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ABSTRACT 

As the direct seeding of rice is getting popular, the farmers have shifted from 

traditional transplantation method to direct seeding method. The problem with this 

method however is the direct exposure of seeds to abiotic stresses that affect crop 

establishment. Studies have not been conducted so far to improve the germination 

tolerance in saline-alkaline conditions. Therefore, the present study was conducted to 

perform the genomic analysis of tolerance to saline-alkaline stress at germination 

stage in rice. Parental varieties Pokkali and Pak Basmati were selected out of six rice 

varieties on the basis of their performance in saline-alkaline conditions. A mapping 

population (F2:3) was constructed using Pokkali as tolerant and Pak Basmati as 

sensitive parent. Germination parameters such as final germination percentage 

(FGP), germination value (GV), germination energy (GE), germination velocity 

(GVe), speed of germination (SG), peak value (PV), germination capacity (GC), 

germination index (GI) and mean germination time (MGT) while growth parameters 

like germination vigour index (GVI), shoot length (SL), root length (RL) and total 

dry biomass (DBM) were recorded. Parental varieties were optimised for saline-

alkaline stress limits. Phenotyping of F3 progenies was conducted with the saline-

alkaline limits (pH8/15 dS.m-1) optimised in parental varieties. Correlation studies 

show that germination and growth parameters are positively correlated. It was also 

found that growth parameters were affected more than germination parameters. The 

genotypic data of 129 F2 plants for 84 polymorphic markers was used to construct 

molecular linkage map, with an average interval size of 7.63cM with four gaps of ≤ 

40cM and the total length of 3435.5cM. Quantitative Trait Loci (QTL) Cartographer 

was used for genomic analysis using three mapping techniques i.e. simple interval 

mapping (SIM), composite interval mapping (CIM) and multiple interval mapping 

(MIM). Thirty-three QTLs (17 major and 16 minor) were identified using SIM. 

Forty QTLs (14 major and 26 minor) were identified by CIM. Sixty QTLs were 

identified using MIM technique. The parental varieties used in this study are 

potential candidates for abiotic stress studies. These findings would be beneficial in 

rice breeding programs to develop tolerant cultivars for the saline-alkaline 

environment through marker assisted selection. 
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ABSTRAK 

Memandangkan pembenihan tabur terus padi semakin popular, petani telah 
beralih dari kaedah menanam secara tradisional ke kaedah tabur terus. Masalah 
dengan kaedah ini bagaimanapun adalah pendedahan benih secara terus kepada 
tekanan abiotik telah menjejaskan pertumbuhan tanaman. Sehingga kini kajian untuk 
meningkatkan toleransi percambahan dalam keadaan masin-alkali tidak pernah 
dijalankan. Oleh itu, kajian ini dijalankan untuk melaksanakan analisis genom 
toleransi kepada tekanan masin-alkali pada peringkat percambahan dalam padi. Jenis 
ibu bapa Pokkali dan Pak Basmati telah dipilih daripada enam jenis padi berdasarkan 
prestasi mereka dalam keadaan masin-alkali. Pemetaan Populasi (F2:3) telah dibina 
menggunakan Pokkali sebagai toleran dan Pak Basmati sebagai induk yang sensitif. 
Percambahan parameter seperti peratus percambahan akhir (FGP), nilai 
percambahan (GV), percambahan tenaga (GE), halaju percambahan (GVe), kelajuan 
percambahan (SG), nilai puncak (PV), kapasiti percambahan (CA), indeks 
percambahan (GI) dan min masa percambahan (MGT) manakala parameter 
pertumbuhan seperti indeks percambahan tenaga (GVI), tempoh bertunas (SL), 
tempoh asal (RL) dan jumlah biojisim kering (DBM) telah direkodkan. Saluran 
induk telah dioptimumkan untuk had tekanan masin-alkali. Penelitian lapangan 
(Phenotyping) progeni F3 telah dijalankan dengan had masin-alkali (pH8 / 15 dS.m-1) 
yang dioptimumkan dalam jenis ibu bapa. Kajian korelasi menunjukkan bahawa 
percambahan dan pertumbuhan parameter berkorelasi secara positif. Ia juga 
mendapati bahawa parameter pertumbuhan lebih terjejas daripada parameter 
percambahan. 129 data genotip tumbuhan F2 untuk 84 penanda polimorf telah 
digunakan untuk membina peta rangkaian molekul, dengan saiz selang purata 
sebanyak 7.63cM dengan empat jurang sebanyak ≤ 40cm dan jumlah panjang 
sebanyak 3435.5cM. Ciri Kuantitatif Loci (QTL) telah digunakan untuk analisis 
genom menggunakan tiga teknik pemetaan iaitu Pemetaan Selang Mudah (SIM), 
Pemetaan Selang Komposit (CIM) dan Pemetaan Selang Berganda (MIM). Tiga 
puluh tiga QTLs (17 utama dan 16 kecil) telah dikenal pasti menggunakan SIM. 
Empat puluh QTLs (14 utama dan 26 kecil) telah dikenal pasti oleh CIM. Enam 
puluh QTLs telah dikenal pasti menggunakan teknik MIM. Jenis ibu bapa yang 
digunakan dalam kajian ini adalah calon berpotensi untuk kajian tekanan abiotik. 
Hasil kajian ini memberi manfaat dalam program pembenihan padi untuk 
membangunkan kultivar toleran untuk persekitaran masin-alkali melalui bantuan 
penanda pilihan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Rice (Oryza sativa L.) is one of the most important cereal crops of the world. 

It is essential source of staple food for more than 2.7 billion people all around the 

globe, most of them living in developing countries (FAO, 2016). It is cultivated on 

one-tenth of the arable land of the planet earth. By the year 2025, a total increase of 

21% would be needed to meet the food requirements compared to the needs in year 

2000 (Bhowmik et al., 2007). Second only to wheat, rice production contributes to 

almost 20% of the total cereal crop production of the world (Acquaah, 2007). Rice is 

second biggest crop produced all over the world with a total of 740.95 million tons 

produced from 163.1 million hectares at an average of 4.54 tons of rice per hectare 

(FAO, 2010). In addition to its importance as one of the biggest sources of food, rice 

is rich in genetic diversity as there are thousands of varieties and accessions all over 

the world (Ammar et al., 2007). There are two main methods being practised for rice 

cultivation. Traditional transplanting system (TPR), an important plant establishment 

technique where pre-germinated seedlings are transferred to the fields (Farooq et al., 

2007). The seedlings are provided ideal growth conditions before being transplanted. 

The second method is direct seeding of rice (DSR) which entails broadcasting the 

seeds directly through hands or machines (Farooq et al., 2011). Both these methods 

have their own pros and cons.  

TPR requires labour and time, and it is economically expensive as well. 

Handling the pre-germinated seeds is difficult (Farooq et al., 2007). While DSR has 

a major drawback that seeds are directly exposed to abiotic stresses (Farooq et al.,  
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2011). Cultivation areas are shrinking because of rapid urbanization and 

industrialization (Jiang and Li, 2016). Therefore, utilisation of less productive or 

saline-sodic marginal soils would be a suitable option to bring under cultivation by 

improving the crops tolerance to saline-alkalinity. Ever increasing population 

demands higher amounts of rice and other food crops. This can be achieved by 

producing high yielding varieties, by expanding the total area presently under 

cultivation or by following the latest management practices to increase the overall 

rice production. However increased population and natural disasters causing a direct 

threat to the food security (Gardi et al., 2015; Gardner, 1996; Nath et al., 2015) 

hence expanding the cultivated areas is becoming hard. There are variety of abiotic 

and biotic stresses affecting the food production adversely, in general and rice 

production in particular. Only in Asia these stresses cause a total of 23% of 

production decrease compared to its full potential (Hossain, 1997). Salinity is second 

biggest abiotic stress condition after drought, in rice cultivating areas. Thirty percent 

of total rice grown area all over the world is severely affected by high salinity levels. 

These levels adversely affect the normal growth of rice plants.  

A total of 1.5×109 ha land area is cultivated all over the world out of which 

23% area is saline and another 37% are sodic in nature (Shi and Wang, 2005). The 

cations present in the saline and sodic soils are Na+, Ca2+, Mg2+ and K+ and anions 

Cl-, SO4
2-, HCO3

-, CO3
2- and NO3

- are present. Studies have shown that alkali stress 

results mainly from certain levels of sodium bicarbonate and sodium carbonate (Shi 

and Yin, 1993). Quite a lot of literature is available on salt stress (Munns and Tester, 

2008) while a little attention was paid to the saline-alkaline stress. Saline-sodic soils 

occur within the boundaries of 75 countries and the area under saline-alkalinity is 

gradually increasing (Qadir et al., 2007). Sodic and saline-sodic soils are grouped 

together because of sharing same characteristics and the management practices 

(Qadir et al., 2007). Rice seeds are affected by these abiotic stresses when 

broadcasted directly through DSR. It was observed that alkalinity was more 

damaging than salinity at germination stage (Guo et al., 2010). Plants accumulate 

more Na+ at the expense of K+. They also start accumulating soluble osmolytes 

which are compounds affecting osmosis. Severe inhibition in wheat root and shoot 

under saline-alkaline conditions has also been reported (Guo et al., 2010). Grain 
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security is becoming a major concern and urbanization is one of the factors behind 

food crisis. Effective land use planning is critical for food security but soil erosion, 

land degradation and climatic changes are causing a rapid increase in marginal lands 

(Kang et al., 2013). Scherr, (1999) has emphasized on the reduced annual yields and 

role of soil quality in overall crop production and also emphasized on the need to 

improve the soil quality. We have marginal soils i.e. the soils with problems but we 

do not have the varieties that could grow there because we do not have much 

knowledge or data about tolerance to abiotic stress. Because of these factors, the 

crops are becoming low yielding. Already cultivated area is shrinking because of 

growing salinity, sodicity and drought (Valipour, 2014).  

 
 
A prudent measure to address the salinity and sodicity issue is to develop 

tolerant varieties.  The recent developments in the field of quantitative genetics have 

greatly influenced the study of complex quantitative traits and this has made it 

possible to dissect the complex quantitative traits or polygenes for certain traits to 

Mandelian factors. Identification of loci controlling genetic variations in segregating 

populations has become possible with the use of molecular markers and QTL 

analysis technology. Characterisation of these loci according to their position on 

genetic map, their mode of action, phenotypic and pleiotropic effects and epistatic 

interactions with other QTLs have also become possible (Dufey et al., 2015; Ogawa 

et al., 2016; Zhao et al., 2016). Several studies have been conducted for salinity 

tolerance in rice at different stages (Heenan et al., 1988b; Kumar et al., 2015; 

Rahman et al., 2016), however, 37% of the total cultivated land is sodic as well, and 

it is urgently needed to see and dissect combined effects of salinity and sodicity. 

Rice is considered as the moderately salinity sensitive cereal crop plant which can 

tolerate saline levels of 4-8 dS.m-1 (Sairam and Tyagi, 2004). 

 
 
The genetic variation that a rice plant possesses makes it suitable candidate 

for quantitative trait studies. This variation helps not only in understanding the 

mechanisms behind biotic and abiotic stress studies but also to develop new varieties 

with improved abiotic and biotic stress tolerance. There have been efforts to develop 

salt tolerant rice varieties (Flowers, 2004; Khan et al., 2016; Lutts et al., 1995). 

Genetic variability for salinity tolerance has been reported among a large number of 
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economically important crops including rice (Flowers, 2004). This genetic 

information about salt tolerance is essential for developing salt tolerant rice cultivars. 

This information can later be used in marker assisted selection (MAS) and plant 

breeding studies to exploit the identified genomic regions known as quantitative trait 

loci (QTLs).  

 
 
Saline soils have high pH levels (alkaline) and affect the uptake of nutrients 

and limit the germination. Studies to improve tolerance to saline-alkaline stress in 

rice at germination stage has not been conducted yet. QTL identification is another 

way to speed up breeding tolerant rice varieties through marker assisted selection. 

Present study focused on genetic dissection of saline-alkaline tolerance mechanisms. 

 

Farmers follow two methods for rice cultivation; transplantation and direct 

seeding of rice (Singh, 2013). Transplantation is done both manually and 

mechanically where seedlings are provided with the ideal growth conditions and are 

transferred to the field when seedlings are 3 to 4 weeks old (Farooq et al., 2007) 

depending on type of rice varieties. Therefore, it is considered expensive because of 

labour (Coelli et al., 2002) and water use (Bhushan et al., 2007). Reduced tillage and 

direct seeding on flat land and raised beds can result in significant water savings 

(Gupta et al., 2003). Thus, direct seeding is an efficient and economical rice planting 

option. Plants grown by direct seeding get mature 7-10 days earlier than those 

transplanted (Farooq et al.,  2011).  

1.2 Problem Statement  

Rapid urbanization and industrialization resulted in labour shortage for the 

rice transplantation from nurseries to the irrigated paddy fields. It motivated the 

farmers to shift from transplantation method to direct seeding of rice. Direct seeding 

of rice is also suitable for the farmers because they can obtain maximum plant 

density and productivity with lesser labours and low economic inputs. Direct seeded 

rice reduces the crop water requirements, soil organic-matter turnover, nutrient 
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relations, carbon sequestrating, weed biota and greenhouse-gas emissions (Farooq et 

al., 2011). Therefore, direct seeding is more popular among farming community. 

Majority of the saline soils are alkaline in nature (Vega-Jarquin et al., 2003). When 

direct seeding method method is used where the soils are affected with salinity or 

alkalinity the seed is exposed directly to the stresses. These abiotic stresses inhibit 

the seed germination adversely affecting the crop establishment (Vinocur and 

Altman, 2005). There are two ways to address this problem. One of them is to do the 

chemical amendments to improve saline-alkaline soil which is not durable and often 

not environmental friendly (Hai et al., 2010). The second way is to develop the plant 

saline-alkaline tolerance genetically at germination stage. 

Rice is reported sensitive to salinity at different growth stages (Al-Karaki, 

2001). The genetic studies revealed the quantitative trait loci (QTLs) linked with 

tolerance at these growth stages (Koyama et al., 2001; Cheng et al., 2008). However, 

direct seeding is a new rice culture method and the studies regarding tolerance to 

saline-alkaline stress at germination stage in rice has not been conducted yet. Present 

study as shown in Figure 1.1 focused on identification of QTLs linked with tolerance 

to saline-alkaline stress using F2:3 segregating population. 

 

Figure 1.1 Illustration of problem statement 
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1.3 Research Objectives  

i. To develop a mapping population to dissect the genetic background 

for tolerance to saline-alkaline stress at germination stage in Indica 

rice.  

ii. To investigate the tolerance potential in F3 progenies against the stress 

limits optimized in parental lines.  

iii. To construct a microsatellite molecular linkage map based on F2 

microsatellite data using MapMaker.  

iv. To identify the microsatellite loci associated with seed germination 

tolerance to saline-alkalinity based on molecular linkage map and F3 

progenies stress tolerance data using QTL cartographer.  

1.4 Research Scope  

A preliminary study was conducted to select tolerant and sensitive rice 

varieties under saline-alkaline conditions to develop mapping population. Pokkali 

and Pak Basmati were selected as tolerant and sensitive varieties, respectively. These 

varieties were crossed and F2 population was developed after confirming the 

pedigree of F1 seedlings. F2 (129) population was used to get marker data by using 

84 microsatellite markers. Marker data was used to construct molecular linkage map 

by MapMaker. F3 progenies (129) were phenotyped under an optimised stress level. 

Potential QTLs were identified linked to germination traits under saline-alkaline 

conditions by three methods simple interval mapping (SIM), composite interval 

mapping (CIM) and multiple interval mapping (MIM) using QTL cartographer.   
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