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ABSTRACT

The conjugation degree on a set is the probability that an element of a group 

fixes a set, whereby the group action considered is conjugation. The conjugation 

degree on a set is a variation of the commutativity degree of a group, which is the 

probability that two randomly chosen elements in a group commute. In this research, 

the presentation of metacyclic p-groups where p is an odd prime is used. Meanwhile, 

the set considered is a set of an ordered pair of commuting elements in the metacyclic 

p-groups, where p is equal to three and five, satisfying certain conditions. The 

conjugation degree on the set is obtained by dividing the number of orbits with the 

size of the set. Hence, the results are obtained by finding the elements of the group that 

follow the conditions of the ordered set, followed by the computation of the number 

of orbits of the set. In the second part of this research, the obtained results of the 

conjugation degree on a set are then associated with graph theory. The corresponding 

orbit graph, generalized conjugacy class graph, generalized commuting graph and 

generalized non-commuting graph are determined where a union of complete and null 

graphs, one complete and null graphs, one complete and null graphs with one empty 

and null graphs are found. Accordingly, several properties of these graphs are obtained, 

which include the degree of the vertices, the clique number, the chromatic number, the 

independence number, the girth, as well as the diameter of the graph. Furthermore, 

some new graphs are introduced, namely the orderly set graph, the order class graph, 

the generalized co-prime order graph, and the generalized non co-prime order graph, 

which resulted in the finding of one complete or empty graphs, a union of two complete 

or one complete graphs, a union of complete and empty graphs and a complete or empty 

graphs. Finally, several algebraic properties of these graphs are determined.
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ABSTRAK

Darjah kekonjugatan terhadap suatu set merupakan kebarangkalian bahawa 
suatu unsur di dalam suatu kumpulan menetapi sesuatu set, dengan tindakan bagi 
kumpulan yang dipertimbangkan ialah kekonjugatan. Darjah kekonjugatan terhadap 
suatu set merupakan variasi daripada darjah kekalisan tukar tertib bagi sesuatu 
kumpulan, iaitu kebarangkalian dua unsur yang dipilih secara rawak di dalam sesuatu 
kumpulan adalah berkalis tukar tertib. Dalam penyelidikan ini, perwakilan bagi 
kumpulan-p metakitaran dengan p ialah nombor perdana ganjil digunakan. Sementara 
itu, set yang dipertimbangkan ialah set pasangan bertertib bagi unsur yang berkalis 
tukar tertib di dalam kumpulan-p metakitaran, dengan p bersamaan tiga dan lima, yang 
memenuhi syarat-syarat tertentu. Darjah kekonjugatan terhadap suatu set diperoleh 
dengan membahagi bilangan orbit dengan saiz set tersebut. Oleh itu, keputusan 
diperoleh dengan mencari unsur-unsur di dalam kumpulan yang mengikut syarat 
bertertib set, diikuti oleh pengiraan bilangan orbit di dalam set berkenaan. Dalam 
bahagian kedua penyelidikan ini, hasil yang telah diperoleh dari darjah kekonjugatan 
terhadap suatu set tersebut dikaitkan dengan teori graf. Graf orbit, graf kelas 
kekonjugatan yang teritlak, graf kalis tukar tertib yang teritlak dan graf bukan kalis 
tukar tertib yang teritlak yang sepadan telah ditentukan, dengan gabungan graf lengkap 
dan graf nol, satu graf lengkap dan graf nol, satu graf lengkap dan graf nol dengan 
satu graf kosong dan graf nol telah dijumpai. Berikutnya, beberapa ciri bagi graf 
yang tersebut telah diperoleh, termasuklah darjah bucu, nombor klik, nombor kromat, 
nombor tidak bersandar, lilitan serta garis pusat graf. Tambahan lagi, beberapa 
graf baharu telah diperkenalkan, yang dinamai graf set teratur, graf kelas teratur, 
graf teratur ko-perdana yang teritlak dan graf bukan teratur ko-perdana yang teritlak, 
yang menghasilkan penemuan satu graf lengkap atau graf kosong, gabungan dua graf 
lengkap atau satu graf lengkap, gabungan graf lengkap dan graf kosong, dan satu graf 
lengkap atau graf kosong. Akhirnya, beberapa ciri aljabar bagi graf-graf ini telah 
ditentukan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The probability that two random elements from a group G commute is called 

the commutativity degree. The research on this topic has gathered various interests 

among researchers in the study of group theory and algebra. Hence, several extensions 

and generalizations of the commutativity degree have been introduced. One of the 

extensions is called the probability that an element of a group fixes a set, which was 

first introduced by Omer etal .  [1] in 2013. In this research, the probability mentioned 

is focused on only the conjugation action, and it is defined as the conjugation degree 

on a set. The conjugation degree on a set is computed for metacyclic p-groups, where 

p  is equal to three and five.

In mathematics, specifically in graph theory, a graph can be presented whenever 

there exist points and lines. To put it simply, a graph consists of a set of objects or 

vertices which are connected by links or edges. Precisely, a graph, which is denoted 

as r ,  is a mathematical structure containing two sets, which are denoted by V (r) and 

E ( r ) ,  respectively. This concept has been first introduced by Leonard Euler, a Swiss 

mathematicians on his attempt in solving the popular puzzle about bridges by drawing 

points and lines [2]. Since then, vast application of graph theory with mathematical 

problems, especially group theory has been conducted by various researchers. In this
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research, the obtained results from the conjugation degree on a set are applied into 

several graphs.

1.2 Background of the Research

As mentioned earlier, the probability that an element of a group fixes a set, from 

now on will be written as the conjugation degree on a set, is an extension of the concept 

of the commutativity degree of a group. The concept of the commutativity degree was 

first explained by Erdos and Turan [3] in one of their series on the statistical group 

theory. In their study, Erdos and Turan [3] also discussed on the commutativity degree 

for some symmetric groups. Later in 1973, Gustafson [4] gave the exact definition 

of the commutativity degree, named as the probability that two random elements 

commute. Gustafson [4] also showed that the commutativity degree can be computed 

by dividing the number of conjugacy classes with the size of the group and proved that 

Pr(G) <

In the early of 21st century, Puornaki and Sobhani [5] investigated the 

probability that the commutator of two randomly chosen elements in a group is equal to 

a given element in the same group. Nevertheless, this probability was also generalized 

by Alghamdi and Russo [6] in 2012 where the upper and lower bound for finite 

groups were determined. In addition to that, another study was done by Castelaz [7] 

on solvable and non-solvable groups where two upper bounds on the commutativity 

degree of non-solvable groups were considered. Later on, Barzgar [8] studied the 

probability that two subsets of a group commute where several results including lower 

and upper bounds were obtained. In conclusion, broad extensions on the concept of the 

commutativity degree which are related to different types of finite groups have been 

explored.

Throughout this research, another extension of the commutativity degree
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namely the probability that an element of a group fixes a set, denoted by PG (Q), 

which was first introduced by Omer et al. [1] is considered. In their research, Omer 

et al. [1] focused on the dihedral groups of order 2n, where the elements of order two 

are considered. In this research, this probability is extended by finding the probability 

that an element of metacyclic p-groups fixes a set, where p is equal to 3 and 5, by using 

conjugation action on a set. Besides that, this probability is defined as the conjugation 

degree on a set, which focuses only on conjugation action of the group. Furthermore, 

the results on the conjugation degree are further investigated by connecting them with 

several graphs, where some algebraic properties of the graphs are determined.

1.3 M otivation of the Research

The study on the commutativity degree and its extensions have been of interest 

by many authors. In 1975, Sherman [9] introduced the probability of an automorphism 

of a finite group fixes an arbitary element in the group. In 2011, Moghaddam et al.

[10] extended the definition given by Sherman [9] and introduced the probability of an 

automorphism of a finite group fixes a subgroup element. Later in 2013, Omer etal .  [1] 

introduced another probability which is the probability that an element of a group fixes 

a set.

Previously, the probability that an element of a group fixes a set for some finite 

non-abelian groups which include metacyclic 2-groups, dihedral groups and quaternion 

groups has been determined. However, the probability that an element of a group 

fixes a set for metacyclic p -groups where p  is an odd prime has not been found. A 

metacyclic group is a group where both its commutator subgroup and quotient group 

are cyclic. Since early of 70’s, the classification of metacyclic group has been done by 

many authors. In 1973, King [11] gives a classification of finite metacyclic p-groups 

by using group-theoretic argument. In 2005, Beuerle [12] follows the classification 

given by King [11] and introduced a complete list of metacyclic p-groups of nilpotency



4

class at least three which consists of exactly one representative for each isomorphism 

class. Recently in 2014, Basri [13] added extra conditions on the classification of 

metacyclic p-group where p is an odd prime given in Beuerle [12] . Therefore, in this 

research, the revised classification introduced by Basri has been used to determine the 

probability that an element of a group fixes a set for metacyclic p -groups where p  is an 

odd prime, using conjugation action on a set. This probability has been re-defined as 

the conjugation on a set.

On the other hand, various studies have been done in relating the elements of 

groups with graph, namely the algebraic graph theory which can be found in [14­

40]. The results on the conjugation degree on the set defined from the metacyclic p- 

groups can further be applied by connecting them with several graphs where some of 

the algebraic properties of the graphs can be determined.

1.4 Problem Statements

Previously, the probability that an element of a group fixes a set for metacyclic 

p-groups where p is an odd prime has not been found. Thus, this motivates the research 

in finding the probability that an element of a group fixes a set for metacyclic p-groups, 

where p is an odd prime by using the conjugation action on a set. In this research, this 

probability is defined as the conjugation degree on a set. Throughout this research, the 

set of the metacyclic p-groups, where p are the odd primes 3 and 5, denoted by Q is 

restricted in the form of (x, y) G G x G where lcm (|x |, |y|) =  p, xy =  yx, x =  y, and 

(y, x) G G x G is not included. In order to determine the probability, the size of the 

set Q and the number of orbits of Q are also determined.

In this research, the results on the conjugation degree on the set Q, specifically 

the elements of Q and their orbits are applied into four graphs, namely the orbit 

graph, the generalized conjugacy class graph, the generalized commuting graph and
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the generalized non-commuting graph, where some of their properties are also found. 

Moreover, four new graphs related to the conjugation degree on the set Q are also 

introduced, namely the orderly set graph, the order class graph, the generalized co­

prime order graph and the generalized non co-prime order graph.

1.5 Objectives of the Research

Let G be a metacyclic p-group, where p is an odd prime and Q C G x G such that

Q =  {(x, y) G G x G : lcm (|x|, |y|) =  p, xy =  yx, x =  y} \  {(x, y)} The objectives 

of this research are:

(i) To determine the elements and the size of the set Q.

(ii) To find the conjugation degree on the set Q for metacyclic p-groups, 

where p is equal to 3 and 5, by following the restriction of the set Q.

(iii) To apply the results in (i) and (ii) to graph theory, namely the 

orbit graph, the generalized conjugacy class graph, the generalized 

commuting graph and the generalized non-commuting graph.

(iv) To find several algebraic properties of the graphs in (iii) such as the 

degree of the vertices, the clique number, the chromatic number, the 

independent number, the girth and the diameter of the graph.

(v) To introduce four new graphs related to the set and conjugacy classes 

of metacyclic 3-groups and metacyclic 5-groups, as well as finding 

some of their algebraic properties.

1.6 Scope of the Research

This research has two parts which are group theory and graph theory. In the 

first part, namely group theory, an extension of the commutativity degree, which is the
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probability that an element of a group fixes a set, which is defined as the conjugation 

degree on a set, are determined. the group under consideration is a metacyclic p-group, 

G and the set Q C G x G. This research is conducted by restricting the set Q to 

be an ordered pair of elements in G x G of the form (x ,y), with the condition of 

lcm (|x|, |y|) =  p, xy =  yx, x =  y, and (y,x) G G x G is excluded. Throughout 

this research, p is equal to 3 and 5, where the presentation of metacyclic p-groups, 

where p an odd prime is considered. In addition, this research is focusing only on the 

conjugation action on the set.

In the second part of this research, the results on the conjugation degree on the 

set Q are applied to graph theory, namely the orbit graph, the generalized conjugacy 

class graph, the generalized commuting graph and the generalized non-commuting 

graph. Furthermore, the algebraic properties of these graphs namely the degree of 

the vertices, the clique number, the chromatic number, the independent number, the 

girth and the diameter of the graph, are also considered. In addition, four new graphs 

namely the orderly set graph, the order class graph, the generalized co-prime order 

graph and generalized non co-prime order graph are introduced, together with their 

algebraic properties mentioned earlier.

1.7 Significance of the Research

In other area, such as in telecommunications, specifically in the multi-antenna 

setting, some researchers found that metacyclic group is one the finite groups 

that is applicable in the analysis of the setting. Therefore, the study on finite 

groups, specifically metacyclic group has become of interest for group theorists. 

In this research, new theoretical results on metacyclic p-groups, focusing on the 

commutativity degree of the groups are provided. Eventually, this research provides 

theoretical results in terms of lemmas and theorems which can be applied in other 

related areas as well.
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Extremal graph theory is a branch which connects mathematical field with 

graph theory. This branch studies the maximal and minimal graphs which satisfy 

certain properties, including the size, order and girth of the graph. Eventually, extremal 

graph theory is significance in other field such as coding theory and cryptography. In 

this research, the results on the conjugation degree on a set of metacyclic p-groups are 

applied into graph theory, where the degree of the vertex, the clique, chromatic and 

independent numbers, as well as girth and diameter of the graph are also determined. 

Consequently, this research is closely related to extremal graph theory, which can also 

be applied in coding theory and cryptography as well. Moreover, four new graphs 

related to the conjugation degree on a set are also introduced, including some of their 

algebraic properties.

1.8 Research Methodology

In this research, an extension of the commutativity degree of a group, defined 

as the conjugation degree on a set is explored. Throughout this research, the group G 

stands for the metacyclic p-group, where p are the odd primes 3 and 5. Meanwhile, the 

set considered is Q, a set of ordered pair of elements in G of the form (x, y), such that 

the lcm (|x|, |y|) =  p, xy =  yx, x =  y and if (x, y) G Q, then (y, x) G Q. In addition, 

the group action employed in this research is conjugation action. The computation 

of the conjugation degree on the set Q is started by determining the order of each 

element in the group, whereby the elements that follow the restriction of the set Q are 

considered. Throughout this research, the presentation of metacyclic p-groups, where 

p is an odd prime given by Basri [13] is referred. The presentation is categorized as 

Type 1 and Type 2. Since the value p is either 3 or 5, there are a total of four groups 

that are considered in this research, namely metacyclic 3-group of Type 1, metacyclic 

3-group of Type 2, metacyclic 5-group of Type 1, and metacyclic 5-group of Type 2. 

Thereafter, the elements in the group are gathered together by following the restrictions 

in the set Q. Once the set Q has been determined, the computation of the orbits in the
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set Q is conducted. Next, the number of orbits in the set Q is determined, by following 

the size of each orbit. Subsequently, the conjugation degree on the set Q is computed 

by dividing the number of orbits with the size of the set Q.

In the second phase of the research, the results found based on the conjugation 

degree on the set Q are applied into several graphs, namely the orbit graph, 

the generalized conjugacy class graph, the generalized commuting graph and the 

generalized non-commuting graph. By following the definition of each graph, the 

elements in the set Q as well as the the orbits of Q are considered to be the vertices, 

and they are connected by an edge based on certain rules. Furthermore, some algebraic 

properties of these graphs are determined including the degree of the vertices, the clique 

number, the chromatic number, the independent and dominating sets, the girth and 

the diameter of the graph. Lastly, four new graphs related to the set and conjugacy 

classes of metacyclic 3-groups and 5-groups are also introduced, including some of 

their algebraic properties. These graphs are named as the orderly set graph, the order 

class graph, the generalized co-prime order graph and the generalized non co-prime 

order graph. The overall research methodology is illustrated in Figure 1.1.

1.9 Thesis Organization

This thesis consists of six chapters. The first chapter, which is the Introduction 

consists of a brief overview of the thesis, which includes the introduction, the 

background of the research, research objectives, scope of the research, problem 

statements, significance of the research, research methodology as well as thesis 

organization.

Next, Chapter 2 covers on the basic concepts in group theory and graph theory 

which are related to this research. The research background and the literature review 

on the concept of the commutativity degree are also discussed. In addition, previous
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Figure 1.1 Research methodology
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studies relating graphs with finite groups are also presented.

Chapter 3 highlights the results of this research on the conjugation degree on 

the set Q for the metacyclic 3-groups and metacyclic 5-groups of Type 1 and Type 2. 

The computation of the conjugation degree is conducted by determining the order of 

each element in the group, which follows the order restriction of the set Q, as well as 

the computation of the orbits of the set Q. The results computed are then presented in 

the form of lemmas and theorems.

In Chapter 4, the results on the conjugation degree on the set Q are applied into 

graph theory. The elements of the set Q are presented as the vertices, in which they are 

joined by an edge according to certain rules applied in different type of graphs. These 

graphs include the orbit graph, the generalized conjugacy class graph, the generalized 

commuting graph and the generalized non-commuting graph. The results are discussed 

in the form of theorems, where several algebraic properties of these graphs are also 

determined.

In Chapter 5, four new graphs of metacyclic 3-groups and metacyclic 5-groups 

are introduced, named as the orderly set graph, the order class graph, the generalized 

co-prime order graph and the generalized non co-prime order graph. These four graphs 

are computed based on the order of the elements in the set Q, as well as the conjugacy 

classes of the same set. In addition, some algebraic properties of these graphs are also 

presented.

Chapter 6 , which is the last chapter of the thesis concludes the overall content 

of the whole thesis. In this chapter, the summary of the research is given, where several 

suggestions for future research on the conjugation degree on a set are also presented. 

Figure 1.2 illustrates the content of the whole thesis.
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