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ABSTRACT 

Hemodialysis is a process of purifying the blood of a person whose kidneys are 

not working normally. The design of a hemodialysis membrane with superior uremic 

toxin separation and sufficient biocompatibility is of great demand. Hence, the 

objective of this study is to fabricate a high performance and biocompatible 

polysulfone/iron oxide nanoparticles (PSf/IONPs) mixed matrix membrane (MMM) 

for hemodialysis application. In the first phase of the study, the poor dispersion of 

IONPs in the polymer solution was addressed by a chemical modification using citric 

acid (CA) at the weight ratio of 1:5-1:25 (IONPs:CA). The dispersion of the IONPs 

was studied by observing the particle stability in water. PSf/IONPs MMMs comprised 

of 18 wt% PSf, 4.8 wt% polyvinylpyrrolidone and 0.1 wt% IONPs at various 

IONPs:CA weight ratios were then prepared by dry-wet spinning process. The results 

revealed that the optimum IONPs:CA weight ratio was 1:20, in which 49% of the 

IONPs was recovered after 3 days in water. As a result of the improved IONPs 

dispersion, the MMM exhibited good water transport features. In the second phase of 

the study, the effect of dope extrusion rate (DER) from 1.0 to 2.5 mL/min, and air gap 

from 10 to 60 cm, on the MMM morphology and liquid separation characteristics was 

investigated. The higher DER increased the MMM wall thickness, while the increase 

of air gap reduced the MMM diameter. The ideal morphology for hemodialysis 

membrane was obtained at the DER of 1.0 mL/min and the air gap of 50 cm. At those 

membrane spinning conditions, the MMM achieved pure water permeability (PWP) of 

70.84 Lm-2h-1bar-1, bovine serum albumin (BSA) rejection of 98.2% and high sieving 

coefficient of urea (1.0) and lysozyme (0.7). In the next phase, the effect of IONPs 

loading (0-0.1 wt%) on the MMM physicochemical properties and separation 

performance were studied. The PSf/IONPs MMM possessed an improved thermal 

stability at higher IONPs loading. Besides, the MMM porosity and surface 

hydrophilicity were enhanced by increasing the IONPs loading. It was found that the 

MMM fabricated at 0.05 wt% IONPs loading recorded the highest PWP and BSA 

rejection (P= 110.47 Lm-2h-1bar-1; R= 99.9 %). Moreover, the MMM displayed the 

best separation performance by removing 82% urea and 46.7% lysozyme. In the final 

phase of the study, the membrane surface morphology was studied and the 

biocompatibility of the MMMs was evaluated in terms of protein adsorption, platelet 

adhesion, blood coagulation time and compliment activation. The PSf/IONPs MMMs 

possessed a smoother surface and smaller surface pore size compared to the common 

PSf membrane. Furthermore, the PSf/IONPs MMM demonstrated lesser protein 

adsorption and platelet adhesion at higher IONPs loading while keeping a normal 

blood coagulation time and satisfactory complement activation. The PSf/IONPs 

MMM showed an excellent separation performance and good biocompatibility for 

hemodialysis application. 
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ABSTRAK 

Hemodialisis ialah proses membersihkan darah seseorang yang buah 

pinggangnya tidak berfungsi seperti biasa. Reka bentuk membran hemodialisis dengan 

pemisahan toksin uremik yang unggul dan biokeserasian yang mencukupi mendapat 

permintaan yang tinggi. Justeru, objektif kajian ini adalah untuk menghasilkan 

membran bermatriks campuran (MMM) polisulfon/partikel nano besi oksida 

(PSf/IONPs) yang berprestasi tinggi dan bioserasi untuk aplikasi hemodialisis. Pada 

fasa pertama kajian, penyerakan IONP yang rendah dalam larutan polimer ditangani 

oleh pengubahsuaian kimia menggunakan asid sitrik (CA) pada nisbah berat 1:5-1:25 

(IONPs:CA). Penyerakan IONPs dikaji dengan memerhatikan kestabilan partikel 

tersebut di dalam air. PSf/IONPs MMMs terdiri daripada 18 % berat PSf, 4.8 % berat 

polivinilpirrolidon dan 0.1 % berat IONPs pada pelbagai nisbah berat IONPs:CA 

kemudiannya dihasilkan melalui proses putaran kering-basah. Dapatan kajian 

menunjukkan bahawa nisbah berat IONPs:CA yang optimum adalah 1:20, di mana 

49% daripada IONPs telah diperoleh setelah 3 hari di dalam air. Hasil daripada 

penyerakan IONP yang lebih baik, MMM mempamerkan ciri-ciri pengangkutan air 

yang baik. Pada fasa kedua kajian, kesan kadar penyemperitan larutan polimer (DER) 

daripada 1.0 hingga 2.5 mL/min, dan sela udara daripada 10 hingga 60 cm, terhadap 

morfologi dan ciri-ciri pemisahan cecair MMM telah dikaji. DER yang lebih tinggi 

meningkatkan ketebalan dinding MMM, manakala peningkatan sela udara 

mengurangkan diameter MMM. Morfologi yang sempurna untuk membran 

hemodialisis diperolehi pada DER 1.0 mL/min dan sela udara 50 cm. Pada keadaan 

putaran membran tersebut, MMM mencapai kebolehtelapan air tulen (PWP) sebanyak 

70.84 Lm-2h-1bar-1, penyingkiran serum albumin bovin (BSA) sebanyak 98.2% dan 

faktor pengayakan urea (1.0) dan lisozim (0.7) yang tinggi. Pada fasa seterusnya, kesan 

muatan IONPs (0-0.1 % berat) terhadap sifat fizikokimia dan prestasi pemisahan 

MMM dikaji. PSf/IONPs MMM mempunyai kestabilan haba yang lebih baik pada 

muatan IONPs yang lebih tinggi. Selain itu, keliangan dan sifat hidrofilik permukaan 

MMM telah dipertingkatkan dengan meningkatkan muatan IONPs. Telah didapati 

bahawa MMM yang dihasilkan pada 0.05 % berat muatan IONPs merekodkan PWP 

dan penyingkiran BSA (P = 110.47 Lm-2h-1bar-1; R = 99.9%) tertinggi. Selain itu, 

MMM tersebut mempamerkan prestasi pemisahan terbaik dengan menyingkirkan 82% 

urea dan 46.7% lisozim. Pada fasa terakhir kajian, morfologi permukaan membran 

dikaji dan biokeserasian MMM dinilai dari segi penjerapan protein, pelekatan platelet, 

masa pembekuan darah dan pengaktifan pelengkap. PSf/IONPs MMMs mempunyai 

permukaan yang lebih rata dan saiz liang permukaan yang lebih kecil berbanding 

membran PSf yang biasa. Tambahan pula, PSf/IONPs MMM menunjukkan 

penjerapan protein dan pelekatan platelet yang berkurang pada muatan IONPs yang 

lebih tinggi sambil mengekalkan masa pembekuan darah yang normal dan pengaktifan 

pelengkap yang memuaskan. PSf/IONPs MMM menunjukkan prestasi pemisahan 

yang cemerlang dan biokeserasian yang baik untuk aplikasi hemodialisis.
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INTRODUCTION 

1.1 Research Background 

One of the most dangerous diseases faced nationwide is kidney disease. Over 

the past ten to fifteen years, the number of chronic kidney diseases patients has 

increased terrifically where these patients suffer from the incapability of filtering and 

removing body waste. The latest statistics issued by National Kidney Foundation 

(NKF) in March 2016 revealed the total number of 38,157 Malaysians on dialysis and 

that number was expected to rise to 49,000 by the end of 2018 (Hammim, 2017). The 

further detail of the number of registered hemodialysis patients in Malaysia from year 

2005 to 2016 is shown in Figure 1.1. 

 

Figure 1.1 Statistics of the number of registered hemodialysis patients in Malaysia 

from year 2005 to 2016 (Goh and Ong, 2015) 
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Hemodialysis is considered as a highly successful therapy that provides the 

second chance to live. Since the beginning of the first semipermeable membranes for 

hemodialysis, the membrane technology keeps developing until it has been 

successfully used for hemodialysis treatment for patients who suffer from acute renal 

disease and end-stage renal disease (ESRD). In general, the main component of 

hemodialysis machine is dialyzer, where semipermeable membrane is situated. The 

membrane is arranged in the middle, serves as membrane contactor to form separate 

adjacent paths for blood and dialysis fluid (dialysate). It filters waste products (i.e. 

urea, creatinine, β2-microglobulin), removes excess water and balances electrolytes 

such as sodium, potassium, and bicarbonate. 

Various materials ranging from cellulose-based polymers to synthetic 

polymers have been used as the main material for the development of hemodialysis 

membrane. Cellulose and its derivatives are known as the first-generation polymers 

used in hemodialysis. However, due to their weak hydraulic permeability and low 

molecular cut-off, synthetic polymer such as polysulfone (PSf) and polyethersulfone 

(PES) which are also known as the second-generation polymers have been employed 

for hemodialysis. PSf, an amorphous polymer having a sulfone group in its structure, 

is the most commonly used polymeric material in producing hemodialysis membrane. 

It is due to its excellent thermal, chemical and mechanical stability. In addition, PSf-

based membranes are one of those having the best biocompatibility. The initial 

development of PSf membrane coincided with the scientific reports regarding 

leukopenia and complement cascade caused by cellulosic hemodialysis membranes 

(Carpi, Donadio, and Tramonti, 2011). 

An efficient hemodialysis membrane correlates to achieving excellent 

membrane separation performance with minimal adverse effects. Since 2014, the 

incorporation of inorganic nanomaterials in membrane matrices has become an 

emerging trend in membrane technology to enhance the permeability, selectivity and 

physicochemical properties of the membranes (Souza and Quadri, 2013; Cao et al., 

2006). The nanomaterials have been promisingly used as nanofiller of polymer matrix 

(Favvas et al., 2014; Ng et al., 2013; Japip et al., 2014), forming a new class of 

membrane known as mixed matrix membrane (MMM). 
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The recent progress in the development of MMM for hemodialysis application 

involved mainly on the use of carbon nanoparticles. Previous studies on the 

hemodialysis membranes incorporated with carbon nanotubes (CNTs) for examples 

showed a substantial increase in water transport properties and toxin removal as 

compared to the neat polymeric membrane (Irfan et al., 2014; Yu et al., 2017). 

However, MMMs were seldom prepared in hollow fiber configuration which is more 

suitable for hemodialysis application. In addition, the use of other classes of 

nanomaterials like metal and metal oxide in hemodialysis membrane has never been 

studied before and their capability to improve the membrane dialysis performance has 

never been reported elsewhere. 

 Nevertheless, metal and metal oxide nanoparticles have been utilized in other 

separation processes due to their hydrophilic nature and high surface area, thus 

producing membranes with good interconnectivity and porosity (Ng et al., 2013). 

Moreover, some metal oxide like iron oxide nanoparticles (IONPs) are biocompatible, 

chemically stable and have relatively low toxicity. The useful attributes offer great 

potential for IONPs to be employed as membrane nano-filler for hemodialysis 

application.  

In this study, IONPs were incorporated in PSf hollow fiber membranes for 

hemodialysis application. To enhance the distribution of IONPs throughout the 

membrane, a naturally ubiquitous organic compound, namely citric acid (CA) was 

added into the dope solution as a stabilizer.  The effect of different IONPs-CA weight 

ratios was extensively studied for the development of hollow fiber membrane. Next, 

the optimum spinning condition and IONPs loading were determined. The MMMs 

were evaluated in terms of their morphology, physicochemical properties, separation 

performance and biocompatibility. In brief, this study would be beneficial to those 

interested in the design of metal oxide nanocomposite and the strategized development 

of a safe and high-performance membrane for efficient liquid separation especially in 

ultrafiltration (UF) and hemodialysis treatment. Besides, the employment of metal 

oxide nanoparticles in hemodialysis membrane would provide the insight on 

membrane’s potential commercialization.  
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1.2 Problem Statement 

The major problem associated with current hemodialysis treatment is the 

membrane incapability to remove the middle molecules, i.e. lysozyme and β2-

microglobulin. Normally, the removal of toxin by membrane is based on the 

concentration differences rather than the convective separation of solutes, which only 

works on small molecules such as urea and creatinine. Besides that, the current 

commercial membranes could not remove these ‘middle’ size molecules efficiently 

due to inadequate membrane pore size and thick skin layer. Some membranes that 

possess large pores ended up losing essential proteins. Either way, this makes the 

treatment less efficient. 

On the other hand, the hydrophobic property of hemodialysis membranes 

makes them difficult to achieve high UF capacity since they attract the naturally 

existing hydrophobic proteins such as albumin and poorly interact with water 

molecules in blood. Furthermore, hydrophobicity is related to a rough surface of 

membrane, thus increases the possibility of proteins to get stuck on the surface. The 

effect on the membrane biocompatibility includes platelet adhesion and subsequently 

activating blood coagulation process. A series of hydrophobic protein and other 

components of blood that are activated can block the opening of membrane pores and 

subsequently cause performance drop, i.e. reduction in water permeability of the 

membrane. Besides, the rougher membrane surface can induce immunological 

responses such as complement activation when in contact with blood.  

To tackle the stated problems, a high flux membrane with porous structure is 

needed. Thus, surface modification is usually done on the membrane. Previous efforts 

include the blending of hydrophilic polymer, for example polyethylene glycol and 

polyvinylpyrrolidone (PVP) together with PSf to increase the surface hydrophilicity 

of the membrane. Nevertheless, the tendency of PVP to swell in water and elude during 

dialysis (Irfan et al., 2014) makes it less stable, despite becoming a good pore forming 

agent. Moreover, this approach did not improve the UF capacity of the membrane, thus 

made no difference on the separation of middle molecules. The efforts then have been 

shifted to the development of MMMs by incorporating nanoparticles to overcome the 

limitation of polymeric membranes. 
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IONPs are among the metal oxide nanoparticles that received most attention 

due to their nanoscale dimension, chemically inertness, good hydrophilicity and 

remarkable total surface area (Krishnamoorthy and Sagadevan, 2015). On the other 

hand, IONPs have been used for a long time in the biomedical such as tissue repair, 

drug delivery, magnetic resonance imaging and treating hyperthermia (Kumar and 

Gupta, 2005), which justified their biocompatibility with human body. The IONPs 

nano-structure behaves as a good liquid transport medium, thus producing membranes 

with good interconnectivity and porosity which could facilitate water movement 

across the membrane at minimal operating pressure. The presence of the hydrophilic 

IONPs at the membrane surface can reduce the membrane surface roughness, hence 

minimizing the protein adsorbed on the membrane. Certainly, MMM is a viable option 

to address the existing issues in hemodialysis. 

Nevertheless, the aggregation of IONPs due to Van de Waals forces becomes 

the main issue since it is quite impossible to fabricate a uniform hollow fiber 

membrane, especially in small dimension. IONPs have a large surface to volume ratio 

and therefore possess high surface tension. Consequently, they tend to aggregate to 

reduce the surface energies. Some strategies to keep the stability of IONPs include 

grafting or coating with organic compounds such acids, polymer and biomolecules 

(Wu et al., 2008). CA, which is a stabilizer from the class of organic acid was used in 

this study to improve the dispersion stability of IONPs.  

In addition, there is a commitment to tailor the membrane morphology by 

manipulating the spinning parameter, since membrane morphology also plays a huge 

role in determining the sieving properties of a membrane. Throughout this study, 

attempts were made to fabricate PSf/IONPs MMMs at the optimum spinning 

parameter and IONPs loading to heighten the separation performance of the 

membranes, with the focus to remove both small and middle molecular weight 

molecules.  
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1.3 Objectives 

The overall aim of this study is to develop a high performance and 

biocompatible PSf/IONPs MMM for hemodialysis application. The specific objectives 

of this study are: 

i) To perform non-covalent modification of IONPs using CA at various IONPs-

CA weight ratios and investigate the dispersion stability of IONPs and its 

impact on the MMMs water transport properties. 

ii) To study the effects of various dope extrusion rates (DERs) and air gaps on the 

MMMs morphology and liquid separation characteristics.  

iii) To investigate the effects of various IONPs loadings on the MMMs 

physicochemical properties and the removal of urea and lysozyme.  

iv) To examine the surface morphology and biocompatibility of the fabricated 

MMMs for hemodialysis application. 

1.4 Scopes of the Study 

To fulfil the above objectives, the following scopes of work are outlined: 

1) Modifying the surface of IONPs through the direct addition of CA at the weight 

ratio of 1:5-1:25 (IONPs:CA) and determining the dispersion stability of the 

blends by measuring the percent of IONPs recovered in water at designated 

time intervals for 3 days using UV-vis spectrophotometer. 

2) Investigating the influence of CA towards the dispersion of IONPs using 

Fourier transform infrared (FTIR) spectrometry and scanning transmission 

electron microscopy (STEM). The pH and viscosity changes of PSf/IONPs 

dope solution after the addition of CA were also studied. 
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3) Fabricating the PSf/IONPs MMMs with different IONPs-CA weight ratios 

(1:5, 1:10, 1:15, 1:20, and 1:25) via dry-wet spinning process at 40 cm air gap. 

The MMMs hydrophilicity was determined using contact angle goniometer, 

before examining the morphology of the fabricated MMMs using scanning 

electron microscopy (SEM) and measuring their porosity and pore size. The 

water transport properties of the MMMs were also determined. 

4) Studying the impact of spinning parameters by fabricating the PSf/IONPs 

MMMs at different DERs (1.0-2.5 mL/min). The MMMs were evaluated in 

terms of their morphology using SEM. 

5) Fabricating the PSf/IONPs MMMs at various air gaps (10-60 cm). The 

morphological properties of the MMMs were examined using SEM. The liquid 

separation characteristics of the MMMs were evaluated based on the pure water 

permeability (PWP), bovine serum albumin (BSA) rejection and sieving 

properties, performed at the pressure of 0.7 bar.  

6) Preparing PSf/IONPs dope solutions at different IONPs loadings (0-0.1 wt%). 

The viscosity of dope solutions was measured using a viscometer, before 

fabricating the MMMs at the optimum air gap and DER. The MMMs were 

characterized in terms of morphology using SEM, thermal stability using TGA, 

hydrophilicity using contact angle goniometer and porosity. Next, the PWP and 

BSA rejection tests were performed at the pressure of 0.7 bar.  

7) Selecting the optimum feed and dialysate flow rates to be used in dialysis 

performance test based on the efficiency of the membrane module by 

calculating the mass transfer area coefficient of urea and lysozyme. 

8) Determining the percent clearance of urea and lysozyme achieved by the 

MMMs of different IONPs loadings at the pre-optimized feed and dialysate 

flow rates. 

9) Studying the leaching phenomenon of IONPs from MMMs by determining 

IONPs content in water permeate using UV-vis spectrophotometer.  
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10) Casting PSf/IONPs MMMs in the form of flat sheets via dry-wet phase 

inversion process with evaporation time of 6 seconds using water as the 

coagulation bath. The surface morphology of PSf/IONPs flat sheets was 

studied using atomic force microscope (AFM). 

11) Evaluating the biocompatibility of the PSf/IONPs flat sheets in terms of protein 

adsorption, platelet adhesion, blood coagulation time and complement 

activation. 

1.5 Significance of the Study 

This study is expected to provide a better understanding on the underlying 

principle of the fabrication of MMMs for hemodialysis application by considering the 

changes of the membrane morphology, liquid separation characteristics, surface 

characteristics and uremic toxin separation due to the addition of inorganic nanofillers. 

The primary outcome of the research would benefit scientific community in the sense 

of filling in the knowledge gap in multiple fields which encompass nanotechnology 

and membrane technology. In addition, the research on hemodialysis membranes in 

Malaysia is still at early stages. The employment of IONPs in hemodialysis membrane 

for instance could progressively diversify their potential in this biomedical-device 

application. The ingenious approach which combined both unique properties of IONPs 

and versatility of polymer as a host showed great potential to combat the issues 

commonly faced by polymeric membranes. This novel invention is believed to become 

a stepping stone which could provide a valuable information for membranologists and 

lead the way to further study.  The aftermath of the research will also benefit the ESRD 

patients by providing a high performance and biocompatible hemodialysis membrane 

that is capable and reliable to perform exceptional blood purification with minimal 

adverse effect. Triggered by the general necessities of serving the social community, 

the study would attract companies that manufacture or supply medical equipment as a 

platform to patent and market the product.  
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1.6 Limitation of Study 

With reasonable explanations, these are the limitations the study: 

1) The loading range of IONPs in membrane used was from 0 to 0.1 wt%. This 

range was selected based on the preliminary results obtained during the early 

stage of the study. At IONPs loading higher than 0.1 wt%, the dope solution 

became unstable, making it less homogeneous. The resultant membrane shape 

and dimension became inconsistent. In addition, the set of membranes 

produced from these IONPs loadings showed more convincing results that can 

be discussed with logical explanations. 

2) Instead of hollow fiber membranes, flat sheet membranes from each membrane 

composition were utilized for biocompatibility studies. Hollow fiber 

membrane is hard to handle for the studies, since the active surface is at the 

inner side where the lumen is very small. The results obtained using flat sheet 

membrane is comparable reflect the membrane-blood interactions of the 

hollow fiber membranes.  

3) The blood samples used for biocompatibility tests were collected from 3 

healthy volunteers of random blood groups. The presented results of each 

membrane were based on the average value obtained from the 3 blood samples. 

Hence, the outcomes generated from this part of studies represent the 

membrane-blood interactions in general, rather than towards human blood of 

specific types and conditions. 

1.7 Organization of Thesis 

The thesis consists of 8 chapters altogether. Chapter 1 outlines brief 

information on the hemodialysis treatment, the use of membrane technology in 

hemodialysis and current issues that lead us to conduct this research. The objectives, 

scopes and the significance of this study have also been highlighted in this chapter. In 

Chapter 2, more detailed descriptions on how membrane works in hemodialysis 

treatment, the desired properties of a hemodialysis membrane, evolution of the 
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hemodialysis membranes, followed by the specific modifications of the membranes 

which include chemical modification and fine tuning of the spinning parameters. 

Chapter 3 focusses on the experimental methods and characterization techniques that 

were used in this study.  

Results and discussion were elaborated in Chapter 4 – Chapter 7. Chapter 4 

describes in detail the effects of adding CA on the dispersion stability of IONPs in 

dope solution, as well as their distribution in membrane, whereby the possible 

mechanism of the phenomenon was proposed. The IONPs-CA weight ratio was varied 

from 1:5 to 1:25. The optimum IONPs-CA weight ratio was selected and was used to 

fabricate the hollow fiber membranes in Chapter 5. Chapter 5 discusses the effect of 

spinning parameters (DER and air gap) on the morphology and liquid separation 

characteristics of the hollow fiber membranes. The optimum DER and air gap were 

applied for the subsequent fabrication of membranes. 

Next, the effects of varying the loading of IONPs on the MMMs 

physicochemical properties and its impact on the uremic toxins removal were 

addressed in Chapter 6. The same formulation used in Chapter 6 was used in Chapter 

7 to fabricate flat sheets for the surface morphological studies and biocompatibility 

analysis. To conclude this thesis, the general conclusions of this study and some 

recommendations for future work have been listed in Chapter 8. 
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