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Concrete can be subject to various type of damages. Some damages such as Alkali

Silica Reaction (ASR) tend to start from the inside, where there is no easy way to

identify or evaluate them in the early stage. The study of ultrasonic waves scatterings

in non destructive testing (NDT) methods play a major role in identifying such dam-

ages.

In an ultrasonic test, high frequency ultrasonic waves are used to interrogate the inter-

nal structure of concrete material, where the coarse aggregates and microcracks cause

multiple scattering of ultrasonic waves. Experimental studies have demonstrated that

diffuse ultrasonic waves scattered by boundaries, coarse aggregates, and microcracks

are very sensitive to microstructural change in concrete. There are extensive stud-

ies implementing various experimental ultrasonic methods to detect and monitor the

small changes within the concrete structure. However, there are not many numerical

simulations of wave propagation in concrete to study the effects of such small changes

in concrete in the receiving signals.

In this Thesis, a numerical method to model concretes with microcracks in different

damage stages is proposed. First, a finite element model of a concrete sample that

includes mortar and a random set of aggregates is simulated. For each damage stage,



a series of randomly sized and oriented cracks that are partially filled with the ASR

gel is added to the sample. Each damage stage can be quantified based on the number

of cracks in a normalized surface area. At each stage, an elastic wave is sent through

the sample, and a series of Coda Wave Interferometry (CWI) and ultrasound diffusion

approximation is then used to compare the velocity change, diffusivity, and dissipa-

tion of the receiving signals. Results suggest there is a direct relationship between the

damage stages and the mentioned ultrasonic wave factors. The proposed method can

be used for nondestructive evaluation and quantification of the damage such as ASR

in concrete structures.
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CHAPTER 1

Introduction

Concrete is the most widely used construction material in the world, and like any other

materials, it is subject to various forms of physical and chemical damages. Detecting

damages at early stages can be helpful to reduce the repair cost and increase the

structure durability.

Nondestructive testing (NDT) methods can provide an evaluation of the concrete

quality without causing any damages. Many NDT methods used in concrete structure

inspections such as Ultrasonic Pulse Velocity (UPV) [2], Impact-Echo (IE) [3] are based

on ultrasonic wave propagation. The UPV method is based on measuring the first

arrival time of the pulse sent by the transducer. The IE uses a low frequency impact

that propagates inside the concrete and the reflection by the damages or boundaries is

recorded by a receiver. The main disadvantage of conventional NDT methods such as

UPV or impact-echo is that the time of the first arrival and the low frequency waves

employed in these methods are not sensitive to small damages. Therefore, they are not

ideal for detecting such damages at very early stages. In order to detect microcracks,

the wavelength of the ultrasonic wave should be smaller than or in the same order of the

cracks. Such wavelengths in concrete correspond to frequencies well above 100 kHz.

Utilizing waves with such high frequencies in a heterogenous material like concrete

results in large scattering by the aggregates and cracks and high attenuation of the
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wave energy.

Recently various NDT methods have been introduced to detect the microcrack

damages using the diffuse wave field. Wave diffusion analysis is one of the recent

methods based on utilizing high frequency diffuse wave. Experimental studies have

demonstrated that diffuse ultrasonic waves scattered by boundaries, coarse aggregates,

and microcracks are very sensitive to microstructural change in concrete. Anugonda

et al. [4] demonstrated the ultrasonic energy density in concrete follows the diffu-

sion equation and is a function of diffusivity (D) and dissipation (σ) parameters. By

increasing the ultrasonic frequency the dissipation would increase and the diffusion

decreases. They suggested in case of distribution of microcracks in the material the

measured diffusion value would decrease. Ramamoorthy et al. [5] used ultrasound

diffusion to determine the crack depth. They demonstrated that ultrasonic wave filed

in a concrete slab can be modeled as a two-dimensional diffusion process. The arrival

time of the peak diffuse energy at the receiver get delayed by the presence of a crack.

They showed this delay increases considerably with the increase in crack depth. Deroo

et al. [6, 7] employed the diffusion method to study the relation between Alkali Sil-

ica Reaction (ASR) and thermal damage with the diffusivity and dissipation factors.

They suggested for both cases there is a clear trend between the damage level and the

diffusivity factor. They showed that with increase of the damage level the diffusivity

decreases. Meanwhile, the dissipation stays almost the same for the ASR damage

and with regard to the thermal damage, and it does not follow a certain pattern with

regard to the damage level.

Another analysis method utilizing the high frequency diffuse wave is the coda wave

interferometry (CWI). Signals passed through a heterogeneous material like concrete

can be separated into two parts. The first part is the coherent wave that travels a direct

path from the source. The tail part that comes later and is diffused by the scatterers

is called the coda wave. Since the coda part of a signal has a longer travel path due to
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the scattering by the heterogeneities, it is more sensitive to small changes inside the

material than the coherent part. The CWI analysis is based on comparing the coda

of signals before and after a weak change in material. This relative velocity change

between the coda parts of the two signals can be used as a representation of the change

inside the medium. Snieder et. al [8] first introduced the CWI analysis to study the

Figure 1.1: Multi-scattering of ultrasonic waves in concrete.

relation between the temperature change and the relative velocity change in granite.

Lobkis and Weaver [9] introduced a new signal processing method for calculating the

relative velocity change in a CWI analysis named Stretching technique. Comparing to

the former method (doublet method) introduced by Sneider, the stretching technique

uses a large portion of the signal to calculate the velocity change. With CWI analysis,

Lacrose and Hall [10] found that a relative wave velocity change (dV/V ) at a level of

10−5 can be reliably measured in concrete. Schurr et al. [11] demonstrated the CWI’s

ability to detect the damages caused by cyclic load and thermal damage.

The major challenge in the existing researches is that due to the experimental

nature of these studies a quantitative relationship between the velocity change dV/V

and microcracking damage level is not available.

Given the complex nature of the wave attenuation in concrete due to the existence

of various heterogeneities with different shapes and sizes, there are very few studies

of numerical simulations of the diffusive ultrasonic waves in concrete. Asadollahi and

Khazanovich carried out a numerical simulation of shear wave attenuation in a 3D

concrete model [12] and investigated the effect of shape, size, and material properties
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of the aggregates on shear wave attenuation in concrete. They suggested that the

maximum aggregate size and the material properties of aggregates have a significant

role in the attenuation. On the other hand, the aggregate shape has a minimal effect

on the shear wave attenuation.

The objective of this research task is to understand the scattering effects of coarse

aggregates and microcracks on ultrasonic waves and develop a quantitative relationship

between wave velocity change and mircocracking damage. This thesis presents a nu-

merical simulation of elastic wave propagation in concrete - a complex, inhomogeneous

medium with coarse aggregates and microcracks.

Chapter 2 first describes the procedure to build finite element models (FEM) with

randomly distributed coarse aggregates of various shapes. Then models with random

cracks are created. These two models are then combined to form a concrete model

with randomly distributed aggregates and microcracks.

Chapter 3 presents wave propagation results using the models developed in chapter

2. The diffusion analysis method and the coda wave interferometry method are used

to study the effects of aggregate shape and content, crack density and the input force

frequency on the received signals from the concrete model simulations. One example

of microcrack damage is caused by the ASR. Like most of the concrete deterioration

mechanisms, ASR damage manifests as microcracks at early stages. ASR is a chem-

ical reaction that forms an expansive gel inside aggregates and eventually causes a

network of cracks inside the concrete, which can significantly decrease the strength

and durability of concrete. Due to the importance and the prevalence of ASR damage

in concrete structures, in this chapter, the effect of the ASR gel product inside cracks

is also investigated.

Conclusions and future research suggestions are given in chapter 4.
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In appendix A a detailed procedure of the aggregate generating algorithm and

sample source codes are demonstrated.

Appendix B presents more details on importing the aggregate and cracks geometries

from the MATLAB source code. It also shows the sample procedure of how the concrete

model is generated in the ABAQUS program.
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CHAPTER 2

Numerical Modeling of Wave

Propagation in Concrete

2.1 Ultrasonic wave propagation in concrete

Conventional ultrasonic wave NDT methods measure signal travel times and ampli-

tudes (coherent part only) in the material, and then use ultrasonic velocity and atten-

uation to estimate quality of concrete. To avoid strong scattering in a highly inhomo-

geneous and scattering medium like concrete, the ultrasonic wavelength (λ) should be

larger than the aggregate (∼ 25 mm). Therefore, most conventional ultrasonic meth-

ods for concrete NDT use low frequency ultrasounds (<100 kHz), and the common

commercial transducers have a resonance frequency of 54 kHz. However, low frequency

ultrasound cannot accurately characterize concrete degradation at early stages since

the wavelengths are much larger than microcracks in concrete.

When the wavelengths of ultrasonic waves are smaller than or comparable to the

size of scatters (aggregates, cracks), the waves will be scattered multiple times and

take a long path before received by sensors, while the amplitude of coherent part of

signal is attenuated. Because the scattering paths are random, the received signal has

elongated duration and a noisy tail (coda wave). The diffuse ultrasonic signal contains
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rich information about the medium because of multiple interactions between scattered

waves and scatters (e.g. cracks). Therefore, diffuse wave is highly sensitive to small

changes in the material such as microcracking initiation and development. Detailed

analysis of diffuse waves will be presented in Chapter 3.

The typical frequency range used for diffuse ultrasonic wave test is 50 ∼ 200 kHz.

Ultrasonic wave above 200 kHz will have high attenuation and very small penetration

depth in concrete. In this frequency range, coarse aggregates and microcracks cause

multi-scattering of ultrasonic waves, while the mortar matrix can be regarded as a

homogeneous medium because the sizes of fine aggregates are much smaller than the

wavelength. Therefore, in this study concrete is modelled as a homogeneous mortar

matrix with randomly distributed aggregates and cracks. The following sections will

present the procedures to simulate coarse aggregates of different shapes and microc-

racks.

2.2 Modeling of aggregates

2.2.1 Aggregate size distribution

Aggregate gradation is the size distribution of aggregate particles used in a concrete

mixture and is determined by the passing percentage of the particles from multiple

sieves of different sizes. Gradation can play a crucial role in concrete characteristics

such as strength, durability, permeability, workability, shrinkage and creep. This dis-

tribution can be different based on the primary use of the desired concrete mixture.

For instance, if all the aggregates were from the same size, concrete would have higher

permeability and lower aggregate content, but if a concrete contains aggregate from

a broader range of sizes, it can achieve a higher aggregate content. In normal con-
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cretes, aggregates usually occupy 60-70 percent of the concrete volume. Fuller’s curve

is widely used to describe a maximum density gradation, as shown in the following

formula:

Pi = (di/dmax)
n (2.1)

where the di represents the opening size of the ith sieve, dmax the maximum particle

size and Pi is the percentage passing the ith sieve. The parameter n adjusts the fineness

or coarseness, and when n=0.45, the gradation gives the highest density.

Based on Fuller’s curve figure 2.1, for mixture with a maximum aggregate size of

19.5 mm, about 40 ∼ 50 percents of aggregates are larger than 5 mm. To reduce the

model complexity only aggregates with diameters larger than 5 mm were generated.

Smaller aggregates can be regarded as a portion of homogeneous mortar matrix. For a

concrete model with total aggregate volume of 70%, the volumetric aggregate content

in the size range of 5 mm-25 mm is about 28 ∼ 35 percent. In our simulation, we used

about 35% aggregate content into the concrete model.

1.18 2.36 4.75 9.5 12.5 19

Sieve opening(mm)

20

40

60

80

100

Figure 2.1: Fuller’s ideal aggregate-size distribution curve

2.2.2 Circle-shaped aggregates

In order to generate circle-shaped aggregates, two sets of variables - the circle’s center

coordinates and radius, should be determined. The circle radius will be determined
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Figure 2.2: Randomly distributed circle-shaped aggregates placed in a 15 cm×15 cm
model. Volume percentage of aggregates is about 35%.

based on aggregate size distribution from Fuller’s curve (figure 2.1), and the center

coordinates are two random numbers within the concrete model region. We assume no

two aggregates have contact or overlap with each other. When the program generates

the first aggregate, it checks if any point on the circle perimeter will be out of the

sample borders. If so, it tries a new random position and will do that until the

condition is satisfied. The next aggregate will be generated with the same procedure.

However, this time there is an extra check to make sure the new aggregate has no

conflict with existing ones, and in case there are any conflicts, the program tries new

coordinates to place the aggregate. This condition can be checked by comparing the

distance between two circles’ centers and the sum of their radiuses r1 + r2. If the

center distance between two circles is larger than r1 + r2, it means there is no conflict

between two circles; otherwise, we have to change the placement of the new circle.

Since larger aggregates play a more crucial role in wave reflection or attenuation, the

aggregate placement algorithm starts with the larger aggregates first and gradually

goes for the smaller ones. This procedure will continue until the sample reaches the

desired aggregate volume percentage or after a large number of trials, it cannot find a
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new position for the new aggregates.

2.2.3 Square-shaped aggregates

Generation of square-shaped aggregates follows a similar procedure as for the circle-

shaped aggregates. However, overlap detection for squares is more complex than for

the circle shapes. We decide to use a pixel method to check the aggregate conflict

with the borders or with other aggregates. The pixel method treats the concrete cross

section as a binary pixel image. For example, an 1 m × 1 m concrete section can

be modeled as an image with 1000 × 1000 pixels, and each pixel represents an area

of 1 mm2. In the matrix of binary pixels, value 1 represents aggregate, and value 0

represents mortar. Before placing any aggregates, the matrix has all zeros. When a

square-shaped aggregate is to be generated, the program first creates a small matrix

of the size of the aggregate with all ones, then checks if the assigned position in the

concrete matrix have any non zero values. If so, there is conflict and the program tries

a new position; otherwise all pixels in the assigned area are changed to ones, and the

new aggregate is generated.

2.2.4 Polygon-shaped aggregates

Polygon shapes are more realistic than circles and squares for simulation of coarse

aggregates. A simple way to generate non-overlapping polygons is to use inscribed

polygons in circles that have been generated in circle-shaped aggregate models. For

each circle with a specified radius r and the center coordinates (xo, yo), a random

integer from 3 to 10 assigns the number of polygon sides, and another set of n random

numbers between 0 to 2π in ascending order give the inscribed angles for each vertex
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Figure 2.3: Randomly distributed square-shaped aggregates placed in a 15 cm×15 cm
concrete model with volume percentage 35%.

(figure 2.4). The coordinates of each vertex Pi are obtained using the formula

xPi
= xo + r cos(αi), (2.2)

yPi
= yo + r sin(αi), i = 1, n. (2.3)

This algorithm is very efficient for polygon-shaped aggregate generation. The only

drawback is that polygons generated with this algorithm may have large spacing, so it

will not reach high aggregate content. Because only coarse aggregates in the size range

of 4.75 mm ∼ 19.5 mm diameter are modeled, it is reasonable to assume the space

between polygons is filled with small aggregates, which are part of homogeneous mortar

matrix. The polygon-shaped aggregates are used in all concrete models analyzed in

this study.
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𝑦

Figure 2.4: Inscribed polygon with random number of sides and vertex positions.

Figure 2.5: Randomly distributed polygon-shaped aggregates placed in a 15 cm×15
cm sample

2.3 Modeling of cracks

Cracks were modeled as ellipses with a very narrow width of 2 mm. The crack lengths

were assumed to be randomly distributed in the range of 10 to 20 mm. Parameters

needed for simulating a crack include coordinates for the center, major axis of the

ellipse (crack length), and an angle in 0 ∼ π for crack orientation. All parameters were
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randomly assigned in the specified range. In reality, cracks can overlap or contact with

each other to generate a network of connected cracks inside a concrete sample. However

for simplicity of modeling, we assumed no overlap or connection among cracks. One

simple way to avoid overlapping between cracks is to use the pixel method. First,

for a new elliptic crack with the random rotation angle of θ, we use equation 2.4 to

obtain the local coordinates of all pixels located inside the ellipse. When this new

crack will be placed in the concrete model, the local coordinates of the pixels should

be converted to the global coordinates. Then we need to check if there is any conflict

between the new crack and existing cracks at the global coordinates. If no conflict,

the algorithm changes the values of the matrix at the global coordinates from 0 to 1.

Figure 2.6 shows a model with randomly distributed elliptical cracks.

((x− x0) cos θ + (y − y0) sin θ)2

r21
+

((x− x0) cos θ + (y − y0) sin θ)2

r22
= 1 (2.4)

𝑥

𝑥′

𝑦𝑦′

𝜃
𝑂

𝑟1𝑟2

Figure 2.6: Ellipse-shaped crack with random radius and rotation.
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Figure 2.7: Randomly distributed cracks in a 15 cm×15 cm sample.

2.4 Concrete with coarse aggregates and cracks

In order to build a mesoscopic model of concrete with micro-cracking damage, it is

necessary to implement both the crack and the aggregate generating algorithms in

the finite element model. In this case, it is assumed that cracks can overlap or pass

through the aggregates. Therefore in Abaqus, we first generated a concrete model with

aggregates in the mortar matrix, and then added cracks to this model. To avoid con-

fliction in material property definition in the crack positions where have been occupied

with aggregates or mortar, we need first remove all material at all crack positions, and

then merge this modified concrete model with the crack-only model. The final model

is shown in figure 2.8.
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Figure 2.8: Randomly distributed aggregates and cracks in a 15 cm×15 cm concrete
model.

2.5 Crack density

A petrographic examination method using the Damage Rating Index (DRI) has been

proposed to quantify ASR damages [13, 14]. In this method, a concrete sample with the

surface area of at least 200 cm2 is polished and gridded into 1 cm×1 cm square units.

Every unit is then magnified (14-16 x) using a stereomicroscope, and the number of

cracks and their respective features are recorded. Based on the petrographic features

defined for each crack type, each crack gets a weighting factor. A DRI value is the

multiplication of the crack number by its respective weighting factor, normalized for

a 100 cm2 surface area [13, 14, 15]. Detection and categorization of cracks heavily

depend on the operator’s experience.

A simple method that avoids these limitations is calculating the crack density solely

based on counting the number of cracks caused by ASR reaction [13, 15]. Sanchez [13]
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found that the crack density increases as a function of the specimen’s expansion level.

Therefore, in this study, the crack density parameter is used to quantify microcracking

damage level by counting the number of crack in each 1 cm×1 cm unit and then

normalizing its value for a 100 cm2 surface area. This can also be done by summing

up the total crack lengths and normalizing the length by the area. We performed

analyses on 4 models with different stages of damage with crack densities of 0, 0.07,

0.13, 0.19 and 0.26 /cm2 respectively. Wave propagation analyses are performed on

these models to investigate how microcracking damage affects the measuring signal in

each stage.

2.6 Material properties

In this research, four different material properties were investigated to model concrete

with induced cracks. Cracks were initially assumed to be filled with air to simulate

open cracks. Since ASR is one of the major types of damages in concrete, we also

simulated cracks filled with the ASR gel product. Finally, in the last stage of our

analyses, we assumed ASR gel only presents in cracks generated within aggregates.

These cracks are separated in two parts where the section in aggregates is filled with

the ASR gel material, and the part inside mortar is filled with the air properties. All

the materials are considered to be isotropic and homogeneous. Material properties of

aggregate and mortar are extensively studied, however there are very few sources that

studied the mechanical properties of the ASR gel [16, 1]. Values used for ASR gel

properties in this research are based on the average mechanical properties measured

by Moon et al. [1].



17

Figure 2.9: Image of an ASR gel fragment collected from the Furnas dam [1]

Mechanical properties of aggregates, mortar, air and ASR gel, used in these models

are shown in table 2.1, where ρ is density, E is elastic modulus, ν is Poisson’s ratio,

and K is bulk modulus.

Table 2.1: Material Properties used in numerical simulation

Material ρ (kg/m3) E(GPa) ν K(GPa) Vp(m/s) Vs(m/s)

Mortar 2200 30 0.22 17.9 3946 2364
Aggregate 2700 70 0.22 41.7 5441 3260
ASR gel 2060 25 0.35 27.8 4413 2120

Air 1.2 - - 1.00E-04 293 -

2.7 Material damping

In order to simulate the wave attenuation in concrete, a Rayleigh damping model is

utilized. Rayleigh damping model assumes the damping matrix as a function of the

mass (M) and the stiffness matrix (K) (Eq. 2.5).

C = αM + βK (2.5)

Here, α and β are Rayleigh damping factors that can be used as inputs in the finite
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element analysis software. There are different methods [17, 18, 19] to calculate theses

factors for heterogeneous materials like concrete. Tian et. al. [17] placed a transducer

and multiple receivers inline with each other, and suggested that the amplitude change

in receiving signals from different receivers is a function of distance from the source,

geometrical spreading and attenuation coefficients (Eq. 2.6):

W2 = W1(
r1
r2

)ne−Kw(r2−r1) (2.6)

Taking the natural logarithm of both sides of the Eq. 2.6, a linear relation between the

attenuation factor(Kw) and the ultrasonic wave amplitudes from two receiving signals

can be found. A linear regression can be used to find the wave attenuation in the

medium.

Rayleigh damping factors (α and β) can be calculated using Eq. 2.7 where cL is

wave velocity travelling inside the material and ω is the angular frequency. α for normal

concrete is usually between 2000-2200 and the β can be somewhere from 10−8 - 10−6.

It should also be noted that in higher frequencies (f >1 kHz) the mass damping factor

(α) has less effect on overall Rayleigh damping. In this thesis, we defined α = 2120

and β = 1.787× 10−7.

Kw =
α

2cL
+

β

2cL
ω2 (2.7)

2.8 Input force

Scattering of an ultrasonic wave caused by aggregates and cracks inside a concrete

sample is strongly affected by its wavelength. When the wavelength is in the order

of the aggregate and crack size, the wave can interact with multiple scatterers before
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reaching the receiver. Assuming a constant value for wave velocity in a homogeneous

space, the wavelength is inversely proportional to the frequency. In order to simulate

waves of different frequencies, we defined transient loads in the form of squared half-

sinusoidal functions (Eq. 2.8). For duration T of 10 µs, 25 µs, 40 µs, 50 µs, 75µs

and 100 µs, the force histories are shown in figure 2.10. The half-sinusoidal function

is squared to avoid the abrupt changes of amplitude at the beginning and end of the

input force periods that could be troublesome for numerical simulations.

f(t) = sin2(
πt

T
) (2.8)
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Figure 2.10: Input force functions with different time duration

2.9 Element type, mesh, and boundary conditions

We choose Abaqus c©/Explicit as the finite element analysis software. The mesh size

and the time step are two important factors in numerical simulation of wave propa-

gation in material. If the mesh size and time step are too big the numerical model

will show large errors comparing with the analytical solutions. On the other hand

selecting too small values for the mesh size or time step can increase the processing

time drastically and increase the computation cost. In order to choose the right values

for the mesh size and time steps, it should be noted that the highest wave frequency

affects the times step while the shortest wavelength is responsible for the mesh size
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[20]. The ideal mesh size should be 1/10 ∼ 1/20 of the shortest wavelength [21, 22, 20].

Here, The plane strain element CPE3 is used to mesh the model with size of 1 mm

for input force duration of 25 µs and higher, and 0.5 mm for force duration of 10 µs.

The selected mesh sizes are smaller than 1/20 of the shortest wavelengths. A demon-

stration of meshed model with 1 mm mesh size is shown in figure 2.11. Another rule

of thumb for assigning an efficient time step is the smallest wave period should be at

least 10 ∼ 20 larger than the selected time step[20]. Time steps of 1 µs for the models

with the force duration of 25 µs and higher and 0.5 µs for the model with the input

force duration of 10 µs is selected here. To validate the mesh size and time steps used

in this research, a bench mark simulation of wave propagation in fluid-solid half-space

was performed and the results were in conformity with the analytical result by Zhu et

al. [23].

Wave scattering can be caused by coarse aggregates, cracks and sample boundaries.

Using a large model may reduce or delay reflections from boundaries; however it will

cause a significant processing cost due to the size of the model. Instead, in a small

model, waves can reach the boundaries very quick, and generate multiple boundary

reflections in the concrete medium and diffuse really quick. In this study we modeled

a 15 cm×15 cm concrete sample and to ensure the stability of the model, two hinge

supports were placed at two bottom corners of the model.

The excitation source is located on the top surface in the middle (7.5 cm from the

left), and the receiver is located at the middle of the bottom surface.
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Figure 2.11: Meshed concrete model with coarse aggregates and cracks.

2.10 Parametric analysis

Since the objective of this research is to investigate effects of microcracking damage

in concrete on ultrasonic signals, models corresponding to 4 different damage stages

were selected for simulation. These models have increasing crack densities of 0.07,

0.13, 0.19 and 0.26 count/cm2. Then effects of other parameters including aggregate

angularity, aggregate content, crack material properties and input force frequency were

also studied. To study the effect of wave frequency, we selected three different input

loads with the same amplitude but different duration times (10 µs, 25 µs, 40 µs, 50

µs, 75 µs and 100 µs). For aggregate content effect, three different aggregate contents

(base model with 35% aggregate content by volume comparing to the models with 30%

and 25%) were investigated. In order to simulate different types of cracks - open cracks

and ASR induced gel filled cracks, three different combinations of material properties,

air, ASR gel, and a combination of air and ASR gel were studied. This extensive

collection of models with different parameters would help us understand the effects of

each parameter through numerical simulation.
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CHAPTER 3

Numerical Simulation Results

3.1 Simulated wave field

Figures 3.1-3.3 present snapshots of wave field at 30 µs in a homogeneous medium,

concrete, and concrete with air-filled cracks. The input force duration is 25 µs. For the

homogeneous medium, there are clear circular wavefronts for P and S waves. Rayleigh

wave is also observed near the surface. In concrete with coarse aggregates, P and

S wavefronts are distorted by aggregate scattering, but they are still discernible. In

the concrete model with air-filled cracks, diffuse wave field forms due to strong wave

scattering by cracks.
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Figure 3.1: Snapshot of wave field in a homogeneous medium at 30 µs. Input force
duration is 25 µs.

Figure 3.2: Snapshot of wave field in concrete with coarse aggregates at 30 µs.
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Figure 3.3: Snapshot of wave field in concrete with coarse aggregates and air-filled
cracks at 30 µs.
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3.2 Coda wave analysis

Coda Wave Interferometry (CWI) is a wave analysis technique by comparing the tail

part of signals (Coda) before and after a perturbation in a highly scattering media and

calculating the relative wave velocity change between signals. For minimal changes in

a medium, the first arrivals may not show detectable difference. However, because

the Coda is scattered and reflected multiple times by the heterogeneities and has

propagated a long distance before reaching the receiver, it can show high sensitivity to

minimal changes in the medium, including new scatters such as microcracks, stress or

temperature changes. Figure 3.4 shows two ultrasonic signals measured in a concrete

sample at different temperatures. In the later part of signal (>0.4 ms), clear difference

is observed between the signals, while this change cannot be accurately measured in

the early part of signals (<0.1 ms).
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Figure 3.4: Coda waves of two ultrasonic signals measured at different temperatures.

CWI analysis can be used to obtain the relative velocity change between two signals

[24, 25]. Two commonly used methods are the doublet and the stretching methods. In

the doublet method, a signal is divided into multiple small overlapping time windows

of length T with window centered at ti, and the cross-correlation between the reference
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and disturbed coda waves is calculated by using the formula 3.1. For each window, the

time delay dti that maximizes the cross-correlation is plotted vs. the window position

ti. The slope of the dt vs. t curve gives the relative velocity change dV/V in the

medium [26].

CC(t, δt) =

∫ t+T/2
t−T/2 ϕ(t)ϕ́(t+ δt)dt√∫ t+T/2
t−T/2 ϕ

2dt
∫ t+T/2
t−T/2 ϕ́

2dt
(3.1)

δt/t = −δv/v (3.2)

The stretching technique assumes uniform velocity change in the medium, therefore

two signals can be compared by stretching or compression. The cross-correlation

coefficient is calculated between the reference and the stretched (or compressed) version

of disturbed signals using Eq. 3.3, where ϕ and ϕ′ are the signals before and after

perturbations and T is the length of the signal window used for the analysis. The

stretching (or compressing) factor that maximizes this correlation coefficient is equal

to relative velocity change between two models [27, 25].

CC(ε) =

∫ t+T/2
t−T/2 ϕ́ [t(1− ε)]ϕ(t)dt√∫ t+T/2

t−T/2 ϕ́
2 [t(1− ε)] dt

∫ t+T/2
t−T/2 ϕ

2(t)dt
(3.3)

εmax = δv/v (3.4)

Since the stretching method can use the whole signal window and the velocity change

values calculated with this method are not dependent on the number of time windows

or their overlapping factor, in comparison with the doublet method, it can give more

stable results.
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3.3 Wave diffusion approximation

An ultrasonic wave traveling through a heterogeneous medium like concrete can be

subject to a large number of scatterings if the wavelength is in order of the aggregates

sizes. These scatterings can cause a rapid changes in the amplitude, phase, or the

path of the propagating wave, which ultimately results in the wave attenuation. The

attenuation due to the heavy scattering inside the concrete generates a diffuse wave

field. The ultrasound energy field diffusion in concrete can be defined as a function of

diffusivity and dissipation parameters. The diffusivity is mainly reflective of material

structure such as the aggregate content or their placements in the concrete while the

dissipation mostly depends on the viscoelastic properties of the cement paste [4, 28, 5]

.

The diffusion of ultrasonic energy in concrete can be modeled by the two-dimensional

diffusion equation with dissipation [5, 6]. This equation can be given as

D(
∂2

∂x2
+
∂2

∂y2
) 〈E(x, y, t)〉− ∂

∂t
〈E(x, y, t)〉−σ 〈E(x, y, t)〉 = E0δ(x−x0)δ(y−y0)δ(t−t0)

(3.5)

where E0 is the initial spectral energy of the ultrasonic wave coming from the source

at x = x0, y = y0 and time t = 0, D is ultrasonic diffusivity(unit m2s−1) and σ is

dissipation(unit s−1). The solution of Eq. 3.5 is given by

〈E(x, y, t)〉 =
E0

4Dπt
e−(x

2+y2)/(4Dt)e−σt (3.6)

Taking the natural logarithm of Eq. 3.6, results in

ln 〈E(x, y, t)〉+ lnt = C0 −
(x2 + y2)

4Dt
− σt (3.7)

where C0 = ln(E0/4πD). In order to calculate the diffusion and dissipation, first, the
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spectral energy of the receiving signal should be calculated. For this purpose, the time

domain response is divided into overlapping windows of length δt. Next, a discrete-time

Fourier transform for each time window is calculated and squared. Having the spectral

energy and their respective time (center time of each time window), a polynomial

regression of second degree is used to fit the data made based upon Eq. 3.7. The first

and the third polynomial factors from the polynomial regression fit can be used for

calculating the diffusion and dissipation for each signal.
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Figure 3.5: Spectral energy vs. time (the solid line is a curve fit to the two-dimensional
diffusion equation).
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3.4 Effect of aggregate

3.4.1 Aggregate angularity

Figure 3.7 shows the comparison between three concrete models with different ag-

gregate shape and angularity. The three models have the same aggregate content,

aggregate placement, crack density and input force function. The aggregate content

is 35% by volume, crack density is 0.19 /cm2 and the input force duration is 25µs.

Figure 3.8 presents the receiving signals from all three models. CWI analysis of these

signals shows that the velocity change in this case is less than 0.1%. The diffusion

analysis also shows a very small variation in both diffusion and dissipation factors

between the three models. Therefore, it can be concluded that variation of aggregate

angularity does not have a considerable effect on ultrasonic wave propagation. Study

by Asadollahi and Khazanovich [12] validates the nominal effect of the aggregate shape

on the received signal.



30

(a) Model with circular shape aggre-
gate

(b) Model with square shape aggre-
gates

(c) Model with polygon shape aggre-
gates

Figure 3.7: Concrete models with different aggregate contents.
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Figure 3.8: Aggregate angularity effect on received signals in concrete models with the
same aggregate content and crack density
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3.4.2 Aggregate content

Figure 3.9 shows the comparison between three concrete models with different aggre-

gate contents. The base model has the aggregate content of 35%, and the two other

models each contain 30% and 25% aggregate.

(a) Model with 35% aggregate con-
tent

(b) Model with 30% aggregates con-
tent

(c) Model with 25% aggregates con-
tent

Figure 3.9: Concrete models with different aggregate contents.

Figure 3.10 presents the receiving signals from the three models. CWI analysis

shows that the relative velocity decrease from the 35% model to the 30% model is less

than 0.7%. However, the velocity decrease from the 30% model to the 25%, shows

a much larger value of 2.9% . The dissipation factor from the diffusion analysis also

shows a similar pattern where the dissipation is 2670 (1/s) for the 35% model, 2810

(1/s) for the 30% aggregate model and 3884 (1/s) for the 25% model. Both velocity
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change and dissipation factor results suggest that by removing more aggregate the

rate of both velocity change and dissipation increase considerably. Since the damping

factors are only defined on the mortar part, by replacing more aggregates with mortars

we are actually increasing the overall damping and attenuation in the model which

results in the increase of the dissipation. Also, since the mortar has lower impedance

than the aggregates, by removing the aggregates the velocity decreases.
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3.5 Effect of cracks

3.5.1 Material properties of cracks

Cracks can be assumed to be filled with either air or ASR gel (figure 3.11a and figure

3.11b). However, this assumption is not very accurate in reality. Once ASR occurs,

the generated expansive gel causes tension and cracking in concrete, and the gel fills

in cracks. Therefore, a reasonable assumption should be cracks to be partially filled

with the ASR gel. Cracks inside or around aggregates are filled with ASR gel, while

cracks in the mortar part are filled with air (open cracks). Figure 3.11c shows a more

realistic model of ASR-induced cracks in concrete based on this assumption.

(a) cracks filled with air (b) cracks filled with ASR gel

(c) cracks with both ASR gel (inside aggregates) and air (inside mortar)

Figure 3.11: Concrete models with the same aggregate content and different crack
properties.

Figure 3.12 presents the received signals from the three crack models. The input
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force duration here is 25 µs. For the gel-air crack model, its amplitude and first arrival

are between the responses of complete air-filled and complete gel-filled, and closer to

the air-filled model response. By performing the CWI analysis on all three models,

we found the relative velocity change between the gel model and 2-part crack model

has 6% decrease and from the gel model to the air model we have about 13% velocity

decrease. Since the air has much lower acoustic impedance than solids by increasing

the air content the wave velocity in the concrete model shows a noticeable decrease .
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Figure 3.12: Received signals from models with different crack properties



36

3.5.2 Crack density

Figure 3.13 present four concrete models in different damage stages where the crack

density increases in each stage. The cracks are simulated as air-filled in mortar part and

gel-filled in aggregate part. Crack densities in these models are 0.07/cm2, 0.013/cm2,

0.19/cm2 and 0.26/cm2 respectively. These models are used to study the effects of

crack density on wave velocity change. Results from this analysis will be used as a

reference for quantifying microcracking damage in concrete using ultrasonic waves.

(a) crack density =0.07/cm2 (b) crack density =0.13/cm2

(c) crack density = 0.19/cm2 (d) crack density = 0.26/cm2

Figure 3.13: Concrete models with the same aggregate content (35%) and 4 different
crack densities. Cracks are combination of air-filled and gel-filled.

According to figure 3.14, with the increase of the crack density, the signal arrival

time increases, and the apparent wave velocity decreases. The relative velocity change

can be obtained from the CWI analysis. Figure 3.15 shows the relative velocity change

which suggests an almost linear relationship between the relative velocity change and
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the crack density. Study by Schurr et al. [11] validates the linear relation between the

relative velocity change and the damage.

It should be noted that the crack density parameter in the numerical simulation

may under-estimate the actual crack density, and does not fully represent the actual

crack network in concrete, however results from these analyses provide us a guidance

to relate the relative velocity change with micro-cracking damage levels in concrete.

Figures 3.16 shows the relation between the crack density and the diffusivity. It

can be clearly seen that by increasing the crack density the diffusivity decreases. Re-

garding the dissipation, figure 3.17 shows the relation between the crack density and

the dissipation. Although it does not show an evident pattern, the dissipation has

an overall increase due to the increase of the crack density. The relation between the

damage level and diffusion factor has been studied by Deroo et al.[6]. Their result sug-

gested that with increase of the damage level the diffusivity decreases which can also

be clearly seen in fig. 3.16. On the other hand their experimental results from ASR

and thermal damages did not show the same relation between the damage level and

the dissipation factor. Our results (fig. 3.17) also shows large errors at crack density

= 0.13 /cm2. Further studies on relation between crack density and dissipation may

be helpful to address such errors.
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Figure 3.15: Velocity changes due to crack density increase for the 25µs duration input
force and gel-air crack properties
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Figure 3.16: Elastic diffusivity due to crack density increase for the 25 µs duration
input force and gel-air crack properties
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force and gel-air crack properties
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3.6 Effect of the input source duration
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Figure 3.18: Received signals from models with the same crack and aggregate contents
and different force input duration

Figure 3.18 presents the received signals on the five concrete models with the same

aggregate content (35% aggregate content), the same crack content (0.19 /cm2 gel-
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air cracks) and different force duration of 100, 75, 50, 40, 25 and 10 µs. This figure

includes 900 and 400 µs long signals and an initial 150 µs segment of the signal to show

details regarding the first arrivals. According to figure 3.18, we notice the first wave

arrival delays with the the increase of input force duration. Performing a diffusion

analysis, figure 3.19 shows an overall decrease in dissipation due to the increase of the

input force duration. The higher frequency wave is subject to higher attenuation and

dissipation. It should be noted that the coda wave analysis can only be performed

when there is a nominal change in the concrete model. However here the model is the

same and only the input load has changed. Therefore the coda wave analysis was not

utilized here.

10 25 40 50 75 100

Input force duration( s)

500

1000

1500

2000

2500

3000

3500

D
is

s
ip

a
ti
o

n
(1

/s
)

Figure 3.19: Dissipation due to increase of the input force duration in concrete model
with 0.19 /cm2 crack density
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CHAPTER 4

Conclusions and Future Work

4.1 Conclusions

This thesis presents numerical simulation models and results for diffused wave propa-

gation in concrete with induced cracks. The algorithms for the generation of randomly

distributed aggregates and cracks in FEM models were described. With these models,

we investigated the effects of different key parameters on wave propagation, includ-

ing aggregate angularity, aggregate content, crack density, crack properties, and input

force frequency.

Analysis results indicate that aggregate angularity has little or no effect on receiving

signals. This study suggests that aggregate content change as much as 5% shows only

a little effect on velocity, diffusivity and dissipation factors, however an aggregate

content change as big as 10% showed more noticeable effect where the velocity change

and dissipation had larger increase comparing to the base model.

Crack properties effect on a concrete model with induced ASR cracking was studied.

The coda wave analysis suggests that the crack material properties has a large impact

on the received signals and three models have considerably large differences. The

model with 2-part gel-air cracks has around 6% velocity decrease comparing to the
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ASR gel filled crack model. The model with air filled cracks has even a larger velocity

decrease of around 13% comparing to the ASR gel filled crack model.

Regarding the crack density, the received signals show that the model with no crack

has the earliest first arrival. The CWI analysis suggests that by increasing the crack

density, the relative velocity decreases. The diffusivity factor from diffusion analysis

also decreases with the increase of crack density. The dissipation, on the other hand,

shows an overall increase due to the crack density increase.

Five different input forces with the same amplitude and different durations on

similar models with the same aggregate and crack contents were implemented. The

dissipation factor from the diffusion analysis suggest that by increasing the input force

duration (decreasing the frequency) the dissipation decrease.

4.2 Future work

One suggestion for improving the model is to add the Interfacial Transition Zone (ITZ)

layer to the model. ITZ layers have high permeability, and low strength and damages

caused by a chemical reaction like ASR can generate a gel that tends to grow and

expand in these layers. These types of crackings are multi-scale and multi-physics

phenomena with a nonlinear spirit; therefore, in future studies, nonlinear material

properties and analysis will be included in numerical simulations.

In this research, our main focus was on the analysis of the wave responses after

introducing random cracks inside the concrete. These cracks were not connected and

did not grow after each stage. However, in reality, the cracks start to grow and shape

a connected network inside the concrete. Therefore a model with a growing crack

network can offer a more realistic simulation of damaged concrete.
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A 3-D model with randomly placed aggregates and cracks can be computationally

expensive. However, this model can result in a more realistic simulation and smaller

errors. The 3-D diffusion analysis can also provide better curve fits and as a result,

more realistic diffusivity and dissipation factors.
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Appendix A

MATLAB source code

The source codes used in this study are presented here. Source codes are based on

MATLAB programming. The main program generates the random aggregate shapes

and sizes and checks if they have any overlapping with other aggregates (function

”checkoverlap”) or the defined borders (function ”checkborder”). The code first checks

the aggregates overlapping based on their circumscribed circle. Next, the ”polygon”

function generates a random set of coordinates all placed on the circumscirbed circle

and connect them to create a polygon aggregate. Once all the polygon aggregates are

assigned, the program uses the center and area of each polygon aggregate and generates

the equivalent circle and square shape aggregates. Finally, functions ”circop”, ”sqrcop”

and ”polyop”, generate the input codes for the ABAQUS program.

The main source code for generating the random aggregates is presented here.

1 %This program generates a random set of polygon aggregates and place

2 %them inside the mortar. Based on the center of each polygon and

3 %their area then it creates the equivalent circle and square shape

4 %aggregates in another model.

5 clear all;

6 %sieve sizes

7 sieve = [19 12.5 9.5 4.75 2.36 1.18];

8 dmax = max(sieve)
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9 fuller= (sieve/dmax).^0.45*100;

10 passing = fuller;

11 % maximum aggregate content generated with this method is no more

than 36\%

12 vol = 1;

13 gradation = [sieve;passing]’;

14 %plot fuller curve

15 plot(sieve ,passing)

16

17 close all;

18 sieve = gradation (:,1);

19 passing = gradation (:,2);

20 retained = 100- passing; %% mass retained

21 cum_volpassing = passing*vol /100;%cummulative volume% in total

concrete vol

22 cum_volretained = retained*vol /100;%cummulative volume% retained

23 %Since the pixel method is uttilized here the sample size multiplied

by 10

24 %so we have a higher resoultion

25 H=150;W=150; %sample dimensions

26 totalarea=H*W;

27 figure (1);

28 h0=rectangle(’Position ’ ,[0 0 W,H],’FaceColor ’ ,[0 0 0.4]);

29 axis equal

30 axis off

31 hold on;

32

33 %create a random circle and draw if it’s inside the rectangle borders

34 ic = 0;

35 B = true;

36 area_placed = 0.0001;

37 total_area_placed = 0.0001;

38 for i = 1:10000

39 index = find (cum_volretained >total_area_placed ,1);
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40 % if area <cum retained vol , find proper sieve size

41 rmin = sieve(index)/2; rmax = (sieve(index -1))/2;

42 xmin = rmin; xmax = W-rmin;

43 ymin = rmin; ymax = H-rmin;

44

45 r = rmin+(rmax -rmin)*rand (1,1);

46 x = xmin+(xmax -xmin)*rand (1,1);

47 y = ymin+(ymax -ymin)*rand (1,1);

48 A = checkborder(x,y,r,W,H);

49 gama = 0;

50 if A == true

51 if ic == 0

52 ic = 1;

53 xi(i) = x; yi(i) = y; ri(i) = r;

54 B = true;

55 else

56 B = checkoverlap(x,y,r,xi,yi,ri);

57 if B == true

58 ic = ic+1;

59 xi(ic) = x; yi(ic) = y; ri(ic) = r;

60 %h2=rectangle(’Position ’,[x-r y-r 2*r 2*r],’Curvature

’,[1,1],’EdgeColor ’,mycolor(index -1));

61 end

62 end

63 end

64 if (A&B) == true

65 % generate the polygon shape aggregate based on its circumscirbed

circle

66 [ric ,vertices ,n] = polygon(x,y,r);

67 figure (1)

68 fill(vertices (:,1),vertices (:,2),’y’,’EdgeColor ’,’y’);

69 area_placed = polyarea(vertices (:,1),vertices (:,2))/totalarea

70 area_agg(ic) = area_placed;

71 total_area_placed = total_area_placed+ area_placed
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72 pause (0.01);

73 % Calculate the equivalent radius and side sizes for the circle and

square

74 % shape aggregates.

75 rcir(ic) = ric;

76 asq(ic) = ric *0.5* sqrt(pi);

77 % save polygon information

78 poly_vert{ic} = vertices;

79 end

80 end

81

82 %plot Circles

83 figure (2)

84 h0=rectangle(’Position ’ ,[0 0 W,H],’FaceColor ’ ,[0 0 0.4]);

85 axis equal

86 axis off

87 hold on;

88 for i = 1:ic

89

90 h2=rectangle(’Position ’,[xi(i)-rcir(i) yi(i)-rcir(i) 2*rcir(i) 2*

rcir(i)],’Curvature ’ ,[1,1],’FaceColor ’,’y’);

91

92 end

93 %plot SQUARE

94 figure (3)

95 h0 = rectangle(’Position ’ ,[0 0 W,H],’FaceColor ’ ,[0 0 0.4]);

96 axis equal

97 axis off

98 hold on;

99

100 for i = 1:ic

101

102 h2=rectangle(’Position ’,[xi(i)-asq(i) yi(i)-asq(i) 2*asq(i) 2*asq

(i)],’FaceColor ’,’y’);
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103

104 end

105

106 %This functions generates data needed for circle ,square and polygon

shape

107 %aggregate models in abaqus

108 %Check text files named expcir.txt and expcir2.txt

109 circop( xi ,yi ,rcir ,H);

110 sqrcop( xi ,yi ,asq ,H);

111 polyop( poly_vert ,H );

The ”checkoverlap” function is to check if the circumscribed circle around the new

aggregate has overlap with the ones generated before is as follows.

1 function [B]= checkoverlap(x,y,r,xi,yi,ri)

2 nc=length(xi);

3 gama =0.15;

4 B=true;

5 for i=1:nc

6 if sqrt((x-xi(i)).^2+(y-yi(i)).^2) <(r+ri(i))+gama.*r;

7 B=false;

8 break;

9 end

10 end

The ”checkborder” controls if an aggregate has any overlap with the model borders.

1 function A=checkborder(x,y,r,W,H)

2 dist=[x,y,W-x,H-y];

3 gama =0.18;

4 if min(dist)<r*(1+ gama)

5 A=false;

6 else

7 A=true;

8 end
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The ”Polygon” function generate a random set of corner coordinates based on the

canter and radius of the aggregates circumscirbed circle.

1 function [ric ,vertices ,n]= polygon(x0,y0,r)

2 poly_A =0;

3 circle_A=pi*r^2;

4 for j=1:10

5 n=randi ([3 10],1,1);

6 s=rand(n,1)*2*pi;

7 s=sort(s);

8 gama =0.001* randn (1,1)+1;

9 xn=x0+r*cos(s)*gama;

10 yn=y0+r*sin(s)*gama;

11 xn(n+1)=xn(1);

12 yn(n+1)=yn(1);

13 poly_A=polyarea(xn ,yn);

14 ric=sqrt(poly_A/pi);

15 if poly_A >0.45* circle_A % reject very small narrow polygons

16 break;

17 end

18 end

19 vertices =[xn,yn];

The ”circop”, ”sqrop” and ”polyop” are responsible for generating the ABAQUS

input format.

1 function [ ] = circop( xi,yi,rcir ,H)

2

3 A = [(xi -H/2);yi-H/2];

4 peripoint=xi+rcir;

5 B = [(peripoint -H/2);yi-H/2];

6 C = [A;B]

7 fileID = fopen(’expcir.txt’,’w’);

8 formatSpec = ’mdb.models[’’Model -1’’]. sketches[’’__profile__ ’’].

CircleByCenterPerimeter(center =( %0.3f , %0.3f ),point1 =(%0.3f ,



52

%0.3f)) \n’;;

9 fprintf(fileID ,formatSpec ,C);

10 fclose(fileID);

11

12 end

1 function [ ] = sqrcop( xi,yi,asq ,H)

2 %UNTITLED3 Summary of this function goes here

3 % Detailed explanation goes here

4 modifxi=xi -H/2;

5 modifyi=yi -H/2;

6

7 A = [modifxi -asq;modifyi -asq];

8

9 B = [modifxi+asq;modifyi+asq];

10 C = [A;B];

11 fileID = fopen(’expsqr.txt’,’w’);

12 formatSpec = ’mdb.models[’’Model -1’’]. sketches[’’__profile__ ’’].

rectangle(point1 =( %0.3f , %0.3f ),point2 =(%0.3f , %0.3f)) \n’;

13 fprintf(fileID ,formatSpec ,C);

14 fclose(fileID);

15 end

1 function [ ] = polyop( poly_vert ,H )

2

3 %Delete any input file remained from past

4 if exist(’exppoly.txt’, ’file’)==2

5 delete(’exppoly.txt’);

6 end

7

8 for i=1: size(poly_vert ,2)

9 clear polyv1 polyv2 polyv3 polyv4

10 polyv1=cell2mat(poly_vert(i));

11 polyv2=polyv1 -H/2;

12 for j=1: size(polyv2 ,1) -1
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13 polyv3(j,:)=polyv2(j+1,:);

14 end

15 polyv4 =[ polyv2 (1: size(polyv2 ,1) -1,:) polyv3 ];

16 fileID = fopen(’exppoly3.txt’,’a’);

17 formatSpec = ’mdb.models[’’Model -1’’]. sketches[’’__profile__ ’’].Line(

point1 =( %0.3f , %0.3f ),point2 =(%0.3f , %0.3f)) \n’;

18 fprintf(fileID ,formatSpec ,polyv4 ’);

19 fclose(fileID);

20 end

21

22 end
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Appendix B

ABAQUS modeling

ABAQUS scripting is a powerful tool based on Python programming that can be

used to generate a model. ABAQUS also offers a Macro tool that can save the user

activities while using the graphical user interface (GUI) and can generate the python

input that can generate the same model. In an ABAQUS input code, we can assign

the geometry, material properties, load inputs, mesh sizes, and many other features.

However, in this research, we decided to only use the scripting tool to generate the

aggregates and use the GUI for defining other features of the model. In order to

create a model with random shape and size aggregates, we started by generating a

sample code for a simple model with only one aggregate and then edited it by adding

the aggregate coordinate generated by the MATLAB code we described earlier. In

ABAQUS, a circle shape aggregate is defined by its center and radius. The square

shapes can be defined by coordinates of two point on a diagonal and polygons are

defined as a series of lines that create a confined space.

In the following a simple ABAQUS input code that can be used for aggregate

generation is presented.

1 from part import *

2 from material import *

3 from section import *

4 from assembly import *



55

5 from step import *

6 from interaction import *

7 from load import *

8 from mesh import *

9 from optimization import *

10 from job import *

11 from sketch import *

12 from visualization import *

13 from connectorBehavior import *

14 mdb.models[’Model -1’]. ConstrainedSketch(name=’__profile__ ’, sheetSize

=1000.0)

15

16 #############

17

18 ##MATLAB OUTPUTS SHOULD BE INSERTED HERE##

19

20 #############

21 mdb.models[’Model -1’].Part(dimensionality=TWO_D_PLANAR , name=’Part -1’

, type=

22 DEFORMABLE_BODY)

23 mdb.models[’Model -1’]. parts[’Part -1’]. BaseShell(sketch=

24 mdb.models[’Model -1’]. sketches[’__profile__ ’])

25 del mdb.models[’Model -1’]. sketches[’__profile__ ’]

Once the aggregates and cracks geometries are imported in ABAQUS, the combi-

nation can be done using the ABAQUS GUI.
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Figure B.1: Aggregates and Cracks geometries imported in the ABAQUS

Figure B.1 shows the two parts imported in ABAQUS. Now we can assign a section

with the desired material properties for each part. Next, the crack positions should

be removed from the aggregate part to avoid any confliction in material property

definition and then when we can merge the two parts together and create a part with

both cracks and aggregates.

Figure B.2: Aggregates Part with the removed and then added crack section
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Following the same procedure for the mortar part by defining the part, removing

the Aggregate-Crack combination section and then merging them together results in

the final part that can be used as the concrete model.

Figure B.3: The concrete model in ABAQUS consist of aggregate, crack and mortar
parts merged together
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