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Fossil diatoms were used to reconstruct paleoclimatic and hydrothermal conditions in 

Yellowstone National Park. First, an extensive literature review summarizes the current 

state of knowledge about eukaryotic organisms characteristic of continental hydrothermal 

environments. Eukaryotes in hydrothermal systems can live at extremes of acidity (pH 

<4.0) and alkalinity (pH >9.0), and at moderately high temperatures (<62 ○C). Silicate 

and carbonate precipitation in continental hydrothermal environments is mediated by 

eukaryotic organisms, which are important members of biofilm communities.  

 A case study of alkaline-chloride sinter deposits in Yellowstone Lake and the 

Upper Geyser Basin inferred in-situ diatom growth rather than post-depositional 

accumulation of valves settling from the water column. Conical spires from the floor of 

Yellowstone Lake contained opportunistic fossil diatom species indicative of relatively 

shallow and alkaline conditions during structure formation. Fossil diatoms of the Upper 

Geyser Basin were low-nutrient and aerophilic species and in various stages of diagenetic 

alteration.  



 

 An analysis of fossil diatoms showed that assemblages of Yellowstone Lake were 

sensitive to both direct climate impacts on the lake’s physical and chemical structure and 

indirect impacts on catchment processes. A major shift in species composition occurred 

at approximately 6475 and 1500 cal years BP. The diatom species composition suggests 

that the early Holocene winters and springs were cooler than today, with a relatively short 

interval of spring mixing. In the middle Holocene, the diatoms composition indicates a 

transition to warmer winters and springs, but colder summer temperatures. Specifically, 

the diatom assemblage suggests earlier ice-out and delayed stratification that resulted in 

periods of extended spring mixing. The late-Holocene diatom assemblage is indicative of 

wetter springs and sustained spring mixing.  

 The impact of hydrothermal explosion events was assessed on diatom 

communities using sediment cores from Yellowstone Lake and Cub Creek Pond. The 

impact of these events was more pronounced in the early Holocene sediment record of 

the shallower, smaller Cub Creek Pond than in Yellowstone Lake. Overall, diatom 

assemblages were generally resilient to disturbance via hydrothermal disturbance, with 

only short-duration changes in diatom assemblage.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 The Hydrothermal Setting of Yellowstone National Park 

Terrestrial hydrothermal systems are dynamic and a critical component of Earth’s 

thermal budget and geochemical cycles and transport thermal, chemical, and aqueous 

fluids. Hydrothermal systems, both marine and continental, exert a pronounced impact on 

the water chemistry in adjoining regions and both store heat and facilitate mineral 

precipitation (Lowell 1991). Further, hydrothermal vents are centers for diverse faunal 

communities (Canganella and Wiegel 2011), and the extremophiles commonly 

encountered associated with hydrothermal systems are models for life processes on early 

Earth and on extraterrestrial planets. Whereas continental hydrothermal systems account 

for less than 1% of Earth’s heat flux (Bodvarsson 1982), they hold immense scientific 

interest for investigating mineral precipitation, geochemical cycles, and exotic 

ecosystems. Terrestrial hot springs have been utilized for hygienic, medicinal, and 

spiritual purposes throughout the course of recorded history. 

Yellowstone National Park has a long history of research on hydrothermal 

systems and associated seismic activity, as it is the largest concentration of continental 

hydrothermal structures in the world and has an extensive history of uplift and subsidence 

(Hurwitz and Lowenstern 2014). The Yellowstone Plateau Volcanic Field has undergone 

three major eruptive cycles over the last 2.1 million years, the last of which produced the 

modern Yellowstone Caldera (Christiansen 2001). The geology of Yellowstone is a 

mosaic of Precambrian, Paleozoic, and Mesozoic rocks overlain by Tertiary volcanic 

rocks (rhyolite, andesite, and basalt) and Quaternary glacial deposits (Fritz 1991). 
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1.2 The Climate Setting of Yellowstone National Park 

The eastern Pacific subtropical high-pressure system and monsoonal circulation 

from the Gulf of Mexico are important climate controls in the northern Rocky Mountains 

(Brunelle et al. 2005; Whitlock et al. 2012). Two distinct climate regimes occur in 

modern Yellowstone National Park – the so-called “summer-wet” region, which receives 

summer precipitation from the Gulf of Mexico, and the “summer-dry” region, which 

receives the majority of precipitation in winter as influenced by the northeast Pacific 

subtropical high-pressure system (Whitlock and Bartlein 1993; Curtis and Grimes 2004). 

Modern average temperature in Yellowstone ranges between -6.2 °C and 8 °C, 

with average annual precipitation of 530 mm at the Lake Yellowstone, Wyoming climate 

station (Figure 1,1; Western Regional Climate Center 2019). In southern Yellowstone the 

majority of precipitation falls in winter; and snowpack begins to accumulating in October 

and melts in May (Curtis and Grimes 2004).  

 

1.3 Dissertation Objectives 

 This dissertation is part of a larger interdisciplinary research project that focuses 

on evaluating the response of the Yellowstone Lake hydrothermal system to climatic, 

magmatic, and tectonic processes on time-scales ranging from seconds to thousands of 

years. The Hydrothermal Dynamics of Yellowstone Lake (HD-YLAKE) project includes 

a paleoecological component to reconstruct the hydrothermal, limnological, and 

environmental history of the lake and its catchment during the Holocene. Specific goals 

of the coring program are twofold: (1) to reconstruct the history of hydrothermal and 

seismic activity using core lithology, minerology, chemistry, and isotopes, and (2) to  
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Figure 1.1: Climate graph of average temperature and precipitation for the Lake 

Yellowstone, Wyoming climate station AD 1981-2010 (data from Western Regional 

Climate Center 2019). 

 

understand how biogeochemical processes, disturbance regimes, and biotic assemblages  

of the lake and surrounding landscape are impacted by hydrothermal, climate, and caldera 

dynamics. The latter involves high-resolution analyses of fossil diatom assemblages, 

pollen, charcoal, oxygen and silica isotopes, and sediment chemistry from Yellowstone 

Lake sediments in sites both proximal and distal to modern hydrothermal vents.  

This paleoecological research on long time scales is paired with a field program 

on the dynamics of the modern hydrothermal systems that applies in-situ lake floor 

instruments, including chemical and hydrophone sensors. The aim of the lake floor 

instrumental network is to measure the system response to geological and environmental 

instabilities at high-resolution (every 5 seconds) over one year. Specifically, the 
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instrument network includes (1) a dense cluster of instrumentation at the Stevenson 

Island vent fields, and (2) a lake-wide system of temperature and pressure gauges to 

monitor hydrostatic pressure. Stochastic models, process models, and systems-level 

multi-physics and reactive flow models are being developed to understand forcing-

response relationships in this hydrothermal system. 

This dissertation investigates fossil diatom assemblages of various hydrothermal 

settings to address the following questions: Which eukaryotic organisms are commonly 

encountered in continental hydrothermal systems? What do fossil diatom assemblages of 

siliceous deposits indicate about the hydrothermal environment in Yellowstone Lake and 

in other hydrothermal systems in the Park? Are the diatom-inferred Holocene climate 

conditions from Yellowstone Lake sediments consistent with regional records? How did 

early to middle Holocene hydrothermal explosion events impact fossil diatom 

communities? 

 

1.4 Preface to the Chapters 

Each component of this dissertation investigates an aspect of fossil diatoms in 

Yellowstone National Park. A brief overview of each chapter in this dissertation, 

including its relevance to the overall dissertation theme is provided below.  

Chapter 2 is an extensive review of extremophilic eukaryotes, including diatoms, 

encountered in continental hydrothermal systems. It summarizes current knowledge of 

the eukaryotic microflora characteristic of continental hydrothermal systems and the 

interaction of these organisms with microbial mats, as well as provides suggestions for 

the future direction of hydrothermal eukaryote research. I wrote this chapter with 
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guidance from Dr. Sherilyn C. Fritz. This manuscript has been published in 

Extremophiles (Brown, S.R. & S.C. Fritz. 2019. Extremophiles 23(4): 367-376). 

Chapter 3 documents the composition of fossil diatoms in siliceous hydrothermal 

deposits from Upper Geyser Basin and Yellowstone Lake and discusses potential 

environmental conditions inferred from these diatom assemblages. Because the function 

of eukaryotic organisms in low-temperature hydrothermal systems is relatively 

understudied, this chapter provides an important investigation of fossil diatoms within 

alkaline-chloride environments of the Yellowstone Caldera. I conducted the research 

presented in this chapter and wrote the initial manuscript draft. Coauthors were involved 

with initial project conception and provided extensive revisions. This manuscript is 

accepted in Diatom Research (Brown S.R., Fritz S.C., Morgan L.A., Shanks W.C., 

“Fossilized diatoms of siliceous hydrothermal deposits in Yellowstone National Park, 

USA”).  

 Chapter 4 discusses a high-resolution record of diatom-inferred Holocene 

paleolimnological conditions of Yellowstone Lake. While this chapter focuses on the 

diatom research that I conducted with guidance from Dr. Sherilyn Fritz, this study is part 

of a larger collaborative effort within the HD-YLAKE project to understand the Holocene 

climate and hydrothermal dynamics of Yellowstone Lake. As such, the results presented 

in this chapter will later be incorporated into a co-authored manuscript detailing a multi-

proxy analysis of Yellowstone Lake sediments. This manuscript is currently being 

written, with myself as lead author.  

 Chapter 5 discusses the ecological impact of hydrothermal explosion events on 

diatom assemblages in the Yellowstone Caldera, including deposits from Yellowstone 
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Lake and Cub Creek Pond. This chapter focuses on inferring post-hydrothermal 

paleolimnological conditions utilizing fossil diatoms. In the larger HD-YLAKE project, 

the research presented in this chapter will be integrated with pollen and isotope records to 

infer landscape and lake dynamic in association with hydrothermal disturbance. The 

current plan is for me to be a co-author on this manuscript. 

 Chapter 6 summarizes the important findings from each of the previous chapters 

and draws overarching conclusions for the dissertation as a whole. This chapter 

concludes by discussing future research on fossil diatom records of Yellowstone National 

Park. 
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CHAPTER 2  

 

EUKARYOTIC ORGANISMS OF CONTINENTAL HYDROTHERMAL 

SYSTEMS 

 

Abstract 

 

Continental hydrothermal systems are a dynamic component of global thermal 

and geochemical cycles, exerting a pronounced impact on water chemistry and heat 

storage. As such, these environments are commonly classified by temperature, thermal 

fluid ionic concentration, and pH. Terrestrial hydrothermal systems are a refuge for 

extremophilic organisms, as extremes in temperature, metal concentration, and pH 

profoundly impact microorganism assemblage composition. While numerous studies 

focus on Bacteria and Archaea in these environments, few focus on Eukarya – likely due 

to lower temperature tolerances and because they are not model organisms for 

understanding the evolution of early life. However, where present, eukaryotic organisms 

are significant members of continental hydrothermal microorganism communities. Thus, 

this manuscript focuses on the eukaryotic occupants of terrestrial hydrothermal systems 

and provides a review of the current status of research, including microbe-eukaryote 

interactions and suggestions for future directions. 

 

2.1 Introduction 

Both marine and terrestrial hydrothermal systems transport heat and chemical 

fluids and sequentially induce mineral precipitation via strong chemical and thermal 

gradients (Lowell 1991). Further, hydrothermal habitats are centers for diverse floral and 

faunal communities (Cowan et al. 2012), and the organisms commonly associated with 
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geothermal systems provide insights into early Earth and extraterrestrial life processes. 

While continental hydrothermal systems account for less than 1% of Earth’s heat flux 

(Bodvarsson 1982), they hold immense scientific significance including opportunities for 

investigating mineral precipitation, geochemical cycles, exotic ecosystems, and 

advancing biotechnology. Terrestrial hot springs have also been utilized for hygienic, 

medicinal, and spiritual purposes throughout recorded history (Kearns and Gesler 1998).  

This review assesses the spectrum of physical conditions and associated 

eukaryotic microflora characteristic of continental hydrothermal systems. We discuss in 

detail (1) the eukaryotic microflora frequently encountered in continental hydrothermal 

systems, (2) the interaction of microbes and eukaryotes in these environments, and (3) 

future directions in the field of hydrothermal eukaryote research. Global examples 

(Figure 1) are presented throughout this review, but Yellowstone National Park is 

emphasized due to its prominent role in extremophile research.  

 

2.2 Microorganisms in Continental Hydrothermal Systems 

Extremophilic organisms (extremophiles) are adapted to either require or tolerate 

environmental conditions considered hostile in the anthropocentric sense (Horikoshi et al. 

2011). Extremophiles (MacElroy 1974) are categorized by optimum growth conditions, 

including temperature (psychrophiles, thermophiles, and hyperthermophiles), pH 

(acidophiles and alkaliphiles), pressure (barophiles), and ion strength (halophiles) (Weber 

et al. 2007; Rampelotto 2013).  These classifications are not exclusive; many 

extremophiles fall into multiple categories. The majority of extremophiles are unicellular  

 



10 

 

Figure 2.1: Locations of eukaryotic extremophiles found at temperature and/or pH 

extremes consistent with continental hydrothermal systems reviewed in North America 

(Stockner 1967; Lynn and Brock 1969; Brock and Boylen 1973; Brock 1978; Tansey and 

Brock 1978; Redman et al. 1999; Sittenfeld et al. 2002; Bonny and Jones 2003; Sheehan 

et al. 2003; Sittenfeld et al. 2004; Brown and Wolfe 2006), South America (Van de 

Vijver and Cocquyt 2009), Africa (Cocquyt 1999; Mpawenayo and Mathooko 2004; 

Owen et al. 2008), Europe (Owen et al. 2008; Baumgartner et al. 2009; Aguilera et al. 

2010; Zirnstein et al. 2012; Aguilera 2013), Asia (Idei and Mayama 2001; Baumgartner 

et al. 2009; Pan et al. 2010; Yamazaki et al. 2010; Badirzadeh et al. 2011; Kao et al. 

2012; Niyyati and Latifi 2017; Pumas et al. 2018), and Australasia (Owen et al. 2008). 

 

 

(Horikoshi et al. 2011). The phylogenetic origin of extremophilic adaptations is not 

universal – some lineages appear to be older and others are secondary adaptations by 

comparable mesophilic taxa (Wiegel and Adams 1998).  

Continental hydrothermal systems are refugia for chemophilic and thermophilic 

microorganisms, and the most common classes of extremophiles in geothermal areas are 
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thermophiles, acidophiles, and alkaliphiles (Canganella and Wiegel 2011). Thermophiles 

grow at temperatures above 42 ○C, and extreme thermophiles grow optimally above 60 

○C (Horikoshi and Grant 1998). Acidophiles have an optimal growth range in acidic 

waters with pH 5.0 or lower; alkaliphilic organisms have an optimum growth rate at pH 

9.0 or higher (Kroll 1990) and require high sodium ion concentrations for growth and 

reproduction (Horikoshi and Grant 1998).  

 In comparison with marine hydrothermal systems, long-term geochemical 

variability is reduced in terrestrial hydrothermal environments, enabling the 

establishment of static, specialized microbial communities (Wilson et al. 2008; Cowan et 

al. 2012). These communities include a diverse suite of microbes from the three primary 

phylogenetic domains: Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya 

(eukaryotes)  (Jones et al. 1997; Blank et al. 2002; Brown and Wolfe 2006; Cowan et al. 

2012).  

The study of microorganisms associated with hydrothermal systems has largely 

been focused on prokaryotes (Brock 1973; Cowan et al. 2012; Horikoshi 2016), with 

multiple studies examining extremophile bacteria in hot spring systems (Brock 1978; 

Stetter 1999; Canganella and Wiegel 2011; Tekere et al. 2015; Horikoshi 2016; 

Selvarajan et al. 2018), including their relevance to the fields of biotechnology, 

paleontology, and astrobiology. Although less studied, eukaryotes are encountered 

actively growing in nearly all types of extreme environments (Horikoshi and Grant 1998) 

and perform important ecosystem functions, including grazing on acidophilic bacteria 

and influencing nutrient cycling (Rothschild and Mancinelli 2001; Bottjer 2005; Baker et 

al. 2009). Although extremophilic eukaryotes are proportionately understudied, recent 
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genomic and metabolic profiling advancements have enabled new research approaches 

(Weber et al. 2007), increasing the number of studies in recent years.   

 

2.3 Limits for Eukaryotic Life 

The abundance and distribution of eukaryotic organisms are mainly determined 

by temperature-dependent enzyme activity, with the highest recorded temperature for 

viable eukaryotes 62 ○C (Rothschild and Mancinelli 2001). Studies on single-celled 

protozoa, metazoa, fungi, and algae all indicate that their growth and evolution is 

hindered at temperatures above 60 ○C (Tansey and Brock 1978), in contrast with 

multicellular plant growth, which is hindered above 50 ○C (Horikoshi et al. 2011). The 

inability of eukaryotes to grow at higher temperatures primarily results from the inability 

of cells to form functional and thermally stable organelle membranes (Tansey and Brock 

1972).  

In contrast to temperature, the ability of eukaryotes to thrive at pH, desiccation, 

and salinity extremes is similar to that of archaea and prokaryotes. Eukaryotic organisms 

are encountered in both alkaline and acidic environments, but more is known about 

acidophilic eukaryote diversity, because of their abundance in readily-studied acid mine 

drainage, geothermal, and acidic lake environments (Hecky and Kilham 1973; Seckbach 

2007; Amaral-Zettler 2013). The adaptability of eukaryotes to broad pH ranges appears 

to be limited and rare (Amaral-Zettler 2013); however, the ability of eukaryotes to adapt 

to a small, extreme pH range is relatively widespread across clades including 

Chlorophyta, Amoebozoa, Alveolata, Rhizaria, and Stramenopiles (Hecky and Kilham 
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1973; Costas et al. 2007; López-Rodas et al. 2008; Horikoshi et al. 2011; Casamayor et 

al. 2013).  

Eukaryotic photosynthetic microalgae (diatoms, chlorophytes, and rhodophytes) 

are the dominant organisms in communities at pH values less than 4.0, in which 

cyanobacteria (prokaryote) cannot survive (Brock 1973). Eukaryotes living in 

environments with extreme pH have evolved to maintain circumneutral cytoplasm pH 

through altered internal physiology (Rothschild and Mancinelli 2001). The evolution of 

extremophilic eukaryotic organisms living in heavy metal-rich, acidic, and hot 

environments was apparently facilitated through gene transfer of beneficial proteins from 

bacteria and archaea (Schonknecht et al. 2013).  

 Extremophile evolution has been documented throughout several eukaryotic 

clades (Horikoshi et al. 2011). When compared with mesophilic counterparts, genome 

sequences of extremophilic eukaryotes indicate evolved strategies for survival in extreme 

environmental conditions (Weber et al. 2007). Additionally, cellular-level metabolic 

processes differ between extremophilic and mesophilic eukaryotes (Weber et al. 2007). 

Applications of novel genome sequencing and cellular-level processes, as well as 

traditional presence-absence studies of extremophiles in terrestrial hydrothermal systems, 

are discussed below.  

 

2.4 Eukaryote Lineages of Continental Hydrothermal Ecosystems 

Multiple eukaryotic lineages (Table 2.1) are known to occur in hydrothermal 

systems and similarly extreme environments. The acidic pH and temperature extremes of 
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some examples are presented in Figure 2.2. Below we review key studies on the 

occurrences and tolerance levels of key groups.  

 

2.4.1 Chlorophyta (green algae) 

 Chlorophyta are a lineage of photosynthetic eukaryotes within the 

Archeaeplastida supergroup (Simpson et al. 2017) that are characterized by pigments 

chlorophyll a and chlorophyll b and have cellulose cell walls (Wehr and Sheath 2003). 

Several green algal genera (Zygogonium, Chlamydomonas, Chlorella, and Ulothrix) have 

been documented in thermal systems. A species of Zygogonium forms purple mats in 

temperatures between 20-31○C and pH of 2.4-3.1 in soils associated with small seeps or 

springs in Yellowstone National Park (Lynn and Brock 1969). These filamentous 

Zygogonium mats create a damp environment for Chlamydomonas to colonize (Tansey 

and Brock 1978). Chlorella and Ulothrix have also been documented in eukaryotic mats 

of thermally active areas of Yellowstone (Brock and Boylen 1973; Brock 1978). In an 

acidic (pH 1.8) hot (68○C) pool in Lassen Valley National Park, a diverse assemblage in 

the family Chlamydomonadaceae is established (Brown and Wolfe 2006). In 

hydrothermal springs in Iceland, Aguilera et al. (2010) discovered that phylotypes of 

Chlorella and Chaetophora dominated the algae in circumneutral microbial mats. In 

addition to the acidic environments associated with terrestrial hydrothermal systems, the 

genera Zygnemopsis, Chlamydomonas, and Chlorella are also commonly found in acid 

mine drainage basins (Aguilera 2013).  
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2.4.2 Rhodophyta (red algae) 

 Rhodophyta (red algae) are a group of photosynthetic organisms within the 

Archeaeplastida supergroup of eukaryotes (Simpson et al. 2017) that are red in color due 

to the presence of phycoerythrin, allophycocyanins, and phycocyanin accessory 

photosynthetic pigments. The group is also characterized by the absence of flagella and 

centrioles (Wehr and Sheath 2003). North American freshwater red algal species are 

overwhelmingly (94%) found in lotic environments (Wehr and Sheath 2003). 

Cyanidiales, a group of unicellular Rhodophyta that thrive in high-temperature acidic 

environments, are comprised of three genera- Galdieria, Cyanidium, and 

Cyanidioschyzon, and phylogenetic analyses indicate that these genera were ancestrally 

thermos-acidotolerant (Ciniglia et al. 2004).  

 

Table 2.1 Eukaryotic lineages of extremophile eukaryotes in hydrothermal systems. 

Supergroup/Assemblage Lineage Group (common name) 

Archaeplastida 
Chlorophyta 

Rhodophyta 

green algae 

red algae 

SAR 

Stramenopiles 

Alveolata 

Rhizaria 

diatoms 

ciliates 

amoeboflagellates 

Discoba Euglenozoa Euglena 

Amorphea Amoebozoa Amoebae 

Obazoa Fungi fungi and chytrids 

 

 

Red algae Galdieria and Cyanidium are documented in hot sulfur springs with an 

optimum growth temperature of 45 ○C and tolerance of up to 57 ○C. They are also 

encountered in highly acidic waters of pH 0.05-4 and sites with elevated heavy metal 

concentrations, including cadmium, nickel, iron, and arsenic (Seckbach 1994; Ciniglia et 
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al. 2004). The species Cyanidium caldarium is present in the hot aquatic systems of 

Yellowstone National Park (Tansey and Brock 1978). Phylotypes likely belonging to red 

algae were also extracted from geothermal hot spring biofilms in Seltun, Iceland 

(Aguilera et al. 2010). Cyanidioschyzon merolae was discovered living in a pool with 

temperature 68 ○C and pH 1.8 in Lassen Valley National Park, USA (Brown and Wolfe 

2006). The genome sequence for Cyanidioschyzon merolae has unique features that 

include a minimal total number of genes, few introns, and only three ribosomal DNA 

copies. Thus, this extremophilic red algae has surprisingly simple genomic features 

(Nozaki et al. 2007).  

 

Figure 2.2: Summary of the relative extremes (in temperature and pH) for a number of 

eukaryote supergroups presented in this review. 
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2.4.3 Stramenopiles (diatoms) 

A lineage of supergroup SAR, stramenopiles are tubulocristate protists that are 

most often photosynthetic but can be heterotrophic and include unicellular, colonial, and 

multicellular forms (Simpson et al. 2017). Most stramenopiles have chloroplasts 

surrounded by four membranes with cholorphyll a and c, and, usually, they have the 

accessory pigment fucoxanthin, which imparts a golden-brown color. Bacillariophyta 

(diatoms) are unicellular stramenopiles that are ubiquitous in both freshwater and marine 

environments. Most diatom genera have preferences within a small range of pH values, 

with pH ~3.5 as the threshold below which most cannot survive (Smol et al. 1986). Yet a 

number of diatom genera have been found in hot springs. For example, Owen et al. 

(2008) observed 251 species preserved with little fragmentation or corrosion from 21 

geothermal hot springs in Iceland, New Zealand, and Kenya. Diatoms have also been 

found in hot springs in Peru, East Africa, and Thailand (Cocquyt 1999; Mpawenayo and 

Mathooko 2004; Van de Vijver and Cocquyt 2009; Pumas et al. 2018).  

One common genus in areas with low pH and high temperatures is Pinnularia. An 

unidentified Pinnularia species was recorded in two separate hot springs in New Zealand 

with extreme temperatures (85○C and 60○C) and low pH values (3.7 and 2.4, 

respectively), although growth at 85○C is highly unlikely, and its occurrence was 

attributed to its association with microbial mats that protected the Pinnularia from 

thermal influence (Owen et al. 2008). Species of Pinnularia have also been found in the 

terrestrial hydrothermal systems of Yellowstone and Lassen Volcanic National Parks 

(Brock 1978; Brown and Wolfe 2006), Río Tinto, Spain (Aguilera 2013), and in strongly 

acidic waters in Japan (Idei and Mayama 2001).  Pinnularia is also widespread in acidic 
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waters with pH 3.0 or lower and commonly dominates biofilms in acid mine drainage 

sites (DeNicola 2000).  

 Other diatom groups reported in hydrothermal systems include Fragilariaceae in 

geothermal springs in Iceland (Owen et al. 2008), Navicula and Anomoeoneis in Kenyan 

springs, and phylotypes of Bacillaria, Gomphonema, and Navicula in circumneutral 

microbial mats in Icelandic hydrothermal hot springs (Aguilera et al. 2010). In Jasper 

National Park (Canada), diatom assemblages within 0.5 m of hot spring vents hosted a 

diverse (Cymbella, Mastogloia, Brachysira, Sellaphora, Epithemia (formerly 

Rhopalodia), Nitzschia, Navicula, Pinnularia) diatom assemblage (Bonny and Jones 

2003). Pinnularia, Achnanthes, Epithemia (formerly Rhopalodia), Amphora, Denticula, 

and Navicula were found alive in hydrothermal streams of Yellowstone National Park 

and Mount Rainier at approximately 35 ○C (Stockner 1967). Dominant genera in northern 

Thailand hot springs were Diatomela, Achnanthidium, and Anomoeoneis (Pumas et al. 

2018). Four novel species in the genera Navicula, Ulnaria, Cymbella, and Denticula were 

identified from La Caldera, Peru (Van de Vijver and Cocquyt 2009). Dominant genera in 

Lake Tanganyika hot springs samples were Caloneis, Diploneis, and Sellaphora 

(Cocquyt 1999). 

 

2.4.4 Alveolata (ciliates) 

Alveolates, included within the eukaryote supergroup SAR, are primarily single-

celled organisms (Simpson et al. 2017) characterized by a system of membrane sacs 

(alveoli). Brown and Wolfe (2006) detected alveolates by conducting molecular surveys 

on hot spring samples from Lassen Valley National Park. In addition, alveolate lineages 
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have been encountered in low pH and high heavy metal concentration waters of the 

underground uranium mine in Königstein, Germany (Zirnstein et al. 2012).  

 

2.4.5 Rhizaria (amoeboflagellates) 

 Cercozoa are heterotrophic protozoa within the Rhizaria lineage of the SAR 

supergroup and are most abundant in soils, although they are also found in freshwater and 

marine ecosystems. Cercozoa living in terrestrial hydrothermal environments are found in 

association with microbial mats – likely preying on the algae and bacteria within the mat 

matrix (Cowan et al. 2012).  

 A few Cercozoa have been observed within the terrestrial geothermal system of 

Lassen Volcanic National Park. These acidophilic protists were sampled from algal mats 

and biofilms of acidic pools, streams, and mud pots with temperatures up to 68 ○C 

(Brown and Wolfe 2006). A species of amoeboflagellate, Tetramitus thermacidophilius, 

was found living between 28-54 ○C and acidities between pH 1.2 and 5 in hot springs of 

Kamchatka, Russia and Naples, Italy (Baumgartner et al. 2009). Other genera of 

protozoa, including Naegleria and Achthamoeba, have been found in association with 

microbial environments within the active geothermal portions of the Yellowstone region 

(Sheehan et al. 2003), and phylotypes belonging to small flagellates were extracted from 

two phototrophic microbial mats in Icelandic hot springs (Aguilera et al. 2010).  

 

2.4.6 Euglenozoa (Euglena) 

Euglenozoa, within the assemblage Discoba, are flagellate, unicellular eukaryotes 

that are commonly free-living (Simpson et al. 2017). Euglenids, one of the two main 
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subgroups of Euglenozoa, especially the genus Euglena, are commonly used as 

environmental indicators in acid mine drainage environments. Additionally, the genus 

Euglena is commonly encountered in acidic geothermal areas. Euglena was found 

through clone sequence analysis in Yellowstone National Park (Sheehan et al. 2003), and 

the species Euglena mutabilis also has been reported from regional studies (Tansey and 

Brock 1978), as well as from analysis of  photosynthetic biofilms in Río Tinto, Spain 

(Aguilera 2013). Phylotypes of Euglena were extracted from microbial mats in Icelandic 

geothermal hot springs (Aguilera et al. 2010). A non-flagellated photosynthetic Euglena 

strain, closely related to Euglena mutabilis, and a novel species, Euglena pailasensis, 

were isolated from an acidic hot mud pool near Rincón de la Vieja volcano, Costa Rica 

(Sittenfeld et al. 2002; Sittenfeld et al. 2004).  

 

2.4.7 Amebozoa (amoebae) 

 Amebozoa, within the assemblage Amorphea, are a eukaryote clade consisting of 

amoeboid protists (Simpson et al. 2017). Echinamoeba thermarum, a thermophilic 

amoeba, was discovered living at temperatures ranging from 50-60○C in the 

hydrothermal environments of Yellowstone National Park and in Agano Terme, Italy 

(Baumgartner et al. 2003). In the acidic geothermal pools of Pisciarelli Solfara (Italy) and 

Kamchatka (Russia), an amoeboflagellate species Tetramitus thermacidophilus was 

encountered in acidic (1.2-5 pH) and warm (28-54 ○C) waters (Baumgartner et al. 2009). 

In addition, a species of Acanthamoeba was detected in 15% of water samples collected 

from thermal springs in southern Taiwan (Kao et al. 2012).  
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The thermophilic free-living amoebae Vahlkampfiidae live in a variety of hot 

aquatic environments and are opportunistic amoeba that are pathogenic and can cause 

disease in human hosts. In Yellowstone National Park, Vahlkampfia, Acanthamoeba, and 

Naegleria fowleri were detected in the algal biofilm community (Sheehan et al. 2003). In 

addition, free-living amoebae Acanthamoeba and Vannella were isolated from Sarein Hot 

Springs, Iran (Badirzadeh et al. 2011) and a geothermal spring in Amol City, Iran 

(Niyyati and Latifi 2017), respectively.  

 

2.4.8 Fungi (fungi and chytrids) 

Fungi, within the supergroup Obazoa, are a broad group of eukaryotes 

encompassing yeasts, molds, and mushrooms (Simpson et al. 2017). Fungi are a very 

successful phylogenetic lineage and adapt well to extreme environments, with the 

exception of extreme temperatures (Rampelotto 2013). A variety of fungi have been 

found thriving in highly acidic acid mine drainage environments (Aguilera 2013); the 

species Acontium cylatium, and Trichosporon cerebriae, as well as the genus 

Cephalosporium, are known to grow at pH 0 (Schleper et al. 1995).  

 In Lassen Valley National Park, two species of fungi were identified in a pool 

with pH 1.8 and temperature 68 ○C (Brown and Wolfe 2006). A new fungal species from 

the Sainokawara hydrothermal area in Japan, Teratosphaeria acidoterma, was found in a 

wide temperature range (30-70 ○C), with an optimal pH range between 2 and 4 

(Yamazaki et al. 2010). Additionally, 16 fungal species were found in geothermal soils of 

Yellowstone National Park, with two species – Acremonium alabamense and Dactylaria 

constricutum var. gallopava – growing above 50○C (Redman et al. 1999). In the alkaline 
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hydrothermal environments of Tengchong Rehai National Park (China), 102 

thermophillic fungal strands have been identified at a temperature range of 47-71 ○C (Pan 

et al. 2010). Specifically, Thermomyces lanuginosus and Scytalidium thermophilum have 

been found dominating in extreme temperature conditions (Singh et al. 2003; Cowan et 

al. 2012).  

 

2.5 Microbial Eukaryote Interactions 

Eukaryotic organisms in continental hydrothermal environments appear to be 

limited to unicellular forms and are typically associated with microbial mats and biofilms 

in extreme conditions (Cowan et al. 2012; Rampelotto 2013). Thus, within continental 

hydrothermal systems microbial eukaryote interactions appear extremely beneficial to 

survival.  Microbial mats are an organic matrix in which microorganisms and minerals 

are imbedded. Eukaryotes, second to cyanobacteria, are important in building 

phototrophic microbial mats – self-sustaining, nearly closed, small-scale ecosystems. 

Communities in microbial mats are vertically stratified, because microorganisms within 

the system create physiochemical gradients (Bolhuis et al. 2014).  

Microbial mats (Figure 2.3) provide niches for various eukaryotic organisms and, 

in continental hydrothermal systems, can create refugial microhabitats for organisms that 

could not survive in the extreme conditions alone (Seilacher 1999). Specifically, 

adherence to a solid surface allows microorganisms to manage surrounding abiotic 

factors that present a challenge to survival, including fluid convection. Additionally, 

proximity and interaction of organisms in microbial mat systems allows higher resource 

and energy flow than non-mat habitats in the same system. The cyanobacteria in 
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phototrophic microbial mats fix both carbon and nitrogen, which stabilizes the 

microenvironment for the growth of other organisms (Prieto-Barajas et al. 2017). This 

stabilization can help buffer the microecosystem against abrupt environmental changes, 

including high temperatures and elevated heavy metal concentrations.  

 The precipitation of silicate and carbonate in hydrothermal environments is often 

mediated by eukaryotes, and precipitation in association with microbial growth has been 

an important mechanism of carbonate sediment deposition since the Archean (Riding 

2000). Eukaryotes that utilize carbonate or silicate in their cell walls effectively 

precipitate these compounds out of the water column. Additionally, carbonate 

precipitation is stimulated by various metabolic processes – including photosynthesis, as 

well as nitrogen and sulfur fixation, which increase alkalinity and, thus, carbonate 

precipitation (Riding 2000). Microbial mats, including stromatolitic and conical 

structures (Figure 2.3), composed of amorphous silica are associated with diatom 

photosynthesis through individually precipitated crystals (Winsborough and Golubic 

1987). These structures vary widely in both internal structure and external form – ranging 

from mats to large conical structures and lacking well-preserved laminations (Cohen  

2003)  Shape and size is largely controlled by environmental conditions, including light 

availability and water agitation (Cohen 2003). These microorganism and precipitation 

associations are more pronounced in hydrothermal systems, where the waters are rich in 

carbonate or silicate – especially hot, alkaline environments. This is particularly 

interesting, because carbonate deposits are an important carbon reservoir on Earth, and a 

substantial portion of insoluble carbon on the surface is formed biogenically (Zhu and 

Dittrich 2016). Understanding why these processes are prominent in hydrothermal  
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Figure 2.3: Examples of biofilms and microbial mat structures containing eukaryotic organisms. A) Complex mat from a subtidal 

dome containing green algae and diatoms (used with permission from Riding 2000). B) and C) Microbial biofilms from the acid mine 

drainage site Rio Tinto, Spain with main components Chorella and fungi (B) and Chlamydomonas and fungi (C), respectively (used 

with permission from Aguilera et al. 2007). D) Biofilm structures from the Gardener River, Yellowstone National Park (used with 

permission from Hall-Stoodley et al. 2004). E) Siliceous spire structure on the floor of Yellowstone Lake (from Shanks et al. 2007).

2
4
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systems and mimicking these natural processes in the laboratory may inspire innovative 

approaches in biotechnologies and artificial carbon sequestration.  

 

2.6 Future Directions 

 Although eukaryotic organisms are relatively understudied in hydrothermal 

systems, the expansion of genetic and genomic tools and their use in phylogenetic 

analysis has the potential to greatly enhance our understanding of hydrothermal 

eukaryotic organisms. Applying genomic tools to novel environments will increase 

scientific knowledge of the diversity and mode of life of extremophilic microbial 

eukaryotes in hydrothermal systems. For example, a coded 18S ribosomal RNA survey of 

diatomaceous soil crust in Yellowstone National Park found that community composition 

dissimilarity between samples was high (Meadow and Zabinski 2012). The use of 

polymerase chain reaction amplification of mixed population DNA negates the necessity 

of cultivation for organism identification and therefore may allow the identification of 

additional eukaryotes capable of living in extreme environments. Molecular approaches 

still have a fundamental problem – separating genes isolated from organisms actively 

living within the system of interest from those introduced from nearby, less extreme 

environments. Currently, novel studies appear limited to genetic studies, because retrieval 

of identifiable, living microbial specimens is challenging. Additionally, identifying to the 

highest possible taxonomic level using light and scanning electron microscopy, in 

conjunction with genetic studies, can supplement our understanding of diversity and life 

form in hydrothermal environments. Thus, new frontiers in molecular studies should 
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include novel cultivation techniques and microscopy to identify morphologically discrete 

taxa (Teske 2007).  

 Many unanswered questions remain regarding how extremophilic eukaryotes 

work to make their environment more hospitable. While it is clear that microhabitat 

formation via biofilms and microbial mats are an essential adaptation to living in harsh 

conditions, the exact mechanisms of the microbial-eukaryote interactions remain unclear. 

Some recent work has focused on survival strategies of eukaryotes in hydrothermal 

systems. For example, a thermoacidophilic eukaryotic algae in Yellowstone National 

Park was discovered biotransforming arsenic (Qin et al. 2009). Cultured samples from 

hydrothermal vent thermophiles also found biofilms formed with a sulfate-reducing 

archaeon formed in a variety of laboratory-induced stress conditions, including high 

metal concentrations, pH, and oxygen exposure (LaPaglia and Hartzell 1997). 

Additionally, transcriptome analysis provides the potential for understanding which genes 

are responsible for the functional attributes that enable survival in extreme environments, 

pinpointing what makes extremophilic eukaryotes vary from their mesophilic 

counterparts.  

 Finally, comparisons of eukaryote community composition across continental 

hydrothermal gradients is also needed. One of the greatest obstacles to large comparative 

studies of hydrothermal eukaryotic organisms is the limited number of studies, with the 

majority of studies in Yellowstone National Park, and also the variability in research 

methods and study design. However, an enhanced understanding of hydrothermal 

systems may provide clues to the evolution of life on Earth and in extraterrestrial settings. 

The development of an online database documenting the location of terrestrial 
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hydrothermal environments, including biotic and abiotic characteristics, would be a 

useful tool for future analyses. 

 

2.7 Summary 

Terrestrial hydrothermal systems exert a profound impact on water chemistry and 

temperature, which in turn determine the growth of microorganisms within these 

environments. While the field of extremophile research is traditionally focused on 

Bacteria and Archaea, which can live at higher temperatures, research on eukaryotes has 

expanded over the last few decades – especially with the advancement of genomic and 

metabolic profiling methods. Eukaryotic organisms are limited at high temperatures (<62 

○C) but can also thrive in highly acidic (pH 0.05-4.0) and alkaline conditions (pH >9.0). 

Lineages from four eukaryote supergroups (Archeaeplastida, Chromalveolates, Excavata, 

and Unikonta) are found in terrestrial hydrothermal environments globally. Better 

understanding of the interaction of eukaryotes with other organisms and with the 

surrounding environment are vital to their persistence in geothermal conditions. In 

particular, microbial mats provide microhabitat formation that enables the perseverance 

of taxa that could not survive otherwise. Additionally, eukaryotes mediate the 

precipitation of silicate and carbonate in hydrothermal systems, making them important 

components of major biogeochemical cycles. Thus, eukaryotes provide essential 

ecosystem functions within the extreme environments created by terrestrial hydrothermal 

activity.   
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CHAPTER 3  

 

FOSSILIZED DIATOMS OF SILICEOUS HYDROTHERMAL DEPOSITS IN 

YELLOWSTONE NATIONAL PARK, USA 

 

Abstract 

The study of eukaryotic extremophiles is relatively novel, and, therefore, 

documentation of the structure and function of micro-organisms in continental 

hydrothermal systems globally is limited. In this study, we investigate fossil diatoms in 

siliceous hydrothermal deposits of the Upper Geyser and Yellowstone Lake hydrothermal 

basins in Yellowstone National Park and utilize preserved diatom assemblages to infer 

local environmental conditions. Siliceous sinter from both the Upper Geyser Basin and 

Yellowstone Lake contain evidence of in-situ diatom growth within these environments. 

At Upper Geyser Basin, the assemblage consisted of saline and high-conductivity species 

that could grow on moist siliceous sinter and was dominated by Rhopalodia gibberula. 

Diatom valves were found in various preservation states, ranging from nearly pristine to 

highly diagenetically altered. Diatoms collected from siliceous spires in Yellowstone 

Lake largely consisted of tychoplanktic and benthic species that were almost certainly 

growing on the outside of the structure, with an assemblage indicative of relatively 

shallow alkaline waters. What remains unclear without access to material for high-

resolution dating is whether diatoms colonized the spires during hydrothermal activity or 

after activity ceased. Our results indicate that diatom frustules, to some extent, can 

survive alteration in low-temperature (<76 °C) hydrothermal environments. 
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3.1 Introduction 

Since Thomas Brock first discovered hyperthermophilic microorganisms in the 

hot springs of Yellowstone National Park, multiple studies have examined extremophilic 

bacteria in continental hydrothermal systems (Brock 1978, Stetter 1999, Canganella & 

Wiegel 2011, Horikoshi 2016), including their relevance to the fields of biotechnology, 

paleontology, and astrobiology, among others. While it is becoming clear that eukaryotic 

organisms are important components of the microbiota of hydrothermal communities, 

documentation of eukaryotic organisms lags behind that of well-studied bacteria and 

Archea in the Yellowstone region.  

Bacillariophyta (diatoms) are eukaryotic unicellular golden-brown algae that have 

opal-A skeletons and are ubiquitous in both freshwater and marine environments. Diatom 

growth is inhibited above approximately 70 °C (Beauger et al. 2018, Lai et al. 2019), and 

these organisms are able to live in both acidic and alkaline environments. Most diatom 

genera have preferences within a relatively small range of pH values (Hecky & Kilham 

1973, Smol et al. 1986). A number of diatom genera have been found in alkaline 

terrestrial hydrothermal systems of Iceland, New Zealand, Kenya, the United States, and 

Canada (Stockner 1967, Brock 1978, Gasse 1986, Bonny & Jones 2003, Brown & Wolfe 

2006, Owen et al. 2008), as well as in highly acidic waters in Spain (Aguilera 2013) and 

Japan (Idei & Mayama 2001). Yet, the limited number of studies suggests the potential 

for more extensive documentation of diatoms in continental hydrothermal systems. Iconic 

Yellowstone National Park, with its abundant and varied types of continental 

hydrothermal features, provides an ideal location for expanded documentation of the 

species inhabiting these unusual systems.  
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Yellowstone National Park is one of Earth’s most geologically dynamic 

landscapes and has been shaped by forces of late Cenozoic large-scale explosive and 

effusive volcanism, active tectonism, glaciation, and hydrothermal activity (Morgan et al. 

2017 and references within). The interior of Yellowstone National Park is occupied by 

the 631,000-year-old Yellowstone caldera, an elliptical feature measuring 75 km by 45 

km that represents one of the world’s largest rhyolitic volcanic structures (Christiansen, 

2001). The Yellowstone Plateau is elevated up to 1 km above the northeast front of the 

Snake River Plain trough and receives abundant annual precipitation due to orographic 

effects (between 150-180 cm/yr; Pierce et al. 2007). The plateau also experiences high 

levels of seismicity (averaging 1500-2500 earthquakes/year; Farrell et al. 2014) and has 

some of the highest heat flow values in the intermountain west (Morgan et al., 1977); all 

are prerequisites for sustaining hydrothermal systems. In addition, active deformation of 

the Yellowstone Caldera contributes significantly to the system (Dzurisin et al. 2012). 

Yellowstone National Park has a diverse range of hydrothermal features including 

geysers, hot springs, mud pots, fumaroles, and, in places, travertine terraces. With over 

10,000 thermal features, Yellowstone National Park has the largest concentration of 

continental hydrothermal features on Earth, exceeding all other known hydrothermal 

features combined (Allen & Day 1935, Fournier 1989, Schreier 1992, Ann Rodman, 

personal communication, Yellowstone National Park, 2007). The compositions of fluids 

discharged in continental hydrothermal systems has a profound impact on mineral 

deposition, hydrothermal alteration, and biotic characteristics of the environment. In 

Yellowstone National Park, both alkaline-chloride and acid-sulphate geothermal waters 

are abundant within the Yellowstone caldera and other areas with rhyolite substrate; 
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location of hydrothermal vents is strongly controlled by the distribution of rhyolite lava 

flows with low permeability while chemical composition of the springs are, in part, 

determined by topographic elevation (Fournier 1989, Morgan & Shanks, 2005; Hurwitz 

& Lowenstern 2014). 

Alkaline-chloride waters are saline and characteristic of high-temperature deep 

geothermal fluids (Fournier 1989, Fournier 2005, Renaut & Jones 2011). Alkaline-

chloride hydrothermal fluids are high in dissolved silica and dominated by Na+ and K+ 

cations balanced by Cl- as the principle anion, and also sometimes contain significant  

SO4
2- and HCO3

- (Fournier & Truesdale, 1973). The main dissolved gases are carbon 

dioxide and hydrogen sulphide (Renaut & Jones 2011). Chloride waters are associated 

with geysers and hot pools. Because these fluids have high concentrations of dissolved 

silica, chloride waters are associated with large quantities of sinter precipitation (Guidry 

& Chafetz 2002). Sinter deposited near hydrothermal pools, flows, and geysers 

commonly is colonized by diverse and colorful microbial communities. Because silica 

(opal-A) is abundantly precipitated in these systems, diatoms are commonly found in 

association with active and inactive sinter deposits (Lynne et al. 2008). As such, the 

objective of this study is to document the presence, incorporation, and significance of 

diatom frustules in various siliceous hydrothermal deposits of Yellowstone National Park 

– specifically from the Upper Geyser Basin and Yellowstone Lake.  

 

3.1.1 Site descriptions 

The hydrothermal deposits included in this study are located within the southern 

portion of the Yellowstone caldera (Figure 3.1). The Upper Geyser Basin is the world’s 
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largest concentration of geysers – including iconic Old Faithful and over 150 other 

geysers concentrated within approximately 2.5 km2 (Bryan 2018). Hillside Geyser is a 

thermal feature in the Upper Geyser Basin. The Hillside Geyser rarely erupts, but when it 

does, it can expel water up to nine meters high for minutes at a time (Bryan 2018). Thus, 

sinter deposits in the Hillside Group accrue relatively slowly. 

Located 35 km East of the Upper Geyser Basin, Yellowstone Lake is the third 

(after Upper Geyser and Lower Geyser Basins) largest hydrothermal basin in 

Yellowstone National Park, based on its chloride flux (Shanks et al. 2005). The lake floor 

has an active hydrothermal system with vents and seeps, which exert an impact on lake 

water chemistry (Balistrieri et al. 2007). Siliceous conical spire deposits formed as 

amorphous silica precipitated in the shallow (<25 m water depth) lake bottom associated 

with now extinct hydrothermal vents (Morgan et al. 2003). These deposits formed hard, 

porous siliceous chimneys consisting of altered and unaltered sediments. At present, 

actively forming spires have not been identified in Yellowstone Lake (Shanks et al. 

2007). According to stable isotope data collected near vents, sinter and spires form at 

moderately low temperatures (<76 °C), and diatom frustules are incorporated into the 

structure along with the amorphous silica matrix (Shanks et al. 2005). In addition to 

conical spire structures, a number of hydrothermal structures from Yellowstone Lake, 

including conduits and vents analyzed in Shanks et al. 2007, also were sampled here.  
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Figure 3.1: Digital Elevation Model map of Yellowstone National Park with the modern 

caldera boundary indicated by the dashed white line. Approximate sampling locations are 

indicated by stars. 
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3.2 Materials and methods 

A sinter sample was collected near the top of a cliff from a currently inactive 

portion of the Hillside Group (Upper Geyser Basin). Two complete siliceous spires 

(SYL-A and SYL-B) were retrieved from the floor of Yellowstone Lake (depth = 15 m) 

in 1999 and 2016, respectively, and were sampled at USGS Denver in February 2017. U-

series disequilibrium dating on two samples from Spire A yields dates of ~11 ka (Neil 

Sturchio, written communication, 1998; Morgan et al. 2003). The siliceous spires were 

sampled at fine resolution (47 total samples) throughout various lithologies for diatom 

frustule analysis (Figure 3.2). Sediment from core tops collected within the spire field 

also were sampled to assess modern sediment assemblage. Additionally, four sediment 

conduits, four vents, and one fissure from Yellowstone Lake were sampled for diatom 

analysis.  

Each individual diatom subsample was added to a vial, weighed to approximately 

0.1 gram, and processed with 30% hydrogen peroxide to remove organic matter 

(Battarbee 2003). A known concentration of polystyrene microspheres was added to each 

subsample to allow quantitative analyses of diatom concentration. Residual samples were 

rinsed three times with deionized water to dilute hydrogen peroxide and then mounted to 

slides with Naphrax. Diatom valves were identified at 1000 X magnification using a 

Leica DM2500 transmitted light microscope with differential interference contrast (DIC) 

equipped with a 5-megapixel camera or a Leica DMRX fitted with phase contrast. 

Diatom species were identified using diverse taxonomic resources relevant to the 

northern Rocky Mountains (e.g. Bahls 2005, Spaulding and Edlund 2016). Additionally, 

select diatom samples were analyzed with a Tescan Vega 3 scanning electron microscope 
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(SEM) operated at 10 kV in high vacuum mode. Presence and absence of diatom valves 

were assessed for sampled hydrothermal features of Yellowstone Lake (Table 3.1). For 

slides with diatoms present in abundance (>25 valves), frustules were identified to 

species and enumerated to a total of 300 diatom valves per slide. A metric of diatom 

concentration (valves/gram) was calculated using microsphere concentrations, totals, and 

sample weights. Assemblage counts were converted to percentages and plotted in 

program C2 (Juggins 2003). 

 

3.3 Results 

 In total, 57 samples from siliceous hydrothermal deposits were analyzed for 

diatom presence (Table 3.1). Preserved diatom frustules in traditionally prepared light 

microscope slides were not present in 25 of these samples. Of the remaining 32, 17 had 

diatom valves present in abundance (>300 valves/slide), and 15 had sparse (<25 

valves/slide) diatom abundance. 

 

3.3.1 Hillside Group 

Sinter collected from the Hillside Group contained noticeably abundant fossilized 

diatom frustules under SEM. Sinter was dominated by Rhopalodia gibberula (Ehrenberg) 

O. Müller and also included valves of Pinnularia subrostrata (A. Cleve) Cleve-Euler and 

Amphora Ehrenberg ex Kützing sp. (Figure 3.2). Diatom frustules were found in various 

stages of diagenetic alteration and incorporation into the surrounding amorphous silica 

matrix (Figure 3.2). Thus, diatom valves were not visible under traditional light 

microscope analysis.    
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Table 3.1: Hydrothermal deposit material analyzed in this study. Diatom abundance in 

traditionally processed light microscope slides were documented as either abundant (A), 

sparse (S), or absent (-). 
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Figure 3.2: SEM photographs of diatoms preserved in the Hillside Group sinter: (A) Rhopalodia gibberula, (B, C) Pinnularia 

subrostrata, and (D) Halamphora sp.1. Frustules were found in various stages of diagenetic alteration – ranging from high 

preservation of both fine and coarse features (E), mostly coarse and minimal fine feature preservation (F, G), to minimal preservation 

of coarse features (H).

4
1
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3.3.2 Yellowstone Lake hydrothermal structures  

Diatoms were concentrated on the outer edge of both siliceous spires retrieved 

from the floor of Yellowstone Lake (Figure 3.3) and were rare in the interior matrix. Of 

the 26 samples collected from the once-intact small (~60 cm full length) Spire A, nine 

contained diatom frustules in abundance, seven sparingly, and ten did not contain diatom 

frustules (Table 3.1). Of the 21 samples collected from Spire B, abundant diatom valves 

were present in eight samples, sparingly in four, and absent from nine samples (Table 

3.1). Additionally, SEM analysis of samples without diatoms in light microscopy also 

showed no evidence of diatoms, including no evidence of diagenetic alteration into the 

surrounding amorphous silica matrix.  

The assemblage of Spire A (Figure 3.4) is dominated by Staurosirella neopinnata 

Morales (25-35%), Amphora micra Levkov (<50%), and Amphora inariensis Krammer 

(<45%). Fewer numbers of small colonial tychoplanktic Fragilaria s.l. species, including 

Pseudostaurosira alvareziae Cejudo-Figueiras, E.A.Morales & Ector (<20%), 

Pseudostaurosira brevistriata (Grunow) D.M. Williams & Round (<5%), and 

Pseudostaurosiropsis E.A. Morales spp. (<5%), benthic Karayevia suchlandtii (Hustedt) 

Buktiyarova (5-15%), and the planktic species Aulacoseira subarctica (O. Müller) 

E.Y.Haworth (<30%), Stephanodiscus niagarae Ehrenberg s.l. (<5%), and 

Stephanodiscus minutulus (Kützing) Cleve  Möller (<5%) also are present. In total, 13 

species had an abundance of >2% for any single Spire A sample.  

 The assemblage of Spire B (Figure 3.5) is also dominated by tychoplanktic S. 

neopinnata (20-45%) with lesser numbers of P. alvareziae (<10%). Planktic species A. 

subarctica (<40%) and S. minutulus (<10%) are dominant in two samples (SYL-B D01  
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Figure 3.3: Photographs of Spire A (top) and Spire B (bottom) cross-sections with 

diatom sampling locations circled and labeled with corresponding sample ID. Those 

samples with abundantly preserved diatom frustules are indicated by blue underlined text. 

Note that samples SYL-A-D03, SYL-A-D04, and SYL-A-D02 were collected from a 

block of hydrothermally-altered sediment not pictured in this image (see Morgan et al. 

2003). 
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Figure 3.4: Diatom species percentages of abundant (>2%) taxa in Spire A. Samples are organized sequentially with those collected 

near the base of the spire at the bottom of the diagram 4
4
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Figure 3.5: Diatom species percentages of abundant (>2%) taxa in Spire B. Samples are organized sequentially with those collected 

near the base of the spire at the bottom of the diagram 4
5
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and SYL-B-D07). Benthic species K. suchlandtii (<15%), Rhoicosphenia abbreviata (C. 

Agardh) Lange-Bertalot (<20%), and Karayevia clevei (Grunow) Bukhtiyarova (<15%) 

also are present. In Spire B, ten species were found at >2% abundance in any sample. The 

species composition of spire samples is vastly different from modern sediment collected 

from the spire field, which is dominated by planktic species S. minutulus, Stephanodiscus 

yellowstonensis Theriot & Stoermer s.s., A. subarctica, and Asterionella formosa Hassall. 

Among the other hydrothermal structures sampled from Yellowstone Lake, none 

had abundantly preserved diatoms. However, two vents, one sediment conduit, and one 

fissure had sparsely preserved diatom frustules (Table 3.1). The diatom assemblages 

present in these samples were similar to those of sediment samples elsewhere in 

Yellowstone Lake – primarily consisting of planktic species S. minutulus, S. 

yellowstonensis, A. subarctica, and A. formosa (Interlandi et al. 1999). Images of species 

common in Yellowstone Lake hydrothermal structures, including spires and additional 

structures, are presented in Figure 3.6. 

 

3.4 Discussion 

The fossil diatoms found in association with sinter of Hillside Group in the Upper Geyser 

Basin are indicative of moist soil or shallow lake environments. Specifically, Rhopalodia 

gibberula has been reported in both benthic periphyton mats and moist soils (Spaulding 

& Edlund 2016), as well as in low to moderate conductivity environments (Patrick & 

Reimer 1975). Rhopalodia gibberula also has heavily silicified valves (Smol & Stoermer 

2010) and, thus, are common in environments where silica is not limiting. Additionally, 

R. gibberula commonly hosts endosybiotic atmospheric nitrogen-fixing  cyanobacteria, 
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Figure 3.6: Light microscope images of common diatoms encountered in Yellowstone 

Lake hydrothermal structures (length of black bar = 5 μm): (A) Amphora inariensis, (B) 

Amphora micra, (C) Aulacoseira subarctica, (D) Pseudostaurosira alvareziae, (E) 

Staurosirella neopinnata, (F) Pseudostaurosira brevistriata,(G) Pseudostaurosiropsis sp. 

2, (H) Stephanodiscus minutulus, (I&J) Rhoicosphenia abbreviata, (K) Stephanodiscus 

yellowstonensis s.s., (L) Karayevia clevei, (M) Karayevia suchlandtii, and (N) Navicula 

sp. 1. 
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enabling growth in low nitrogen environments. Pinnularia and Halamphora species also 

are commonly encountered growing in moist soil environments among other 

environments including fresh and brackish waters (Van Kerckvoorde et al. 2000, 

Antonelli et al. 2017). Thus, the presence of Pinnularia and Halamphora, and the 

overwhelming abundance of R. gibberula in the Hillside Group, coupled with its ability 

to grow in nitrogen-poor, silica-rich environments, and a wide range of salinities, indicate 

that the preserved diatom assemblage was most likely growing in-situ on the moist sinter.  

Whereas Shanks et al. (2005, 2007) hypothesized that diatoms entered 

Yellowstone Lake siliceous spire structures through overhead water column fallout, 

assessment of diatom assemblage habitat preferences indicate in-situ diatom growth. 

Specifically, S. neopinnata, P.  alvareziae, and Pseudostaurosiropsis spp. are species 

within the small colonial Fragilaria s.l. complex that are commonly found living attached 

to substrates in alpine lake systems (Saros et al. 2003, Spaulding 2016). The presence of 

S. neopinnata likely indicates persistence of generally shallow-water conditions or high 

light penetration to the site; S. neopinnata and P. alvareziae prefer alkaline pH (Bradbury 

et al. 2004). Further, the benthic assemblage contains several benthic species that are 

tolerant of alkaline or saline conditions. For example, the small Amphora that dominate 

the Spire A assemblage, and R. abbreviata, present in Spire B, are commonly 

encountered in moderately saline waters <32 ppt (Herbst & Blinn 1998, Wehr & Sheath 

2003). Karayevia is euryhaline, growing equally well in a range of salinities (Yamamoto 

et al. 2017). As such, the tychoplanktic and benthic diatom assemblages of Yellowstone 

Lake siliceous spires indicate growth in a relatively shallow (20-25 m), alkaline 

environment during the early Holocene.  
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Spire diatom species assemblages differed greatly from modern sediments 

collected within the spire field and from shallow sediments collected from a 

paleoshoreline dated at the ~9.3 ka (see Chapter 5). The diatom assemblage of nearby 

sediment is overwhelmingly dominated (>95%) by planktic species (S. minutulus, S. 

yellowstonensis s.s., A. subarctica, and A. formosa), which have been characteristic of the 

Yellowstone Lake diatom flora from ~10 ka to the present (Kilham et al. 1996, Theriot et 

al. 1997, 2006). Thus, the predominantly tychoplanktic and benthic forms preserved in 

Yellowstone Lake siliceous spires indicate diatoms likely grew directly on the structures, 

rather than settling out of the water column or becoming entrained from nearby sediment.  

A few exceptions include three samples (SYL-A-D03, SYL-A-D01, and SYL-A-

D10) from Spire A that correspond to a block of hydrothermally altered sediment 

attached to the base of the structure (Figure 3.3). This sediment appears to have been 

altered at approximately the same time as spire formation, as a transitional form of the S. 

niagarae/yellowstonensis complex is present. The species S. niagarae was present in 

Yellowstone Lake in the late-Pleistocene but evolved into S. yellowstonensis between 

13.7 and 10.0 ka (Theriot et al. 2006). The transitional form of S. niagarae s.l., which has 

one or more regions of three spineless costae, was present in the lake between ~11.7 and 

11.2 ka (Theriot et al. 2006).  

Samples in Spire B with higher planktic abundance (SYL-B-D01 and SYB-B-

D07) do not correspond directly with a block of hydrothermally altered sediment. 

However, these samples are located in the open central conduit of the spire. It is probable 

that existing sediment was leached or that diatoms from overlying water were 

incorporated during initial vent and spire growth, entering the central cavity (Shanks et 
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al. 2005, 2007). This also could be an artifact of post-hydrothermal activity sediment 

contamination. Spire B was collected from the lake floor, not intact and lying on its side. 

Thus, it is possible that sediment accrued in this conduit after the spire fell. The diatom 

assemblages of other Yellowstone Lake hydrothermal structures, including vents and 

conduits, indicate that fossil frustules can survive various forms of low-temperature 

alteration of in-situ sediments. However, the absence of abundantly preserved diatoms in 

these other structures is an indication that hydrothermal alteration modifies the original 

sediment – either including diatoms into the amorphous silica beyond visual recognition 

or by dissolving the majority of diatom valves, leaving behind only heavily silicified 

individuals.  

Clustering of diatoms on spire edges may offer additional insight into the 

structure growth process. Whereas it is clear that diatoms were growing attached to the 

spires – either during the mature venting stage (24-76° C) or after hydrothermal activity 

ceased – what remains uncertain is the exact timing of growth in the absence of high-

resolution dating. However, because the diatoms were found preserved up to ~2 cm into 

the amorphous silica matrix and not simply on the outer crust, it is likely that growth 

occurred before the spires ceased all hydrothermal activity. Additionally, because the 

spires are inactive today with no modern analogs, it is unclear whether the structures 

accrued incrementally during periods of higher hydrothermal activity, as evidenced by 

apparent growth fronts (Figure 3.3) or accrued quickly in more or less a single event. As 

such, the absence of diatom frustules in central samples with the exception of the open 

conduits of Spire B – both in light microscope and SEM analyses –  suggests two 

alternative interpretations, assuming diatoms were able to grow proximal to near-boiling 
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vent fluids: (1) The spires grew, more or less, in a single period of hydrothermal activity 

without long periods of stasis that allowed diatom colonization, or (2) there were hiatuses 

in growth that allowed for diatom community establishment, but these diatoms, if 

incorporated into the structure with additional growth, were hydrothermally altered 

beyond recognition.    

 

3.5 Conclusions 

Fossil diatom frustules were found in association with several alkaline-chloride 

hydrothermal deposits in Yellowstone National Park, specifically from the Upper Geyser 

and Yellowstone Lake Basins. Diatoms preserved in Hillside Group sinter were 

aerophilic, low-nitrogen diatoms in various stages of diagenetic alteration, which 

suggests growth directly upon moist substrate. Diatom frustules in Yellowstone Lake 

structures were likely growing on the outside of the structures before cessation of 

hydrothermal activity in the spire field. Diatom assemblages of these structures are 

indicative of a shallow, alkaline, and high conductivity microhabitats. Hydrothermal 

alteration of sediment and sinter in Yellowstone hydrothermal structures indicates that 

fossil diatoms are able to withstand some low-temperature alteration. Additionally, the 

absence of diatoms in traditional light microscope analyses and their presence in sinter 

material analyzed under scanning electron microscope serves as a call for innovative 

sampling and analysis methods for diatoms in continental hydrothermal regions. 

Additionally, this research suggests the utility of fossil diatoms to infer general 

environmental conditions during past periods of hydrothermal activity in inactive and 

long return-interval geyser deposits. 
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CHAPTER 4  

 

HIGH-RESOLUTION RECORD OF HOLOCENE PALEOLIMNOLOGICAL 

CONDITIONS IN YELLOWSTONE LAKE, WYOMING 

 

Abstract 

Yellowstone Lake is a major hydrothermal basin in Yellowstone National Park, 

where limnologic processes are influenced by both regional climate and hydrothermal 

activity. Here I utilize fossil diatoms to infer early- to late-Holocene (9876 calendar years 

BP to -37 cal years BP) ecosystem dynamics and climate conditions from Yellowstone 

Lake sediments. The abundant fossil diatoms in the fossil assemblage include 

Stephanodiscus minutulus, Aulacoseira subarctica, Asterionella formosa, Stephanodiscus 

yellowstonensis, and Fragilaria (sensu lato). Constrained cluster analysis (CONISS) 

defines two diatom assemblage shifts at ca. 6475 and 1500 cal years BP. At the beginning 

of the record (9876-6475 cal years BP), the assemblage is dominated by S. minutulus, a 

species that requires high concentrations of phosphorus and blooms just after ice off. The 

overall species composition is consistent with a period when spring turnover was 

relatively short due to warmer summers and possibly also cooler winters. In the middle 

section of the record (6475-1500 cal years BP), the diatom assemblage includes the 

increased abundance of A. subarctica and A. formosa – species that bloom later in the 

spring or in early summer during periods of extended isothermal mixing. This suggests 

either a transition to earlier ice-out and/or cooler summers. Around 1500 cal years BP, 

the diatoms show an increase in A. formosa, which responds to increased nitrogen 

concentrations, consistent with a transition to wetter winters and springs with an 

associated increase in nitrogen (N) inputs from runoff. Thus, the diatom assemblage of 
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Yellowstone Lake is largely controlled by the direct climate impacts of temperature and 

precipitation on stratification dynamics and nutrient inputs.  

 

 

4.1 Introduction  

Regional climate in the northern Rocky Mountains is affected by solar radiation 

and its direct impacts on temperature and atmospheric circulation, including the influence 

of the eastern Pacific subtropical high-pressure system and monsoonal circulation from 

the Gulf of Mexico (Brunelle et al. 2005, Whitlock et al. 2012). Yellowstone National 

Park has traditionally been classified into two climate regimes: summer-dry in southern 

Yellowstone and summer-wet in northern Yellowstone. Summer-wet regimes receive 

substantive precipitation from spring and summer monsoonal circulation, whereas 

summer-dry regimes receive the majority of precipitation as winter snowfall under the 

associated influence of the northeast Pacific subtropical high-pressure system on the jet 

stream (Whitlock 1993). The boundary between these two climate regimes is controlled 

by topography and, therefore, was originally suggested to have remained constant 

throughout the Holocene (Whitlock and Bartlein 1993). More recent multi-proxy 

analyses of sediment records in the Greater Yellowstone Ecosystem indicate that 

although coherent regional patterns are evident in Holocene paleoclimate data, that the 

summer-wet/summer-dry hypothesis is likely overly simplified (Whitlock et al. 2012). 

Previous fossil diatom research in the Greater Yellowstone Ecosystem also 

demonstrated that lake response to paleoclimatic conditions is spatially variable. For 

example, a comparison of three lakes in the Greater Yellowstone Ecosystem found 

synchronous diatom assemblage changes in the early Holocene, indicating that large-
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scale changes in climate largely controlled diatom responses (Lu et al. 2017). However, 

species composition varied among lakes, indicating the importance of localized factors, 

including water chemistry and basin size (Lu et al. 2017). Similarly, a comparison of four 

lakes in western Montana, including Crevice Lake in Yellowstone, found synchronous 

changes in the late-Holocene diatom stratigraphy, yet the nature of the changes in diatom 

species composition indicated that two of the lakes were more sensitive to seasonal 

precipitation changes and two were more sensitive to changes in energy balance (Bracht-

Flyr and Fritz 2012). Thus, previous research in Yellowstone National Park indicates that 

while diatom communities have the ability to record large-scale Holocene climate 

change, lakes with different basin morphometries and water chemistries are sensitive to 

different regional climate factors. As such, further developing a network of paleoclimate 

reconstructions from lakes of different sizes and locations is imperative to refining 

scientific understanding of past climate variability in the Greater Yellowstone Ecosystem.  

A hierarchy of climate influences – regional to local – that vary with time affect 

fossil diatom stratigraphy on decadal to millenial scales (Theriot et al. 2006, Smol and 

Stoermer 2010, Fritz and Anderson 2013). Specifically, climate directly impacts lake 

thermal and hydrologic budgets, which in turn impact ice cover, mixing, and stratification 

timing, all of which are important in deteriming diatom assembalge dynamics in 

Yellowstone Lake (Wolin and Stone 2010, Saros et al. 2012, Fritz and Anderson 2013). 

Additionally, climate forcings also control catchment processes, which indirectly impact 

diatom assemblages. Specifically, climate influences soil development, hydrology, and 

catchment vegetation, in turn controling both water chemistry and nutrient availibility, 

important drivers of diatom assemblage composition (Harris et al. 2006, Fritz and 
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Anderson 2013). Thus, fossil diatom assemblages can be used to infer past direct and 

indirect climatic conditions.  

The objective of this research is to utilize fossil diatoms to infer early- to late-

Holocene (9876 to -37 cal years BP) ecosystem dynamics of Yellowstone Lake. Thus, 

this research investigates the direct and indirect Holocene climate forcings on 

Yellowstone Lake via analysis of its fossil diatom record. 

 

4.1.1 Site Description 

Yellowstone Lake (Figure 4.1; 44○30’N, 110○20’; 2,350 m elevation) is the 

largest alpine lake in North America, with an area of 344 square kilometers and a 

maximum depth of 107 meters (Interlandi et al. 2003). In most years, it stratifies in both 

winter and summer with periods of mixing in spring and autumn (dimictic). The lake has 

low to moderate nutrient concentrations (Table 4.1) and consists of four primary basins: 

two formed as part of a volcanic caldera (West Thumb and the Central Basin), and two 

formed through glacial processes (South Arm and Southeast Arm).  

 

Table 4.1: Limnologic characteristics of Yellowstone Lake (modified from Theriot et al. 

1997). 

pH 
Secchi Depth 

(m) 

Total PO4 

(mg/L) 

Kjeldahl-N 

(mg/L) 

Conductivity  

(uS/cm) 

Total Alkalinity 

(ueq/L) 

7.4 8.1 0.2 0.2 86 64 

 

Modern climate for the study area is Continental Subarctic, with 530 mm of 

average annual precipitation and an average annual temperature range between -6.2 and 8 

°C (Western Regional Climate Center 2019). Modern vegetation in the Yellowstone Lake 
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catchment is a mosaic of lodgepole pine (Pinus contorta) and mixed conifer (Abies 

lasiocarpa, Picea engelmanii, and Pinus albicaulis) forest. Forest type is largely related 

to soils of the area, with lodgepole pine dominating on rhyolitic soils and mixed conifer 

forests dominating in andesitic and basaltic soils (Whitlock 1993).  

 

4.2 Methods 

An 11.99-m sediment core (HD-YLAKE-2C) was retrieved with a Kullenberg 

corer (Kelts et al. 1986) from 61 m water depth in the northern portion of the 

Yellowstone Lake Central Basin in September 2016 (Figure 4.1). Cores were shipped to 

the LacCore facility at the University of Minnesota – Twin Cities for initial core 

description, sampling, and archiving. Initial core description included core splitting, high-

resolution photography, and collection of a suite of elemental data with a Geoteck Multi-

Sensor Core Logger (MSCL). Sediments were laminated throughout, and a thin (~0.5 

cm) lens of Mazama Ash was visible at 9.4 m in the core.  

Ten macrofossil and pollen samples were collected from discrete locations 

throughout the core for radiocarbon dating, and radiocarbon measurements were made 

using Accelerator Mass Spectrometry at Woods Hole Oceanographic Institution 

(NOSAMS), calibrated to IntCal13 (Reimer and Bayliss 2004). An age model was 

developed using the statistical package Bacon in R (Blaauw and Christen 2011), which 

uses Bayesian methods to reconstruct accumulation histories using prior assumptions 

about accumulation rate and its variability through time.  

Subsamples (~0.5 cm3) for diatom analysis were collected every 4 cm throughout 

the length of the core, for a total of 289 samples. A portion of each individual diatom 
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subsample was added to a vial, weighed to approximately 0.1 gram, and processed with 

30% hydrogen peroxide to remove organic matter (Battarbee 2003). Residual samples 

were rinsed thrice with deionized water to dilute hydrogen peroxide. A known 

concentration of polystyrene microspheres was added to each subsample to allow 

quantitative analyses of diatom concentration. After processing, each subsample was 

mounted to a slide with Naphrax. Diatom valves were identified at 1000 X magnification 

using a Leica DM2500 transmitted light microscope with differential interference 

contrast (DIC) equipped with a 5-megapixel camera or a Leica DMRX fitted with phase 

contrast. At least 300 diatom valves were identified to species and enumerated per slide.  

Assemblage counts were converted to percentages and plotted in the  program C2 

(Juggins 2003). A metric of diatom concentration (valves/gram) was calculated using 

microsphere concentrations, diatom valve totals, and sample weights. Constrained cluster 

analysis (CONISS) was conducted on species assemblage percentage data using R 

package Rioja (Juggins 2017). A broken stick model, which compares cluster results 

against a randomly-generated curve representing background noise, was used to 

determine the appropriate number of zonations. A ratio of plankton:tychplankton:benthon 

percentages and diatom concentration (valves/gram) were calculated. A transient 

simulation climate model of Holocene seasonal temperature and precipitation anomalies 

for the Greater Yellowstone Ecosystem (Hostetler, unpublished data) was smoothed with 

a 200-year moving average window in the statistical program PAST (Hammer et al. 

2001).  



65 

 

Figure 4.1: Digital Elevation Model inset of Yellowstone National Park (left) within the 

contiguous United States, with the location of Yellowstone Lake (white box). Satellite 

image (right) of the study site with coring location indicated by the red circle. 

 

4.3 Results 

Calibrated radiocarbon ages were systematically older for pollen extracts than for 

macrofossil samples, likely as a result of Yellowstone hydrothermal system carbon 

cycling dynamics (Schiller et al., manuscript in preparation). Thus, a subset of calibrated 

macrofossil ages and the Mazama Ash (Table 4.2) (Zdanowicz et al. 1999) were used to  

create the age-depth model. The age-depth model generates a minimum age (-37 cal years 

BP) for the surface, which is consistent with the absence of a large-magnitude charcoal 

peak from the 1988 Yellowstone fires and with the observed over-penetration of the 

Kullenberg corer. The calculated maximum age (9876 cal years BP) for the core base 

also is consistent with the regional Yellowstone National Park pollen stratigraphy 
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(Whitlock 1993). Additionally, this model generates an average sedimentation rate of 0.1 

cm/year, which is similar to those previously recorded for Yellowstone Lake (Tiller 1995, 

Johnson et al. 2003, Morgan et al. 2007). 

Table 4.2: Section ID and depth of samples used in creating an age-depth model, with 

corresponding composite depth, lab accession number, material type, 14C age and error, 

and median probability calibrated age. 

 

 

The Yellowstone Lake fossil diatom assemblage (>5% abundance) is comprised 

of four planktic species (Stephanodiscus minutulus, Aulacoseira subarctica, Asterionella 

formosa, and Stephanodiscus yellowstonensis) and one tychoplanktic species complex 

(Fragilaria (sensu lato)) (Figure 4.3). CONISS and associated broken stick model 

(Figure 4.4) results were used to group the percent abundance data into three major zones 

(Figure 4.5): – Zone 1 (9876-6475 cal years BP), Zone 2 (6475-1500 cal years BP), and 

Zone 3 (1500--37 cal years BP) – with visually-determined subzones (Figure 4.4). 

Seasonal (Figure 4.4) and annual (Figure 4.6) temperature and precipitation anomalies 

are presented stratigraphically.   

 

4.3.1 Zone 1 (9876-6475 cal years BP) 

Zone 1 is dominated by S. minutulus (>50%), sometimes in excess of 90%, with 

peaks in the relative abundance of A. subarctica (<35%) and A. formosa (<40%), often in  

Section ID
Section 

depth (cm)

Composite 

depth (cm)
14C Lab # Type

14C age 

(years BP)
14C error

Calibrated age 

(cal years BP)

YLAKE-YL16-2C-1K-3-W 132 328 OS-135957  Plant/Wood 2590 20 2743

YLAKE-YL16-2C-1K-4-W 71.5 402 OS-135958  Plant/Wood 3150 25 3378

YLAKE-YL16-2C-1K-6-W 3.5 624 Plant/Wood 4510 20 5156

YLAKE-YL16-2C-1K-8-W 85 940 - tephra - - 7627
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Figure 4.2: Bayesian age-depth model for Yellowstone Lake sediment core HD-

YLAKE-2C. Blue diamonds and associated error bars represent dated material input into 

the model. The grayscale cloud, with boundaries outlined in dotted lines by the 95% 

confidence interval, represents age model probability with darker shades indicating 

higher probability. The red dotted line designates the weighted mean age-depth model. 

Inset figures (left to right) show iteration history and the prior (green curve) and posterior 

(grey curve) densities for the mean accumulation rate and memory. 
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tandem, with corresponding decreases in S. minutulus. This zone routinely has high 

percentages of plankton and very low relative abundances of (<5%) tychoplankton and 

benthon. S. yellowstonenesis and S. oregonicus are at their lowest abundance (<2%) in 

Zone 1. Within Zone 1 are several intervals with distinctive increases in A. subarctica, A. 

formosa, and/or S. yellowstonensis relative to S. minutulus: ~8900, 8375-8150, 8050-

7925, 7675-7525, and 6700 cal yr BP. Zone 1 is further subdivided into two subzones – 

1A (9876-8950 cal years BP), 1B (8950-6475 cal years BP). Determination of sub-zones 

within Zone 1 was based upon slightly higher percentages of S. yellowstonensis and A. 

formosa. Small Fragilaria (sensu lato) are less than 5% of the assemblage in subzone 1A.  

During the latter portion of the early Holocene (after 9500 cal years BP), 

reconstructed winter and spring temperature anomalies (Figure 4.6) for the Greater 

Yellowstone Ecosystem fall below the pre-Industrial mean, whereas summer anomalies 

fall above the pre-Industrial mean. Precipitation anomalies decreased in the early 

Holocene (10000-9000 cal years BP) and then increased, with sustained increased 

precipitation 8500-7500 cal years BP. Spring precipitation anomaly values are around the 

pre-Industrial mean.   

 

4.3.2 Zone 2 (6475-1500 cal years BP) 

Zone 2 is also dominated by S. minutulus (30-90%), but with greater variability in 

percentages than Zone 1, primarily driven by changes in the relative abundance of A. 

subarctica (5-50%) and A. formosa (5-30%). In addition, the relative abundances of A. 

subarctica, as well as S. yellowstonensis (<15%), S. oregonicus (<15%), and small  
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Figure 4.3: Light microscope images of abundant (>5%) diatom taxa encountered in Yellowstone Lake sediments (black bar = 5 µm): 

(A) Stephanodiscus yellowstonensis, (B) Asterionella formosa, (C) Aulacoseira subarctica, (D) Stephanodiscus minutulus, (E) 

Stephanodiscus oregonicus, (F-H) small colonial Fragilariaceae. 

6
9
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Figure 4.4: Broken stick model derived from CONISS (Juggins 2017) of Yellowstone 

Lake fossil diatom species percentages. The black line represents the diatom assemblage 

data, while the black line represents a randomly-generated dataset. 
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Figure 4.5: Stratigraphic plot by age of abundant (>5%) diatom species, 

plankton:tychoplankton:benthon ratio, log-transformed diatom concentration 

(valves/gram), and 200-year smoothed GENMOM temperature and precipitation anomaly 

seasonal models with constrained cluster analysis (CONISS) tree and corresponding 

zones. The GENMOM model curves are colored blue for winter (December, January, 

February), green for spring (March, April, May), red for summer (June, July, August), 

and orange for autumn (September, October, November).   
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Figure 4.6: GENMOM reconstructed annual Holocene temperature and precipitation 

anomalies relative to a pre-Industrial base period. 
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Fragilaria (sensu lato) (<10%) are generally higher than Zone 1. Although plankton still 

dominate the assemblage (80-95%), tychoplankton and benthon percentages (<7.5%) 

begin to increase. Zone 2 is subdivided into five subzones based on shifts in the relative 

abundance of the three most abundance species (S. minutulus, A. subarctica, A. formosa) 

– 2A (6475-5350 cal years BP), 2B (5350-4900 cal years BP), 2C (4900-4050 cal years 

BP), 2D (4050-2325 cal years BP), and 2E (2325-1500 cal years BP). Throughout this 

zone, summer temperature anomalies decrease steadily, and winter temperature 

anomalies increase by approximately by ~1.0. Reconstructed precipitation anomalies 

remain moderate, fluctuating between -0.2 and 0.2 in Zone 2.  

 

4.3.3 Zone 3 (1500--67 cal years BP) 

Zone 3 continues to be co-dominated by A. subarctica (5-60%), S. minutulus (5-

80%), and A. formosa (2-40%) and also has some S. yellowstonensis (<20%), low S. 

oregonicus (<2%), and higher small colonial Fragilaria (5-25%) than previous zones. It 

is distinctive in consistently higher relative abundances of A. subarctica and A. formosa 

and a higher proportion of tychoplankton and benthon. This zone is not divided into any 

additional subzones. The amount of modeled warming that occurs from 500 cal years BP 

to present (~1.0 change in anomaly value) is twice the amount that occurs between 7500 

and 500 cal years BP. Winter and spring temperature anomalies are higher than the pre-

Industrial mean; autumn and winter are below or near the pre-Industrial base value.  
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4.4 Discussion 

Dominance of the diatom assemblage by planktic species and one tychoplanktic 

species complex indicates that Yellowstone Lake has been a deep system throughout the 

record, with limited changes in lake depth affecting diatom assemblage composition. 

Overall, analysis of fossil diatoms during the Holocene indicates that the system has been 

relatively stable throughout this period. However, small shifts in diatom assemblage 

relative abundances provide insight into paleoclimatic changes in Yellowstone National 

Park over the last ~10000 years as suggested by the varying ecological preferences of the 

dominant taxa, including nutrients, climate seasonality, and depth within the water 

column of the most abundant species (A. subarctica, S. minutulus, A. formosa¸ and S. 

yellowstonensis) (Table 4.2). Modern ecological research in Yellowstone Lake found that 

population maxima of two species rarely occurred in the same space and time, indicating 

that the diatom community structure is differentiated (Interlandi et al. 1999). In general, 

the diatom stratigraphy features trade-offs between S. minutulus and A. subarctica.  

Stephanodiscus minutulus is a high-phosphorus specialist, with low nitrogen and 

silica requirements (Lynn et al. 2000, Interlandi et al. 2003). Thus, S. minutulus is 

commonly an opportunistic species that responds quickly to phosphorus enrichment. In 

Yellowstone Lake S. minutulus blooms earliest in spring during isothermal mixing 

(Interlandi et al. 1999, Theriot et al. 2006). 

Aulacoseira subarctica blooms in spring after S. minutulus and before the onset of 

stratification and can persist at depth (>20 m) into early summer in Yellowstone Lake 

(Interlandi et al. 1999). As a heavily silicified species, it also requires high silica 

concentrations (Kilham et al. 1996). Larger population of A. subarctica are indicative of 
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cool, early summers that extend the duration of isothermal mixing and allow the 

population to grow and persist into summer.  

Asterionella formosa blooms in spring at approximately the same time as A. 

subarctica, but slightly deeper in the water column. It requires high nitrogen and 

moderate to high silica relative to phosphorus (Kilham et al. 1996, Michel et al. 2006, 

Berthon et al. 2014). Populations of A. formosa decrease at the onset of stratification. A. 

formosa is an opportunistic species that is one of the first to respond to nitrogen 

enrichment (Mcknight et al. 1990, Wolfe et al. 2001, Reavie et al. 2002, Saros et al. 2005, 

Michel et al. 2006). Thus, factors that increase N and/or Si availability during spring 

months, including increased N in runoff, would be expected to favor increased A. 

formosa.   

Stephanodiscus yellowstonenesis, endemic to Yellowstone Lake, is a 

characteristic summer species with the ability to grow at depth and in low light conditions 

(Kilham et al. 1996, Theriot et al. 2006). In historical records, S. yellowstonenesis was 

most abundant during intervals of drought.  

 

4.4.1 Zone 1 (9876-6475 cal years BP) 

Zone 1 is overwhelmingly dominated by S. minutulus. Portions of the record in 

Zone 1 are punctuated by synchronous or individual increases in A. subarctica and A. 

formosa, and the arrival of S. yellowstonensis at significant (>5%) abundances. Thus, 

increases in the relative abundance of S. yellowstonensis suggest periods with better-

developed summer stratification. The dominance of S. minutulus during the early portion 

of the record (9876-6475 cal years BP) suggests generally low nitrogen and silica 
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concentrations and high phosphorus availability. Intervals with higher A. formosa and A. 

subarctica abundances suggest higher silica availability and likely indicate extended 

water column instability as a result of extended spring mixing. The virtual absence of S. 

yellowstonensis in the basal part of this interval, from 9476-9225 cal years BP (Zone 1A) 

is indicative of short summers with minimal stratification, whereas the increased 

abundance of S. yellowstonensis beginning approximately 8950 cal years BP (Zone 1B) is 

indicative of longer intervals of summer stratification continuing throughout the 

remainder of the Holocene. 

Table 4.3: Ecological preferences of abundant Yellowstone Lake diatom species (Kilham 

et al. 1996, Interlandi et al. 1999). 

Species S. minutulus A. subarctica A. formosa S. yellowstonensis 

Nitrogen  Low Low High Low 

Silica Low High High Moderate/High 

Phosphorous High High Low Low 

Seasonality Spring 
Spring to Early 

Summer 
Spring Summer 

Depth 

More 
abundant at 
depth (>15 

m) 

More 
abundant in 

surface during 
spring (<15 m), 
at depth (>15 
m) in summer 

Abundant at 0-
10 m and 35-45 

m  

More abundant 
at depth 

Ecological 
Notes 

Opportunistic 

Can maintain 
high 

population in 
summer 

hypolimnion 

Opportunistic - 
responds 
rapidly to 
nutrient 

enrichment 

Most abundant 
during historical 

droughts 

 

4.4.2 Zone 2 (6475-1500 cal years BP) 

 A marked increase in A. subarctica differentiates Zone 2 after ~6475 cal years 

BP. Because A. subarctica requires higher Si:P than S. minutulus, and its blooms extend 
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from the onset of early spring ice-off into early summer, the increase of this species 

suggest longer periods of  isothermal mixing than in the previous zone – which would 

allow the development of both S. minutulus and A. subarctica populations before the 

onset of stratification. This could occur in years of early ice out or alternatively in years 

where early summer is cool and stratification is delayed. In either case, the shifts between 

various subzones in the relative abundance of A. subarctica versus S. minutulus suggest 

shifts in the duration of isothermal mixing.  As discussed above, intervals with increased 

A. formosa may result from higher N input from increased runoff in spring. S. oregonicus 

is most abundant in Zone 2, generally with an inverse relationship to S. yellowstonenesis. 

Unfortunately little is known about the ecological differences of these two taxa.  

 The synchronous occurrence of increased A. subartica, A. formosa, and S. 

yellowstonensis is rare, but subzone 2B (5350-4900 cal years BP) is characterized by a 

sustained, synchronous elevation of these three planktic species, which suggests warm 

wet winters resulting in earlier ice-off and increased nutrient influx into Yellowstone 

Lake, coupled with some stratification and thus the increased abundance of S. 

yellowstonensis.  

 

4.4.3 Zone 3 (1500--67 cal years BP) 

In Zone 3 (1500--37 cal years BP), a shift occurs from S. minutulus dominance to 

a co-dominance of A. subarctica and S. minutulus and higher overall A. formosa 

abundance. Increasing trends of A. subarctica and A. formosa are indicative of overall 

extended spring turnover, allowing the establishment of large early- and late-spring 

blooms. Additionally, higher abundance of A. formosa is indicative of higher nitrogen 
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availability in the catchment (Wolfe et al. 2001). In this setting, elevated nitrogen inputs 

are likely the result of wetter winters or springs that increase N loading to the lake 

(Kilham et al. 1996).  

 

4.4.4 Synthesis 

 Dominance of S. minutulus throughout the entire record, particularly in the early 

Holocene, is indicative of high phosphorus availability. Phosphorus is abundant in the 

Yellowstone Lake basin due to andesitic rock weathering within the catchment (Morzel et 

al. 2017, Theriot et al. 1997). Higher abundance of S. minutulus is most likely related to 

water column stability, including the duration of spring turnover and the resulting internal 

phosphorus regeneration from the hypolimnion during mixing, rather than direct input 

from the catchment (Bracht et al. 2008, Theriot et al 1997, Interlandi et al 1999).  

A. subarctica can persist into summer during cool years when stratification is 

delayed. Yellowstone Lake’s deep chlorophyll maximum and the general low light 

requirements of this species allow significant populations to photosynthesize during 

mixing and also at the base of the thermocline during stratification. Thus, it is particularly 

challenging to delineate the environmental conditions or seasonality (spring versus 

summer) controlling the species abundance in the fossil diatom assemblage of 

Yellowstone Lake.  

Overall, the Yellowstone Lake diatom assemblage is controlled by climatological 

changes – temperature and precipitation – throughout the Holocene (Figure 4.7). 

Specifically, the trade-off between A. subarctica and S. minutulus populations appears to 

be largely controlled by temperature. Higher populations of S. minutulus are favored by 
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cool springs with phosphorus regeneration from the hypolimnion during mixing, but 

warmer summers, because a shortened mixing period created by the co-occurrence of 

later ice-off and stronger stratification truncated the duration of isothermal mixing before 

large populations of later spring species A. subarctica and A. formosa could become 

established.  

 

Figure 4.7: Conceptual diagram of direct (climate pathway) and indirect (catchment 

pathway) climate impacts on diatom assemblage composition and productivity including 

diatom-inferred Yellowstone Lake conditions (modified from Fritz & Anderson 2013). 
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Because A. subarctica blooms later in spring, it benefits from earlier ice-off and, 

hence, an extended spring mixing period. Alternatively, below-average summer 

temperatures in the late Holocene may have also favored A. subarctica by either delaying 

the onset of stratification or weakening stratification. Surprisingly, the highest 

abundances of the summer species S. yellowstonenesis also appear to occur when 

summers were getting progressively colder. Thus, warmer winters and springs with 

cooler summers effectively extended spring turnover and resulted in larger populations of 

A. subarctica, which blooms later in spring. In Yellowstone Lake, delayed or weaker 

stratification favored species with higher silica requirements.  

 The population of A. formosa in Yellowstone Lake appears to be controlled by 

winter and/or spring precipitation, with higher abundances generally occurring with more 

positive precipitation anomaly values and in general tandem with A. subarctica increases. 

Because A. formosa is a high-nitrogen specialist, increases in its population are likely 

related to an influx of runoff from the surrounding landscape during spring turnover.   

Relatively warm summer temperatures are reconstructed from other early 

Holocene paleolimnological records of the Yellowstone region. Warm, dry summers 

were inferred during the early Holocene (~11000 cal years BP) from three lake records 

(Blacktail Pond, Cub Creek Pond, and Hendrick Pond) in the Yellowstone region (Lu et 

al. 2017), and the lakes underwent a synchronous shift approximately 8800-8700 cal 

years BP, attributed to increased convective moisture (Lu et al. 2017). However, steadily 

drier conditions after 8500 cal years BP were inferred from the δ18O record of Crevice 

Lake in northern Yellowstone National Park (Whitlock et al. 2012). This transition period 

in the early Holocene is consistent with the interpretation of increasing winter/spring 
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precipitation and a slight increase in the duration of the spring mixing period  (~8950 cal 

years BP) in the Yellowstone Lake record inferred from increases in A. formosa 

throughout Zone 1B (8950-6475 cal years BP). 

 In the Greater Yellowstone Ecosystem, decreasing summer insolation and 

increasing winter and spring insolation are characteristic of middle Holocene climate 

controls (Whitlock and Brunelle 2006). Drier than present early-Holocene conditions are 

inferred at Crevice Lake, Slough Creek Lake, Cygnet Lake, and Blacktail Pond 

(Whitlock 1993, Whitlock et al. 2012). Dry conditions also are inferred from the Foy 

Lake fossil diatom record 7000-3500 cal years BP (Stone and Fritz 2006). This period in 

the Yellowstone Lake record is marked by increasing A. subarctica and an oscillatory 

relationship between S. yellowstonenesis and S. oregonicus, particularly from 

approximately 5,400-2,400 years BP. The Yellowstone Lake fossil diatom assemblage 

records the transition into cooler summers and warmer winters and springs. Particularly, 

Zone 2D (4050-2325 cal years BP) is a period of longer spring mixing. Thus, while 

precipitation changes were driving the diatom assemblages of lakes in the northern 

Greater Yellowstone Ecosystem, the diatom assemblage of Yellowstone Lake in southern 

Yellowstone National Park appears more sensitive to temperature changes in the middle 

Holocene.  

Late-Holocene changes constructed from diatom assemblages of four lakes in 

Western Montana (Foy Lake, Crevice Lake, Morrison Lake, and Reservoir Lake) showed 

distinct synchronous changes 2200-250 cal years BP (Bracht-Flyr and Fritz 2012) 

indicative of large-scale climatic forcing. Crevice Lake and Morrison Lake were more 

sensitive to changes in spring mixing duration, whereas Foy Lake and Reservoir Lake 
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recorded lake-level fluctuations. The Reservoir Lake record had a sudden increase in A. 

formosa beginning 1500-1200 cal years BP (Bracht-Flyr and Fritz 2012), as does 

Yellowstone Lake. This shift to A. formosa co-dominance in both lakes is inferred as a 

sustained increase in winter/spring precipitation and resultant runoff during the late 

Holocene (Bracht-Flyr and Fritz 2012).   

 

4.5 Summary 

 The fossil diatom assemblage records Holocene paleolimnologic changes in 

Yellowstone Lake. Early-Holocene (9876-6475 cal years BP) conditions had generally 

high phosphorous availability with generally shorter periods of spring mixing. The mid- 

to early late-Holocene (6475-1500 cal years BP) was a transition period with increasing 

winter and spring temperatures, as well as decreasing summer temperatures, which 

affected the relative abundance of species within the diatom assemblage. The late-

Holocene (1500 cal years BP--67 cal years BP) was wetter than the mid-Holocene, 

resulting in increased nitrogen input. The diatom assemblages of Yellowstone National 

Park are largely controlled by changes in the duration of the ice-free period and onset of 

summer stratification, indicating the record is most sensitive to direct climate changes in 

lake seasonality and energy balance. Yet, fluctuations in A. formosa appear to be linked 

to precipitation dynamics and, thus, indirect climate impacts on the lake via fluctuations 

in regional hydrologic budget.  
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CHAPTER 5  

 

THE ECOLOGICAL IMPACT OF HYDROTHERMAL EXPLOSION EVENTS 

ON DIATOM COMMUNITIES IN THE YELLOWSTONE CALDERA 

 

Abstract 

Hydrothermal explosions have perturbed the Yellowstone hydrothermal landscape 

since the Late Pleistocene. Macroscopic evidence of past hydrothermal explosion events 

is preserved in a number of lakes in Yellowstone National Park as deposits of breccia 

formed during hydrothermal explosion events. This study explores the impact of 

localized hydrothermal explosions on fossil diatom assemblages of Yellowstone Lake 

and Cub Creek Pond. Pre- and post-eruption assemblages were assessed for a total of five 

early to middle Holocene hydrothermal explosion events. The stratigraphic records 

indicate that fossil diatom assemblages were resilient to hydrothermal disturbance and the 

associated changes in limnological conditions. However, localized hydrothermal 

explosion events do appear to impact environmental conditions severely enough to be 

recorded in time-averaged fossil diatom assemblages in shallow systems. Diatom 

assemblages of Cub Creek Pond – a small, shallow basin – recorded a sustained shift in 

diatom assemblage composition, whereas any observed changes in diatom assemblages 

of the large, deep Yellowstone Lake record did not persist. These diatom assemblage 

shifts were largely restricted to biodiversity within species complexes, indicating 

resilience via functional compensation. 
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5.1 Introduction 

 

Terrestrial hydrothermal systems provide critical inputs to Earth’s biogeochemical 

cycles and thermal budget, as well as insights regarding how life functions in harsh 

environments (Lowell 1991). Large craters (>400 meters in diameter), one type of 

hydrothermal landscape feature, are present in numerous locations within Yellowstone 

National Park (Muffler et al. 1971), which has the largest concentration of terrestrial 

hydrothermal features on Earth (Hurwitz & Lowenstern 2014). These craters were 

formed by hydrothermal explosions – a catastrophic response to forcing where fluids 

trapped in near-surface rocks flash to steam and perturb confining rock. During 

hydrothermal explosion events, water and steam are expelled along with solid rock, 

which is potentially deposited and preserved in situ as breccia. Numerous large 

hydrothermal explosion craters have formed since the Late Pleistocene (~14,000 years 

BP) (Morgan et al. 2009), primarily within the Yellowstone Caldera.   

A number of outcrops in the vicinity of Yellowstone Lake include lacustrine units 

that contain layers of breccia indicative of past hydrothermal explosions. These include 

the Mary Bay (13.0 Ka), Indian Pond (2.9 Ka), and Turbid Lake (9.4 Ka) events (Morgan 

et al. 2009 and references therein). Additionally, several large explosion craters have 

been mapped on the floor of Yellowstone Lake. Smaller craters exist within the basins 

created by large explosions, indicating subsequent, less-intense events that occurred after 

the initial explosions. Whereas subaerial craters are rimed with breccia deposits, sub-

lacustrine craters lack apparent rims – suggesting that ejecta from underwater explosion 

events was widely dispersed into lake water, with the potential to cause considerable 

water column disturbance (Muffler et al. 1971, Hamilton 1987, Morgan et al. 2009). 
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Disturbances that disrupt ecosystem balance can have significant impacts on 

ecological function and community composition (White & Jentsch 2001). The objective 

of this study is to assess the effect of localized hydrothermal explosions on diatom 

ecological dynamics in Yellowstone Lake and Cub Creek Pond in Yellowstone National 

Park. Specifically, this research evaluates the resilience of diatom assemblages to high-

magnitude disturbances. 

 

5.1.1 Study Area 

Three sampling locations – modern Yellowstone Lake, a paleoshoreline outcrop 

of Yellowstone Lake, and Cub Creek Pond – with preserved hydrothermal explosion 

breccia were selected for analysis (Figure 5.1). The Yellowstone Lake outcrop (44.55466 

N, -110.32510 W) is located on the northern shore of the lake, with a total height of 56 m 

above the modern shore, and is directly west of Mary Bay. The outcrop includes 

alternating strata of clay and sand, with three matrix-supported explosion breccia deposits 

with angular to sub-angular clasts.  

Yellowstone Lake (44.50782 N, -110.32685 W, 2356 m) is a large high-altitude 

lake, with a surface area of 344 square kilometers (Morgan et al. 2003) and a maximum 

depth of 107 meters (Tiller 1995). Yellowstone Lake is dimictic and oligotrophic (Table 

5.1, Theriot et al. 1997). Yellowstone Lake inflow is dominated by the Yellowstone 

River, which flows into the southern portion of the Southeast Basin, although other small 

rivers and streams also contribute water and sediment. The Yellowstone River is the only 

outlet, located in the northern Central Basin of Yellowstone Lake.  
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During the Last Glacial Maximum (~21 ka), the Yellowstone region was covered 

by a large independent ice field, with ice reaching a height of 920 meters above base 

level (Pierce 1979). Glacial retreat began at 14,490 +/- 350 cal years BP and created the 

first direct ancestor of modern Yellowstone Lake (Pierce et al. 2003). Ancestral 

Yellowstone Lake was significantly larger than the modern basin, and numerous paleo 

shoreline terraces exist, documenting post-glacial lake decline. Cub Creek Pond 

(44.58917 N, -110.45861 W, 2051 m) is a small (<5 ha) shallow lake basin with an 

extensive sedge fen surrounding the margin and is located ~4 km directly east of 

Yellowstone Lake.  

 

Table 5.1: Limnologic characteristics of Yellowstone Lake (Theriot et al 1997) including 

P (total PO4) and N (Kjeldahl-N) and Cub Creek Pond (Lu et al. 2017) including P (TP) 

and N (TN).  

  Depth (m)  P (mg/L) N (mg/L)  DOC (mg/L) 

Yellowstone Lake 107 0.2 0.2 4.7 

Cub Creek Pond 4 0.126 1.553 14.5 

 

Modern vegetation in the Yellowstone Lake region consists of a mosaic of 

lodgepole pine (Pinus contorta) and mixed conifer (Abies lasiocarpa, Picea engelmanii, 

and Pinus albicaulis) forest. Soils of the area are mainly andesitic and rhyolitic. Modern 

climate for the study area is Continental Subarctic, with 390 mm of average annual 

precipitation and an average annual temperature range between -2.4 and 11.5 °C 

(National Park Service 2019). 
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5.2 Methods 

A sedimentary outcrop described previously by Morgan (2009) was measured and 

described in July 2016 using standard methods. A total of 26 high-resolution (continuous 

1-cm) subsamples were collected with a brass cuvette from the 31-cm section of 

diatomaceous lagoonal sediments that occur immediately before and after the Turbid 

Lake (9.3 ka) explosion breccia. The Turbid Lake breccia was too silicified to sample.  

 An 11.5-m long sediment core (HD-YLAKE5A) was collected from Elliot’s 

Crater (44.50782 N, -110.32685 W, 2365 m) in 102 m of water, near the center of 

hydrothermal activity in the northern basin of Yellowstone Lake, using a Kullenberg 

corer in September 2016. A 4.31-m long sediment core was collected from the fen on the 

southern side of Cub Creek Pond in August 2017 with a Livingstone corer. For 

Yellowstone Lake and Cub Creek Pond, high-resolution samples (every ½ cm 

continuously) were collected before and after suspected hydrothermal explosion deposits 

to enable sufficient stratigraphic time (~100 years) to assess the pre-explosion “normal” 

conditions, immediate post-explosion response, and any longer term community impacts.  

A portion of each individual diatom subsample was added to a vial, weighed to 

approximately 0.1 gram, and processed with 30% hydrogen peroxide to remove organic 

matter (Battarbee 2003). Residual samples were rinsed thrice with deionized water to 

dilute hydrogen peroxide. A known concentration of polystyrene microspheres was added 

to each subsample to allow quantitative analyses of diatom concentration. After 

processing, each subsample was mounted to a slide with Naphrax for archival purposes. 

Diatom valves were identified at 1000 X magnification using a Leica DM2500 

transmitted light microscope with differential interference contrast (DIC) equipped with a 
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5 Megapixel camera or a Leica DMRX fitted with phase contrast. At least 300 diatom 

valves were identified to species and enumerated per slide. In addition to counts of 

species relative abundance, the ratio of initial to linking valves was calculated after 

assessing the morphology of 300 Aulacoseira subarctica valves per sample. The ratio of 

diatom frustules to chrysophyte cysts also was enumerated for each slide.  

Diatom assemblage counts were converted to percentages and plotted in program 

C2 (Juggins 2003). A metric to infer relative productivity (valves/gram) was calculated 

using microsphere concentrations, diatom valve totals, and sample weights. Constrained 

cluster analysis (CONISS) was conducted on species assemblage percentage data using 

the R package Rioja (Juggins 2017). Program Past3 (Hammer et al. 2001) was used to 

calculate the Shannon Diversity Index.  

 

5.3 Results 

 In total, pre- and post-hydrothermal explosion event paleolimnological conditions 

were assessed for five Holocene deposits (Figure 5.2). These deposits are a series of 

upward-grading beds, some with matrix-supported angular clasts. One hydrothermal 

explosion deposit (9965 14C yr BP) was found in the Cub Creek Pond core. One 

hydrothermal explosion deposit was apparent in the Yellowstone Lake paleoshoreline 

outcrop (Turbid Lake, 9.3 ka). Three hydrothermal explosion deposits, two pre- plus one 

post-Mazama Ash (7627 cal yr BP, Zdanowicz et al. 1999) event were apparent in the 

Yellowstone Lake core lithology.  
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Figure 5.1: Digital Elevation Model inset of Yellowstone National Park (left). Satellite image of the study site with red dots indicating 

sampling locations (A) Yellowstone Lake paleoshoreline outcrop, (B) Yellowstone Lake sediment, and (C) Cub Creek Pond (right). 

9
4
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Figure 5.2: Photographic images depicting the lithology surrounding hydrothermal 

events in (A,B) Yellowstone Lake sediment cores, (C) Cub Creek Pond sediment core, 

and (D) Yellowstone Lake paleoshoreline outcrop. 
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5.3.1 Cub Creek Pond 

The hydrothermal explosion deposit recorded in the Cub Creek Pond sediment 

lithology dates to 9532 cal yr BP (median probability, 9881-9250 cal yr BP (95% 

probability)). Abundant (>5%) diatoms in the assemblage of Cub Creek Pond (Figure 

5.3) include five tychoplanktic (Pseudostaurosiropsis pseudoconstruens, 

Pseudostaurosiropsis sp. 1, Pseudostaurosiropsis sp. 2, Stauroforma exiguiformis, 

Staurosirella neopinnata, and Staurosirella sp. 2) taxa of the small colonial Fragilaria 

(sensu lato) complex. The pre-explosion breccia deposits are dominated by S. neopinnata 

(30-85%) and Pseudostaurosiropsis sp. 2 (<40%), with lower abundances of 

Pseudostaurosiropsis sp. 1 (15%) and P. pseudoconstruens (<20%). Shannon diversity 

index values vary widely, and diatom concentrations (valves/gram) increase steadily 

throughout the pre-explosion assemblage. The post-explosion assemblage is co-

dominated by Pseudostaurosiropsis sp. 2 (40-70%), S. neopinnata (<30%), and 

Staurosirella sp. 2 (10-40%). Diatom concentration is low in the sample immediately 

above the explosion breccia and subsequently increases to the highest values of the 

record at 47.5 cm, followed by a decrease to moderate levels. The Shannon diversity 

values decrease in the sample directly above the explosion breccia, and they remain at 

moderate values with reduced variability compared with pre-explosion conditions. 
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Figure 5.3: Stratigraphic plot of abundant (>5%) diatom species, Shannon diversity index, and diatom concentrations for Cub Creek 

Pond. Gray bar indicates the explosion deposit, which does not contain diatoms. 

9
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5.3.2 Yellowstone Paleoshoreline Outcrop  

 The hydrothermal explosion breccia deposited in the Yellowstone Lake 

paleoshoreline outcrop is dated to the early Holocene event that created the Turbid Lake 

Basin (9.3 Ka, Morgan et al. 2009). Abundant diatoms (>5%) in the Yellowstone Lake 

paleoshoreline outcrop (Figure 5.4) include one planktic (Aulacoseira subarctica) and 

seven benthic (Stauroforma exiguiformis, Pinnularia microstauron, Pinnularia 

viridiformis, Pinnularia sudetica, Nitzschia liebethruthii v. siamensis, Luticula 

yellowstonensis, and Gomphonema parvulius) species. The pre-explosion (1.0-6.5 cm) 

assemblage is co-dominated by A. subarctica (20-40%) and S. exiguiformis (15-30%), 

with lesser relative abundances of P. viridiformis and G. parvulius. The diatom valve to 

chrysophyte cyst ratio is low (<2.3) at the beginning of the record and reaches moderate 

levels (~2) in the sample directly below the explosion breccia. The diatom concentration 

is low at the bottom of the record (1.0 cm) and in the sample directly below the explosion 

deposit (6.5 cm). The ratio of initial/linking A. subarctica valves is low throughout the 

pre-explosion zone.  

The post-explosion (12.5-31.0 cm) assemblage is co-dominated by A. subarctica 

(20-40%), S. exiguiformis (1-30%), and P. viridiformis (1-20%) directly above the 

explosion breccia (12.5-16.0 cm). P. microstauron (1-20%) and P. sudetica (0-20%) 

increase in abundance later in the post-explosion zone (16.0-31.0 cm), along with L. 

yellowstonensis (<10%) and a short interval with N. liebethruthii v. siamensis (20.0-22.0 

cm). Directly above the explosion breccia, diatom concentration is low (12.5-14.5 cm), 

then steadily increases throughout the post-explosion zone. Diatom valve to chrysophyte 

cyst ratio is moderate (~2) in the sample immediately above the explosion breccia (12.5 
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cm) and then increases slightly (~3) in the post-explosion zone. In the sample directly 

above the explosion breccia, initial/linking valves attain the second-highest value in the 

record, but subsequently decline until much later in the record (29 cm). Shannon diversity 

values increase slightly in the post-hydrothermal explosion diatom assemblage in 

comparison with pre-explosion sediment.  

 

5.3.3 Yellowstone Lake Sediment Cores 

  The three hydrothermal explosion breccia deposits in Yellowstone Lake core 

lithology have not been dated. However, the presence of the well-dated Mazama Ash 

deposit (Zdanowicz et al. 1999) provides some age constraint – with two hydrothermal 

explosion deposits occurring below (H3 and H2) and one (H1) above the ash. The 

abundant (>5%) diatom taxa of the Yellowstone Lake sediment cores (Figures 5.5, 5.6) 

include five planktic (Aulacoseira subarctica, Stephanodiscus yellowstonensis, 

Stephanodiscus minutulus, Stephanodiscus oregonicus, and Asterionella formosa) and 

one tychoplanktic species complex (Fragilaria (sensu lato)).  

In the sample immediately preceding the H3 deposit (Figure 5.5, 163 cm), A. 

subarctica is locally absent, with >90% S. minutulus and a low relative abundance A. 

formosa. Diatom concentrations are high, with a peak at 166 cm core depth. In the sample 

immediately post-H3 breccia (44.5 cm), S. minutulus is low, A. subarctica increases 

slightly, and A. formosa is increased in comparison with the pre-explosion (163 cm) 

assemblage. However, this pre- to post- shift in diatom abundance is not outside the 

natural variability of the system. Diatom concentrations decrease and Shannon diversity 

increases in the sample directly post-H3. 
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Figure 5.4: Stratigraphic plot of abundant (>5%) diatom species, diatom concentrations, diatoms/chrysophytes, initial/linking valves 

of A. subarctica, and Shannon diversity index values for the Yellowstone Lake paleoshoreline outcrop samples. Gray bar indicates the 

explosion deposit, which does not contain diatoms. 1
0
0
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In the sample immediately preceding the H3 deposit (Figure 5.5, 163 cm), A. 

subarctica is locally absent, with >90% S. minutulus and a low relative abundance A. 

formosa. Diatom concentrations are high, with a peak at 166 cm core depth. In the sample 

immediately post-H3 breccia (44.5 cm), S. minutulus is low, A. subarctica increases 

slightly, and A. formosa is increased in comparison with the pre-explosion (163 cm) 

assemblage. However, this pre- to post- shift in diatom abundance is not outside the 

natural variability of the system. Diatom concentrations decrease and Shannon diversity 

increases in the sample directly post-H3. 

In the sample immediately below the H2 breccia (29 cm), S. minulutus relative 

abundance is high (~90%). Shannon diversity is relatively low, and the diatom 

concentration is moderate. Immediately above the H2 breccia (21 cm), S. minutulus is 

slightly lower in abundance, with A. subarctica and Fragilaria (sensu lato) increased 

relative to pre-explosion conditions. Shannon diversity increases and diatom 

concentration decreases in comparison to pre-H2 breccia assemblage. However, this pre- 

to post- shift in diatom abundance is not outside the natural system variability. 

Diatom assemblage composition pre-H1 explosion (Figure 5.6, 100.5 cm) consists 

of relatively increased S. minutulus, with relatively low abundances of A. subarctica and 

Fragilaria (sensu lato). Shannon diversity is moderate, and diatom concentration is 

moderate. Immediately post-H1 (97 cm), S. minutulus decreases, and A. subarctica, as 

well as Fragilaria (sensu lato), increase relative to the pre-explosion assemblage  
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Figure 5.5: Stratigraphic plot of abundant (>5%) diatom species, Shannon diversity 

index, and valves/gram values surrounding H3 and H2 breccia deposits in Yellowstone 

Lake sediment core samples. Gray bar indicates the explosion deposits, which do not 

contain diatoms. 
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Figure 5.6: Stratigraphic plot of abundant (>5%) diatom species, Shannon diversity 

index, and valves/gram values surrounding the H1 breccia deposit in Yellowstone Lake 

sediment core. Gray bar indicates the explosion deposit, which does not contain diatoms.  
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percentages. Additionally, post-explosion Shannon diversity minimally increases and 

valves/gram decreases. Again, this pre- to post- shift in diatom abundance is not outside 

the natural variability of this system. 

 

5.4 Discussion 

  Fossil diatoms preserved in Cub Creek Pond sediments are indicative of shallow, 

low-nutrient conditions. The diatom assemblage of Cub Creek pond shows a marked 

change after the hydrothermal explosion deposit (9.5 Ka). Specifically, P. 

pseudoconstruens, Pseudostaurosiropsis sp. 2, and S. neopinnata show substantive 

changes in relative abundance (>40%) before and after the hydrothermal explosion 

deposit. Whereas S. neopinnata dominates the pre-explosion assemblage, it is completely 

absent from the sample directly above the hydrothermal explosion deposit (47.5-45 cm). 

The relative abundance of S. neopinnata does recover to somewhat higher values, but not 

to pre-explosion levels. In contrast, Pseudostaurosiropsis sp. 2 increases from <35% 

below to 40-75% above the hydrothermal explosion deposit. Additionally, 

Pseudostaurosiropsis sp. 1, P. pseudoconstruens, and S. exiguiformis are locally absent in 

post- hydrothermal deposit diatom assemblages (51.5-50.5 cm).  

These changes in fossil diatom assemblages indicate a shift in paleoenvironmental 

conditions in association with the hydrothermal explosion event. As such, the shift in 

dominance from S. neopinnata to Pseudostaurosiropsis sp. 2 indicates a sustained change 

in environmental conditions to favor Pseudostaurosiropsis. Decreased diatom 

concentrations in post-hydrothermal event sediments indicate an extended impact on 

diatom abundance in the sediments. Small colonial Fragilaria (sensu lato) species are 
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low-nutrient, opportunistic, and disturbance-tolerant (Saros et al. 2003). However, 

whereas diatom ecologists have documented the environmental preferences of the species 

complex, the challenging taxonomy of this group has created obstacles for inferring the 

ecological conditions that favor one species over another (Westover et al. 2006). Thus, 

we can only speculate on the nature of environmental change. One potential implication 

of a hydrothermal explosion could be that the graded breccia deposit creates a functional 

difference in the substrate texture or stability that favors some species of small Fragilaria 

(sensu lato) over others.  

 The fossil diatom assemblage of Yellowstone Lake changes minimally in 

association with the hydrothermal explosion deposits. The benthon-dominated 

assemblage of the Yellowstone Lake outcrop indicates relatively shallow conditions in 

this portion of the northern Central Basin during the early Holocene. In contrast, the 

dominance of plankton in the Yellowstone Lake sediment core indicates deep conditions 

in the Central Basin during the early to middle Holocene period when the eruptions 

occurred.  

The most drastic change in diatom assemblage surrounding the Turbid Lake (9.3 

Ka) breccia in the Yellowstone Lake outcrop is a decrease in P. microstauron and an 

increase in P. viridiformis across the breccia threshold. Increased abundance of P. 

viridiformis is relatively extended (13-17 cm), before percentages return to pre-explosion 

values. P. viridiformis is larger and more heavily silicified than P. microstauron (Bahls et 

al. 2018), indicating an influx of silica into the system in association with the 

hydrothermal explosion. The shift to higher post-explosion values of the 

diatoms:chrysophyte ratio may be indicative of higher nutrient availability as higher 
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diatom abundance relative to chrysophytes is typical in lakes of higher trophic status 

(Smol 1985). The peak in initial/linking A. subarctica valves in the sample immediately 

post-explosion deposit designates an increase in auxospores and, thus, sexual 

reproduction perhaps indicating higher nutrient availability or elevated environmental 

stress.  

In Yellowstone Lake sediment cores, the fossil diatom assemblages record 

minimal changes in association with hydrothermal explosion events. Decreases in diatom 

concentrations (valves/gram) occur with all three hydrothermal explosion deposits in the 

Yellowstone Lake sediment cores. Yellowstone Lake core species assemblage shifts are 

short-lived, only occurring in the sample immediately above the explosion event and are 

not outside of the normal-condition fluctuations documented in non-disturbed periods of 

the record. 

Holistically, diatoms appear resilient to hydrothermal explosion disturbance, 

particularly in time-averaged sediment records. However, changes in the fossil diatom 

record indicate that hydrothermal explosions were able to alter paleolimnological 

conditions more effectively in shallow conditions in contrast to deeper systems and had a 

larger impact on smaller basins. Thus, hydrothermal explosion disturbance impacted 

small, shallow Cub Creek Pond diatom assemblage more severely than that of the larger 

Yellowstone Lake. Specifically, a long-lasting assemblage shift occurred in Cub Creek 

Pond, while assemblage changes in Yellowstone Lake were relatively short-lived. 

Variations in diatom concentration (valves/gram) were also more pronounced in Cub 

Creek Pond than Yellowstone Lake. Changes in diatom concentration are impacted by 

diatom productivity, sedimentation rate, and valve preservation. In this instance, diatom 
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concentration is most likely a measure of changes in water clarity or substrate 

disturbance. Shallow-water diatom flora were impacted more than deep-water 

assemblages in Yellowstone Lake. As such, decreased diatom productivity is likely 

related to decreased water clarity. Additionally, inferred increased sexual reproduction 

and decreased diversity in Yellowstone Lake and Cub Creek Pond fossil diatom 

assemblages indicate harsh limnologic conditions immediately following hydrothermal 

explosion events, although these are not sustained. 

Biodiversity is an important ecosystem component that affects a system’s 

resilience to disturbance (Carpenter & Cottingham 1997). Specifically, diversity at the 

species level can result in functional compensation (Frost et al. 1995), where the 

availability of a high species pool can facilitate resistance to disturbance. As such, the 

post-disturbance shift in the dominant taxa of a small system (Cub Creek Pond) from one 

small colonial Fragilaria (sensu lato) to another is a compensatory shift in species that 

may stabilize ecosystem process rates (Carpenter & Cottingham 1997). In the larger lake 

system, there was a short-lived response to disturbance in the diatom assemblage in the 

shallow water samples, but not in deeper samples. Substrate disturbance in the area could 

be a contributing factor explaining how planktic species were unaffected, but the benthic 

species assemblage changed. Additionally, the entire Cub Creek Pond basin was 

impacted by the explosion deposit, whereas only northern Yellowstone Lake shallow 

environments were impacted. As such, functional compensation appears to be key factor 

to the resilience of shallow-water species, while planktic species are resilient to local 

disturbance via input from the surrounding species pool. 
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CHAPTER 6  

 

SUMMARY 

 

6.1 Important Findings 

 Investigation of fossil diatom assemblages from various hydrothermal settings 

yielded a number of important findings and conclusions; an overview of these are 

presented below: 

 Extensive literature review in Chapter 2 suggests that eukaryotic extremophile 

research in continental hydrothermal systems – particularly in the fields of genomic and 

metabolic profiling – has drastically increased in recent decades. While eukaryotic 

growth is hindered at high temperatures (>62 ○C), they can grow in low-temperature 

continental hydrothermal systems globally, even at extreme acidity (pH <4.0) and 

alkalinity (pH >9.0). Further, eukaryotes are important organisms in microbial mat 

communities, and also mediate silicate and carbonate precipitation in continental 

hydrothermal activity.  

 Sinter from Yellowstone National Park alkaline-chloride systems contained 

evidence of in-situ diatom growth, as described in Chapter 3. The fossil diatoms of Upper 

Geyser Basin, found in various stages of diagenetic alteration, were aerophilic and 

indicative of low nutrient availability. Fossil diatoms of Yellowstone Lake structures 

suggest alkaline, relatively shallow conditions. The presence of diatoms in these 

materials indicates that silica frustules can maintain an identifiable shape under some 

low-temperature hydrothermal alteration. 

 Chapter 4 reconstructs Holocene climate from Yellowstone Lake sediment. 

Diatom assemblages of Yellowstone Lake were sensitive to changes in the duration of the 
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ice-free period and onset of summer stratification. This indicates that the record is mainly 

recording Holocene temperature changes and their influence on lake energy balance and 

the seasonality of water-column mixing and stratification. This record details how a large 

lake responded to climatic change in the spatially variable climate regimes of the Greater 

Yellowstone Ecosystem.  

 Chapter 5 investigates how early to middle Holocene hydrothermal explosion 

events affected paleolimnological conditions. The impact of early Holocene explosions is 

more pronounced – due to the relative instability of lake and coupled landscape dynamics 

in the post-glacial environment or as a function of lake morphology. Preference for R-

selected species were apparent in post-hydrothermal explosion periods. However, diatom 

assemblages were generally resilient to hydrothermal explosion disturbance.  

 

6.2 Ongoing Research 

High-resolution, multi-proxy studies intrinsically require abundant data collection 

and analysis. As such, despite the extensive data presented within this dissertation, this 

research in Yellowstone National Park is still ongoing. Future research is largely related 

to data integration and interpretation of multi-proxy records.  

 Whereas the results documenting fossil diatom presence and incorporation into 

sinter deposits of the Yellowstone hydrothermal system presented in Chapter 3 were 

compelling enough to merit publication of a diatom-focused manuscript, additional 

samples of Yellowstone Lake spires were collected for chemistry and isotope analysis. 

As such, the continuation of this research focuses on integrating fossil diatom results with 



113 

chemistry, silica isotopes, and a more detailed lithology to gain additional insights into 

spire formation including the environmental conditions in which the structures formed.  

   Similarly, while Chapter 4 focuses on diatom-inferred Holocene paleoclimate 

conditions from Yellowstone Lake, this research is only a contribution to a collaboration 

on the sediment core that includes fossil pollen, charcoal, oxygen and silica isotopes, 

elemental chemistry, and detailed lithologic analyses. The hierarchy of climate forcing 

mechanisms and related variable sensitivity of lake records, as well as the spatial 

heterogeneity of Holocene climatic change, necessitates the development of a network of 

lake sites in the Greater Yellowstone Ecosystem. As such, the HD-YLAKE 

paleolimnology research group is currently working on synthesizing these data to provide 

a high-resolution paleoclimate reconstruction of the largest alpine lake in North America.  

 In addition to reconstructing Holocene climate from Yellowstone Lake sediment 

cores, a main objective of the HD-YLAKE project is to assess the impact of 

hydrothermal explosion events on landscape and lake processes. As such, the fossil 

diatom data presented in Chapter 5 are preliminary. Additional diatom analysis from 

Goose Lake in the Lower Geyser Basin will be conducted to expand the range of systems 

beyond the Lake Geyser Basin. Statistical analyses and synthesis of fossil diatom, fossil 

pollen, and silica isotopes for Yellowstone Lake, Cub Creek Pond, and Goose Lake will 

be the final result of this project.  
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