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A field experiment was carried out to evaluate the METRIC (Mapping 

EvapoTranspiration at high Resolution Internalized with Calibration) model for mapping 

net radiation (Rni), soil heat flux (Gi), sensible heat flux (Hi), latent heat flux (LEi), 

actual evapotranspiration (ETa) and crop coefficient (Kc) of  a superintensive drip-

irrigated olive (Olea europeae L. cv Arbequina) orchard located in Pencahue Valley, 

Region del Maule, Chile (35 23’ LS; 71 44’ LW; 96 m above sea level).  The study was 

conducted in an experimental plot of 21.1 hectares using 9 satellite images (Landsat 7 

ETM+) acquired on clear sky days during 2011/2012 and 2012/2013 growing seasons. 

Specific functions to estimate Gi, leaf area index (LAI) and aerodynamic roughness 

length for momentum transfer (zom) were incorporated in the standard METRIC model. 

The performance of the METRIC model was evaluated at the time of satellite overpass 

using measurements of LE and H obtained from an eddy correlation system. Validation 

indicated that METRIC using the specific functions was able to estimate Rn, G, H, LE, 

ETa, and Kc with errors less than +5%.   
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CHAPTER 1 INTRODUCTION 

In Chile, the olive oil industry has significantly increased during the last decade, 

especially in semi-arid Mediterranean regions which present hot and dry summer climate 

associated with very low precipitation (< 50 mm) during growing seasons.  In these 

regions, the new plantations have included the drip-irrigation and super-intensive training 

systems with plant density (> 1000 trees ha−1) (López-Olivari at al., 2015).  However, the 

stability and growth of the olive oil industry will be significantly affected by future 

scenarios of water scarcity.  Under these conditions, the orchard irrigation management 

will be the key to maintaining the yield and quality of the olive oil production (Ahumada-

Orellana et al., 2018, 2017). For an optimum irrigation management, it is crucial to 

estimate the orchard water requirements or actual evapotranspiration (ETa) according to 

the spatial variability of soil, cultivar and climate (López-Olivari et al., 2016; Ortega-

Farias et al., 2009). Traditionally, ETa is quantified using a grass or alfalfa reference 

evapotranspiration (ETr24) at 24 hours and single crop coefficient (Kc).   Also, it has been 

suggested using the dual crop coefficient approach to describe the ratio of ETa to ETr24 

by separating Kc into basal crop coefficient (Kcb) and soil evaporation coefficient 

(Ke)(Er-Raki et al., 2010). For heteronomous canopies such as olive orchards, however, 

values of Kc and Kcb require local adjustment because they depend on canopy 

architecture and non-linear interaction of soil, cultivar, and climate (Cammalleri et al., 

2013; Ortega-Farias et al., 2009; Paço et al., 2014). Also, López-Olivari et al., (2016) 

indicated that water consumption in super-intensive olive orchards is dominated by the 

canopy cover which is generally non-uniform as a result of the tree geometry generated 

by training systems.  In this case, the energy absorbed by the vegetation and also by the 
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soil surface rely on the spatial variability of canopy size, soil characteristics, leaf area 

index (LAI), and fractional cover (fc).  For this reason, it is necessary to incorporate 

methodologies that can take into account the effect of the intra-orchard spatial variability 

of soil and tree vigor on the estimation of Kc and ETa.     

In recent decades, remote sensing energy balance (RSEB) techniques have 

become a valuable tool to evaluate the spatiotemporal variability of energy balance 

components, ETa and Kc for complex canopy structures like orchards (Cammalleri et al., 

2013; de la Fuente-Sáiz et al., 2017; He et al., 2017; Jin et al., 2018; Pôças et al., 2014; 

Ramírez-Cuesta et al., 2019).  The RSEB models estimate the ETa for each pixel of a 

satellite image as a “residual” component of the orchard energy balance at the time of 

satellite overpass:  

LEi =  λ ∙ ETai = Rni − Gi − Hi                                                  (Eq. 1.1) 

where LEi  is the latent heat flux (W m-2), Rni is net radiation (W m-2), ETai is actual 

evapotranspiration (mm h-1), Gi is soil heat flux (W m-2), Hi is the sensible heat flux (W 

m-2) and  λ is the latent heat of vaporization (J Kg-1).  Subcript “i” indicates instantaneous 

values.  

The METRIC (Mapping EvapoTranspiration at high Resolution using Internalised 

Calibration) model has been recently applied to evaluate the spatial variability of ETa and 

Kc of orchards with promising results (de la Fuente et al., 2017; He et al., 2017; Jin et al., 

2018; 2014; Pôças et al., 2014; Paço et al 2014).  METRIC uses an internal self-

calibration (Inverse Modeling at Extreme Conditions, CIMEC) to remove effects of 

biases in atmospheric correction of reflectance, surface temperature and estimation of Hi 
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(Allen et al., 2007, 2011). In addition, the internal self-calibration of METRIC calibrates 

the sensible heat flux using two extreme conditions (hot pixel and cold pixel) or “anchor 

pixels”.  However, Allen et al., (2011)indicate that the main limitation of METRIC is that 

the quantification of LEi for each pixel is only as accurate as the estimates for Rni, Gi and 

H.   

It is acknowledged that originally the METRIC model was developed for annual 

crops, and it might not apply as accurately to sparse crops such as super-intensive olive 

orchards with low fractional cover and heterogeneous canopy.  In this regard, several 

researchers have suggested that the adjustment of some intermediate parameters in the 

standard METRIC, such as the momentum roughness length (zom), LAI and Gi can 

reduce the uncertainties of LEi and ETai estimates for heterogeneous woody canopies 

such as orchards and vineyards (Carrasco-Benavides et al., 2014; de la Fuente-Sáiz et al., 

2017; Jin et al.. 2018;  Pôças et al., 2014; Santos et al., 2012).  For a non-irrigated olive 

orchard, Santos et al. (2012) found that the METRIC-based ETa estimates were improved 

using the Perrier roughness function to compute zom (RMSE was reduced from 1.12 to 

0.25 mm·d−1).  For a commercial super-intensive olive orchard, Pôças et al. (2014) 

indicated that METRIC performance showed a quantitative improvement of ETa 

estimates when applying three-source conditions for temperature estimation, as well as 

the zom computation with the Perrier equation.  For a drip-irrigated apple orchard, de la 

Fuente et al. (2017) found that METRIC using the calibrated functions estimated Hi and 

LEi with errors of 5 and 16%, while using the original functions estimated Hi and LEi 

with error of 29 and 26%, respectively.  Finally, for micro-irrigated pistachio orchards, 

Jin el at (2018) observed that recalibrated METRIC was able to simulate ETa with    
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MAE = 1.1 mm d-1 and RMSE = 1.4 mm d-1 when using modified parameterizations of 

zom and Rni. 

According to our knowledge, there is little available information on the estimation 

of intra-orchard spatial variability of energy balance components and water requirements 

of super-intensive drip-irrigated olive orchards which represent heterogeneous woody 

canopies.  Thus, the objective of this study is to evaluate the METRIC model for 

mapping the energy balance components, ETa and Kc for a super-intensive drip-irrigated 

olive orchard under Mediterranean climate conditions and to explore impacts of any 

heterogeneities.   

1.1 Theory 

The instantaneous net radiation calculate by METRIC for each pixel is calculated 

as follows (Allen et al., 2010); 

Rni = (1 − α) ∙ Rs↓
+ RL↓ − RL↑ − (1 − ε0) ∙ RL↓    (Eq. 1.2) 

where α is the broadband surface albedo (dimensionless); Rs↓ is the incoming shortwave 

radiation (W m-2); RL↓ and RL↑ are the incoming and outgoing longwave radiation, 

respectively and εo is the surface emissivity that accounts for reflectance of incoming 

longwave radiation at the land surface (Tasumi et al., 2005) . The computation of the 

broadband albedo is carried out by the integration of the surface reflectance for the 

visible and near infrared (NIR) bands using a weighting coefficient as (Tasumi et al., 

2008)  : 

α = ∑ (ρs,bd ∙ wbd)6
bd=1        (Eq. 1.3) 
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where ρs,bd is at-surface (s) reflectance for each (bd) band (dimensionless) and wbd is the 

weighting coefficient of the LandSat bands for calculating broad-band surface albedo 

(dimensionless) .   

The instantaneous soil heat flux is computed using three empirical relations depending on 

the leaf area index (LAI). These functions were originally developed for annual crops as 

follows (Allen et al., 2010; Tasumi, 2003): 

Gi

Rni
= 0.05 + 0.18 ∙ e−0.52LAI     (if   LAI ≥ 0.5) (Eq. 1.4) 

Gi

Rni
= 1.8 ∙

Ts

Rn
+ 0.84                (if     LAI < 0.5) (Eq. 1.5)  

 

Also, a general equation was established to estimate Gi using  the normalized difference 

vegetation index (NDVI) (W.G.M. Bastiaanssen et al., 1998): 

Gi

Rni
= Ts ∙ (0.0074 ∙ α + 0.0038) ∙ (1 − 0.98 ∙ NDVI4) (Eq. 1.6) 

where Ts is the radiometric temperature (°C) computed from the thermal infrared 

waveband (TIR); LAI is expressed in (m2 m-2); 0.0074 and 0.0038 are empirical 

coefficients and  

Finally, METRIC estimates G for semi bare soil using the following equation (Allen et 

al., 2012): 

Gi

Rni
= 0.1 + 0.17e−0.55LAI 

(Eq. 1.7) 
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The leaf area index is computed in METRIC using the next empirical relations(Allen et 

al., 2010): 

LAI = 11 ∙ SAVI3           (for     SAVI ≤ 0.817)    (Eq. 1.8) 

LAI = 6                            (for     SAVI > 0.817)    (Eq. 1.9) 

where SAVI is the soil adjusted vegetation index (dimensionless) calculated for each 

pixel (Basso et al., 2004).   

Instantaneous pixel-by-pixel sensible heat fluxes are obtained for each scene as follows: 

Hi =
ρair ∙ Cp ∙ ΔTs

rah
 

(Eq. 1.10) 

where ρair is the air density (kg m-3); Cp is the specific heat capacity of air (1,004 J kg-1 K-

1).  ΔTs is the near-surface air temperature gradient (ΔTs = Ta z1 – Ta z2) above each pixel, 

where Ta z1 and Ta z2 are near surface air temperature (°K) at heights z1 and z2 above the 

elevation of d + zom, where d is zero plane displacement height (m). The heights 

previously mentioned were in m.  rah is the aerodynamic resistance to heat transport (s m-

1). Originally, METRIC estimates the values of zom based on the height (h) of annual 

agricultural crops by assuming that the crop height vary proportionally with the 

LAI(Allen et al., 2010). Thus, for agricultural areas, zom can be computed as follow: 

zom = 0.018 ∙ LAI        (Eq. 1.11) 

Bastiaanssen et al. (1998)and (Allen et al., 2007a) have demonstrated that ΔTs can be 

spatially approximated as a simple linear function:  

ΔTs = β0 + β1Ts        (Eq. 1.12) 
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where β0 and β1 are empirical calibration coefficients for each satellite scene. Ts is 

expressed in K.  

The iteration process based on the selection of several well-known anchor pixels (wet and 

dry) is to determine the unknown values of β0 and β1 for each scene due to the values of 

Ts  for each pixel.  The conditions for determining the anchor points are represented by an 

agricultural field with full and active transpiration vegetation close to reference 

conditions (cold pixel) and a surface with no vegetation cover (hot pixel) with little or 

residual evaporation from soil (Kjaersgaard et al., 2009). In this manner, the surface 

energy balance (SEB) of the cold pixel can be computed as: 

Hcold = Rncold − Gcold − ϕ ∙ λETrh       (Eq. 1.13) 

where Hcold, Rncold and Gcold represent the sensible heat, net radiation and soil heat fluxes 

for each cold pixel located inside the image at the time of satellite overpass (W m-2); 

ETrh is the hourly reference evapotranspiration (mm h-1); ϕ is an adjustment factor which 

incorporates the probability of wet soil surface beneath the vegetation canopy that may 

increase the total ETrh (Allen et al., 2007a). The hot pixel is calculated using the Eq. 1.13, 

assuming that ϕ λETrh is near to zero if it has been a long period without rain or 

irrigation. Otherwise an estimate for ϕ λETrh must be made using some form of hourly or 

daily soil water balance (Allen et al., 2007a).  In this regard, Tasumi (2003) and Folhes et 

al. (2009) indicated that the evapotranspiration from full cover alfalfa is between 20-40% 

greater than clipped grass.   
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After obtaining the values of  β0 and β1 from the anchor pixels, these values are used in 

the estimation of H for each pixel by an iterative process that involves the Monin-

Obukhov similarity theory (Allen et al., 2007a; Kalma et al., 2008; Seguin et al., 

1994).The self-calibration of METRIC involves the inverse calibration of the surface 

energy balance (SEB) via the sensible heat flux computed by specifying the 

evapotranspiration at the two anchor pixels. This process removes systematic biases 

embedded in the estimations of Rni, Gi and other intermediate components of the 

METRIC algorithm, which are common to nearly all satellite-based calculations.   

Finally, the instantaneous (ETai) and daily (ETa) values of actual evapotranspiration are 

calculated using the following equation: 

ETai = 3,600 ∙
LEi

λρw
 

(Eq. 1.14) 

ETa = ETrF ∙ ETr24                                                                        (Eq. 1.15) 

where ETai and ETa are in mm h-1 and mm day-1, respectively; 3,600 converts from 

seconds to hours,  ρw is the density of the water (~1000 kg m-3); ETrF is reference 

evapotranspiration fraction at the time of satellite overpass; and ETr24 is the reference 

evapotranspiration at 24 hours (mm day-1).  Values of ETrF are computed as: 

ETrF = Kc =
ETai

ETrh
 (Eq. 1.16) 

where  ETrF is the same as the crop coefficient (Kc) because it is assumed that ETrF is 

equal to the mean value of hourly ratios of ETai to ETrh for the daytime period (Allen et 

al., 2007b; D. Colaizzi et al., 2006; Gowda et al., 2008; Tasumi et al., 2005; Trezza, 
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2006). According to Allen et al. (2007),  ETrh is estimated  over a standardized 0.5 m tall 

alfalfa. 

Values of ETo24 and EToh (clipped grass reference) using the Penman-Monteith model 

are calculated as follows (Allen et al., 2005, 1998):  

ETo24 = ∑ EToh

24

i=1

 (Eq. 1.17) 

EToh =
0.408 ∙ ∆ ∙ (Rng − Gg) + γ

Cn ∙ u ∙ VPD
(Ta + 273.16)

∆ + γ ∙ (1 + Cd ∙ u)
 

(Eq. 1.18) 

where Rng is the net radiation over a short reference alfalfa or grass (MJ m-2 h-1), Gg is the 

soil heat flux for short reference (MJ m-2 h-1); γ is the psychrometic constant (kPa °C-1); 

Ta is air temperature for short reference surface (°C); u is the mean wind speed at 2-m 

height (m s-1);VPD is the vapor pressure deficit (kPa); Δ is the slope of the saturation 

curve (kPa °C-1); Cn is the denominator conversion factor (37 for the clipped grass 

reference); and Cd is the denominator conversion factor (0.24 and 0.96 for daytime and 

nighttime, respectively for the clipped grassreference).  
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CHAPTER 2 MATERIALS AND METHODS 

2.1 Study field 

The study was conducted during two growing seasons (2011-2012 and 2012-

2013) in a superintensive drip-irrigated olive (Olea europeae L. cv Arbequina) orchard 

established in 2005 and located in Pencahue Valley, Region del Maule, Chile (35 23’ LS; 

71 44’ LW; 96 m above sea level) (Figure 2.1). The climate is Mediterranean with an 

annual rainfall of 620 mm concentrated in the winter period (Ahumada-Orellana et al., 

2017). Cumulative ETr24 and average daily temperature are 1160 mm and 14.8 C for the 

growing seasons (from September to April), respectively. The soil texture is clay-loam 

(31% clay, 29% sand, and 40% silt), with a bulk density of 1.34 g cm-3, a field capacity 

of 0.31 cm3 cm-3, and a wilting point of 0.16 cm3 cm-3 at the effective rooting depth (0–60 

cm).    

 The olive trees for oil production were trained under a hedgerow system with a 

planting density of 1333 tree ha-1 (1.5 x 5.0 m) and irrigated using two drippers (2.0 L h-

1) per tree (Figure 2.2). The wetted area of the drip-irrigated orchard was only about 

4.5% of the total area and was located below canopy. For the two growing seasons, the 

tree trunk diameters ranged between 61-73 mm while the tree height (h) and canopy 

width were 3.2 and 1.55 m, respectively.   

2.2 Irrigation management and plant measurements 

To evaluate the orchard irrigation management, the midday stem water potential (ψx) was 

monitored using a pressure chamber (PMS instruments, model 600, Albany, OR, USA). 

This was done using a shoot (two per tree) with five or six pairs of leaves which was 
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encased in a plastic bag and wrapped in aluminium foil at least 2 h before the cut of the 

shoots (Tognetti et al., 2007) .  

 

 

Figure 2.1. Experimental site with drip-irrigated olive trees (Quepo, Pencahue Valley, 

Maule Region, Chile).  White dot shows the location of the eddy covariance (EC) system 

and the arrow represents the typical wind direction towards the EC system at the time of 

satellite overpasses. The transparent area represents the average footprint area and the 

light green area was used to sample pixels for validating the METRIC model to estimate 

energy balace components, evapotranspiration and crop coefficient on a pixel-by-pixel 

basis. 

 

For this study, the fractional cover (fc) was estimated using the average canopy width and 

the number of trees per hectare (Er-Raki et al., 2008; López-Olivari et al., 2016). The 

average values of fc ranged between 0.29-0.31 for the two growing seasons.  For the 
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same olive orchard, Ortega-Farias et. al (2016) indicated that fc was between 0.25–0.28 

for the 2013/14 season when using a helicopter-based unmanned aerial vehicle (UAV) 

equipped with a multispectral camera. 

  

 

Figure 2.2 Experimental site of a drip-irrigated olive orchard (November 2013, Pencahue 

Valley, Maule Region of Chile). 

 

2.3 Energy balance measurements 

A tower was installed in an experimental plot (21.1 ha) located within the olive 

orchard (1400 ha) in order to measure micrometeorological variables and orchard energy 

balance components at 30 min intervals. Air temperature (Ta) and relative humidity (RH) 
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were measured using a vaisala probe (model HMP45C) while wind speed (u) and wind 

direction (w) were monitored by a cup anemometer and wind vane (03101-5, Young, MI, 

USA).  The net radiation (Rn) and solar radiation (Rs) were measured using by a Fritchen 

type net radiometer (Q7.1, REBS Inc., Bellevue, WA, USA) and  Silicon Pyranometer 

(LI200X, Campbell Scientific Inc., Logan, Utah, USA), respectively.  

The sensible heat flux (H) and latent heat flux (LE) were measured using an eddy 

covariance (EC) system oriented towards the predominant wind direction (south-east).  

Values of H and LE were measured at 10 Hz using a three-dimensional sonic 

anemometer (CSAT3, Campbell Sci., Logan, UT, USA) and a fast response open-path 

infrared gas analyzer (LI-7500 IRGA; LI-COR, Inc., Lincoln, NE, USA) respectively.  

Means, standard deviations and covariances were calculated over 30-min periods.  In the 

tower, sensors of EC fluxes  (H and LE) and meteorological variables (Ta, RH, u, w, Rs 

and Rn)  were installed at 2.3 and 1.8 m  above the center of the tree canopy (Figure 2.4). 

Upwind fetch of the prevailing wind direction was 250 m (interrupted only by 

internal olive orchard roads) (Figure 2.3). The source area (footprint) for the turbulent 

fluxes, which corresponds to the contributing surface patches to scalar flux measurements 

from the EC system was calculated using the model proposed by Kljun et al., 2015 who 

have an available code for several programming languages at www.footprint.kljun.net.  

Finally,  the footprint analysis  indicates that the source area was similar for the clear 

days used in this study  (Figure 2.3). The footprint size did not significantly change and 

did not substantially affect the area used for validation. The upwind fetch of the 

prevailing wind direction ranged between 200-250 m which provided sufficient fetch for 

the footprint areas to be used for validation. 
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Soil heat flux (G) was estimated using a weighting of eight flux plates (HP) 

placed in the inter-row (positions 1, 2, 7 and 8) and below the tree canopy (positions 2, 3, 

5 and 6) (Figure 2.5). The weighting was based on fraction of ground cover at solar noon 

(see Eq. 2.3). These plates of constant thermal conductivity (HFT3, Campbell Sci., 

Logan, UT, USA) were placed at a 0.08 m depth. Two averaging thermocouple probes 

(TCAV, Campbell Sci., Logan, UT, USA) for measuring soil temperature (Tsoil) were 

installed above each flux plate at depths of 0.02 and 0.06 m. Thermocouple probe signals 

were recorded at  30-min intervals on an electronic datalogger (CR3000, Campbell Sci, 

Logan, UT, USA). 

  

Figure 2.3. Analytical footprint model under unstable conditions in terms of relative and 

cumulative contribution, respectively for the days used in this study.  
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At each position, G was estimated using the following equations (Oliphant et al., 2004; 

Ortega-Farías et al., 2016; Shao et al., 2008): 

G=FP+S         (Eq. 2.1) 

S = (
b

Cd + gw
Cw)

Tsoil

t
d      (Eq. 2.2) 

where FP are fluxes measured flux at 0.08 m, S is the heat stored in the layer above the 

heat flux plates, ρb is the soil bulk density (1600 kg m-3); ρw is the density of water 

(1000 kg m-3); Cd is the specific heat capacity of soil (890 J kg-1 K-1); Cw is the specific 

heat capacity of the soil water (4190 J kg -1 K-1); ΔTsoil is the change in soil temperature 

(K); Δt is the time intervals (s).   

 

Figure 2.4. Eddy Covariance system installed within the experimental site (November 

2013, Pencahue Valley, Maule Region of Chile) 
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Finally, the average values of G for the orchard were weighted by fractional cover (fc): 

G = GUOfc + (1 − fc)GBR       (Eq. 2.3) 

where GUO and GBR are the average G value (W m-2) below the canopy and between 

rows, respectively (Figure 2.5).    

At 2 km from the experimental plot, an automatic weather station was installed above a 

reference grass to measure meteorological variables that were used as input in the FAO56 

Penman-Monteith equation to compute the reference evapotranspiration (ETo) at 30-min 

intervals. 

 

Figure 2.5. Distribution of soil heat flux (G) measurements for a drip-irrigated olive 

orchard.  The positions 1,2,7 and 8 indicated that fluxes were measured between rows 

while positions 3, 4, 5 and 6 show that fluxes were obtained below the tree canopy (3, 4, 

5 and 6). Also, the asterisks and open circles indicate the location of drippers and G 

measurements, respectively. 
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2.4 Data quality control 

For model validation, it is necessary to avoid systematic errors in the EC 

measurements of turbulent fluxes.   In this matter, Twine et al., (2000) indicated that a 

systematic error that underestimates the evapotranspiration component of a crop water 

budget by 25% is intolerable to an irrigation scheduler.  For this reason, days presenting 

energy balance closure (EBc) ((H+LE)/(Rn-G)) < 0.7 or > 1.2 were excluded from this 

study to reduce the uncertainty associated with errors in the LE measurements (de la 

Fuente-Sáiz et al., 2017; López-Olivari et al., 2016; Ortega-Farias et al., 2010).  These 

errors can be related to persistent noisy behavior due to sensor problems, flow distortion 

through the tower, or adverse meteorological conditions (for example rainy days).  Also, 

Twine et al (2000) suggested that the Bowen Ratio (ratio of H to LE) is measured 

accurately by the EC system because the different problems affect in a similar proportion 

to the measured values of H and LE.   Thus, LE values from the EC system were 

recalculated as follows (Er-Raki et al., 2008; Martínez-Cob and Faci, 2010; Twine et al., 

2000): 

LEBR=
Rn-G

1+β
 (Eq. 2.4) 

where LEBR = latent heat flux corrected using the Bowen Ratio (W m-2); β = Bowen 

Ratio (dimensionless).  30-min values of LEBR were converted to daily olive 

evapotranspiration using the following expression: 

ETBR =
∑ LEBR

48
i=1

λρw
Cf (Eq. 2.5) 
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where ETBR = olive evapotranspiration by the EC system (mm d-1); Cf  = conversion 

factor (1800); ρw  = density of water (1,000 kg m-3); λ = latent heat of vaporization (J kg-

1); i = number of measurements over a 24 hour period (48 measurements from 00:00 to 

23:30 hours). 

2.5 Satellite images 

For the two growing seasons, 19 Landsat 7 (+ETM) satellite scenes (Path 233, 

Row 85) were available from the USGS Glovis(“USGS Global Visualization Viewer,” 

n.d.).  However, nine satellite images were used in this research because 6 and 4 images 

presented a cloud cover > 30% and EBc < 0.70, respectively (Table 2.1).  All Landsat 

scenes acquired and used in this work include a default for the systematic radiometric and 

geometric corrections which consider ground control points and a Digital Elevation 

Model (DEM) for topographic accuracy standard terrain correction (Level 1T-precision 

and terrain correction). 

Table 2.1. Images selected for processing surface energy balances over a drip-irrigated 

olive orchard with their percentage cloud covering.  

 

Growing Season 
Date 

(mm-dd-yy) 
DOY 

Overpasses time 

(local time) 
Cloud Cover (%) 

 

2011-2012 

12/11/2011 345 11:28 am 2.0 

12/27/2011 361 11:28 am 2.0 

01/12/2012 12 11:28 am 0.0 

01/28/2012 28 11:28 am 1.0 

 

 

2012-2013 

12/29/2012 364 11:30 am 2.0 

01/30/2013 30 11:30 am 1.0 

02/15/2013 46 11:30 am 1.0 

03/03/2013 62 11:30 am 1.0 

03/19/2013 78 11:30 am 3.0 

 

The energy balance components were calculated on a pixel-by-pixel basis and averaged 

over 15 pixels departing from the tower station in the main wind direction (Figure 2.1).  
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This area was delimited by the Flux Footprint Prediction (FFP) of the turbulent fluxes 

using the model proposed by Kljun et al. (2015). The coefficient of variation (CV) of 

NDVI was considered to see if the footprint is constant. 

2.6 Images processing 

2.6.1 Functions from literature  

In this study, calibrated sub-models from the literature for olive orchards were 

included in the original METRIC model to simulate values of LAI, zom and G .  In this 

case, values of LAI were estimated according to Santos et al. (2012): 

LAI=-
ln [

0.69-SAVI
0.59

]

0.91
 

(Eq. 2.6) 

where LAI is the leaf area index modeled by a satellite scene at each pixel (m2·m−2).  

The Perrier function for estimating zom has been suggested to compute zom in 

sparse canopies such as olive orchard. In this study, values of zom were estimated using 

the following equation (Pôças et al., 2014; Santos et al., 2012):  

zom= ((1-e
-α∙

LAI
2 ) ∙e

-α
LAI

2 ) ∙h (Eq. 2.7) 

where α is the coefficient ( α = 0.83) and h is the height of canopy (h = 3.2 m) (Santos et 

al., 2012).   In this regard, Santos et al. (2012) indicated that the Perrier function in the 

METRIC model reduced the RMSE from 1.12 to 0.25 mm day-1. 

 In comparison from the original METRIC equation (Eq. 1.11), shows that the 

Perrier equation gives better performance in the calculation on ETa for sparse orchard 

like olives. 
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Finally, values of G were estimated according to the following linear equation  

(Ortega-Farías et al., 2016): 

G=0.324∙Rn-51.5         (Eq. 2.8) 

 Equation 2.8 was developed using a database collected for an olive orchard during 

the 2009/10 and 2010/11 growing seasons.  Ortega-Farias et al (2016) indicated that 

equation 2.8 was able to predict G with an error of 2% when using Thermal and 

Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV).  

Also, Fuentes-Peñailillo et al., (2018) observed that equation 2.8 predicted G with an 

error of 8% when using satellite images (Landsat 7 ETM+).  In addition, the following 

calibrated sub-models of G for vineyard (Eq. 2.9, Carrasco-Benavides et al., 2014) and 

apple orchard (Eq. 2.10, de la Fuente-Sáiz et al., 2017) were evaluated:  

Gi

Rni
= TS (0.0059α + 0.0034)(1 − 0.98NDVI4) (Eq. 2.9) 

Gi

Rni
= Ts(0.00261α + 0.001)(1 − 0.98NDVI4) (Eq. 2.10) 

2.6.2 MATLAB code 

A MATLAB script was implemented to simulate SEB, ETa and Kc using the METRIC 

algorithm with the objective of reducing the time image processing. Figure 2.6 shows 

different steps for the image processing.  After the satellite images are downloaded 

manually from USGS Glovis, the scripts starts on making a stacking layer of the bands 

blue, green, red, near-infrared (NIR), and short-wave infrared (SWIR).  Then each  

images are cropped in the influenced area to select the cold and hot pixels and  the gaps 

were filled (Chen et al., 2011) for each cropped image,  and eliminate the cloud using 
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NASA method.  Finally, the script runs the original METRIC until the hot and cold pixels 

are selected using the methodology of Kjaersgaard et al. (2009). Once the values of β0 

and β1 are obtained and Δ𝑇𝑠 is calculated (Eq. 1.11), the equations 2.6, 2.7 and 2.8 are 

used to estimate ETa for the studied area.   Finally, the adjustment factor (ϕ) was 

assumed 1.2 for estimating Hcold. 

 

Figure 2.6. Flowchart of MATLAB code for image processing. 

2.7 Statistical validation  

Instantaneous satellite-based estimates of Rn, G, H, LE, ETa and Kc were 

computed by averaging values of 15 (30 m x 30 m) pixels.  To avoid the “contamination” 
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caused by pixels outside the experimental plot, a perimeter of 30 m from the edges 

inward was excluded when calculating field-scale average SEB fluxes. The validation 

was carried out using the ratio (b) of estimated to observed values, root-mean-square 

error (RMSE), mean absolute error (MAE), index of agreement (Ia) and root-mean-

square error (RMSE).   Values of RMSE, MAE and Ia were computed using the 

following equations: 

RMSE=√∑ (Pi-Oi)
2N

i=1

N
 

(Eq. 2.11) 

MAE=
∑ |Pi-Oi|

N
i=1

N
 (Eq. 2.12) 

Ia=1- [
∑ (Pi-Oi)

2N
i=1

∑ (|Pi-O̅|+|Oi-O̅|)2N
i=1

]  0≤Ia≤1 (Eq. 2.13) 

where N is the total number of observations, Pi and Oi are the estimated and observed 

values, respectively, and O̅ is the mean of the observed values. Values of RMSE, MAE, 

Pi, Oi, and O̅ are in W m−2 or mm d−1.  

Finally, the student’s t-test was used applied to evaluate whether b was 

significantly different from unity at the 95% confidence level.   
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CHAPTER 3.  RESULTS AND DISCUSSION 

3.1 Climatic conditions and energy balance ratios 

Generally, the atmospheric conditions at the drip-irrigated olive orchard were hot and dry 

with ETr24 ranging between 4.7-8.9 mm day-1 (Table 3.1).  At the time of satellite 

overpass,  values of air temperature (Ta),vapor pressure deficit (VPD) and wind speed (u) 

were between 15.7-23.1 0C, 0.79-1.85 kPa and 0.52-2.34 m s-1, respectively.  

Predominant wind directions were between 140-235o which presented a frequency 

distribution of 89.3 and 93.4%  of total observations for the first and second seasons.  

Finally, values of the midday stem water potential (ψx) ranged from -1.3 to -1.80 MPa 

indicating that the olive trees were under well-irrigated conditions during the two seasons 

(Ahumada-Orellana et al., 2017; Gómez-del-Campo et al. 2008; Moriana et al. 2007).  In 

this case, the total irrigation application was 1830 and 2014 m3 ha−1 for the first and 

second seasons respectively.   

The accuracy of the EC measurements above the olive orchard was evaluated using the 

energy balance closure which presented a coefficient of determination of 0.9 for the two 

study periods (Figure 3.1). At 30-minute time interval,  Also, EBC was equal to 0.85 

indicating that the orchard energy balance was systematically imbalanced by about 15 %.  

At the time of satellite overpass, the mean value of EBc ranged between 0.75 and 1.11 

(Table 3.2). Literature has indicated that turbulent fluxes (H+LE) were less than available 

energy for olive orchard with EC imbalances ranging between 5% and 26% (Er-Raki et 

al., 2010, 2008; Ezzahar et al., 2007; Martínez-Cob and Faci, 2010; Ortega-Farías and 

López-Olivari, 2012; Testi et al., 2006; Villalobos et al., 2000). 
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These imbalances may be associated to errors in the measurements of Rn and G (Lee and 

Black, 1993; Leuning et al., 2012; Wilson et al., 2002), energy storage within the olive 

tree biomass  (Williams et al., 2004), low wind speed (Testi et al., 2004) and 

heterogeneity of surface energy balance of the region (Foken, 2008).  According to 

several researchers, the EC imbalances observed in this study are considered appropriate 

to provide accurate estimates of turbulent fluxes (HE + LE), especially following the 

Bowen-ratio approach adjustment (Eq. 2.4 and 2.5) ( Er-Raki et al. 2008; Martínez-Cob 

and Faci, 2010; Twine et al., 2000). 

Table 3.1. Mean daily values of air temperature (Ta), vapor pressure deficit (VPD), wind 

speed (u) and wind direction (w) at the time of satellite overpass.  Also, daily reference 

evapotranspiration (ETr) is included. 

Season DOY Ta 

(oC) 

VPD 

(kPa) 

U 

(m s-1) 

w 

(degrees) 

ETr 

(mm day-1) 

2011-2012 

345 19.6 1.47 2.34 200 8.9 

361 23.1 1.71 1.17 236 8.7 

12 21.7 1.85 0.84 179 7.9 

28 19.4 1.35 1.39 161 7.4 

2012-2013 

364 19.7 1.23 1.15 180 7.7 

30 20.8 1.30 0.83 226 7.1 

46 21.9 1.35 0.41 202 7.3 

62 19.0 1.22 0.38 140 6.3 

78 15.7 0.79 0.52 161 4.7 

 

Table 3.2 indicates that ratios of Hi to Rni were between 0.50-0.61 while those of LEi to 

Rni ranged between 0.14-0.25 for the two growing season.  Also, values of Gi/Rni ratios 

were between 0.17-0.36 and Bowen ratios (β) fluctuated between 2.3-4.0. This analysis 

indicated that the main component of the Rni partitioning was the sensible heat flux (Hi) 

over the drip-irrigated olive orchard which presented a fractional cover of 0.3.  For a 

super-intensive drip-irrigated olive orchard (fc = 0.3), López‑Olivari et al. (2016) 

indicated that daily values of LE, H and G were between 0.28–0.47, 0.34–0.68 and 0.02–
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0.06 of Rn, respectively, while annual mean Bowen ratios (β) varied between 1.22 and 

1.64.  For olive orchards (fc ranging between 0.13-0.47), Ramírez-Cuesta et al. (2019) 

observed that mean ratios of instantaneous LE, H and G to Rn at the time of satellite 

overpass were 0.51, 0.33 and 0.16, respectively when using Landsat satellite images 

(pixels = 30 m x30m).   Also, these authors observed that β varied between 0.64-0.83 

indicating that the main component of the Rn partitioning was LE.  Finally, Testi et al. 

(2005) indicated that values of β depend on the leaf area index (LAI) and soil water 

content.  

 

Figure 3.1. Energy balance closure (EBc) at  30-min intervals for days when 

satellite overpassed  during 2011-2012 and 2012-2013 growing season . Days presenting 

values of EBc < 0.7 or > 1.3 were excluded from this study to reduce the uncertainty 

associated with errors in the LE measurements 
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Table 3.2. Energy balance closure (EBc), Bowen ratio (β) and instantaneous ratios of 

latent (LEβi), sensible (Hβi) and soil (Gi) heat fluxes to net radiation (Rni) for a drip-

irrigated orchard. Instantaneous ratio of Rn to incoming solar radiation (Rs) is also 

included. 

Season DOY EBC Rni/Rsi β Hβi/Rni LEβi/Rni Gi/Rni 

2011-2012 

345 0.75 0.68 4.03 0.58 0.14 0.28 

361 0.86 0.69 3.17 0.57 0.18 0.26 

12 0.79 0.67 3.52 0.55 0.15 0.3 

28 0.79 0.67 3.6 0.5 0.14 0.36 

2012-2013 

364 0.81 0.72 2.38 0.59 0.25 0.17 

30 0.75 0.69 2.56 0.57 0.22 0.21 

46 0.80 0.69 2.29 0.58 0.25 0.16 

62 0.78 0.68 2.4 0.56 0.23 0.21 

78 1.11 0.65 3.4 0.61 0.18 0.21 

Mean  0.83 0.68 3.04 0.57 0.19 0.24 

Note: The data from this table correspond to ground-truth measurements at the satellite 

overpass. 

 

3.2 Comparison between Measured and Estimated Variables 

3.2.1 Evaluation of sub model to estimate soil heat flux 

Table 3.3 indicates that the Eq. 1.7 (Allen et al., 2012) and 2.8 (Ortega-Farias et 

at., 2016) computed Gi with errors of 7 and 5 %, respectively.  In addition, values of 

RMSE and MAE for Eq. 1.7 were 35 and 30 W m-2 while those for Eq. 2.8 were 30 and 

33 W m-2, respectively.  These results are adequate considering that they are within the 

ranges observed in the literature (Carrasco-Benavides et al 2012; Ortega-Farías et al., 

2016).  Using a remote sensing model, Shaomin et al., (2007) suggested that errors in the 

estimation of G over complex canopies could be attributed to differences in 

spatial/temporal scales between satellite data and ground-truth measurements.  According 

to these results, Eq. 2.8 was used in this study to simulate ETa and Kc using the METRIC 

model. 
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 Table 3.3. Evaluation of calibrated sub-models to estimate soil heat flux (Gi) a super-

intensive drip-irrigated olive orchard at the time of satellite overpass. 

Sub-models RMSE 

(W∙m−2) 

MAE 

(W∙m−2) 

b Ia t-test Mean 

(W∙m−2) 

Eq. 1.6 45 40 1.32 0.6 F 153 

Eq. 1.7 35 30 1.07 0.5 F 123 

Eq. 2.8 40 33 1.05 0.49 F 122 

Eq. 2.9 33 26 1.13 0.6 F 132 

Eq. 2.10 116 106 0.55 0.3 T 230 

RMSE = root mean square error; MAE = mean absolute error; b = ratio of observed to 

computed values; Ia = index of agreement; T = null hypothesis (b = 1) True; F = 

alternative hypothesis (b ≠ 1). 

3.2.2 Comparison between the different fluxes 

 The comparisons between observed and estimated values of Rsi, Rni, Hi, Gi, and 

LEi at the time of satellite overpasses (11:28–11:30 h local time) are depicted in figure 

3.2 for the olive orchard under well-irrigated conditions.  This figure indicates that there 

was an equilibrated distribution of points around the 1:1 line for Rsi and Rni with RMSE 

and MAE ranging between of 29-43 W·m-2 (Table 3.4).  The t-test indicated that the 

value of b was not significantly different from unity suggesting that the simulated and 

measured values of Rsi and Rn were similar at the 95% confidence level. For a drip-

irrigated olive orchard (fc between 26–30%), Fuentes-Peñailillo et al. (2018) observed 

that values of Rni and Gi were underestimated with errors of 4 and 8%, respectively, 

when using Landsat satellite images (pixels = 30 m x 30m).  In the same olive orchard, 

Ortega-Farías et al. (2016) indicated that Rni and Gi were computed with less than 5% 

errors when using high-resolution thermal and multispectral data acquired with an UAV.   
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Table 3.4. Validation of sub-models to estimate incoming solar radiation (Rsi), net 

radiation (Rn), sensible heat flux (H), soil heat flux (G), and latent heat flux (LE) of 

a super-intensive drip-irrigated olive orchard at the time of satellite overpass. 

Variable 
RMSE  

(W∙m−2) 

MAE  

(W∙m−2) 
b Ia t-test 

Mean 

(W∙m−2) 

Rsi 43 35 1.00 0.93 T 819 

Rni  29 26 0.98 0.93 T 537 

Hi  46 41 0.97 0.72 F 288 

Gi 40 33 1.05 0.4 F 122 

LEi 45 32 0.95 0.62 F 127 

RMSE = root mean square error; MAE = mean absolute error; b = ratio of observed to 

computed values; Ia = index of agreement; T = null hypothesis (b = 1) True; F = 

alternative hypothesis (b ≠ 1); MEAN = average values for measured fluxes. 

 

 Comparisons between measured and estimated values of Hi and LEi at the time of 

satellite overpasses show that the points were close to the 1:1 line (Figure 3.2). In this 

case, the METRC model underestimated the instantaneous sensible and latent heat fluxes 

with errors of less than 5% (Table 3.4).  Values of RMSE and MAE for Hi were 46 and 

41 Wm-2 while those of LEi were 45 and 32 Wm-2, respectively. The best agreement 

between measured and estimated sensible heat fluxes was observed on DOY 30 (2013) 

where the differences between estimated (E) and observed (O) values were less than 15 

W m-2. The greatest disagreement was observed on DOY 78 (2013) with a difference of 

65 W m-2 which was associated with the selection of hot and cold pixels. Also, the results 

of this study indicate that the estimation of LEi mainly depended on the computation of H 

which was the main component of Rni partitioning. Both, Carrasco-Benavides et al. 

(2014) in a vineyard, and de la Fuente et al. (2018) in an apple orchard, found that 

METRIC estimated instantaneous values of Hi and LEi with errors ranging between 5-

16% when using the calibrated functions of LAI, zom and Gi.  
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Figure 3.2. Comparisons at the time of satellite overpass between observed (axis X) and 

estimated (axis Y) values for net radiation (Rn), soil heat flux (G), sensible heat flux (H), 

latent heat flux (LE), and shortwave incoming radiation (Rsi) over a super-intensive drip-

irrigated olive orchard for nine satellite-overpass days. The solid line represents the 1:1 

line.  

 

 Furthermore, the model validation indicated that the METRIC model was able to 

simulate the ETa with RMSE = 0.42 mm day−1and MAE = 0.31 mm day−1 (Table 3.5). 

Additionally, the statistical analysis indicated that the b value was significantly different 

from unity suggesting that the METRIC model overestimated ETa with an error of 6.0 % 

of observed values. In this matter, Figure 3.3 indicates that most points were evenly 

distributed around the 1:1 line for a range of ETa between 1.1-3.5 mm day-1.  Values of 

ETa from METRIC ranged between 1.1- 3.5 mm day-1, while those from the EC system 

were between 1.5- 3.5 mm day-1 (Table 3.7).  Finally, model validation indicates that 

values of Kc were simulated with an error of 4% and values of RMSE and MAE ranged 

between 0.05 and 0.09 (Table 3.5). For the super-intensive drip-irrigated olive orchard, 
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values of Kc fluctuated between 0.14-0.53 for METRIC model and 0.19-0.45 for the EC 

system (Table 3.7).  

 

Figure 3.3. Daily comparisons between observed (axis X) and estimated (axis Y) values 

of actual evapotranspiration (ETa) of a super-intensive drip-irrigated olive orchard. The 

solid line represents the 1:1 line.   

Table 3.5. Validation of METRIC model to estimate actual evapotranspiration (ETa) 

and crop coefficients (Kc) of a super-intensive drip-irrigated olive orchard. 

Variable RMSE MAE b Ia t-test MEAN 

ETa (mm day-1) 0.42 0.31 1.06 0.87 F 2.2 

Kc 0.09 0.05 0.96 0.96 F 0.27 

RMSE = root mean square error; MAE = mean absolute error; b = ratio of observed to 

computed values; Ia = index of agreement; T = null hypothesis (b = 1) True; F = 

alternative hypothesis (b ≠ 1). 

 



 
 

 
 

3
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Table 3.6.  Estimated and measured values of incoming solar radiation (Rsi), net radiation (Rni), soil heat flux (Gi), sensible 

heat flux (Hi) and latent heat flux (LEi) at the time of satellite overpass  

Season DOY 
Rsi 

(W m-2) 

Rni 

(W m -2) 

Gi 

(W m -2) 

Hi 

(W m -2) 

LEi 

(W m -2) 

  Observed Estimated Observed Estimated Observed Estimated Observed Estimated Observed Estimated 

2011-2012 

345 961 922 570 582 154 137 323 353 93 92 

361 927 887 557 544 154 125 306 333 97 87 

12 908 875 529 543 155 124 291 360 83 59 

28 872 830 504 485 183 106 253 292 69 88 

364 877 896 604 647 90 158 363 306 150 183 

2012-2013 30 807 822 542 561 117 130 302 287 123 144 

 46 752 765 499 526 86 119 290 272 123 136 

 62 701 716 462 491 92 108 256 221 114 162 

 78 756 656 399 451 80 95 245 168 74 189 
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 Table 3.7 Estimates and measured values of actual 

evapotranspiration (ETa) and grass-reference-based crop coefficient 

(Kc) at the day of satellite overpass 

 

Season DOY  
ETa 

(mm day-1) 

Kc 

 

  Observed Estimated Observed Estimated 

2011-2012 

345 1.8 1.8 0.20 0.20 

361 1.9 1.6 0.20 0.20 

12 1.5 1.1 0.19 0.14 

28 1.4 1.7 0.19 0.23 

2012-2013 

364 3.5 3.5 0.45 0.44 

30 2.8 2.5 0.39 0.36 

46 2.8 2.7 0.38 0.39 

62 2.3 2.8 0.38 0.49 

78 1.5 2.4 0.32 0.53 
 

   

Table 3.8. Coefficients of variation for sub-models over the footprint area to 

compute net radiation (Rn), sensible heat flux (H), soil heat flux (G), and latent 

heat flux (LE) of a super-intensive drip-irrigated olive orchard.  Also, the 

normalized difference vegetation index (NDVI) is included. The degrees of 

freedom (n)= 23123 pixels. 

Season DOY 
Rni  

(%) 

LE 

(%) 

Hi  

(%) 

Gi  

(%) 

NDVI 

(%) 

2012-2013 

364 0.60 8.59 3.12 1.41 3.80 

30 0.80 13.17 4.25 1.39 4.21 

46 0.80 9.96 3.97 1.32 4.28 

62 0.84 9.29 5.12 1.45 4.32 

78 1.03 13.41 9.10 2.04 7.84 

           The subscript “i” indicates values simulated at the time of satellite overpass  

 
 
 

Table 3.9 Coefficients of variation for METRIC model to estimate actual 

evapotranspiration (ETa) and crop coefficients (Kc) of a super-intensive drip-

irrigated olive orchard. The degrees of freedom (n)= 23123 pixels. 

Season 
DOY 

 

ETa  

(%) 

Kc  

(%) 

2012-2013 

364 8.54 8.54 

30 13.11 13.11 

46 9.91 9.91 

62 9.24 9.24 

78 13.36 13.36 
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3.3 Spatial Variability of Energy Balance Components, ETa, and Kc 

Maps indicating the spatial and temporal variability of NDVI, energy balance 

components (Rni, Gi, Hi and LEi) and olive water requirements (ETa and Kc are 

illustrated in Figure 3.4, 3.5 and 3.6 for the 2012/2013 growing season, respectively.   

Figue 3.4 indicates that the tree canopy was relatively uniform during the season and 

within the olive orchard with a coefficient of variation (CV)  ranging between 3.80-

7.84% from December 2012 to March 2013.  In addition, the intra-orchard spatial 

variability of Rni (Figure3.5a–e), Gi (Figure 3.5f–j), Hi (Figure 3.5k–o), and LEi (Figure 

3.5p–t) was quite homogeneous with coefficients of variation (CV) less than 15% (Table 

3.8).    However, the temporal variability was significant with daily mean values within 

the field Rni, Gi, Hi,  and LEi ranging between 452 W m-2-642 W m-2, 79 W m-2-134 W 

m-2, 205 W m-2-368 W m-2, and 122 W m-2-167 W m-2 , respectively.   

In addition, Table 3.9 indicates that the intra-orchard spatial variability of  ETa and Kc 

was not significant with CV ranging between 8.54 and 13.36.  Finally, the temporal 

variability was significant with daily mean values of ET and Kc ranging between 2.09 

mm day-1-2.89 mm day-1 and 0.31-0.48, with an n of 23123 pixels..   The value of Kc and 

ETa has the same CV because in Eq. 1.15 states that  the daily reference of 

evapotranspiration are a single value for the entire field. 
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Figure 3.4.  Temporal and intra-orchard spatial variability of normalized difference 

vegetation index (NDVI) for a super-intensive drip-irrigated olive orchard during the 

2012-2013 growing season. (a), (b),(c), (d) and (e) are maps for DOY 364, 30, 46,  62, 

and 78, respectively. The area in light blue represent the footprint. 

a b c d e 
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Figure 3.5. Temporal and intra-orchard spatial variability of net radiation (Rni), soil heat flux 

(Gi), sensible heat flux (Hi), and latent heat flux (LEi) over a super-intensive drip-irrigated olive 

orchard during the 2012-2013 growing season. (a), (f),(k), and (p) are maps for DOY 364, 2012; 

(b),(g),(l), and (q) are maps for DOY 30, 2013;(c),(h),(m), and (r) are maps for DOY 46, 2013; 

(d),(i),(n), and (s) are maps for DOY 62, 2013 and (e),(j),(o), and (t) are maps for DOY 78, 2013  

 

a b c d e 

f g h i j 

k l m n o 

p q r s t 
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Figure 3.6. Temporal and intra-orchard spatial variability of actual evapotranspiration 

(ETa, mm day-1) and crop coefficient (Kc) for a super-intensive drip-irrigated olive 

orchard during the 2012-2013 growing season. (a) and (f) for maps for DOY 364, 2012; 

(b) and (g) are maps for DOY 30, 2013; (c) and (h) are maps for DOY 46, 2013; (d) and 

(i) are maps for DOY 62, 2013 and (e) and (j) are maps for DOY 78, 2013 . 

 

 

 

 

 

 

 

 

 

 

 

a b c d e 
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3.4 Final Remarks 

The results of this study indicate that the performance of METRIC model using the olive-

specific functions of LAI, roughness length (zom) and G was adequate to simulate energy 

balance and water requirements on a pixel-by-pixel basis for a super-intensive drip-

irrigated olive orchard.  It is important to indicate that the canopy size of the olive 

orchard was maintained almost constant during the study with values of fc ranging 

between 0.2–0.25 and olive trees were maintained under non-water stress conditions (ψx 

> - 1.5 MPa).  However, commercial olive orchards possess different training systems, 

tree water status, and canopy sizes, which make the soil-vegetation-atmosphere 

interaction processes more complicated (Jin et al., 2018).  López-Olivarí et al. (2016) 

indicated that the canopy architecture (tree density, canopy size, LAI, and fc) and training 

system have an important effect on the partitioning of Rn inside an orchard and in the 

distribution of the energy balance components over the land surface.   For drip-irrigated 

orchards with low values of fc, the sensible heat flux generated at the soil surface can be 

a major contributor to the energy balance playing a key role in estimation of LE. 
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CHAPTER 4 CONCLUSION 

The equations proposed on the literature  (Fuentes-Peñailillo et al., 2018; Santos et al., 

2012) for METRIC algorithm were suitable to produce an adequate set of maps  of Rn, G, 

H, LE, ETa, and Kc for a super-intensive olives orchards in the study field. The positive 

results between the estimated and observed values that were shown by those fluxes made 

the maps creation possible. These positive results were, thus, obtained from a parametrized 

METRIC using the equation provided in literature over a dense hedgerow olive orchard. 

This modification to METRIC refers to two sources: 1) The equation of G provide by 

Fuentes-Peñailillo et al., 2018) ; 2) the model of the Perrier equation on the computation 

of the momentum roughness length from the crop LAI and height. Although, the error 

range produced on the energy balance fluxes fluctuated within the range shown in the 

researched literature. The main source of measuring errors between ground and model 

calibrated data is associated to H, also in regards to the selection of hot and cold pixels. In 

addition, the error of the METRIC parametrization and errors of ground data observation 

and model calibration.  

The results obtained from this research are appropriate for creating a Kc curve for the 

different phenological stages using METRIC over an olive orchard.  
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for maps for DOY 364, 2012; (b) and (g) are maps for DOY  

30, 2013; (c) and (h) are maps for DOY 46, 2013; (d) and (i) 

 are maps for DOY 62, 2013 and (e) and (j) are maps for DOY 

 78, 2013 .         36 
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