VNF records, the detections are required 

to be found in SWIR and MWIR bands i.e., detections in M7, M8 not seen in MWIR or 

SWIR are discarded. Detections in M12 and M13 are now done using scattergram images 

of M12, M13. IR sources in these bands are identified as outliers outside of the dense 

diagonal cloud of pixels which corresponds to temperature variations of background in the 

scattergram.  

Identification of error sources in VNF and means of correction are also presented 

in this work. Bow-tie effect (ground footprint overlap in adjacent lines, especially 

pronounced in 1:1 aggregation zone of swath) in VNF is filtered by requiring detections in 

adjacent scans to be at least half a pixel apart. Subpixel saturation, primarily found in the 

M12 band and somewhat in M11 band, is addressed by identification of saturated pixels 

by the updated algorithm pointing out the irregularities in radiances and their removal from 

Planck curve fitting. Almost all bands in VNF are subject to errors introduced due to high 

energy particle detections (HEPD), particularly in the South Atlantic Anomaly (SAA) 

region. HEPD related errors are handled by requiring VNF detection in multiple spectral 

bands, as it is unlikely that pixels have simultaneous HEPD in multiple spectral bands. The 

authors found that the exclusion of isolated M11-only detections largely removed HEPD 

related errors, a similar filtering algorithm is suggested, though not yet implemented, for 

the M12, M13 bands which are indicated to be responsible for most HEPD related errors 

in VNF along with M11.  
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Recent developments highlighted above substantiate the continuing and important 

role of VNF in global gas flare monitoring with unprecedented accuracy and assessment 

of related emissions. In addition, the use of multispectral data from other satellite sensors 

to adapt and implement VNF algorithms, the strong agreement by recent works on 

persistent flaring locations detected by VNF, the exploitation of VNF data for estimation 

of gas flares volumes at regional and local scale, and finally, the refinement in VNF 

algorithms and their findings extend the capabilities in hot source detection and 

characterization using unexploited VIIRS spectral channels such as DNB and M11. 

emissions. 
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