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Abstract
Phytoplankton are the base of the marine food web, and, importantly, drive the biological carbon pump, the
combination of photosynthesis, organic carbon sinking and subsurface decomposition of organic matter
which effectively sequesters carbon away from the atmosphere. Our knowledge of phytoplankton activity is
currently advancing fast through developments of multiple ocean-color remote sensing algorithms and via
developments in ecological modules incorporated in climate models. While climate models are projecting
relatively clear trends in ocean ecology over the next century, distinguishing between interannual variability
and ocean biology trends from satellite observations is difficult. Short record length, satellite data continuity
issues and strong interannual variability all impact quantified trends. Additionally, commonly observed
chlorophyll-a is not strictly indicative of underlying phytoplankton biomass because of phytoplankton
adaptation. This thesis investigates the trends, interannual variability and seasonality in new size-partitioned
phytoplankton biomass products, with a focus on the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)
mission period (1997-2010). In Chapter 2 we found phytoplankton biomass increases in the warm ocean
regions over this period, opposing common expectations of decreases in warming oceans. Biomass increases
are due to increased physical mixing of the watercolumn and are partially attributed to the large scale El Nino
Southern Oscillation (ENSO) phenomenon. Recent studies have highlighted the emergence of different types
of ENSO, with a shift towards more Central Pacific ENSO events. Chapter 3 uses statistical techniques
(agglomerative hierarchical clustering (AHC), empirical orthogonal functional analysis (EOF)) on
phytoplankton biomass to characterize ENSO “flavors” in the tropical Pacific. For the first time, we
empirically derive biological indices for different ENSO types and show high correlations with existing
climate indices. In Chapter 4 we examine in depth seasonal in phytoplankton ecology between the North
Eastern Pacific subpolar region and contrast it with North Atlantic subpolar ecology. We discuss drivers of
biological changes (iron, nutrients, light, mixing). We reveal large differences between biological variables
across ocean-color algorithms, as well as across the latest generation Earth System model suite (Carbon Model
Intercomparison Project, CMIP5). Chapter 5 summarizes our findings and future work suggestions. Future
work should link surface phytoplankton ecology to ocean-atmosphere carbon fluxes and ocean carbon pump
efficiency.
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ABSTRACT 
 

SPATIO-TEMPORAL DYNAMICS OF PHYTOPLANKTON BIOMASS FROM OCEAN COLOR 

REMOTE SENSING AND CMIP5 MODEL SUITES 

Priya Sharma 

Irina Marinov 

Phytoplankton are the base of the marine food web, and, importantly, drive the biological carbon 

pump, the combination of photosynthesis, organic carbon sinking and subsurface decomposition 

of organic matter which effectively sequesters carbon away from the atmosphere. Our knowledge 

of phytoplankton activity is currently advancing fast through developments of multiple ocean-color 

remote sensing algorithms and via developments in ecological modules incorporated in climate 

models. While climate models are projecting relatively clear trends in ocean ecology over the next 

century, distinguishing between interannual variability and ocean biology trends from satellite 

observations is difficult. Short record length, satellite data continuity issues and strong interannual 

variability all impact quantified trends. Additionally, commonly observed chlorophyll-a is not strictly 

indicative of underlying phytoplankton biomass because of phytoplankton adaptation. This thesis 

investigates the trends, interannual variability and seasonality in new size-partitioned 

phytoplankton biomass products, with a focus on the Sea-Viewing Wide Field-of-View Sensor 

(SeaWiFS) mission period (1997-2010). In Chapter 2 we found phytoplankton biomass increases 

in the warm ocean regions over this period, opposing common expectations of decreases in 

warming oceans. Biomass increases are due to increased physical mixing of the watercolumn and 

are partially attributed to the large scale El Nino Southern Oscillation (ENSO) phenomenon. Recent 

studies have highlighted the emergence of different types of ENSO, with a shift towards more 

Central Pacific ENSO events. Chapter 3 uses statistical techniques (agglomerative hierarchical 

clustering (AHC), empirical orthogonal functional analysis (EOF)) on phytoplankton biomass to 

characterize ENSO “flavors” in the tropical Pacific. For the first time, we empirically derive biological 

indices for different ENSO types, and show high correlations with existing climate indices.  In 

Chapter 4 we examine in depth seasonal in phytoplankton ecology between the North Eastern 

Pacific subpolar region and contrast it with North Atlantic subpolar ecology. We discuss drivers of 

biological changes (iron, nutrients, light, mixing). We reveal large differences between biological 

variables across ocean-color algorithms, as well as across the latest generation Earth System 

model suite (Carbon Model Intercomparison Project, CMIP5). Chapter 5 summarizes our findings 

and future work suggestions. Future work should link surface phytoplankton ecology to ocean-

atmosphere carbon fluxes and ocean carbon pump efficiency. 
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CHAPTER 1: Introduction 
 

1.1 Role of Phytoplankton and the biological pump 
 

Phytoplankton are microscopic organisms omnipresent in surface ocean. They can be 

approximately separated into 3 phytoplankton groups: picoplankton [size from 0.5-2m] such as 

cyanobacteria and eukaryotes; nanoplankton [2-20 m] such as coccolithophores and 

dinofallegates; and microplankton [20-50 m] such as diatoms (Figure 1.1). Phytoplankton contain 

chlorophyll-a (Chl-a) pigment that harvests light for photosynthesis. The photosynthetic activity of 

marine phytoplankton is the base of the marine food web and supports trophic efficiency. Trophic 

efficiency is the transfer of energy from one trophic level of food web to the next. These primary 

producers contribute half of the global primary production and are important determinants of global 

fisheries yield (Friedland et al., 2012). Photosynthesis by phytoplankton is also the primary phase 

of the ocean biological pump that takes inorganic carbon (CO2) from the atmosphere and stores it 

in the deep ocean as organic carbon, effectively sequesters carbon from the atmosphere for 

centuries to millennia (Eppley & Peterson, 1979).  

Phytoplankton convert the inorganic carbon to organic carbon via photosynthesis. Once the carbon 

is fixed in both hard or soft tissue, phytoplankton either stay in the euphotic zone to be recycled 

back into nutrients and CO2 by zooplankton (top-down) and bacteria, or aggregates as organic 

matter. These organic matters then sink to the subsurface ocean, where the respiration or 

remineralization of organic matter gets converted back to nutrients and CO2. The above process 

continuously depletes nutrients and CO2 from the ocean surface and transfers them to the 

subsurface ocean (Thomsen et al., 2017). The carbon and nutrient rich subsurface water are either 

exchanged vertically with the surface water (particularly in regions of wind-driven upwelling such 

as subpolar gyres, equatorial oceans or eastern ocean boundaries (Yoo & Park, 2009)) or is slowly 

laterally transported across the ocean basins via thermohaline circulation (controlled by the 

temperature and salinity) at very long-time scales (Wunsch, 2002). Ocean circulation and mixing 

therefore affects the distribution of nutrients in the ocean interior and the supply of nutrients to the 

surface layers.  

1.2 Phytoplankton size structure and physiological characteristics 
 

Phytoplankton cell size is a fundamental master trait that affects most ecological processes for 

phytoplankton (Maranon, 2015), as well as sinking rates and thus the biological pump and indirectly 

climate (Litchman & Klausmeier, 2008; Litchman et al., 2015). Size classifications tend to closely 

correspond to the various phytoplankton functional types (PFTs) with phytoplankton of similar size 

having similar biogeochemical and ecological roles in the ecosystem (Le Quéré et al., 2005). 

Phytoplankton require light, nutrients (bottom-up) and suitable temperatures to thrive, and different 

species and phytoplankton size groups have different physiological needs. Nutrient concentrations 

and the nutrient stoichiometry in water (e.g. the ratio of 2 different nutrients such as phosphate 

(PO4) to nitrate (NO3)) is a strong indicator of phytoplankton abundance and size structure (Weber 

and Deutsch, 2010). Studies confirm that nutrient uptake is size dependent (Figure 1.2a) (Chen & 

Liu, 2010). As the cell size increases, the diffusion boundary cell membrane thickens, reducing the 



 
 

2 

nutrient diffusion into the cell. The change in thickness implies that the nutrient concentration 

threshold below which cells cannot sustain a given growth rate increases rapidly with cell size. 

Small phytoplankton due their thinner cellular wall membrane and larger surface area to volume 

ratio, effectively uptake nutrients. (Boyd et al., 2013).  

Additionally, diatoms have large vacuoles present to store the nutrients, which allow them to 

increase the effective surface to cytoplasm ratio, maintain higher nutrient uptake rates for longer, 

and exploit nutrient pulses more effectively than other taxa of the same group (Maranon et al., 

2014; Maranon, 2015). As an extra complication, taxa with small or no vacuoles have a growth rate 

that decreases with increasing size, because of increasing intracellular distances for the transport 

of nutrients. Because of their smaller size, small phytoplankton are more prone to be grazed than 

large phytoplankton. Large phytoplankton can outcompete or escape their predators, and therefore 

are expected to dominate during the high nutrient bloom season. Due to their large cell size, large 

phytoplankton are typically thought to have a higher sinking rate and be a major contribution of both 

primary production and of the carbon export to the deep ocean. The relationship between cell size 

and their contribution to the total phytoplankton biomass is shown in Figure 1.2b. Some estimate 

that siliceous diatoms contributes 20-25% of primary production (Nelson et al., 1995) whereas 

coccolithophores (an intermediate size or nano-plankton group) contribute 10% of carbon export to 

the deep ocean (Jin et al., 2006).  

Phytoplankton have ability to adapt to different environment light levels. At low light levels, 

phytoplankton require more pigments (Chl-a) for photosynthesis. At high light environment, they 

require fewer pigments (Figure 1.2d). Therefore, phytoplankton adapting to different environmental 

light levels is known as photoacclimation or photoadaptation, denoted by the ratio of Chl-a relative 

to carbon (Chl:C) (Geider et al., 1996). In addition, light absorption decreases with larger cell size 

due to Chl-a pigment, which increases causing self-shading (packaging effect) (Finkel, 2001, Finkel  

et al., 2004). Previous studies have shown a linear relationship between light and phytoplankton 

growth and the photoacclimation parameter (Geider et al., 1996). Increase in light elevates the 

phytoplankton growth rate and lowers the requirement for Chl-a pigment by phytoplankton for 

photosynthesis, reflected by the decline in Chl:C ratio (Figure 1.2c&d, Geider et al., 1996). Apart 

from surface light (represented by the photosynthetically active radiation, PAR) in the ocean, the 

light penetration in the water column and shoaling (or shallowing) of mixed layer depth, trapping 

plankton in the highly-lit surface layer can also determine the changes in the photosynthetic 

pigment or photoacclimation parameter. The light penetration in the water column is denoted by 

the diffuse attenuation coefficient for downwelling irradiance at 490 nm (Kd490). For example, a 

decrease in Chl-a pigment and photoacclimation parameter (Chl:C) can be driven by increase in 

surface light (PAR) and/or increase in light penetration in the water column (that is decrease in 

Kd490) and/or shoaling of mixed layer depth (Westberry et al., 2016, Behrenfeld et al., 2016). 

Additionally, some small phytoplankton also need specifically high temperatures (e.g. diazotrophs). 

Considering the environmental factors such as nutrients and light and the size structures of 

phytoplankton, generally the large phytoplankton such as diatoms will bloom in nutrient rich 

conditions (e.g. subpolar gyres), whereas small phytoplankton are favored in low nutrient regimes 

e.g. subtropical gyres (Boyd et al., 2013) 
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1.3 Effects of climate warming 
 

The warming trend recorded in the global surface ocean since the mid-20th century (Levitus et al., 

2000, Levitus et al., 2009) is projected to continue into the 21st century (Solomon et al., 2007; IPCC 

2013) and is bound to impact phytoplankton size groups, growth and organic carbon 

remineralization both directly (for example by the physiological effect of temperature on growth) 

and indirectly by influencing other key environmental factors, e.g. nutrient and light availability for 

photosynthesis (Boyd et al., 2014). The changes in phytoplankton size structure, in turn can affect 

biological carbon pump, the amount of carbon stored in the ocean and ultimately atmospheric 

carbon dioxide (CO2). For example, if small phytoplankton will become more widespread at the 

expense of large phytoplankton (Doney, 2006) – under the assumption of small phytoplankton 

having a lower export production – then the net export of organic matter to the deep ocean will 

decrease, a positive feedback on partial pressure of atmospheric CO2 (pCO2). Shifts in 

phytoplankton group size for the global/regional ocean on seasonal to interannual time scales have 

been detected in in-situ data (Corno et al., 2007; Montes-Hugo et al., 2009; Lomas et al., 2010; 

Hinder et al., 2012; Agirbas et al., 2015), remote sensing products (Polovina & Woodworth, 2012; 

Racault et al., 2014; Freeman & Lovenduski, 2015) and global modeling studies (Boyd & Doney, 

2002; Bopp et al., 2005; Polovina et al., 2011; Laufkötter et al., 2013; Marinov et al., 2013) 

Additionally, shifts in phytoplankton functional group composition due to variations in the 

environmental factors (e.g. temperature, light) can drive changes in the biogeochemical cycles, 

since water stoichiometry can change depending on plankton composition. For example, siliceous 

diatoms have low nitrate: phosphorus (N:P) ratios characteristic of the red superfamily (Arrigo, 

2004; Sarthou et al., 2005) and these diatoms bloom in high nutrient waters with similar 

stoichiometry. Small phytoplankton have low Carbon: Nitrate (C:N) ratios compared to larger 

phytoplankton, which reflects more storage of nitrogen in their cells and reduced carbon-rich 

macromolecules, contributing to an increased total biomass of nitrogen-containing molecules. 

Therefore, changes due to global warming can alter the phytoplankton species composition, and 

as a result affect the ratio of the N:P and C:N in the ocean. The nutrient ratios covary between 

different regions of the ocean and is maintained by the ocean circulation. The changes in N:P and 

C:N ratio due to environmental changes can alter the carbon export to deep ocean (Weber & 

Deutsch, 2010).   

1.4 Phytoplankton variables and their measurements 
 

The concentration of pigment Chl-a in seawater is an indicator of phytoplankton abundance and of 

the level of biological activity and is often used to assess spatial and temporal distribution patterns 

of biological productivity in the ocean. Traditionally, satellite-based Chl-a has been used to assess 

the spatial and temporal distribution of phytoplankton abundance and ocean biological productivity 

(Behrenfeld et al., 2002). However, as described in section 1.2, changes in light and nutrients can 

result in changes in cellular Chl-a (Rodríguez et al., 2006) not always associated with phytoplankton 

biomass changes (Laws & Bannister, 1980; Paasche, 1998; Behrenfeld et al., 2002; Behrenfeld et 

al., 2005; Behrenfeld et al., 2016). Phytoplankton photoacclimate by adjusting their photosynthetic 

pigment (Chl-a). Therefore, Chl-a is not the best indicator for phytoplankton community structure 

and abundance; so, we need independent estimates for biomass. 
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1.4.1 In situ measurements 

 

In situ measurements of Chl-a and biomass are obtained using the fluorometric method to a filtered 

water sample. Chl-a is extracted in acetone from the samples. Then the principle of fluorescence 

is applied, where Chl-a fluoresce in the red wavelengths when they are excited by blue wavelengths 

of light. The measured relative strength of Chl-a and fluorescence is then used to calculate the Chl-

a concentration (Berman & Eppley, 1974). Biomass concentrations can be traditionally determined 

microscopically from the average cell volumes measured for each individual species comprising 

the population. Another method is using the ATP (adenosine tri-phosphate) concentrations as a 

measure of biological carbon. ATP is a ubiquitous component of the living cells making up the 

plankton and one is maintained at a reasonably constant concentration in respect to total cell 

carbon in healthy organism (Berman & Eppley, 1974). Modern methods of determining biomass 

concentration is using a flow-cytometric sorting and elemental analysis of carbon (Graff et al., 

2012). Flow cytometry is used to isolate phytoplankton from the total particle field. Phytoplankton 

samples are then analyzed for total carbon content. However, sample collection from field sites are 

expensive, therefore the global coverage of in situ measurements are poor, hence remote sensing 

is a useful tool to asses global ocean phytoplankton. 

1.4.2 Remote sensing and algorithms  

 

Phytoplankton cells affect the optical properties of the water column via absorption and 

backscattering (Stramski & Kiefer, 1991; Mobley et al., 2002), which allows for the detection of their 

characteristics via passive optical ocean color remote sensing, such as the particle size distribution. 

The particle size distribution (PSD) is a fundamental property linking ocean color remote sensing 

and ecosystem properties. Bio-optical algorithms have recently been applied to detect 

phytoplankton biomass (C) separately from Chl-a and retrieve the carbon-based phytoplankton size 

groups (Behrenfeld et al., 2005; Kostadinov et al., 2009; Roy et al., 2013). There are four types of 

optical algorithms used to derive phytoplankton biomass and PFTs: radiance-based, abundance-

based, absorption-based and backscattering-based algorithms (Figure 1.4).  

Radiance-based algorithms are based on theoretical relationships between second-order 

anomalies of reflectance spectra/radiance and specific phytoplankton groups (Alvain et al., 2005; 

2008) .They classify PFTs based on the shape and/or magnitude or the satellite-observed spectral 

remote sensing reflectance (Rrs(λ)) or normalized spectral water leaving radiance (nLw(λ)). 

Abundance-based algorithms are based on the general observation that in the global open ocean 

a change in Chl-a concentration is associated with a change in phytoplankton composition or size 

structure. Experimentally it has been observed that large phytoplankton have greater Chl-a 

concentration compared to the small phytoplankton’s due to their cell size and absorption efficiency 

of light. Experimentally derived Chl-a thresholds are imposed to recognize the shift in phytoplankton 

size by monitoring the ocean Chl-a concentration (Yentsch & Phinney, 1989; Chisholm, 1992; Uitz 

et al., 2006; Brewin et al., 2010; Hirata et al., 2011).   

The absorption-based algorithms use the spectral magnitude or shape of phytoplankton absorption 

signal. The magnitude of phytoplankton absorption is related to the pigment composition and total 

pigment concentration. Due to the pigment packaging, the size information is contained within the 

absorption spectrum. The magnitude of phytoplankton absorption is dominated by the Chl-a 
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concentration at the peak wavelength of 443nm (Ciotti & Bricaud, 2006; Bracher et al., 2009; Mouw 

& Yoder, 2010; Roy et al., 2013; Mouw et al., 2017). The backscattering-based products are derived 

from the spectral total backscattering coefficient using the spectral remote sensing reflectance 

(Rrs(λ)). The backscattering coefficient/slope decreases according to a power law function with 

increasing wavelength. The spectral slope of particle backscattering coefficient is determined from 

the total backscattering. The spectral slope of particle backscattering coefficient is then used to 

retrieve the PSD and reference abundance of particles from a look-up-table that is constructed 

using Mie scattering theory. The biovolumes are then converted to carbon concentrations using 

existing allometric relationships (Menden-Deuer & Lessard, 2000) and assuming that living cells 

make up 1/3 of all the particles, as described in Kostadinov et al. (2009, 2016).  Backscattering-

based algorithm retrieves information on all particles rather than just phytoplankton (Kostadinov et 

al., 2009, 2010, 2016). This dissertation primarily uses biomass and PFT products derived from 

SeaWiFS reflectance from Kostadinov et al., (2016) due to its sophistication and the first and only 

product that calculates the biomass for PFTs.  

One of the main goals of continued global ocean color observations is detecting long-term changes 

in ocean ecosystems. Several studies have analyzed trends in remotely sensed variables in recent 

decades, with a primary focus on Chl-a products, for example, Gregg et al. (2003), Gregg (2005), 

Behrenfeld et al. (2006), Polovina et al. (2008), Martinez et al. (2009), Siegel et al. (2013). No 

obvious global trend was reported using a single satellite mission, but some regional trends have 

been reported (see Chapter 2). Nonetheless, there are several limitations to our abilities to detect 

a long-term trend in the ocean ecosystem using satellite ocean color data:  

i) the short length of satellite records relative to the time scales over which significant 

changes in the ecosystem happen, even with anthropogenic influences;  

ii) existence of temporal and spatial gaps in satellite records (e.g. SeaWiFS available from 

1997 to 2010) due to clouds or sensor malfunctions;  

iii) existence of calibration issues of different ocean color sensors and their assimilation i.e. 

challenges in merging of multiple satellite records.  

iv) presence of natural climate variability on multi-annual to decadal timescales.  

Observed variations in community structure and biogeochemical processes of the tropics, North 

Pacific, and the North Atlantic have been linked to the ENSO (El Niño Southern Oscillation), PDO 

(Pacific Decadal oscillation), NPGO (North Pacific Gyre Oscillation) and/or NAO (North Atlantic 

Oscillation) (Chavez et al., 1999; Bates, 2001; Karl et al., 2001; Di Lorenzo et al., 2008, 2010; 

Messié & Chavez, 2012; Sydeman et al., 2013). The recent discovery of various flavors of ENSO 

events complicates our understanding of the response of ocean biology further (Capotondi et al., 

2014; Capotondi & Sardeshmukh, 2017). Recent studies have reported the various types (“flavors”) 

of ENSO events and contrasted and constructed indices for the new ENSO types, as we will 

address in detail in Chapter 3. 

Very few studies have looked at the influence of autocorrelation in the data set and the presence 

of gaps (Saulquin et al., 2013; Beaulieu et al., 2013). Beaulieu et al. (2013) took both into account 

and used the Weatherhead et al. (1998) methodology to predict the number of years required to 

distinguish a trend from noise in the Chl-a satellite data. The short duration of most modern 

observations requires this kind of power analysis of trends or similarly, a trend emergence analysis, 
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which has been performed for other modeled oceanic variables – e.g. ocean carbon sink (McKinley 

et al., 2016) and acidification (Carter et al., 2016). These power analyses studies generally 

conclude that approximately 30-40 years of observation are required to detect climate-driven trends 

(Henson et al., 2010), emphasizing the importance long-term satellite observations of the Earth 

system for ocean biology. Because of limited long-term observational time series for ocean biology, 

climate models are a critical tool for quantifying the contribution of internal variability to future 

trends, for assessing whether observed trends are outside natural variability, and understanding 

the long-term changes in ocean biogeochemical and ecological process. The Kostadinov et al. 

(2016) product is only available for the SeaWiFS period (1997-2010), therefore most of the 

investigation in this dissertation is limited to 13 years only. 

1.4.3 Modelling Efforts 

 

Earth systems climate models (ESMs) are ocean-atmosphere coupled models that closes the 

carbon cycle. The concept of climate models was proposed through Coupled Model 

Intercomparison Project (CMIP), that was established as a standard experimental protocol for 

studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP5 

is the fifth phase of the experimental designed to further advance the knowledge of the climate 

variability and climate change (Taylor et al., 2011). The experiment has model suite simulations 

and model ensemble members. In the climate earth system model suite, single model has 

simulations with different carbon emission scenarios (preindustrial control and representative 

concentration pathways’ - RCPs) and are very different from each other not fully representing the 

real world. The model simulations in the suite have different physical, biological and ecological 

components that are embedded together. RCPs are atmospheric greenhouse gas concentration 

projections (Taylor et al., 2011). The four RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, are named 

after a possible range of radiative forcing values in the year 2100 relative to pre-industrial values 

(+2.6, +4.5, +6.0, and +8.5 Wm-2, respectively). 

Numerous models simulate the existing processes in the marine ecosystem that range from simple 

ones that have one or two concentrations of the components, to highly complex ones with multiple 

phytoplankton sizes and nutrients (Heinle and Slawig, 2013). For example, NPZD model that is one 

of the medium complex models frequently used in climate research due to its realistic 

representation of marine ecosystem. NPZD models simulate the interactions of the four variables 

nutrients (N), phytoplankton (P), zooplankton (Z) and detritus (D). The mathematical formulation of 

the internal fluxes varies in kind and complexity. For example, the growth of phytoplankton can be 

modelled to be limited by nutrients only, to be limited additionally by light or even by more factors 

(Heinle & Slawig, 2013). Further terms varying in their formulation and known to be highly relevant 

for the model outcome are the closing terms of phytoplankton and zooplankton. Often, they are 

modelled by linear functions. Models have been used to study the emergence of trend in physical 

ocean/atmosphere drivers of ocean biology in 21st century model simulations ( Henson et al., 2010; 

Diffenbaugh & Scherer, 2011; Hawkins & Sutton, 2012; Mahlstein et al., 2012; Mora et al., 2013; 

Lyu et al., 2014; Henson et al., 2017). Separately, some recent studies have compared models and 

observations to depict the decadal variability, historical trends and future response of Chl-al 

concentration, primary production (PP; Henson et al., 2009), Chl-a, phytoplankton biomass (Cabré 

et al., 2016; Friedrichs et al., 2007), oxygen (Cabré et al., 2015). To diagnose the long-term climate 

impacts on the spatio-temporal ocean ecology processes, it is vital to pursue an investigative study 
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on the spatio-temporal signals of phytoplankton group sizes, biomass, and Chl-a with the past and 

current available data and tools.  

 

1.5 Broad goals and research questions 
 

The broad goal of the thesis is to study the spatio-temporal dynamics of the novel phytoplankton 

biomass using ocean color remote sensing and CMIP5 climate model suites. Chapter 2 evaluates 

the trends and interannual variability in ocean Chl-a, PFTs, total phytoplankton biomass using 

Kostadinov et al. (2009, 2016) latest SeaWiFS satellite dataset of phytoplankton biomass and PFTs 

for 1997-2010. The research questions we address here are:  

• What are the trends and interannual variability in ocean Chl-a, PFTs, total biomass and 

photoacclimation parameter (Chl:C) over this time period?  

• What are the oceanic physical drivers (mixed layer depth (MLD), sea surface temperature 

(SST), photosynthetically active radiation (PAR), and Wind speed behind the Chl-a, PFTs, 

total biomass and Chl:C variability? 

 

Chapter 3 characterizes the types (or “flavors”) of ENSO with satellite derived ocean phytoplankton 

biomass, and Chl-a in the Tropical Pacific for the 1997-2010 period. Specifically, 

• Can the EP and CP “flavors” of ENSO be clearly separated using satellite derived ocean 

phytoplankton biomass? 

• What are the physical drivers behind the biological changes observed for each ENSO type? 

 

Chapter 4 employs a comparative analysis and review of phytoplankton biomass and PFTs from 

various algorithms and CMIP5 model suites in northern subpolar regions, with a specific focus on 

two sites of high interest to the oceanographic community at the moment: the North East subpolar 

Pacific around Ocean Station PAPA (OSP, 45-50oN, 140-150oW) and the North Atlantic subpolar 

regions close to the NABE site (45-50oN, 25-35oW).  

 

• How does the seasonal cycle in biomass and PFTs differ across the multiple satellite 

algorithms and CMIP5 models at the two sites of interest? 

• What are the drivers of the seasonal changes in biological indices in the observed data 

and CMIP5 models? Are there consistent mechanistic differences between the functioning 

of the marine ecosystem at the two subpolar sites of interest?   

 

Finally, Chapter 5 summarizes the thesis results, discusses gaps in the current knowledge of 

ocean ecology and proposes potential future questions that can be addressed jointly by satellite 

algorithms and Earth System Models. 
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Figure 1.1: The three main phytoplankton size groups: microphytoplankton [20-50 m], 

nanophytoplankton [2-20 m] and picophytoplankton [0.5-2 m] 
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Figure 1.2: Relationship between average phytoplankton size and light, nutrients and biomass. (a) 
illustrates the logarithmic relationship between logarithmic average cell size and nutrients. The 
open and closed circles show the two methods of data collection from various locations of global 
ocean: polar (Arctic and Antarctic) to subtropical and tropical  regions,  mostly  in  the  open  ocean,  
but  also included some coastal sites adapted from Chen and Liu (2010) (b) a linear relationship 
between average cell size and phytoplankton biomass from various locations shown by the various 
shapes. Data in b are from the Norwegian Sea (white uptriangles), the North Atlantic (white 
downtriangles), the Iceland Basin (black uptriangles), Irminger Sea (white circles), Long Island 
Sound (black squares), North Sea  black diamonds), Benguela Upwelling (black downtriangles), 
Oregon upwelling (crosses), Indian Ocean (white diamonds), mesocosms in the Bergen fjord (white 
squares), and meridional transects in the Atlantic Ocean (black circles). The image in b is from 
Irigoien et al. (2004). The relationship between light and growth and photoacclimation is shown by 
c & d from Geider et al. (1996). 
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Figure 1.3: (Adapted from Mouw et al. (2017)) Schematic of satellite product inputs utilised in each PFT algorithm. The red box indicates the 
Rrs(λ) measured by a satellite radiometer. Closed Ovals are derived satellite products and their connection to Rrs(λ) is indicated as black lines. 
Gray lines indicate the connection of satellite input products used in the various PFT algorithms. The color of the algorithm abbreviation text 
indicates the algorithm type: abundance (green), radiance (red), absorption (yellow) and scattering (blue). Open oval in red shows the PFT 
algorithm used throughout the dissertation and the open oval in blue shows the PFT algorithms used in chapter 4. 
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CHAPTER 2: Increasing biomass in the warm oceans: Unexpected new insights 
from SeaWiFS 

  

 

Submitted for publications as: 

 

Sharma, P., Marinov, Cabre, A., Kostadinov T.S. and Singh A., (GRL: Accepted) Biomass of 
phytoplankton is not decreasing in low latitude oceans: new insights from SeaWiFS 

 

Abstract: 

Marine phytoplankton biomass and community structure are expected to change under global 
warming, with potentially significant impacts on ocean carbon, nutrient cycling, and marine food 
webs. Previous studies have indicated decreases of primary production and Chlorophyll-a 
concentrations and oligotrophic gyre expansions from satellite ocean-color measurements, 
purportedly due to global warming. We review this topic via a reanalysis of a novel backscattering-
based phytoplankton functional type (PFT) and phytoplankton biomass time-series over the 1997-
2010 period. Unlike previous work, we find that globally the biomass and the percent of large (small) 
phytoplankton increase (decrease). The oligotrophic gyres contract or expand depending on the 
Chlorophyll-a threshold definition employed. In the subtropical gyres, Chlorophyll-a trends are likely 
due to physiological changes, while the increasing biomass trends are due to winds and relevant 
mixing length scale increases.  
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2.1 Introduction 
 

Oxygenic photosynthesis by phytoplankton contributes to nearly half of the biosphere’s net primary 

production (NPP) (Field et al., 1998). The density contrast between the surface layer and underlying 

cooler nutrient-rich waters below the permanent pycnocline is expected to increase with a warmer 

ocean surface (Capotondi et al., 2012). This enhanced stratification will likely reduce nutrient supply 

to the surface and decrease ocean biological productivity differentially across biomes (Behrenfeld 

et al., 2006). It also will affect the biological pump, which effectively sequesters carbon away from 

the atmosphere for centuries to millennia (Eppley & Peterson, 1979). It is then crucial to understand 

any changes in phytoplankton biomass and size structure, as pico-phytoplankton typically 

outcompete micro-phytoplankton in nutrient-poor environments (e.g. Weber & Deutsch, 2010). 

Traditionally, satellite-based Chlorophyll-a (Chl-a) has been used to assess the spatial distribution 

and temporal evolution of phytoplankton abundance and productivity (Behrenfeld et al., 2002; 

Boyce et al., 2010). No significant global temporal trends in Chl-a were found using single ocean 

color satellite missions that span ~10 years (Gregg et al., 2003; Gregg, 2005; Polovina et al., 2008; 

Henson et al., 2010; Vantrepotte & Mélin, 2011; Siegel et al., 2013; Beaulieu et al., 2013; Gregg & 

Rousseaux, 2014). Gregg et al. (2017) recently used a new satellite merged 18-year time series 

and found no significant trend in global annual median Chl-a from 1998 to 2015. Wernand et al., 

(2013) reconstructed Chl-a changes from Forel-Ule scale records for the century long 1889-2000 

period and found compensating Chl-a trends in different ocean regions. 

Little work has been done on looking for trends in satellite-derived phytoplankton biomass 

(Behrenfeld et al., 2006) and community size structure (Kostadinov et al., 2010). Here we add to 

the subject by studying trends and interannual variability in the novel backscattering-based PFT-

partitioned phytoplankton biomass (Kostadinov et al., 2009, 2010, 2016), and comparing to Chl-a 

over the 1997-2010 SeaWiFS period. Our objective is to explore the underlying physical 

mechanisms responsible for observed biological trends across the warm regions (region with 

average SST>15ºC that includes tropical and subtropical biomes).  

2.2 Data and Methods  
 

We study the biological long-term trends and interannual variability in the warm oceans (region with 

average SST > 15ºC that includes tropical and subtropical biomes, Figure S1). We use a 9km 

backscattering-based particle size distribution (PSD) phytoplankton biomass in mg m-3, PFT 

biomass fractions expressed in percent [picophytoplankton (0.5–2 μm diameter), 

nanophytoplankton (2–20 μm) and microphytoplankton (20–50 μm), hereafter micro%, nano% and 

pico% as in Kostadinov et al. (2016), and 9km Chl-a (OCI (R2014)) for the SeaWiFS period 1997-

2010. We derive a photoacclimation parameter (hereafter Chl/CB16) based on Behrenfeld et al. 

(2016) (Section A.1). We derive the active mixing length scale (LMIX) for phytoplankton (Brody & 

Lozier, 2014, 2015), and the mixed layer depth (de Boyer Montégut et al., 2004). Other variables 

used are sea surface temperature (SST), 10m windspeed (Berrisford et al., 2011), air-sea heat-flux 

(positive into the ocean), photosynthetically active radiation (PAR), diffuse attenuation coefficient 

for downwelling irradiance at 490 nm (Kd490) and particulate inorganic carbon (PIC). Section A.1-

A.2 provides details on data sources and definitions. High-resolution variables are down-sampled 

to a 1 grid using a averaging kernel. If >50% of the pixels being averaged are invalid data, the 



 
 

13 

pixel is assigned a missing data value (as in Kostadinov et al., 2017). All monthly time resolution 

datasets are used. All anomalies are relative to the 1998-2010 mean seasonal cycle, unless stated 

otherwise. We use generalized least square (GLS) regression to calculate temporal trends in 

variables (as in Beaulieu et al., 2013) and present the uncertainty at the 68% confidence level (~0.3 

p-value) unless stated otherwise. A Monte-Carlo based error analysis (Figure A13, Section A.4) 

confirms that trends are meaningful or significant at the 68% confidence interval. Note that 

significant here means that the 68% confidence interval (unless stated otherwise) of the slope of 

the GLS regression of the monthly anomalies on time in years does not cross the zero line. Section 

A.3 further separates the ENSO and non-ENSO trend components, confirming the significance of 

our results and confidence analysis.  

2.3 Global Trends in Biomass and Chl-a 
 

The 1997-2010 trends in total phytoplankton biomass are found to be significantly positive over 

most of the global ocean (Figure 2.1a, Table A1). Weak but significant negative trends (-0.5 to -1 

%y-1) are only found along the equatorial and subtropical east Atlantic and off the west coast of 

Africa. Similar significant positive trends are observed for the micro% and nano% (Figure 2.1d-e). 

In contrast, the pico% (Figure 2.1f) shows negative trends globally.  

The spatial trends in Chl-a (Figure 2.1b) are comparable to those in Siegel et al. (2013, their Figure 

4b). In cold regions (approximately north of 40ºN and south of 40ºS, Figure A1), Chl-a increase 

patterns are identical to those found in the biomass. In warm regions, however, there are prominent 

significant negative Chl-a trends along the west coast of North Africa, the Indian and Pacific 

subtropical gyres, contrary to the positive trends in biomass. Similar declines in low-latitude Chl-a 

have been observed in previous SeaWiFS-based studies over different periods (Gregg, 2005; 

Henson et al., 2010; Vantrepotte & Mélin, 2011; Siegel et al., 2013; Gregg & Rousseaux, 2014). In 

warm regions, competing positive and negative trends in Chl-a cancel out (Figure 2.1b); hence the 

significant positive global trend is dominated by basin wide increases in Chl-a within the cold 

regions (Table A.1). In contrast to Chl-a, significant positive trends are found for biomass in the 

warm region and the cold regions.  

How much of the biological trends in Figure 2.1 are ENSO driven? In most of the subtropics and 

subpolar regions, the positive Non-ENSO trend in biomass dominates over the negative ENSO 

biomass trend, showing an overall global significant positive trend (See Section A.3, Figures A3-

A4). In the tropical Pacific tongue, the strong positive trends in biomass and Chl-a are due to the 

added effects of the strong positive ENSO trend and a weak positive Non-ENSO trend. The warm 

and cold SH regions individually explain 44% and 46% of the global biomass increase in Figure 1 

(Table A1, Section A.3). We focus here on understanding the warm region trends. The tropical 

Pacific tongue and the subtropical gyres explain 33% and 21% of the warm biomass trends, 

respectively.  

2.4 ENSO impacts on phytoplankton Biomass and PFTs in the Tropical Pacific 
 

El Niño Southern Oscillation (ENSO) is the strongest global climate natural fluctuation on 

interannual time-scales, with a warm (El Niño) and a cold (La Niña) phase. Sustained El Niño phase 

generates long-lasting positive SST anomalies across the equatorial Pacific basin associated with 
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weaker-than-average trade winds, an eastward expansion of the warm pool leading to increased 

water stratification in the east, a flattening of the thermocline/nutricline (Chavez et al., 1998; Stone 

et al., 1999; Strutton & Chavez, 2000; Turk et al., 2001; Christian et al., 2001; Radenac et al., 

2001), and decrease in phytoplankton growth along most of the tropical Pacific cold tongue except 

in the western region where phytoplankton increases (Radenac et al., 2012).  

We find that most interannual variability in phytoplankton biomass and Chl-a is associated with 

ENSO in the tropical Pacific tongue, as indicated by significant negative correlations between the 

multivariate ENSO index (MEI) and the analyzed variables (Figure 2.2a; Table A2). During La Niña 

(negative MEI), strong westward trade winds shoal the eastern Pacific nutricline and increase both 

vertical nutrient supply to the surface and westward lateral nutrient inputs from the eastern 

equatorial Pacific, increasing biomass, Chl-a, micro% and nano%, and decreasing pico% (Figure 

2.2b). The opposite happens during El Niño. 

During our study period, a decreasing trend in MEI followed by an increasing trend (with a time split 

at 2002) was found to be significant at 95% confidence interval and more meaningful than a simple 

single linear trend (Figure 2.2a). The preferred time split was found by performing two separate 

linear regressions on MEI from 1999 to the split time and from the split time to the end (2010) for 

every possible split time (as in Beaulieu et al., 2012). Biomass and Chl-a first decrease during 

1999-2002, when the MEI timeseries is increasing (hereafter, ‘El Niño’ like state) and then 

increases when the MEI is decreasing (hereafter, ‘La Niña’ like state) during 2002-2010. The trend 

over the full SeaWiFS period is dominated by the transition from the large 1997-98 El Niño event 

to the increasingly negative MEI period of 2002-2010, and corresponds to an increase in tropical 

Pacific biomass and Chl-a (compare Figure 2b with Figure 2.1a,b,d).  

2.5 Variability/trends in carbon biomass in the Subtropical Gyres 
 

Global warming is expected to further stratify the subtropical gyres (Polovina et al., 2011). With 

decreased nutrient supply to the surface oligotrophic ocean, the phytoplankton biomass will likely 

decrease (Behrenfeld et al., 2006; Boyce et al., 2010) and shift from large to small-sized species 

(Boyd & Doney, 2002; Bopp et al., 2005; Corno et al., 2007). We show here results contrary to this 

hypothesis. The 1997-2010 period is dominated by declines in the pico% and increases in the 

micro%, nano% and biomass in the subtropical gyres, significant everywhere except for the North 

Atlantic Gyre (NATL, Table A.3). Most of the error bars do not cross the horizontal and vertical zero 

line in Figure S13, which indicates that most of the PFTs and biomass are significant at 68% 

confidence interval. We note that biomass and micro%/nano% is not significantly correlated with 

MEI in the subtropical gyres (Table A3). What could then drive the observed biomass increases?  

Following up on recent efforts (Brody & Lozier, 2014, 2015), we derive a phytoplankton active 

mixing length scale (LMIX, details in Section A.2) that accounts for mixing due to a large negative 

heat-flux (out of the ocean) generating deep convective mixing to the base of the seasonal 

pycnocline (LMIX =MLD, Case 1), mixing proportional to wind energy denotes by Ekman length scale 

(LMIX=LEK, Case 2), and reduced turbulent mixing when large positive heat-flux (into the ocean) 

counteracts wind mixing (LMIX =LOZ, Case 3, Figure A.5). The contribution of the various Cases to 

LMIX (meaning the percentage of pixels with one or the other case) is shown in Figure A12.  
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We find positive interannual correlations between LMIX and biomass anomalies (Figure A6d) in the 

subtropical gyres, consistent with a deepening of the active mixing-length scale increasing vertical 

nutrient supply. Interannually, biomass is more tightly positively coupled to winds and LEK in the 

subtropics than to MLD (Figures A6b-e). Heatflux into the ocean and biomass are negatively 

correlated (Figure A6c) across all gyres, indicating that as ocean heat uptake is weakening the 

biomass is increasing. The temporal correlation between monthly biomass and physical variables 

is weaker when seasonality is removed (not shown) compared to when the seasonality is included 

(Figure A6), as expected from other recent work (e.g. Dave & Lozier, 2010; Cabre et al. 2016).  

We find that LMIX increases in all the gyres where biomass increases significantly (except in NATL) 

throughout our study period (Table A1). We further analyze the monthly trends in biomass and 

physical drivers across all gyres. In the North Pacific gyre (NPAC), LMIX /MLD/LEK all peak in 

Jan/Feb when heat is lost from the ocean and the water column mixes deeply, bringing more 

nutrients to the surface and setting up the large April biomass bloom (Figure 2.3a). A secondary 

biomass bloom is in July/August. In this gyre, both biomass and LMIX increase every month of the 

year over the 1997-2010 period. The highest increase in Biomass is in late winter/early spring 

(February-March) and is explained by increased February ocean heat loss, decreased March 

ocean heat uptake and wind-driven LMIX (Figure 2.3c-g, Figure A5). Note that one sigma error bars 

do not cross zero line indicating that the trends are significant at 68% confidence interval for the 

winter months.  

NATL gyre Biomass peaks in July/August; a secondary biomass peak in January/February/March 

corresponds to strong winds and ocean heat loss driving maxima in MLD/LEK /LMIX (Figure A8). 

Over the period studied, we find the largest increase in biomass in Feb/March, corresponding to 

intensified heat flux loss and LMIX (February/March), and increased MLD (January/February, Figure 

A8c-g). The largest drop occurs during April, corresponding to enhanced stratification, a shift to 

more (less) frequent Case 3 (Case 2) mixing and hence LMIX decrease. Overall, monthly trends 

cancel each other, resulting in a weak negative but insignificant biomass trend. 

The South Pacific gyre (SPAC) biomass (Figure A9a) shows one major peak in winter 

(June/July/August). Biomass increases significantly over 1997-2010 in all months. We propose that 

a combination of ocean heatflux loss (significant trends 8 monthsy-1), increased winds (and LEK, 

June-December), MLD (July-November) and LMIX (August-January) contribute to the biomass 

growth in this domain (Figure A9c-g). The largest increase in the major seasonal peak of biomass 

(JJA) corresponds to stronger winds, reduced ocean heatflux uptake (in June/August) and an 

increase in August LMIX (likely driven by a shift from Case 3 to Case 1).  

In the South Atlantic gyre (SATL)  we see a single biomass peak in wintertime (June/July/August), 

when heat flux is at its most negative, and LMIX/MLD/LEK all peak together. An increase in annually 

averaged biomass is driven by increases in 5 months of the year (Figure A10c). Most increase in 

biomass is in May-June-July and can only be partially explained by a significant decrease in 

heatflux in May-June, a significant increase in MLD in June-July and a significant increase in LMIX 

in May and July (Figure A10c-g).  

The major peak in Indian (IOCE) gyre biomass is in June/July/Aug, corresponding to the period of 

maximum heatflux loss and both deepest MLD and strongest winds. The increase in biomass in 

the IOCE is largest in May/June/July when LMIX is given by a combination of MLD and LEK (Figure 
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A11c-g). We partially ascribe the early winter increase in biomass to a significant increase in MLD 

and LMIX in April/May/June, combined with wind increases (May-August).  

In addition to the discussed bottom-up effects (increased nutrient supply), it is possible for 

increases in LMIX to increase phytoplankton biomass via top-down effects. If deeper LMIX dilutes 

zooplankton more than phytoplankton (Boss & Behrenfeld (2010), this gives phytoplankton a boost 

as grazing pressure is reduced. Additionally, observed SST increases directly contribute to the 

increase in phytoplankton growth but also intensify zooplankton growth and grazing pressure. In 

the absence of global zooplankton data time series, it is challenging to clarify the potential 

contribution from a top-down mechanism. 

In summary, we can partially ascribe the 1997-2010 increase in subtropical gyre biomass and a 

community shift towards more micro/nano% (less pico%) to an increased nutrient renewal during 

winter, as MLD and/or LMIX increase by enhanced wind-mixing and wintertime ocean heat loss 

(deeper convective mixing to the base of the permanent pycnocline). The contribution of Cases 1-

3 to the average LMIX seasonal cycle and the changes in these Cases are detailed in Figure A.12. 

The year-averaged contribution of Case 1 and 2 LMIX into each subtropical gyre LMIX, increase for 

all the gyres, while Case 3 LMIX decreases for most of the gyres (Table S4), as LMIX increases during 

winter but remains approximately constant throughout the rest of the year. However, these changes 

are not significant, which suggests that the different mixing contributions remain approximately 

constant throughout our 1997-2010. Wintertime trends in LMIX and biomass seem better coupled in 

some gyres (e.g. NPAC) but more decoupled in others (e.g. SATL).  

It is known that increased carbondioxide (CO2) in surface water decreases the pH (increased ocean 

acidification) and causes calcareous organisms to dissolve (Doney et al., 2009; Mackey et al, 

2015). However, some studies report that an elevated CO2 favors photosynthesis in 

coccolithophores (which belong to the nano-phytoplankton group), thus increasing or restoring their 

calcification after an adaptation period (Iglesias-Rodriguez et al., 2008; Schluter et al., 2014; 

Krumhardt et al., 2016). Some recent studies have noticed coccolithophore abundance increase in 

response to surface partial pressure of carbondioxide (spCO2) increase (Krumhardt et al., 2016; 

Rivero-Calle et al., 2015). Rivero-Calle et al. (2015) claim that North Atlantic coccolithophore 

abundance increased from 2% to 20% from 1965 to 2010. In our study, we find increases in spCO2 

and nano% trends for all gyres (Table A3). Satellite-derived PIC (coccolithophores proxy) trends 

are positive only in the SATL and NATL gyres (Table A3). We posit that increasing trends in spCO2 

contributed to increased coccolithophore presence in the NATL and SATL gyres, consistent with 

increases in PIC and nano%.  

2.6 Decoupling between biomass and Chl-a in subtropical gyres 
 

A major finding is the strong decoupling between Chl-a and biomass trends (Figure 2.1a & e) in the 

subtropical gyres. Overall, we find increases in biomass in all the gyres over the 1997-2010 period 

and decreases in Chl-a in three of the gyres (NPAC, NATL, IOCE). Why are biomass and Chl 

decoupled? First, ocean color can only sample the few upper meters of the water column, above 

the Deep Chlorophyll Maximum (DCM) conditions (Volpe et al., 2012). Thus, part of the 

phytoplankton vertical distribution is undetected by satellites that explain the extremely oligotrophic 

character that gyres display when sampled via remote sensing (Volpe et al., 2007). Second, the 

photoacclimation process, known to be dominant in the subtropics (e.g., Siegel et al. 2013; 
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Barbieux et al., 2018), introduces variability in Chl-a uncoupled from the biomass.  

Although the large-scale, climatological distribution of Chl-a largely reflects patterns in nutrient 

supply and thereby differences in phytoplankton abundances (Figure S2a-b), changes in light and 

nutrients can result in changes in pigment composition (Chl-a) (Rodríguez et al., 2006) not 

necessarily associated with biomass changes (Laws & Bannister, 1980; Paasche, 1998; 

Behrenfeld et al., 2002; Behrenfeld et al., 2005; Behrenfeld et al., 2016;). Phytoplankton 

photoacclimate by adjusting their photosynthetic pigment (Chl-a), such that a decrease in Chl/CB16 

and Chl-a may be due to: (1) increase in surface light availability (PAR), (2) increase in light 

penetration in the water-column (decrease in Kd(490)), or (3) shoaling of MLD, trapping plankton in 

the highly-lit surface layer (Westberry et al., 2016). Throughout the analyzed SeaWiFS period, 

trends in Chl/CB16 are consistent in sign with trends in Chl-a in all the subtropical gyres. These 

trends are negative in the NPAC, NATL and IOCE (insignificant in IOCE) and positive in the SPAC 

and SATL (Table A.3). We further analyze the monthly trends to explain Chl-a and Chl/CB16 trends.  

The Chl-a peaks (lowest) in winter, December-February (September-October) for NPAC, when the 

MLD is deeper (shallow), PAR is lowest (highest) and light-penetration is weakest, Kd490 maxima 

(strongest, Kd490 minimum). Over the period we find that the significant MLD shoaling, and Kd490 

decrease in the NPAC gyre drives Chl-a decrease from April to December (Figure A.3h-l). The 

changes in biomass and Chl-a are coupled in late winter and spring but decoupled during the 

summer months. In NATL, Chl-a also peaks in winter months and is lowest from April-June. A 

significant decrease in Kd490 in the NATL gyre drive Chl-a to decrease (especially April-June, Figure 

A6h-l). The biomass and Chl-a changes are decoupled over the period in NATL gyre. In both NPAC 

and NATL, Chl/CB16 decreases as cells acclimate to the increased exposure to light (Table A3) 

during summer months.  

For the gyres in the Southern Hemispheres, the Chl-a is maximum during the winter months (June-

to-August), when the MLD is deeper, PAR is lowest and Kd490 at maxima. The combination of year-

average MLD shoaling, Kd490 decrease, and PAR increase that is observed in the IOCE could be 

driving the small decrease in Chl/CB16. A significant MLD shoaling and Kd490 decrease, drive Chl-a 

and Chl/CB16 decrease from January-April and increase in Kd490 from May-August control the 

increase in Chl/CB16 (Figure A11h-l). Both biomass and Chl-a are changes are coupled and driven 

by MLD deepening throughout the period.  

In contrast, year-average MLD deepening and Kd490 increase cause a small Chl/CB16 increase in 

the SPAC and SATL. The significant MLD deepening and Kd490 increase in SPAC are mostly 

observed during July-Nov, that is consistent with Chl-a increase. The significant MLD deepening, 

and Kd490 increase in SATL for July-August explains the increase in Chl/CB16 and Chl-a. We also 

note that the Biomass and Chl-a are coupled in both the gyres, commonly driven by the deepening 

of MLD (Figure A10-11h-l).  

We also found that Chl-a and Chl/CB16 show a strong positive interannual correlation in the 

subtropical gyres whilst biomass and Chl/CB16 are weakly correlated. In agreement with recent work 

(Siegel et al., 2013; Behrenfeld et al., 2016; Westberry et al., 2016), we conclude that acclimation 

strongly impacts Chl/CB16 ratios and hypothesize that the above acclimation trends, rather than 

biomass trends, explain the 1997-2010 subtropical gyre Chl-a trends. 
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We also note that the magnitude of the trends in Chl-a has changed slightly from the standard 

(STD) algorithm (R2010) processing to the Ocean Color Index (OCI) algorithm processing (R2014); 

the globally averaged trends in Chl-a became less negative/more positive (and more like our 

biomass) for the OCI. Signorini et al. (2015) analyzed trends in Chl-a for both the STD and OCI 

algorithms for all subtropical gyres and also reported similar trends as our Chl-a trends amongst 

the different sensors and algorithms, with small differences in the magnitude.  

2.7 Trends in gyre sizes 
 

Previous studies have claimed an increase in gyre size over recent decades corresponding to an 

expansion of the low Chl-a core (Martinez et al., 2009). Polovina et al. (2008) concluded that the 

Pacific and Atlantic subtropical gyres are expanding at average annual rates from 0.8% to 4.3% 

throughout the 1998-2006 SeaWiFS period, and ascribed this to climate-driven increases in SST 

and vertical stratification. Irwin and Oliver (2009) reported expansion of the hyper-oligotrophic 

subtropical gyres during the 1998–2007 period.  

We find that the trends in gyre sizes depend on the considered Chl-a threshold over the period 

1997-2010 (Table A3). When using low thresholds, e.g., Chl-a<0.07 mg/m3, as in previous studies 

(McClain et al., 2004; Polovina et al., 2008; Signorini & McClain, 2012; Signorini et al., 2015), we 

find insignificant positive trends in three of the gyres, and significant negative trends in the SPAC 

and SATL gyres. When discussing the gyre size using higher thresholds (e.g., Chl-a<0.11 mgm-3), 

the effect of ENSO becomes important. A negative MEI is associated with a broader Tropical Pacific 

tongue and smaller Pacific, Indian and SATL gyres (Table A2). During the SeaWiFS period, we find 

decreases in the oligotrophic gyre sizes associated with the transition towards a La Niña state (see 

Section 2.4 and Figure 2.2a) that causes the tropical biomes to expand and the subtropical gyres 

to shrink (Figure 2.2b, compare solid and dashed lines).  

  

2.8 Summary and conclusions 
 

This paper examines the trends and interannual variability of new estimates of biomass and PFT 

fractions in comparison to changes in Chl-a over the 1997-2010 period. We find a global increase 

in biomass, micro% and nano%. This increase differs from previous findings and is somewhat 

surprising given previously reported decreases in Chl-a (previously used as a proxy of biomass) in 

the warm regions.  

 

In the subtropical gyres, some previous literature claimed that increased stratification has already 

resulted in decreased phytoplankton abundance and primary production (Figure 3 of Behrenfeld et 

al., 2006; Figure 1 of Martinez et al. 2009) and an expansion of the low Chl-a oligotrophic biome 

(Polovina et al., 2008; Irwin & Oliver, 2009). We find instead that over 1997-2010, biomass 

increases in all subtropical gyres while Chl-a decreases in the NPAC, NATL and IOCE gyres. We 

can partially ascribe the biomass increases to negative heat-flux trends and stronger winds during 

winter deepening the LMIX. Acidification-affected coccolithophore might also change biomass, 

particularly in the SATL. In contrast, we suggest that subtropical Chl-a decreases are 

photoacclimation driven. Therefore, Chl-a is not the best indicator for phytoplankton community 

structure and abundance.   
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In the tropical Pacific, we ascribe instead the observed increase in biomass over the 1997-2010 

period to a trend towards a more La Niña-like state. Figure 2.2 confirms that the 1999-2004 Chl-a 

and NPP decrease reported for the warm ocean by Behrenfeld et al. (2006) is not a climate change 

signal as reported but a reflection of ENSO-driven variability in the tropical Pacific tongue. We also 

find that the oligotrophic gyres contract or expand depending on the Chl-a threshold employed, and 

the 1997-2010 contraction of Chl-a<0.11 subtropical biomes is due to a slight trend towards more 

“La-Nina” conditions. 

 

One caveat for this study is the relatively weak local interannual correlations between our various 

physical metrics and biomass (Figure A6), despite strong correlations on seasonal timescales 

(Cabre et al. 2016). This discrepancy has been recently discussed in other recent studies (e.g. 

Lozier et al., 2011; Dave & Lozier, 2013), suggesting that other factors not addressed here may 

play a role in the observed interannual correlations and trends, e.g., advection of nutrients from the 

subpolar to the subtropical gyres, or mesoscale eddy dynamics ( Palter et al., 2005; Ayers & Lozier, 

2010; Dufois et al., 2016; Lehahn et al., 2017) and changes in the grazing pressure (Boss & 

Behrenfeld, 2010 ).  

 

We cannot, at present, assign the biomass trends to climate-driven change, because of the short 

duration of ocean color satellite measurements. A reliable detection of trends would require a 20-

30 year timeseries in the tropics and a 40 year timeseries elsewhere (Henson et al., 2010). Further 

merging of color products between various missions is critical for future clean separation of natural 

variability and climate-driven signals in ocean biology, with important ecological and 

biogeochemical impacts, as well as implications for fishery industries.  
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Figure 2.1. GLS trends for deseasonalised monthly anomalies of SeaWiFS-derived (a) phytoplankton biomass concentration, (b) Chl-a 

concentration, (d) fraction micro-phytoplankton, (e) fraction nano-phytoplankton, and (f) fraction pico-phytoplankton, all in %y-1. Linear trends in (c) 

heatflux (Wm-2 y-1), (g) SST (ºCy-1), (h) windspeed (ms-1 y-1) and (i) LMIX (my-1). All trends are for the 1997-2010 period. Pixels with statistically 

insignificant trends at the 68% confidence interval (p<0.3) are hatched. Biomes are (Figure A1) delimited by black contours.
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Figure 2.2. (a) Time series of deseasonalised anomalies of tropical Pacific tongue biomass, micro-

fraction, Chl-a, gyre size and the MEI index. Note that the y-axis of MEI timeseries is reversed 

(black). (b) Difference in biomass anomalies during large negative (>-1, red – during cold phase) 

and positive phases (<+1, blue, during warm Phase) of the MEI. The black solid and dashed lines 

is the Chl-a contour at 0.11 mgm-3 during large positive MEI and negative MEI, respectively  
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Figure 2.3. (a) 1997-2010 averaged monthly climatology for LMIX depth measurements for the 

NPAC with mixing depth measurements derived for all the cases 1 (MLD), 2 (LEK), and 3 (LOZ) from 

surface atmospheric forcing’s. Log10 phytoplankton biomass and surface heatflux averaged monthly 

values are in green and gold. (b) 1997-2010 averaged monthly climatology for percentage of pixels 

in the gyre that are classified as Case 1, 2, or 3 mixing. (c) Percentage change/trends in all the 

months throughout 1997-2010 in the NPAC for the biome-averaged (c) Biomass, (d) Heatflux, (e) 

MLD, (f) LEK, and (g) LMIX, (h) Chl-a, (i) Chl/CB16, (j) MLD, (k) PAR, (l) Kd490. The red line is the total 

percentage change of biomass over the 1997-2010 period and the blue line is the +/- one-sigma 

error (or 68% confidence interval, p<0.3) associated with the total percentage change of biomass. 
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CHAPTER 3: Contrasting ENSO “flavors” with satellite derived ocean 
phytoplankton biomass in the Tropical Pacific 

 

 

Submitted for publication as:   

 
Sharma, P., Singh, A., Marinov, I., and Kostadinov, T.S., (Submitted to GRL-under revision) 
Contrasting ENSO flavors with satellite derived ocean phytoplankton biomass in the Tropical 
Pacific 

 

Abstract: 

Observed variations in the tropical phytoplankton community structure and biogeochemical 
processes have been linked to the El Niño Southern Oscillation (ENSO), a driver of large-scale 
natural climate variability on interannual time-scales. Satellite bio-optical algorithms have allowed 
us to derive complex biological parameters from the surface ocean via remote sensing, providing 
a scientific platform to investigate biological relationships with climate indices.  Studies have 
focused in-depth on contrasting flavors of the ENSO with various physical parameters with only a 
few recent studies focusing on satellite-observed Chlorophyll-a (Chl-a), with however none 
focusing on phytoplankton biomass itself. Here we review the “flavors” of ENSO and its effect on 
backscattering-based biomass using different statistical techniques, over the 1997-2007 period. 
We also contrast the responses of phytoplankton biomass with those of Chl-a and their physical 
drivers in various “flavors” of ENSO. Signatures of various ENSO “flavors” are observed in the 
physical and biological fields.  
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3.1 Introduction 
 

Phytoplankton are microscopic cellular organisms omnipresent in the surface ocean. The 

photosynthetic activity of phytoplankton is the first level of the marine food chain and supports 

trophic efficiency. Moreover, phytoplankton affect the optical properties in water column via light 

absorption and backscattering (Stramski & Kiefer, 1991; Mobley et al., 2002) which allows for their 

detection via passive ocean-color remote sensing. Remote sensing is a reliable tool (in addition to 

in situ data) for gathering observational data on spatio-temporal scales to characterize the structure 

and function of global marine ecosystems and to achieve predictive understanding. Phytoplankton 

adjusts its Chl-a composition to changes in environmental conditions such as light. Consequently, 

Chl-a may not be the best indicator for phytoplankton community structure and abundance. 

Therefore, we need independent estimates for phytoplankton biomass. Bio-optical algorithms have 

previously been applied to detect phytoplankton biomass separately from Chl-a (Behrenfeld et al., 

2005; Kostadinov et al. 2009, 2010, 2016). Results from recent studies show that variations in 

ocean biogeochemical processes in the tropics are linked to the El Niño Southern Oscillation 

(ENSO) phenomenon (Gierach et al., 2012; Radenac et al., 2012).  

ENSO phenomenon oscillates between a warm (El Niño) and a cold (La Niña) phase. Tropical-

extratropical interactions, atmospheric pressure teleconnections, and ocean-atmosphere 

feedbacks stimulate anomalous variations in trade wind strength and sea surface temperature 

(SST). The evolution of ENSO events is well-documented over the past two decades (Wang & 

Weisberg, 2000). The scientific literature has been well established on the different “flavors” of El 

Niño and their characteristics (e.g. El Niño Modoki), that contrast that of the classic Eastern Pacific 

El Niño (EPEN). El Niño Modoki (Ashok et al., 2007) is one of the recent El Niño “flavors” that have 

been discovered with multiple nomenclatures, such as the “Warm-Pool El Niño” (Kug et al., 2009) 

“Central Pacific El Niño”, CPEN (Kao & Yu, 2009) or “Dateline El Niño” (Larkin  & Harrison, 

2005a,b).  

The maximum SST anomalies confined in the central-eastern equatorial and dominantly in the 

central equatorial tropical Pacific region contrasts the EPEN and CPEN, respectively. Multiple 

studies have focused on distinguishing EPEN and CPEN using SST (Ashok et al., 2007), sea 

surface salinity (Ashok et al., 2007; Singh et al., 2011), precipitation (Feng & Li, 2011; Zhang et al., 

2011), and subsurface temperature (Yu & Kim, 2010), however a couple of new studies discuss 

the impacts of EPEN and CPEN based on satellite-derived Chl-a (Turk et al., 2011; Radenac et al., 

2012; Messié & Chavez, 2013) and primary production (PP) and phytoplankton growth ( Racault et 

al., 2016; Racault et al., 2017). However, no study has characterized different flavors of El Niño 

using backscattering-based phytoplankton biomass. 

In this manuscript, we use novel backscattering-based phytoplankton biomass data to diagnose 

further and contrast El Niño “flavors” and their characteristics over the 1997-2007 period. For the 

first time, we also define a biological index for EPEN and CPEN. Section 3.2 of the manuscript 

describes the datasets and statistics utilised in the paper. Section 3.3 is a comparison of the Chl-

a, and phytoplankton biomass anomalies in the Pacific equatorial region. Section 3.4 contrasts the 

EPEN and CPEN signatures of biomass using different statistical techniques. In Section 3.5, we 

document the likely mechanisms responsible for observed ENSO-related biomass variations. The 

main findings are summarized in Section 3.6.  
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3.2 Data and Methodology 

3.2.1 Data sets 

 

The monthly 9 km horizontally gridded biomass product derived from a backscattering-based 

algorithm (Kostadinov et al., 2009, 2010, 2016) is used and is available from 

https://doi.pangaea.de/10.1594/PANGAEA.859005. The backscattering spectral slope and the 

magnitude are used as the inputs to the algorithm to retrieve the parameters of an assumed power 

law particle size distribution (PSD). Using the PSD, the volume concentrations for different plankton 

size classes are calculated. Then, the existing allometric relationships (Menden-Deuer & Lessard, 

2000) are applied to convert the biovolumes to the total carbon concentrations. We also used 9km 

Chl-a (OCI: R2014) maps for the SeaWiFS period 1997-2010. The magnitudes of Chl-a have 

changed slightly from the standard (STD) algorithm (R2010) processing to the OCI algorithm 

processing. Chl-a and biomass are expressed in mg m-3.  

Physical variables used are 10m daily windspeed (Berrisford et al., 2011), OSCAR ocean currents 

(Bonjean & Lagerloef, 2002), TOA/TRITON isothermal depth (Z20°C: depth of the 20°C) (Michael J. 

McPhaden et al., 1998), and HadISST1 sea surface temperature (SST). Table S1 provides details 

on data sources, and resolution. The Multivariate El Niño Index (MEI) was acquired from the 

National Center of Atmospherics Research (NCAR) climate data portal at 

https://climatedataguide.ucar.edu/. Time series of EPEN and CPEN indices (NCT and NWP, 

respectively) were constructed as in Ren and Jin (2011) using the HadISST1 dataset. The 

piecewise linear combination of the climate indices, Niño-3 and Niño-4 are used to construct the 

EPEN and CPEN indices with conditioned by the ENSO phase. All the spatial datasets were 

obtained for the tropical Pacific region [30°S-30°N, 120°E-70°W] over the 1997-2010 period. Table 

S1 provides a complete list of variables and their sources.  

 

3.2.2 Preprocessing and Statistical Techniques 
 

Seven monthly maps (in 2008 and 2009) had less than 60% of the data available for biomass and 

Chl-a over the 1997-2010 period, therefore we only analyze data for the 1997-2007 period that had 

100% temporal coverage. For Chl-a, the possibility was to adapt the Radenac et al. (2012) method 

and temporally replace the monthly maps with Aqua-MODIS ocean color maps. However, there are 

no other satellite data available for biomass using specifically Kostadinov et al. (2009, 2010) 

algorithms to replace the missing maps in our biomass data. Daily datasets were converted to 

monthly resolution. The 9km resolution Chl-a and biomass products were re-gridded on a 1° grid 

using an averaging kernel (Kostadinov et al., 2017). Nearest neighbor linear extrapolation was 

applied to fill in the data gaps due to sparse clouds. 

To obtain the interannual signal, all datasets were first detrended over their respective periods to 

remove any long-term variability. Anomalies were calculated with respect to 1998-2007 period as 

some datasets were available only from September-1997 by removing the mean monthly 

climatology. The anomalies were then filtered using 13-month Hanning-filter to remove any 

remaining high-frequency signals. Filtering was performed on all the variables except Chl-a, as 

empirical orthogonal function (EOF) analysis on filtered and unfiltered Chl-a anomalies show similar 

ENSO patterns and loadings for the first three modes. Using unfiltered Chl-a anomalies allowed for 

https://doi.pangaea.de/10.1594/PANGAEA.859005
https://climatedataguide.ucar.edu/
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an additional 5 months of data at the beginning and end of the Chl-a timeseries. The Chl-a EOF 

patterns are consistent with Radenac et al. (2012) except for the magnitudes, which can be 

explained by the improved algorithms used to derive Chl-a. Biomass and Chl-a anomalies are log-

normally distributed, as biological indices can span up to 3 orders of magnitude (Racault et al., 

2016). 

3.3 Chl-a and Biomass in the equatorial Pacific region  
 

The 10-year mean phytoplankton biomass (Figure 3.1b) shows relatively low concentrations in the 

oligotrophic subtropical gyres ([Chl-a] <0.11 mgm-3 (natural-log value of -0.96 mgm-3; see Figure 

3.1a), and comparatively high levels in the Central and South America ocean margins and the 

equatorial upwelling systems. The high biomass in these areas is due to the cold nutrient-rich water 

upwelled at the equatorial and coastal ocean surface waters supporting phytoplankton growth. 

Despite the nutrient concentration being high in the upwelling systems, the phytoplankton biomass 

is less than the time-averaged biomass concentration for the equatorial region (<1.2 mg m-3, 

natural-log value) due to the iron-limited and grazer levels maintaining the growth-loss imbalance 

(Lundry et al., 2003). We observe robust biomass features near Papua New Guinea (PNG) and 

Solomon Islands coastal areas. Messié and Radenac (2006) suggest that elevated biomass 

concentrations are possibly due to the oceanic islands that deflect the deep ocean currents, flow, 

and wind circulation that allows horizontal advection and intermittent upwelling. The mean biomass 

pattern is similar to the mean Chl-a structure in Figure 3.1a and in Radenac et al. (2012; see their 

Figure 1): maxima in the tropical-tongue region and minima in the northern and southern subtropical 

gyres. 

The interannual biomass variability (Figure 3.1d) mimics the Chl-a variability (Figure 3.1c; see 

Radenac et al., 2012 their Figure 1b) with maximum variability encompassed from the American 

coasts along curving trajectories towards 170°E at the equator. High variability is seen off the 

Californian coast and in the South American upwelling systems, and around PNG and Solomon 

Islands. The interannual variability pattern for Chl-a is relatively higher and pronounced at the 

southern edge of the tropical tongue then biomass variability (Figure 3.1b). This variability is 

possibly due to the contraction and expansion of the tropical tongue/subtropical gyres during ENSO 

events.  

 

3.4 ENSO signatures of biomass  
 

3.4.1 EOF analysis 

 

An EOF analysis of logarithmic phytoplankton biomass anomalies (Figure B.1a) shows that the first 

EOF mode explains 29.3% of the variance. The spatial structure exhibits negative loadings 

extending from the coast of California, along the ITCZ region towards the equator to 180°E. This 

feature is somewhat mirrored at the equator with the negative loadings outspreading from the coast 

of South American along curving trajectories towards the equator to about 170°E. Positive loadings 

are found north of PNG and surrounding New Caledonia. Its principal component (PC) is positively 

correlated with the EPEN index (R = 0.71) suggesting that the negative loadings on EOF1 show a 
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decrease of biomass during EPEN events. Our result is consistent with Messie and Chavez (2012) 

who performed an EOF analysis on Chl-a as a proxy for biomass.  

The second and third EOF modes (Figure B1c&e) explain 17.8% and 13.0% of the variance, 

respectively. Although both these EOF modes explain a total of 30.8% of the variance of biomass 

anomalies, a North test (North et al., 1982) verifies that the second and third EOF modes cannot 

be distinguished in a statistically significant way indicating that the signals are not well separated 

and cannot be physically explained. These limitations using the EOF procedure were also 

encountered by Singh et al. (2011) for sea surface salinity anomalies. Consequently, to effectively 

extract the dominant modes of variability, a combined regression-EOF (CR-EOF) analysis was 

performed on the biomass anomalies.  

In performing the CR-EOF analysis, the CPEN index was first regressed onto the biomass 

anomalies. An EOF analysis was then carried out on the residuals of the regression values (residual 

is the variable minus the reconstructed variable that is derived from regression coefficients) to 

obtain the EP signature of ENSO (Singh et al., 2011). This method was applied to SST anomalies 

by Kao and Yu (2009) to separate EP and CP ENSO events. The first EOF explains 28.26% of the 

total variance in biomass anomalies (Figure B2a&b). The corresponding PC time series is positively 

correlated with NCT (R = 0.81). The spatial pattern is similar to the EOF1 on the biomass anomalies 

in Figure S1a giving us confidence in the method applied to characterize El Niño flavors. 

Using EPEN index as the regressor, the first EOF has a spatial structure of a large negative 

biomass pattern encompassed between 155ºE-170ºW, 5ºS-5ºN and explains 23.90% of the 

variance (Figure B2c&d). Positive biomass loadings are observed at the eastern outer edges of the 

tropical tongue and in the far northwestern Pacific. The corresponding PC is positively correlated 

with NWP (R = 0.79) indicating a decrease (increase) in biomass in the western-central (eastern) 

Pacific during CPEN events. The spatial feature is consistent with the second mode of EOF 

analysis of Chl-a in Messie and Chavez (2013). 

3.4.2 AHC Analysis  

 

The dominant patterns for both EPEN and CPEN events were obtained using the CR-EOF analysis. 

However, to better discriminate between El Niño flavors, due to possible limitations in using the 

EOF procedure (see Singh et al. 2011), we choose to use the agglomerative hierarchical clustering 

(AHC) technique to resolve El Niño “flavors” better. 

Five clusters were identified using the AHC technique out of 124 monthly maps during 1997-2007 

for the biomass anomalies. These five clusters represent Intermediate CPEN, CPEN, La Niña (LN), 

equatorial recovery, and EPEN conditions explaining 28.8%, 15.32%, 20.72%, 19.8% and 15.32% 

of the variability, respectively (Figure 3.2a-e). The extracted time series with cluster maps are 

shown in Figure 3.2f. Our cluster patterns for the biomass are similar to the 5 clusters identified by 

Radenac et al. (2012) but for Chl-a over the 1997-2010 period. We chose to keep the terminologies 

of the clusters similar as Radenac et al. (2012) for a consistent comparison. 

Spatial patterns of Clusters 1 and 2 exhibit the intermediate CPEN and CPEN signals, respectively 

(Figure 3.2a&b). In cluster 1, the minimum biomass (less than -0.08 mgm-3) is located between 

150-160°E at the equator with curving trajectories of negative biomass anomalies extending 

towards the eastern Pacific along about 10°N-15°S. As the intermediate CPEN develops into CPEN 

(see Figure 3.2f), the negative core in the western Pacific grows and occupies a more extensive 
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region [150°E-170°W, 5°N-5°S]. The two curving trajectories of negative biomass anomalies are 

replaced with positive anomalies in the eastern Pacific. The timing of biomass cluster 2 from AHC 

analysis are consistent with the previously documented CPEN events in 2002-03 and 2004-05 

(Ashok et al., 2007; Kao & Yu, 2009; Yeh et al., 2009; Kug et al., 2009; McPhaden et al., 2011; 

Singh et al., 2011; Kim & Yu, 2012; Radenac et al., 2012), however noting that the 2004-05 event 

is classified as an intermediate CPEN due to the magnitude of the biomass anomalies. The CPEN 

pattern from AHC is comparable to the spatial pattern obtained from the CR-EOF analysis (see 

Figure B2b). 

Cluster 3 captures the spatial feature of LN, and the timing coincides with events in 1999-2000, 

and 2000-01 (Figure 3.2c). The maximum biomass concentration is 10°N off the equator near the 

Central American coast, extending to the central Pacific Ocean between 0-5°N. The southern 

curving trajectory seen during cluster 1 and remain in cluster 3 albeit with dominantly positive 

biomass anomalies. Negative biomass anomalies are observed in the far western Pacific above 

PNG. During LN, the Eastern Pacific equatorial high biomass/Chl-a tongue is at its maximum extent 

due to the steepening of the basin-wide gradient of thermocline and nutricline across the region 

resulting in more upwelled nitrate and iron concentrations in the euphotic layer, preconditioning the 

waters for phytoplankton growth (Christian et al., 2001b). Cluster 4 shows equatorial recovery with 

a spatial structure similar to that during LN (cluster 3) but with significantly reduced anomalies in 

the eastern Pacific.  

Cluster 5 represents the EPEN event in 1997-1998 and 2006-07 (Figure 3.2e). Cluster 5 spatial 

feature resembles the spatial feature in Figure B.2a. A few studies characterized the 2006-07 event 

as a CPEN event (Radenac et al. 2012, their Table 1). Representative examples of DJF (December 

to the following January) composites of biomass anomalies (Figure 3.2g-k) give confidence that 

the clusters are not artifacts from the AHC analysis, rather they depict accurate instances biomass 

distribution. The subtle differences between the clusters and composites remind us of the 

uniqueness of each event. 

 

3.5 Possible Drivers Responsible for EPEN and CPEN-related Biomass Variations 

3.5.1 Biomass in the equatorial region  

 

Figure 3.3 illustrates the time-longitude distributions of the SST, zonal wind, thermocline 

(represented by the Z20
o
C), Chl-a and biomass anomalies averaged between 5°N–5°S. Maximum 

positive SST anomalies are observed during El Niño events in 1997-98 and 2002-03, 2004-05 and 

2006-07 (Figure 3.3a). During EPEN, anomalous westerly winds (Figure 3.3b) drive the strong 

anomalous eastward currents (not shown) advecting the nutrient poor (Figure 3.3d&e) warm pool 

waters eastward. As a result, tropical Pacific encounters long and persistent positive SST 

anomalies that enhances the vertical stratification and deepens the thermocline in the eastern 

tropics (Figure 3.3c) that weakens the upwelling. Overall, a flattened thermocline results over the 

basin (Chavez et al., 1998; Stone et al., 1999; Strutton & Chavez, 2000; Turk et al., 2001; Christian 

et al., 2001a; Radenac et al., 2001).  
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The nitracline and equatorial undercurrent (EUC) deepening and weakened upwelling of cold 

nutrient rich waters due to aforementioned process (nitrate-depleted surface layer; see Figure 3 

schematics in Messié & Chavez, 2012) causes the decline in the phytoplankton growth in most of 

the tropical tongue region (Radenac et al., 2012; Messié & Chavez, 2012 and references therein). 

The primary driver of the anomalous biological changes is due to variations in the nutricline depth 

(depth where the nutrient concentration declines rapidly), decreasing nitrate content in the eastern 

Pacific during El Niño events and vice-versa for LN events (Messié & Chavez, 2012). Deepening 

of the nutricline/thermocline or phytoplankton mixing length scales dilutes the phytoplankton in the 

surface ocean (Brody & Lozier, 2014) and thus allowing less sunlight to penetrate to the deeper 

water for photosynthesis. The lack of light in the deep water column limits the photosynthesis and 

phytoplankton growth, that is reflected in our biomass distribution (Figure 3.3e) during EPEN event. 

Messié and Chavez (2012) and Park et al. (2011) report similar changes but in Chl-a and also 

suggest that the light and nutrients drive the changes in the equatorial Pacific.  

Studies have shown deeper ferricilne (depth at which iron concentration changes rapidly) than 

nutricline (Gordon et al., 1997) in the iron-limited equatorial Pacific (Martin et al., 1994). The 

ferricilne and nutricline is coupled during El Niño when the ferricilne and EUC deepens (Barber et 

al., 1996; Wilson & Adamec, 2001; Johnson et al., 2002), thus reducing the vertical transfer of 

nutrient and iron concentration in the region (Chavez et al., 1999; Wang et al., 2005). Low supply 

of nitrate and iron suppresses the phytoplankton growth. Consequently, we observe Chl-a and 

biomass decrease during the 1997-98 EPEN (Figure 3.3d&e, respectively), in agreement with 

previous work showing decreased Chl-a and PP during the same period (Christian et al., 2001a; 

Messié & Radenac, 2006; Behrenfeld et al., 2006; Radenac et al., 2012). A decrease in PP, ranging 

between 0.056-0.9 PgC/yr has been reported in previous studies during the 1997-98 EPEN event 

using different PP algorithms (Carr et al., 2006; Messié & Chavez, 2012; Racault et al., 2017). 

Consistent with Kug et al. (2009) and Radenac et al., (2012), we report 1998-99, 1999-2000, and 

2000-01 as LN years. Figure 3.3b shows an enhancement of the easterlies during LN events, 

driving strong westward currents (not shown) and pushing the warm-pool further west. In the 

central-eastern equatorial Pacific, the surface water is colder than normal (Figure 3.3a). The 

thermocline/nitracline tilt across the equatorial Pacific becomes steeper [deeper (shallower) in the 

west (east)]. The intensified upwelling in the eastern Pacific is nutrient abundant, which 

preconditions the surface waters for phytoplankton growth and elevates the Chl-a and biomass 

concentrations (Figure 3.3d&e). The prolonged 1998-2001 LN event had exceptionally strong SST 

anomalies, and was reported as an event that triggered significant phytoplankton blooms along the 

equatorial Pacific ( Martin et al., 1994; Chavez et al., 1999; Murtugudde et al., 1999; Ryan et al., 

2002; 2006; Messié & Radenac, 2006). 

CPEN impacted the 2002-2005 period. The anomalous westerly winds are constricted to the 

western-central region extending the warm-pool to the central Pacific region only. The magnitude 

of the eastward extension of the warm-pool and the anomalous SST during EPEN is stronger than 

that of CPEN (Figure 3.3a). Radenac et al. (2012) suggested that zonal wind does not affect the 

eastern equatorial upwelling since its impact is confined within the central Pacific region. Therefore, 

nutrients are in excess in the eastern equatorial region, and the vertical movement of the 

thermocline will possibly not impact the biological activity. Instead, Radenac et al. (2012) proposed 

that the iron supply reduction due to EUC deepening terminates the phytoplankton growth, in 

agreement with Messie and Chavez (2012). In contrast, Messié and Chavez (2013) using the 

second mode of the EOF analysis, which has similar spatial features as CPEN show that the Chl-

a decrease in western-central region is due to an increase in barrier layer (“the layer between the 
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mixed layer and the top of the thermocline” (Vialard & Delecluse , 1998)) thickness and occurrence. 

The location and variations in barrier layer characteristics are governed by multiple mechanisms 

such as strengthened subtropical convergence due to intensified zonal winds, strong halocline 

between the warm-pool and cold tongue front and high rates of precipitation (Messié and Chavez 

(2013).   

Furthermore, our characterization and response of biomass and physical parameters to CPEN and 

EPEN events over the 1997-2010 period are consistent with previous studies in the Equatorial 

Pacific (Turk et al., 2011; Radenac et al., 2012; Gierach et al., 2012; Racault et al., 2017). Notably, 

the composites reveal that the southern and northern edges of the negative biomass and Chl-a 

anomalies closely match the meridional extent of the anomalous eastward current. We observe 

that Chl-a and biomass are in sync with CP and EP ENSO between 10°N-10°S, except beyond 

these latitudes. In the subtropics, Chl-a and biomass are decoupled mostly owing to 

photoacclimation (the ability of the phytoplankton to adjust to light levels, Siegel et al., 2013). In 

summary, majority of the studies observed that decreases in tropical biological activity are 

governed by the disturbance in wind circulation that affects the vertical and horizontal transfer 

efficiency of nutrient content to the surface ocean (Ashok & Yamagata, 2009; Radenac et al., 2012; 

Gierach et al., 2012; Messié & Chavez, 2012, 2013; Racault et al., 2017).  

3.5.2 Defining ENSO Metrics with Biomass 

 

The distinctly different ENSO patterns observed using biomass anomalies allows us to define 

metrics to capture the different ENSO phases. We identify three most variable regions: the first 

region (R1) is delimited between 2.5ºN-2.5ºS, 147ºE-170ºW; the second region (R2) is between 4.5-

12.5ºN and 85-112ºW and; the third region (R3) is between 13.5-20.5ºS and 75-87ºW. We 

empirically define the normalized biomass and Chl-a El Niño index (Figure B3a&b), using an 

empirical relationship as defined by the following equation: 

Biomass El Niño index = [𝑃ℎ𝑦𝑡𝑜𝐴]𝑅1 − 0.3∗[𝑃ℎ𝑦𝑡𝑜𝐴]𝑅2 − 0.3∗[𝑃ℎ𝑦𝑡𝑜𝐴]𝑅3         Eq  3.1 

PhytoA is the normalized area-weighted average biomass anomalies (or Chl-a anomalies) in the 

defined region boxes. The biomass and Chl-a El Niño index can distinguish between EPEN and 

CPEN events and has the high correlation of 0.71 and 0.92, respectively, with the Trans-Niño Index 

(TNI-defined as “the normalized difference between the normalized SST anomalies averaged in 

the Niño1+2 and Niño4 regions” (Trenberth & Stepaniak, 2001)).  

Becasue the biomass and Chl-a signatures are different during the El Niño  and LN episodes, we 

define a biomass ENSO index using normalized sum between the normalized area-weighted 

average biomass anomalies in the first two regions (R1+R2). The biomass ENSO index allows 

separating the warm and cold phase of ENSO (Figure B3a&b). Biomass and Chl-a ENSO indices 

are highly correlated with Southern Oscillation Index (SOI) of 0.77 and 0.81, respectively. The 

cluster timeseries fairly correspond with the Biomass El Niño Index and Biomass ENSO Index 

(Figure B3) that can be used to identify CPEN, EPEN and LN events.   

3.6. Summary  
 

The objective of this research was to contrast EPEN and CPEN events in the tropical Pacific using 

satellite backscattering-derived phytoplankton biomass for the 1997-2007 period for the first time. 
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Considering that the data from single SeaWiFs mission has several maps missing in year 2008, 

and the Kostadinov et al. (2010) product is not available for an extended period, we restricted our 

analysis from year 1997-2007. Using EOF, CR-EOF and AHC on biomass, we showed that EPEN 

events in biomass are evident in 1997-98 and 2006-07, intermediate CPEN and CPEN events 

between 2002-2005, and LN events in 1999-2001. We report similar drivers for biomass and Chl-

a, as indicated by Radenac et al. (2012) for Chl-a only. During the CPEN events, changes in the 

vertical supply of iron concentrations due to EUC vertical displacement (Radenac et al., 2012) and 

the strength of subtropical gyres (Messié & Chavez, 2013) drawdowns the biological activity in the 

iron-limited region. During EPEN, anomalous westerly winds drive strong anomalous eastward 

currents. The nutrient-deprived western warm waters extend to 130°W reducing the upwelling and 

deepening the nitracline and EUC. Reduced surface nutrients reduce the biological activity, 

lowering the biomass and Chl-a concentrations. Each EPEN and CPEN event will impact the 

phytoplankton abundance differently, affecting the fish abundance and thus fisheries industries 

(Racault et al., 2017). 

This study focused on using satellite derived ocean-color products to understand the variability of 

biomass on ENSO timescales. Possible mechanisms to explain biomass distribution have been 

highlighted. What remains to be investigated is how the frequency of different ENSO flavors and 

their amplitude affect the long-term biomass trend. It should be noted however that a clean 

separation is required to distinguish the natural forcing from anthropogenic forcing (Henson et al., 

2010). Another interesting question to be addressed is how the different ENSO flavors affect the 

phytoplankton biomass in the sub-polar regions. 
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Figure 3.1:  Mean and standard deviation maps for the Chlorophyll-a (a&c) and phytoplankton biomass (b&d) for the September-1997 to December-
2007 period. The three regions R1, R2 and R3 in black are regions with maximum variability chosen using Figure 3.1d. 
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Figure 3.2. Phytoplankton Biomass spatial maps for the (a) EPEN, (b) equatorial recovery 
conditions, (c) LN, (d) Intermediate CPEN, (e) CPEN events, and the (f) Custer time series from 
AHC analysis. Three monthly DJF composites of biomass anomalies for the years: (g) 2003-2004 
Intermediate CPEN, (h) 2002– 2003 CPEN, (i) 1999-2000 LN, (j) 1998–1999 equatorial recovery 
and, (k) 2006-2007 EPEN event.   
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Figure 3.3:  Time-longitude map for the (a) SST, (b) Zonal Windspeed (positive eastwards) (c) isothermal depth (positive deepens) (d) Chl-a and, 

(e) biomass anomalies averaged between 5ºS-5ºN. Note: We chose to show the surface chlorophyll-a thresholds lower than 0.1mg/m3 as in Radenac 

et al. (2012) for comparison (in black contour lines). Vertical solid lines indicate the Niño3 (150ºW, 90ºW) and Niño4 (160ºE, 150ºW) boxes.
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CHAPTER 4: Ocean phytoplankton biology in the North East Pacific in multiple 
satellite products and CMIP5 climate models 

 

To be submitted: 
 
Sharma, P., Singh, A., Marinov, I., and Kostadinov, T.S., (JGR) Ocean phytoplankton 
biology in the North East Pacific in multiple satellite products and CMIP5 climate models 
 

Abstract:  

The study investigates the seasonal dynamics of phytoplankton ecology in a North East Pacific 
subpolar box (NP) that includes the Ocean Station PAPA (OSP), a region of large interest for the 
oceanographic community because it is one of the largest regions with high-nutrient low 
chlorophyll-a (HNLC). Here, a seasonal variation between the subpolar North Pacific OSP box with 
an equivalent subpolar regime chosen for the North Atlantic (NA) is intercompared using ocean 
surface chlorophyll-a and various satellite-based biomass products and explore bottom-up physical 
drivers of ocean biology: sea surface temperature (SST), mixed layer depth (MLD), turbulent mixing 
indices related to wind stirring and buoyancy forcing. Additionally, we analyze output from multiple 
latest generation (CMIP5) Earth System Models (ESMs) with explicit marine ecological modules 
and compare it with satellite-based products for biomass and phytoplankton functional types (PFTs) 
in our areas of interest. The pattern of seasonal cycle is qualitatively consistent in the NA box 
across the various PFTs and biomass. However, the seasonal cycles across both satellite-based 
algorithms and across CMIP5 models show vast differences (both qualitative and quantitative) at 
NP with varying month of bloom suggestive of different biological-physical interactions and PFT 
succession. For example, the NP seasonality in some satellite algorithms seems to suggest strong 
phytoplankton light-limitation, while in others it suggests nutrient limitation of growth. Many of the 
models suggest that the grazer population keeps a tighter check on phytoplankton growth at NP 
compared to the NA. Most models show deeper mixed layer depths and higher nutrient 
concentrations at NP compared to satellite datasets. Iron limitation, long known as a determinant 
of phytoplankton growth at NP, is under-represented in the CMIP5 models at NP.  
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4.1 Introduction  
 

Phytoplankton (ranging from 1 m to over 100 m diameter) are typically classified into different 

phytoplankton functional types (PFTs) based on their ecological and biogeochemical functions, and 

different PFTs occupy different spatial and temporal niches of the ocean. One such classification 

is based on cell size, as rates of metabolic processes (e.g. nutrient uptake, light-limited 

photosynthesis, maximal photosynthesis) and key traits including minimum subsistence quotas, 

maximum nutrient storage capacity, susceptibility to grazing (Hansen et al., 1994; Armstrong, 

2003), and sinking rate are all known or hypothesized to correlate with cell size. It has been shown 

for example that smaller cells (e.g., picophytoplankton) compete better under chronic nutrient 

limitation (Edwards et al., 2012), whereas larger cells (e.g. microphytoplankton or diatoms) have a 

competitive advantage under plentiful or fluctuating nutrient supply (Litchman et al., 2009). 

Seasonal, interannual and longer-term environmental (e.g. nutrients, light, temperature) changes 

affect phytoplankton productivity, loss and biomass. In turn, the health and competitiveness of 

different PFTs under changing environmental conditions might feedback on the functioning of the 

biological pump (Litchman et al., 2015; Litchman & Klausmeier, 2008; Maranon, 2015) and 

ultimately climate. For example, as the ocean stratifies with future climate warming, a reduced 

surface nutrient supply is expected to increase the relative abundance of small phytoplankton 

versus larger phytoplankton (diatoms) in oligotrophic gyres (Bopp et al., 2001; Doney, 2006, 

Marinov et al., 2013; Cabré et al., 2015). Given that larger diatoms are traditionally thought to export 

more carbon to the deep ocean compared to the small plankton, the shift from diatoms to small 

phytoplankton could result in less biological carbon sequestration in the deep ocean, and hence a 

potential positive feedback with increasing atmospheric pCO2. 

Numerous studies have investigated the phytoplankton distributions, their community size structure 

and their biogeochemical processes in the subpolar regimes, especially in the North Pacific 

(Harrison, 2002; Ayers & Lozier, 2010; Mackinson et al., 2015) and North Atlantic regions 

(Dandonneau et al., 2004; Barton et al., 2013; Brody & Lozier, 2014; Barton et al., 2016) using in 

situ measurements, satellite and modelling data. The ecology at OSP has been contrasted in the 

past with the North Atlantic subpolar region ecology using models (Cabré et al., 2016, Mahadevan 

et al., 2012; Cole et al., 2015) and satellite algorithms (Zhang et al., 2017). In the subpolar regimes, 

it is commonly thought that small phytoplankton are top-down controlled by microzooplankton 

grazing (Landry et al., 1993), whereas large phytoplankton exhibit bottom up control by 

macronutrients or iron (Fe). Much literature has already been devoted to OSP (Harrison et al., 

1999, Harrison, 2002). OSP is an offshore station along the Line P transect in the subarctic 

northeast Pacific (NEP) Ocean at 50oN and 145oW, has one of the longest-running programs for 

oceanic data collection, with observations commencing in 1956. OSP and the nearby Line P 

hydrographic stations are sampled by ship three times a year in February, June and 

August/September by the Department of Fisheries and Ocean Canadian Institute of Ocean 

Sciences. OSP is a high nutrient-low chlorophyll (HNLC; Martin & Fitzwater, 1988): the upwelling 

of cold, nutrient-rich water from deep in the ocean provides a consistent supply of macro-nutrients, 

but the low chlorophyll-a (Chl-a) content suggests that productivity is not as high as would be 

predicted given the nitrate availability as it is not completely depleted throughout the year. 

Phytoplankton photosynthesis at OSP is controlled by both Fe and light limitation at different times 

of the year. Phytoplankton here are the base of the food chain for a variety of heterotrophs (Brodeur 

et al., 2002), and ultimately for commercially important Pacific salmon (Aydin et al., 2005). 
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In satellite oceanography, Chl-a has been the historical proxy of algal biomass concentration 

(Siegel et al., 2013). However, by the well-known process of photoacclimation, phytoplankton 

regulate their intracellular Chl-a concentration, and Chl/C ratio, in relation to environmental factors 

such as light and nutrients. Therefore, Chl-a is not a good proxy for phytoplankton biomass  

(Kruskopf and Flynn, 2005, Alvarez-Fernandez and Riegman, 2014). To circumvent the issue of 

using Chl-a as a proxy of biomass, newer methods have focused on developing alternative algal 

biomass concentration based on backscattering coefficients (Behrenfeld et al., 2005; Kostadinov 

et al., 2009, 2010, 2016; Antoine et al., 2011, Loisel et al., 2011; Graff et al., 2012), absorption-

based (e.g., Ciotti & Bricaud, 2006; Bracher et al., 2009; Mouw & Yoder, 2010; Bricaud et al., 2012; 

Roy et al., 2011, 2013), abundance-based (e.g., Devred et al., 2006; Uitz et al., 2006; Brewin et 

al., 2010; Hirata et al., 2011), reflectance-based (Alvain et al., 2005, 2008, 2012), described in 

detail in chapter 1. While significant differences exist among these algorithms, to first order all agree 

that large cells dominate in high-chlorophyll waters and small cells dominate in oligotrophic waters, 

also in agreement with in situ findings (e.g. Dandonneau et al. 2004, DuRand et al. 2001, Steinberg 

et al. 2001). 

The North East subpolar Pacific around OSP is currently a region of high interest to the 

oceanographic community, with the so-called EXPORTS campaign – jointly sponsored by NASA 

and NSF and involving at least 14 different oceanographic groups at present– currently under way 

in the area (http://oceanexports.org). To provide a background for current community work, here 

we perform a comparative analysis and review of phytoplankton biomass and PFTs from various 

algorithms and CMIP5 model suites in the northern subpolar regions, with a specific focus on two 

sites: a box chosen around the OSP area (45-50oN, 140-150oW, hereby referred to as “NP” and a 

North Atlantic subpolar box close to the previously-monitored NABE site (45-50oN, 25-35oW, 

hereby referred to as the “NA”). Specific questions we address are: 

• How does the seasonal cycle in biomass and PFTs differ across the multiple satellite 

algorithms and CMIP5 models at the two subpolar sites? 

• What are the drivers of the seasonal changes in biological indices in the observed data 

and CMIP5 models? Are there consistent mechanistic differences between the functioning 

of the marine ecosystem in the Pacific and Atlantic subpolar regions?   

• We review the previously observed interannual variability in the NE Pacific and discuss 

whether current PFT satellite color products can detect such variability.  

Below we start with a detailed description of methodology (Section 4.2). We next present a quick 

overview of the biological literature at OSP (Section 4.3) and investigate the drivers of subpolar 

phytoplankton biology in a global context (Section 4.4). Section 4.5 is a comparative analysis of a 

grouping of satellite-based biomass and PFT products at our 2 sites of interest. Section 4.6 

presents a CMIP5 model inter-comparison. We conclude the paper with a discussion and summary. 
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4.2 Methods 

4.2.1 Input satellite datasets 

 

A list of biomass/PFT products used in the study and their respective algorithms are described in 

Table 4.1. We use PFT/biomass variables that were either from the backscattering-based, 

absorption-based, radiance-based or abundance-based algorithms that were easily accessible 

online. We chose the algorithms/variables in Table 4.1 because they had at least one or more PFTs 

variables and also these datasets were easily accessible.  

Table 4.1: Synopsis of PFT algorithms and the relevant variables used in the study. We note that 

the PhytoDOAS product has large temporal data gaps in our region of interest.  

Algorithm 

publication(s)/Location 

Acronym 
used in text 

Variables/Uni
ts 

Temporal/Spatial 
resolution 

ABSORPTION-BASED ALGORITHMS 

Bracher et al. (2009), Bracher 
et al. (2017) downloaded from: 

https://doi.pangaea.de/10.1594/
PANGAEA.870486 

PhytoDOAS 

 

Chl-a in 
Diatoms, 
(mg/m3) 

%microCHL 

Aug-2002-Dec 2012 

Monthly 

0.5 degree 

Mouw and Yoder (2010) 

downloaded from: 

https://doi.pangaea.de/10.1594/
PANGAEA.860474 

MY10 

 

Size fraction 
of large 

phytoplankton 

Hereafter 
%micro 

Jan 1998 – Dec 2010 

9km - monthly 

ABUNDANCE-BASED ALGORITHM 

Brewin et al. (2010), Brewin et 
al. (2011) downloaded from: 

http://catalogue.ceda.ac.uk/uuid
/7201151d40683a4420da90c30

640d4fa 

BR10 

 

percent of 
Micro – chl-a, 
nano – chl-a 
and pico – 

chl-a 

Hereafter 
%microCHL, 
%nanoCHL, 
%picoCHL 

10yr (1997-2007) 
climatology 

9km 

RADIANCE-BASED ALGORITHM 

Alvain et al. (2005), Alvain et 
al. (2008) 

downloaded from: 

PHYSAT 

Frequency of 
detection of 

diatoms (% of 
days) 

1997-2010 

Sept 97 – Dec 10 

9km (Only in certain regions 
of the world: North Atlantic; 

https://doi.pangaea.de/10.1594/PANGAEA.870486
https://doi.pangaea.de/10.1594/PANGAEA.870486
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http://www.seanoe.org/data/003
26/43749/ 

Hereafter 
%microfreq 

Equatorial & Tropical South 
Pacific; Southern Ocean) 

BACKSCATTERING-BASED ALGORITHMS 

 

Behrenfeld et al. (2005) 
B05 

Total Biomass 
(mg/m3) 

9km 

Kostadinov et al. (2009), 
Kostadinov et al. (2010), 
Kostadinov et al. (2016) 

Downloaded from 

https://doi.pangaea.de/10.1594/
PANGAEA.870486 

TK16 

 

Total Biomass 
(mg/m3), 

Micro Frac, 
Nano Frac, 
Pico Frac 

Hereafter 
%micro, 
%nano, 
%pico 

9km 

Stramski et al. (2008) S08 
Total Biomass 

(mg/m3) 
9km 

 

Additionally, the global monthly 9 km composites of SeaWiFS Chl-a concentration (derived from 

the Ocean Color Index (OCI) algorithm), photosynthetically available radiation (PAR), and diffuse 

attenuation coefficient for downwelling irradiance at 490 nm (Kd490) from SeaWiFS (2014 

reprocessing), were obtained from NASA's Ocean Color Web (http://oceancolor.gsfc.nasa.gov) for 

the years 1997-2010. Chl-a, PAR and Kd490 are expressed in mgm-3, Einstein m-2 day-1 and m-1, 

respectively. All monthly gridded data from the above table was down-sampled to a 1 resolution 

using two-dimensional convolution with an averaging kernel (as in Kostadinov et al., 2017). If >50% 

of the pixels being averaged were invalid data, the pixel in the down-sampled image was assigned 

a missing data value. We calculate a photoacclimation parameter, which approximates Chl/C, 

following Eq. S10 in Behrenfeld et al. (2016) using the above, PAR and Kd490 parameters and MLD 

described under section 2.2: 

Chl C𝐵′16⁄ =  𝐶ℎ𝑙: 𝐶 =  
1+ 𝑒−0.15 𝑃𝐴𝑅

1+ 𝑒−3𝐼𝑀𝐿
, where 𝐼𝑀𝐿 = 𝑃𝐴𝑅 ×  𝑒−0.5𝐾𝑑490 × 𝑀𝐿𝐷                 [Eq. 4.1] 

Note that the photoacclimation parameter Chl 𝐶𝐵′16⁄  model above is independent of any observed 

Chl-a input and biomass. A complete derivation with equations is in Appendix A.3 and Behrenfeld 

et al. (2016). 

4.2.2 Other input variables 

 

5-day gridded density profiles on a global 0.5 grid were used from the Simple Ocean Data 

Assimilation (SODA) model (soda.tamu.edu, (Carton et al., 2000, Carton & Giese, 2008) to 

calculate active mixing length scale (LMIX, see details in Brody et al (2014)). Prior to any calculations, 

the 5-day data were converted to monthly averages. A merged MLD product was obtained from 

http://www.science.oregonstate.edu/ocean.productivity/mld.html. The merged MLD product is a 

http://www.seanoe.org/data/00326/43749/
http://www.seanoe.org/data/00326/43749/
https://doi.pangaea.de/10.1594/PANGAEA.870486
https://doi.pangaea.de/10.1594/PANGAEA.870486
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temporal combination of numerical derivation of MLD from Simple Ocean Data Assimilation (SODA) 

model (soda.tamu.edu; Carton et al., 2000; Carton & Giese, 2008) from 1998-2004, the Fleet 

Numerical Metrology and Oceanography Center model (Clancy & Sadler, 1992) from 2004-2005  

and Hybrid Coordinate Ocean Model (Bleck, 2002)  from 2005-2010, hereafter “W’16 MLD” or 

“MLD”. The obtained MLD was defined as the depth at which the potential density exceeded a 

surface reference value (generally 10 m) by 0.125 kgm-3 (Westberry et al., 2016).  

The global monthly 4km Advanced Very High Resolution Radiometer (AVHRR) satellite-derived 

sea surface temperature (SST) imagery was obtained from the NASA Physical Oceanography 

Distributed Active Archive Center (PO.DAAC, http://podaac.jpl.nasa.gov/AVHRR-Pathfinder) for 

1997-2009. We further used 13-year (1997-2009) monthly 1° gridded time series of surface ocean 

heat flux (Wm-2) obtained from Objectively Analyzed air-sea Fluxes (OAFlux) project via 

http://oaflux.whoi.edu/data.html. The time series for SST and surface ocean heat flux was only 

available until 2009. We chose to use AVHRR and OAFLUX, because it was one of the most cited 

products. Daily 10 m wind data on a 1° horizontal grid from the ERA–Interim Reanalysis 

(http://www.ecmwf.int/, (Berrisford et al., 2011) was converted to monthly data. Global monthly 

surface partial pressure of carbon dioxide (spCO2) on a 1° grid was obtained from the Carbon 

Dioxide Information Analysis Center (CDIAC, http://cdiac.ornl.gov/) (Takahashi et al., 2009).  

Derivation of the active mixing length scale follows developments by Brody and Lozier (2014, 

2015). Calculations on active mixing length scale LMIX is explained in detail in Appendix A.4, which 

is a depth at which the phytoplankton are primarily mixed.  

4.2.3 CMIP5 Models 

 

We used parameters from a group of Earth System simulations from the recent Coupled Model 

Intercomparison Project CMIP5 (Taylor et al. 2012) that incorporate ocean ecosystem 

representation with at least two phytoplankton groups. CMIP5 model output was downloaded 

from http://pcmdi9.llnl.gov/esgf-web-fe/. We chose 13 models based on the availability of the 

variable phytoplankton (phyto or biomass), diatoms, integrated primary production (Int(PP)), MLD, 

PAR, Chl-a, nitrate (NO3), iron (Fe), zooplankton and C/Chl-a. The models used are CESM1-BGC, 

GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-CC, GISS-E2-R-CC, HadGEM2-ES, MPI-ESM-MR, 

MPI-ESM-LR, NorESM1-ME, CanESM2, IPSL-CM5A-MR, IPSL-CM5A-LR, MRI-ESM1. We note 

that only a subset of these models has multiple phytoplankton groups, these are: CESM1-BGC, 

GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-CC, GISS-E2- R-CC, HadGEM2-ES, and IPSL-CM5A-

MR. HadGEM2-ES, MRI-ESM1 and MPI-ESM-MR are the models with fixed C/Chl ratios. Model 

output is used for the SeaWiFS time span (1998 to 2010). Years 1998 to 2005 are based on the 

historical CMIP5 scenario forced by observed atmospheric changes (both anthropogenic and 

natural). Years 2006 to 2010 are based on the RCP8.5 emission scenario (Riahi et al. 2011). Table 

C1 provides details and references for the models. All model output was resampled to a 1o grid. 

We note as a caveat that a direct comparison between the observed (Figure 4.3c) and modeled 

light (IPAR in Figure 4.4,4.5) is unrealistic as ‘IPAR’ from models is the net downward shortwave 

flux at sea the surface whereas the SeaWiFS product is the photosynthetically active radiation 

(PAR) at the ocean surface, that is energy flux from the Sun in the 400-700nm range.  

 

http://podaac.jpl.nasa.gov/AVHRR-Pathfinder
http://oaflux.whoi.edu/data.html
http://www.ecmwf.int/
http://cdiac.ornl.gov/
http://pcmdi9.llnl.gov/esgf-web-fe/
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4.3 OSP Background: a quick review. 

 

Fe stress at OSP has been confirmed by numerous biophysical and biochemical markers (Roche 

et al., 1996, Wong et al., 1999). In-situ Fe addition experiments showed that pennate diatoms grow 

up and drawdown nitrate and silicate ( Martin & Fitzwater, 1988; Boyd et al., 1998). The importance 

of Fe in the NEP Subarctic was partly established by three mesoscale Fe fertilization experiments: 

the Subarctic Iron Enrichment for Ecosystem Dynamics Study (SEEDS) in 2001, Subarctic 

Ecosystem Response to Iron Enrichment Study (SERIES) in 2002, and SEEDS II in 2006. Takeda 

and Tsuda (2005) (SEEDS) saw an increase of 2-5 times in nanoplankton but a 45-fold increase in 

diatoms. Marchetti et al. (2006) saw an increase in all size classes followed by a diatom bloom over 

8 days, whereas Uematsu et al. (2009) observed no diatom bloom with picophytoplankton 

dominating the biomass and productivity increase. Because the phytoplankton communities were 

very similar before fertilization for all three experiments – dominated by small phytoplankton 

(prymnesiophytes and cholorophytes), the diversity of responses to Fe fertilization suggests an 

important role for grazing dynamics (for further discussion, see Kearney et al. (2013)). Iron-light co-

limitation during winter at OSP was suggested by Boyd et al. (1996) and demonstrated by 

Maldonado et al. (1999). 

Additionally, Wong et al. (2002) note that diatoms around OSP have unusually high silicate (Si) 

requirements, which can also act as limiting nutrient in the rare cases of excess iron (Fe). Smaller 

phytoplankton types thrive relative to the larger species under conditions of nutrient limitation, and 

therefore make up the bulk of phytoplankton biomass at OSP and other offshore stations along 

Line P (Mackinson et al., 2015). There is low seasonal variability of primary production at OSP 

(Harrison, 2002). Plant et al. (2016) investigated the mechanisms that initiate bloom conditions at 

OSP with net community production (NCP) measurements from 2008-2013. OSP waters have a 

permanent and sharp salinity gradient, which produces a density gradient that limits the mixing of 

the water column to depths of 120m. The mixed layer varies between 40m in the summer to 90-

120m in winter (Timothy et al., 2013). The deepest mixing occurs in February to March and entrains 

nitrate, salt and Fe back into the surface layer. As surface waters warm and freshen (starting around 

April), and wind speeds decrease, the MLD shoals to a minimum that can reach even 20m by 

August. The phytoplankton seasonal cycle exhibits two peaks: at the end of May (Spring bloom) 

and at the beginning of August (Plant et al., 2016) with a local minimum between these two peaks 

corresponding to the annual peak in zooplankton and therefore grazing. The shallow mixing depths 

increase the concentration of zooplankton, which supports grazing on phytoplankton species (Plant 

et al., 2016). 

Episodic Chl-a events have been previously noted at OSP (Parslow, 1981), due to natural climatic 

variabilities such as ENSO, PDO and NPGO affecting the nutrient (Di Lorenzo et al., 2008; Messié 

& Chavez, 2013) and iron inputs or episodic iron input following a volcanic fertilization events 

(Kearney et al., 2015). The boundary between the coastal, nitrate limited area and the Fe limited 

offshore area can shift more offshore due to El Niño and onshore due to La Niña events. Lower 

winter nitrate supply during El Niño is estimated to have reduced new production by 40% and 

possible shifted large phytoplankton to a smaller phytoplankton size (and a longer food chain) with 

possible effects on higher trophic levels (Whitney et al., 1998).  
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4.4 Global phytoplankton regimes 

 

To understand the global drivers of variability in phytoplankton, we show monthly temporal 

correlations of logarithmic decimal phytoplankton biomass and physical indices in Figure 4.1 for 

the three carbon-based algorithms (TK16, B05 and S08) and in Figure C1 for percent Micro 

phytoplankton (TK16 %micro, MY10 %micro, PhytoDOAS %microCHL and PHYSAT %microfreq). 

SST and TK16 Biomass are inversely correlated in the tropics and mid latitudes, as has been shown 

before when using Chl-a instead of biomass (Irwin & Oliver, 2009; Martinez et al., 2009). The 

relationship is positive when correlating biomass (or Chl-a) with MLD (not shown) or with wind 

(Figure 4.1). Kahru et al. (2010) saw a strong correlation wind-Chl, but Chiswell et al. (2013) found 

a much weaker correlation, which suggest that the driver of Chl-a is complex. In general, SST, 

wind, and MLD indicate the level of mixing, such that more mixing (colder, increased wind speed, 

or deeper MLD) exposes phytoplankton to deep cold nutrient waters favorable for growth at low 

and mid latitudes. In agreement, wind and SST hold an inverse relationship (e.g. Seager & 

Murtugudde, 1997; Kahru et al., 2010).  North of 40ºN and south of 40ºS (light-limited regime), the 

correlation is opposite to the one found at low latitudes, which indicates that the phytoplankton 

growth can be triggered if MLD or wind decrease. These relationships were also reported when 

using Chl-a (Wilson & Adamec, 2001; Henson et al., 2009; Cabré et al., 2016), TK16 Biomass 

(Cabré et al., 2016) and phytoplankton timeseries (Barton et al., 2015) with SST and MLD. These 

opposite correlations seen in light-limited regions can be explained if strong mixing tend to increase 

the depth of vertical mixing sufficiently to remove phytoplankton from the euphotic zone and 

therefore reduce their average light levels required for photosynthesis.  

The active mixing length scale (LMIX) was introduced by Brody et al. (2014) as a proxy for the 

nutrient supply to the surface water via mixing.  LMIX switches between convective mixing - usually 

represented by MLD (as in Dutkiewicz et al., (2001)), wind mixing (LEK) and stratification or changes 

in surface heat fluxes (e.g. Taylor and Ferrari (2011)). For the Northern subpolar region where our 

OSP and NABE box are located, the ocean gradually gains heat during February and March (Figure 

C2), such that the area covered by case 1 (LMIX = MLD) gradually shrinks and slowly transitions to 

case 2 (LMIX = LEK) as the wind intensifies counteracting the convective mixing in April through 

September (Figure C2). LMIX for North Atlantic subpolar is given by the MLD (Case 1) in December, 

January, February, and partially in March. In contrast, North Pacific subpolar, LMIX is given by LEK 

in January through May. The difference between North Atlantic and North Pacific, in spite of being 

in similar wind regimes, is due to the convective mixing counteracting the wind-driven mixing in the 

North Atlantic. Evidence being that the MLD is much deeper in the North Atlantic compared to the 

Subpolar North Pacific (at least in the Eastern region). In the subpolar region, the LMIX is driven by 

wind or LEK (Case 2) at least 70-80% of a complete annual cycle (Figure C2).  

The seasonal correlation of TK16 biomass with LMIX is similar to the winds, significant and positively 

correlated in subtropics and subtropical front and negatively correlated in the subpolar regions 

(Figure 4.1b&c). In the subtropics the enhancement of vertical mixing via LMIX boosts the 

phytoplankton growth during winter (January-March), whereas in the subpolar regions vertical 

mixing negatively affects the phytoplankton growth during winter and it is the increase in light during 

spring that allows the phytoplankton to bloom. We also investigate the Heatlfux-biomass 

relationship independent of that from LMIX (as case 1). Heatflux-TK16 Biomass correlation patterns 

are similar to SST-Biomass in subpolar. The positive relationship between Heatflux- TK16 Biomass 
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(Figure 4.1d) suggests that the ocean heat gain in the subpolar is associated with increase in 

biomass, which is consistent with “convection shutdown theory” proposed by Ferrari et al. (2015). 

The theory suggests that as the water column gains heat after the winter cooling, the stratification 

develops in the water column. The reduction of the mixing of surface water with deep water, traps 

the winter nutrients in the surface ocean triggering the phytoplankton bloom in subpolar regions. 

The negative Heatflux- TK16 Biomass relationship in low latitudes suggests that as the ocean gains 

heat (positive into ocean), the water column stratification develops, restricting the mixing of already 

shallow MLDs, that reduced the nutrient supply for photosynthesis despite high levels of light being 

available. Positive seasonal correlation between TK16 Biomass and PAR in the subpolar regions 

coincide with the light during spring. Light is readily available in the subtropics all year around for 

the phytoplankton, therefore opposite sign for the correlations exist between light and Biomass 

(Figure 4.1e). Cabre et al (2016) show similar results using the TK16 biomass and PAR. 

Local grazing activity that may differ at various locations and affect the biomass and Chl-a 

independent of the locations and their correlation with the physical indices (Follows & Dutkiewicz, 

2002). For example, due to the difference in the environmental conditions, phytoplankton 

production and species composition, the copepods in the North Pacific lay their eggs just after 

winter hibernation before the copepods in the North Atlantic that lay their eggs after spring. Such 

difference allows the grazing to be stronger in the North Pacific during the spring bloom (as the 

larvae is ready to feed on bloom) than in North Atlantic (Cole et al., 2015). During the SEEDS and 

SERIES experiment, Tsuda et al. (2007) observed that the grazing rate of copepods were 35% of 

primary production at OSP. 

The strength of correlation of S08 biomass-physical and TK16 biomass-physical indices are similar 

except in the inner subtropical gyres where the TK16 biomass show stronger relationship with SST, 

LMIX and Heatflux (compare Figure 4.1a-e and k-o). The biomass-physical relationships in the B05 

biomass are much weaker than in TK16 & S08 biomass in the tropics and subtropics albeit the 

signs are similar. North of 40ºN and below south of 40ºS, B05 exhibits stronger correlations with all 

the physical variables. The fact that correlations are strong at low and mid-latitudes for TK16 and 

S08 and strong in high-latitudes for B05 suggests that TK16 and S08 might be biased towards 

nutrient-limited characteristics of subtropical regimes whereas B05 is biased towards light-limited 

estimates of subpolar regimes. TK16 %micro and MY10 %micro relationship with physical indices 

is stronger than the relationship of physical indices with PhytoDOAS %microCHL and PHYSAT 

%microfreq (Figure C1). However, the correlation significance is greater in MY10 with physical 

indices for the subpolar regions than that of the TK16 %micro, indicative that MY10 has similar 

light-limited biases as B05. TK16 %pico show similar correlation patterns as to TK16 %micro with 

opposite signs.  

4.5 Contrasting PAPA versus NABE  

 

4.5.1 Seasonal cycles in multiple biomass products 

 

Figure 4.2 shows the seasonal cycle of phytoplankton biomass, PFT and Chl-a for different 

datasets (Table 4.1) in the NP and NA regions. Despite being in similar climate regimes (with similar 

light and wind patterns), OSP and NABE are thought to represent different ecological regimes. 

Buesseler and Boyd (2009) argue that the (light and nitrate limited) North Atlantic has a very 
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efficient export of organic matter to 100m and weak attenuation of the particulate organic matter 

flux below 100m, whereas the (light and iron limited) North Pacific has low export ratios and strong 

attenuation within the upper 100m, perhaps because small phytoplankton dominate. At OSP, 

previous work has shown that bottom-up control related to Fe limitation is most important for large 

phytoplankton (Muggli & Harrison, 1996; Harrison, 2006; Marchetti et al., 2006), whereas 

microzooplankton grazing exerts a strong top-down control on pico- and nanoplankton. Iron-light 

co-limitation of primary production results in high nitrogen and silicate even during the summer 

(Whitney et al., 1998, Harrison et al., 2004). In the NP, the mixed layer varies seasonally between 

40m in summer and 90-120m in winter, thereby allowing winter replenishment of nitrate and silicate 

to the mixed layer. Westberry et al. (2016) pointed out major differences between Chl-a and 

biomass cycles in the NP and NA subpolar boxes, as indicated by the Chl-a product and B05 

biomass product (reproduced in Figure 4.2f&m). They observe that the NP and NA boxes exhibit 

similar magnitude biomass cycles, although the seasonal cycle of Chl-a is much larger in the NA 

and almost absent in the NP. They argue that hence Chl-a is not a good indicator for biomass, and 

that the differences in the Chl-a and biomass cycles for the NP reflect instead strong iron-

dependent photoacclimation. 

Figure 4.2 shows that in the NA, a major peak occurs in spring when light-limited phytoplankton 

can bloom as light increases and winter nitrate levels are still high. During summer a nitrate limited, 

low Chl-a and biomass regime develops (Sverdrup, 1953), and a secondary, weaker bloom in the 

fall as nutrients start to grow again. The seasonal pattern for the NA box (blue line) is qualitatively 

consistent across satellite products, with blooms in %micro, %nano, total biomass and Chl-a in 

April to June across all products. TK16 and Chl-a have more pronounced secondary fall peaks than 

the B05 product and the fall peak is associated with peaks in both %micro and %nano.  

In contrast, at NP, various products are both qualitatively and quantitatively inconsistent with each 

other. The average month in which maximum biomass occurs varies among different products, 

from August-September in the B05 product, October-November in the S08 product, to November-

December in the TK16 products. The S08 or TK16 products (Figure 4.2) show with far less seasonal 

biomass variation in the NP box when compared to B05 (as in Westberry et al. (2016)). The results 

imply a very different story from Westberry et al. (2016), more in line with the “classical” 

understanding of the NP ecology (Evans & Parslow, 1985): zooplankton keeps large phytoplankton 

from blooming in the spring and summer in the NP, whereas photoacclimation is less important 

there than suggested by Westberry et al. (2016). Kostadinov et al. (2017) extending work of Hirata 

et al. (2012), made a global and regional intercomparison of the various biomass products and 

found that the variables from various algorithms agree globally to some extent, whilst vast 

differences exist in the regional picture, such as in subtropics (North Atlantic Drift Region and 

Subtropical Gyre West). 

The authors caution that TK16 PFTs (Figure 4.2b,g,k) can be more trusted than the total TK16 

biomass (Figure 4.2a). The TK16 biomass is calculated from the number of particles assuming that 

most particle backscatters are mostly living cells or organic detritus and spherical in shape. On the 

other hand, the TK16 PFTs are a function of particle size distribution (PSD) slope that is 

independent of TK16 biomass, but they are not independent of each other (Kostadinov et al. 2016). 

Both BR10 and TK16 products show %nano dominating over %micro and %pico at NP, with two 

seasonal peaks in %nano (Figure 4.2b,c,h&l): an initial one in the spring and a second one either 

in October (BR10) or December (TK16). MY10 %micro and PHYSAT %microfreq show one long 



 
 

45 

seasonal peak from May through September, with a larger diatom peak in PHYSAT %microfreq 

(Figure 4.2d&e).  

4.5.2. Physical Drivers of Seasonality at PAPA and NABE 

 

A comprehensive investigation on physical drivers of seasonality in TK16 product has been 

documented in the global and subpolar regions by Cabré et al. (2016), but on a wider geographic 

scale. At the NA box (Figure 4.3, blue), we observe that as the MLD and/or LMIX decreases (Figure 

4.3a,b,&g), perhaps due to the combination of decrease in wind speed (Figure 4.3b) and/or heat 

gain by the ocean (positive, Figure 4.3d) and/or increase in light availability (Figure 4.3g), the 

biomass, %PFTs, and Chl-a increases across all the products during spring. As the phytoplankton 

growth increases during the spring, the surrounding nutrient in the waters decrease that is observed 

in Figure 4.3f, where the nutrient concentration declines in the NA box. The shoaling of the vertical 

mixing parameters (MLD and LMIX), traps the nutrients from the winter mixing that allows bloom. 

However, the fall bloom can be explained by the opposite mechanism, where the increase in MLD 

and/or LMIX due to the combination of increase in wind speed (Figure 4.3b) and/or heat loss by the 

ocean breaking the summer stratification and allows mixing of surface waters with deep nutrient 

rich waters. We observe a small peak in nutrient from September to December (Figure 4.3f in blue), 

that is reflected by the increase in phytoplankton growth (Figure 4.1i-j,m).  

In contrast, as described earlier the NP box has a different seasonal cycle. TK16 biomass, %micro 

and %nano (Figure 4.2a-b,g), S08 biomass (Figure 4.2j), BR10 %microCHL and %nanoCHL (Figure 

4.2c&h), MY10 %microCHL (Figure 4.2e) and Chl-a (Figure 4.2m), slightly capture the fall bloom. A 

very small fall bloom in MY10 %microCHL and Chl-a are observed. The drivers of fall bloom in the 

NP are consistent with those ones in the NA. However, unlike NA, biomass at NP during 

spring/summer is decreasing across all the products except in B05 biomass, PHYSAT, and MY10, 

indicating that the other mechanisms play a role. The winter mixing at NA is deeper than at NP 

allowing more nutrients to get exposed to surface ocean in NA than NP. Therefore, as the MLD, 

and LMIX are shoaling during the spring in NP (Figure 4.3a-c&e), one can postulate that perhaps 

not enough nutrients are being trapped in the water column to boost the phytoplankton growth 

compared to NA. But this cannot be true because the nutrients are available in abundance at NP, 

as previously reported (Martin & Fitzwater, 1988; Martin et al. 1989). As previous studies have 

shown, it is possible that Fe limitation, or grazers such as zooplankton could be keeping the 

phytoplankton biomass in check following the spring bloom (Sommer, 1996; Cole et al., 2015).  

Overall to explicitly separate the physical mechanisms controlling the biology at NP, we conduct a 

correlation of physical indices against all the biomass and PFTs over 1997-2010 period. The 

correlation of physical indices against B05 biomass, PHYSAT, and MY10 (Table C3) over 1997-

2010 period suggest light limitation at NP. Stronger winds, and deeper LMIX dilutes the surface 

phytoplankton and thus cause light-limitation decreasing the B05 biomass, PHYSAT, and MY10 

percent micro. The correlations for S08 biomass and Chl-a are insignificant with physical indices at 

NP indicating weak and/or no relationship exists. However, TK16 %micro and %nano suggest 

nutrient rather than light limitation during spring. Strengthened winds and ocean heat loss deepens 

the LMIX, replenishing the surface waters with more nutrients. Increased nutrients are favorable to 

larger phytoplankton, that outcompetes the small phytoplankton increasing the total biomass. We 
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notice that TK16 %pico seems to act like the B05, PHYSAT, and MY10. We further explore the 

above mechanisms at NA and NP using the models.  

 

4.6.0 Biological seasonality across CMIP5 models in the northern subpolar 

regimes. 

 

We next analyze in detail the annual cycle of biological indicators and physical/biogeochemical 

stressors across CMIP5 models for the NP (Figure 4.4) and the NA box (Figure 4.5). To summarize 

our findings across the 2 subpolar regimes, we also perform scatterplots of most important 

properties across models in Figure 4.6 and 4.7.  

4.6.1 Seasonal cycle in CMIP5 models at NP:  

 

In our observations at NP, MLD peaks at around 70m during winter and shallows to 20m during the 

summer months (Figure 4.3); most models reproduce reasonably well the summer and winter 

seasonality and magnitude except for NorESM1 and CESM1 which deepen excessively during 

winter (~200-400m). The NO3 cycle generally follows the MLD annual cycle at NP and is high during 

winter and low during summer. The observed winter and summer NO3 (Figure 4.2) levels are 9-12 

mmol m-3 and 4-6 mmol m-3, respectively. All the models underestimate the winter NO3 levels (<9 

mmolm-3), except MPI-ESM-MR, NorESM1-ME and HadGEM2-ES that are similar to the observed 

NO3 levels. MPI-ESM-MR, and NorESM1-ME overestimated (>6 mmol m-3) the NO3 levels in 

summer, while the remaining models underestimate them by an order of magnitude. Observed 

surface Fe levels typically stay between 0.05 and 0.1 nM in late spring and winter (Harrison, 2002) 

at OSP. All models in the NP box show Fe concentration between 0.2nM and 2nM, for winter and 

summer respectively, except GISS-E2-H-CC that shows a constant Fe concentration of 1.5nM 

throughout the year.  In general, the Fe concentration is overestimated for NP box in CMIP5 

models.   

At NP, phytoplankton biomass and Chl-a are fundamentally different across various observed 

databases and CMIP5 models. Most CMIP5 models show Chl-a and phytoplankton peak during 

May and in a few models a secondary small peak in November (rather than September), with values 

below 60mg/m3 (5mmol/m3) in accordance with observations. However, MPI-ESM-MR, HadGEM2-

ES, and NorESM1-ME show phytoplankton values up to 4 times larger (Figure 4.4a), that is 

presumably due to largest NO3 levels that fuels the phytoplankton growth (Figure 4.4d). Models at 

NP show high diatom fraction during winter (HadGEM2-ES, CESM1-BGC) or spring months (GISS, 

GFDL models) when MLD is deeper and nutrients are abundant, and lowest during the summer 

months when MLD is shallowest and the system is more stratified. The HadGEM2-ES model has 

the largest fraction of diatoms at NP, accounting for 50- 80% of the biomass and peak in Feb-March 

and in Sept-Oct when the Fe and NO3 levels are at their maximum. The CESM1 model has the 

second highest diatom fraction, accounting for 30-50% of the total biomass (Figure 4.4e). Despite 

its very deep MLD in winter and spring and considerable amount of winter/spring surface nitrate, 

CESM1 model has the second lowest surface Fe among all models (and the third lowest surface 

Fe/NO3 ratio, and it has a modest seasonal cycle of phytoplankton biomass and Chl-a relative to 

its nitrate (Figure 4.6a).  In the GFDL model diatom fraction is overall <10% of the phytoplankton 
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population (Figure 4.4e) during spring. In the highly-stratified and nitrate limited summer waters, 

the smaller plankton account for the majority of the biomass, as indicated by the drop in NO3 relative 

to Fe in the summer months (Figure 4.4g&h). Cabre et al. (2016) show that models tend to have 

unrealistic dominance of small phytoplankton in HNLC waters during blooming months also. IPSL 

diatom fraction model accounts for approximately 20% of the phytoplankton population, which is 

greater than GFDL. The difference could be owing to greater NO3 concentration in IPSL than GFDL 

at NP.  

  4.6.2 Phytoplankton at NA 

 

In NA, the observed MLD (W’16 MLD) peaks at around 100-150m during winter and shallows to 

20m during the summer months (Figure 4.3); most models reasonably represent the summer 

seasonality and magnitude compared to the observed MLD (Figure 4.5i). Almost all models show 

deeper MLD during winter (up to 200 or 400m), except HadGEM2-ES, CanESM2, MRI-ESM1 and 

IPSL-CM5A-MR which are consistent with the observed MLD. The NO3 levels are lower at NA box, 

~3-5 mmolm-3 during winter and less than 1 mmolm-3 during summer. The winter NO3 

concentrations in most of the models are close to observed winter NO3 values, except IPSL-CM5A-

MR, GFDL-ESM2G and NorESM1-ME overestimates the NO3 concentration (Figure 4.5g).  The 

observed Fe concentration is between 0.71-1.56nM at NA (Laës et al., 2003). CESM1-BGC, GFDL-

ESM2G, GFDL-ESM2M show reasonable Fe concentrations at NA, whereas most of the models 

underestimate the Fe concentration values throughout the annual cycle, except GISS-E2-H-CC 

and GISS-E2-H-CC overestimates the Fe concentration values. HadGEM2-ES and MPI-ESM-MR 

show a constant value of 1.5nM throughout the annual cycle (Figure 4.5h). 

The classical 2 bloom feature (a strong light-nutrient co-limited spring bloom and a weaker fall 

bloom corresponding to an increased MLD and resupply of nitrate) is visible for some of the models 

in both phytoplankton biomass and Chl-a. The peaks in model biomass, Chl-a, and percent diatoms 

occur in May-June and correspond (in most models) to MLD decreasing, in agreement with a 

hypothesized Sverdrup-like light limitation of biology. In other words, the peaks in percent diatom, 

and biomass occur after the peaks in MLD. The NO3 decreases during the peak in MLD and 

diatoms suggesting the nutrient depletion in the system due to phytoplankton growth. CanESM-2 

is the only model that show one winter peak in phytoplankton biomass possibly due to shallow MLD 

throughout the annual cycle and a slight deeper winter MLD. The GFDL model does not show a 

fall bloom in the phytoplankton biomass but obvious fall peak in diatom/phyto (diatom relative to 

phytoplankton biomass) and Chl-a. GFDL model diatom accounts for <15% of total phytoplankton 

biomass, and greater percentage by small phytoplankton.  

4.6.3 Comparison of NP and NA seasonal cycle and their mechanisms 

 

To summarize model behavior, we perform scatterplots of the most important properties across 

models and plot the NP boxes against the NA boxes (Figure 4.6). Important additional properties 

at the two sites across models are shown in Figure 4.7 and Table C2. Our expectation, based on 

fundamental understanding of OSP dynamics (Section 4.3), observations of Chl-a (Figure 4.2m) 

and multiple biomass products (Figure 4.2), is that the seasonal cycles of phytoplankton biomass 
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and Chl-a should be smaller in the NP box compared to the NA box. We verify if the same exists 

across all the CMIP5 models.  

We calculate the normalized amplitude of the seasonal cycle for a variable as the difference 

between the maximum and minimum values, normalized to the average variable value. The 

normalized parameters allow us to look at the relative seasonal changes in variables, rather than 

absolute change, normalizing to uncertainties across models. We find that phytoplankton biomass, 

Chl-a and PP vary by up to 5 times during the seasonal cycle (Figure 4.6h-j) in the models. On 

average, models with a larger phytoplankton biomass seasonal cycle tend to have a stronger Chl-

a, PP and zooplankton seasonal variability (Figure 4.7).  Based on a comparison of the seasonal 

cycle of Chl-a, biomass and PP at the NA and NP sites we can broadly separate the models in two 

categories: Group 1 (CESM1, 2GFDL, 2GISS, 2IPSL, MRI models), and Group 2 (HadGEM2, 

NorESM, CanESM2 and 2MPI models). 

GROUP 1 models (CESM1, the two GFDL, two GISS, two IPSL, MRI) are characterized by  

normalized Chl-a, biomass and PP seasonal cycles which are weaker in the NP than in the NA box 

(Figure 4.6 & Table C2). Reflecting the weaker phytoplankton blooms in the NP, these models also 

have weaker normalized zooplankton seasonal cycles in the NP. We hypothesize that weaker 

seasonal cycles in phytoplankton is partly due to (Hypothesis 1) weaker Fe supply and biological 

uptake at NP and partly due to (Hypothesis 2) tighter zooplankton grazing at NP relative to NA. 

Hypothesis 1: weaker Fe supply. A weaker Fe supply at NP (relative to NA) would limit growth 

(particularly of larger phytoplankton) and would result in less Fe uptake at NP relative to NA during 

the growing season. This mechanism is reflected by the weaker normalized Fe seasonal cycle at 

NP compared to NA in most Group 1 models. The weaker Fe seasonal cycle we observe might in 

turn be explained by (a) a weaker MLD seasonal intensity at NP (~1-2) relative to NA (~2-3) which 

would decrease the vertical supply of Fe as observed in our data or (b) due to a smaller fraction of 

wind-driven Fe reaching the NA relative to NA.  

Hypothesis 2: tighter zooplankton grazing. As shown in Figure 4.6l, C4, Table C2 and Figure 4.7f, 

the ratio of Zoo/Phyto (zooplankton biomass relative to phytoplankton biomass) is higher at the NP 

compared to the NA box during all months of the year in these models (with the exception of GFDL-

ESM2M, where the relationship switches in the summer). This switch suggests a grazer population 

that keeps a tighter check on phytoplankton growth at OSP compared to the NA throughout the 

year. Note that grazing is tighter happens despite the overall average zooplankton biomass is lower 

at NP. The 2 GFDL models stand out especially in the NA box, with unusually large peak PP and 

zooplankton biomass relative to their peak phytoplankton biomass, indicative of a relatively strong 

zooplankton control in this model (Figure 4.7f, also see large zoo/phyto ratios in Table C2). We find 

that Group 1 models (except for GISS models) have a smaller diatom fraction at NP than at NA. 

This observation agrees with both Hypotheses above. Both a weaker normalized seasonal nutrient 

supply, in particular Fe, or a tighter control of grazers (particularly of larger phytoplankton) would 

contribute to a smaller diatom fraction at NP relative to NA. 

GROUP 2 models (HadGEM2, NorESM, CanESM2 and two MPI models) are characterized by 

normalized Chl-a, biomass and PP seasonal cycles which are stronger in the NP than in the NA 

box (Table C2, Figure 6.6). Additionally, the HadGEM2, MPI and NorESM models are characterized 

by unusually large blooms at NP, with average and maximum values in PP and biomass about 2-
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4 times larger at NP compared to NA. The above observation is rather counterintuitive and opposes 

the classical Chl-a observations and our classical understanding of NP and NA dynamics (Section 

6.4.5, also Figure 4.2). We hypothesize that the unusual phytoplankton behavior in these models 

is due to a combination of (unrealistic Mechanism 1) higher nutrient uptake at NP and (unrealistic 

Mechanism 2) less efficient zooplankton grazing at NP relative to NA. 

Unrealistic Mechanism 1: We note that unlike Group 1 of models, the seasonal MLD cycles at NA 

and NP are close to each other in Group 2 models (Figure 4.6e &Table C2). The HadGEM2, 

NorESM and 2 MPI models have larger average NO3 at NP compared to NA. Assuming NO3 

limitation at NA, this would result in larger phytoplankton blooms at NP compared to NA. 

Additionally, Group 2 models which include Fe as a model tracer the stronger normalized Fe 

seasonal cycle at NP compared to NA (HadGEM2, 2 MPI models and NorESM1, Table C2), again 

reflecting the higher nutrient uptake (less nutrient limitation) at NP. 

Unrealistic Mechanism 2: can be applicable to the HadGEM2 and MPI models only, as the NorESM 

model does not providing the grazing information as one their model variable output, whereas the 

CanESM model has under-represented zooplankton grazing at our locations of interest (e.g. Figure 

C4). Corresponding to stronger phytoplankton blooms, the HadGEM2 and MPI models have larger 

average zooplankton at NP compared to NA (Figure 4.7f), as well as larger seasonal variability in 

Zooplankton [max(Zoo) – min(zoo)] at NP compared to NA. However, as shown in Figure 4.6 & C4, 

the ratio of Zoo/Phyto is weaker at NP compared to NA box during most months of the year, 

reflecting a weaker zooplankton control on phytoplankton in the NP compared to the NA.  

In conclusion, based on our current understanding of phytoplankton dynamics and observational 

assessments (Section 4.3-4.5), we propose that the Group 1 models are more realistic in their 

assessment of phytoplankton seasonal dynamics at NA and NP. We discuss the potential reasons 

in Section 4.6.5.  

4.6.4 Seasonality of Chl-a relative to phytoplankton biomass 

 

Cells photoacclimate to the increase in light supply during summer, reducing their Chl-a production 

relative to biomass; this decrease is reflected in the C/Chl model calculated as in Behrenfeld (2015) 

(see Methods and Figure 4.2n). Incident radiation shows a maximum around June across models, 

where the peak values vary by up to 30% across models at both sites (Figure 4.4&4.5). All other 

models allowing a varying C/Chl ratio, indeed show that the phytoplankton C/Chl ratio increases 

during summer months at both locations (Fig 4.4c,4.5c), as expected from photoacclimation 

arguments (Westberry et al., 2016). Interestingly, the peak C/Chl is larger in the NP box compared 

to NA for all models except for IPSL-CM5A-MR, despite similar light levels at the two sites. This 

finding agrees with the observation of Westberry et al. (2016) (their Figure 4.4) who argued that 

the NP and NA difference in C/Chl is not due to different acclimation (light) effects at these 2 sites, 

but to the relatively stronger Fe limitation at NP, which would limit Chl-a and increase C/Chl at NP 

relative to NA. We observe that latter is true for our more realistic models (Group 1 models), as 

shown by a ratio of normalized Fe concentration higher in NA than NP (Table C2). We notice that 

C/Chl is larger in models relative to the expected Chl 𝐶𝐵′16⁄  (Figure 4.2n); the reasons for which will 

be explored in future work.  
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 4.6.5 Grazing, Iron and light in the CMIP5 models 

 

We propose that differential modeling of grazing and iron limitation creates the large inter-model 

changes observed across models in Section 4.6, particularly in the HNLC regions. 

Grazing: Various modeling groups make different choices with respect to representing the 

phytoplankton and zooplankton groups. However, most groups include the basic Nutrient 

Phytoplankton Zooplankton Detritus (NPZD) biogeochemical model. A single spectrum of 

zooplankton in the model represents the highest trophic level grazing on a single phytoplankton 

class (Robson, 2014). Zooplankton is typically included in the models as a “top closure term” which 

means that the mortality rate in the zooplankton compartment is treated as both a natural and 

predatory mortality rate (Edwards & Yool, 2000). For example, the GFDL model does not have any 

zooplankton groups, only a specific grazing rate of each PFT, while the IPSL model has 2 

zooplankton size groups.  Grazing is the dominant loss term for phytoplankton in the real ocean 

(Banse, 1994). However, as summarized in Table C1, there are systematic and large differences 

in grazing parameterizations across biogeochemical modules embedded in ESMs that – we 

propose – can explain most of the observed differences observed between the Group 1 and Group 

2 models in Section 4.6.  

We note that models in Group 2 have one phytoplankton type (NorESM, CanESM2 and two MPI 

models), with the single exception of the HadGEM2 model. Among models with only one type of 

phytoplankton, MPI-ESM and NorESM1-ME use a Holling type II shape to parameterize grazing, 

which assumes a hyperbolic predator intake rate with increasing prey concentration following a 

Michaelis–Menten curve. Models CanESM2, and MRI-ESM1 (with simple NPZD biogeochemical 

modules) use a Holling type III shape, which assumes a sigmoid predator intake rate, with 

accelerating predator intake at very low prey concentrations and saturation at high prey 

concentrations. Additionally, all of these models include phytoplankton loss and aggregation terms 

as a linear or quadratic function of phytoplankton concentration. The more sophisticated HadGEM2 

model applies a Holling type II curve to parameterize grazing, with additional switches on predation 

rates depending on abundances of small and large phytoplankton. 

Group 1 models (CESM1, the two GFDL, two GISS, two IPSL) have at least two phytoplankton 

types; the one exception is model MRI with 1-phytoplankton type. The GISS-E2 models apply the 

Ivlev formulation to parameterize grazing (similar to Holling type II) with a grazing rate independent 

of phytoplankton type, while the other Group 1 models have a grazing that depends on 

phytoplankton types. Specifically, IPSL-CM5A models include two types of zooplankton and apply 

a Holling type II grazing scheme with grazer preference, again in order to ensure that grazers can 

keep up with small phytoplankton but not with diatoms. CESM1 applies a Holling type III grazing 

formulation also with different predator intake rates for small and large phytoplankton, again 

decoupling phytoplankton biomass from PP and breaking the relationship expected for bottom-up 

control alone. Finally, in the GFDL-ESM2 models, zooplankton are not modeled as a separate 

group; grazing losses are instead modeled as a function of phytoplankton to the power of 2 for 

small phytoplankton and 4/3 for large phytoplankton, in order to ensure that zooplankton are able 

to easily and effectively graze on small phytoplankton than on diatoms, as observed in situ (Dunne 

et al., 2005). Since the GFDL models have a very large fraction of small phytoplankton at both NP 

and NA, the grazers thrive resulting in a strong role for zooplankton as reflected by a very large 

Zoo relative to Phytoplankton biomass (see Figure 4.6l, 4.7f and Zoo/Phyto ratios in Table C2), as 
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well as a decoupling between PP and phytoplankton biomass, with a relatively low phytoplankton 

biomass relative to PP in this model (see Figure 4.6e).  

Concluding, we note that in the most complex models (IPSL, CESM1, GFDL), the fraction of small 

phytoplankton is always larger at NP compared to NA, presumably due to lesser nutrient supply at 

NP. Because of their size-dependent grazing parameterization, grazers can keep down the 

phytoplankton population at NP most efficiently, resulting in a lower seasonal uptake of nutrients 

and lower normalized Chl-a and biomass seasonality in these models at NP compared to NA. We 

propose that the resulting Group 1 model biological patterns match better the seasonal cycles 

across satellite-based products than the group 2 models. Our observations agree with previous 

work (Hashioka et al., 2013), that different grazing parameterizations create large differences in 

the relative contributions of bottom-up versus top-down factors in the control of phytoplankton 

blooms across models. Studies also suggest that the lack of model-data assessment of 

zooplankton and the knowledge gap between the zooplankton modelers and observationalists is 

one of the reasons why zooplankton are poorly simulated in biogeochemical models (Everett et al., 

2017).  

Iron: Recent global compilations of dissolved iron (Tagliabue et al., 2012) and GEOTRACES project 

transects (Mawji et al., 2015) revealed that there are many features of dissolved Fe (dFe) 

distribution that are either missing or heavily biased in the current generation of models (Tagliabue 

et al., 2016). The existence of significant model biases indicates problems in the current 

parameterizations of Fe cycling and the quantification of Fe sources and sinks. We are far from 

having a clear picture of global ocean Fe. Fe is particularly challenging to detect and model because 

of its extremely low (nanomolar) concentrations and complex dynamics which includes 

transformation of Fe between dissolved and particulate pools via scavenging, desorption, and 

remineralization mediated by the presence of organic ligands (produced in turn by bacteria). The 

global dFe budget and distribution are sensitive to the strength and concentration of the subsurface 

ligand. Including prognostic ligands in models clearly improves the subsurface dFe distribution in 

ocean biogeochemistry models (Tagliabue et al., 2016), e.g. ligand presence helps maintain the 

subsurface Fe maxima (Pham & Ito, 2018).  

Sources of Fe are another large unknown in our modeling and understanding of Fe cycling 

generally in models and specifically at OSP. Fe can be brought to the oceans by atmospheric dust, 

but also from sedimentary, hydrothermal, volcanic, sea ice- and iceberg-derived sources, all of 

which vary hugely geographically. Sedimentary and hydrothermal vent Fe sources were found to 

be the important sources of the subsurface dFe maxima in the thermocline of low-dust regions in 

the Pacific Ocean and also travel via water pathways for long distances (Nishioka & Obata, 2017 

and references therein). Given the potential role of the subsurface dFe as a source for Fe-limited 

upwelling regions (Tagliabue et al., 2014), these external sources can have far-reaching effects on 

the marine ecosystems and the biological carbon pumps. In HNLC waters, differences in Fe supply 

can strongly affect the amplitude of the seasonal variation in biology. For example, Nishioka and 

Obata (2017) point to more Fe in intermediate waters in the Western Pacific Subpolar Gyre 

compared to the Eastern subpolar (Alaskan) gyre due to more intense sedimentary sources in the 

Western Pacific; this difference in Fe explains the lower surface macronutrient consumption and 

lower amplitude of seasonal variation in biogeochemical parameters in the Eastern compared to 

the Western subpolar gyre. 
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Finally, the amount and type of irradiance that penetrates through the water column is also an 

important issue when studying phytoplankton productivity and community structure. Kvale et al. 

(2017) show for example that global PP is sensitive to the light attenuation parameter, and that this 

sensitivity will increase with transient forcing in the future, while Gnandesikan et al. (2009) highlight 

ocean water clarity impact on warm ocean circulation and the Walker atmospheric circulation. And 

yet, ocean models routinely offer rather crude parameterizations of light attenuation and neglect 

the spectral quality of light. One direction for recent model development is the incorporation of 

spectral light, explicit radiative transfer, and representation of optical constituents in some global 

ocean models (e.g. Dutkiewicz et al., 2015; Kim et al., 2015; Gregg and Rousseaux, 2016). More 

sophisticated light penetration models in future climate model generations might improve the light 

limitation of biology and biology-ocean physics feedbacks. 

4.7. Conclusions 

 

Our paper provides a comprehensive analysis of the drivers of biological seasonality in the northern 

subpolar North Atlantic and North Pacific regions, in a global context and when comparing these in 

detail. Estimates from satellite-based color products and from CMIP5 models are compared. The 

observed NP box is a high-nutrient, iron-limited region which contrasts in both Chl-a and 

phytoplankton biomass seasonality with the more studied macronutrient-limited subpolar NA. Our 

main findings are summarized below: 

• The large-scale seasonal patterns derived from correlations of physical tracers with 

biomass products are consistent to a first order to those found across CMIP5 models 

(Cabre et al., 2016). As expected, the northern subpolar regions are characterized by 

positive biomass-SST (or %Micro-SST) correlations, and negative correlations between 

biomass and LMIX/windspeed across most biomass products, indicative of predominant light 

limitation of biology on the seasonal time scale. At least in the TK16, S08, PHYSAT, MY10 

products these correlations seem to be stronger in the NA compared to the NP. The MY10 

and TK16 products show strong differences in the subpolar region indicative that the MY10 

is biased towards light-limitation estimates similar to B05.  

• The satellite products are overall consistent in predicting the seasonal cycle at NA but 

widely different in their predictions of biomass and PFT seasonality at NP, particularly at 

HNLC sites such as OSP. The seasonal cycle in biomass differs strongly across the 

satellite algorithms (by 1-2 fold) in the NP, while the intermodel variability across CMIP5 

models is even larger (up to an order of magnitude across models) consistent with our 

previous observations in Cabré et al. (2016) 

• Differences across CMIP5 models are very large. The seasonal cycle in biomass differs up 

to an order of magnitude across CMIP5 models at the two subpolar sites (NP and NA 

boxes). It is therefore hard to find consistent mechanistic differences between the 

functioning of the marine ecosystem in the Pacific and Atlantic subpolar regions across 

CMIP5 models.  We ascribe the differences to tighter grazing control of phytoplankton and 

less iron supply in the NP. 

There are multiple technical challenges associated with this project. For many modelers, the PFT 

products derived from satellite algorithms are considered as ‘observations’ (not algorithm products 
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per se) and used as a reference for validating model outputs (Quéré et al., 2005; Stock et al, 2014; 

Cabré et al., 2016). First and foremost, satellite algorithms have a unique set of challenges and 

biases, as data retrieval from these algorithms is based on a set of theoretical assumptions. Data 

retrieval from these algorithms is based on either empirical or theoretical assumptions. Traditional 

satellite products of Chl-a and primary production have large error margins associated with them 

that are not spatially homogeneous (Szeto et al., 2011), for example the satellite Chl-a algorithm 

has a factor of 2 range error (Campbell et al., 2002). While Chl-a is certainly a useful variable, it is 

carbon biomass in the living phytoplankton that is the variable of most direct relevance to carbon 

cycle and biogeochemical studies; it is also the unit of PFT accounting in climate models.  

However, biomass-based PFT products are so-far less studied and verified in situ compared to the 

Chl-a product and the now “classical” B05 biomass. We refer readers to the comparison of the most 

recent biomass PFT products, highlighting methodological differences between algorithms 

(Kostadinov et al., 2017; Mouw et al., 2017). One challenge in comparing phytoplankton biomass 

products is what actually constitutes ‘biomass’. Observations have shown that components other 

than phytoplankton carbon (zooplankton, total particulate carbon, dissolved organic matter) play a 

role in light attenuation, affecting the satellite-inferred biomass fields; this problem is dealt with in 

different ways by different research groups. Detrital matter (Bricaud et al., 2010) is rather weakly 

constrained. Colored dissolved organic matter (CDOM) and its contribution to light absorption are 

observed to vary in different regions of the ocean (Jerlov, 1953; Nelson & Siegel, 2013). Recent 

work has suggested a potentially important role for CDOM in setting phytoplankton community 

structure via alteration of the visible light spectrum, particularly in the highly productive regions 

(Dutkiewicz et al., 2015).  

Secondly, we acknowledge differences between our MLD product and other products from the 

literature (Westberry et al 2016). Large differences across MLD products, even using the same 

MLD definition, are a constant challenge in oceanography. Future improvements on our work will 

take into account a combination of sources for MLD and the implication of such uncertainty for our 

understanding of ocean biology. Our results highlight the need for further development work in 

modeling of zooplankton dynamics, iron cycling and light uptake in HNLC regions, in order to bring 

both future generation of global climate models into closer agreement with each other and with 

observations. At the same time, the large spread across satellite products in HNLC areas makes it 

abundantly clear that in-situ data collection in the subpolar regions – as proposed by the ongoing 

NASA EXPORTS campaign – is much needed, to validate both satellite algorithms and models.  
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Figure 4.1: Temporal correlation of monthly (Top Panel, a-e) decimal logarithm of phytoplankton biomass (TK16) from Kostadionv et al. (2009, 2010, 
2016) with sea surface temperature (SST), wind speed, active mixing length scale (LMIX), Heatflux (positive into ocean) and photosynthetically active 
radiation (PAR) during the SeaWiFS period (1997–2010). Center Panel (f-j) is the temporal correlation between the decimal logarithm of 
phytoplankton biomass (B05) from Behrenfeld et al. (2005) and above physical variables. Bottom Panel (k-o) is the temporal correlation between 
the decimal logarithm of phytoplankton biomass (S08) from Stramski et al. (2008) and above physical variables. The correlation in the red and blue 
areas are statistically significant at the 95% level (P<0.05). Non-significant correlations are shown in white. Long-term trend is removed from the full 
time series by detrending the data. The two black boxes are North Pacific (45-50oN, 140-150oW, includes OSP, in red) and North Atlantic (45-50oN, 
25-35oW, in blue, close to NABE). The black contour lines are the 5 subtropical gyres (see Figure A1) 
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Figure 4.2: Comparative analysis of two subpolar boxes in the North Pacific (45-50oN, 140-150oW, includes OSP, in red) and North Atlantic (45-
50oN, 25-35oW, in blue, close to NABE). SeaWIFS-based data analysis includes climatologies of (a, f, j) 3 phytoplankton biomass products from 
space (Behrenfeld et al. (2005), B05, Stramski et al. (2008), S08, Kostandinov et al. (2016) denoted as TK16). (b) percent Micro, (g) percent Nano 
and (k) percent pico phytoplankton from Kostadinov et al. (2016), (c) percent of Chl-a in Micro, (h) Nano and (i) Pico from Brewin et al (2010, 2011), 
(e) Frequency of detection of diatoms from Alvain et al (2005, 2008), (i) Chl-a in diatoms from Bracher et al (2009, 2017), (d) Size fraction of large 
phytoplankton from Mouw and Yoder et al. (2010b), (m) SeaWifS Chl-a  and (n) Behrenfeld et al. (2015) photoacclimation model (C/ChlB’16). The 
plain red and blue lines are in subplots a,b and m are the CMIP5 multi-model mean of phytoplankton biomass, percent microphytoplankton and Chl-
a. 
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Figure 4.3 Comparative analysis of two subpolar boxes in the North Pacific (45-50oN, 140-150oW, includes OSP, in red) and North Atlantic (45-
50oN, 25-35oW, in blue, close to NABE) for the physical variables. The variables include climatologies of (a) mixed layer depth from Westberry et 
al (2016) (MLD W’16), (b) Ekman length scale LEK, (c) active mixing length scale (LMIX), (d) Heat Flux, (e) nitrate, and (f) Photosynthetically active 
radiation (PAR). The plain red and blue lines are in subplots a and e are the CMIP5 multi-model mean of MLD and Nitrate.
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Figure 4.4: Climatologies of the ecological and physical variables in the subpolar box at North 
Pacific (45-50oN, 140-150oW, includes OSP). The variables includes climatologies of (a) 
Phytoplankton biomass (C), (b) Chl-a, (c) photoacclimation parameter (C:Chl-a ratio), (d) 
Intergrated Primary Production [Int(PP)], (e) Diatom/Phytoplankton biomass ratio, (f) Zooplankton, 
(g) Nitrate, (h) Iron (Fe), (i) mixed layer depth (MLD), (j) net downward shortwave flux (IPAR)  and 
(k) Iron/Nitrate (Fe/NO3) ratio. Note: 1micromol/L = 1millimol/m3 and 1nM = micromole/m3 
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Figure 4.5: Climatologies of the ecological and physical variables in the subpolar box at North 
Atlantic (45-50oN, 25-35oW, close to NABE). The variables includes climatologies of (a) 
Phytoplankton biomass (C), (b) Chl-a, (c) photoacclimation parameter (C:Chl-a ratio), (d) 
Intergrated Primary Production [Int(PP)], (e) Diatom/Phytoplankton biomass ratio, (f) Zooplankton, 
(g) Nitrate, (h) Iron (Fe), (i) mixed layer depth (MLD), (j) net downward shortwave flux (IPAR)  and 
(k) Iron/Nitrate (Fe/NO3) ratio. 
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Figure 4.6: Strength of normalized seasonality of ecological and physical variables across CMIP5 models for North Pacific against North Atlantic. 
Normalized seasonality is the difference between maximum and minimum concentrations over the average cycle. The units for biomass (phyto), 
primary production (pp), nitrate, iron (fe), zooplankton (zoo), chlorophyll-a (Chl-a), and mixed layer depth (MLD) are mmol/m3, g/yr, mmol/m3, 
micromole/m3, mmol/m3, mg/m3, Einstein/m2/day, and m, respectively.  
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Figure 4.7: Ecological and physical mechanisms in the subpolar box at North Pacific (45-50oN, 140-150oW, includes OSP, denoted by colored 
circles) and North Atlantic (45-50oN, 25-35oW, close to NABE, denoted by colored stars using the CMIP5 suites. The abbreviations, ‘ave’ stands for 
average, ‘max’ stands for maximum and ‘imax’ stands for month of maximum in the variables.  The units for biomass (phyto), pr imary production 
(pp), nitrate, iron (fe), zooplankton (zoo), chlorophyll-a (Chl-a) are mmol/m3, g/yr, mmol/m3, micromole/m3, mmol/m3, and mg/m3, respectively.
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CHAPTER 5: Conclusion 

 

Manifested changes due to both natural climate variability and human-induced global warming are 

not limited to the earth’s surface and atmosphere, but also appear strongly in the global ocean 

system, in ocean physics, biogeochemistry and ecology. Some of the changes and variability 

observed so far are in the global ocean primary production and in the transport of carbon from the 

surface to the deep ocean (i.e., the oceanic carbon pump) driven by the ocean phytoplankton in 

the top layers of the ocean. The warming trend is projected to continue into the 21st century 

(Solomon et al., 2007; IPCC 2013) and is bound to impact phytoplankton size group structure, 

growth and organic carbon remineralization (breakdown). Phytoplankton cell size plays a 

fundamental role in ocean ecology. Therefore, it is critical to understand the link between ocean 

physics and biogeochemistry and plankton biology and productivity at the ocean surface. 

Because of the reduced costs and their global coverage (compared to in-situ measurements), the 

study of marine ecology and biogeochemical processes via remote sensing and climate models is 

rapidly evolving. We contribute to the existing literature by investigating the trends, interannual 

variability and seasonality for critical global ocean biological parameters (e.g., Chl-a, biomass, 

phytoplankton functional groups) using remote sensing datasets and CMIP5 model outputs over 

the recent past (1997-2010). In doing so, we seek to investigate the fundamental physical and 

biogeochemical mechanisms that drive variability in ocean phytoplankton biology both globally and 

for specific areas of interest (subtropical gyres in Chapter 2, tropical Pacific in Chapter 3, northern 

hemispheric subpolar biomes in Chapter 4). 

 

5.1 Synopsis 

 

This dissertation mainly examines the novel backscattering-based phytoplankton biomass, PFTs 

and ocean surface Chl-a over 1997-2010 period. We explored the possibility of existing 13-year 

trends of phytoplankton biomass and PFTs. One of the major and unexpected findings in chapter 

2 was increase in the global phytoplankton biomass, percent micro phytoplankton and percent 

nanophytoplankton. Approximately 44% of the positive trend in biomass is due to the warm region 

which is comprised of tropics and subtropics. The global increase in biomass is unexpected given 

previously reported decreases in Chl-a (previously used as a proxy of biomass) in the warm 

regions. In chapter 2 we focus on the trends in warm regions, importantly the tropical tongue and 

subtropical gyres. Previous literature claims that due to ocean surface warming that triggers density 

contrast (stratification) between the deep and surface ocean water column are the main reasons 

for the decline in Chl-a and primary production in subtropical gyres (Behrenfeld et al., 2006; 

Martinez et al 2009) and an expansion of the low Chl-a oligotrophic biome (Polovina et al., 2008; 

Irwin & Oliver, 2009). Contrary to the previous theory, we report an increase in biomass for all the 

5 subtropical gyres over the 1997-2010 period. We do report a decrease in Chl-a in at least three 

(NPAC, NATL and IOCE) of the subtropical gyres but owing to the enhanced stratification in the 

water column but the rather physiological response (photoacclimation) of phytoplankton to the light. 

Biomass increase in subtropical gyres can be ascribed partially to negative heat-flux trends and 
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stronger winds during winter deepening the active mixing length scale. Therefore, we suggest that 

Chl-a is not the best indicator for phytoplankton community structure and abundance; instead 

biomass is a true representation of phytoplankton community structure. The biomass increase in 

tropical Pacific was mostly driven by the trends in Multivariate ENSO index and not a climate 

change signal as previously reported by Behrenfeld et al. (2006).  

The Tropical Pacific upwelling region is predominantly driven by ENSO, the dominating ocean-

atmosphere coupled oscillation on our planet on interannual timescales.  The Scientific community 

has suggested that “No two El Niño events are quite alike” (Wyrtki, 1975) based on their 

characteristics. ENSO complexity and diversity complicates the ocean biology further in the tropical 

and global ocean. In Chapter 3 we characterized the uniqueness and differences in different types 

of ENSO using phytoplankton biomass over 1997-2007. We observe clearly the Central Pacific (CP 

or Modoki) ENSO, a newly characterized ENSO type fundamentally different from the classical 

Eastern Pacific ENSO, using various robust statistical techniques. We report physical drivers for 

biomass and Chl-a similar to those indicated by Radenac et al. (2012) for Chl-a only. During CP El 

Nino events, changes in the vertical supply of iron concentrations due to the vertical displacement 

of the Eastern Equatorial Undercurrent (EUC) (Radenac et al., 2012), and the strengthening of the 

subtropical gyres cause a decline in biomass and Chl-a concentrations. During EP El Nino events, 

anomalously weak westerly winds drive strong anomalous eastward currents. The nutrient-

deprived (less well mixed, deeper nitracline) western warm waters then extend further to 130°W, 

reducing upwelling and deepening the nitracline and EUC in the central and Eastern Pacific. 

Reduced surface nutrients reduce the biological activity, lowering the biomass and Chl-a 

concentrations in central and eastern Pacific. Our empirically-derived biomass index for ENSO 

flavors is found to be highly correlated with existing climate indices, strongly suggesting that the 

index can be used to separate the ENSO flavors.  

In Chapter 4, seasonality comparison in the biology across various novel satellite-based products 

and CMIP5 models revealed that North East Pacific subpolar box (NP) around Ocean Station PAPA 

(OSP) is very different than the equivalent subpolar regime chosen for the North Atlantic (NA). The 

satellite products are overall consistent in predicting the seasonal cycle at NA but widely different 

in their predictions of biomass and PFT seasonality at the HNLC region around OSP. We analyze 

the detailed variability in Chl-a and biomass in 3 current satellite products. The link between large-

scale climate modes (PDO and NPGO), vertical mixing of nutrients and phytoplankton ecology is 

analyzed in the context of previously observed interannual variability at OSP for the 1997-2010 

period.  CMIP5 Climate models show a large spread in seasonal cycles of nutrients, Chl-a, Biomass 

and Productivity at both NA and NP. This spread is larger than in the satellite models. The seasonal 

cycles of phytoplankton biomass, Chl-a and productivity are smaller across the most realistic model 

set (Group 1) in the NP box compared to the NA box, in agreement with our current understanding 

of phytoplankton dynamics and most satellite products analyzed in Chapter 4. We ascribe this 

assessment to tighter grazing control of phytoplankton and less iron supply in the NP. 

 

5.2 Gaps and limitations  

 

Major limitations and gaps for satellite algorithm data were detailed in Chapter 1. One hindrance 

for the data analyst or high-end climate modeler is the consistent upgrade of a satellite products, 
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as algorithm developers (e.g. NASA) continue improving their algorithms for accuracy and best 

results. Developers constantly improve algorithms that commonly change the magnitude of the 

geophysical variables depending on the mission/objective of the algorithm for specific water bodies 

(e.g. the OCI R-2014 SeaWiFS algorithm was an upgraded product to improve the Chl-a 

measurements in clear water).  An important caveat we need to acknowledge is that most of the 

analysis in this dissertation was performed on a coarse resolution data both spatially (monthly 1x1 

degree grid) and temporally (monthly data) rather than high resolution data (daily 9km datasets). 

Some critical biological fluctuations occur at mesoscale/microscale dynamics and range from hours 

to weeks only, e.g. biology driven by mesoscale eddies. We have not addressed the emerging 

theory of phytoplankton biology at these smaller temporal and spatial scales in satellite or climate 

models.   

Indeed, data records need to be lengthy and homogeneous to adequately understand the state of 

the climate trends, natural climate variability and develop statistically robust results. It is equally 

essential for data to be accurate and/or with, at least, information about its expected accuracy. 

Reliable detection of trends would require a 20-30 year time series in the tropics and a 40-year 

time series elsewhere (Henson et al., 2010) and even more than 100 years to measure the ENSO 

variability accurately (Stevenson et al., 2010). We believe that, although the length of the data is 

short, the robust statistical analysis of these observational time series allows us to propose new 

assumptions and mechanisms and allows us to provide robust validation of data against the model 

results. It is clear that longer time-series are necessary to adequately separate the long-term 

climate trends from (natural or forced) climate variability. Some statistical work has suggested that 

reliable detection of climate-driven trends would require a 20-30 year time series in the tropics and 

a 40-year time series elsewhere (Henson et al., 2010) and more than 100 years to measure the 

ENSO variability accurately (Stevenson et al., 2010). This timescale would suggest that, while we 

did find statistically significant trends in ocean biology over the 13-year period of SeaWiFs (1997-

2010), these might indeed not be due to climate warming but to some multiannual climate 

variability. Although the length of the data is short, the robust statistical analysis of these 

observational time series in this dissertation allows us to propose new assumptions and 

mechanisms and allows us to provide robust comparison of multiple datasets and against the model 

results.  

In Chapter 5 we discussed possible biological reasons for the large uncertainties in plankton 

ecology we observe across the latest generation climate models for the subpolar regimes. Biases, 

gaps and limitations in both satellite datasets and climate models are, however, non-trivial to 

resolve with in-situ data since in-situ data does not have global spatial and temporal coverage. 

Limited field measurements or short length of data, and inconsistency of satellite-based datasets 

often affects the ability of modeling groups to improve biological model parametrizations in the 

context of complex climate models and decreases model skill. Models are highly susceptible to the 

parametrization of ecological parameters that have complex functions in the ecosystem e.g. 

zooplankton grazing (e.g. Hashioka et al. 2013; Everett et al., 2017). This results in vastly different 

representations of bottom-up (nutrient, temperature/light-driven) versus top-down (grazer) impacts 

on ocean phytoplankton biomass and productivity across models, as discussed in Chapter 5. 
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5.3 Future Plans 

 

This dissertation focused on data available from 1997-2010, investigating on extended dataset 

beyond 2010 would allow us to decipher long-term changes in the phytoplankton biomass and 

PFTs.  What more remains to be investigated is the effect of mesoscale/microscale processes such 

as horizontal advection, and phytoplankton cellular dynamics on biology, the frequency of different 

ENSO flavors and their amplitude and their effects on the long-term biomass trend across various 

product and the difference of the biomass/PFT patterns during the unique ENSO across the 

multiple products. 

It would be interesting to continue the work on the subtropical and tropical oceans (Chapters 2 and 

3) by analyzing the ENSO signature in surface biology (as we did for satellite-data) across the 

historical period up to present in CMIP5 models. Important questions include: (i) What is the 

biological response to CP El Nino compared to the regular El Nino across CMIP5 models? (ii) Is 

the calculated ENSO signature (and flavors of ENSO) in surface biology and its implications for 

ocean productivity be the same across models, satellite-based datasets and in-situ observations? 

One way that phytoplankton impact the global carbon cycle is via their direct impact on air-sea CO2 

fluxes. Air-sea CO2fluxes depend on the difference in CO2 in air and surface seawater. In turn, the 

CO2 partial pressure in seawater (spCO2) is mainly a function of temperature, total CO2 

concentration or dissolved inorganic carbon, alkalinity and salinity of the water. The effects of 

temperature and total CO2 on CO2 are the most important ones in surface water. The total CO2 in 

surface waters decreases via phytoplankton photosynthesis and increases via organic matter 

remineralization.  

Following techniques from Takahashi et al. (1993, 2002) and McKinley et al. (2006) we are 

attempted to separate the observed CO2 fluxes over the 1997-2010 period into biological and 

temperature-driven components and understand how much surface ocean CO2 and resulting air-

sea CO2 fluxes are affected by ocean biology. The results show that at Ocean Station PAPA in the 

North East Pacific, there is an almost perfect compensation between the biological and 

temperature-driven seasonal cycles of CO2 (Figure 5.1). During spring and summer blooms, 

phytoplankton act to reduce strongly CO2 via photosynthetic uptake, while warmer temperatures 

affect the solubility of gases, increasing CO2. The opposite patterns are observed during wintertime 

when the system is dominated by respiration/remineralization. The current work in this direction is 

inspired by the recent paper of Fay et al. (2017), who focused on the observed correlations between 

CO2 and satellite-based Chl-a. With the new products presented in Chapter 4, we can expand their 

work to multiple biomass products and CO2-biomass carbon correlations. As expected, the 

preliminary results show that CO2 and its seasonal cycle depend mostly on temperature in the low 

latitudes but depend strongly on biology (as reflected by the phytoplankton biomass) in the high 

latitude, including subpolar regimes (Figure 5.). 
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Figure 5.1 Ocean temperature, total surface pCO2 and the two pCO2 components driven by 
temperature and biology at (top) OSP in the NP box, (bottom) in the NA box. Note an almost perfect 
compensation between the biological and temperature-driven seasonal cycles of pCO2. Separation 
of pCO2 based on McKinley et al. (2006). pCO2 data is based on CDIAC dataset 
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Figure 5.2: Temporal correlations between monthly pCO2, pCO2 with temperature effect and pCO2 without temperature effect (biology) with Chl-a 
(first column), B05 biomass (second column), and TK16 biomass (last column).
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APPENDIX A: Supporting Information for Increasing biomass in the global warm 
oceans: Unexpected new insights from SeaWiFS 
 

Submitted for publication as: 

 

Sharma, P., Marinov, Cabre, A., Kostadinov T.S. and Singh A., (GRL: Accepted) Biomass of 

phytoplankton is not decreasing in low latitude oceans: new insights 

from SeaWiFS  

A.1 Introduction  

We provide the information on the data and methods used in this paper (A.2), calculation of the 

active mixing length scales, LMIX (A.3) trends calculation (A.4) and error analysis of linear trends on 

biomass and PFTs (A.5).  

We present also (1) spatial distribution of the biomes (Figure A1), (2) one figure (Figure A2) to show 

the mean distribution of the biological variables, (3) spatial maps of Non-ENSO trend and ENSO 

trend (Figure A3 and Figure A4) to support Figure 2.1 (3) spatial trend maps for the winter months 

for the variables (Figure A5), and 3 more additional Figures (Figure A7, A8, A9, A10, A11 and A12) 

to support section 2.5 and section 2.6 in Chapter 2, (4) an additional figure (Figure A13) to support 

the error analysis results shown in Table A.3 & A.4, (5) a Table (Table A.1) to support Section 2.3, 

(6) an additional table (Table A2) to summarize the Figure 2.2 and (7) the trends table (Table A3 & 

A4) for the gyres to support section 2.5 and 2.6. 

A.2.  Data and Methods  

 

We use the total and size-partitioned biomass (mg/m3) and PFTs [pico-phytoplankton (0.5–2 μm in 

equivalent spherical diameter), nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–50 

μm)] product derived from a backscattering-based particle size distribution (PSD) algorithm 

(Kostadinov et al., 2009, 2010, 2016) for the period 1997-2010. The PSD algorithm uses the 

magnitude and spectral slope of the backscattering coefficient to retrieve the parameters of an 

assumed power-law PSD. Using the PSD parameters, the volume concentrations for three different 

size classes are calculated. The biovolumes are then converted to carbon concentrations using 

existing allometric relationships (Menden-Deuer & Lessard, 2000). We express PFT fractions in 

percentage. The Kostadinov et al. (2016) phytoplankton products are available at 

https://doi.pangaea.de/10.1594/PANGAEA.859005.  

The global monthly 9 km composites of SeaWiFS Chl-a concentration (derived from the Ocean 

Color Index (OCI) algorithm), photosynthetically available radiation (PAR), diffuse attenuation 

coefficient for downwelling irradiance at 490 nm (Kd490), and particulate inorganic carbon (PIC) from 

SeaWiFS (2014 reprocessing), were obtained from NASA's Ocean Color Web 

(http://oceancolor.gsfc.nasa.gov) for the years 1997-2010. Chl-a and PIC are expressed in mgm-3; 

PAR and Kd490 in Einstein m-2 day-1 and m-1, respectively. The 9 km gridded data was down-

https://doi.pangaea.de/10.1594/PANGAEA.859005
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sampled to a 1 resolution using with an averaging kernel. If >50% of the pixels being averaged 

were invalid data, the pixel in the down-sampled image was assigned a missing data value.   

5-day gridded temperature, salinity and density profiles on a global 0.5 grid were used from the 

Simple Ocean Data Assimilation (SODA) model (soda.tamu.edu, (Carton, et al., 2000; Carton & 

Giese, 2008) to calculate mixed-layer depth (MLD), using a critical potential density threshold of 

0.03 kg m-3 relative to 10 meters (de Boyer Montégut et al, 2004). Prior to any calculations, the 5-

day data were converted to monthly averages.  

We calculated the photoacclimation parameter, which approximates Chl/C, following Eq. S10 in 

Behrenfeld et al. (2016) using the above MLD, PAR and Kd parameters: 

Chl C𝐵′16⁄ =  𝐶ℎ𝑙: 𝐶 =  
1+ 𝑒−0.15 𝑃𝐴𝑅

1+ 𝑒−3𝐼𝑀𝐿
, where 𝐼𝑀𝐿 = 𝑃𝐴𝑅 ×  𝑒−0.5 𝐾𝑑 × 𝑀𝐿𝐷                 [Eq. A1] 

We also estimated Chl/C using the SeaWiFS Chl-a and Kostadinov et al. (2016) biomass. However, 

we chose to use the photoacclimation parameter estimated using Behrenfeld et al. (2016) model 

because Chl 𝐶𝐵′16⁄  was independent of any observed Chl-a input and biomass. Chl 𝐶𝐵′16⁄  showed 

robust trends over this period (Table A1) which have the same sign in each gyre with those of Chl; 

this supports our hypothesis that photoacclimation, rather than biomass, explains the trend in 

SeaWiFS Chl-a.  

The global monthly 4km Advanced Very High Resolution Radiometer (AVHRR) satellite-derived 

sea surface temperature (SST) imagery was obtained from the NASA Physical Oceanography 

Distributed Active Archive Center (PO.DAAC, http://podaac.jpl.nasa.gov/AVHRR-Pathfinder) for 

1997-2009. We further used 13-year (1997-2009) monthly 1° gridded time series of surface ocean 

heat flux (Wm-2) obtained from Objectively Analyzed air-sea Fluxes (OAFlux) project via 

http://oaflux.whoi.edu/data.html. The time series for SST and surface ocean heat flux was only 

available until 2009. We chose to use AVHRR and OAFLUX, since it was one of the most cited 

products. Daily 10 m wind data on a 1° horizontal grid from the ERA–Interim Reanalysis 

(http://www.ecmwf.int/, (Berrisford et al., 2011) was converted to monthly data. The active mixing 

length depth (LMIX), which estimates the depth to which phytoplankton is mixed, was derived using 

the surface heat flux, wind speed and seawater density as in Brody and Lozier (2014, 2015), see 

Text S2. Global monthly surface partial pressure of carbon dioxide (spCO2) on a 1° grid was 

obtained from the Carbon Dioxide Information Analysis Center (CDIAC, http://cdiac.ornl.gov/) 

(Takahashi et al., 2009). The Multivariate El Niño Southern Oscillation Index (MEI) was acquired 

from the climate data guide portal provided by National Center for Atmospheric Research (NCAR) 

at https://climatedataguide.ucar.edu/. The monthly MEI (Wolter & Timlin, 1993) is defined as the 

first seasonally varying principal component of six atmosphere–ocean variable fields in the tropical 

Pacific basin (i.e. sea level pressure, zonal and meridional wind speed, sea surface and air 

temperatures, and total cloudiness).  

We define our warm region where the 1997-2009 averaged SST > 15ºC (that includes tropical and 

subtropical biomes). The tropical Pacific and the five subtropical gyres are defined monthly using 

criteria adapted from Cabré et al. (2016), based on monthly Chl-a concentration level, 

phytoplankton size composition, and geographic constraints (biomes shown in Figure S1). The 

tropical Pacific tongue comprises the Pacific region where the average Chl-a is greater than 0.11 

mgm-3. The subtropical gyres are pico-phytoplankton dominated regions with Chl-a lower than 0.11 

mgm-3, where biomass seasonal reproducibility is less than 30% (Cabré et al., 2016) with latitude 

http://podaac.jpl.nasa.gov/AVHRR-Pathfinder
http://oaflux.whoi.edu/data.html
http://www.ecmwf.int/
http://cdiac.ornl.gov/
https://climatedataguide.ucar.edu/
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[00<Latitude<300] and ocean basin restrictions. We chose to focus mainly on the warm regions 

because our preliminary studies show very weak interannual correlations between physical 

variables and biological variables in cold regions in comparison to warm regions. 

The anomalies we present are always relative to the 1998-2010 mean seasonal cycle. Since 

biomass, Chl-a, and PIC are log-normally distributed and the magnitude of biological indices can 

span up to 3 orders of magnitude (Racault et al., 2016), their trends are calculated in log space. 

Note that we have removed the seasonal cycle from all the data when calculating trends and 

correlations (Figure 2.1, Figure 2.2). All correlations between biomass and physical indices are 

much stronger when the seasonal cycle is not removed. 

A.3 Active mixing length scales calculations  

 

Derivation of the mixing length scale follows developments by Brody and Lozier (2014, 2015). 

Active mixing length scale, LMIX, was defined for three cases. When the heat flux is large and 

negative (Case 1), the mechanism that drives surface mixing is convective mixing, which is 

generated by surface ocean cooling. Hence, the LMIX in Case 1 is represented by the seasonal 

thermocline (MLD). During a small negative or positive heat flux under moderate or large winds 

(Case 2), the wind generated mixing is greater than the convective mixing. The LMIX in Case 2 is 

represented by the Ekman length scale (LEK), which is directly related to wind speed. When heat 

flux into the ocean is large and positive (Case 3), stratification counteracts the wind generated 

mixing. In this case, LMIX is estimated by the Ozmidov length scale 𝐿𝑂𝑍 =

(2𝜋)𝜖
1
2 𝑁

−3
2 , where 𝜖 is the turbulent kinetic energy dissipation and 𝑁2 is the buoyancy frequency. 

𝐿𝑂𝑍  estimates the vertical scale of turbulent overturning in a stratified fluid. The buoyancy frequency 

parameter (N2) is calculated using the Gibbs Sea Water (GSW) toolbox from the Thermodynamic 

Equation of Seawater – 2010 (TEOS10) software, where density is from SODA model. The switch 

between the three mixing length scales (depths) or cases is characterized by the relative strength 

of local buoyancy (determined by Obukhov length LOB), which is directly proportional to wind forcing 

and inversely proportional to the heat flux (see Brody & Lozier, (2014, 2015)), such that if |LOB| is 

small wind mixing only affects the upper part of the ocean (Case 1 and Case 3) and if |LOB| is large 

wind forcing dominates (Case 2).  For the 5 subtropical gyres, the percentage of pixels in a given 

subtropical gyre that are classified as Case1, Case2, and Case 3 for each month during 1997-2010 

period are calculated and shown in Figure 3 (for IOCE), Figure A6-A7.  

A.4 Trend Calculations. 

 

We performed generalized least square (GLS) and ordinary least square (OLS) regression on all 

the variables. OLS tends to underestimate the variance because it ignores the auto-correlation 

between successive observations, and therefore inflates the test statistics on the regression 

coefficients (e.g. Wunsch, 1999; Beaulieu et al., 2013). We find that GLS errors approximately 

double the OLS ones. To account for 1-sigma intrinsic error in the estimation of trends in the PFTs 

and lognormal biomass, a Monte Carlo simulation was performed across biomes (A.5). The trend 

uncertainty when including algorithm uncertainty in our estimates of biomass and PFTs fractions is 

very similar to the trend uncertainty obtained when ignoring the algorithm uncertainty (Figure A13). 

Therefore, we conclude that we can safely ignore the 1-sigma intrinsic error bars in our data as the 

uncertainty due to assuming a linear regression model dominates the uncertainty in the data itself.  
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Many of the individual pixel trends were not very insignificant at 95% confidence interval, while 

statistically meaningful trends were found at 68% confidence interval (p-value < 0.3). 

We separated the overall trend due to the ENSO and Non-ENSO by preforming multivariate 

analysis on biomass: 

 

𝑉𝑎𝑟𝑥,𝑦(𝑡) =  𝛼𝑥,𝑡 . 𝑡 + 𝛽𝑥,𝑦. 𝑀𝐸𝐼(𝑡) + 𝜉𝑥,𝑦                         [Eq. A2] 

 

We regress the biomass anomalies with MEI and time. Then we compute the trends on the terms 

constructed above using the gradients (𝛼, 𝛽, 𝜉), where 𝛼𝑥,𝑡 . 𝑡 is the Non-ENSO term, 𝛽𝑥,𝑦 . 𝑀𝐸𝐼(𝑡) is 

the ENSO term, and  

𝜉𝑥,𝑦 is the residuals.  We perform the GLS trend on the Non-ENSO term and ENSO term. We find 

that the trends in ENSO term is strongly positive in the tropics for the biomass and weakly negative 

in the subtropics. On the other hand, the trends in Non-ENSO term show weak positive trends in 

the tropical tongue, and positive trends in subtropics at 68% confidence interval. 

We calculate the percentage contribution of the trends in the tropical and subtropical regions that 

explains the biomass trends of the warm region as follows: 

Percentage Contribution of trends by Tropical Tongue = 

𝐴𝑟𝑒𝑎𝑇𝑅𝑂𝑃𝐼𝐶𝐴𝐿 𝑇𝑂𝑁𝐺𝑈𝐸
𝑊𝐴𝑅𝑀

 × 𝑇𝑟𝑒𝑛𝑑𝑇𝑅𝑂𝑃𝐼𝐶𝐴𝐿 𝑇𝑂𝑁𝐺𝑈𝐸

TrendWARM
 ×

100    [Eq. A3] 

where 𝐴𝑟𝑒𝑎 𝑊𝐴𝑅𝑀
𝐺𝐿𝑂𝐵𝐴𝐿

is the fractional area of the warm region, etc. Using Eq. A4 the percentage 

Contribution of trends by subtropics was calculated.  We also calculate the percentage contribution 

of the trends in the warm and cold regions that explains the global biomass trends using: 

TrendGLOBAL~ 𝐴𝑟𝑒𝑎 𝑊𝐴𝑅𝑀
𝐺𝐿𝑂𝐵𝐴𝐿

 ×  𝑇𝑟𝑒𝑛𝑑𝑊𝐴𝑅𝑀 + 𝐴𝑟𝑒𝑎𝐶𝑂𝐿𝐷 𝑁𝐻
𝐺𝐿𝑂𝐵𝐴𝐿

 ×  𝑇𝑟𝑒𝑛𝑑𝐶𝑂𝐿𝐷 𝑁𝐻

+ 𝐴𝑟𝑒𝑎𝐶𝑂𝐿𝐷 𝑆𝐻
𝐺𝐿𝑂𝐵𝐴𝐿

 ×  𝑇𝑟𝑒𝑛𝑑𝐶𝑂𝐿𝐷 𝑆𝐻 

Percentage Contribution of trends by warm region = 

𝐴𝑟𝑒𝑎 𝑊𝐴𝑅𝑀
𝐺𝐿𝑂𝐵𝐴𝐿

 × 𝑇𝑟𝑒𝑛𝑑𝑊𝐴𝑅𝑀

TrendGLOBAL
 × 100  

[Eq. A4] 

Percentage Contribution of trends by cold region = 

𝐴𝑟𝑒𝑎𝐶𝑂𝐿𝐷 𝑆𝐻
𝐺𝐿𝑂𝐵𝐴𝐿

 × 𝑇𝑟𝑒𝑛𝑑𝐺𝐿𝑂𝐵𝐴𝐿

TrendGLOBAL
 × 100  

 

Using numbers from Table A1, we can show that the warm and cold SH regions individually explain 

44% and 46% of the global biomass increase, respectively. Note all the observations within the 

biomes were used to calculate the trends. 
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A.5 Error analysis of phytoplankton biomass and PFTs linear trends 

 

Long-term linear trends in the anomalies (seasonal cycle removed) are estimated by fitting a 

generalized least square (GLS) regression model to PFTs fractions, and to the decimal logarithms 

of biomass and Chl-a (as a function of time). First, the GLS trend (and its standard deviation) is 

estimated when data are assumed to have no error bars. In this case, the trend standard deviation 

is a direct indication of the model fitness (standard deviation decreases as the model, in this case 

a line, reproduces better the observed data). However, the Kostadinov et al. (2016) products 

(biomass, PFT fractions) were provided with per-pixel uncertainty estimates (given as the standard 

deviation, 1) propagated from uncertainty estimates for the PSD parameters. To account for this 

error in the estimation of GLS trends in the PFTs and log-normal biomass, a Monte Carlo simulation 

was performed across biomes, as follows. For the biomass and PFTs time series, a realization that 

mimics a real observation (for each month and grid point) is obtained by adding a random number 

generated from a Gaussian distribution with mean zero and sigma equal to the intrinsic error value 

Kostadinov et al. (2016). Negative (or zero) biomass values were replaced with a very small number 

(e.g., 1e-12) before taking the logarithm of phytoplankton biomass. We then proceeded to analyze 

each realization as a real observation. First, we took the logarithm for the biomass time series, then 

subtracted the log seasonal cycle, and finally calculated the area-weighted average of all the 

anomalies in each biome, where a GLS regression was fitted for the simulated time-series to obtain 

the slope (trend). The procedure was repeated 10000 times and the standard deviation in the 

slopes accounted for the error in the realizations. Figure A13 illustrates the results when including 

(or excluding) 1-sigma intrinsic error bars in the calculation of trends. We show that the uncertainty 

in trends that we obtain when including 1-sigma intrinsic errors is very similar to the uncertainty 

obtained ignoring the intrinsic errors, for different PFTs and in different biomes. Because the error 

due to assuming a linear model is larger than the intrinsic error of the measurement (Figure A.13), 

we conclude that we can safely ignore the intrinsic errors. We performed the same steps as above 

for Monte Carlo simulations on ordinary least square (OLS) regression.  
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Figure A1: Spatial distribution of the biomes as defined in Text S1. Boundaries of the five 
geographical regions considered in the present analysis. The tropical Pacific cold tongue is shown 
in green contour line. The five subtropical oligotrophic gyres (North Pacific gyre (NPAC), South 
Pacific gyre (SPAC), Indian Ocean gyre (IOCE), North Atlantic gyre (NATL) and South Atlantic gyre 
(SATL) are delineated with black lines; boundaries are after Cabre et al. (2016). The global ocean 
is split into three sub-regions, namely Warm Ocean (pink, >15oC average SST over 1997-2009), 
Northern Hemisphere Cold Ocean (blue) and Southern Hemisphere Cold Ocean (green). The data 
along the coastal ocean is not included in our analysis.  
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Figure A2: Global maps of (a) log decimal phytoplankton biomass (mgm-3), (b) log decimal 
chlorophyll concentration (mgm-3), (c) percentage micro-phytoplankton, (d) percentage nano-
phytoplankton, (e) percentage pico-phytoplankton. Composites are based on the SeaWiFS period 
(September 1997–December 2010).   
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Figure A3: Non-ENSO trends for deseasonalised monthly anomalies of SeaWiFS-derived (a) phytoplankton biomass concentration, (b) Chl-a 
concentration, (d) fraction micro-phytoplankton, (e) fraction nano-phytoplankton, and (f) fraction pico-phytoplankton, all in %y-1. Linear trends in (c) 
heatflux (Wm-2 y-1), (g) SST (ºCy-1), (h) windspeed (ms-1 y-1) and (i) LMIX (my-1). All trends are for the 1997-2010 period and were calculated using 
GLS regression. Pixels with statistically insignificant trends at the 68% confidence level (p-value>0.3) are hatched. NB, in this figure all the pixels 
are significant at 68% confidence level. Biomes are (Figure A1) delimited by black contours. 
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Figure A4: ENSO trends for deseasonalised monthly anomalies of SeaWiFS-derived (a) phytoplankton biomass concentration, (b) Chl-a 
concentration, (d) fraction micro-phytoplankton, (e) fraction nano-phytoplankton, and (f) fraction pico-phytoplankton, all in %y-1. Linear trends in (c) 
heatflux (Wm-2 y-1), (g) SST (ºCy-1), (h) windspeed (ms-1 y-1) and (i) LMIX (my-1). All trends are for the 1997-2010 period and were calculated using 
GLS regression. Pixels with statistically insignificant trends at the 68% confidence level (p-value>0.3) are hatched. NB, in this figure all the pixels 
are significant at 68% confidence level. Biomes are (Figure A1) delimited by black contours. 
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Figure A5: GLS trends for deseasonalised monthly anomalies of SeaWiFS-derived (a, e) phytoplankton biomass concentration, (b, f) heatflux, (c, g) 
windspeed, and (d, h) MLD for Northern Hemisphere winter months – JFMA (top panel, a-d) and Southern Hemisphere winter months (MJJA) for 
the 1997-2010 period (bottom panel, e-h). The pixels with no statistically significant trends at the 68% confidence level (p-value>0.3) are hatched. 
The subtropical gyres (Figure A1) are delimited by black contours. 
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Figure A6. Temporal correlations between deseasonalized monthly anomalies of the (a) log10 of phytoplankton biomass and SST, (b) wind speed, 
(c) heatflux, (d) LMIX, and (e) MLD for the 1997–2010 period. (f) Temporal correlation of deseasonalized wind speed and SST anomalies. Note: Long-
term trend is removed. Blue-red colors represent correlations statistically significant at the 68% level (p < 0.3); non-significant correlations are 
hatched. The subtropical gyres (Figure A1) are delimited by black contours. 



 
 

80 

 

 

 

Figure A7: The classification of the phytoplankton active mixing length scale (LMIX) as Case 1 (red, LMIX=MLD), Case 2 (green, LMIX=LEK), or Case 
3 (purple, LMIX=LOZ) using the criteria from Brody et al (2014) for a 1x1 degree grid. For each pixel, the Case with the highest percentage occurrence 
(out of the 3 possible Cases) across all 1997-2010 January’s was chosen to represent January, etc. The subtropical gyres (Figure S1) are delimited 
by white contours. 
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Figure A8: (a) 1997-2010 averaged monthly climatology for LMIX depth measurements for the North 
Atlantic Gyre (NATL) with mixing depth measurements derived for all the cases 1 (MLD), 2 (LEK), 
and 3 (LOZ) from surface atmospheric forcing’s. Log10 phytoplankton Biomass and surface heatflux 
averaged monthly values are in green and gold. (b) 1997-2010 averaged monthly climatology for 
percentage of pixels in the gyre that are classified as Case 1, 2, or 3 mixing. (c) Percentage 
change/Trends in all the months through 1997-2010 in the NATL for the biome-averaged (c) 
Biomass, (d) Heatflux, (e) MLD, (f) LEK, and (g) LMIX, (h) Chl-a, (i) Chl/CB16, (j) MLD, (k) PAR, (l) 
Kd490. The red line is the total percentage change of biomass over the 1997-2010 period and the 
blue line is the +/- one-sigma error associated with the total percentage change of biomass. The 
black dashed line is the zero line. Error bars crossing zero line indicates that the trends are 
insignificant at one sigma (or 68% confidence interval, p-value<0.3). 
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Figure A9: Same as Figure A8 except for South Pacific Gyre (SPAC) 

 

 

 

 

 

 

 

 

 

 



 
 

83 

 

 

 

Figure A10: Same as Figure A8 except for South Atlantic Gyre (SATL) 
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Figure A11: Same as Figure A8 except for Indian Gyre (IOCE) 
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Figure A12: Percentage change/Trends in all the months through 1997-2010 in the 5 subtropical gyres for the three cases: (a-e) Case 1 (LMIX=MLD), 
(h-j) Case 2 (LMIX=LEK), and (k-o) Case 1 (LMIX=LOZ). The red line is the total percentage change of case occurrences over the 1997-2010 period and 
the blue line is the +/- one-sigma error associated with the total percentage change of occurrence of the cases. The black dashed line is the zero 
line. Error bars crossing zero line indicates that the trends are insignificant at one sigma (or 68% confidence interval, p-value<0.3). 
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Figure A13: GLS trend slope values for the total phytoplankton biomass (% y-1), and PFT fractions 
for the subtropical gyres [North Pacific (NPAC), South Pacific (SPAC), Indian Ocean (IOCE), North 
Atlantic (NATL) and South Atlantic (SATL)] where shapes represent the gyres and colors represent 
the variables (see the legend). Note that the trends in micro-phytoplankton Fraction (green) are 
also included in the figure except it is not visible as the trend values are very close to nano-
phytoplankton fraction (behind the pink circle). The y-axis shows the slope obtained from the GLS 
regression with 1-sigma intrinsic errors (bars) generated using ‘gls’ model from MATLAB® for all 
the variables. The slopes on the x-axis were generated via Monte Carlo simulation (10000 times) 
on GLS, using the per-pixel uncertainty estimates (given as the standard deviation 1σ) propagated 
from uncertainty estimates for the parameters provided with the Kostadinov et al. (2016) products. 
See Text A3 for the detailed method on Monte Carlo simulation. The dashed horizonal and vertical 
line is the zero line. Error bars crossing the horizonal and vertical line is the zero line indicates that 
the trend is insignificant at one sigma or 68% confidence interval (p-value<0.3). 

 

 



 
 

87 

Variable 
Trends 

Regions  

 Ocean 
area (m2) 

Global 

(3.6109e+14) 

Warm 

(2.4345e+14) 

Cold NH 

(4.0411e+13) 

Cold SH 

(7.6846e+13) 

Tropical 
Pacific 

(3.0748e+13) 

Log10 
Biomass 

0.41 ± 0.09 
a,b 

0.33 ± 0.1 a,b 0.69 ± 0.1 a,b 0.89 ± 0.1 a,b 0.59 ± 0.31 a 

Log10 
Chl-a 

0.18 ± 0.03 
a,b 

0.1 ± 0.036 a,b 0.41 ± 0.07 a,b  0.58 ± 0.06 a,b  0.51 ± 0.38 a 

Fraction 
Micro 

0.12 ± 5e-03 
a,b 

0.09 ± 4.17 e-
03 a,b 

0.42 ± 0.03 a,b 0.32 ± 0.018 a,b 0.11 ± 0.06 a 

Fraction 
Nano 

0.18 ± 0.016 
a,b 

0.16 ± 0.01 a,b 0.17 ± 0.01 a,b 0.38 ± 0.02 a,b  0.26 ± 0.12 a,b 

Fraction 
Pico 

-0.31 ± 0.02 
a,b 

-0.24 ± 0.02 a,b -0.58 ± 0.04 a,b -0.70 ± 0.04a,b 
-0.38 ± 0.18 

a,b 

 

Table A1: GLS Trends of monthly anomalies of the Kostadinov et al. (2016) derived products and 
OCI Chl-a for Sep 1997–Dec 2010 in %y-1 with 1-sigma error. Significant trends at the 68% (p-
value<0.3) and 95% confidence level (p-value<0.05) are indicated by subscripted letters a and b. 
Acronyms are: NH – North Hemisphere; SH – South Hemisphere. Warm regions defined as areas 
where the 1997-2010 SST>15oC. 
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Correlation (Variable, MEI) Tropical  

Pacific 

NPAC SPAC IOCE NATL SATL 

Log10 Biomass (mg/m3) -0.71 0.11 0.03 0.05 0.03 -0.02 

Log10 Chl-a (mg/m3) -0.88 0.4 0.05 -0.06 -0.13 -0.22 

Chl/CB’16 (mg Chl/m3)/(mg 

C/m3) 

-0.65 0.002 -0.06 -0.03 -0.23 -0.3 

Fraction Micro -0.68 0.07 -0.02 0.05 0.007 -0.08 

Fraction Nano -0.71 0.14 0.005 0.04 0.05 -0.04 

Fraction Pico 0.71 -0.13 -0.0006 -0.04 -0.04 0.04 

Biome Size 

(Chl>0.11/Chl<0.11) 

-0.54 0.43 0.24 0.25 -0.08 0.19 

Biome Size 

(Chl>0.07/Chl<0.07) 

-0.16 -0.06 -0.1 0.22 0.01 0.35 

 

 

Table A2. Table of linear correlation coefficients of the monthly anomalies of log10 biomass, log10 
Chl-a, -micro-phytoplankton fraction, nano-phytoplankton fraction, and pico-phytoplankton fraction 
with the multivariate ENSO index (MEI) for the tropical Pacific and the 5 subtropical gyres. Period 
of analysis: Sep 1997–Dec 2010 (160 months). Significant correlations at the 95% confidence level 
indicated in bold. A positive MEI corresponds to the warm phase of ENSO (El Niño); a negative 
MEI corresponds to the cold phase of ENSO (La-Nina). A positive correlation coefficient means 
that the variable increases during El Niño events and/or decreases during La Niña events.  
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Variables Subtropical Gyres 

 NPAC SPAC IOCE NATL SATL 

Log10 Biomass 
(%y-1) 

0.16 ± 0.09 a 0.46 ± 0.17 a,b 0.27 ± 0.13 a,b 0.04 ± 0.11 0.25 ± 0.13 a 

Log10 Chl  
(%y-1) 

'-0.21 ± 0.07 a,b 0.13 ± 0.14 -0.11 ± 0.08 a -0.16 ± 0.07 a,b 0.15 ± 0.08 a 

Chl/CB16 

[(mg Chl m-3)/(mg C m-3)]y-1 
(-3.19 ± 1.66) e-05 a (4.12 ± 1.76) e-05 a,b (-1.81 ± 2.24) e-05 

(-5.56 ± 0.20) e-05 
a,b 

(4.12 ± 1.76) e-05 
a,b 

Log10 PIC 
(% y-1) 

-0.83 ± 0.96 -0.15 ± 1.12 -0.42 ± 1.43 4.32 ± 1.56 a,b 3.36 ± 1.44 a,b 

Gyre Size (Chl-a<0.11 
mgm-3) (km2 y-1) 

-0.33 ± 0.16 a,b -0.74 ± 0.06 a,b -0.14 ± 0.1 a -0.02 ± 0.03 -0.06 ± 0.025 a,b 

Gyre Size (Chl-a<0.07 
mgm-3) (km2 y-1) 

0.018 ± 0.09 -0.26 ± 0.09 a,b 0.01 ± 0.05 0.012 ± 0.018 -0.08 ± 0.03 a,b 

MLD SODA (m y-1) -0.05 ±0.18 0.15 ± 0.15 -0.06 ± 0.11 0.07 ± 0.11 0.25 ± 0.16 a 

PAR 
(Einstein m-2 day-1 y-1) 

-0.05 ± 0.02 a,b (2.45 ± 15.0) e-03 5.81e-04 ± 0.02 -0.05 ± 0.02 a,b (4.62 ± 15) e-03 

Kd(490) (nm y-1) (-3.52 ± 1.64) e-05 a,b (5.81 ± 2.54) e-05 a,b (3.06 ± 3.07) e-05 (5.55 ± 2.65) e-05 a,b (1.74 ± 2.34) e-05 

Wind speed 
(m s-1y-1) 

5.05 e-03 ± 5.0 e-03 a 0.02 ± 0.015 a 0.01 ± 0.01 0.01 ± 7.0e-03 a 0.01 ± 0.01 

LMIX (my-1) 1.08 ± 0.39 a,b 0.37 ± 0.36 a 0.38 ± 0.34 a 0.19 ± 0.23 0.29 ± 0.27 a 

spCO2 (ppm y-1) 1.40 ± 0.10 a,b 1.33 ± 0.12 a,b 1.50 ± 0.095 a,b 1.25 ± 0.15 a,b 1.026 ± 0.16 a,b 

Heat Flux 
(Wm-2y-1) 

-1.31 ± 0.34 a,b -0.87 ± 0.03 a,b -1.03 ± 0.3 a,b -1.06 ± 0.38 a,b -0.36 ± 0.26 a 
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Table A3: GLS trends and 1-sigma errors of monthly anomalies for either 1997-2010 (most variables), or 1997-2009 (HeafFlux) for the subtropical 
gyres. Significant trends at the 68% (p-value<0.3) and 95% (p-value<0.05) confidence level are indicated by subscripted letters a and b. 

 

Variables Subtropical Gyres 

 NPAC SPAC IOCE NATL SATL 

Fraction 
Micro (%y-1) 

0.02 ± 6.5e-03 a,b 0.04 ± 5.0e-3 a,b 0.03 ± 9.0e-3 a,b 0.01 ± 0.01 
0.03 ± 5.0e-03 

a,b 

Fraction 
Nano (%y-1) 

0.08 ± 0.038 a,b 0.21 ± 0.03 a,b 0.15 ± 0.06 a,b 1.63 e-03 ± 0.05 0.13 ± 0.05 a,b 

Fraction 
Pico (%y-1) 

-0.09 ± 0.04 a,b -0.25 ± 0.04 a,b -0.18  ± 0.07 a,b -0.01 ± 0.05 -0.15 ± 0.05 a,b 

SST (oC y-1) 0.02 ± 7.5e-03 a,b 0.03 ± 0.017 a 0.02 ± 0.015 a 0.01 ± 0.01 0.02 ± 0.015 a 

LOZ (m y-1) -0.01 ± 0.015 0.012 ± 0.02 -8.57 e-03 ± 0.02 4.17e-04 ± 0.015 8.63e-03 ± 0.02 

LEK (m y-1) 0.09 ± 0.19 0.33 ± 0.26 a 0.13 ± 0.3 0.12 ± 0.12 0.25 ± 0.19 a 

Case 1 (%y-1) 0.68 ± 1.20 0.33 ± 1.90 0.44 ± 2.17 0.58 ± 2.18 0.06 ± 1.76 

Case 2 (%y-1) 0.60 ± 0.83 0.18 ± 3.24 0.04 ± 0.9 0.08 ± 0.76 0.24 ± 0.67 

Case 3 (%y-1) -1.56 ± 2.16 -9.37 e-03 ± 2.04 0.04 ± 1.95 -0.96 ± 2.75 -0.07 ± 2.50 

 

Table A4: GLS trends and 1-sigma errors of monthly anomalies for either 1997-2010 (most variables), or 1997-2009 (SST) for the subtropical gyres. 
Significant trends at the 68% (p-value<0.3) and 95% (p-value<0.05) confidence level are indicated by subscripted letters a and b.
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APPENDIX B: Supporting Information for Contrasting ENSO types with satellite 
derived ocean phytoplankton biomass in the Tropical Pacific 
 

Submitted for publication as:   

 
Sharma, P., Singh, A., Marinov, I., and Kostadinov, T.S., (Submitted to GRL-under revision) 
Contrasting ENSO types with satellite derived ocean phytoplankton biomass in the Tropical 
Pacific 

 

B.1 Introduction  

We present (1) a summary of the variables used in this study (Table B1), (2) simple empirical 
orthogonal functional (EOF) modes of phytoplankton biomass and their corresponding principal 
component time series (Figure B1), (1) combined regression-(EOF) modes and their corresponding 
principal component time series (Figure B2) to separate the central and eastern Pacific El Niño 
events, and support the findings in the section 3.4.1 (3) the biomass and Chlorophyll-a index 
(Figure B3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

92 

 

 

 

 

 

 

 

Figure B1: Spatial structures for (a) EOF mode 1, (c) EOF mode 2 and (e) EOF mode 3 and (b, d, 
and f) their corresponding principal component functions (in blue) for the phytoplankton biomass 
anomalies, respectively. The units are mg/m3 and the time functions and indices are normalized. 
The red lines in the time functions are the 13-months Hanning filtered NCT and NWP  
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Figure B2: Spatial structures for combined-regression (a) EOF mode 1, (c) EOF mode 2 and their corresponding time functions ((b, d, in black) for 
the phytoplankton biomass anomalies, respectively. The units are mg/m3 and the time functions and indices are normalized. The red lines in the 
time functions denote the 13-months Hanning filtered NCT and NWP  
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Figure B3:  Time series of (a) the biomass El Niño Index, the Chlorophyll-a El Niño Index, and (b) the biomass and Chlorophyll-a ENSO Index with 
the 13-months Hanning filtered Southern Oscillation Index and Trans- Niño index superimposed in red. See section 5.2 for the definition of both 
indices. NB: For the Chlorophyll-a we adapted the Radenac et al (2012) method of replacing the missing maps with Aqua MODIS Chlorophyll-a 
maps, extending the timeseries to define a 1997-2010 CP and EP ENSO indices for biology. 
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Table B1: Synopsis of variables, original data resolution and source used in this study. NB: We only use data from September 1997- December 
2010.All the datasets were downscaled to 1 degree at a monthly resolution.  

Variables Spatial 
Resolutio
n 

Temporal 
Resolution 

Source/ reference 

Chlorophyll-a,  

SeaWiFs Ocean Color Index OCI algorithm (R.2014) 

Units: mg/m3 

9km Monthly 

September 1997-

2010 

http://oceancolor.gsfc.nasa.gov/ 

NASA Goddard Space Flight Center,  

Ocean Biology Processing Group; (2014) 

Sea Surface Temperature (SST) 

Met Office Hadley Center Sea Ice and SST data set 

1 (HadISST1). Units: oC 

 

1°  Monthly 

September 1997-

2010 

https://www.metoffice.gov.uk/hadobs/hadisst/data/d

ownload.html 

Rayner et al. (2003) 

Windspeed 

European Reanalysis (ERA–Interim) 

Units: m/s2 

1° Daily  

1990-2010 

European Centre for Medium-Range Weather 

Forecasts (http://www.ecmwf.int/) 

Berrisford et al., 2011 

Ocean currents 

Ocean Surface Current Analysis - Real time 

(OSCAR). Units: m/s2 

1/3 degree 

grid  

 

5 day 

 

https://podaac.jpl.nasa.gov/ws/search/granule/?data

setId=PODAAC-OSCAR-03D01&apidoc 

(Bonjean & Lagerloef, 2002) 

Z20°C 

Units: m 

Point data 

set 

September 1997-

2010 

https://www.pmel.noaa.gov/tao/drupal/disdel/ 

(GTMBA Project Office of NOAA/PMEL) 

Multivariate ENSO Index (MEI)  1850-2016 https://climatedataguide.ucar.edu/ 

National Center of Atmospherics Research (NCAR) 

climate data portal 

http://oceancolor.gsfc.nasa.gov/
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
http://www.ecmwf.int/
https://podaac.jpl.nasa.gov/ws/search/granule/?datasetId=PODAAC-OSCAR-03D01&apidoc
https://podaac.jpl.nasa.gov/ws/search/granule/?datasetId=PODAAC-OSCAR-03D01&apidoc
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://climatedataguide.ucar.edu/
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APPENDIX C: Supporting Information for Ocean phytoplankton biology in the 
North East Pacific in multiple satellite products and CMIP5 climate models 

 

 
To be submitted: 
 
Sharma, P., Singh, A., Marinov, I., and Kostadinov, T.S., (JGR) Ocean phytoplankton 
biology in the North East Pacific in multiple satellite products and CMIP5 climate models 
 

C.1 Introduction  

We present 5 supporting Figures (Figures C1-C5): (1) Figure C1, temporal correlation of monthly 
percent micro phytoplankton from multiple satellite products with physics (Figure C1) to support 
section 4.4, (2) Active mixing length scale (LMIX) climatology derived as in Brody et al (2014)  (Figure 
C2 and C3) to support section 4.5, (3) the ratio of zooplankton biomass over phytoplankton biomass 
for CMIP5 models (Figure C4 and C5) to support section 4.4 and 4.5. 
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Figure C1. Temporal correlation of monthly (Top Panel, a-e) micro fraction (TK16) from Kostadinov et al. (2009; 2010; 2016) with sea surface 
temperature (SST), wind speed, active mixing length scale (LMIX), Heatflux (positive into ocean) and Photosynthetically active radiation during the 
SeaWiFS period (1997–2010). Second Panel (f-j) is the temporal correlation between the decimal logarithm of micro fraction (MY2010) from Mouw 
and Yoder. (2010) and above physical variables. Third Panel (k-o) is the temporal correlation between the decimal logarithm of chlorophyll-a in 
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diatoms (PhytoDOAS) from Bracher et al. (2009; 2017) and above physical variables. Bottom Panel (p-t) is the temporal correlation between the 
frequency of detection of diatoms (PHYSAT) from Alvain et al. (2005; 2008) and above physical variables. The correlation in the red and blue areas 
are statistically significant at the 95% level (P < 0.05). Non-significant correlations are shown in white. Long-term trend is removed from the full time 
series by detrending the data. The subtropical gyres (Figure A1) are delimited by black contours 

 

Figure C2. Active mixing length scale (LMIX) climatology derived as in Brody et al (2014) and detailed in Methods for 1 x1 degree grid. Criterion for 
the climatology was constructed using the pixels that have highest percentage occurrence of the Case 1, or Case 2 or Case 3 in all January’s 
during 1997-2010 periods. The subtropical gyres (Figure A1) are delimited by white contours 
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Figure C3. Global map of the percentage occurrence for each case used to construct the (LMIX) active mixing length scale, (a) Case 1: MLD, (b) 
Case 2: LEK and (c) Case 3: LOZ during the SeaWiFS period (1997-2010). Cases are calculated as in Brody et al (2014, see Methods). The subtropical 
gyres (Figure A1) are delimited by black contours 
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Figure C4: Climatologies of the ecological variables in the subpolar box at North Pacific (45-50oN, 140-150oW, includes OSP). The variables includes 
climatologies of (a) ratio of zooplankton biomass over phytoplankton biomass in North Pacific, (zoo/phyto)NP (b) ratio of zooplankton biomass over 
phytoplankton biomass in North Atlantic (zoo/phyto)NA, and (c) ratio of ratio of zooplankton biomass over phytoplankton biomass in North Atlantic 
over ratio of zooplankton biomass over phytoplankton biomass in North Pacific ((zoo/phyto)NA/(zoo/phyto)NP. 
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Figure C5 (Adapted from Cabre et al. 2016):  Temporal correlation of monthly decimal logarithm of phytoplankton biomass with mixed layer depth 
(MLD), Photosynthetically active radiation  (PAR), and sea surface temperature (SST) for 1997-2010 period in TK16 (I think this was TK10, put it as 
TK10 for now, or whatever Anna was using in the paper, we will change later) observed fields (a-c) and in the CMIP5 multimodel mean (d-f). The 
correlation for each model was calculated; then the weighted average of the model correlations was taken to obtain the multi-model mean correlation. 
The correlations in the red and blue areas are statistically significant at the 95% level (P  < 0.05). Non-significant correlations are shown in white. 
Long-term trend is removed from the full time series by detrending the data.  
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Table C1: Summary of the CMIP5 models used in this study. We used 13 models. The eighth column presents the biogeochemical component of 
the earth system models and their references. Information on the following for each model is summarized in columns 2-6, respectively: spatial 
resolution in the atmosphere and ocean, explicitly modeled nutrients, ecology subroutine, references, and weight applied in the all-model averages. 
Variables list for seventh column: Phytoplankton biomass (phyto), Chlorophyll-a, Iron, Nitrate, diatoms, MLD, IPAR, zooplankton biomass, and 
integrated primary production (intpp). P, N Fe and Si stands for Phosphorus, Nitrogen, Iron and Silica. 

Models 
Atm 
(levels, 
lon/lat) 

Ocean 
(levels, 
lon/lat) 

Nutrients 
Phytoplankton 
Variables in 
models 

 
Zooplankton 
In models 

Variables 
analyzed (all 9 
variables (~) 
from the 
model unless 
stated below) 

Reference Weight 

Ecological 
Module 

CanESM2 
L35 
2.8/2.8 

L40 
1.4/0.9 

N (but also 
accounts 
for Fe 
limitation) 

diatom, 
nanophyto, 
diazotroph 

1 zooplankton 

Diatom, Iron 
CMOC-NPZD 
(Zahariev et al., 
2008) 

1 

CESM1-BGC 
L26 
1.25/0.94 

L60 
1.125/0.27–
0.53 

(P), N, Fe, 
Si 

large separated 
into diatoms and 
non- diatom, 
small 
cyanobacteria, 
diazotroph 
 

1 class of 
zooplankton 
(with ability to 
capture 
ecological 
aspects of 
micro-and 
macro-) 

~ 

MET 
(Moore et al., 
2004, Moore et 
al., 2006) 

1 

GFDL-
ESM2G 
 

L24 
2.5/2.0 

L63 
1/0.3-1 

P, N, Fe, Si 
Diatom 
Nanophyto 
diazotroph 

No 
Zooplankton. 
Only specific 
grazing rate for 
each 
phytoplankton 
functional type 

~ 
TOPAZ2 
(Dunne et al., 
2012) 

1 

GFDL-
ESM2M 

L24 
2.5/2.0 

L50 
1/0.3–1 

P, N, Fe, Si 

1 

GISS-E2-H-
CC 
 

L40 
2.5/2 

L26 
1/1 

N, Fe, Si 
Diatoms, 
chlorophytes, 
cyanobacteria, 
coccolitophores 
 

1 zooplankton 
 

PAR 
NOBM (Gregg, 
2008) 

1 

GISS-E2-R-
CC 

L40 
2.5/2 

L32 
1.25/1 

N, Fe, Si 
1 
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HadGEM2-
ES 

L38 
1.25 /1.875 

L40 
1/0.3–1 

N, Fe, Si 
diatom, non-
diatom 
 

1 zooplankton 
 

~ 

Diat-HadOCC 
(NPZD) 
(Palmer and 
Totterdell, 2001) 

0.5 

IPSL-CM5A-
LR 
 

L39 
3.75/1.875 

L31 
2/0.5–2 

P, N, Fe, Si 
Diatoms, 
nanophyto 
 

2 zooplankton 
(Micro and 

Meso) 
~ 

PISCES (from 
HAMOCC5) 
(Aumont and 
Bopp, 2006, 
Séférian et al., 
2013) 

0.5 

IPSL-CM5A-
MR 

L39 
2.5/1.25 

L31 
2/0.5–2 

P, N, Fe, Si 
0.5 

MPI-ESM-LR 
L47 
1.9 

L40 
0.4 

P, N, Fe, Si 1(But separated 
into diatoms and 
calcifiers) 

1 zooplankton 

Diatom 

HAMOCC5.2 
(NPZD) 
(Ilyina et al., 
2013) 

0.5 

MPI-ESM-
MR 

L23 
1.125/1.121 

L40 
1.5 

P, N, Fe, Si 
0.5 

MRI-ESM1 
L23 
1.125/1.121 

L51 
1/0.5 

P, N Diatom Diatom, Iron 
NPZD (Oschlies, 
2001) 

0.5 

NorESM1-
ME 

L26 
1.9/2.5 

L53 
1/1.25 

P, N, Fe, Si 

Phyto(But 
separated into 
diatoms and 
calcifiers) 

Chlorophyll-a, 
Diatom, 
zooplankton 

HAMOCC5.1 
(NPZD) 
(Assmann et al., 
2010) 

1 
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Table C2: Seasonal indices (e.g. seasonal amplitude and strength) in/against variables across 13 CMIP5 models.  The information in this table is 
represented at Figure 4.6 and Figure C4.   

 

Models CESM
1-BGC 

GFDL-
ESM2
G 

GFDL-
ESM2
M 

IPSL-
CM5
A-MR 

GISS
-E2-
H-
CC 

GISS
-E2-
R-
CC 

HadGEM
2-ES 

MPI-
ESM
-MR 

NorESM
1-ME 

CanES
M2 

MRI-
ESM
1 

IPSL-
CM5
A-LR 

MPI-
ESM
-LR 

Variables Ratio of Seasonal Cycle Magnitude at the 2 locations. Seasonal Magnitude defined as Maximum minus 
Minimum (max-min)  

ChlNA / ChlNP 20.56  2.66     2.78     9.20   1.57  1.62  0.23   0.33        - 5.05     0.86 4.08      - 

PhytoNA / PhytoNP 10.41     2.06    1.63    15.26 1.57   1.63 0.23    0.32     0.82 4.10    0.86 5.50     0.38 

ZooNA / ZooNP 1.429 1.66     1.60        - 0.43   1.02     0.40     0.56        - - 0.70 1.31     0.8 

PPNA / PPNP 1.964 2.31     1.89     2.91    0.93  1.30  0.38     0.45     0.98 5.13     00.8   1.67   0.47 

NitrateNA / NitrateNP 1.784 3.51     2.39     2.16  0.37    0.87  0.13    0.48     1.30  - 0.56 0.81  0.54 

MLDNA / MLDNP 0.792 8.13 7.65     5.27    4.58 4.43     0.78        - 1.37 1.68 2.59 2.72    1.27 

Month of Maximum (imax) in the 2 regions of interest 

(imax)phytoNA 6 6 6 5 4 5 4 5 6 2 6 5 6 

(imax)phytoNP 4 5 5 6 4 5 6 6 5 3 7 5 6 

(imax)zooNA 6 7 6 0 5 5 5 6 - 4 7 5 6 

(imax)zooNP 6 6 6 0 4 6 6 6 - 4 7 6 6 

(imax)PPNA 6 6 5 5 4 5 4 5 6 4 6 5 5 

(imax)PPNP 6 5 5 6 5 5 5 6 5 4 7 6 6 
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Ratio of annual averages and Ratio of maximum values 

zoo/phytoCNA 0.449 1.42 1.56 - 0.09 0.31 0.45 0.63 - 0.37 0.79 0.505 0.63 

zoo/phytoCNP 0.840 1.48 1.50 - 0.38 0.39 0.38 0.43 - 0.005 1.00 1.10 0.47 

(max)pp/(max)phyto
CNA 

39.14 71.29 73.85 36.10 18.6
7 

43.9 42.56 33.1 40.54 98.84 55.9 39.01 33.4 

(max)pp/(max)phyto
CNP 

126.11 57.76 57.88 75.52 33.6
3 

49.1 25.32 24.6 34.08 76.326 60.3 74.78 27.2 

Ratio of Seasonal Cycle Intensities at the 2 locations. Seasonal cycle intensity defined as (max-min)/ave at each location 

FeNA/ FeNP 1.61 1.19 1.92 3.06 2.7 0.43 0.13 0.30 0.36 - - 0.78 0.46 

ChlNA/ ChlNP 9.86 2.47 2.29 3.22 2.71 1.78 0.71 0.68 - 0.67 1.09 2.18 - 

PPNA/ PPNP 1.44 1.70 1.32 1.83 1.92 1.44 0.94 0.82 0.80 0.94 1.14 1.63 0.77 

ZooNA / ZooNP 1.37 1.66 1.39 - 3.10 1.43 1.05 0.80 - 0.56 1.14 2.05 0.92 
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Table C3: Temporal monthly correlation coefficients for the biological variables in the first column 
against the physical variables first row for the North Pacific Box. 

Variables SST LMIX Heatflux TKE PAR MLD wind LEK 

TK16 biomass -0.007 0.22 -0.29 0.22 -0.32 0.14 0.23 0.23 

B05 Biomass 0.66 -0.68 0.59 -0.67 0.60 -0.73 -0.70 -0.69 

S08 Biomass 0.22 -0.11 0.046 -0.13 0.042 -0.18 -0.10 -0.10 

SeaWiFS Chl-a 0.11 -0.02 -0.03 -0.062 -0.06 -0.01 0.01 0.01 

TK16 Micro % -0.40 0.61 -0.61 0.61 -0.67 0.59 0.62 0.62 

TK16 Nano % -0.42 0.60 -0.58 0.59 -0.61 0.59 0.62 0.62 

TK16 Pico % 0.42 -0.62 0.61 -0.61 0.65 -0.60 -0.63 -0.63 

Physat Diatom 0.48 -0.57 0.45 -0.53 0.47 -0.54 -0.56 -0.56 

MY2010 Micro % 0.52 -0.45 0.30 -0.47 0.29 -0.48 -0.46 -0.46 

PhytoDOAS 

Diatom Chl 
-0.01 0.48 -0.59 0.46 -0.52 0.19 0.52 0.51 

B15 Chl/C -0.53 0.92 -0.90 0.91 -0.91 0.87 0.92 0.93 

 

Table C4: Temporal monthly correlation coefficients for the biological variables in the first column 
against the physical variables first row for the North Atlantic Box 

Variables SST LMIX Heatflux TKE PAR MLD Wind LEK 

TK16 biomass -0.045 -0.47 0.58 -0.35 0.60 -0.46 -0.43 -0.44 

B05 Biomass 0.16 -0.50 0.74 -0.57 0.78 -0.56 -0.62 -0.62 

S08 Biomass 0.097 -0.56 0.69 -0.47 0.71 -0.57 -0.57 -0.57 

SeaWiFs Chl-a 0.047 -0.50 0.67 -0.44 0.68 -0.52 -0.52 -0.53 

TK16 Micro % -0.26 -0.32 0.26 -0.04 0.22 -0.19 -0.11 -0.11 

TK16 Nano % -0.45 -0.14 0.06 0.13 0.06 -0.01 0.08 0.08 

TK16 Pico % 0.33 0.26 -0.18 -0.02 -0.17 0.13 0.04 0.04 

Physat Diatom 0.02 -0.41 0.68 -0.47 0.72 -0.47 -0.53 -0.53 

MY2010 Micro % 0.05 -0.54 0.69 -0.47 0.69 -0.53 -0.58 -0.57 

PhytoDOAS Diatom Chl -0.26 0.02 -0.53 0.51 -0.61 0.31 0.52 0.52 

B15 Chl/C -0.71 0.57 -0.87 0.80 -0.87 0.69 0.88 0.87 
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