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ABSTRACT 

The main objective of the transmission lines is to deliver power from the 
generator to the customers, with less losses and without any interruptions. However, 
pollution sources are increasing around the world, which are affecting one of the 
most important components of a power line, namely, the high voltage outdoor 
insulators. The accumulation of pollution on the surface of the insulator can affect its 
physical properties and create leakage current resistance. Under suitable conditions, 
this resistance will lead to leakage current on the surface of the insulator. In previous 
studies, leakage current measurement on the insulator surface was ignored because it 
is negligible. However, increasing pollution levels and the large number of 
transmission line insulators should take into account the effect of leakage current 
resistance in the transmission line model. In this thesis, an improved model is 
introduced to examine the effect of leakage current resistance on the parameters of 
the transmission line, the amount of additional active power losses, voltage drop and 
increased real power generation in power networks for both short and medium 
transmission lines.  Three levels of leakage resistance (high, medium, and low) that 
represent the three levels of pollution are incorporated into the transmission line 
model through a series of delta to star and star to delta conversion using a two-port 
network concept. Then, by inserting the leakage current resistance, a simulation 
model was used to measure leakage current and voltage of the leakage current 
resistance. A simulation sensor is used to predict the level of pollution on the 
insulator and the location of highly polluted insulators using Artificial Neural 
Network. This study was able to determine the changes in each parameter and the 
effects of these changes on the active power losses and voltage drop in three different 
systems. The application of the improved model have shown an increase in detection 
of power losses by 25.63% in high pollution conditions at the insulators in all short 
and medium transmission lines. Thus, to compensate for these high losses, the 
system needs to increase real power generation by 0.61% when compared with 
during normal conditions. The prediction results by the simulation model for the 5-
bus system clearly demonstrated that the overall Correct Classification Rates for the 
predicted pollution levels were very high at 97.67% and 98.03%, for both short and 
medium models, respectively. Meanwhile, the Correct Classification Rate for the 
predicted locations of highly polluted insulators is 100% for both short and medium 
models. The results obtained in this study offer accurate information for polluted 
transmission line insulators, which could be used for maintenance and calculation of 
power loss for polluted insulators, in order to keep the power system in a reliable 
state. 
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ABSTRAK 

Objektif utama talian penghantaran adalah menghantar tenaga elektrik 
daripada penjana kuasa kepada pelanggan, dengan jumlah kehilangan yang kecil dan 
tanpa gangguan. Walau bagaimanapun, sumber pencemaran yang semakin 
meningkat di seluruh dunia mampu mempengaruhi salah satu komponen paling 
penting dalam talian elektrik, iaitu penebat luar bervoltan tinggi. Pencemaran yang 
terkumpul pada permukaan penebat boleh menjejaskan sifat fizikalnya dan 
menghasilkan rintangan arus bocoran. Dalam keadaan yang sesuai, rintangan ini 
akan menyebabkan aliran arus bocoran berlaku pada permukaan penebat. Kajian 
terdahulu mengabaikan bacaan arus bocoran pada permukaan penebat kerana ianya 
boleh diabaikan. Namun, peningkatan paras pencemaran dan bilangan penebat talian 
penghantaran yang banyak menunjukkan bahawa kesan rintangan arus bocoran perlu 
dimasukkan ke dalam model talian penghantaran. Tesis ini memperkenalkan satu 
model diperbaiki untuk mengkaji kesan rintangan arus bocoran kepada parameter 
talian penghantaran, jumlah peningkatan kehilangan kuasa aktif, penurunan voltan 
dan peningkatan penjanaan kuasa sebenar dalam rangkaian kuasa talian penghantaran 
pendek dan sederhana. Tiga tahap rintangan bocoran (tinggi, sederhana, dan rendah) 
yang mewakili tiga tahap pencemaran dimasukkan ke dalam model talian 
penghantaran melalui suatu siri penukaran delta kepada bintang dan bintang kepada 
delta menggunakan konsep rangkaian dua liang. Setelah rintangan arus bocoran 
dimasukkan, model simulasi digunakan untuk mengukur arus bocoran dan voltan 
bagi rintangan arus bocoran. Sensor simulasi digunakan untuk meramal tahap 
pencemaran pada penebat dan lokasi penebat yang sangat tercemar menggunakan 
Rangkaian Neural Buatan. Kajian ini mampu menentukan perubahan dalam setiap 
parameter dan kesannya terhadap kehilangan kuasa aktif dan penurunan voltan dalam 
tiga sistem yang berbeza. Aplikasi model diperbaiki ini menunjukkan peningkatan 
dalam pengesanan kehilangan kuasa sebanyak 25.63% dengan keadaan pencemaran 
yang tinggi pada penebat di semua menara dalam talian penghantaran pendek dan 
sederhana. Untuk mengimbangi kehilangan yang tinggi ini, sistem janakuasa perlu 
meningkatkan penjanaan kuasa sebenar sebanyak 0.61% berbanding dengan keadaan 
biasa. Hasil ramalan model simulasi untuk sistem 5-bas menunjukkan bahawa Kadar 
Pengkelasan Benar secara keseluruhan untuk tahap pencemaran yang diramalkan 
adalah sangat tinggi, masing-masing pada 97.67% dan 98.03%, bagi kedua-dua 
model pendek dan sederhana. Kadar Pengkelasan Benar untuk ramalan lokasi 
penebat yang sangat tercemar adalah 100% bagi model pendek dan sederhana. Hasil 
kajian ini memberikan maklumat yang tepat untuk penebat talian penghantaran yang 
tercemar, yang boleh digunakan dalam penyelenggaraan dan pengiraan kehilangan 
tenaga elektrik untuk penebat yang tercemar, demi memastikan sistem kuasa dalam 
keadaan yang boleh dipercayai.	
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CHAPTER 1  
 
 
 
 

INTRODUCTION 
 INTRODUCTION 1

1.1 Background 

The electrical power system is one of the most complex human-made set-ups 

in the world. Its basic operating role is to deliver all electricity demand to customers 

with high efficiency and cost effectiveness [1].  However, the increasing demand for 

electric power, along with deregulation, has pushed the power system into putting 

more pressure on its infrastructure (generation, transmission, and distribution).  This 

kind of operation will increase the risks towards the stable and reliable state of the 

power system to provide continuous power service for customers.  Under this 

stressful operating condition, it is vital that the power system reduces all factors 

affecting the transmission of power to customers, especially power losses, to keep 

the system in a satisfactory condition. 

Power losses often occur in three areas of the network system, namely, 

generation, transmission, and distribution. Power loss in an electrical system 

typically varies between 3 to 6%. In developed countries, power losses in an 

electrical system do not exceed 10%. Meanwhile, in developing countries, active 

power losses are almost 20% [2].  These losses can be classified into two kinds: the 

first one is economical due to energy lost in transmission [3], while, the second one 

is due to environmental pollution [4]. Power systems must use fuel resources, in 

general, to compensate for power losses, which mean more emissions of fossil fuels, 

like coal, gas, and oil to generate more power.  Fossil fuels in particular, provide 

almost 80% of the global energy demands [5].  The increasing demand for energy 
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sources have increased their prices and the cost of electricity, as well as exacerbating 

global warming [5]. 

High voltage transmission lines are an essential part of the power system 

network, bringing power from remote generating stations to consumers.  These lines 

could span over thousands of miles [6], and the service fundamentally depends on 

the condition at transmission lines [7].  Therefore, the efficiency of the transmission 

lines in transmitting power with lower losses is crucial to power companies.  Most 

electrical power is transferred via transmission and distribution overhead lines [8].  

Despite the use of underground cables in certain urban areas to solve aesthetic and 

congestion problems, overhead lines are expected to continue being the major 

distributor and transmitter of electrical energy. There are different types of towers 

used to transmit power, both in the transmission or distribution, as depicted in Figure 

1.1. 

 

Figure 1.1 Various transmission and distribution line structures: (a) 345 kV;  

(b) 138 kV; (c) 138 kV; (d) 69 kV; (e) 34 kV; and (f) 12 kV [9] 

Typically, overhead lines consist of towers, conductors, and outdoor 

insulators [6].  However, all transmission lines have losses in transmitting power 

process through it.  The amount of these losses depends on transmission line design 

for example, material and length of transmission lines, as well the type of polluted 

(a)  (b) (c) (d)  (e)  (f) 



3 

	

insulators.  Losses in transmission lines could be divided into reactive and active [1] 

losses.  A reactive loss is created by the reactionary elements in the network, while 

real loss is caused by the physical properties of the transmission medium and the 

resistance to transmit power through it.  Active power losses can directly impact the 

energy delivered to customers, thus, requiring more attention from utility companies 

[2].  Active power losses in the transmission lines are estimated to vary between 4 

and 8% of the total power generated. In Brazil, half a billion U.S. dollars a year 

represent the cost of losses [10].  

Insulators in overhead transmission lines provide support to line conductors, 

and physically separate one conductor from the other, while electrically insulating 

each of them [11].  Studying the performance of insulators under pollution is very 

important due to the high voltage of the transmission lines being subjected to 

different pollution sources, such as weather and factory emissions [12].  Depending 

on the severity of the pollution and the wetting conditions of the site, outdoor 

insulators may allow leakage current to flow from a line to ground over the surface 

of the insulators. Although the individual leakage current is small in value, the total 

leakage current may reach high values when multiplied by the total number of 

insulators that exist in a transmission line [13-15]. This could increase the power loss 

from insulators and increase the total real power loss in the power system because 

leakage current is drawn from the main supply [9].  In serious situations, flashovers 

may occur, which could lead to the loss of the insulator itself and the transmission 

line connected to this insulator.  For example, in the northeast region of Brazil, 

15.25% of transmission line faults are attributed to the effects of pollution deposits 

on insulators.  These insulator failures could cause billions of dollars in losses [16, 

17].  Figure 1.2 shows an example of a polluted outdoor insulator. 
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Figure 1.2 Outdoor pollution insulator [18] 

An increase in the load demand can lead to an increase in voltage level in the 

transmission lines and the power generation [19]. Thus, increased power generation 

could increase the amount of pollution. In general, this condition could challenge the 

insulator’s ability to withstand high electrical stresses and the accumulation of 

pollution.  Therefore, numerous researches have looked into insulator performances 

in high voltage under polluted conditions to mitigate insulator failure in the power 

system [20].  From various literature, various methods, such as computer simulations 

and laboratory experiments are used to study the behaviour of the insulators under 

different pollution levels.  Attempts have also been made to mitigate pollution in 

insulators via various techniques, such as insulator washing, silicone coating, or 

using leakage current as an indicator for a physical situation of the insulator under 

pollution [21].  However, to date, no attempt has been made to mathematically model 

and analyse the performance of the transmission line, under the influence of leakage 

current resistance, to study the effect of polluted insulators on transmission line 

parameters. This study proposes a novel method to assess the effect of changing the 

insulator resistance value on the parameter of the transmission line model, load flow, 
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and total real losses of the power system.  Moreover, this study presents a simulation 

for sensoring the amount of leakage current when the insulator resistance is changed, 

which would allow for the prediction pollution level on the insulator.  All these 

information are vital in maintaining continuous power transmission. 

1.2 Problem Statement 

One of main problems when transmitting power in the overhead transmission 

lines is the accumulation of pollution on the surface of high voltage insulators due to 

increased sources of pollution [5]. Such condition could affect the performance of the 

insulator and in a worst case scenario, failure of the transmission line insulator. For 

example, 15.25% of faulty transmission lines in Brazil were due to pollution deposits 

on insulators [16, 17].  These insulator failures have caused billions of dollars in 

losses [10,22].   

The polluted surface of the insulator could affect its physical characteristics, 

such as reducing its surface resistance and allowing leakage current to flow [23].  In 

a previous study, leakage current on the insulator surface was ignored [24] due to its 

small value.  Nonetheless, with increased pollution sources that leads to raise up the 

probability of whiteness high voltage insulator to the accumulation of pollution. 

Thus, the total leakage current can reach high values when multiplied by the total 

number of polluted insulators existing in a transmission line. Consequently, this 

condition could increase power losses from insulators and increase real power losses 

in the power system because leakage current is drawn from the main supply [13-15].  

Previous researchers have investigated the performance of high voltage 

insulators in transmission lines under different pollution levels and conditions. These 

studies were focused on how and when the insulators would experience breakdowns 

through computer simulations or laboratory experiments [25-35]. Then, they looked 

for ways to improve the insulator’s surface to increase its resistance. Despite these 

efforts, there are still a need to develop a model that can represent the effects of  

leakage current resistance on transmission line parameters and study how affect  load 
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flow and total active losses.  Moreover, by sensoring the amount of leakage current, 

control centre could predict the level of pollution on the insulator, which would be 

useful to utility companies. Such knowledge can be used for the maintenance of an 

insulator, which can reduce losses or prevent flashovers and keeping power 

continuously via transmission lines.  All of these benefits will consequently improve 

the power system, making it highly efficient, economical, and reliable. 

1.3 Objectives of The Research 

This thesis is focused on investigating the effect of leakage current resistance 

on the insulator.  The primary objectives of this thesis are: 

1. To develop an improved model for transmission lines with the insertion 

of leakage current resistance. 

2. To evaluate the performance of transmission lines, in terms of real 

power losses and bus voltage, in the presence of leakage current 

resistance.  

3. To develop an assessment technique for predicting pollution levels and 

the location of highly polluted insulators via simulation instruments for 

leakage current levels, using ANN in the improved transmission line. 

1.4 Scope of Research 

The scope of this modelling and simulation study is focused on the following 

aspects: 

1. Inclusion of the short and medium transmission lines only. Long 

transmission line was excluded from this study due to the complexity 

of the model. 
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2. Newton Raphson load flow (NRLF) was used with the leakage current 

resistance parameter. 

3. Three levels of pollution for the test systems were used, depending on 

the leakage current, namely, low pollution stage (< 50 mA), medium 

pollution stage (< 150 mA), and high pollution stage (> 150 mA). 

Weather condition was also included, especially the increase of 

humidity, which could have an effect on the flow of leakage current 

on the surface of the insulator. However, the assumptions in this study 

were that the weather condition for the flow of leakage current was 

available and that it remained constant. 

4. The 5-bus system was used to predict the pollution levels and the 

location of highly polluted insulators, to improve the model for 

transmission lines, with the insertion of leakage current resistance. 

1.5 Organisation of Research 

This thesis is organised into six chapters. Summarized descriptions of the 

remaining chapters are as follow: 

Chapter 2 presents an overview of insulators and the types of pollutions on 

insulators.  A discussion of the model for polluted insulator are also included. A 

detailed review, particularly on the leakage current on insulators and leakage current 

mitigation techniques, are also addressed.  Previous studies that are related to leakage 

current resistances on insulators are also discussed in the final parts of this chapter. 

Chapter 3 discuss the development of a model for the effect of leakage 

current resistance on two types of transmission lines i.e. short and medium line.  

High, medium, and low values of leakage resistances were incorporated into the 

model through a two-port network concept and a series of delta-star conversion and 

lastly, a star-delta conversion.  Thus, the load flow equations were updated by 

changing the input impedances. 
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