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ABSTRACT 

 

 

 

 

Hemicelluloses are heterogeneous branched polymers of sugars that exist 

abundantly in nature.  Enzymatic hydrolysis is envisioned as a highly potential method 

in converting hemicelluloses into fuels and value-added chemicals.  However, the use 

of free enzyme is hampered by low operational stability, difficulty in recovery and 

non-reusability, which requires for enzyme immobilization.  Carrier-bound 

immobilization leads to utilization of high cost matrices, clogging of filters during 

downstream processing and presence of large amounts of non-catalytic ballast.  

Therefore, cross-linked enzyme aggregates (CLEA), a carrier-free technology that 

combines purification (precipitation) and immobilization into a single operation and 

does not require purified enzymes, is the solution to these problems.  In this study, a 

recombinant xylanase (Xyl) from Trichoderma reesei was immobilized using three 

approaches: Xyl-CLEA, Xyl-CLEA-BSA (bovine serum albumin) and Xyl-CLEA-

silanized maghemite.  The use of ethanol as precipitant (1:9 volume ratio of enzyme 

to precipitant), glutaraldehyde (0.2:1 of glutaraldehyde to enzyme of 100 mM 

concentration) as cross-linking agent and the introduction of (3-aminopropyl) 

triethoxysilane (APTES) silanized maghemite (0.0075:1 of silanized maghemite to 

enzyme) prevailed in forming xylanase CLEAs with good enzyme activity recovery 

(78 %), thermal stability (50 % retained activity) and reusability (50 % retained 

activity).  The Xyl-CLEA-silanized maghemite enhanced the activity recovery 1.66- 

and 1.50-fold compared to Xyl-CLEA and Xyl-CLEA-BSA, respectively.  At elevated 

temperature of 60 °C and pHs of 3.0 and 8.0, Xyl-CLEA-silanized maghemite 

achieved better stability compared to the other CLEAs and free enzyme.  Xyl-CLEA-

silanized maghemite also successfully retained more than 50 % of its activity after 6 

cycles, whereas Xyl-CLEA only retained approximately 10 % after 5 cycles.  

Therefore, the performance of Xyl-CLEA-silanized maghemite was further 

investigated by xylan hydrolysis under optimised reaction conditions.  

Xylooligosaccharides yield was slightly improved by 1.26- fold compared to the free 

enzyme.  Kinetic parameters confirmed that CLEA immobilization did affect the  

productivity of the designed biocatalyst. 

.



vi 

ABSTRAK 

 

 

 

 

Hemiselulosa adalah polimer bercabang heterogen yang wujud dengan sangat 

banyak dalam alam semulajadi.  Hidrolisis enzimatik dibayangkan sebagai kaedah 

yang berpotensi tinggi untuk menukarkan hemiselulosa menjadi bahan api dan bahan 

kimia bernilai tambah.  Walau bagaimanapun, penggunaan enzim bebas terhad 

disebabkan oleh kestabilan operasinya yang rendah, kesukaran untuk pemulihan dan 

ketidakbolehan guna semula, yang menyebabkan keperluan kepada proses imobilisasi 

enzim.  Imobilisasi pembawa melibatkan penggunaan matriks yang berkos tinggi, 

penyumbatan penapis semasa pemprosesan hiliran dan kehadiran sejumlah besar 

balast bukan pemangkin.  Oleh itu, agregat enzim terpaut silang (CLEA), teknologi 

bebas pembawa yang menggabungkan pemurnian (pemendakan) dan imobilisasi ke 

dalam satu operasi dan tidak memerlukan enzim tulen, adalah penyelesaian kepada 

masalah ini.  Dalam kajian ini, xylanase rekombinan (Xyl) dari Trichoderma reesei 

diimobilisasi menggunakan tiga pendekatan: Xyl-CLEA, Xyl-CLEA-BSA (bovine 

serum albumin) dan Xyl-CLEA-silanized maghemite.  Penggunaan etanol sebagai 

pemendak (1:9 nisbah isipadu enzim kepada pemendak), glutaraldehid (0.2:1 

glutaraldehid kepada enzim berkepekatan 100 mM) sebagai agen pemaut silang dan 

pengenalan (3-aminopropyl) triethoxysilane (APTES) silanized maghemite (0.0075: 1 

silanized maghemite kepada enzim) berjaya membentuk xylanase CLEA dengan 

pemulihan aktiviti enzim yang baik (78 %), kestabilan terma (50 % aktiviti tersimpan) 

dan kebolehan guna semula (50 % aktiviti tersimpan).  Xyl-CLEA-silanized 

maghemite meningkatkan pemulihan aktiviti 1.66- dan 1.50- kali ganda berbanding 

dengan Xyl-CLEA dan Xyl-CLEA-BSA, masing-masing.  Pada suhu tinggi 60 °C dan 

pH  3.0 dan 8.0, Xyl-CLEA-silanized maghemite mencapai kestabilan yang lebih baik 

berbanding dengan CLEA yang lain dan enzim bebas.  Xyl-CLEA-silanized 

maghemite juga berjaya mengekalkan lebih daripada 50 % aktiviti selepas 6 kitaran, 

manakala Xyl-CLEA hanya mengekalkan kira-kira 10 % selepas 5 kitaran.  Oleh itu, 

prestasi Xyl-CLEA-silanized maghemite dikaji selanjutnya melalui hidrolisis xilan di 

bawah keadaan tindak balas yang dioptimumkan.  Hasil xilooligosakarida meningkat 

sebanyak 1.26- kali ganda berbanding dengan enzim bebas.  Parameter kinetik 

mengesahkan bahawa imobilisasi CLEA mempengaruhi produktiviti biomangkin yang 

direka. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

The intensifying concern among the nations in the 21st century is the heavy 

dependence on fossil resources.  Today the society is aware of the progressive 

depletion, and the demand to develop materials from renewable resources with low 

environmental impact is indeed crucial.  Lignocellulose has emerged as a highly 

promising candidate to substitute fossil raw materials due to its abundant availability 

as forest and agriculture residues or in the form of waste streams of the paper industry. 

Moreover, it is of great economic importance that the application of lignocellulose as 

a feedstock does not compete with food production since it is non digestible by humans 

(Negahdar et al., 2016).  Being the most attractive renewable and sustainable resource, 

lignocellulose can be utilised in the biorefinery framework for the production of fuels, 

materials and chemicals (Silva-Fernandes et al., 2015; Menon and Rao, 2012). 

Lignocellulosic biomass is primarily constituted by cellulose, hemicellulose and lignin 

(Zhang et al., 2015).  Different parts of the lignocellulose have already been exploited 

for a long time mostly for the production of pulp and energy, but the last decade has 

brought new inventions and applications based on hemicelluloses (Rissanen et al., 

2015).  Key factors for the shift to hemicellulose based materials are availability in 

large quantities at a reasonable price and that the material manufactured from 
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hemicellulose has similar or superior properties than the present fossil fuel-based 

material (Börjesson and Westman, 2016).  Recent innovations include various 

biopolymers, carbon fibers, fuels and platform chemicals based on hemicelluloses 

(Martin-Sampedro et al., 2014a,b).  Modifications are performed on the extracted 

hemicellulose using different functional groups which will later be employed for 

pharmaceutical and packaging applications such as polyelectrolyte layers (Rissanen et 

al., 2015; Kisonen et al., 2014).  Another value-added product obtained during the 

hydrolysis of xylan, the major component of hemicelluloses is the 

Xylooligosaccharides (XOs) (Akpinar et al., 2009).  Xylooligosaccharides are sugar 

oligomers that have a variety of great physiological properties such as lowering 

cholesterol levels, improving gastrointestinal function and the biological availability 

of calcium, and reducing the risk of colon cancer (Lin et al., 2017; Samanta et al., 

2015).  They are extensively used as prebiotics and functional food, thus the demand 

of XOs has been greatly increased in recent years (Yang et al., 2016; Uçkun Kiran et 

al., 2013).  XOs can be used as a source of xylose for the production of xylitol or for 

the preparation of ethers and esters which can be further utilised as thermoplastic 

compounds for water-soluble films, coatings, and capsules.  The rapid growth of the 

functional food market and the growing number of other industrial applications force 

researchers to explore different sources and technologies for producing XOs in high 

yields (Moure et al., 2006).  Hydrolysis via enzymatic approach is therefore highly 

preferable because it does not produce undesirable by-products or high amount of 

monosaccharides (Uçkun Kiran et al., 2013; Akpinar et al., 2009). 

 

 

Enzymes have become a significant factor in several industries due to their 

valuable properties such as rapid and efficient action at low concentrations under mild 

temperatures and pH values, high substrate specificity, low toxicity, and ease of 

termination of activity (Rodrigues et al., 2014; Sanchez and Demain, 2011).  The use 

of enzymes in industrial processes is commonly related to a minimised consumption 

of energy as well as chemicals and therefore beneficial for the environment (Demarche 

et al., 2011).  Successful application of enzymatic processes is governed by the cost 

competitiveness with the existing and well established chemical processes.  The 

development of industrial enzymes has strongly relied on the use of microbial sources 

for the past two decades as they are more stable than their corresponding plant and 
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animal counterparts, and their production is more convenient and safer (Kartal and 

Kilinc, 2012).  The ability to be produced economically in cheap media and short 

fermentation cycles make them more practical to be used.  Enzymes have thrived in 

penetrating various industries including food, textiles, detergents, pulp and paper as 

well as diagnostics and therapy. The global market for industrial enzymes was 

estimated approximately $4.2 billion in 2014 and predicted to develop at a compound 

annual growth rate (CAGR) of about 7% over five years (2015 to 2020) to reach nearly 

$6.2 billion (Singh et al., 2016).  In addition to this, over half percentage of the enzyme 

market has been provided by recombinant enzymes.  The production levels of enzymes 

are majorly affected by the advanced recombinant DNA technology which enables 

genes encoding enzymes to be cloned from microbes and expressed at levels multifolds 

higher than those naturally produced.  It does not only increase the production levels 

tremendously but also moved the enzyme productions from strains not suited for 

industry into industrial strains such as species of Bacillus, Aspergillus, Trichoderma 

and Kluyveromyces (Sanchez and Demain, 2011). 

 

 

Despite having many benefits, there are bottlenecks that hamper the use of 

enzymes.  Enzymes are highly sensitive molecules with unique three-dimensional 

structures that are responsible for their activities.  However, exposure to extreme 

operating conditions such as elevated temperature and pH will cause the enzyme 

structures to unfold (denature) and consequently lose their activities.  Other than that, 

enzymes are usually utilised in aqueous solution and the soluble state makes it 

cumbersome for recovery and reuse.  It can jeopardize the purity level of the product 

and hence result in product contamination (Sheldon, 2011).  To overcome these 

limitations, several enzyme stabilization techniques have been explored by worldwide 

researchers to improve a biocatalyst process for optimal product yield.  The methods 

include screening for enzymes from extremophiles and their isolation, production of 

stable enzymes in genetically manipulated organisms and stabilizing unstable enzymes 

by protein engineering, chemical modification, use of additives and immobilization.  

Although every approach has its own advantages, immobilization thrives in terms of 

convenient handling, ease of separation and reuse as well as being economically viable 

(Ansari and Husain, 2012). 
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Therefore, immobilization offers the best solution to overcome the obstacles 

previously mentioned.  Immobilization can realize the reuse of expensive enzymes and 

improve the enzyme properties (operating and storage stability) by limiting the 

conformational change induced by distorting agents, preventing activity loss due to 

dissociation, generating convenient (hydrophilic or hydrophobic) environment and 

altering an active site or the conformational flexibility of the enzyme (Kartal and 

Kilinc, 2012).  Moreover, immobilized enzymes, in contrast to free enzymes which 

can penetrate the skin, are hypoallergenic (Sheldon, 2011).  Numerous books and 

comprehensive reviews have been published on enzyme immobilization thus reporting 

thousands of protocols.  Immobilization strategies generally consist of adsorption, 

entrapment, covalence, affinity or cross-linking and combination of several methods.  

For instance, a pre-immobilized enzyme which is adsorbed on beads can be further 

entrapped in a porous polymer (Sassolas et al., 2012).  Immobilization typically 

involves binding the enzyme to or encapsulate in a support or carrier.  The presence of 

a large proportion of non-catalytic ballast (about 90-99% of total mass) causes dilution 

of their volumetric activity.  On the contrary, cross-linked enzyme aggregates (CLEA) 

is a ‘carrier-free’ immobilization strategy that has attracted increasing attentions due 

to its simplicity in preparation and robustness in industrial applications (Cui et al., 

2014; Kartal and Kilinc, 2012; Sheldon, 2011).  CLEAs held several prominent 

advantages including highly concentrated catalytic activity, high stability against 

extreme operating conditions, low production cost due to exclusion of carriers, ease of 

synthesis, facile recovery and reusability as well as the fact that no extensive 

purification of enzymes is needed.  The synthesis implies two main procedures which 

are precipitation of enzymes by aggregating agents such as salts, water miscible 

organic solvents or non-ionic polymers, followed by subsequent cross-linking of the 

precipitated enzymes by bifunctional reagent like glutaraldehyde. 

 

 

The past two decades have shown tremendous development in the design of 

cross-linked enzyme aggregates.  Despite being a straightforward immobilization 

strategy, the preparation of CLEAs remains challenging for enzymes with few lysine 

residues (Asco-Lozano et al., 2014).  Uneffective cross-linking occurs to enzymes with 

low amine content, resulting in CLEAs with low mechanical stability, and thus 

enabling the release of enzyme molecules into the reaction media (Hormigo et al., 
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2012).  Common solutions proposed are by introducing proteic feeder such as bovine 

serum albumin (Hormigo et al., 2012; Dong et al., 2010; Shah et al., 2006 ), polylysine 

(Yamaguchi et al., 2011) or polyionic polymers containing abundant amine groups 

such as polyethylenimine (PEI) (Asco-Lozano et al., 2014; López-Gallego et al., 2005) 

to increase the number of amino groups and facilitate intermolecular cross-linking, 

which increase the stability of final CLEAs.  In other cases, the particle size of CLEAs 

which is usually small (below 10 µm) or being too soft greatly hinders the process of 

recovery (Cui et al., 2014).  These CLEAs are not mechanically resistant and may 

require physical support to increase rigidity for some industrial applications (Garcia-

Galan et al., 2011).  

 

 

The rapid development of nanostructured materials has stimulated strong 

interest in using magnetic nanoparticles to improve the quality of the immobilized 

enzyme.  Recently, magnetic CLEAs have been receiving considerable attention as 

they can be simply recovered using an external magnetic field and recycled for iterative 

uses (Kumar et al., 2014; Talekar et al., 2012).  Enhanced stability is possible for 

repeated usage in continuous bioseparations along with enabling greater control over 

the catalytic process (Cui et al., 2014).  Moreover, appropriate surface 

functionalization provides these magnetic nanoparticles with recognition ability, 

enables controlled interaction between the magnetic cores with targeted biological 

species, and offers better aqueous dispersion and biocompatibility (Li et al., 2010). 

Previous studies on magnetic CLEAs commonly employed magnetite as their 

magnetic support with amino group 3-aminopropyl triethoxy silane (APTES) being 

the most favoured functional groups for bonding various bioactive molecules to the 

nanoparticles (Bhattacharya and Pletschke, 2014; Gunda et al., 2014; Talekar et al., 

2012).  

 

 

Although magnetite has been extensively used, Kang et al., (2007) in their 

study of human lung cancer A549 discovered that maghemite nanoparticles (γ- Fe2O3) 

had a greater binding specificity compared to magnetite nanoparticles (Fe3O4). 

Maghemite was possibly a better adsorbent than magnetite due to its larger active 

surface area (Netto et al., 2013).  Maghemite also exhibits a strong magnetic behavior 
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which has been used practically in various biomedical and biological applications 

including magnetic resonance imaging (MRI) contrast enhancement, biomagnetic 

separations and magnetic drug targeting.  Such wide applications of maghemite 

nanoparticles originate from their nontoxicity, biocompatibility, biodegradability, low 

particle dimension, large surface area and suitable magnetic properties (Kluchova et 

al., 2009).  To fully exploit the advantages of maghemite, it is essential to investigate 

its potential in stabilizing the cross-linked enzyme aggregates.  This work, to our 

knowledge is the first report of CLEA preparation by introducing silanized maghemite 

nanoparticles into the free enzyme solution to produce stable and renewable 

biocatalyst for effective hydrolysis of hemicellulosic material.  The results presented 

here suggest that Xyl-CLEA-silanized maghemite is a promising method for 

converting hemicelluloses into xylooligosaccharides.  

 

 

 

 

1.2 Objectives of Study 

 

 

There are three main objectives to be achieved in this study.  The objectives of 

this research are: 

 

 

a) To develop and characterize cross-linked enzyme aggregates (CLEA) of 

recombinant xylanase with high activity recovery. 

 

 

b) To determine the best developed cross-linked enzyme aggregates for the 

hydrolysis of hemicellulose.  

 

 

c) To investigate the performance of the developed cross-linked enzyme 

aggregates (Xyl-CLEA-silanized maghemite) in the hydrolysis of 

hemicellulose to xylooligosaccharides (XOS).  
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1.3 Scopes of Study 

 

 

This study emphasizes on the preparation design and improvement of stability and 

hydrolysis of xylanase-cross-linked enzyme aggregates (CLEA) activity on 

hemicellulose and its reaction process for XOS production.  Therefore, the following 

scopes were outlined to achieve the objectives.  

 

 

a) Expression, partial purification and characterization of recombinant 

xylanase (Xyn2) from Trichoderma reesei ATCC 58350 in Pichia pastoris 

expression system. 

 

 

b) Study on the effect of preparation parameters on the activity recovery in 

CLEA; enzyme to precipitant ratio, types of precipitants, concentration of 

cross-linker, cross-linker to enzyme ratio, cross-linking time and types of 

additives. 

 

 

c) Effect of the most stable and reusable cross-linked enzyme aggregates by 

introducing bovine serum albumin (Xyl-CLEA-BSA) and co-

immobilization with maghemite (Xyl-CLEA-silanized maghemite).  

 

 

d) Characterizations in terms of biochemical and structure of the developed 

CLEAs (Xyl-CLEA, Xyl-CLEA-BSA and Xyl-CLEA-silanized 

maghemite). 

 

 

e) Screening the effects of several reaction conditions (reaction volume, 

reaction time, temperature, pH, enzyme loading and substrate 

concentration) of the best developed CLEA on xylan hydrolysis using one 

factor at one time method (OFAT). 
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f) Study the significant factors of reaction conditions (reaction time, 

temperature, pH, enzyme loading and substrate concentration) of the best 

developed CLEA on xylan hydrolysis using Two Level Factorial Design.  

 

 

g) Optimization of the reaction conditions (reaction time, temperature and 

substrate concentration) of the best developed CLEA on xylan hydrolysis 

by central composite design (CCD) towards the achievement of highest 

XOS yield.   

 

 

h) Kinetic study of the best developed CLEA on xylan hydrolysis. 

 

 

 

 

1.4 Rationale and Significance of the Study 

 

 

Over the years, numerous efforts have been devoted to the development of 

enzymes for various applications.  However, only in very few cases that a biocatalytic 

transformation on a technical scale works perfectly at the first attempt due to 

limitations related to process parameters or the enzyme, such as moderate stability 

(Garcia-Galan et al., 2011) substrate- and product inhibitions, inefficient recycling and 

high production cost (Cui and Jia, 2015).  Enzyme immobilization has been regarded 

as a promising technology to overcome those limitations.  In the past decade, CLEA 

technology has been increasingly exploited to an extensive selection of hydrolases, 

lyases and oxidoreductases, for which the CLEAs exhibit superior operational 

stability, volumetric productivities and recoverability (Sheldon, 2011).  The CLEA 

method is attractive in its simplicity and robustness.  Nevertheless, the immobilization 

of an enzyme may produce different effects on enzyme activity (Garcia-Galan et al., 

2011).  In the cases of CLEA, the active centre may be blocked by the cross-linking 

agent or additives used, and the cross-linking procedure may promote diffusion 

problems.  The increased size of CLEAs clusters causes internal mass-transfer 
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limitations that hamper the catalytic efficiency (Cui and Jia, 2015).  The preparation 

of CLEAs is even more challenging when the surface lysine content which is 

responsible for effective cross-linking, is initially low.  Low cross-linking efficiency 

leads to major activity loss.  

 

 

This report is the first in demonstrating the development of three different 

CLEAs using recombinant xylanase from Trichoderma reesei.  The conventional 

CLEAs (Xyl-CLEA) was compared against Xyl-CLEA-BSA and Xyl-CLEA- 

silanized maghemite in terms of activity recovery, thermal and pH stability as well as 

reusability.  The initially low lysine content in the recombinant xylanase propels the 

search for stabilization of the CLEAs.  Although several other researchers suggested 

the use of proteic feeder such as BSA to enhance the cross-linking and thus the 

stability, this study proved otherwise.  The present study showed that co-aggregating 

the xylanase with silanized maghemite (Xyl-CLEA-silanized maghemite) is superior 

in achieving high activity recovery, enhanced stability and reusability when compared 

to the others.  The use of maghemite (γ-Fe2O3) is also unique as common nanoparticles 

used in CLEA formation is magnetite (Fe3O4).  The findings demonstrated that 

maghemite is a potential element that could be exploited for the production of stable 

and reusable CLEAs.  The application of CLEAs in hemicellulosic bioconversion still 

remains elusive as other works use different raw substrates.  However, the structural 

complexity of these xylans of raw sources limits its usefulness for detailed mechanistic 

studies that are targeted at understanding the mode of action of the enzymes. Therefore, 

in this report, an established soluble substrate which is beechwood xylan is exploited 

to gain a better understanding of reaction mechanism of the developed CLEAs.  The 

findings proved that Xyl-CLEA-silanized maghemite is a promising biocatalyst in the 

conversion of hemicelluloses to xylooligosaccharides.  
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